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The kinetic theory of electrolytes aims to account quantita- 
tively for the thermodynamic and other properties of electrolytic 
solutions from reasonable assumptions about the forces between 
the ions. The approximate theory developed by Debye and 
Hiickel for the effects of Coulomb forces is generally recognized 
as sound, and the consequent theoretical limiting laws for low 
concentrations of ions have been amply verified by experiments. 
For the extension of this theory to concentrated solutions, more 
accurate computations of the Coulomb forces are needed; in addi- 
tion, it becomes necessary to make more specific assumptions 
about the non-Coulomb forces, which are important for small dis- 
tances between the ions. This theory of concentrated electro- 
lytes has met with many difficulties; in part, conflicting results 
have been deduced. 

GEWERAL STATISTICAL METHODS 

Before we examine the different contributions to the field, we 
shall review briefly some of the common methods for computing 
thermodynamic functions from molecular mechanical models, 
and show the connection with the fundamental principles of 
statistical mechanics. 

The “adiabate principle,” which will be our main tool, takes its 
simplest form for a thermally isolated system, 
lowing relation between the energy E and 
work” 6W: 

namely, the fol- 
the “reversible 

6E = 6W = - g 6 a  = dE/da  6a 
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where 6a denotes the change of any parameter a (e.g., volume, 
molecular size, electric charge, etc.), and the average of the corre- 
sponding force K is taken over all phases of the molecular motion. 

If a system is not thermally isolated but, instead, is kept at a 
constant temperature T ,  we must replace E by the “free energy” 

F = E - T S  

where S is the entropy, now variable, and the relation given by 
1 is replaced by 

6F = 6W = - 3 6 u  = d m 6 a  (2) 

For averages taken at a given temperature T ,  it is legitimate to 
employ the “canonical ensemble” of Gibbs. The “phase-space” 

dn = dqi dq2 . . . dqf dpi dpz . . . dpf 

(q  = coordinate, p = impulse) is occupied with the local density 
exp ( ( F  - d / k T )  (3) 

where the energy E is now a function of the coordinates and 
impulses : 

e = e (q,, . . . qf; Pl, . . . Pf) 

This function determines the mechanical properties of the system. 
The free energy F itself is determined directly by the condition 

(4) 

As a rule, certain conventional factors involving numbers of 
particles, Planck’s constant, etc., are added to equation 4; these 
will be constant throughout our considerations and so need not 
concern us. 

For a given temperature T ,  we want to know how F depends on 
parameters al, a2, . . . . ,which enter into the function 

According to equation 4, for constant T ,  

or 

exp ( ( F  - r) /kT) dn = 1 

E = e(q1, . . . q,; p1, . . . pf; Ul, u4, . . . I  

[6F - 6 4  exp ( ( F  - s ) / k T )  do = 0 
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which amounts to a verification of the formula 4 for F in terms 
of the canonical distribution (“phase integral”). However, 
besides verifying the statistical representation of macroscopic 
reversible work, our derivation also shows that, if the general 
premises of the statistical theory are correct, similar reasoning 
may be applied with equal confidence to the purely fictitious 
operation of changing any molecular parameter. 

The canonical distribution is a generalization of the Maxwell- 
Boltzmann distribution law to the entire phase-space. We shall 
show next how the Maxwell-Boltzmann formula can be general- 
ized, for a reduced number of degrees of freedom, to the case of 
fluctuating forces. That is, we consider a subspace, for example 
dq,, of the entire phase-space 

(we may of course equally well take out several factors: dq,, 
dpz, . . . . of dQ), and we want to compute the probability for 
finding q1 in the range ql’ < q1 < ql’ + A ql. This probability 
we denote by 

dQ = dq, dn’ 

f ( q ~ ’ )  &I e x d -  w(q t ’ ) /kT)  &I 

and according to  equation 3, 
f(d = .f exp ( ( F  - t ) / k T )  dn’ = exp (- w(qJ/lcT) ( 6 )  

where now 
.f exp ( ( F  + d q J  - e ( q ,  P, a) )/kT) dn’ = 1 (7) 

In these integrations, q1 is kept constant, otherwise every for- 
mula is analogous to the case of the entire phase integral. In 
effect, we are now treating q1 like a parameter (a) ;  the advantage 
of this treatment is that the analog of equation 5 still holds. 
As before 

(8) 

for any parameter a, while as regards q1 itself, it does not enter 
into F ,  so that 

bwlbqi = b ( F  + d q J  = -1’ (9) 

b 
- ( F  + W(q1)  ) = Z&‘ 
bo 
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Here we have shown that the potential w(pl), which (for the case 
of fluctuating forces) replaces the energy in the Maxwell-Boltz- 
mann distribution, is the potentid of the average force. This result 
was used by Einstein and Smoluchowski in the theory of 
fluctuations. 

