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The spectroscopy of diatomic molecules has proved to be of 
colossal importance to the study of elementary photochemical 
processes. The application of the principles of this science to 
chemistry in general is severely handicapped, however, by the 
fact that most molecules are polyatomic and, until a few years 
ago, little had been learned towards the elucidation of their 
spectra. Recently remarkable advances have been made along 
these lines. Although the wealth of material is small when com- 
pared with that available on diatomic molecules, still it is so 
large in absolute amount that a review of the fundamental princi- 
ples which have been so far discovered may be of great value to 
one wishing to enter into a thorough study of this subject for the 
first time. No apology need be made therefore for limiting our 
discussion to a few molecules which represent typical cases and 
for omitting from consideration a great mass of literature which 
is increasing daily by leaps and bounds. We shall divide the 
present summary of the status of polyatomic band spectroscopy 
into two parts: the first will be a discussion of the general princi- 
ples of significance to chemistry, and the second will consist of 
illustrative applications of these principles to typical compounds 
-in general, the hydrogen compounds. 

1 A brief summary of Part  I of this review was presented a t  the Symposium on 
The Application of Quantum Theory to Physical Chemistry held by the Physical 
and Inorganic Section a t  the 81st meeting of the American Chemical Society a t  
Indianapolis, March 31, 1931. 
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PART I. GENERAL PRINCIPLES 
The information derivable from the spectroscopy of molecules 

which is of interest to chemists is of two types: physical and 
chemical. Thus, a successful complete analysis of a molecular 
spectrum enables one to compute the physical constant, the 
moment of inertia, and from it, the average nuclear separation 
for different energy states. One can tell, for example, whether 
excitation of the molecule brings about a bond loosening (the 
usual case) or tightening, by observing whether the band is shaded 
towards the red or, respectively, the violet. A knowledge of the 
different moments of inertia of a polyatomic molecule is necessary 
to the elucidation of its structure and size. Further information 
of interest to physics and photochemistry involves transition 
probabilities. Vibrational transitions associated with electronic 
are of greatest significance to photochemical change. Rotational 
transition probabilities are not so important to such processes 
because they are zero for all but small changes in rotational 
energy (A K = =t 1 or 0), but they are essential to an understand- 
ing of selection principles which, in turn, are necessary for a suc- 
cessful analysis of the fine structure. The chemical information 
which one may obtain from molecular spectroscopy embraces 
heats of dissociation, bond strengths, heat contents, entropies, 
specific heats, free energy and equilibrium constants, and, quite 
recently, activation heats. It is beyond the scope of the present 
article (1) to go into the means whereby these constants may be 
derived; we shall limit ourselves to a consideration of the two 
things, a more or less complete knowledge of which is prerequisite 
to such calculations, namely, the energy levels, ci ,  and their 
statistical weights, w i. The latter are the relative probabilities 
of finding a molecule having the energy, E ; ,  and are equal to the 
products of the Boltzmann factor, e-*ilkT, into the a priori 
probabilities, pi.  The a priori probability may be looked upon 
as the number of individual levels happening to have exactly the 
same energy, e i ,  and is given in classical theory by the number of 
quantized orientations which an angular momentum may assume 
in a force field. The component of the momentum, j ,  along the 
force axis may take any of the values + j, j - 1, j - 2, . . . . 
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- j + 1, - j ,  making 2 j  + 1 in all. The a priori probability is 
therefore 2 j  + 1. More rigorously, in quantum mechanics, it is 
the number of ways of obtaining an eigenfunction completely 
antisymmetric2 in the protons (2) from those characterizing the 
energy level in question (Pauli exclusion principle). Such an 
eigenfunction will be completely antisymmetric in the protons 
only when it is antisymmetric in the nuclei, AN,  if the latter 
contain an odd number of protons each (Fermi-Dirac statistics) 
or symmetric in the nuclei, SN,  if the latter contain an even num- 
ber of protons (3) (Bose-Einstein statistics). 

The energy of the level in a molecule is customarily considered 
as made up of separate contributions from the rotational, the 
vibrational, and the electronic motions. In  such a case the 
molecular eigenfunction may be taken (4) as the product of 
subsidiary functions, the electronic, vibrational, rotational, and 
nuclear. 

= gel gvibr +rot $nuclei (1) 

Its symmetry follows the sign multiplication rule; X x S = S,  
S X A = A ,  A X A = S, etc. We shall accordin,gly divide our 
discussion into these logical subdivisions. 

ROTATIONAL 

1. Diatomic molecules 
We shall first review the case of the diatomic mol.ecule in order 

to be better prepared for the polyatomic molecule. The former 
has two equal moments of inertia, the third being :negligible (ex- 
cept it be due to electronic momentum with a component along 
the line joining the nuclei (figure axis)-A > 0 -in which case 
it is properly considered under electronic energy levels). Each 
moment of inertia corresponds to one rotational degree of freedom 
and the rotational specific heat at high temperatures is conse- 
quently 2R/2.  

The energy levels are given by the general 
formula 

(2) 

a. Energy levels. 

E K  = R(K + l)h2/8a*1 
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where K is the rotational quantum number and may take on 
positive integral values starting with zero, h is Planck's constant, 
and I is the moment of inertia. Figure 1 illustrates this energy 
level sequence. 
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FIG.. 1. THE VIBRATIONAL AND ROTATION.4L ENERQY LEVELS OF HC1 
The rotational levels are plotted on ten times the scale of the vibrational 

(From Ruark and Urey : Atoms, Molecules and Quanta. McGraw-Hill levels. 
Book Co., New York (1930). Reproduced by courtesy of the publishers.) 

b. Statistical weights. The a priori probability of the K'th 

(3) 

level is 

p ,  = 2R + 1 
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since the rotation of the nuclei has associated with it K units of 
angular momentum. The statistical weight of the state is 
therefore 

(4) 

These weights are to be multiplied by the nuclear spin statisti- 

- R(K + i ) h * / s x * r w  wK = (2R + 1)e 

cal weight which is 
tun = (2i l  + 1) (2iz + 1) . . . . ( 2 i y  + 1) 

= n: (2i” + 1) 
V 

( 5 )  

The Boltzmann factor does not appear in this expression, since 
the energy difference between levels of different nuclear spin 
orientations is negligible (coupling very slight). 

A modification of this rule usually occurs if both of the nuclei 
in the molecule are the same. In this event, the rotational eigen- 
functions, I,& are, starting with the lowest level, alternately 
SN and AN (the subscript referring to  changes in designation of 
the nuclei). The lowest vibrational (8,) and lowest electronic 
(8,) states can therefore combine alternately with only A N  and 
SN eigenfunctions of the nuclear spin, if the number of 
protons in each nucleus is odd (Fermi-Dirac statistics) or alter- 
nately with only SN and A,v nuclear spin eigenfunctions if the 
number is even (3) (Bose-Einstein statistics). 

The nuclear weight, 5, is therefore divided into two parts, 
each of which applies separately to a separate set of rotational 
levels. If the nuclear spin is zero, this means the exclusion of a 
whole set of levels (either all odd or all even) because is 
S, only. If the spin is 1/2, three S,,, spin functions may be 
formed from those available (call spin in one direction a, in the 
other a) ( 5 ) ,  namely, 

but only one Ah’ 

%% - ff2P1 
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and the nuclear spin statistical weights are respectively 3 and 1. 
The weights for other nuclear spins are given in table 1. Note 
that the sum of the two types of weights must equal (2iN + 1)*. 
The nuclear spins are thus seen to contribute an additional statis- 
tical weight of their own. This holds as well when the nuclei 
are different, but in this case all rotational weights are multiplied 
indiscriminately by the factor (2i1 + 1) (2i2 + 1). 

TABLE 1 
Nuclear spin statistical weights 

i N  1 5N I A N  1 EXAMPL& 

Fermi-Dirac statistics 

0 
112 
1 
3/2 

1 
3 
6 

10 

Hz 

Bose-Einstein statistics 

0 

1 
112 

3/2 

1 
3 
6 

10 

01 

Na 

2. Polyatomic molecules 
The polyatomic molecule in general has three moments of 

inertia. Each moment of inertia corresponds to one rotational 
degree of freedom and the rotational specific heat at high tem- 
peratures is consequently 3R/2.  The a priori probability asso- 
ciated (6) with each value of the total angular momentum, j ,  (or 
rotational angular momentum, K )  of a molecule is 2j  + 1 if it is 
collinear, or (2j  + 1 ) 2  if it is not. In the latter case, if all three 
moments of inertia are equal, all (2j  + 1 ) 2  terms fall together. 

2 Bn eigenfunction is an equation, the square of the absolute value of which 
gives the probability of finding the particle to  which i t  refers in a prescribed 
position in space. An antisymmetric eigenfunction, A,  is one which becomes 
multiplied by -1 when the numbers designating two like particles are inter- 
changed. A symmetric eigenfunction, s, becomes multiplied hy +1 (i.e., is 
unchanged) by such an interchange. 
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If only two of the moments of inertia are equal (symmetricaI 
top), these terms fall into (2 j  + 1) groups of quantum number 

r = j , j - l ,  . . . . .  - j + l , - j  

Each 7 group has the degeneracy (2 j  + 1) and, moreover, those 
groups of + T coincide with those of - 7. If all three moments 
of inertia are different (asymmetrical top), the + and - 7 groups 
are separated, each having its own degeneracy of (2j  + 1). 

Three cases of the polyatomic molecule may be distinguished. 
Case I-Collinear molecule. Two moments of inertia are equal 

and the third is negligible. These are exactly the same conditions 
governing the diatomic molecule, and the energy relations and 
a priori probabilities therefore obey the same laws. The rota- 
tional specific heat a t  high temperature is of course only 2 R / 2 .  
From the rotational line sequence one may determine the moment 
of inertia as before, but additional information is necessary to 
estimate the nuclear separations. 

The rotational a priori probabilities are also more complicated. 
If all atoms are different, each weight is multiplied by the spin 
product, II (2iY + 1) .  If the molecule has a symmetrical form, 
the effects of the symmetry characteristics of the eigenfunctions 
must be worked out for each case. For example, suppose we 
have a rod-shaped molecule of the form XYYX. The radical 
XY may be considered as a unit of a diatomic molecule. When 
the nuclear spins of the left XY radical have the same resultant 
as those of the right one, the rotational weights may be computed 
from table 1, and one may expect alternate weak and strong levels. 
But when the resultant spin of the left XY radical differs from 
that of the right one, the molecule is no longer symmetrical and 
all rotational weights will be multiplied by the same nuclear spin 
factor (2jlert + 1) (2jrigbt + 1) where j is, in this instance, the 
resultant of the two nuclear spins, ix and iy. In  other words, 
the states are no longer divisible into symmetric and antisymme- 
tric. This case is exactly analogous to that of a diatcjmic mole- 
cule composed of isotopes of differing weights. 

Here two moments of inertia ( A )  
are equal and the third (C) is unequal but greater than zero. 

Y 

Case 11--Symmetrical top. 
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Each moment of inertia corresponds to  one rotational degree of 
freedom and the rotational specific heat at high temperature is 
therefore 3R/2. 

(a) Energy levels. The energy levels of the symmetrical top 
are given by the formula, 

(7) E. 19r = (h2 /8~ ' )  [ j ( j  + 1)/A + (1/C - l /A)r*] 

171 s j  
where j = 0, 1, 2, 3 . . . , and 7 is a positive or negative in- 
teger, the absolute value of which cannot be greater than j. 
The first half of the formula gives an energy level sequence 
similar to that characteristic of the diatomic molecule, but the 
second half requires that each successive level have built on it a 
satellite system which grows ever larger and larger. The unequal 
moment of inertia, C, may be greater or less than the others, A ,  
and this determines whether the satellite system builds up or 
down. A picture of the relations involved in ammonia (C > A )  
is given in figure 2. 

(b) Statistical weights. The a priori probability of one (asso- 
ciated with definite 7) of the j levels is 

pj,? = 2 j  + 1 (8) 

and the statistical weight is 

where 

U I  = h2/8rzAkT (10) 

~ 1 :  = (h2/8r2kT) (1/C - 1/A) (11) 

It is interesting to trace out two limiting cases. If C = A ,  a2 = 
0 and the (2 j  + 1)  levels, one for each possible value of 7,  are 
completely degenerate. 

