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The spectroscopy of diatomic molecules has proved to be of
colossal importance to the study of elementary photochemical
processes. The application of the principles of this science to
chemistry in general is severely handicapped, however, by the
fact that most molecules are polyatomic and, until a few years
ago, little had been learned towards the elucidation of their
spectra. Recently remarkable advances have been made along
these lines. Although the wealth of material is small when com-
pared with that available on diatomic molecules, still it is so
large in absolute amount that a review of the fundamental princi-
ples which have been so far discovered may be of great value to
one wishing to enter into a thorough study of this subject for the
first time. No apology need be made therefore for limiting our
discussion to a few molecules which represent typical cases and
for omitting from consideration a great mass of literature which
is increasing daily by leaps and bounds. We shall divide the
present summary of the status of polyatomic band spectroscopy
into two parts: the first will be a discussion of the general princi-
ples of significance to chemistry, and the second will consist of
illustrative applications of these principles to typical compounds
—in general, the hydrogen compounds.

1 A brief summary of Part I of this review was presented at the Symposium on
The Application of Quantum Theory to Physical Chemistry held by the Physical
and Inorganic Section at the 81st meeting of the American Chemical Society at
Indianapolis, March 31, 1931.
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ParT I. GENERAL PRINCIPLES

The information derivable from the spectroscopy of molecules
which is of interest to chemists is of two types: physical and
chemical. Thus, a successful complete analysis of a molecular
spectrum enables one to compute the physical constant, the
moment of inertia, and from it, the average nuclear separation
for different energy states. One can tell, for example, whether
excitation of the molecule brings about a bond loosening (the
usual case) or tightening, by observing whether the band is shaded
towards the red or, respectively, the violet. A knowledge of the
different moments of inertia of a polyatomic molecule is necessary
to the elucidation of its structure and size. Further information
of interest to physics and photochemistry involves transition
probabilities. Vibrational transitions associated with electronic
are of greatest significance to photochemical change. Rotational
transition probabilities are not so important to such processes
because they are zero for all but small changes in rotational
energy (A K = = 1 or 0), but they are essential to an understand-
ing of selection principles which, in turn, are necessary for a suc-
cessful analysis of the fine structure. The chemical information
which one may obtain from molecular spectroscopy embraces
heats of dissociation, bond strengths, heat contents, entropies,
specific heats, free energy and equilibrium constants, and, quite
recently, activation heats. It is beyond the scope of the present
article (1) to go into the means whereby these constants may be
derived; we shall limit ourselves to a consideration of the two
things, a more or less complete knowledge of which is prerequisite
to such calculations, namely, the energy levels, e;, and their
statistical weights, wi;. The latter are the relative probabilities
of finding a molecule having the energy, ¢, and are equal to the
products of the Boltzmann factor, e~*" into the a prior
probabilities, p;. The a priort probability may be looked upon
as the number of individual levels happening to have exactly the
same energy, ¢;, and is given in classical theory by the number of
quantized orientations which an angular momentum may assume
in a force field. The component of the momentum, j, along the
force axis may take any of the values + 7,5 — 1,5 — 2, . .
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-7+ 1, — j, making 25 + 1in all. The a priori probability is
therefore 25 + 1. More rigorously, in quantum mechanics, it is
the number of ways of obtaining an eigenfunction completely
antisymmetric? in the protons (2) from those characterizing the
energy level in question (Pauli exclusion principle). Such an
eigenfunction will be completely antisymmetric in the protons
only when it is antisymmetric in the nuclei, Ay, if the latter
contain an odd number of protons each (Fermi-Dirac statistics)
or symmetric in the nuclei, Sy, if the latter contain an even num-
ber of protons (3) (Bose-Einstein statistics).

The energy of the level in a molecule is customarily considered
as made up of separate contributions from the rotational, the
vibrational, and the electronic motions. In such a case the
molecular eigenfunction may be taken (4) as the product of
subsidiary functions, the electronie, vibrational, rotational, and
nuclear.

v = "Lel "bvibr l/’rot; ‘pnuclei (1)

Its symmetry follows the sign multiplication rule; S X S = §,
SXA=A4,4 XA =8, ete. We shall accordingly divide our
discussion into these logical subdivisions.

ROTATIONAL
1. Diatomic molecules

We shall first review the case of the diatomic molecule in order
to be better prepared for the polyatomic molecule. The former
has two equal moments of inertia, the third being negligible (ex-
cept it be due to electronic momentum with a component along
the line joining the nuclei (figure axis)—A > 0 —in which case
it is properly considered under electronic energy levels). Each
moment of inertia corresponds to one rotational degree of freedom
and the rotational specific heat at high temperatures is conse-
quently 2R /2.

a. Energy levels. The energy levels are given by the general
formula

ex = K(K + 1)h¥/8x2 2
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where K is the rotational quantum number and may take on
positive integral values starting with zero, & is Planck’s constant,
and I is the moment of inertia. Figure 1 illustrates this energy
level sequence.
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The rotational levels are plotted on ten times the scale of the vibrational
levels. (From Ruark and Urey: Atoms, Molecules and Quanta. McGraw-Hill
Book Co., New York (1930). Reproduced by courtesy of the publishers.)

b. Statistical weights. The a priori probability of the K’th
level is

pg = 2K + 1 3
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since the rotation of the nuclei has associated with it K units of
angular momentum. The statistical weight of the state is
therefore
wy = (2K + 1)6_ K(K + 1D)k/8xUkT (4)
These weights are to be multiplied by the nuclear spin statisti-
cal weight which is

w, = Qi +1) (2, + 1) .... (22’y + 1)
=10 (2, + 1) 5)

The Boltzmann factor does not appear in this expression, since
the energy difference between levels of different nuclear spin
orientations is negligible (coupling very slight).

A modification of this rule usually occurs if both of the nuclei
in the molecule are the same. In this event, the rotational eigen-
functions, y..:, are, starting with the lowest level, alternately
Sy and Ay (the subseript referring to changes in designation of
the nucler). The lowest vibrational (Sy) and lowest electronic
(Sy) states can therefore combine alternately with only Ay and
Sy eigenfunctions of the nuclear spin, yYuuae, if the number of
protons in each nucleus is odd (Fermi-Dirac statistics) or alter-
nately with only Sy and A4y nuclear spin eigenfunctions if the
number is even (3) (Bose-Einstein statistics).

The nuclear weight, 5, is therefore divided into two parts,
each of which applies separately to a separate set of rotational
levels. If the nuclear spin is zero, this means the exclusion of a
whole set of levels (either all odd or all even) because Yo is
Sy only. If the spin is 1/2, three Sy spin functions may be
formed from those available (call spin in one direction «, in the
other 8) (5), namely,

(23124
s + oy
8162 Sy
but only one A, (6)

a8y — asfy Ay
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and the nuclear spin statistical weights are respectively 3 and 1.
The weights for other nuclear spins are given in table 1. Note
that the sum of the two types of weights must equal (2¢y + 1)
The nuclear spins are thus seen to contribute an additional statis-
tical weight of their own. This holds as well when the nuclei
are different, but in this case all rotational weights are multiplied
indiscriminately by the factor (2¢; + 1) (22, + 1).

TABLE 1
Nuclear spin statistical weights

iy Sy AN EXAMPLE

Fermi-Dirac statistics
0 1 0
1/2 3 1 H.
1 6 3
3/2 10 6

Bose-Einstein statistics
0 0 1 O,
1/2 1 3
1 3 6 N2
3/2 6 10

2. Polyatomic molecules

The polyatomic molecule in general has three moments of
inertia. Each moment of inertia corresponds to one rotational
degree of freedom and the rotational specific heat at high tem-
peratures is consequently 3R/2. The a priori probability asso-
ciated (6) with each value of the total angular momentum, j, (or
rotational angular momentum, K) of a molecule is 25 + 1 if it is
collinear, or (25 + 1)%if it is not. In the latter case, if all three
moments of inertia are equal, all (2j + 1)* terms fall together.

2 An eigenfunction is an equation, the square of the absolute value of which
gives the probability of finding the particle to which it refers in a prescribed
position in space. An antisymmetric eigenfunction, A4, is one which becomes
multiplied by —1 when the numbers designating two like particles are inter-

changed. A symmetric eigenfunction, S, becomes multiplied by +1 (i.e., is
unchanged) by such an interchange.
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If only two of the moments of inertia are equal (symmetrical
top), these terms fall into (25 4+ 1) groups of quantum number

Each r group has the degeneracy (2 + 1) and, moreover, those
groups of + 7 coincide with those of — 7. If all three moments
of inertia are different (asymmetrical top), the + and — 7 groups
are separated, each having its own degeneracy of (25 + 1).

Three cases of the polyatomic molecule may be distinguished.

Case I—Collinear molecule. 'Two moments of inertia are equal
and the third is negligible. These are exactly the same conditions
governing the diatomic molecule, and the energy relations and
a priort probabilities therefore obey the same laws. The rota-
tional specific heat at high temperature is of course only 2R/2.
From the rotational line sequence one may determine the moment
of inertia as before, but additional information is necessary to
estimate the nuclear separations.

The rotational a priort probabilities are also more complicated.
If all atoms are different, each weight is multiplied by the spin
product, I (27, + 1). If the molecule has a symmetrical form,

the effects of the symmetry characteristics of the eigenfunctions
must be worked out for each case. For example, suppose we
have a rod-shaped molecule of the form XYYX. The radical
XY may be considered as a unit of a diatomic molecule. When
the nuclear spins of the left XY radical have the same resultant
as those of the right one, the rotational weights may be computed
from table 1, and one may expect alternate weak and strong levels.
But when the resultant spin of the left XY radical differs from
that of the right one, the molecule is no longer symmetrical and
all rotational weights will be multiplied by the same nuclear spin
factor (2jiere + 1) (2juene + 1) where 7 is, in this instance, the
resultant of the two nuclear spins, 7x and 1y. In other words,
the states are no longer divisible into symmetric and antisymme-
tric. This case is exactly analogous to that of a diatomic mole-
cule composed of isotopes of differing weights.

Case IT—Symmetrical top. Here two moments of inertia (4)
are equal and the third (C) is unequal but greater than zero.
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Each moment of inertia corresponds to one rotational degree of
freedom and the rotational specific heat at high temperature is
therefore 3R /2.

(a) Energy levels. The energy levels of the symmetrical top
are given by the formula,

,, = (/80 [i(j + /A + (1/C — 1/4)r] )
=<7
where j = 0,1,2,3 . . . . and 7is a positive or negative in-

teger, the absolute value of which cannot be greater than j.
The first half of the formula gives an energy level sequence
similar to that characteristic of the diatomic molecule, but the
second half requires that each successive level have built on it a
satellite system which grows ever larger and larger. The unequal
moment of inertia, C, may be greater or less than the others, 4,
and this determines whether the satellite system builds up or
down. A picture of the relations involved in ammonia (C > A4)
is given in figure 2,

(b) Statistical weights. The a prior: probability of one (asso-
ciated with definite 7) of the 7 levels is :

b, = 2j +1 (8)

and the statistical weight is

w;, = (2] + D7 TV T o

where
o1 = h¥/8x2AkT (10)
o = (h¥/8x%T) (1/C — 1/4) ()

It is interesting to trace out two limiting cases. If C = 4, o, =
0 and the (25 + 1) levels, one for each possible value of 7, are
completely degenerate. The total a prior: probability is

p; = (25 + 1) (12)

If, on the other hand, C = 0, then ¢, = » and the statistical
weights are zero for all values of r but 7 = 0. This gives as the
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total weight only, »; = 27 + 1, in complete agreement with
equation 3 for the diatomic molecule, which this contingency
represents.