At times it may be convenient to consider some of the parame- 
ters a as variables in the computation of w(ql). The procedure 
is straightforward: Since F depends only on a, we have 

w(qi”,a’) - w(qi’,a’) = IF(a0 + ~(qi“ ,a’ )  I - [F(a’) + ~(91‘~~’) I = 

THE COMPUTATION OF THE COULOMB ENERGY 

By the methods outlined in the preceding section, it is funda- 
mentally possible to calculate the deviations from the laws of 
ideal solutions whenever adequate information about the forces 
between the solute molecules is available. Certain rather trivial 
distinctions between the “free energies” at constant pressure 
viz.  volume etc. should be observed; the complications in ques- 
tion, which recur everywhere in the kinetic theory of real solu- 
tions, are more tedious than important, and we shall content 
ourselves here with a reference to Bjerrum’s discussion (1) of the 
corresponding thermodynamic distinctions. 

The electrostatic contribution to the free energy of an electro- 
lyte can be computed if the average potential #*(v)  due to other 
ions at the point of an ion of charge 71 is known (as a function of 
9 and of the composition of the solution), because then, on the 
basis of the preceding general considerations, 

where the sum is extended over all the ions present. The func- 
tion #*(v)  depends on the instantaneous composition of the 
solution, which changes during the charging process, and on the 
momentary charge 77 of a selected ion. The ions may be charged 
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simultaneously or one at a time, in arbitrary sequence; the result 
should be independent of any such choice of the charging process, 
provided that the functions #*(q)  are correct, or at least con- 
sistent. It was pointed out by Guntelberg (2) that the work of 
charging one ion in a given solution yields directly the electro- 
static contribution to the thermodynamic potential (partial free 
energy) of that ion: 

Pei 

The derivation from equation 11 is obvious. Only one precau- 
tion must be observed in using either equation 11 or 12: The 
electrostatic free energy Fel may not represent the entire devia- 
tion from the laws of ideal solutions, because non-Coulomb forces 
may also cause a contribution to F (and to pi). 

The main problem in the theory of strong electrolytes is the 
calculation of $*(q). Debye and Huckel (3) worked out the 
first successful method of attack, and up to the present no funda- 
mental improvement has been introduced. They assume that 
the average concentration nii(r) of ions of the species i at a dis- 
tance r from a given ion of the kind j is related to the mean poten- 
tial fii(r) at this distance from the j ion by Boltzmann’s equation 

nJr)  = ni exp (- e,$,/kT) (13) 

and with the aid of Poisson’s equation 

div grad $ j  = - 2 niiei 
D i  

obtain an equation for Gi alone 

div grad $j = - 4E niei exp(- ei$j/kT) 
D i  

This “Poisson-Boltzmann” equation was not solved completely 
by Debye and Huckel; they were content with the approximation 

exp (- ei$,/kT) - 1 - ( e , $ j / k T )  (16) 
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. 

which leads to the approximate equation 
div grad $i = ~ 2 $ j  

and its solution 
e; exp (K(a - T ) )  

‘j e D ( 1 +  Ka) T 

(17) 

where a denotes the least distance of approach of (any) two ions. 
The potential of interaction becomes proportional to the charge : 

$*(SI = - K S / D ( ~  + ua) (19) 

The approximation of formula 16 is poor for small distances T 

(because $ - l / ~ ) ,  and the efforts of later workers have largely 
been directed towards the elimination of this error. 

Partly for this purpose, and partly in order to consider strong 
and weak electrolytes from a common point of view, Bjerrum 
(4) improved formula 16 by separate consideration of the cases 
where two ions (of opposite charges) come closer than a certain 
distance q: 

q = - e2e,/2DkT > a > 0 

Such couples of ions Bjerrum treats as undissociated molecules, 
vix., particles of charge (ei + eJ, and he corrects the concentra- 
tions nl, n2, . . , . of “free” ions accordingly. For distances 
T > q, he retains the approximate equation 17, with k given by 
the corrected ion concentrations. In terms of Gibbs’ phase 
integral (formula 4), one may say that Bjerrum applies different 
approximations to different regions of the space in evaluating 
the integral. Bjerrum was able to represent a more extensive 
range of experimental data than was possible with equation 19 
as used by Debye and Huckel. For example, in order to describe 
the behavior of certain (relatively weak) electrolytes by equation 
19, impossible values of a ( < O )  are required; but the adaptation 
of Bjerrum’s theory leads to reasonable ionic diameters a. 