(12) 

If, on the other hand, C = 0, then a2 = co and the statistical 
weights are zero for all values of T but 7 = 0. This gives as the 

The total a priori probability is 

Pj = ( 2 j  + 112 
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total weight only, pi = 2 j  + 1, in complete agreement with 
equation 3 for the diatomic molecule, which this contingency 
represents. 

The statistical weights given by equations 8 and 9 must be 
multiplied by the product of the nuclear degeneracies r~ (Zi, + l), 

if the component nuclei have spin. If the molecule is symmetri- 
Y 

.------.----..-... 0 0 
(ai ibl 

FIQ. 2. ROTATIONAL ENERGY LEVEL DIAQRAM OF DOUBLE GROUND VIBRATIONAL 
STATE OF NHI TYPE MOLECULE 

(Taken from Badger and Cartwright (46)) 
-- - symmetric term, S(3). 
-.-.- = degenerate symmetry term, S(2 + 1). 
............ = antisymmetric term, S(l + 1 + 1). 

cal, the effects of the symmetry characteristics of the eigenfunc- 
tions must here also be worked out for each case. We shall 
review those for three and four equal nuclei, as they have been 
presented in detail by Hund (4). 

The symmetry characteristics of eigenfunctions of more than 
two like particles are not so clear cut, in contrast with those of 
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two which are either completely S or completely A .  The func- 
tions may have mixed symmetry character.3 Thus, A ( 3 )  is an 
eigenfunction, A ,  in the interchange of two of any three particles, 
A (2 + 1) is A in a certain pair but not for any other, and A 
(1 + 1 + 1) is A in none. The last eigenfunction, Hund has 
shown, is completely symmetrical, S ( 3 ) ,  the first is symmetrical 
in no pair, S (1 + 1 + l), and the second is reciprocal to itself, 
i.e., is likewise S (2 + 1). Of the characters of mixed symmetry, 
S (2 + 1) is found to be doubly-, S (2 + 2) to be doubIy-, and S 
(3  + 1) to be triply-degenerate. But it has been found, in mul- 
tiplying together two degenerate characters, that the symmetry 
characters of the products are different, and are distributed among 
the various possible kinds by definite predetermined fractions. 
Thus, only one-fourth of the combinations between the S (2 + 1) 
rotational and S (2 + 1) nuclear spin characters may be combined 
to form a completely symmetrical product, S (3), and one-fourth 
to form a completely antisymmetrical S (1 + 1 + l), the residual 
half remaining degenerate, S (2 + 1). The same is true of com- 
binations between two S (2 + 2) functions. Only one-ninth of 
the products of two S (3 + 1) functions may form an S (4) func- 
tion, and another ninth may form S (1 + 1 + 1 + 1) functions. 

With these working rules (the reader is referred to the original 
references (7,s) for the complete set), one is in a position to 
calculate the a priori probabilities of the different symmetrical 
varieties of molecules containing three or four equal nuclei. If 
the latter have only two orientation possibilities (spin = 1/2) one 
may set up ~r and p values as above in equations 5 and 6 and get 
as a final result ' Three nuclei 4 s (3) 

2 S (2 + 1) doubly degenerate/ 

3 S (3 + 1) triply-degenerate 
1 S (2 + 2) doubly-degenerate 

Four nuclei 1 5 s (4) 

eigenfunctions of nuclear spin. 
Hund has shown that symmetry characters with more than two 

a Terminology introduced by Hund (7). 
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terms in the argument may occur only when the spin can take on 
more than two values. Since there is very little coupling force 
between the nuclear spins and the outer forces of the molecule, 
these different symmetry systems are practically non-combining 
and form distinct molecular varieties in exactly the same way 
that the two symmetry varieties of hydrogen are formed. We 
shall designate them as nuclear quartet, nuclear doublet and 
nuclear quintet, nuclear triplet, and nuclear singlet. The corre- 
sponding forms of hydrogen are nuclear triplet (“ortho”) and 
nuclear singlet ( “ ~ a r a ” ) . ~  

The a priori weight and character of the rotational eigenfunc- 
tions of a triatomic symmetrical molecule are given in table 2 
(from Hund (4)) ; those of a molecule of tetrahedral symmetry5 
are given in table 3 (from Elert (8)). 

If the number of protons in the equal nuclei is odd, the Fermi- 
Dirac statistics (if even, the Bose-Einstein) must be obeyed, and 
it is a comparatively simple matter now, to  count the total num- 
ber of completely AN (or respectively, SN,  for Bose-Einstein 
statistics) functions which can be formed from all of those avail- 
able. The further discussion of this topic will be continued in 
Part 11. 

The most general case of the 
polyatomic molecule is exemplified by the asymmetrical top, 
whose three principal (mutually perpendicular) moments of 
inertia, ( A ,  B, and C, arranged in order of increasing value) are 
all different. The high temperature rotational specific heat of 
this type of molecule is the same as that of the symmetrical top, 
3R/2,  the distribution of the moments of inertia having no effect, 
provided, of course, sufficiently high temperatures are used in the 
comparison. 

Case 111-Asymmetrical top. 

4 That the nomenclature, ortho- and para-hydrogen, is perverted has been 
pointed out by Eucken and Hiller (Z. physik. Chem. 4B, 142 (1927), footnote 4) 
and by Mulliken (Trans. Faraday Soc. 26, 638 (1929), footnote 16). 

6 Eiert (8) demonstrated this distribution to  hold for the first few j states and 
believed i t  to  be general but was unable to  prove it. The author has recently 
received a personal communication from Professor Hund stating that  he has been 
informed by Mr. van der Waerden that  it is indeed general. 
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4 (23’ + 1) for T = 0 
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4 (23’ + 1) for T 

TABLE 2 
Rotational weights in NHs type molecule (le) 

3 
3 
4 
4 
4 
4 
4 

I 7 

2 
3 
0 
1 
2 
3 
4 

0 0 

1 1 I :  

8 (2j + 1) for T 
divisible by three 

indivisible by three 

NUCLEAR QUARTBT 
S ( 3 )  

4 x 1  
3 
0 
5 
0 
0 
7 
0 
0 
7 x 2  
9 
0 
0 
9 x 2  
0 

NUCLEAR DOUBLET 
S(2 + 1) 

4 x 0  
0 
3 
0 
5 
5 
0 
7 
7 
0 
0 
9 
9 
0 
9 

TABLE 3 
Rotational weights in CHI type molecule (If) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

NUCLEAR QUINTET 
S(4) 

5 x 1  
0 
0 
7 
9 
0 

13.2 
15 
17 
19.2 
21.2 

NUCLEAR TRIPLET 
S(3  + 1) 

0 
3.3 
5.3 
7.6 
9.6 

11.9 
13.9 
15.12 
17.12 
19.15 
21.15 

NUCLEAR BINGLET 
S(2  c 2) 

0 
0 
5.2 
0 
9.2 

11.2 
13.2 
15.2 
17.4 
19.2 
21.4 
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(a) Energy levels. The energy levels of the asymmetrical 
top have been given by Kramers and Ittmann (9) 

ei,r = (h2/87r2) j ( j  + 1) Hi,, (13) 

where Hi,, must lie between 

c < Hi,, < a (14) 

The small letters, a, b, and c shall be the reciprocals of the cor- 
responding moments of inertia. For large j and values of T 

approaching 

70 = ( j  + 1/21 1(4/7r) arc tan(b - c)’12/(a - b~’’~ - 11 (15) 

HjTr  is given by 

(16) 
r ( a  - b)’12 ( b  - c y 2  H .  = b + z  

j + 1/2 In [ ( j  + 1/2)16 ,0’577 sin 2 arc tan@ - c)’12/(a - b)’” f n/21 J,r 

where alternate values of the plus or minus sign are to  be chosen 
for successive values of T. The fine structure spacing within a j  
group of levels is thus seen to be constant near the center of the 
group. 

A H ,  2 ,(a - b)’12 ( b  - C ) ’ I 2 / ( j  + 1/21 In ( j  + 1/2) (17) 
center 

j large T Z TO 

This is no longer true when Hi,, differs appreciably from b, in 
which event the sublevels pair together (splitting decreasing 
inversely as j ) ,  two pairs being separated by the energies 

Hpairs = 2(a - c)’” ( a  - b)’”/(j + 1/2) for ( a  - H )  << (a  - c )  

( H  - c) << ( a  - c) 

(18) 

(19) = 2(a - c)’” ( b  - c ) ’ ” / ( j  + 1/2) 

These asymptotic formulas are valid only for large j. The energy 
levels for small j have been worked out by Kramers and Ittmann 
up to j = 4 and are given in table 4. Dennison (lo),  in a valuable 
discussion of th$ subject, has recently extended the computation 
to  j = 9 and Nielsen (11) to j = 10, but their equations are not 
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a u o  +++  
a u.C 
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reproduced here as the energy relations are not so readily visual- 
ized. Figure 3, taken from Kramers and Ittmann (9a, I, figure 
3, page 562) shows the relation between the sublevels of j = 4 as 
the middle moment of inertia, l / b ,  changes from the value l / c  
to l/a. The second quantum number, 7 b o  is that of the sym- 
metrical top where b = c. It may be noted how the spacings 
discussed above in connection with equations 17, 18, and 19 are 
exemplified, especially when b = 2c. 

2 
I 
0 

I- 

3 

4 

b/c= I I*/  /*r z 3 
FIQ. 3. ENERQY LEVELS OF ASYMMETRICAL TOP FOR j = 4 AND VARYINQ MOMENTS 

OF INERTIA 
a = 3c 

(From Kramers and Ittmann (9a, I)) 

(b) Statistical weights. The a priori probability of each level 

(20)  

is, as in the case of the symmetrical top 

Pj,, = 2 j  + 1 
and the statistical weight is 

wj, ,  = ( 2 j  + 1)e- cj-,’kT (21) 

The energy, q,, is given in the preceding section, equation 13. 
The statistical rotational weights are to be multiplied by the 
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weights due to  nuclear spin, as before. If the molecule is sym- 
metrical, the symmetry characteristics of the eigenfunctions must 
be examined in detail. A principle of great value in the con- 
summation of such an investigation of the characteristics of the 
rotational eigenfunctions of the asymmetrical top is that the 
total number of terms (a priori probabilities) and their symmetry 
characters are unchanged on going from the symmetrical to the 
asymmetrical top. Results obtained for the former may be 
immediately applied to the latter. The further discussion of this 
topic will be reserved for Part I1 (HzO). 

VIBRATIOKAL 

If n is the number of atoms in a molecule, the latter as a whole 
will have 3n degrees of freedom (three translational degrees to 
each atom). If the coordinates are now transformed to such that 
three may be made to represent the translatory motion of the 
center of gravity of the system, and two or three (depending on 
whether it has two-collinear-or three moments of inertia), the 
rotational motion of the molecule, there will be left respectively 
3n - 5 and 3n - 6 degrees of freedom and these must of necessity 
represent vibrational motion. 

In writing down the equations for vibrational energy, an es- 
pecially simple formulation may be had if a coordinate system be 
chosen which allows the kinetic and potential energy of the system 
to be represented respectively as a sum of separate terms involv- 
ing successively each coordinate alone, and no products of one 
coordinate into another. These coordinates are called normal 
coordinates and there must be as many of them as were originally 
started out with. The reader is referred to the articles of Denni- 
son (10) and of Mecke (12) for a fuller discussion of this point. 
The important result of this representation is that small oscilla- 
tions about the equilibrium points may be represented as the 
resultant effects of a series of different harmonic oscillators all 
vibrating at the same time. The final vibrational frequency is 
then the sum of the ground or overtone frequencies of each 
oscillator. 

That these normal vibrations have actual physical significance, 
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notwithstanding the mathematical mode of computing them, may 
be best seen by watching the Kettering, Shutts, and Andrews 
(13) machine for representing the dynamic properties of mole- 
cules. Any one who has seen the activating vibrations pass 
through one resonance frequency to another cannot fail to be 
struck by the radical change in character of the motion. These 
different modes of vibration are indeed the normal vibrations 
about which we are writing. 