The statistical weights given by equations 8 and 9 must be
multiplied by the product of the nuclear degeneracies I (22, + 1),

if the component nuclei have spin. If the molecule is symmetri-
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(Taken from Badger and Cartwright (46))
———— = gymmetric term, S(3).
—:—— = degenerate symmetry term, S(2 -+ 1).
............ = antisymmetric term, S(1 + 1 + 1).

cal, the effects of the symmetry characteristics of the eigenfunc-
tions must here also be worked out for each case. We shall
review those for three and four equal nuclei, as they have been
presented in detail by Hund (4).

The symmetry characteristics of eigenfunctions of more than
two like particles are not so clear cut, in contrast with those of
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two which are either completely S or completely A. The func-
tions may have mixed symmetry character.®! Thus, A (3) is an
eigenfunction, 4, in the interchange of two of any three particles,
A (2 4+ 1) is A in a certain pair but not for any other, and A4
(I + 1 + 1) is A in none. The last eigenfunction, Hund has
shown, is completely symmetrical, S (3), the first is symmetrical
in no pair, S (1 + 1 + 1), and the second is reciprocal to itself,
i.e., is likewise S (2 + 1). Of the characters of mixed symmetry,
S (2 + 1) is found to be doubly-, S (2 + 2) to be doubly-, and S
(3 + 1) to be triply-degenerate. But it has been found, in mul-
tiplying together two degenerate characters, that the symmetry
characters of the products are different, and are distributed among
the various possible kinds by definite predetermined fractions.
Thus, only one-fourth of the combinations between the S (2 + 1)
rotational and S (2 + 1) nuclear spin characters may be combined
to form a completely symmetrical product, S (3), and one-fourth
to form a completely antisymmetrical S (1 + 1 + 1), the residual
half remaining degenerate, S (2 + 1). The same is true of com-
binations between two S (2 + 2) functions. Only one-ninth of
the products of two S (3 4 1) functions may form an S (4) func-
tion, and another ninth may form S (1 + 1 4+ 1 4 1) funections.

With these working rules (the reader is referred to the original
references (7,8) for the complete set), one is in a position to
calculate the a priort probabilities of the different symmetrical
varieties of molecules containing three or four equal nuclei. If
the latter have only two orientation possibilities (spin = 1/2) one
may set up « and 8 values as above in equations 5 and 6 and get
as a final result

4 8(3) 1

2 S(2 + 1) doubly degenerate[ Three nuclel

5 S(4)
3 S(3 + 1) triply-degenerate ; Four nuclei
1 8(2 + 2) doubly-degenerate

eigenfunctions of nuclear spin.
Hund has shown that symmetry characters with more than two

# Terminology introduced by Hund (7).
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terms in the argument may occur only when the spin can take on
more than two values. Since there is very little coupling force
between the nuclear spins and the outer forces of the molecule,
these different symmetry systems are practically non-combining
and form distinct molecular varieties in exactly the same way
that the two symmetry varieties of hydrogen are formed. We
shall designate them as nuclear quartet, nuclear doublet and
nuclear quintet, nuclear triplet, and nuclear singlet. The corre-
sponding forms of hydrogen are nuclear triplet (“‘ortho’) and
nuclear singlet (‘“para’).t

The a priort weight and character of the rotational eigenfunc-
tions of a triatomic symmetrical molecule are given in table 2
(from Hund (4)); those of a molecule of tetrahedral symmetrys
are given in table 3 (from Elert (8)).

If the number of protons in the equal nuclei is odd, the Fermi-
Dirac statistics (if even, the Bose-Einstein) must be obeyed, and
it is a comparatively simple matter now, to count the total num-
ber of completely Ay (or respectively, Sy, for Bose-Einstein
statistics) functions which can be formed from all of those avail-
able. The further discussion of this topic will be continued in
Part II.

Case III—Asymmetrical top. The most general case of the
polyatomic molecule is exemplified by the asymmetrical top,
whose three principal (mutually perpendicular) moments of
inertia, (4, B, and C, arranged in order of increasing value) are
all different. The high temperature rotational specific heat of
this type of molecule is the same as that of the symmetrical top,
3R /2, the distribution of the moments of inertia having no effect,
provided, of course, sufficiently high temperatures are used in the
comparison.

4 That the nomenclature, ortho- and para-hydrogen, is perverted has been
pointed out by Eucken and Hiller (Z. physik. Chem. 4B, 142 (1927), footnote 4)
and by Mulliken (Trans. Faraday Soc. 26, 638 (1929), footnote 16).

5 Elert (8) demonstrated this distribution to hold for the first few j states and
believed it to be general but was unable to prove it. The author has recently
received a personal communication from Professor Hund stating that he has been
informed by Mr. van der Waerden that it is indeed general.



380 DONALD STATLER VILLARS

TABLE 2
Rotational weights in NHj; type molecule (1e)

T NUCLEAR QUARTET NUCLEAR DOUBLET
8(3) S2+1)

4 X 4 X

X2

X 2

o W W WWNNN RO
WO WNHONRKOROO
O POVO O ONOOJTOO U O WM
COOOOOIJTODUMUMO WO O

42/ + 1) forr=014@j+1)forr
8 (25 4+ 1) forr indivisible by three
divisible by three

TABLE 3
Rotational weights in CH, type molecule (1f)
j NUCLEAR QUINTET NUCLEAR TRIPLET NUCLEAR BINGLET
4) S@+1) 82 +2)

0 5 X1 0 0

1 0 3-3 0

2 0 5.3 5.2
3 7 7-6 0

4 9 9.6 9-2
5 0 11.9 11.2
6 13-2 13-9 13.2
7 15 15-12 15-2
8 17 17-12 17.4
9 19-2 19-15 19.2
10 21.2 21:15 21-4
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(a) Energy levels. The energy levels of the asymmetrical
top have been given by Kramers and Ittmann (9)
e, = (B8« j(G + 1) H; (13)
where H;, must lie between
¢c<H, <a (14)

The small letters, a, b, and ¢ shall be the reciprocals of the cor-
responding moments of inertia. For large 7 and values of 7
approaching

n = G+ 1/2) [(4/7) arc tan®d — )*/(a — )" — 1] (15)
H;, is given by
r— xa -0 -
H. =1b (16)
l +j +1/2 In{(5+1/2)16 9 gin 2 arc tan(b — 0)1/2/(a - b)l/2 + x/2}

where alternate values of the plus or minus sign are to be chosen
for successive values of 7. The fine structure spacing within a j
group of levels is thus seen to be constant near the center of the
group.

1/2 172

AHT = r(a — b)
center

b=0a"/G+1/2)In(j+1/2) 17

jlarge r =27

This is no longer true when H,, differs appreciably from b, in
which event the sublevels pair together (splitting decreasing
inversely as j), two pairs being separated by the energies

1/2

H_ . =2a—-"@-»"/G +1/2) for (a—H) K (a—c) (18)

pairs
=20 - -G + 1/2) (H—-c)K(@—c (19)

These asymptotic formulas are valid only for large . The energy
levels for small 7 have been worked out by Kramers and Ittmann
up toj = 4 and are given in table 4. Dennison (10), in a valuable
discussion of this subject, has recently extended the computation
toj = 9 and Nielsen (11) to j = 10, but their equations are not
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reproduced here as the energy relations are not so readily visual-
ized. Figure 3, taken from Kramers and Ittmann (9a, I, figure
3, page 562) shows the relation between the sublevels of j = 4 as
the middle moment of inertia, 1/b, changes from the value 1/¢
to 1/a. The second quantum number, 7 4, is that of the sym-
metrical top where b = ¢. It may be noted how the spacings
discussed above in connection with equations 17, 18, and 19 are
exemplified, especially when b = 2c.

~— Tap = 0O

= //’//, '
. Pt )
o4 —— "3/ 4
;4
’ /’,
=/
P /
g 0/ ) A 3
3 ——— S
’ -",’/
— ¥
2 S
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— =’ P—
’ - ’*
e L
é ‘:»—:,;;.?_9 -
— o —

bfe=1 1 s 2 3

Fig. 3. ENERGY LEVELS OF AsSYMMETRICAL TOP FOR j = 4 AND VARYING MOMENTS
OF INERTIA
a=3c
(From Kramers and Ittmann (9a, I))

(b) Statistical weights. The a priori probability of each level
is, as in the case of the symmetrical top

P, =241 (20)
and the statistical weight is

w,, = (2 + De 9 (21)

The energy, e, is given in the preceding section, equation 13.
The statistical rotational weights are to be multiplied by the
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weights due to nuclear spin, as before. If the molecule is sym-
metrical, the symmetry characteristics of the eigenfunctions must
be examined in detail. A principle of great value in the con-
summation of such an investigation of the characteristics of the
rotational eigenfunctions of the asymmetrical top is that the
total number of terms (a priort probabilities) and their symmetry
characters are unchanged on going from the symmetrical to the
asymmetrical top. Results obtained for the former may be
immediately applied to the latter. The further discussion of this
topic will be reserved for Part II (H;0).

VIBRATIONAL

If n is the number of atoms in a molecule, the latter as a whole
will have 3n degrees of freedom (three translational degrees to
each atom). If the coordinates are now transformed to such that
three may be made to represent the translatory motion of the
center of gravity of the system, and two or three (depending on
whether it has two—collinear—or three moments of inertia), the
rotational motion of the molecule, there will be left respectively
3n — 5 and 3n — 6 degrees of freedom and these must of necessity
represent vibrational motion.

In writing down the equations for vibrational energy, an es-
pecially simple formulation may be had if a coérdinate system be
chosen which allows the kinetic and potential energy of the system
to be represented respectively as a sum of separate terms involv-
ing successively each coérdinate alone, and no products of one
coordinate into another. These coordinates are called normal
coordinates and there must be as many of them as were originally
started out with. The reader is referred to the articles of Denni-
son (10) and of Mecke (12) for a fuller discussion of this point.
The important result of this representation is that small oscilla-
tions about the equilibrium points may be represented as the
resultant effects of a series of different harmonic oscillators all
vibrating at the same time. The final vibrational frequency is
then the sum of the ground or overtone frequencies of each
oscillator.

That these normal vibrations have actual physical significance,
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notwithstanding the mathematical mode of computing them, may
be best seen by watching the Kettering, Shutts, and Andrews
(13) machine for representing the dynamic properties of mole-
cules. Any one who has seen the activating vibrations pass
through one resonance frequency to another cannot fail to be
struck by the radical change in character of the motion. These
different modes of vibration are indeed the normal vibrations
about which we are writing,.

The intensity of spectral lines absorbed or emitted, in which the
vibrational quantum number changes, is governed by several
factors. First the (total) symmetry character of the initial and
final state must be identical. If the nuclei have symmetry
properties, the molecules will belong to different nuclear-multi-
plet varieties and the preceding statement applies to the resultant
symmetry character of everything but nuclear spins. Second,
the transition intensity is proportional to the square of the classi-
cal electric moment; this in turn depends on whether the coordi-
nate associated with the particular transition under consideration
may be used to define a value for the moment. Obviously, the
change of a codrdinate corresponding to a symmetrical motion
of the molecule cannot affect the electric moment. Such a
frequency is therefore termed ‘‘inactive’”’ and cannot appear
as a spectral line or band except in combination with another
which is “active’” (associated with a codrdinate of unsymmetrical
vibration).