The intensity of spectral lines absorbed or emitted, in which the 
vibrational quantum number changes, is governed by several 
factors. First the (total) symmetry character of the initial and 
final state must be identical. If the nuclei have symmetry 
properties, the molecules will belong to different nuclear-multi- 
plet varieties and the preceding statement applies to the resultant 
symmetry character of everything but nuclear spins. Second, 
the transition intensity is proportional to the square of the classi- 
cal electric moment; this in turn depends on whether the coordi- 
nate associated with the particular transition under consideration 
may be used to define a value for the moment. Obviously, the 
change of a coordinate corresponding to a symmetrical motion 
of the molecule cannot affect the electric moment. Such a 
frequency is therefore termed “inactive” and cannot appear 
as a spectral line or band except in combination with another 
which is “active” (associated with a coordinate of unsymmetrical 
vibration). 

On the other hand, “inactive” frequencies are favored as 
Raman lines, the latter depending for their intensity on the elec- 
tric moments of interaction with intermediate states. Thus, a 
Raman line will be intense if its frequency is the difference be- 
tween two intense optical frequencies. Van Vleck (14) has de- 
duced that the lines scattered by a polyatomic molecule “shoiild 
rank as follows in intensity: first, Rayleigh scattering (no wave 
length shift) ; second, Raman lines whose displacements equal 
one of the fundamental vibration frequencies ; third, Raman lines 
whose displacements are either harmonics of a fundamental 
vibration frequency, or else are ‘combination frequencies’ equal 
to the sum of two different fundamentals.” 
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The a priori probability of each normal vibration is unity, 
except in those cases where more than one vibration happens to 
have the same frequency (degeneracy). In  that event, the a 
priori probability is equal to the number of vibrations making 
up the degenerate oscillation. This question will be discussed 
in greater detail in Part 11. 

1. Diatomic molecules 
Since a diatomic molecule is collinear, it may have only one 

Its energy levels are generally 

E t  = hv, [(v + 1/21 - d v  + 1/2)2 - . . . . I  (22) 

If the level is expressed as a series in u (not (u + 1/2)) the fre- 
quency is to be designated as yo (not v,)  and proper consideration 
is to be taken thereof. The a priori probability and statistical 
weight of each level is 

vibrational degree of freedom. 
expressed by the power series formulas 

P" = 1 

wv = e - eu/kT 

The ground frequency v, is equal to the classical mechanical 
frequency 

v. = (l /2r) (k/p)l'z (25) 

where k is the restoring force constant and p is the reduced mass 

p = rnlrnd(m1 + mz) (26) 

If both nuclei are equal, the symmetry character of each vibra- 
tional level is S (2) (completely symmetric). 

2. Polyatomic molecules 
The case of a collinear polyatomic 

molecule has been worked out by Mecke (15) and shown to 
be particularly simple. Of the 3n - 5 vibrational frequencies 

Case I-Collinear molecules. 

6 This formula is not continuous in u. Birge: Trans. Faraday SOC. 26, 707 
(1929). 
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(types of vibration), n - 1 are in the bond directions and are 
called by him valence vibrations or valence frequencies. The 
remaining frequencies occur in pairs, n - 2 being different (double 
frequencies), and since the associated motions are perpendicular 
to the bond directions, he names them deformation frequencies. 
Dennison (10) has derived a rule which he hopes may find a use- 
ful application to the spectroscopy of many triatomic molecules. 
It is that when the sum of two active frequencies in a spectrum 
is systematically equal to a third active frequency, either (1) 
the molecule is not collinear or (2) if collinear, its potential energy 
function is not geometrically symmetrical. 

(a) Energy levels. The energy levels of a collinear polyatomic 
molecule may be represented by a sum of as many equations 
similar to equation 22 as there are normal coordinates, each 
quantum number of vibration being capable of independent 
variation. 

The relations between the ground frequencies of triatomic and 
quadratomic collinear molecules have been given by Mecke (15). 
If k is the restoring force constant for valence vibration of a 
collinear triatomic molecule, the two outside atoms of which are 
the same (mass, m), and d the corresponding constant for over- 
coming deformation (perpendicular to the valence vibration-d/k 
is assumed small), the two (equal) deformation frequencies are 

(27) 

where M is the mass of the central atom. The valence fre- 
quencies are 

1 / z  
6 = (1/2n) [ d ( M  + 2m)/Mml 

Y ( S )  = (1/2*) (k/m)1/2 (28) 

v(a) = (1/2n) [ k ( M  + 2m)/Mm1”2 (29) 

The first valence vibration is due to the normal coordinate repre- 
senting a symmetrical oscillation (hence the descriptive letters) 
of the two outer atoms, each moving to and from the central 
atom which is stationary. It is therefore spectrally inactive. 
The second valence vibration is of the two like atoms moving as 
a unit (distance between them unchanging) in a direction opposite 
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(asymmetrically, hence the descriptive letter a) to the motion of 
the central atom and parallel to the line joining the nuclei. It is 
active. The deformation vibration is of the two like atoms mov- 
ing as a unit (distance between them unchanging) in a direction 
opposite to that of the central atom but perpendicular to the line 
joining the nuclei. Since there is a choice of two directions per- 
pendicular to this line, the vibration is double. The deformation 
vibrations are active. These relationships are depicted in figure 4. 

The quadratomic collinear molecule (with two pairs of similar 
atoms) has two double deformation frequencies and three valence 
vibrational frequencies (notation adopted from Mecke (12d)). 

6(s) = (1/27r) [ 2 d / ( M  + m)1”2 

a(a) = (1/27r) [d(1/2m + 1/2M)1”2 

(30) 

(31) 

where ICl is the M - m binding constant, kz the iM - M binding 
constant, l / h l  = l /m + 1 / M  and l / p z  = 2 / M .  The character 
of the normal vibrations corresponding to these frequencies is also 
given in figure 4. The frequencies vl(s) and v z ( s )  and 6 ( s )  are in- 
active; v(a) and s ( ~ )  are active. 

(b) Statistical weights. In  determining which of nuclear 
spin statistical weights combine with which vibrational and rota- 
tional levels of symmetrical molecules, it is of importance to know 
the symmetry character of the different normal vibrations. 
These have been worked out by Hund (4). In the case of the 
triatomic collinear molecule considered above, the two outer 
atoms of which are similar, the eigenfunctions corresponding to 
the first valence vibration ~ ( s )  and the deformation frequency 
6 are symmetric with respect to interchange of the two equal 
nuclei. The eigenfunctions of the second valence oscillation v(a) 
which have an even quantum number are symmetric; those of odd 
quantum number are antisymmetric. They, as well as those of 
the YzXz type molecule, have been discussed in much greater 
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X-Y, 4 -H. 1. 

gur---o 

HCN . 
Y %a 

2. z-x-Y + -- 
3. Y/x\Y HsO. 

Yh)' Y OJ 

Y 
6. Z-X(, (Plane), HgCO. 

/ y  
'Y 

X-Y (Pyramid ), NH,. 6. 

Y 
Y 7. >X = Yr (Tetrahedron),CH,. 

FIQ. 4. FUNDAMENTAL NORMAL VIBRATIONS 

superscripts designate Dennison (IO) notation. 
(From Mecke (12d). Reproduced by courtesy of the publishers). The added 
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. . . . . . . . . . . . . . . . . . . . . .  H2O (Asymmetrical top) .  
NHs (Symmetrical top). 
CHI (Spherical top) 

. . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

detail by Dennison (10). The reader is referred to that article 
for further study. 

Case II-Top like moZecuZes. A non-linear polyatomic mole- 
cule is the type most generally met with in chemistry. Table 5 
gives the kinds of vibrations which these possess, as derived by 
Mecke (15a). Figure 4 gives the motions of the normal vibra- 
tions of this type of molecule. 

TABLE 5 
Normal  vibrations of pol yatomic molecules 

2 1 
1 + (2)* 
1 + (3) 

1 + ( 2 )  
(2) + (3) 

TYPE YOLECULE 1 &41fIyNB 1 DEFORMATION 
VIBRATIONS 

(a) Energy levels. The fundamental valence frequencies of 
a symmetrically built (HzO type) triatomic molecule which is 
non-linear are as follows (16), 

Y ( K )  

6 ( T )  
or = ( 1 / 2 ~ )  ( k  + 2 d ) / 2 m  + (k cos2 0 + 2d sin2 0 ) / M  f 

] ;;; [ 
d{ ( k  + 2 d ) / 2 m  + (k cos2 e + 2d sin2 O ) / M J z  - 2kd ( 2 m  + M ) / M  

Y ( T )  goes with +, and is equation 34 

S ( T )  " '' -, and is equation 35 

u(u) = (1/2R) [ k ( l /m  + 2 sin2 ~ / M ) I ' ' ~  (36) 

where e is the angle between the symmetry axis and the valence 
bond. This reduces to the same ratio of ~ ( u ) :  V(T) one would 
obtain from equations 28 and 29 by setting e equal to  90°, and 
disregarding the deformation force constant, d. (The Greek 
letters in parentheses indicate the direction of motion of the odd 
atom, T parallel, u senkrecht, perpendicular, with respect to the 
symmetry axis.) 
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An unsymmetrically built molecule such as ROH where R is 
a heavy residue, has the following (15b) additional valence fre- 
quencies (collinear and first approximation). 

Y1 = (1/27r) ( M l l m 1  + l/mz)11’2 (37) 

(38) VZ = (l/27r) [hi l/ms + l/(m2 + m1) 11 

where m3 > mz > ml. Mecke has pointed out that v1 is the in- 
ternal 0-H bond frequency and is (in the first approximation) 
independent of the mass of R(ma), while v2 is the frequency of 
the R-OH bond. Equation 37 thus explains in a simple manner 
the well-known fact that definite infra-red or Raman frequencies 
may be ascribed unambiguously7 to definite bonds (such as CH, 
NH, and OH) throughout a series of compounds. The normal 
vibrations of an ethylene type molecule have been given by 
Mecke in the same article (15a) which has been under discussion. 
The reader is referred to it for further consideration. 

(b) Statistical weights. The vibrational statistical weights 
are determined as before from the a priori probabilities. The 
latter are equal to the number of ways of combining multiple 
oscillations to get the same total energy. In the case of symmetri- 
cal molecules, a knowledge of the symmetry character is also 
necessary in order to discover which a priori probabilities are 
ruled out by the exclusion principle. Each case is a law unto 
itself and will be postponed for further discussion until Part 11. 

In this connection it is of interest to recall a generalization of 
Ludloff (17) for combining functions, such as vibrational and 
rotational, of different symmetry character; the distribution of 
the rotational symmetry characters alone determines the dis- 
tribution among the vibrational-rotational combined characters. 
Thus one-sixth of the rotational a priori probabilities of a sym- 
metrical top like NH, are S (3), one-sixth are S (1 + 1 + l), and 
two-thirds are degenerate, S (2 + 1). The distribution of these 
characters among the combined vibrational rotational states is 
the same. Rigorously speaking, this rule of Ludloff applies only 
to a priori probabilities. It is obvious that it does not necessarily 

1/2 . 

’ Against this point of view, however, see Dennison (10, p. 305). 
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hold for the distribution of statistical weights among the different 
symmetry characters, since the Boltzmann energy factor is apt 
to cause profound changes in the relative weight of each term. 
The rule is therefore valid only at  high temperatures, where 
e/kT is very small. 

ELECTRONIC 

Energy levels 
I .  Diatomic molecules. A prolific literature has arisen on the 

electronic structure and energy levels of diatomic molecules (18). 
Of fundamental importance to chemistry is the potential energy 
curve of the electronic state under consideration. Naturally, 
that of the ground level is of most importance. Higher levels 
are usually so extremely high that their statistical weight is 
negligible; an exception to this general rule is a chemically 
unsaturated molecule8 whose ground state is likely to be a multi- 
plet with small energy level separation (19). The higher levels 
are accordingly of little interest to ordinary thermal chemistry; 
they are of importance to photochemistry. 

Up to now there has been no completely satisfactory method of 
computing potential energy curves. One usually proceeds by 
setting the potential energy equal to an inverse power series in 
p, the fractional deviation from the equilibrium nuclear separa- 
tion, and evaluating the constants by certain relations which may 
be derived from band spectra theory. This procedure has the 
disadvantage that the derived curves are valid only for small 
deviations from the equilibrium position. If one sets the po- 
tential energy equal to an inverse power series in T ,  the nuclear 
separation, beginning (20) with r6, he may evaluate enough of 
the coefficients to obtain a convergent series for large nuclear 
separations. But this is of no value for small separations, as 
the analytical form of the function makes it behave strangely, 
giving several minima, some of which are actually lower than the 
one corresponding to the stable state of the molecule. Perhaps 
the most satisfactory (although qualitative) way of representing 
potential energy functions is by the equation of Morse (21). 