On the other hand, “inactive” frequencies are favored as
Raman lines, the latter depending for their intensity on the elec-
tric moments of interaction with intermediate states. Thus, a
Raman line will be intense if its frequency is the difference be-
tween two intense optical frequencies. Van Vieck (14) has de-
duced that the lines scattered by a polyatomic molecule “should
rank as follows in intensity: first, Rayleigh scattering (no wave
length shift); second, Raman lines whose displacements equal
one of the fundamental vibration frequencies; third, Raman lines
whose displacements are either harmonics of a fundamental
vibration frequency, or else are ‘combination frequencies’ equal
to the sum of two different fundamentals.”
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The a priort probability of each normal vibration is unity,
except in those cases where more than one vibration happens to
have the same frequency (degeneracy). In that event, the a
priori probability is equal to the number of vibrations making
up the degenerate oscillation. This question will be discussed
in greater detail in Part II.

1. Diatomzic molecules

Since a diatomic molecule is collinear, it may have only one
vibrational degree of freedom. Its energy levels are generally
expressed by the power series formula¢

e = hvo [(0 +1/2) — z(v + 1/2)2 — ....] (22)

If the level is expressed as a series in v (not (v + 1/2)) the fre-
quency is to be designated as », (not »,) and proper consideration
is to be taken thereof. The a priori probability and statistical
weight of each level is

w, = ¢ T (24)
The ground frequency ». is equal to the classical mechanical

frequency \

172

ve = (1/27) (k/u) (25)

where k is the restoring force constant and u is the reduced mass
= mlm;/(ml + mz) (26)

If both nuclei are equal, the symmetry character of each vibra-
tional level is S (2) (completely symmetric).

2. Polyatomic molecules

Case I—Collinear molecules. The case of a collinear polyatomic
molecule has been worked out by Mecke (15) and shown to
be particularly simple. Of the 3n — 5 vibrational frequencies

¢ This formula is not continuous in ». Birge: Trans. Faraday Soc. 26, 707
(1929).
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(types of vibration), n — 1 are in the bond directions and are
called by him valence vibrations or valence frequencies. The
remaining frequencies occur in pairs, n — 2 being different (double
frequencies), and since the associated motions are perpendicular
to the bond directions, he names them deformation frequencies.
Dennison (10) has derived a rule which he hopes may find a use-
ful application to the spectroscopy of many triatomic molecules.
It is that when the sum of two active frequencies in a spectrum
is systematically equal to a third active frequency, either (1)
the molecule is not collinear or (2) if collinear, its potential energy
function is not geometrically symmetrical.

(a) Energy levels., The energy levels of a collinear polyatomic
molecule may be represented by a sum of as many equations
similar to equation 22 as there are normal coérdinates, each
quantum number of vibration being capable of independent
variation.

The relations between the ground frequencies of triatomic and
quadratomic collinear molecules have been given by Mecke (15).
If k£ is the restoring force constant for valence vibration of a
collinear triatomic molecule, the two outside atoms of which are
the same (mass, m), and d the corresponding constant for over-
coming deformation (perpendicular to the valence vibration—d/k
is assumed small), the two (equal) deformation frequencies are

5 = (1/2r) [d(M + 2m)/Mm)'" @7

where M is the mass of the central atom. The valence fre-

quencies are
w(s) = (1/20) Uo/m)'’? ‘ (28)

»(a)
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(1/27) [k(M + 2m)/Mm] (29)

The first valence vibration is due to the normal coérdinate repre-
senting a symmetrical oscillation (hence the descriptive letters)
of the two outer atoms, each moving to and from the central
atom which is stationary. It is therefore spectrally inactive.
The second valence vibration is of the two like atoms moving as
a unit (distance between them unchanging) in a direction opposite
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(asymmetrically, hence the descriptive letter a) to the motion of
the central atom and parallel to the line joining the nuclei. It is
active. The deformation vibration is of the two like atoms mov-
ing as a unit (distance between them unchanging) in a direction
opposite to that of the central atom but perpendicular to the line
joining the nuclei. Since there is a choice of two directions per-
pendicular to this line, the vibration is double. The deformation
vibrations are active. These relationships are depicted in figure 4.
The quadratomic collinear molecule (with two pairs of similar
atoms) has two double deformation frequencies and three valence
vibrational frequencies (notation adopted from Mecke (12d)).

1/2

8(s) = (1/2r) [2d/(M + m)] (30)

s(a) = (1/27x) [d(1/2m <+ 1/23)] (31)

1/2y1/2
Vz(s)} = i ]i‘ + ’iz &+ ]E — ’i? : + 27{:15:2 (32)
V1(8) 2r Hi M2 M1 M2 Ky

wa) = (1/27) Uen/ur)’?

1/2

(33)

where k; is the M — m binding constant, &k, the M — M binding
constant, 1/u; = 1/m + 1/M and 1/u;, = 2/M. The character
of the normal vibrations corresponding to these frequencies is also
given in figure 4. The frequencies »;(s) and ».(s) and &(s) are in-
active; »(a) and é(a) are active.

(b) Statistical weights. In determining which of nuclear
spin statistical weights combine with which vibrational and rota-
tional levels of symmetrical molecules, it is of importance to know
the symmetry character of the different normal vibrations.
These have been worked out by Hund (4). In the case of the
triatomic collinear molecule considered above, the two outer
atoms of which are similar, the eigenfunctions corresponding to
the first valence vibration »(s) and the deformation frequency
6 are symmetric with respect to interchange of the two equal
nuclei. The eigenfunctions of the second valence oscillation »(a)
which have an even quantum number are symmetric; those of odd
quantum number are antisymmetric. They, as well as those of
the Y.X, type molecule, have been discussed in much greater
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1. X--Y, —C—H.
o :)3——8
v dd’
2. Z—X—Y HCN.

v (@)3 gt

3. Y/X\Y H,0.

N <
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4. Y—X—~X—Y O H,.
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Fi1g. 4. FuNDAMENTAL NORMAL VIBRATIONS

(From Mecke (12d). Reproduced by courtesy of the publishers). The added
superscripts designate Dennison (10) notation.



ENERGY LEVELS OF POLYATOMIC MOLECULES 391

detail by Dennison (10). The reader is referred to that article
for further study.

Case II—Top like molecules. A non-linear polyatomic mole-
cule is the type most generally met with in chemistry. Table 5
gives the kinds of vibrations which these possess, as derived by
Mecke (15a). Figure 4 gives the motions of the normal vibra-
tions of this type of molecule.

TABLE 5
Normal vibrations of polyatomic molecules

TYPR MOLECULE VALENCE DEFORMATION

VIBRATIONB VIBRATIONS
H:0 (Asymmetrical top).............ccvv.. 2 1
NH; (Symmetrical top)...........coooiiiai 1+ (2)* 14 (@)
CH, (Spherical top)...........covvvviennann., 1+ (3) @) + (3)

* Parentheses indicate a multiple vibration of degeneracy indicated within.

(a) Energy levels. The fundamental valence frequencies of
a symmetrically built (H,O type) triatomic molecule which is
non-linear are as follows (16),

v(7)
or = (1/2x) I:(k + 2d)/2m 4+ (k cos? 8 + 2d sin? 6)/M +
&(w)
12 (34)
V{4 2d)/2m + (k cos? 6 + 2d sin? 6)/M }2 — 2kd (2m + M)/M or
(35)
v(r) goes with +, and is equation 34
8(x) “ ¢ — and is equation 35
v(o) = (1/2x) [k(1/m + 2 sin? o/M)]"" (36)

where O is the angle between the symmetry axis and the valence
bond. This reduces to the same ratio of »(¢): »(7r) one would
obtain from equations 28 and 29 by setting 6 equal to 90°, and
disregarding the deformation force constant, d. (The Greek
letters in parentheses indicate the direction of motion of the odd
atom, = parallel, ¢ senkrecht, perpendicular, with respect to the
symmetry axis.)
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An unsymmetrically built molecule such as ROH where R is
a heavy residue, has the following (15b) additional valence fre-
quencies (collinear and first approximation).

172 37

(38)

v = (1/27) (ka(l/my + 1/ms)]
vz = (1/271') [kszgl/ms + 1/(m2 -+ mx)}]

where ms > my > m;. Mecke has pointed out that » is the in-
ternal O—H bond frequency and is (in the first approximation)
independent of the mass of R(ms), while », is the frequency of
the R—OH bond. Equation 37 thus explains in a simple manner
the well-known fact that definite infra-red or Raman frequencies
may be ascribed unambiguously” to definite bonds (such as CH,
NH, and OH) throughout a series of compounds. The normal
vibrations of an ethylene type molecule have been given by
Mecke in the same article (15a) which has been under discussion.
The reader is referred to it for further consideration.

(b) Statistical weights. The vibrational statistical weights
are determined as before from the a prior: probabilities. The
latter are equal to the number of ways of combining multiple
oscillations to get the same total energy. In the case of symmetri-
cal molecules, a knowledge of the symmetry character is also
necessary in order to discover which a priori probabilities are
ruled out by the exclusion principle. Each case is a law unto
itself and will be postponed for further discussion until Part II.

In this connection it is of interest to recall a generalization of
Ludloff (17) for combining functions, such as vibrational and
rotational, of different symmetry character; the distribution of
the rotational symmetry characters alone determines the dis-
tribution among the vibrational-rotational combined characters.
Thus one-sixth of the rotational a priori probabilities of a sym-
metrical top like NH; are S (3), one-sixthare S (1 + 1 + 1), and
two-thirds are degenerate, 8 (2 + 1). The distribution of these
characters among the combined vibrational rotational states is
the same. Rigorously speaking, this rule of Ludloff applies only
to a priori probabilities. It is obvious that it does not necessarily

172

7 Against this point of view, however, see Dennison (10, p. 305).
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hold for the distribution of statistical weights among the different
symmetry characters, since the Boltzmann energy factor is apt
to cause profound changes in the relative weight of each term.
The rule is therefore valid only at high temperatures, where
e/kT is very small.

ELECTRONIC
Energy levels

1. Diatomic molecules. A prolific literature has arisen on the
electronic structure and energy levels of diatomic molecules (18).
Of fundamental importance to chemistry is the potential energy
curve of the electronic state under consideration. Naturally,
that of the ground level is of most importance. Higher levels
are usually so extremely high that their statistical weight is
negligible; an exception to this general rule is a chemically
unsaturated molecule® whose ground state is likely to be a multi-
plet with small energy level separation (19). The higher levels
are accordingly of little interest to ordinary thermal chemistry;
they are of importance to photochemistry.

Up to now there has been no completely satisfactory method of
computing potential energy curves. One usually proceeds by
setting the potential energy equal to an inverse power series in
p, the fractional deviation from the equilibrium nuclear separa-
tion, and evaluating the constants by certain relations which may
be derived from band spectra theory. This procedure has the
disadvantage that the derived curves are valid only for small
deviations from the equilibrium position. If one sets the po-
tential energy equal to an inverse power series in r, the nuclear
separation, beginning (20) with r-¢ he may evaluate enough of
the coefficients to obtain a convergent series for large nuclear
separations. But this is of no value for small separations, as
the analytical form of the funection makes it behave strangely,
giving several minima, some of which are actually lower than the
one corresponding to the stable state of the molecule. Perhaps
the most satisfactory (although qualitative) way of representing
potential energy functions is by the equation of Morse (21).

V=Dl %" _ 1 _w, (39)
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where D is the heat of dissociation plus the half quantum of
vibrational energy, W, associated with the lowest vibrational
state of the molecule, 7, is the equilibrium separation of the

nuclei, and

1/2 1/2

a = 2av, (uc/2DR) " = 0.006547 ».(M/D") (40)

v, being given in em.-! and taken from equation 22. M is the
reduced mass in atomic weight units, D is in em.-i, and D’ is
in kg.-cals. This mode of representation is not perfect, basing
its validity on the energy level approximation given in equation
22 (two terms only—and not making use of higher powers in the
approximation). Birge® has recently shown that vibrational
energy levels obey a peculiar discontinuous law, for which no
theoretical reason has so far been advanced. This means that
the Morse curve can never be more than a rough approximation,
albeit it is perhaps the best at present available.

The importance of finding a valid potential energy curve arises
from the possibility of explaining many kinds of chemical data
thereby. By proposing the principle that electronic excitation
occurs so rapidly that it is over before the nuclei have a chance
to change their position (even though they are vibrating), Franck
(1b) was able to derive the conditions for photochemical dissocia-
tion. By the further principle that the molecule spends most of
its time at the ends of its vibratory swings where the motion is
slowest, Condon (22) was able to explain the parabolic form of the
v/, v” intensity charts. Many of the facts of predissociation have
been explained by an application of this principle (23). Villars
(1h) was able, by applying it.in conjunction with the principle of
energy conservation during allegiance exchange and assuming
zero change in translational energy, to calculate the heat of
activation of a chemical reaction (hydrogen iodide decomposi-
tion); the same considerations were applied by Franck and Ra-
binowitsch (24), who, in spite of the doubtful assumption that
reaction is to be explained on the basis of translational energy
alone, were able, by using much more qualitative data (ratio of
equilibrium nuclear separation to gas-kinetic collision separa-
tions), to explain puzzling differences in behavior of different
members of the same chemical family in the same type reaction.
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Next in importance to obtaining the potential energy curves of
the different electronic levels of a molecule is perhaps the task of
suitably naming them. A good name should connote the quan-
tum numbers of the electrons in the molecule as well as their
resultant multiplicity and angular momentum. The detailed
discussion of this topic is beyond the scope of the present article.
Suffice it to say that Greek letters are used throughout to replace
Roman ones whenever a molecular designation is implied in place
of an atomic designation. Thus, Z, II, A (corresponding to S, P,
D) mean that the component of electronic angular momentum
along the line joining the nuclei, A, (corresponding to L in atomic
spectra) is respectively 0, 1, 2. A superscript to the left of the
letter denotes, as in atomic spectra, the multiplicity. A -+ or
— superscript to the right of the symbol denotes a ‘“‘symmetric”
or, respectively, ‘“‘antisymmetric”’ eigenfunction with respect to
reflection in any plane passing through the nuclei. Since each
state with A > 0 has both, the superscript is not used, but the
state has double a priori probability nevertheless. A subscript,
g or u (gerade even, or ungerade, odd), to the right is used for
diatomic molecules, both nuclei of which are the same, and de-
notes a ‘‘symmetric’”’ or, respectively, ‘“‘antisymmetric”’ eigen-
function with respect to a reflection through the mid-point of the
line joining the nuclei. (Quotation marks are used since sym-
metric or antisymmetric refers usually only to an interchange of
like particles.) This character may be ascertained (6, 25) by
computing the arithemetical sum of all the separate I values of
all component electrons of both atoms. If the sum is even, the
term is g; if odd, . The terms § and % are symmetric in the
nuclet; the terms ¢ and 4 are antisymmetric in the nuclei. The
above symmetry properties demand certain selection rules.
Thus, only transitions between + and +, or — and — states
are allowed, and only those between even and odd ones (as in
atomic spectra).

2. Polyatomic molecules. Potential energy curves for the
polyatomic molecule have not as yet been systematically con-
sidered. As data on higher vibrational levels are accumulated,
it should be possible eventually to draw one potential energy
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curve for each normal vibration. These individual potential
energy curves will then be as important to the elucidation of
transition probabilities between the various vibrational states of
electronic levels of polyatomic molecules as are the Franck-Con-
don curves for diatomic molecules. Urey (16) has recently
applied such considerations to SO, and ClO,. A hint of their
importance is disclosed by a recent article of Kato (26), who
believes that the deformation vibration of acetylene leads to
polymerization to benzene whereas excitation of the valence
vibrations causes polymerization to cuprene.

The vibrational energy levels of electronically excited poly-
atomic molecules are to be represented in the same manner as
for unexcited molecules, 7.e., by a sum of as many equations
similar to equation 22 as there are normal coordinates, each
quantum number of vibration being capable of independent
variation. Equation 22 need not hold continuously for all
quantum numbers; indeed it has been found that there is a dis-
continuity in the case of some molecules (27), the vibrational
energy levels of excited SO, actually getting wider and wider
apart as the molecule vibrates more strongly, with the spacing
passing through a maximum before the levels start to converge.
Before the maximum, the levels obey equation 22 with one set of
parameters; after the maximum (spacing), they obey equation 22
with a different set of constants. :

Another characteristic, although not unique, property of poly-
atomic molecules is the phenomenon of predissociation (28). We
shall not go into this subject more than to indicate its bearing on
the energy level problem. If a discrete energy level of the mole-
cule happens to be superimposed over a system of continuous
levels of a different electronic state, radiationless transitions
(resulting in dissociation) may occur from the quantized state
to the unquantized state, provided certain rules are obeyed, and
the result is that the discrete energy level becomes fuzzy. This is
of great importance to certain photochemical processes, as it
connotes a mechanism of photochemical dissociation. The rules
which govern such radiationless transitions were laid down by
Kronig (29),
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(1) Total moment of momentum must be conserved

2 arP1

(3) Both states must have same symmetry as regards reflection through origin
(one state may not be g with the other u)

(4) Both states must have same symmetry in electrons (same electronic multi-
plicity)

(5) Both states must have same symmetry in nuclei

and by Franck and Sponer (23).

Radiationless transitions are most probable at nuclear separations where the
potential energy curves cross.

The only pretentious article so far published which discusses
electronic states of polyatomic molecules is that of Dunkel (30),
who seeks to systematize the ground states of molecules. He
attempts to assign quantum numbers to the individual electrons
in the molecule, but touches the more important question of
naming and describing the significance of the complete resultant
state only in the few instances where the molecule described is
chemically saturated,'Z.

In extending the Greek notation of diatomic molecules to
polyatomic molecules, it is natural to inquire what is the meaning
of resultant molecular angular momentum, such as A. In dia-
tomic molecules, only the component of L along the internuclear
axis is conserved, the perpendicular component being averaged
out to zero due to precession around this axis. Which axis is to
be chosen in a polyatomic molecule? Naturally, it must be the
symmetry axis, if there is one. This will apply to collinear mole-
cules, or symmetrical tops. In the asymmetrical top, this quan-
tum number will no longer have meaning and the electronie
motions will be very complicated.

Hund (6) has recently made some helpful suggestions along
these lines. He points out that collinear molecules have exactly
the same symmetry classes as the diatomic molecule and that
the same electronic state notation is applicable as that outlined
above, down even to the designation of the multiplicity (2S + 1,
superscript to left) and A + X (usually @, subscript to right).
Furthermore, one may designate even and odd terms in symmetri-
cal molecules such as HCCH. Terms with A > 0 have likewise
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a double statistical weight. This is no longer true for non-linear
molecules. If the deviation from linearity be slight, the + and —
terms of A > 0 will be resolved and one may designate the com-
ponents as IT+, II-, A+, A-, ete. These letters may be surrounded
by brackets, if one wishes to denote that the angular momentum
indicated really has no longer any meaning but has ‘“historical”’
significance only (for example, refers to an atomic state from which
the molecule was derived). Similar notation may be used for
individual electrons. Systems in which the nuclei are arranged
symmetrically about a plane allow a separation of terms into +
and — with respect to reflection in the said plane. Other types
of symmetry will allow corresponding division of the terms into
symmetry classes but must be worked out for the special case.

* Recent articles closely related to the subject of electronic
energy levels of polyatomic molecules which should be called to
the attention of the reader are those of Hund (30.1) and Mulliken
(30.2). The latter amplifies his earlier discussion (30b) of the
bonding power of different electrons and extends it to the poly-
atomic molecules and ions, H,O, NH;, CH,, CF,, CL, ClO,-,
S0,--, Cl0s-, SO;~, CO, and others. Two significant points in
nomenclature are the recognition, by Mulliken, of an extra differ-
ence in the three pairs of p electrons of H;O and NH;-, due to the
molecular symmetry, by adding an a, b and a ¢, thus—2pa?, 2pb?,
2pc*—, in H;0+, NH; by the inclusion of the small Greek letter
in brackets, thus, 2p [7]4, 2p [¢]? and the introduction of the designa-
tion g-valence by Hund to describe those terms which are combina-
tions of s—p ones. Pauling (30.3) and Slater (30.4) were the first
to show that the proximity of the sp? 58 level in carbon to the
ground state s?p? 3P modifies the lowest term in CH, so much
that it is no longer correct to speak of sp® or s2p? electrons. This
requantization is the direct cause of the tetrahedral symmetry of
the valence bonds of carbon. To quote from Hund (30.1, page
27), “The configuration ¢* (s?p?) can saturate four valences.
This seems to be the adapted concept of the C valence. In common
with the Heitler-Herzberg (30.5) concept, it is essential that the

* Paragraphs marked with an asterisk are insertions made on September 30,
1932,
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energies of the s and p states be not very different. While, how-
ever, there, the carbon bond is explained as coming from the sp?
58 term, here the quadrivalence is a property of the whole group
of terms, s?p?, sp?, p* called ¢* in short. The ground state of the
molecule can thereby dissociate into the lowest state of the atoms
(C in sip? 3P)”,

Statistical werghts of electronic states

* The a priori probability of an electronic state of a molecule
is determined from its spin and electronic angular momentum in
the same way as that of an atom, with this difference: the quan-
tum number, A, of a molecule corresponds to the quantum num-
ber, M, of an atom in an axially symmetrical electric field. The
latter is doubly degenerate, inasmuch as positive and negative
values of M}, in an electric field have the same energy associated
with them, whereas the energies would be split, one sent up and
the other down, if resolved in a magnetic field. Therefore, any
molecular state of A > 0 is double, (A type doubling), one being
positive (+) and the other negative (). It is to be noted® that
the a priort probability due to angular momentum is not 2A + 1,
since A corresponds to M; and not to L. The total statistical
weight of an electronic state is therefore

— e/kT

28 +1)e A=0

De
-~ eo/kT

228 + D e A>0

If the molecule is homonuclear, the states ¢ and @ are Sy, ¢ and
% are Ay as mentioned above, and these symmetries must be
accounted for in deriving the term weights for the different nu-

8 Such as hydroxyl (reference 19). The author wishes herewith to correct the
statistical weights of the ground electronic states of hydroxyl given in reference
19. These weights were computed on the misapprehension that A corresponds
to L, not to My. The first term on the right of the equation for S.1.o of OH at
the bottom of p. 707 (19) should read (statistical weight in the parenthesis):

R 1In(2 + 2 ¢~hav/kT)
This means the entropies given in that paper are too high by about 1.0 at 298.1°K.
and 0.8 at 2500°K. and a corresponding error resides in the equilibrium constants.
In the paper of Bonhoeffer and Reichardt (Z. physik. Chem. 1394, 75-97 (1928))
the same error is made.

CHEMICAL REVIEWS, VOL. XI, NO. 3
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clear symmetry varieties. An excellent summary of the rules
which these sublevels obey is to be found in Mulliken’s treatise on
band spectra (30.6).