- 111 - wo (39) v = D [e- a(r - ‘e) 
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where D is the heat of dissociation plus the half quantum of 
vibrational energy, Wo, associated with the lowest vibrational 
state of the molecule, re is the equilibrium separation of the 
nuclei, and 

a = 2nv, (pc/2Dh)”2 = 0.006547 V ~ ( M / D ’ ) ’ ’ ~  (40) 

ve being given in cm.-‘ and taken from equation 22. M is the 
reduced mass in atomic weight units, D is in cm.-l, and D’ is 
in kg.-cals. This mode of representation is not perfect, basing 
its validity on the energy level approximation given in equation 
22 (two terms only-and not making use of higher powers in the 
approximation). Birgee has recently shown that vibrational 
energy levels obey a peculiar discontinuous law, for which no 
theoretical reason has so far been advanced. This means that 
the Morse curve can never be more than a rough approximation, 
albeit it is perhaps the best at  present available. 

The importance of finding a valid potential energy curve arises 
from the possibility of explaining many kinds of chemical data 
thereby. By proposing the principle that electronic excitation 
occurs so rapidly that it is over before the nuclei have a chance 
to change their position (even though they are vibrating), Franck 
(lb) was able to derive the conditions for photochemical dissocia- 
tion. By the further principle that the molecule spends most of 
its time at  the ends of its vibratory swings where the motion is 
slowest, Condon (22) was able to explain the parabolic form of the 
v’, v“ intensity charts. Many of the facts of predissociation have 
been explained by an application of this principle (23). Villars 
(lh) was able, by applying it’in conjunction with the principle of 
energy conservation during allegiance exchange and assuming 
zero change in translational energy, to calculate the heat of 
activation of a chemical reaction (hydrogen iodide decomposi- 
tion); the same considerations were applied by Franck and Ra- 
binowitsch (24), who, in spite of the doubtful assumption that 
reaction is to be explained on the basis of translational energy 
alone, were able, by using much more qualitative data (ratio of 
equilibrium nuclear separation to gas-kinetic collision separa- 
tions), to explain puzzling differences in behavior of different 
members of the same chemical family in the same type reaction. 

‘ 
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Next in importance to  obtaining the potential energy curves of 
the different electronic levels of a molecule is perhaps the task of 
suitably naming them. A good name should connote the quan- 
tum numbers of the electrons in the molecule as well as their 
resultant multiplicity and angular momentum. The detailed 
discussion of this topic is beyond the scope of the present article. 
Suffice it to say that Greek letters are used throughout to replace 
Roman ones whenever a molecular designation is implied in place 
of an atomic designation. Thus, Z, II, A (corresponding to S,  P, 
0) mean that the component of electronic angular momentum 
along the line joining the nuclei, A, (corresponding to L in atomic 
spectra) is respectively 0, 1, 2. A superscript to the left of the 
letter denotes, as in atomic spectra, the multiplicity. A + or 
- superscript to the right of the symbol denotes a “symmetric” 
or, respectively, “antisymmetric” eigenfunction with respect to 
reflection in any plane passing through the nuclei. Since each 
state with A > 0 has both, the superscript is not used, but the 
state has double a priori probability nevertheless. A subscript, 
g or u (gerade even, or ungerade, odd), to the right is used for 
diatomic molecules, both nuclei of which are the same, and de- 
notes a “symmetric” or, respectively, “antisymmetric” eigen- 
function with respect to a reflection through the mid-point of the 
line joining the nuclei. (Quotation marks are used since sym- 
metric or antisymmetric refers usually only to an interchange of 
like particles.) This character may be ascertained (6, 25) by 
computing the arithemetical sum of all the separate 1 values of 
all component electrons of both atoms. If the sum is even, the 
term is g; if odd, u. The terms 9’ and U are symmetric in the 
nuclei; the terms g and hare  antisymmetric in the nuclei. The 
above symmetry properties demand certain selection rules. 
Thus, only transitions between + and +, or - and - states 
are allowed, and only those between even and odd ones (as in 
atomic spectra). 
2. Polyatomic molecules. Potential energy curves for the 

polyatomic molecule have not as yet been systematically con- 
sidered. As data on higher vibrational levels are accumulated, 
it should be possible eventually to  draw one potential energy 
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curve for each normal vibration. These individual potential 
energy curves will then be as important to the elucidation of 
transition probabilities between the various vibrational states of 
electronic levels of polyatomic molecules as are the Franck-Con- 
don curves for diatomic molecules. Urey (16) has recently 
applied such considerations to SOz and C10,. A hint of their 
importance is disclosed by a recent article of Kat0 (26), who 
believes that the deformation vibration of acetylene leads to 
polymerization to benzene whereas excitation of the valence 
vibrations causes polymerization to  cuprene. 

The vibrational energy levels of electronically excited poly- 
atomic molecules are to be represented in the same manner as 
for unexcited molecules, i.e., by a sum of as many equations 
similar to equation 22 as there are normal coordinates, each 
quantum number of vibration being capable of independent 
variation. Equation 22 need not hold continuously for all 
quantum numbers; indeed it has been found that there is a dis- 
continuity in the case of some molecules (27), the vibrational 
energy levels of excited SOz actually getting wider and wider 
apart as the molecule vibrates more strongly, with the spacing 
passing through a maximum before the levels start to converge. 
Before the maximum, the levels obey equation 22 with one set of 
parameters; after the maximum (spacing), they obey equation 22 
with a different set of constants. 

Another characteristic, although not unique, property of poly- 
atomic molecules is the phenomenon of predissociation (28). We 
shall not go into this subject more than to indicate its bearing on 
the energy level problem. If a discrete energy level of the mole- 
cule happens to be superimposed over a system of continuous 
levels of a different electronic state, radiationless transitions 
(resulting in dissociation) may occur from the quantized state 
to the unquantized state, provided certain rules are obeyed, and 
the result is that the discrete energy level becomes fuzzy. This is 
of great importance to certain photochemical processes, as it 
connotes a mechanism of photochemical dissociation. The rules 
which govern such radiationless transitions were laid down by 
Kronig (29), 
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(1) Total moment of momentum must be conserved 
( 2 )  A A > 1 
(3) Both states must have same symmetry as regards reflection through origin 

( 4 )  Both states must have same symmetry in electrons (same electronic multi- 

(5) Both states must have same symmetry in nuclei 

(one state may not be g with the other u) 

plicity) 

and by Franck and Sponer (23). 

Radiationless transitions are most probable a t  nuclear separations where the 
potential energy curves cross. 

The only pretentious article so far published which discusses 
electronic states of polyatomic molecules is that of Dunkel (30), 
who seeks to systematize the ground states of molecules. He 
attempts to assign quantum numbers to the individual electrons 
in the molecule, but touches the more important question of 
naming and describing the significance of the complete resultant 
state only in the few instances where the molecule described is 
chemically saturated,% 

In extending the Greek notation of diatomic molecules to 
polyatomic molecules, it is natural to inquire what is the meaning 
of resultant molecular angular momentum, such as A. In dia- 
tomic molecules, only the component of L along the internuclear 
axis is conserved, the perpendicular component being averaged 
out to zero due to precession around this axis. Which axis is to 
be chosen in a polyatomic molecule? Naturally, it  must be the 
symmetry axis, if there is one. This will apply to collinear mole- 
cules, or symmetrical tops. In the asymmetrical top, this quan- 
tum number will no longer have meaning and the electronic 
motions will be very complicated. 

Hund (6) has recently made some helpful suggestions along 
these lines. He points out that collinear molecules have exactly 
the same symmetry classes as the diatomic molecule and that 
the same electronic state notation is applicable as that outlined 
above, down even to the designation of the multiplicity (2s + 1, 
superscript to left) and A + 2 (usually 0, subscript to right). 
Furthermore, one may designate even and odd terms in symmetri- 
cal molecules such as HCCH. Terms with A > 0 have likewise 
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a double statistical weight. This is no longer true for non-linear 
molecules. If the deviation from linearity be slight, the + and - 
terms of A > 0 will be resolved and one may designate the com- 
ponents as II+, II-, A+, A- ,  etc. These letters may be surrounded 
by brackets, if one wishes to denote that the angular momentum 
indicated really has no longer any meaning but has “historical” 
significance only (for example, refers to an atomic state from which 
the molecule was derived). Similar notation may be used for 
individual electrons. Systems in which the nuclei are arranged 
symmetrically about a plane allow a separation of terms into + 
and - with respect to reflection in the said plane. Other types 
of symmetry will allow corresponding division of the terms into 
symmetry classes but must be worked out for the special case. 

*Recent articles closely related to the subject of electronic 
energy levels of polyatomic molecules which should be called to 
the attention of the reader are those of Hund (30.1) and Mulliken 
(30.2). The latter amplifies his earlier discussion (30b) of the 
bonding power of different electrons and extends it to the poly- 
atomic molecules and ions, HzO, NH3, CH,, CF,, CI,, clod-, 
SO4--, Clo3-, SO3--, COz and others. Two significant points in 
nomenclature are the recognition, by Mulliken, of an extra differ- 
ence in the three pairs of p electrons of HzO and NH2-, due to  the 
molecular symmetry, by adding an a, b and a c, thus-2pa2, 2pb2, 
2pc2- ,  in H30+, NH3 by the inclusion of the small Greek letter 
in brackets, thus, 2p [~]4,2p [a12 and the introduction of the designa- 
tion g-valence by Hund to describe those terms which are combina- 
tions of s - p  ones. Pauling (30.3) and Slater (30.4) were the first 
to show that the proximity of the sp3 5s level in carbon to the 
ground state s2p2 3P modifies the lowest term in CH, so much 
that it is no longer correct to speak of spa or s2p2 electrons. This 
requantization is the direct cause of the tetrahedral symmetry of 
the valence bonds of carbon. To quote from Hund (30.1, page 
27), “The configuration 44 (szp2) can saturate four valences. 
This seems to be the adapted concept of the C valence. In common 
with the Heitler-Herzberg (30.5) concept, it is essential that the 

* Paragraphs marked with an asterisk are insertions made on September 30, 
1932. 
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energies of the s and p states be not very different. While, how- 
ever, there, the carbon bond is explained as coming from the sp3 
6S term, here the quadrivalence is a property of the whole group 
of terms, s2p2, sp3, p4 called 4 4  in short, The ground state of the 
molecule can thereby dissociate into the lowest state of the atoms 
(C in s2p2 3,)”. 

Statistical weights of electronic states 
* The a priori probability of an electronic state of a molecule 

is determined from its spin and electronic angular momentum in 
the same way as that of an atom, with this difference: the quan- 
tum number, A, of a molecule corresponds to the quantum num- 
ber, ML, of an atom in an axially symmetrical electric field. The 
latter is doubly degenerate, inasmuch as positive and negative 
values of M L  in an electric field have the same energy associated 
with them, whereas the energies would be split, one sent up and 
the other down, if resolved in a magnetic field. Therefore, any 
molecular state of A > 0 is double, (A type doubling), one being 
positive (+) and the other negative (-). It is to be noted* that 
the a priori probability due to  angular momentum is not 2 A  + 1, 
since A corresponds to ML and not to L. The total statistical 
weight of an electronic state is therefore 

p e  = (2s + 1) A = 0 

h > O  - ro/kT 
= 2(2S + 1) e 

If the molecule is homonuclear, the states and U are SN, g and 
& are AN as mentioned above, and these symmetries must be 
accounted for in deriving the term weights for the different nu- 

* Such as hydroxyl (reference 19). The author wishes herewith to correct the 
statistical weights of the ground electronic states of hydroxyl given in reference 
19. These weights were computed on the misapprehension that  A corresponds 
to  L, not to  M t .  The first term on the right of the equation for Seleo of OH a t  
the bottom of p. 707 (19) should read (statistical weight in the parenthesis): 

This means the entropies given in that  paper are too high by about 1.0 a t  298.1’K. 
and 0.8 a t  2500°K. and a corresponding error resides in the equilibrium constants. 
In the paper of Bonhoeffer and Reichardt (Z. physik. Chem. 139A, 75-97 (1928)) 
the same error is made. 

R ln(2 + 2 e-hav/kT)  

CHEMICAL REVIEWS, VOL. XI, NO. 3 
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clear symmetry varieties. An excellent summary of the rules 
which these sublevels obey is to be found in Mulliken's treatise on 
band spectra (30.6). 

PART 11. ILLUSTRATIVE EXAMPLES 
TRIATOMIC MOLECULES 

HzO.-The simplest triatomic molecule containing hydrogen 
atoms is water. Unfortunately it has resisted complete analysis, 
belonging as it does to  the asymmetrical rotator class. Such a 
molecule, all atoms of which are in the same plane, obeys a funda- 
mental relation between the moments of inertia 

(41) I1 = 1 2  + 13 
where I I  is the moment perpendicular to the plane. 

three series (31) of lines having the wave numbers: 

p1 = 24.5 m = (h/4~211) m p = const.; m -+ m - 1 

The pure rotational spectrum of HzO has been classified into 

(41) 

= 16.8(p + 112) = (h/4n2) (1/Z2 - 1/11) (p + 1/2) m = const.; p -+ p - 1 (42) 

18 = 55.5(r + 1/29 = (h/4r*Z3) (T + 1/2) p = const.; 
m = const.; 
r - - - f r - l  

(43) 

These equations give the moments of inertia and internuclear 
distances appearing in table 6. The angle of inclination of the 
bond to the symmetry axis is given by Rideal (32) as 

tan2 e = 812/9Za 

or 

e = 42 or 47" (44) 

in agreement with the recent theories of directed valence (33), 
which predict a bond angle close to 90". 

The vibrational-rotational spectrum of HzO is given in figure 5, 
taken from ivischke (34), Hettner (34), and Lueg and Hedfeld 
(38). The three types of normal vibrations are designated in 
figure 4. As the angle e (between bond and symmetry axis) 
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approaches go", Y ( T )  goes into ~ ( s )  (VI, Dennison (10, figure 4)) 
and becomes inactive, & ( T )  becomes &(a), ( Y ~ ) ,  and Y ( U )  becomes 
~ ( a ) ,  (YJ, the latter two being active. Mecke (15) assigns the 
following values to these fundamental oscillations 

V ( T )  (Hund's 6) = 3740 em.-' (2.67~) 
V ( U )  (Hund's r )  = 3850 (2.59co 
6 ( ~ )  (Hund's 7) = 1600 (6.2%) 

ua I 

I I  I l o t  1 1 ,  , % I  

Hottner 

1. !I# Ii I II I I l l  I I l l ,  

+$7LnI Lm 

JOJI 3 - 
J I I I I I I I I t I I I I I I I I I I I !  I I I I I I I I I I I I I 1  ~ & f f ~ d - l O n "  

FIQ. 5b. WATER VAPOR SPECTRA 
(From Lueg and Hedfeld (38)) 

These are, however, not certain, Ellis (35) choosing for funda- 
mentals the frequencies9 corresponding to the bands at 6.1 and 
2 . 9 ~  (1450 and 3450 cm.-l respectively) and Hund (4) those at 6 
and 2 . 6 ~ .  Plyler (36) gives for the fundamental frequencies 
1.8835~ (- 5310 em.-'), 2 .67~  ( w  3745 em.-'), and 6 . 2 6 ~  ( w  

1598 cm.-l), and e = 57.5". Johnston and Walker (37) observe 

9 See also Phys. Rev. 38, 582, A3 (1931) for new bands a t  1.74s (5750 cm.-l) and 
1.79,~ (5590 cm.-l) which are supposed to  be combinations of 2.79s (3580 cm.-l), 6.1 
(1640), and 19.5 (510); and of 290 (34501, 6.1 and 1.95,~. 
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the following Raman frequencies, which they believe to represent 
the fundamental vibrations: V ( U )  = 984; V ( T )  = 3654; and 
6 = 1648 em.-'. Mecke (12b) believes this assignment of the 
984 frequency should go to a dihydrol vibration. In  table 2 the 
values given are those of Lueg and Hedfeld (38). 

The proper analysis of these vibrational frequencies can be 
made only in conjunction with the symmetry properties of the 

Z-0 j -3 ______----_---- 
7 _______--  _---- 

0 0 
FIQ. 6. ROTATIONAL LEVELS OF XY2 TYPE SYMMETRICAL TOP MOLECULE 

splits into two. 
(From Hund (4, p. 822)). In HaO, an asymmetrical top, each level where T > 0, 

-- - symmetric term, S(2). 
.... . ..... .. = antisymmetric term, S(l + 1). 

eigenfunctions. Such an analysis has so far not been made but 
is promised by Dennison (10). Hund (4) has shown that, of the 
rotational levels when T = 0, the even numbered j levels are 
symmetric (S(2)) in the nuclei, and the odd ones are antisym- 
metric (S(l + 1)). The levels for which 7 > 0 are double, one 
being S(2) and the other S(l + 1). These properties are repre- 
sented in figure 6, taken from Hund. As to the vibrational 
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symmetry properties, the v ( r )  and 6(a) vibrations are both 
symmetric in the nuclei. The v ( u )  vibrations are, beginning with 
the quantum number zero, alternately S(2) and S(l + 1). 

* Mecke (12b) has worked out approximations for the funda- 
Y 

Y 
mental frequencies of an X/ type molecule. \ 

v: + 6: = w\ [sin2 dl + p a )  + cos2 ( P ( P  + 8)  + 7331 

V: = U\ [I + 7, COS* p] [cos2 p + p sin2 p1 

(44.1) 

V: S: = W\ p [S + y, sin2 p1 (44.2) 

(44.3) 

where 

p = 1 + 2Y/X 

4 9  0; = 2k/YTz 

the 7's are coupling constants between dipoles, and 0 that of 
a bending bond. The frequency oy may be estimated from 

(44.4) u; ( p  + 1) - v; + v: - 2 v i y  ( b  - 7 -  E - 0) 

or 

0; ( p  + 1) - v; + v: + s: - ( v ,  ' Yo . " / w " y ) " / p  ( E  - ?7 - 0) (44.5) 

"In non-linear molecules the relative bond interaction is much 
greater, around 30 per cent, than in collinear molecules, since it is 
through this interaction that a stable bond angle is achieved. 
In  hydrides, it can be explained as a dipole stability ( E  = 71 = 
6 volts, b - 0), in the ha,logens as angle stability (b  - 10 volts, 
E = 0) and polarizability perpendicular to the molecular axis 
(7  < 0). Here the valence vibrations are characteristic vibra- 
tions, i.e., v ( n )  - v X y  - ~ ( u ) . "  

** Mecke, still more recently (85) ,  has published the results of 
an analysis of the 9400, 9050, 8230, 7900 and 7230 A. bands of 
water. The molecular constants given in table 6 have accord- 

** Paragraphs added in proof, November 18, 1932. 
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ingly been revised to give his latest values. Approximate 1 : 3 
intensity alternations were observed to occur. These alterna- 
tions show that, in the non-vibrating molecule, when j is even, 
the lowest term (8) is weak, the next being strong; where j is odd, 
the order is reversed. From this he concludes that the obtuse- 
angled form is the correct one and that the ground term is 12, as 
in H2 and C2H2. 

C02.-Carbon dioxide is an illustration of the collinear tria- 
tomic molecule. The moment of inertia indicated by Raman 
data (39) is 70.2 x 10-40 g.cm.2. As this is probably more 
correct than that obtained from infra-red analyses as they now 
stand, Mecke’s values for the inter-nuclear distances have been 
recalculated and the revisions are given in the table. Since the 
molecule is linear, it has one more normal vibration than the non- 
linear triatomic molecule. This extra vibration shows up in the 
doubling of the deformation frequency. The structure (40) of 
the unsymmetrical vibration v(a), indicates that we probably 
have here alternating intensities. The deformation oscillation, 
6, appears as a classical doublet (40). Martin and Barker (41) 
have investigated the absorption bands10 a t  4 . 3 ~  (- 2326 cm. -’) 
and 1 4 . 9 ~  ( - 673 cm. -1) “with a grating spectrometer of resolving 
power sufficient to separate the rotation lines. The 4 . 3 ~  band 
consists of positive and negative branches only, with rotation 
lines about 1.5 em. -l apart, and shows considerable convergence. 
The spacing is the same as in the long wave band, and is about 
twice the value obtained when estimated in the usual way from 
the doublet separation. This indicates that the molecule is 
linear, with the carbon atom midway between the two oxygen 
atoms. In the low frequency band, a strong zero branch appears 
a t  14.9, with twenty or more rotation lines on either side, about 
equally spaced. . . . . A second harmonic band appears a t  4.&, 
but there is no first harmonic. Superposed on the fundamental 
are three other bands, considerably less intense, of which two 
correspond to absorption by molecules already excited to the 
first vibration state by thermal impacts, while the third is a 

lo CO2 bands at  4 . 3 ~ .  Afi = 1.5 crn.-’ 
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difference band involving the inactive symmetrical vibration.’’ 
The quadruple character of the Raman line of COz (only one, 
~ ( s ) ,  should be expected) is explained by Fermi (42) as due to a 
coupling effect between the ~ ( s )  energy level and the 26 level 
which is close by and likewise between the ~ ( s ) ,  6 level and the 
36 level. 

* Mecke’s (12b) approximate formulas for the fundamental 
frequencies of a Y-X-Y collinear molecule are 

(44.6) 

(44.7) 

(44.8)  

(44.9) 

where v x y  is the vibration of the diatomic molecule XY. Accord- 
ing to him, triatomic molecules arranged in a straight line are 
only found when a triple bond is present (COz, CS2, NzO, and 
HCN), which can be expressed in the ordinary notation as 
: Y : : X : : : Z : . The interaction between bonds, caused by 
Coulomb repulsion and attraction terms of induced polarizations 
is small and amounts only to 3 to 6 per cent of the bond firmness. 
A consequence of this is that the deformation vibration comes 
out quite small (6:v(a) - $) and the relation (equation 44.6) 
holds well. 

The fundamental vibrational frequencies in table 6 lead to the 
following formula for the heat capacity of carbon dioxide 

(45 )  CJR = 5/2 + 2 q ( 9 5 6 / T )  + cp(l841)/T)  + cp(3331/T) 

q ( @ / T )  5 e @ / T ( @ / T ) z / ( e @ / T  - 1)2 

where 

(46) 

Smyth (43) has analyzed an emission system of COz from 
2700 to 5000 reported by Fox, Duffendach, and Barker (44). 
Of two hundred bands, one hundred were partially separated 
into fifteen progressions of heads, of frequencies i j  = 26271 - 
uZ + 1136.85 v - 1 . 8 5 ~ ~  where Y, takes on a particular value for 
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each progression and v = 0, 1 . . . 10. Both levels are electronic- 
ally excited. 

** Schmid (86) has photographed in the third order of a twenty- 
one foot grating the red degraded COn bands at  3247,3254, 3370, 
3377, 3503, 3511, 3534, 3545, 3674 and 3839 A. He finds these 
bands to be composed of P and R branches (no Q branches), 
which surprisingly contain no missing lines (cf. below) but some of 
which (Znd, 4th, 6th, 7th, and last named above) do show a 
staggering, which is interpreted as a missing level effect, caused 
by something akin to A type doubling. From the absence of a 
Q branch it is concluded that the transition may be a 1 r~ + 1 or  
a 12 + IZ, and it would seem that the former is indicated by the 
staggering effect, although the author does not state it definitely. 
The single structure of the bands indicates that the molecule 
is linear in both the initial and final states. 

It is of interest to examine the effect of nuclear symmetry of 
the COz eigenfunctions on the a priori probabilities. In the 
ground state of 02, only the odd rotational levels are present and 
this is accounted for by the fact that the zero nuclear spin is 
incapable of taking on any but a symmetric configuration. 
This is still true for CO2. One-half of its levels must therefore be 
missing, either those represented in figure 6 by the solid line 
(symmetric), or those represented by the dotted lines (anti- 

symmetric), depending on whether z1 Z, is respectively odd or 

even, This is concluded from the rules presented in Part I ;  
oxygen, having an even number of protons in its nucleus, must 
contribute to carbon dioxide a total eigenfunction completely 
symmetric in the nuclei. This is for the ground vibrational state, 
and, in fact, for any vibrational state except those of the active 
valence (unsymmetrical) oscillation, v(a), where the quantum 
number is odd, in which case the above statements are to be 
reversed. The Raman data of Houston and Lewis (37) show 
that only the even rotational levels are present in the ground 
state. 21, is therefore even and the antisymmetric dotted levels 
of figure 6 are the missing ones. 