Part II. ILLUusTRATIVE EXAMPLES

TRIATOMIC MOLECULES

H,0.—The simplest triatomic molecule containing hydrogen
atoms is water. Unfortunately it has resisted complete analysis,
belonging as it does to the asymmetrical rotator class. Such a
molecule, all atoms of which are in the same plane, obeys a funda-
mental relation between the moments of inertia

L=5L+4+1I (41)

where I, is the moment perpendicular to the plane.
The pure rotational spectrum of H,O has been classified into
three series (31) of lines having the wave numbers:

=245 m = (h/4nti) m p = const.; m —m — 1 1)
7 = 16.8(p +1/2) = (h/4x?) (1/I: — 1/1) (p +1/2) m = const.; p— p — 1 (42)

s = 55.5(r + 1/2) = (h/4m2L) (r + 1/2) p = comnst.; (43)
m = const.;
r—r—1

These equations give the moments of inertia and internuclear
distances appearing in table 6. The angle of inclination of the
bond to the symmetry axis is given by Rideal (32) as

tan? 8 = 81,/9I;

or
6 = 42 or 47° (44)

in agreement with the recent theories of directed valence (33),
which predict a bond angle close to 90°.

The vibrational-rotational spectrum of H.O is given in figure 5,
taken from Mischke (34), Hettner (34), and Lueg and Hedfeld
(38). The three types of normal vibrations are designated in
figure 4. As the angle 8 (between bond and symmetry axis)
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approaches 90°, »(x) goes into »(s) (v, Dennison (10, figure 4))
and becomes inactive, §(x) becomes §(a), (»,), and v(¢) becomes
v(a), (vs), the latter two being active. Mecke (15) assigns the
following values to these fundamental oscillations

v(7) (Hund’s &) = 3740 cm.—! (2.674)

W(s) (Hunds ) = 3850  (2.50)
o(r) (Hund’s ) = 1600  (6.254)
R th”lll‘[“‘“lutﬂ .J....'hlH1|||'||”lll!.mll,t.z Ll
Sl il |
“ bl I Wl el
eananiR e

m L l MI‘ |LLHIL”“ ‘IJ[.ILJ "

I e

«$7mle
S50
b R, TE
LU T O U T TR e (AT 1T g gt L) Thobabd/apem

F1a. 5b. WATER VAPOR SPECTRA
(From Lueg and Hedfeld (38))

These are, however, not certain, Ellis (35) choosing for funda-
mentals the frequencies® corresponding to the bands at 6.1 and
2.9u (1450 and 3450 cm. ! respectively) and Hund (4) those at 6
and 2.6u. Plyler (36) gives for the fundamental frequencies
1.88354 (~ 5310 cm.=1), 2.67u (~ 3745 cm.-1), and 6.26x (~
1598 em.-1), and 6 = 57.5°. Johnston and Walker (37) observe

9 See also Phys. Rev. 88, 582, A3 (1931) for new bands at 1.74gx (5750 cm.™) and
1.79« (5590 em.™) which are supposed to be combinations of 2.79x (3580 cm.™), 6.1
(1640), and 19.5 (510); and of 290 (3450), 6.1 and 1.95..
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the following Raman frequencies, which they believe to represent
the fundamental vibrations: »(¢) = 984; »(x) = 3654; and
6 = 1648 cm.~!. Mecke (12b) believes this assignment of the
984 frequency should go to a dihydrol vibration. In table 2 the
values given are those of Lueg and Hedfeld (38).

The proper analysis of these vibrational frequencies can be
made only in conjunction with the symmetry properties of the

) A S =0
______________ 7
_____________ 2
e 3

2 g
______________ 1
_____________ Z

Jom mmmmm e 0
___________ —4/

0 0

Fig. 6. RorarioNal LeveLs or XY, Tyre SymmeTRICAL Top MOLECULE
(From Hund (4, p. 822)). In H,0, an asymmetrical top, each level where » > 0,
splits into two,
= symmetric term, S(2).
............ = antisymmetrie term, S(1 4 1).

eigenfunctions. Such an analysis has so far not been made but
is promised by Dennison (10). Hund (4) has shown that, of the
rotational levels when r = 0, the even numbered j levels are
symmetric (S(2)) in the nuclei, and the odd ones are antisym-
metric (S(1 + 1)). The levels for which r > 0 are double, one
being S(2) and the other S(1 + 1). These properties are repre-
sented in figure 6, taken from Hund. As to the vibrational
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symmetry properties, the »(x) and &(x) vibrations are both
symmetric in the nuclei. The »(¢) vibrations are, beginning with
the quantum number zero, alternately S(2) and S(1 + 1).

* Mecke (12b) has worked out approximations for the funda-

Y
mental frequencies of an X< type molecule.
Y
4 82 = ol [sin? o(1 + p8) + cos? o(p + 8) + +3p] (44.1)
V8l = wy p (8 + v, sin® o] (44.2)
v, = wy [l + v, cos? ¢] [cos? ¢ + p sin? ¢] (44.3)
where
p=1+2Y/X

472 ‘°§[ = 2k/Yr?

the v’s are coupling constants between dipoles, and B that of
a bending bond. The frequency wy may be estimated from

w@(p—l—1)~v:_+v:~2v§(Y(b~n~e~0) (44.4)
or
w%— p+ 1)~ v:_ + Vi + 5:_ - (vﬂ_ cy 51/w2Y)2/p (e~n~0) (44.5)

“In non-linear molecules the relative bond interaction is much
greater, around 30 per cent, than in collinear molecules, since it is
through this interaction that a stable bond angle is achieved.
In hydrides, it can be explained as a dipole stability (e = n =
6 volts, b ~ 0), in the halogens as angle stability (b ~ 10 volts,
e = 0) and polarizability perpendicular to the molecular axis
(n < 0). Here the valence vibrations are characteristic vibra-
tions, i.e., »(r) ~ vxy ~ v(a).”

** Mecke, still more recently (85), has published the results of
an analysis of the 9400, 9050, 8230, 7900 and 7230 A. bands of
water. The molecular constants given in table 6 have accord-

** Paragraphs added in proof, November 18, 1932.
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ingly been revised to give his latest values. Approximate 1:3
intensity alternations were observed to occur. These alterna-
tions show that, in the non-vibrating molecule, when j is even,
the lowest term (8) is weak, the next being strong; where j is odd,
the order is reversed. From this he concludes that the obtuse-
angled form is the correct one and that the ground term is 'Z, as
in Hz and Csz.

CO..—Carbon dioxide is an illustration of the collinear tria-
tomic molecule. The moment of inertia indicated by Raman
data (39) is 70.2 X 10-# g.em.2.. As this is probably more
correct than that obtained from infra-red analyses as they now
stand, Mecke’s values for the inter-nuclear distances have been
recalculated and the revisions are given in the table. Since the
molecule is linear, it has one more normal vibration than the non-
linear triatomic molecule. This extra vibration shows up in the
doubling of the deformation frequency. The structure (40) of
the unsymmetrical vibration »(a), indicates that we probably
have here alternating intensities. The deformation oscillation,
8, appears as a classical doublet (40). Martin and Barker (41)
have investigated the absorption bands® at 4.3u (~ 2326 cm.—?)
and 14.9u (~ 673 cm. 1) “with a grating spectrometer of resolving
power sufficient to separate the rotation lines. The 4.3u band
consists of positive and negative branches only, with rotation
lines about 1.5 em. ! apart, and shows considerable convergence.
The spacing is the same as in the long wave band, and is about
twice the value obtained when estimated in the usual way from
the doublet separation. This indicates that the molecule is
linear, with the carbon atom midway between the two oxygen
atoms. In the low frequency band, a strong zero branch appears
at 14.9, with twenty or more rotation lines on either side, about
equally spaced..... A second harmonic band appears at 4.8y,
but there is no first harmonic. Superposed on the fundamental
are three other bands, considerably less intense, of which two
correspond to absorption by molecules already excited to the
first vibration state by thermal impacts, while the third is a

10 CO; bands at 4.3p. A5 = 1.5 cm.™t
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difference band involving the inactive symmetrical vibration.”
The quadruple character of the Raman line of CO, (only one,
»(s), should be expected) is explained by Fermi (42) as due to a
coupling effect between the »(s) energy level and the 25 level
which is close by and likewise between the »(s), 5 level and the
3slevel.

* Mecke’s (12b) approximate formulas for the fundamental
frequencies of & Y—X—Y collinear molecule are

v(a)/v(s) ~ p* (44.6)
vyy/o(8) ~ [(p + 1)/21" (44.7)
w(8)p — »i(a) ~ 28 (44.8)
»(s) + #(a) ~ Dy (44.9)

where vxy is the vibration of the diatomic molecule XY. Accord-
ing to him, triatomic molecules arranged in a straight line are
only found when a triple bond is present (CO,, CS;, N:O, and
HCN), which can be expressed in the ordinary notation as
'Y::X:::Z:. The interaction between bonds, caused by
Coulomb repulsion and attraction terms of induced polarizations
is small and amounts only to 3 to 6 per cent of the bond firmness.
A consequence of this is that the deformation vibration comes
out quite small (6:»(a) ~ 1) and the relation (equation 44.6)
holds well.

The fundamental vibrational frequencies in table 6 lead to the
following formula for the heat capacity of carbon dioxide

Cv/R = 5/2 -+ 2 o(956/T) -+ 0(1841)/T) + »(3331/T) (45)
where
o(0/T) = /T(0/T)/ (/T — 1) (48)

Smyth (43) has analyzed an emission system of CO. from
2700 to 5000 reported by Fox, Duffendach, and Barker (44).
Of two hundred bands, one hundred were partially separated
into fifteen progressions of heads, of frequencies # = 26271 —
v, + 1136.85 v — 1.850® where », takes on a particular value for
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each progression and » = 0,1 ... 10. Both levelsare electronic-
ally excited.

** Schmid (86) has photographed in the third order of a twenty-
one foot grating the red degraded CO, bands at A 3247, 3254, 3370,
3377, 3503, 3511, 3534, 3545, 3674 and 3839 A. He finds these
bands to be composed of P and R branches (no @ branches),
which surprisingly contain no missing lines (cf. below) but some of
which (2nd, 4th, 6th, 7th, and last named above) do show a
staggering, which is interpreted as a missing level effect, caused
by something akin to A type doubling. From the absence of a
Q branch it is concluded that the transition may be a 'II — 'II or
a'2 — 1%, and it would seem that the former is indicated by the
staggering effect, although the author does not state it definitely.
The single structure of the bands indicates that the molecule
is linear in both the initial and final states.

It is of interest to examine the effect of nuclear symmetry of
the CO, eigenfunctions on the a priori probabilities. In the
ground state of O, only the odd rotational levels are present and
this is accounted for by the fact that the zero nuclear spin is
incapable of taking on any but a symmetric configuration.
This is still true for CO,. One-half of its levels must therefore be
missing, either those represented in figure 6 by the solid line

(symmetric), or those represented by the dotted lines (anti-
2X8

symmetric), depending on whether Z [ is respectively odd or

r=1

even. This is concluded from the rules presented in Part I;
oxygen, having an even number of protons in its nucleus, must
contribute to carbon dioxide a total eigenfunction completely
symmetric in the nuclei. This is for the ground vibrational state,
and, in fact, for any vibrational state except those of the active
valence (unsymmetrical) oscillation, »(a), where the quantum
number is odd, in which case the above statements are to be
reversed. The Raman data of Houston and Lewis (37) show
that only the even rotational levels are present in the ground
state. 2l is therefore even and the antisymmetric dotted levels
of figure 6 are the missing ones.

The same considerations as the above apply to SO, and ClO,,
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and similar ones may be developed for NON, with the difference
that in the latter case both types of levels shown in figure 8
should appear, with a ratio of 2:1 (owing to the nuclear spin of
unity), instead of 3:1 (H,0) or 1:0 (CO,) as before. Plyler and
Barker (45) deduce from the absence of such intensity alternation
in the lines of nitrous oxide that it has the unsymmetrical, though
linear structure’ N = N = O.