The same considerations as the above apply to SO2 and CIOz, 

. 

2 X8 

r = l  
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and similar ones may be developed for NON, with the difference 
that in the latter case both types of levels shown in figure 8 
should appear, with a ratio of 2 : 1 (owing to the nuclear spin of 
unity), instead of 3 : l  (H20) or 1:0 (C02) as before. Plyler and 
Barker (45) deduce from the absence of such intensity alternation 
in the lines of nitrous oxide that it has the unsymmetrical, though 
linear structure" N N = 0. 

QUADRATOMIC MOLECULES 

",.-Symmetry considerations indicate that the equilibrium 
shape of ammonia should be that of an equilateral triangular 
pyramid, with the nitrogen atom at  the apex. If h is the height 
of this pyramid, the relations between the moments of inertia 
are as follows: 

Zi = Zz = Z3/2 + ph2 (47) 

where 

l /p = 1/3H + 1/N (48) 

and 

p7k-H = Zi + (N - 3H)Zs/2(N + 3H) (49) 

Zi + llZ3/34 (50) 

The infra-red spectra of ammonia are given in figure 7 ,  taken 
from Lueg and Hedfeld (56). Sleator (48) notes the discovery 
of a new band at 1 6 . 1 ~ .  The pure rotational spectrum satisfies 
the relation (42) 

trot = 19.957 m - 0.0050826 m3 (51) 

Dickinson, Dillon, and Rasetti (49) find by Raman effect the 
levels 

Erot/hc = 9.921 (m + 1/2)2 - 0.00063 (m + 1/2)4 (52) 

11 Bailey and Cassie (Phys. Rev. 39, 534L (1932)) reason that this structure 
should be further modified to be N-=N+=O. 
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v ( u ) ,  . . . . . . . . . . . . . .  

and a vibration frequency of 3333.6 cm.-'. The latter is char- 
acteristic of the N-H bond. Langseth (50) obtains a resolution 
of the Raman lines of the first vibrational band 

(53) 

A rotational energy level diagram for ammonia has already 
been given in Part I, figure 2,  and the statistical weights are 
enumerated in table 2.  There are four distinct normal vibrations, 

i = 3317.4 f 19.87J 

3396-600, ( B )  

TABLE 7 
Constants of quadratomic molecules, XYS type  

6(?r). . . . . . . . . . . . . . .  
6(u ) .  . . . . . . . . . . . . . .  

11" X 1040 g.cm.2. 
I ~ "  x 1040.. . . . . . .  
I ~ "  x 1040.. . . . . . .  
e (XY bond-sym. 

axis). . . . . . . . . . .  
h (in I L . ) . .  . . . . . . .  
r x y . .  . . . . . . . . . . . .  
rYy. .  . . . . . . . . . . . .  
v(r)cm.-l.. . . . . . . .  

966 
1630.9(b) 

N H Z ( ~ )  

2.82 
2.82 
4.91 

73'15' 
0 .3  
1.04 
1.72 
4450 

. . . . . . . . . . .  ' I  -""-'" 

PHn 

2374-470,,(:;1 
993(0) 

1125. Ocb) 

PCL - 

510 
485 (d) 

256 
190 

- 
PBr: 

397 
379(d) 
161 
115 

(a) Lueg and Hedfeld (56). They interpret the spectrum in terms of only 
three fundamental frequencies, 933-936,1630, and 5054 cm.-1. 

(b) Robertson: Trans. Faraday SOC. 26, 899 (1929). 
(c) Badger and Mecke: Z. physik. Chem. W, 333 (1929). 
(d) Trumpy: Z. Physik 68,675 (1931). 

two being double, making six in all (figure 4). Dennison (51) 
picks for the fundamentals, the bands at  10.7, 6.14, 2.97, and 
2 . 2 2 ~ .  The corresponding frequencies are those given in table 7. 
Higher harmonics of 2.97, Y ( V )  are reported by Mecke and Bad- 
ger (52), the third at 7920 A., the fourth at 6474 A. At 8810 A., 
they find two series of lines having the same spacing as the band 
at 2 p ,  Y ( T ) ,  but displaced. Another weak band at 5490 A. is 
reported by Badger (53). 

The symmetry character of the rotational levels of the ground 
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vibrational state, given in figure 2, is double, two series of energy 
levels of reciprocal character being superposed, each originating 
from a separate level of the doubly degenerate ground vibrational 
state. The latter ( 6 ( ~ )  = 0) is double, because of the possibility 
of the existence of mirror image positions of the nitrogen atom 
with respect to the plane defined by the three hydrogen atoms (4) ; 
one level is symmetric, S(3) ,  and the other antisymmetric, 
S(1 + 1 + 1). The purely rotational energy level diagram 
might perhaps be better represented by the left-hand series alone, 
were it not for the fact that the two superposed ground vibra- 

TABLE 8 
Symmetry  character and a priori probabilities of normal vibrations of NHs type 

molecule 
~ 

N O R M U  VIBRATION U 

2 m  
2 m  + 1 
any 
0 
1 
2 
3 
2 m  
2 m  + 1 

s (3) 

2) 

0 
0 
0 
0 
2 
2 
2 
2?n 
2 m  

Same as -3r u(u) 

tional levels were indistinguishable, except for a slight resolution 
which Barker (47, 54) believes12 to be manifested as a duplicity in 
the 1 0 . 7 ~  band ( 8 ( ~ ) ) .  The symmetry character of the different 
vibrational levels and their a priori probabilities are summarized 
in table 8. The resultant character and a priori probability 
of the final vibrational state is the product of the corresponding 
quantities for all the different types of vibration. The number of 
S(3) states obtained on multiplying two X(2 + 1) types is one- 
fourth of the product; likewise, the number of S(1 + 1 + 1). 

12 Confirmation of this is given by Dennison and Hardy (55) .  



FIG. 8. G H ~ B A N D S  
(From Hedfeld and Lueg (64)) 

1 scale division = 10 cm.-l 
414 
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The remaining haIf are S(2 + 1). These rules have been already 
enumerated in Part I. 

* Two important articles on NH,, contributed during the present 
year, have been by Dennison and Hardy (55) and by Lueg and 
Hedfeld (56). 

Figure 8 
illustrates the structure of its infra-red bands. Three bands a t  
1 7887, 7958, and 8622 have been reported by Hedfeld and 
Mecke (58). The band at  17887 A. was analyzed by them and 
by Childs and Mecke (59). It is a 1 2  --+ l2 transition and gives a 
ground state moment of inertia 

C2H2.-Acetylene has a linear structure (57, 15a). 

I" = 23.509 X 10-40 g.cm.* 

If one assumes the C-H distances to be the same as in CH,, the 
internuclear distances may be calculated and are 

rC--H = (1.08) d. 

rC--C = 1.19 A. 

(The C-C distances in diamond and in the Swan (C,) bands are 
respectively 1.54 and 1.31 A,) The band lines show an alternat- 
ing intensity of ratio odd J :  even J = 3, which is to be explained 
as due to the nuclear moments, iH = 4 and ic = 0. A n  ultra- 
violet band at  2400 A. has been partially analyzed by Kisti- 
akowsky (60). It gives a moment of inertia, for the excited 
state of 

I' = 25.6 X 10-40 g.cm.2 

Herzberg (61) has found two band systems of 1 < 2070 A. 
System A is equivalent to the 3 2  8.18 v. --f ' 2  0.0 v. bands of 
nitrogen. The excited state manifests the vibrational fre- 
quencies 1365 and 865 cm.-1. The second system (at 1 1540) is 
analogous to the Lyman, Birge, Hopfield bands of nitrogen at 
1450 A. (In 8.5 v. -+ 1Z 0.0 v.). It exhibits a vibrational frequency 
of 1710 em.-'. 

The normal vibrations have been given in Part I, figure 4. 
Their values, as derived by Mecke (12c), are given in table 9. 
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v ~ ( s )  1975 
V I ( S )  3370 
.(a) 3277 
WH (3200) 
TCH 1.08 
kCH 20 Volt 

Olson and Kramers (62) took exception to Mecke’s original 
assignment (15a) of the deformation oscillations, calculating 
them to have a ratio of s(a) : 6 ( s )  = 0.816 instead of Mecke’s 
original, 1.88. The ratio now agrees, its value being 0.825, 

6(s) 600 
6(a )  729 

vcc 2100 
rcc 1.19.10-’ 
k c c  69 Volt 

- 

TABLE 9 

Spectrum analysis of acetylene and ethylene 
Mecke (12c) 

~ 

CrHi 

1 3 . 7 1 ~  
7.53 
3.78 
3.75 
3.72 
3.70 
3.05 
2.56 
2.44 
2.14 
1.9 
1.54 
1.04 
1.18 
0.862 
0.789 

R a  
R a  

729.27 
1328.5 
2643.2 
2669.7 
2683.0 
2702.2 
3276.85 
3897.9 
4092.0 
4690 
5250 
6500 
9610 
8450 (?: 
1593 
2675.59 

1975 
3370 

-- 
.0.5 p 

6.95 
5.29 
4.88 
3.35 
3.22 
2.38 
2.31 
2.22 
2.10 
0.872 

R a  
R a  
R a  
R a  
R a  
R a  

949.7 
1443.9 
1889.7 
2047.0 
2988.2 
3107.4 
4207.9 
4324.3 
4515.5 
4729.0 
1465.0 

1342 (20: 
1623 (15: 
2880 (3) 
3019 (20: 
3240 (2) 
3272 (1) 

CiHc 

with the newer assignment. The deformation vibrations are 
double. Raman lines a t  A; = 1974 and 3372 have been found 
by Bhagavantam (63). These agree with Mecke’s inactive 
frequencies, vz(s )  = 1975 and vl(s) = 3365. 
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For a discussion of the symmetry relations, the reader is referred 
to Dennison (10). 

* A recent article of interest in addition to that of Mecke (12c) 
is one by Hedfeld and Lueg (64) who investigated the spectrum 
with high dispersion (2.6 A. per mm.) in the region from 11000 to 
5000 A. by means of the new sensitized photographic technique 
in the near infra-red. They determine the moment of inertia 
to be 

I” = 23.51 X 10-40 g.cm.* 

I ’  = 23.82 

* Lochte-Holtgreven and Eastwood (65) report the discovery 
of two more bands at  10164.8 and 10369.8 A. The latter band is 
interpreted as the third harmonic, 3 4 ~ ) .  It possesses strongly 
developed P and R branches and a weak line near the origin. 
The former band is assigned as V(U) + 2 4 s ) .  Other bands as- 
signed are 

n ( s )  + ~ Y ( u )  8622 d. 

Y d S )  + 3 4 a )  7887 A. 

This assignment agrees with Dennison’s (10) theory that only odd 
integral multiples of the optically active frequencies can be seen 
in the spectrum and that the combinations must involve at  least 
one of these frequencies. 

H,CO (Cf. table 10 and figure 4).-A third type of quadra- 
tomic molecule is represented by formaldehyde. This absorbs 
infra-red radiation at  the regions 4.7, 3.38, 1.8, 1.4, 2.3 and 1 . 2 5 ~  
(given in order of decreasing intensities) (66). The second of 
these bands has been further resolved into three (67)) 3.61, 3.52, 
and 3 . 3 7 ~ )  the first and third of which show P, &, and R branches 
with a spacing of 3.5 cm.-l. The second gives one branch only, 
with groups of closely spaced lines, the groups being 14.0 cm.-l 
apart. The band at 4 . 7 ~  is similar to those at 3.61 and 3.3711. 
From the above spacings, these authors have derived the following 
moments of inertia. 



418 DONALD STATLER VILLARS 

A = 2.7 X 10-40 g.cm.2 

B = 18.0 x 10-40 

c = 21.0 x 10-40 

Formaldehyde absorbs ultra-violet light at about X 3570 A. 
(corresponding to the Schumann-Runge 3 2  6.09 v. + 32: 0.0 v. 
oxygen bands) and shows the phenomenon of predissociation (68) 
a t  x 2750. Herzberg (61) has shown that the important vibra- 

TABLE 10 
Constants of quadratomic molecules of YzXZ type 

HzCO 

2.951 (61.2) 
21.63 (61.2) 
24.58 (61.2) 

) 2945(d) 

1770 
1460 
1040 
920 

1040 
1460 a) 
17701 
2945 
1285(a) 

coc1z 

571 (d) 

444 

301 ? 