QUADRATOMIC MOLECULES

NH;—Symmetry considerations indicate that the equilibrium
shape of ammonia should be that of an equilateral triangular
pyramid, with the nitrogen atom at the apex. If & is the height
of this pyramid, the relations between the moments of inertia
are as follows:

Li=1I = L/2 + uh? (47
where
1/w = 1/8H + /N (48)
and
wi_g =L+ (N — 3H)I/2(N + 3H) (49)
= I, 4 111,/34 (50)

The infra-red spectra of ammonia are given in figure 7, taken
from Lueg and Hedfeld (56). Sleator (48) notes the discovery
of a new band at 16.1x. The pure rotational spectrum satisfies
the relation (42)

Frop = 19.957 m — 0.0050826 m? (51)

Dickinson, Dillon, and Rasetti (49) find by Raman effect the
levels

E ./he = 9.921 (m + 1/2)* — 0.00063 (m + 1/2)¢ (52)

i1 Bailey and Cassie (Phys. Rev. 89, 534L (1932)) reason that this structure
should be further modified to be N™=N*=0,
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and a vibration frequency of 3333.6 ecm.~!. The latter is char-
acteristic of the N—H bond. Langseth (50) obtains a resolution
of the Raman lines of the first vibrational band

5 = 3317.4 & 19.87J (53)

A rotational energy level diagram for ammonia has already
been given in Part I, figure 2, and the statistical weights are
enumerated in table 2. There are four distinct normal vibrations,

TABLE 7
Constants of quadratomic molecules, XY; type

NH;® PH; AsH; PCls PBr;
I;” X 10%° g.cm.2, . 2.82
" X 1040 . ....... 2.82
IL” X 100, ....... 4,91
6 (XY bond-sym.

axis)............ 73°15’

R@nAd.......... 0.3
5 ST 1.04
TYY ............... 172
p(mlem," 1. ........ 4450 510 397
(o)t 3306-600, ;) | 2374470, ) | 216247, ) | 4s5@ | 370@
100 I, 966 993 906() 256 161
1€ N 1630.9® 1125.0®) 1005.4®> 190 115
Raman............ 3333.6

(a) Lueg and Hedfeld (56). They interpret the spectrum in terms of only
three fundamental frequencies, 933-936, 1630, and 5054 cm. "1,

(b) Robertson: Trans. Faraday Soc. 25, 899 (1929).

(¢) Badger and Mecke: Z. physik. Chem. 5B, 333 (1929).

(d) Trumpy: Z. Physik 68, 675 (1931).

two being double, making six in all (figure 4). Dennison (51)
picks for the fundamentals, the bands at 10.7, 6.14, 2.97, and
2.22u. The corresponding frequencies are those given in table 7.
Higher harmonies of 2.97, »(s) are reported by Mecke and Bad-
ger (52), the third at 7920 A., the fourth at 6474 A. At 8810 A.,
they find two series of lines having the same spacing as the band
at 2u, »(r), but displaced. Another weak band at 5490 A. is
reported by Badger (53).

The symmetry character of the rotational levels of the ground
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vibrational state, given in figure 2, is double, two series of energy
levels of reciprocal character being superposed, each originating
from a separate level of the doubly degenerate ground vibrational
state. The latter (6(=) = 0) is double, because of the possibility
of the existence of mirror image positions of the nitrogen atom
with respect to the plane defined by the three hydrogen atoms (4);
one level is symmetric, S(3), and the other antisymmetric,
S(1 + 1 4 1). The purely rotational energy level diagram
might perhaps be better represented by the left-hand series alone,
were it not for the fact that the two superposed ground vibra-

TABLE 8
Symmetry character and a priori probabilities of normal vibrations of NHs type
molecule
»
NORMAL VIBRATION ?
8 (3) S§@e+1 S(+1+41)
v(w) 2m 1 0 6
2m + 1 0 0 1
5(x) any 1 0 1
v(o) 0 1 0 0
1 0 2 0
2 1 2 0
3 1 2 1
2m 1 2m 0
2m 4+ 1 1 2m 1
8(o) Same as for »(o)

tional levels were indistinguishable, except for a slight resolution
which Barker (47, 54) believes'? to be manifested as a duplicity in
the 10.7x band (6(w)). The symmetry character of the different
vibrational levels and their a prior: probabilities are summarized
in table 8. The resultant character and a priori probability
of the final vibrational state is the product of the corresponding
quantities for all the different types of vibration. The number of
S(3) states obtained on multiplying two S(2 + 1) types is one-
fourth of the product; likewise, the number of S(1 + 1 + 1).

12 Confirmation of this is given by Dennison and Hardy (55).
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The remaining half are S(2 + 1). These rules have been already
enumerated in Part I.

* Two important articles on NH;, contributed during the present
year, have been by Dennison and Hardy (55) and by Lueg and
Hedfeld (56).

C.H,.—Acetylene has a linear structure (57, 15a). Figure 8
illustrates the structure of its infra-red bands. Three bands at
N 7887, 7956, and 8622 have been reported by Hedfeld and
Mecke (58). The band at » 7887 A. was analyzed by them and
by Childs and Mecke (59). It isa 1=« T transition and gives a
ground state moment of inertia

17 = 23.509 X 107 g.em.?

If one assumes the C—H distances to be the same as in CH,, the
internuclear distances may be calculated and are

rog = (1.08) &

Te_g = 119 A

(The C—C distances in diamond and in the Swan (C;) bands are
respectively 1.54 and 1.31 A.) The band lines show an alternat-
ing intensity of ratio odd J: even J = 3, which is to be explained
as due to the nuclear moments, g = % and i = 0. An ultra-
violet band at 2400 A. has been partially analyzed by Kisti-
akowsky (60). It gives a moment of inertia, for the excited
state of

I' =256 X 1074 g.cm.?

Herzberg (61) has found two band systems of A < 2070 A.
System A is equivalent to the 32 8.18 v. — 2 0.0 v. bands of
nitrogen. The excited state manifests the vibrational fre-
quencies 1365 and 865 em.~*. The second system (at \ 1540) is
analogous to the Lyman, Birge, Hopfield bands of nitrogen at
1450 A. (\118.5v. —=0.0v.). It exhibits a vibrational frequency
of 1710 em. . v

The normal vibrations have been given in Part I, figure 4.
Their values, as derived by Mecke (12¢), are given in table 9.
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Olson and Kramers (62) took exception to Mecke’s original
assignment (15a) of the deformation oscillations, calculating
them to have a ratio of 5(a):6(s) = 0.816 instead of Mecke’s
original, 1.88. The ratio now agrees, its value being 0.825,

TABLE 9

Spectrum analysis of acetylene and ethylene
Mecke (12¢)

C:H: C:H:
13.71u | 729.27 | 5(a) 10.5u | 949.7 8(c, a), 8'(0, a)
7.53 1328.5 | 8(a) + &(s) 6.95 | 1443.9 5(m, a)
3.78 12643.2 | vi(s) — 8(a) 5.20 | 1889.7 &'(o, a) + 8'(o, 8)
3.75 | 2669.7 | v(a) — 8(s) 483 | 2047.0 5(c, a) + 8(o, &)
3.72 |2683.0 [? 3.35 | 2088.2 v(m, a)
3.70 | 2702.2 | 6(a) + vu(s) 3.22 | 3107.4 v(o, a)
3.05 | 3276.85 | »(a) 2.38 | 4207.9 2 8(r, a) + 8(r, s)
2.56 | 3897.9 | »(a) + 8(s) 2.31 | 4324.3 v(w, a) + 8(=, 8)
2.44 4002.0 | vi(s) + 8(a) 2.22 | 4515.5 26(m, a) + valm, s)
2.14 4690 vi(s) + 8(a) + 6(s) | 2.10 | 4729.0 v(e, @) + va(m, s)
1.9 5250 v(a) + v2(s) 0.872 (11465.0 4y
1.54 | 6500 v(a) + vi(s)
1.04 | 9610 3 v(a) Ra | 1342 (20)| &(m, 8)
1.18 | 8450 (?)| »(a) + »1(s) + »wa(s) | Ra | 1623 (15)| wa(m, 8)
0.862 |11593 3 v(a) + »2(s8) Ra | 2880 (3) | 28(m a)
0.789 112675.59 | 4 »(a) Ra | 3019 (20)| »(m, &)
Ra | 3240 (2) | »(s, 8)
Ra 1975 vo(s) Ra |3272 (1) | ?
Ra 3370 v1(s)
Molecular constants of acetylene
vo(s) 1975 5(s) 600
vi(s) 3370 5(a) 729
v(a) 3277 —
vcu  (3200) voe 2100
rcg 1.08 rcc 1.19-10°%
kca 20 Volt kce 69 Volt

with the newer assignment. The deformation vibrations are
double. Raman lines at A5 = 1974 and 3372 have been found
by Bhagavantam (63). These agree with Mecke’s inactive
frequencies, »,(s) =1975 and »,(s) = 3365.
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For a discussion of the symmetry relations, the reader is referred
to Dennison (10).

* A recent article of interest in addition to that of Mecke (12¢)
is one by Hedfeld and Lueg (64) who investigated the spectrum
with high dispersion (2.6 A. per mm.) in the region from 11000 to
5000 A. by means of the new sensitized photographic technique
in the near infra-red. They determine the moment of inertia
to be

I" = 23.51 X 107¢ g.cm.?
I' = 23.82

* Lochte-Holtgreven and Eastwood (65) report the discovery
of two more bands at 10164.8 and 10369.8 A. The latter band is
interpreted as the third harmonie, 3»(a). It possesses strongly
developed P and R branches and a weak line near the origin.
The former band is assigned as »(a) + 2»(s). Other bands as-
signed are

nls) + 3»(a) 8622 A.
n(s) + 3v(a) 7887 A,

This assignment agrees with Dennison’s (10) theory that only odd
integral multiples of the optically active frequencies can be seen
in the spectrum and that the combinations must involve at least
one of these frequencies.

H,CO (Cf. table 10 and figure 4).—A third type of quadra-
tomic molecule is represented by formaldehyde. This absorbs
infra-red radiation at the regions 4.7, 3.38, 1.8, 1.4, 2.3 and 1.254
(given in order of decreasing intensities) (66). The second of
these bands has been further resolved into three (67), 3.61, 3.52,
and 3.37, the first and third of which show P, @, and R branches
with a spacing of 3.5 cm.~1. The second gives one branch only,
with groups of closely spaced lines, the groups being 14.0 cm. !
apart. The band at 4.7 is similar to those at 3.61 and 3.374.
From the above spacings, these authors have derived the following
moments of inertia.
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A =27 X 107 g.cm.?
B 18.0 X 10—
C = 210 X 10~
Formaldehyde absorbs ultra-violet light at about » 3570 A.
(corresponding to the Schumann-Runge 32 6.09 v. — 32 0.0 v.

oxygen bands) and shows the phenomenon of predissociation (68)
at » 2750. Herzberg (61) has shown that the important vibra-

i

TABLE 10
Constants of quadratomic molecules of Y, XZ type
H:CO COCl: 80CL)
A4 X 109 g.em.? 2.951 (61.2)
B 21.63 (61.2)
C 24 .58 (61.2)
»(x, ) o 571@ 488
»(o) 2045¢ 444 451
v(m, a) 1770 1810 12297
5(r) 1460 3437
8(a) 1040 3017 282?
8(c) 920 192?
Raman 920 567 cm.!
e¢m, ™! 1040 444 ®

1460, ® 290

1770

2945

1285(e

(2) Henri and Howell: Proc. Roy. Soc. London 1284, 190, 192 (1930).
(b) Mecke (69).

(c) Hibben: J. Am. Chem. Soc. 63, 2418 (1931).

(d) Mecke (12d).

tional frequencies of the excited state are 1187 and 830 cm.-!
(the latter instead of 360 cm.-! of Henri and Schou). The
frequency shown in the ground state®® is 1300 cm.-!, and cor-
responds to a transverse vibration. Herzberg believes the 1187
em. ! frequency in the excited state to be a valency vibration
of H;C—O analogous to the oxygen vibration (708 cm.-!) in

13 Doubt is cast on the correctness of this assignment by Herzberg and Franz
(72).
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the upper *2 Schumann-Runge band state of O,. The lower
frequency, 830 cm. ~!, is probably that of the transverse oscilla-
tion of the hydrogen atoms.

At X 1650, a very strong discontinuous absorption is found (55),
three bands of which are separated by the distance 1180 c¢m.-1.

As pointed out by Mecke (69) in the discussion of the workof
Herzberg, there are six oscillatiops for a non-linear quadratomic
molecule such as HCHO. He takes for five frequencies of the
ground level, the Raman frequencies 920, 1040, 1460, 1770, and
2045 cm. -t The sixth missing one is supposed to be 3000cem. !
(which is a general characteristic of a C—H bond vibration).

The symmetry characteristics of the eigenfunctions of H,CO
have not been worked out, to the author’s knowledge. The
states should fall, however, into two classes, H nuclear singlet and
triplet, since the hydrogen nucleus has a spin of %, and the carbon
and oxygen each have zero spin. It should be possible to observe
alternating intensities in the ratio of 1:3 in certain of the band
lines. Two other types of symmetry should also exist, namely,
those with respect to reflection about the line joining the carbon
and oxygen nuclei and those with respect to reflection by the
plane perpendicular to the line joining the hydrogen nuclei and
passing through the carbon and oxygen nuclei.

* Four papers on formaldehyde have appeared during the
present year since the original submission of this review. Patty
and Nielsen (70) give the detailed work which was summarized
in their Physical Society Abstracts (66 and 67). The average
spacing of the lines in the P and R branches in the 4.8u region is
now given as 3.1 cm. ! (instead of 3.5).

* Dieke and Kistiakowsky (71) have studied the ultra-violet
absorption bands, 3520, 3430, 3390, of formaldehyde in the third
order of a forty foot grating. The molecule proves to be almost a
symmetrical top, deviations occurring only for r < 4 and result-
ing in a shift and doubling of the lines which increases with
increasing J. Intensity alternations occur, verifying the predic-
tion made above. The three moments of inertia for the ground
level are
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Ground State Ezxcited State
v =20 v =1
A= 24.58 27.98 28.13 X 1079 g.cm.?
B = 21.63 24 .81 24.94
C = 2.951 3.176 3.190
This gives
rg_gp = 1.88 &

o = 119 Assuming # HCH is
ro—g = 1.16 tetrahedral

The type and intensities of bands occurring are as follows:

pP and rR both strong; they are the only branches for high r.
pQ and rQ strong for small values of r.

pR and rP weak and present only for small values of .

In the above, the small letters refer to changes in + in the sym-
metrical top formula for energy levels, equation 7 of Part I, while
the large letters refer to changes in J.

A =J —J"=—10 41 for
P Q R branches respectively

* Herzberg and Franz (72) have investigated the ultra-violet
spectrum of formaldehyde by exciting it to fluorescence by a
carbon arc. They obtain a frequency formula

5 = 26067 — (1723 o] — 100}?)
— 1023 v] — 370] vy (62.5)

The frequency 1713 corresponds to the Raman (liquid state)
1768, while 1023 corresponds to Raman 1039, which Mecke ex-
plains as being the 8(¢) vibration. But Teller has derived a rule
for electron transitions in polyatomic molecules according to
which practically only the parallel (#) vibrations may change their
quantum numbers, when the symmetry of the molecule in the
upper and lower states is the same. These authors therefore
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conclude that both frequencies appearing in fluorescence must be =
vibrations. The 1023 oscillation must be 8(7) and involves the
vibration of the hydrogen atoms against one another. This
frequency is remarkably small. The decrease in the C—O
vibration, »(r, a), from 1725 cm. ! to 1180 on excitation indicates
an extensive bond loosening and this is used to explain, by applica-
tion of the Franck-Condon principle, the large number of bands
which arise in this progression. This is in harmony with the
hypothesis that the excitation occurs in the C—O bond, for all
compounds which contain this bond have a discrete absorption
in this same region (A 3500). On the other hand, excitation
affects the C—H bond little. The transversal vibration of the
hydrogen atoms decreases from 1040 in the ground state to only
830 in excited state and accordingly only one band of this series
occurs with appreciable intensity.

PENTATOMIC MOLECULES

CH, (Cf. table 13).—The infra-red bands of methane have been
measured by Cooley (73) and are given in figure 9. The third
overtone of the 3.3x band has been found at 8900 A. by Dennison
and Ingram (74). The lines of the 7.7 and 3.31x bands may be
represented by the formulas

V77, = 13204 + 5.409 m — 0.0377 m? (54)

i;3.31M = 30193 + 9771 m — 0.0351 me (55)

These spacings together with that of the 3.5 band (9.77, 5.41, and
15.3 em. 1) give three values for the moment of inertia (I = 5.66,
10.2, and 3.61 X 10-%), and for a long time it was in doubt which
was correct. The Raman investigations of Dickinson, Dillon,
and Rasetti (45) have given us the rotational energy levels

Ey/hc = 5.363 (m + 1/2)2 (56)
Ei/he = 3022.1 + 5.313 (m + 1/2)% (57)
and the corresponding moment of inertia is

Iy = 517 X 1074 g.cm.?
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This value is the best one obtainable up to the present. It is
exactly confirmed by the measurements of Moorhead (75) on the
2.20x band. He got a different spacing of 10.4 cm.—! in a 1.664
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F16. 9. INFRA-RED SPECTRA OF METHANE
(From Cooley (73))

band corresponding to 5.32 X 10-% g.cm.2. The different infra-
red values deviate from the true one on account of an interaction
of vibration and rotational energies', and not because of a py-
ramidal form of the CH; molecule.

14 In a private communication, Professor Hund informs me that this has been
demonstrated by Teller and Tisza (76).
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The vibrational bands are given in table 11, together with
an assignment of fundamentals, altered from Dennison’s (77) in
order to agree with the Raman data (45). In methane there are
nine normal vibrations. The first, v(s), is a valence oscillation of
the hydrogen atoms moving with their center of gravity fixed
and coinciding with the carbon center. This vibration is there-
fore inactive and cannot show up as an infra-red band, except in
combination. It is the only single frequency. The second
vibration, é(a), is double, and is a deformation vibration in which

TABLE 11
Vibrational frequencies of CH,

OBSI:RVED INTENSITY COMBINATION CALCUZATED @T
1304 50 5(s) 1867
(1520) 5(a) 1520 - 2177
2600 0.07 24(s) 2608

2824 0.5 3(a) + 5(s) (2824)

2914.8 20 Ra* v(s) 4174
3014 20 4316
3022.1 5d Ra v(a)

3071.5 2 Ra

4122 0.1 5(a) + 25(s) 4128

4217 1 v(s) + 8(s) 4218.8

4315 0.7 v(a) + 8(s) 4318

4543 0.2 8(a) + »(a) 4534

* Ra = Raman frequency.
t © = ‘“‘characteristic’’ temperature = hev/k.

the center of gravity of the hydrogen atoms still remains fixed.
It is therefore also inactive. The remaining six vibrations are
distributed in two fundamental levels (v(a) and &§(s)) of triple
degeneracy and are active. They are the ones to be found with
greatest intensity in the infra-red spectrum. The theoretical
equations for these frequencies, as given by Dennison (77), are as
follows:

2 (4o + 1)* (58)

1/2

v(s) = (1/27) (ko/m)

8(a) = (1/2) (ko/m)'? (@ — g/4) (59)



424 DONALD STATLER VILLARS

ZEZ))} = (1/2m) (a/m)"” |:a +5/9 — 136/36 = {(« + 5/9 — 135/36)? —
1/2
8 a/9 + 16a8/9 + 108/9 + 48%/9} 1/2] Eg(l);
where

a = kl/kz (62)
8 =k/k ©3)
k= (*'W1/d¢%)e ()
k= (Q*W,/0r%), (65)
k= — (8/3a)Y? (2W»/2r)s (66)

8 4
W = ? Wilg) + Z Wa(r,) = potential energy (67)

1

the ¢’s are the mutual displacements of the hydrogen particles
relative to one another, and the 7’s the displacements of each of the
hydrogens relative to the carbon. The forces, k., between the
carbon and hydrogen are presumably much greater than those
between the hydrogens, k;, and « is therefore less than unity.
The constant g should be close to zero and with these simplifica-
tions, one may derive the order of decreasing frequencies as
v(8), v(a), 6(a), and &(s) if &« = 1 or »(a), »(s), 6(a), and &(s) if
e = 0. In this respect, our modified assignment of fundamental
frequencies is therefore concordant with theory, as well as Den-
nison’s, and is in better agreement with the Raman data. The
three frequencies associated with »(a) by the bracket in table 11
may be due to a slight resolution of the triple degeneracy or to an
interaction between a fundamental (2914.8) and an overtone
(2 X 1520) as in CO, (42).

If these frequencies are the correct fundamentals, the specific
heat of methane at higher temperatures is to be represented by
the equation:

C/R =3 + o(4174/T) + 2 o(2177/T) + 3 £(4316/T) + 3 £(1867/T)  (68)

where ¢ is defined by equation 46.
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The symmetry characteristics of the rotations and vibrations
of methane have been worked out by Elert (8). The a prior:
probabilities of the rotational states are given in table 3 of Part I.
The a priori probabilities of the vibrational states are given in
table 12. The »(s) state is double, one being symmetric S(4)
and the other antisymmetric, S(1 + 1 + 1 + 1), (in the nuclei).
The statistical weight of any é(a) state is v,y + 1, just as it is
for the doubly degenerate vibrations of ammonia (and in fact,
because it is doubly degenerate). Higher order perturbations
may resolve these into vs, /2 + 1 separate levels, the S(2 + 2)

TABLE 12
Symmetry character and a priori probabilities of normal vibrations of CHy type
molecule
P
NORMAL
VIBRATION v S %) S34+1) S2+2) S {1+
14 14
1)
vy = p(s) any 1 0 0 1
ve = 5(a) 0 1 0 0 0
1 0 0 2 0
2m 1 0 2m 0
2m + 1 1 0 2m 1
v; = »(a) | = 0 (mod 6) v/6 + 1 3v/2 v/3
=1 (v — 1)/6 (Bv + 3)/2 (v — 1)/3
=2 (v/2 - 1)/3 3v/2 (v —2)/3+2
=3 (»~3)/64+1]| @+ 3)/2 (v — 3)/8
=4 v/6 + 1/3 3v/2 v/3 + 2/3
=35 (v — 5)/6 Bv 4+ 3)/21 (v ~5)/3+2
vy = 8(8) Same character as for vs

ones (v;.) In number) existing still as v,,,/2 unresolved pairs.
The triple »(a) and é(s) levels have a total a@ prior: probability of
2v,, + 1 and are distributed as given in the table. The nomen-
clature = 1 (mod 6) indicates numbers which are divisible by
six with 1 left over. The symmetry character distribution of the
rotattonal states is the same as that of the v(a), §(s) vibrational
states. This latter distribution, combined with the nuclear
variety weights allowed by the Fermi statistics, is given in
table 3. Constants for various tetrahedral pentatomic molecules
are given in table 13.
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* In an article of which the author was unaware at the time of
submission of this review, Bhagavantam (78) had already made
the alteration in fundamental frequency assignment of »(s)
proposed independently above. Polarization evidence in support
of this has been cited in the present year (79). The Raman shift,
2918, is nearly completely polarized, whereas 3019 is nearly
unpolarized. This is in complete analogy with the third and
fourth fundamentals of tetrachloride spectra. In the Raman
spectra, 3019 appears accompanied by rotational vibrational

TABLE 13
Constants of pentatomic molecules of XY, type
gl 2 || 2 |28 |&
< =z z £l 2 |8|8|¢8
5 |8 & |&| 8 |&/& &
I" X 1040 g, em.2, ..., .......e 5.17
XY A 1.08
F'6 R 1.77 3.1
»(s) em.~! (Dennison, »1)........ 2014.8 | 265 249 220| 454 422| 386] 367
é(a) (€7 P 1520 125 90 64| 214 148| 119; 104
»(a) ws)........ 3014 667| 487 279(790,760| 608| 491| 401
3(s) () R 1304 183 137 88| 311 220, 139 136
Raman 2914.8 89.6
em. 7l 3022.1 136.9
3071.5 247.3
488.2
others

(a) Trumpy: Z. Physik 68, 675 (1931).