567 cm.-l 

290 

488 
45 1 

1229? 
3431 
2821 
1921 

(a) Henri and Howell: Proc. Roy. SOC. London lMA,  190, 192 (1930). 
(b) Mecke (69). 
(c) Hibben: J. Am. Chem. SOC. 63,2418 (1931). 
(d) Mecke (12d). 

tional frequencies of the excited state are 1187 and 830 cm.-l 
(the latter instead of 360 cm.-l of Henri and Schou). The 
frequency shown in the ground state13 is 1300 cm.-l, and cor- 
responds to a transverse vibration. Herzberg believes the 1187 
cm.-l frequency in the excited state to be a valency vibration 
of H2C-0 analogous to the oxygen vibration (708 cm.-1) in 

13 Doubt is cast on the correctness of this assignment by Herzberg and Franz 
(72). 
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the upper 3 2  Schumann-Runge band state of 02. The lower 
frequency, 830 em. -1, is probably that of the transverse oscilla- 
tion of the hydrogen atoms. 

At 1650, a very strong discontinuous absorption is found (55), 
three bands of which are separated by the distance 1180 cm. -1. 

As pointed out by Mecke (69) in the discussion of the workof 
Herzberg, there are six oscillatiops for a non-linear quadratomic 
molecule such as HCHO. He takes for five frequencies of the 
ground level, the Raman frequencies 920, 1040, 1460, 1770, and 
2945 cm.-1. The sixth missing one is supposed to be 3000cm.-l 
(which is a general characteristic of a C-H bond vibration). 

The symmetry characteristics of the eigenfunctions of H,CO 
have not been worked out, to the author's knowledge. The 
states should fall, however, into two classes, H nuclear singlet and 
triplet, since the hydrogen nucleus has a spin of 3, and the carbon 
and oxygen each have zero spin. It should be possible to observe 
alternating intensities in the ratio of 1 : 3 in certain of the band 
lines. TGo other types of symmetry should also exist, namely, 
those with respect to reflection about the line joining the carbon 
and oxygen nuclei and those with respect to reflection by the 
plane perpendicular to the line joining the hydrogen nuclei and 
passing through the carbon and oxygen nuclei. 

* Four papers on formaldehyde have appeared during the 
present year since the original submission of this review. Patty 
and Nielsen (70) give the detailed work which was summarized 
in their Physical Society Abstracts (66 and 67). The average 
spacing of the lines in the P and R branches in the 4 . 8 ~  region is 
now given as 3.1 crn.-l (instead of 3.5). 

* Dieke and Kistiakowsky (71) have studied the ultra-violet 
absorption bands, 3520, 3430, 3390, of formaldehyde in the third 
order of a forty foot grating. The molecule proves to be almost a 
symmetrical top, deviations occurring only for T < 4 and result- 
ing in a shift and doubling of the lines which increases with 
increasing J .  Intensity alternations occur, verifying the predic- 
tion made above. The three moments of inertia for the ground 
level are 
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Ground State Excited State 
v = o  v = l  

A =  24.58 27.98 28.13 X 10-40 g.cm.2 

B =  21.63 24.81 24.94 

C =  2.951 3.176 3.190 

This gives 

rH--H = 1.88 A. 

'c-o le19 Assuming L HCH is 

rC-.-H = 1.15 1 tetrahedral 

The type and intensities of bands occurring are as follows: 

p P  and rR both strong; they are the only branches for high 7.  

pQ and rQ strong for small values of T .  

pR and r P  weak and present only for small values of T .  

In  the above, the small letters refer to changes in 7 in the sym- 
metrical top formula for energy levels, equation 7 of Part I, while 
the large letters refer to changes in J. 

AJ = J' - J" = - 1, 0, + 1 for 

P Q R branches respectively 

* Hereberg and Franz (72) have investigated the ultra-violet 
spectrum of formaldehyde by exciting it to fluorescence by a 
carbon arc. They obtain a frequency formula 

F =i 26967 - (1723 U: - 10~:~) 
- 1023 U: - 374 0: (62.5) 

The frequency 1713 corresponds to the Raman (liquid state) 
1768, while 1023 corresponds to Raman 1039, which Mecke ex- 
plains as being the 6(a) vibration. But Teller has derived a rule 
for electron transitions in polyatomic molecules according to 
which practically only the parallel (T) vibrations may change their 
quantum numbers, when the symmetry of the molecule in the 
upper and lower states is the same. These authors therefore 
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conclude that both frequencies appearing in fluorescence must be T 

vibrations. The 1023 oscillation must be 6 ( ~ )  and involves the 
vibration of the hydrogen atoms against one another. This 
frequency is remarkably small. The decrease in the G O  
vibration, V ( T ,  a),  from 1725 cm.-I to 1180 on excitation indicates 
an extensive bond loosening and this is used to explain, by applica- 
tion of the Franck-Condon principle, the large number of bands 
which arise in this progression. This is in harmony with the 
hypothesis that the excitation occurs in the C-0 bond, for all 
compounds which contain this bond have a discrete absorption 
in this same region (A 3500). On the other hand, excitation 
affects the C-H bond little. The transversal vibration of the 
hydrogen atoms decreases from 1040 in the ground state to only 
830 in excited state and accordingly only one band of this series 
occurs with appreciable intensity. 

PENTATOMIC MOLECULES 

CH, (Cf. table 13).-The infra-red bands of methane have been 
measured by Cooley (73) and are given in figure 9. The third 
overtone of the 3 . 3 ~  band has been found at  8900 A. by Dennison 
and Ingram (74). The lines of the 7.7 and 3 . 3 1 ~  bands may be 
represented by the formulas 

(54) 

(55) 

These spacings together with that of the 3 . 5 ~  band (9.77,5.41, and 
15.3 em. -1) give three values for the moment of inertia ( I  = 5.66, 
10.2, and 3.61 x 10-40), and for a long time it was in doubt which 
was correct. The Raman investigations of Dickinson, Dillon, 
and Rasetti (45) have given us the rotational energy levels 

F,.,~ = 1320.4 + 5.409 m - 0.0377 m2 

13.31p = 3019.3 + 9.771 m - 0.0351 m2 

Eo/hc = 5.363 ( m  + 1/2)* 

EJhc = 3022.1 + 5.313 (m + 1/2)' 

(56) 

(57) 

and the corresponding moment of inertia is 

lo = 5.17 X 10-40 g.cm.2 
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This value is the best one obtainable up to the present. It is 
exactly confirmed by the measurements of Moorhead (75) on the 
2 . 2 0 ~  band. He got a different spacing of 10.4 cm.-l in a 1 . 6 6 ~  

Grating position 

C .- 
c 

B 
SI 
$ 

Grating position 

WZ2.YP v I t  2; 3P 
sur  w IDTH 

3 1'50 
Grating position 

FIQ. 9. INFRA-RED SPECTRA OF METHANE 
(From Cooley (73)) 

band corresponding to 5.32 X 10-40 g.cm.2. The different infra- 
red values deviate from the true one on account of an interaction 
of vibration and rotational energies'*, and not because of a py- 
ramidal formlof the CH, molecule. 

14 In  a private communication, Professor Hund informs me that this has been 
demonstrated by Teller and Tisza (76). 
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The vibrational bands are given in table 11, together with 
an assignment of fundamentals, altered from Dennison’s (77) in 
order to agree with the Raman data (45). In  methane there are 
nine normal vibrations. The first, v(s ) ,  is a valence oscillation of 
the hydrogen atoms moving with their center of gravity fixed 
and coinciding with the carbon center. This vibration is there- 
fore inactive and cannot show up as an infra-red band, except in 
combination. It is the only single frequency. The second 
vibration, s(a), is double, and is a deformation vibration in which 

TABLE 11 
Vibrational frequencies of CHI 

e 

1304 
(1520) 
2600 
2824 
2914.8 
3014 
3022.1 
3071.5 
4122 
4217 
4315 
4543 

O B S E R V E D  I N T E N S I T Y  

50 

0 .07  
0 . 5  

20 Ra* 
20 
5d Ra 1 
2 Ra 
0 . 1  
1 
0 . 7  
0 . 2  

COMBINATION 
I 

CALCULATED 

1520 
2608 

(2824) 

4128 
4218.8 
4318 
4534 

Ot 

1867 
2177 

4174 
4316 

* Ra = Raman frequency. 
t 0 = “characteristic” temperature = hcu/k. 

the center of gravity of the hydrogen atoms still remains fixed, 
It is therefore also inactive. The remaining six vibrations are 
distributed in two fundamental levels ( v ( a )  and 6 ( s ) )  of triple 
degeneracy and are active. They are the ones to be found with 
greatest intensity in the infra-red spectrum. The theoretical 
equations for these frequencies, as given by Dennison (77),  are as 
follows : 

Y ( S )  = ( 1 / 2 ~ )  (kz/m)”2 (4a + 
6(a) = ( 1 / 2 ~ )  (kz/m)’12 ( a  - S/4)’12 

(58) 

(59)  
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= ( 1 / 2 ~ )  (k2/m)1’2 [a + 5/9 - 138/36 & {(a + 5/9 - 138/36)2 - 
6(S) 

8 a/9 + 16a8/9 + 10/3/9 + 4P2/9 1 1’2]1’2 

where 

ki E (d2Wi/dq2)o (64) 

k2 (d2Wz/drz)o (65) 

k’ - (8/3~’)’/~ (dWi/&)o (66) 

W = 21 Wi(pi) + 2: = potential energy (67) 

the q’s are the mutual displacements of the hydrogen particles 
relative to one another, and the T’S the displacements of each of the 
hydrogens relative to the carbon. The forces, k z ,  between the 
carbon and hydrogen are presumably much greater than those 
between the hydrogens, k l ,  and (Y is therefore less than unity. 
The constant p should be close to zero and with these simplifica- 
tions, one may derive the order of decreasing frequencies as 
~ ( s ) ,  ~ ( a ) ,  s(a), and 6(s) if CY A 1 or ~ ( a ) ,  ~ ( s ) ,  s(a), and 6(s) if 
(Y L 0. In  this respect, our modified assignment of fundamental 
frequencies is therefore concordant with theory, as well as Den- 
nison’s, and is in better agreement with the Raman data. The 
three frequencies associated with ~ ( a )  by the bracket in table 11 
may be due to a slight resolution of the triple degeneracy or to  an 
interaction between a fundamental (2914.8) and an overtone 
(2 X 1520) as in COz (42). 

If these frequencies are the correct fundamentals, the specific 
heat of methane at  higher temperatures is to be represented by 
the equation : 

6 4 

1 1 

C,/R = 3 + v(4174/T) + 2 p(2177/T) + 3 cp(4316/T) + 3 9(1867/T) (68) 

where cp is defined by equation 46. 
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The symmetry characteristics of the rotations and vibrations 
of methane have been worked out by Elert (8). The a priori 
probabilities of  the rotational states are given in table 3 of Part I. 
The a priori probabilities of the vibrational states are given in 
table 12. The Y ( S )  state is double, one being symmetric S(4) 
and the other antisymmetric, S(1 + 1 + 1 + l), (in the nuclei). 
The statistical weight of any 8(a) state is ua(a) + 1, just as it is 
for the doubly degenerate vibrations of ammonia (and in fact, 
because it is doubly degenerate). Higher order perturbations 
may resolve these into v,,,,/2 + 1 separate levels, the S(2 + 2) 

TABLE 12 
Symmetry character and a priori probabilities of normal vibrations of CHI type 

molecule 

NORMAL 
YIBRATION 

'1 = ' ( S )  

'2 = 6(a) 

v1 = ' ( a )  

Y4 = 8(s) 

P 

s (3 + 1) 

0 
0 
0 
0 
0 

3v/2 
(3v + 3 ) / 2  

3v/2 
(3v + 3 ) / 2  

3v/2 
(3v + 3 ) / 2  

Same character as for V Q  

ones (v6(,,) in number) existing still as u,(,,/2 unresolved pairs. 
The triple v(a) and 6(s) levels have a total a priori probability of 
2v,,,, + 1 and are distributed as given in the table. The nomen- 
clature f 1 (mod 6) indicates numbers which are divisible by 
six with 1 left over. The symmetry character distribution of the 
rotational states is the same as that of the v(a), 6(s)  vibrational 
states. This latter distribution, combined with the nuclear 
variety weights allowed by the Fermi statistics, is given in 
table 3. Constants for various tetrahedral pentatomic molecules 
are given in table 13. 
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6 

265 
125 
667 
183 

* In  an article of which the author was unaware at the time of 
submission of this review, Bhagavantam (78) had already made 
the alteration in fundamental frequency assignment of v ( s )  
proposed independently above. Polarization evidence in support 
of this has been cited in the present year (79). The Raman shift, 
2918, is nearly completely polarized, whereas 3019 is nearly 
unpolarized. This is in complete analogy with the third and 
fourth fundamentals of tetrachloride spectra. In the Raman 
spectra, 3019 appears accompanied by rotational vibrational 

h h  a s  
.- 2 m -- 

249 
90 

487 
137 
89.6 

136.9 
247.3 
488.2 
others 

TABLE 13 
Constants of pentatomic molecules of XYI type 

h -  e _ e  
g 

386 
119 
491 
139 

- q  H m  -- 

367 
104 
401 
136 

V ( S )  cm.-l (Dennison, v l ) .  . . . . . .  
s ( a )  (Y2). . . . . . .  
v ( a )  (VQ I . ,  . . . . .  