(b) Trumpy: Z. Physik 66, 790 (1930).

(¢) Debye, Bewilogua, and Ehrhardt: Physik. Z. 30, 84 (1929).
(d) Dadieu and Kohlrausch: Monatsh. 67, 488 (1931).

components, while the more intense 2918 does not. Further
evidence for the correctness of this assignment is contributed
by the Kettering, Andrews, and Shutts model (13). This
indicates (80) a much lower vibrational frequency »(s) for
methane than was given by Dennison’s assignment (77).

* Although the empirical explanation of the infra-red spectrum
of methane is as satisfactory with the new fundamental frequency
assignment as with the Dennison assignment, a quantitative
calculation of Dennison’s three constants from three of the
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fundamentals does not lead to a satisfactory check with the
fourth. Thus, by suitable elimination of the constants in
equations 58 to 61, one gets for the second frequency (rough
slide rule estimate)

vi = 0.314 57 — 0.0642(7 + »)) = [— 0.044 »{ + 0.0879 »}(s; + +}) +
0.00412(s% + ») — 0.11 5} 4}11/2 (68.1)

By making the following postulates of the values of », »;, and
vy In the first three rows, the author calculated the value of »..
This is given in the fourth row and is compared with the empirical
frequency. ‘

n = »(s) 2915 2915 2015 3071
v = »(a) 3014 3071.5 3071 3014 > Postulated
v = 8(s) 1304 1304 3022.1 1304
n = 8a) 1960 1970 1686 2045 Calculated
1520 1520 1304] 1520 Observed
1520/

It is seen that the agreement is impossible.

**Biswas (87), citing the evidence by Tronstad (88) and others
for two different geometrical forms of NH;, argues for a similar
state of affairs in methane. The fundamental vibration of the
unsymmetrical tetrahedron, he places at 2914 (instead of Denni-
son’s 4217); that of the symmetrical tetrahedron, at 3071 cm.-!
The difference between the two, 157 ecm. !, represents the activa-
tion energy for changes from one form to the other. Such a
dynamic isomerism has already been worked out by Morse (89).
Such an assignment presents no advantages, as may be seen from
the last three columns of the preceding unnumbered table. (The
use of the frequency 3071 was inspired by his suggestion). Ow-
ing to the extreme stability of the methane molecule, it is exceed-
ingly doubtful that an unsymmetrical isomeric form of it exists
at an energy within only 157 cm.~? of its symmetrical form.

* For this reason, the author spent considerable time this
spring in an unsuccessful attempt to modify Dennison’s theory
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of the methane vibrations. It was recognized that it would be
desirable to include bending forces in the derivation of frequencies.
But from symmetry considerations, the conclusion was reached
that Dennison’s method of accounting by central forces between
the hydrogen atoms was fundamentally equivalent to accounting
for C—H bond bending forces since any displacement, df,
could be expressed as proportional to dr._, with a different
force constant. The discrepancy is therefore not to be explained
away as a failure to use bending forces. A possible, although
not very probable explanation, is that, owing to an especially
rapid convergence of vibration levels, the first observed frequency
differs so greatly from the frequency of infinitesimal vibration,
ve, a8 to throw the calculations all off. This might be true of
one of the § vibrations.

* Urey and Bradley (81) have calculated the fundamental
vibrations of tetrahedral pentatomic molecules on the basis of
harmonic restoring forces along the directions of the chemical
bonds and perpendicular to them. They obtained unsatisfactory
agreement between calculated and observed values. They then
introduced a repulsive potential energy term proportional to
r7* where r; is the distance between corner atoms, in the funda-
mental frequency equations and were thereby enabled to get
very good agreement between calculated and observed values in
the case of CCly, SiCl,, SnCly, CBr;, and SnBr, but not so good in
that of TiCl,. The value of » may range from 5 to 9 without much
effect on the calculated frequencies. Their frequencies are

w o= (1/20) {lk + (n + 1) val/m}"? (68.2)

v = (1/2) {lks + (n + 2) vs/4l/m}"* (68.3)

v3q = (1/27) {[(?m + 2) ve/2 + 2k + El/6m - (2vs + 1 + 2k2) /60 =

1/2
1/ [(3”;“ 2 s+ 2y + ) /Bm — (2ys + k1+2k2>/6#]2 + @m/9) [(ys + o — kl)/mP} (68.4)

where

k= @V /o, vs = 4nky/%" T E 4 = mM/(4m + M)
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and

r,+ 32 — A (68.5)
1 oy

In a private communication, Professor Urey has informed the
writer that they applied their results to methane, but without
success. He suggests that the difficulty may be due to the faet
that in methane the protons are deeply embedded in the electron
shell of carbon, and that this causes the anomalous behavior.

C.H.
3.3,

Fia. 10a. 3.3u Banp or C.H,
(From Barker and Meyer (47))

* Mecke (12¢) avoids these difficulties by including in his
potential energy equations four constants

4 6 6 6
P = ? kI(AT/T)Z + % ? bik(A¢)3k + é % eik(Al/l)?:k + % 21: ik AX, (686)

From four empirical fundamental frequencies, it is thus possible
to determine the four constants and have no equations left over
to worry one about the possibility of a check. In this equation,
k; represents the harmonic restoring force constant of a C—H
vibration, Ag the change in a H—C—H angle, with b, the corre-
sponding restoring force constant; Al the change in the length
of a dipole caused by two neighboring valences, and AX the
change in the dipole orientation. In other words, the stability of
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methane is expressed in terms of attractive forces parallel and
perpendicular to the C—H valence bonds, and of forces which
tend to stretch and turn dipoles set up by the bonds themselves.
After all, this is perhaps the most satisfactory solution of a bad
problem.

P 1 " €

llﬁlﬁ 4

s2fl © |25 456

Ll ||||'|l.lll

N |71.Is[ L

14000 15000

‘l

i | “ l HM[ R

F1a. 10b. 0.872x Banp or CH,

A. Photometer curve of a composite picture made from four negatives. B.
The principal maxima plotted on a frequency scale. C. Predicted spectrum for a
molecule with constant moments of inertia in the ratio 1.14:1:0.14, when the
change of electric moment due to vibration is along the intermediate axis. (Cal-
culated by H. H. Nielsen). (From Badger and Binder (82)).

HEXATOMIC MOLECULES

C.,Hs;—As illustration of the hexatomic molecule we pick
ethylene, principally because its simplicity has made it vulnerable
to analysis. Figure 10 reproduces its infra-red bands at 3.3 and
0.87u. The rotational analysis of the latter has given as tentative
values for the moments of inertia (82):

A 3.8 X 107% g,cm.?

B =27 X 10

=31 X10%
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Assuming the same bond angles « HCH as in methane (109°28’)
the internuclear distances are

ro—g = 132 &.

rog = 0.92 &,

The Raman shifts produced by ethylene have been measured
by Dickinson, Dillon, and Rasetti (49) and are as follows (in-

KX Xy

Y, (%3)

)

y(ns) dins

vixa) dima)

S

v(s) J(63)

v(6,d) d6.a)

)94
LXK

Fia. 11. FunpaMENTAL NORMAL VieraTiONS oF C.H,
Twelfth vibration is not indicated but is a torsion. (From Mecke (12¢)).

tensities given in parentheses): 1342.4 (20),1623.3 (15), 2880.1 (3),
3019.3 (20), 3240.3 (2), and 3272.3 (1) cm.- %

As the number of atoms in a molecule increases, its types of
osc’llations become more and more complicated. The normal
vibrations of the ethylene molecule have been analyzed by
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Mecke (12¢) on the assumption that the restoring force constant
for a deformation oscillation is negligible, compared with that for a
valence oscillation. He gets the following results. There are
twelve normal vibrations,—five valence frequencies and four
deformation (two single and two double). They are depicted in
figure 11 (Mecke’s figure 4). The twelfth vibration, §(d) (not
pictured), is a deformation torsion around the double bond (d

TABLE 14
« Vibrations of the hydrocarbons C.H,
Mecke (12¢)

C:H, C.H, C:Hs C.Cls C:Cls
v(s) 1975 1623 990 1570 860
v(s) 3370 3020 2950 446 432
v(a) 3277 2088 2900 (780) ?
5(s) —_ 1342 1460 235 216
3(a) — 1444 ~ 1450 (385) ?
Yoo 2100 1620 990 1420 (850)
Yoy 3200 3000 — ~ 870 ?
kco 69 Volt 52 Volt 26 Volt ~ 40 Volt | (20 Volt)

stands for “Dreh’). Some of the approximate formulas for the
deformation oscillations are as follows (15a):

5(c,8) = (1/2r) [2d/(C + 2H)]"

]

8(o,0) = (1/2r) [d(1/2H + 1/C)/2]?

1/2

I

§(r,a) (1/27) (d/2H)

8(r,s) = (1/2r) [(hg=g + d/2) 2/CI

The latter vibration is that of the C=C bond and the absence
of the mass and binding constants of the outer atoms is very
striking theoretical justification of the frequently observed faect
that definite frequencies reappear with unchanged values in all the
derivatives of a definite molecule. Table 9 gives Mecke’s (12¢)
analysis of the spectrum of C,H,, making use of thefundamental
frequencies which are given, together with those of other C.,Y,
molecules, in table 14.
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**Mulliken (90) discusses the electronic structure of ethylene
and concludes that its energy is considerably lower if the two
CH, radicals composing it are arranged symmetrically in one
plane than if their planes make an angle of 90°. For certain
predicted excited states of C.H, (his designations, Ty, Ty —
ground state, !'T;,) and its derivatives, which are probably the
upper states of ultra-violet absorption bands of these compounds,
he shows that the energy should be higher for the plane form
than for the perpendicular form. Suitable absorption of ultra-
violet light therefore should enable the plane form to rotate spon-
taneously into the perpendicular form (90°) and on to the other
plane form (180°). In this way we have given us a mechanism
for the photochemical cis-trans transformation.

CONCLUSION

In conclusion, it is well to reiterate that work in this field is
constantly being ground out at such a rapid rate that it is prac-
tically impossible to take cognizance of all of it. In particular,
we might refer the reader to excellent theoretical developments
which are being made in the field of the aromatic and of the higher
aliphatic organic compounds and which we have entirely neglected
to discuss (83, 84). Finally, the most important future advances
in chemistry will come through the application of the knowledge
which is to be derived from the analysis of polyatomic molecular
spectra.
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