(v,). . . . . . .  
Raman 

cm.-l..  .................... 

I” X 1040 g. cm.2.. . . . . . . . . . . . . . .  
rxy l i  ........................... 
r y y  ............................. 

2914.8 
1520 
3014 
1304 
2914.8 
3022.1 
3071.5 

8 
5.1; 
1.ot 
1.7; 

m 

220 
64 

279 
88 

-- 

3.1(0) 
454 
214 

311 
790,76( 

- 
h e, 
2 p 
- 

42: 
141 
601 
22( 

- 
(a) Trumpy: Z. Physik 68, 675 (1931). 
(b) Trumpy: Z. Physik 66, 790 (1930). 
(c) Debye, Bewilogua, and Ehrhardt: Physik. Z. 30, 84 (1929). 
(d) Dadieu and Kohlrausch: Monatsh. 67, 488 (1931). 

components, while the more intense 2918 does not. Further 
evidence for the correctness of this assignment is contributed 
by the Kettering, Andrews, and Shutts model (13). This 
indicates (80) a much lower vibrational frequency v(s) for 
methane than was given by Dennison’s assignment (77). 

* Although the empirical explanation of the infra-red spectrum 
of methane is as satisfactory with the new fundamental frequency 
assignment as with the Dennison assignment, a quantitative 
calculation of Dennison’s three constants from three of the 
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fundamentals does not lead to a satisfactory check with the 
fourth. Thus, by suitable elimination of the constants in 
equations 58 to 61, one gets for the second frequency (rough 
slide rule estimate) 

v," = 0.314 v: - 0.0642(v,2 + v:) i [- 0,044 V: + 0.0879 Y:(Y: + v i )  + 
O.O0412(v: + v:) - 0.11 v i  v; ] ' '~  (68.1) 

By making the following postulates of the values of vl,  v3, and 
v4 in the first three rows, the author calculated the value of v2. 
This is given in the fourth row and is compared with the empirical 
frequency. 

3014 3071.5 3071 3014 Postulated 

1304 2915 1304 2915 3022.1 1304 

Y1 = 4 s )  2915 

Y 3  = v(a) 

v4 = a(s) 

VI = a(a) 1960 1970 1686 2045 Calculated 
1520 1520 1304) 1520 Observed 

1520j 

It is seen that the agreement is impossible. 
**Biswas (87), citing the evidence by Tronstad (88) and others 

for two different geometrical forms of NHs, argues for a similar 
state of affairs in methane. The fundamental vibration of the 
unsymmetrical tetrahedron, he places at 2914 (instead of Denni- 
son's 4217) ; that of the symmetrical tetrahedron, a t  3071 em. -1 

The difference between the two, 157 em.-', represents the activa- 
tion energy for changes from one form to the other. Such a 
dynamic isomerism has already been worked out by Morse (89). 
Such an assignment presents no advantages, as may be seen from 
the last three columns of the preceding unnumbered table. (The 
use of the frequency 3071 was inspired by his suggestion). Ow- 
ing to the extreme stability of the methane molecule, it  is exceed- 
ingly doubtful that an unsymmetrical isomeric form of it exists 
at an energy within only 157 cm.-I of its symmetrical form. 

*For this reason, the author spent considerable time this 
spring in an unsuccessful attempt to modify Dennison's theory 
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of the methane vibrations. It was recognized that it would be 
desirable to include bending forces in the derivation of frequencies. 
But from symmetry considerations, the conclusion was reached 
that Dennison's method of accounting by central forces between 
the hydrogen atoms was fundamentally equivalent to accounting 
for C-H bond bending forces since any displacement, de, 
could be expressed as proportional to d ~ ~ - ~  with a different 
force constant. The discrepancy is therefore not to be explained 
away as a failure to use bending forces. A possible, although 
not very probable explanation, is that, owing to an especially 
rapid convergence of vibration levels, the first observed frequency 
differs so greatly from the frequency of infinitesimal vibration, 
Y,, as to throw the calculations all off. This might be true of 
one of the 6 vibrations. 

*Urey and Bradley (81) have calculated the fundamental 
vibrations of tetrahedral pentatomic molecules on the basis of 
harmonic restoring forces along the directions of the chemical 
bonds and perpendicular to them. They obtained unsatisfactory 
agreement between calculated and observed values. They then 
introduced a repulsive potential energy term proportional to 
ri" where r j  is the distance between corner atoms, in the funda- 
mental frequency equations and were thereby enabled to get 
very good agreement between calculated and observed values in 
the case of CC14, SiCI,, SnC14, CBr4, and SnBrr but not so good in 
that of TiCL The value of n may range from 5 to 9 without much 
effect on the calculated frequencies. Their frequencies are 

(68.2) 

(68.3)  

1/2 
V I  = ( 1 / 2 r )  { [ k l  + ( n  + 1) r 3 h j  

vz = (1/27r) ( [ k z  + ( n  + 2) r 3 / 4 l / m )  1'2 

[ ( 3 n  + 2 )  Y3/2 + 2k1 + kzV6m + (273 + kl + 2 k 2 ) / 6 ~  f u3,4 = (1/27r) { 
AJ[?F 1 7 3  + 2k1 + k d / 6 m  - (2rs  + kl + 2 k 2 ) / 6 ~  

where 

kl = (@V/&~) , ,  73 = 4nk3/an -k 2, p = m M / ( 4 m  + M )  
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and 

(68.5) 

In a private communication, Professor Urey has informed the 
writer that they applied their results to methane, but without 
success. He suggests that the difficulty may be due to the fact 
that in methane the protons are deeply embedded in the electron 
shell of carbon, and that this causes the anomalous behavior. 

FIQ. loa. 3 . 3 ~  BAND OF C2H4 
(From Barker and Meyer (47)) 

*Mecke (12c) avoids these difficulties by including in his 
potential energy equations four constants 

From four empirical fundamental frequencies, it is thus possible 
to determine the four constants and have no equations left over 
to worry one about the possibility of a check. In  this equation, 
ki represents the harmonic restoring force constant of a C-H 
vibration, A p  the change in a H-C-H angle, with bik the corre- 
sponding restoring force constant; A1 the change in the length 
of a dipole caused by two neighboring valences, and AX the 
change in the dipole orientation. In  other words, the stability of 
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methane is expressed in terms of attractive forces parallel and 
perpendicular to the C--H valence bonds, and of forces which 
tend to stretch and turn dipoles set up by the bonds themselves. 
After all, this is perhaps the most satisfactory solution of a bad 
problem. 

I 

A 

I 

FIQ. lob. 0 . 8 7 2 ~  BAND OF CnHl  
A. Photometer curve of a composite picture made from four negatives. E .  

The principal maxima plotted on a frequency scale. C. Predicted spectrum for a 
molecule with constant moments of inertia in the ratio 1.14:1:0.14, when the 
change of electric moment due to  vibration is along the intermediate axis. (Cal- 
culated by H. H. Nielsen). (From Badger and Binder (82)). 

HEXATOMIC MOLECULES 

C2H4.-As illustration of the hexatomic molecule we pick 
ethylene, principally because its simplicity has made it vulnerable 
to analysis, Figure 10 reproduces its infra-red bands at  3.3 and 
0 . 8 7 ~ .  The rotational analysis of the latter has given as tentative 
values for the moments of inertia (82): 

A = 3.8 X 10-40 g.cm.2 

B = 27 x 10-49 

C = 31 X 
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Assuming the same bond angles L HCH as in methane (109'28') 
the internuclear distances are 

T,-.-~ = 1.32 A. 
rC-= = 0.92 A. 

The Raman shifts produced by ethylene have been measured 
by Dickinson, Dillon, and Rasetti (49) and are as follows (in- 

v , x  x v ,  

v, I n s )  >-( 
yr(n.4 )-< >-< SIn.J 

mi% 2-( 61SS) 

y ( x , o j > + <  >-< d/n,a) 

dj6.al 

&) f i U &  4-t m 
FIQ. 11. FUNDAMENTAL NORMAL  VIBRATION^ OF CaHd 

Twelfth vibration is not indicated but is a torsion. (From Mecke (12~)). 

tensities given inparentheses) : 1342.4 (20), 1623.3 (15), 2880.1 (3), 
3019.3 (20), 3240.3 (2), and 3272.3 (1) cm.-1. 

As the number of atoms in a molecule increases, its types of 
osc:llations become more and more complicated. The normal 
vibrations of the ethylene molecule have been analyzed by 
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26 Volt 1 N 40 Volt 

Mecke (12c) on the assumption that the restoring force constant 
for a deformation oscillation is negligible, comparedwith that for a 
valence oscillation. He gets the following results. There are 
twelve normal vibrations,-five valence frequencies and four 
deformation (two single and two double). They are depicted in 
figure 11 (Mecke’s figure 4). The twelfth vibration, 6(d) (not 
pictured), is a deformation torsion around the double bond (d 

1 (20 Volt) 

TABLE 14 
?r Vibrations of the hydrocarbons C2H, 

Mecke (12c) 

I CzHz CzHi 

1623 
3020 
2988 
1342 
1444 
1620 
3000 

52 Volt 

990 
2950 
2900 
1460 - 1450 
990 
- 

1570 
446 

(780) 
235 

(385) 
1420 - 870 

CeCla 

860 
432 

? 
216 

? 

? 
(850) 

stands for “Dreh”). 
deformation oscillations are as follows (15a) : 

Some of the approximate formulas for the 

S(a,s) = (1/2r) [2d/(C + 2H)I’” 

S ( U , U )  = (1/2n) [d(1/2H + 1/C)/2]’/2 

6(n,a) = (1/27r) (d/2H)’’2 

S(n,s) = (1/2s) I(kcXc + d/2) 2/Cl”2 

The latter vibration is that of the C=C bond and the absence 
of the mass and binding constants of the outer atoms is very 
striking theoretical justification of the frequently observed fact 
that definite frequencies reappear with unchanged values in all the 
derivatives of a definite molecule. Table 9 gives Mecke’s (12c) 
analysis of the spectrum of C2H,, making use of the fundamental 
frequencies which are given, together with those of other C2Y, 
molecules, in table 14. 
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**Mulliken (90) discusses the electronic structure of ethylene 
and concludes that its energy is considerably lower if the two 
CH2 radicals composing it are arranged symmetrically in one 
plane than if their planes make an angle of 90". For certain 
predicted excited states of CzH4 (his designations, 3r4u, 1r4%- 
ground state, lrle) and its derivatives, which are probably the 
upper states of ultra-violet absorption bands of these compounds, 
he shows that the energy should be higher for the plane form 
than for the perpendicular form. Suitable absorption of ultra- 
violet light therefore should enable the plane form to rotate spon- 
taneously into the perpendicular form (90") and on to the other 
plane form (180"). In  this way we have given us a mechanism 
for the photochemical cis-trans transformation. 

CONCLUSION 

In conclusion, it is well to reiterate that work in this field is 
constantly being ground out a t  such a rapid rate that it is prac- 
tically impossible to take cognizance of all of it. In particular, 
we might refer the reader to excellent theoretical developments 
which are being made in the field of the aromatic and of the higher 
aliphatic organic compounds and which we have entirely neglected 
to discuss (83, 84). Finally, the most important future advances 
in chemistry will come through the application of the knowledge 
which is to be derived from the analysis of polyatomic molecular 
spectra. 
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