H. Muller (7, 8) and Gronwall, La iMer, and Sandved (9) under- 
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took the task that neither Debye and Huckel nor Bjerrum had 
attempted, of solving the complete Poisson-Boltzmann equation, 
after Gronwall (5) and La Mer and Mason (6) had made some 
advances in this direction. Recently, the computations for asym- 
metrical electrolytes have been completed by La Mer, Gronwall, 
and Greiff (10). Numerical integration or some method of suc- 
cessive approximation must be used; the preference is merely a 
matter of convenience. 

While all these computations are based on the same equation 
and each one is sound, nevertheless one point of controversy 
remains. H. Muller computed the thermodynamic functions 
from the potentials by the easiest method, that is the Guntelberg 
principle, equation 12. Gronwall, La Mer, and Sandved (9) pre- 
ferred the charging process used by Debye and Huckel, and 
pointed out that the Guntelberg method leads to somewhat dif- 
ferent results; thereupon Muller (8) accepted their criticism and 
estimated his own “error,” which turned out to be fairly small. 

In view of the general results derived in section I, we must 
take a different view of Muller’s “error,” namely that either 
charging process is legitimate, but the Poisson-Boltzmann equa- 
tion 15 is not entirely self-consistent. The requirement of con- 
sistency implied by equation 11 is that 

should be a total differential, which involves reciprocal relations 
of the type 

n1 W* (eJ/hez = n2 W* (ez)/ael (20) 

(The actual differential quotients and relations are complicated 
by the restriction Zniei = 0, but only in a trivial fashion.) 

The Poisson-Boltzmann equation 15 is not exact, because the 
underlying equation 13 is only an approximation. According 
to equations 6 and 9, we know that 

n8Lb-) = nL exp(- u<jc ( r ) / k T )  (21) 
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where wii(r) denotes the work expended (against the average 
force) in bringing two ions i a n d j  from infinity to the distance 
T .  Incidentally, we note that whenever a j ion is at the distance 
T from an ion of the kind i, then vice vema, whence 

njnji(r) = 12i?2i](T) 

and, as one might expect 
wji(r) = w’i j ( r )  (22) 

Equation 13, the fundamental assumption involved in the Pois- 
son-Boltzmann equation, is obtained from equation 21 above by 
the approximation 

W j i ( r 1  N ei$j(r) (23) 

applied to the “atmosphere” of the j ion in computing +j(~), while 
+i(~)  is computed from the assumption. 

wj i (T )  - ej$i(T) (24) 

except in very symmetrical cases. Therefore we have found here, 
deep in the foundations of the theory, a discrepancy that reminds 
one quite strikingly of the discrepancy between different charging 
processes, when the condition for consistency of the latter is 
expressed by equation 20. 

The approximate character of the Poisson-Boltzmann equa- 
tion was recognized by Fowler (11) and by myself (12) some time 
before the question about the Guntelberg principle was raised. 
While my own reasoning was substantially that outlined above, 
Fowler (11) followed a different line of attack, and derived certain 
corrections to equation 15, which he expressed by the fluctuations 
of the forces on the ions, but did not actually compute. It will 
be shown in the Appendix to this article, that Fowler’s “fluctua- 
tion-terms” are of the same order of magnitude as the maximum 
of the main terms in equation 15, but they are nearly cancelled 
(at least in some significant cases) by a supplementary term, 
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which he omitted through an oversight. Since I do not see any 
way to exploit Fowler’s method, I shall refer the reader to the 
Appendix for details. 

The formulas 23 and 24 would hold exactly1 if the mean dis- 
tribution of charge in the neighborhood of a pair of ions i and j, 
at a distance T from each other, were always the sum of the charges 
induced by the two ions separately; because then the average force 
acting on either ion in the given configuration would correspond 
to the average electric field a t  the distance T from the other,-the 
force from its own atmosphere vanishes due to symmetry. This 
could not be true unless 

$.,/el = $ d e 2  =i . . . (26) 

for all the ions in the solution, considering that both the formulas 
23 and 24 must be valid. For low concentrations, small charges, 
and large ionic diameters, equation 26 is indeed very nearly ful- 
filled; the approximate formula 18 conforms exactly to this condi- 
tion. However, as soon as the higher terms in the Poisson-Boltz- 
mann equation become important, we can no longer expect the 
ionic atmospheres to be additive, and then the Poisson-Boltzmann 
equation itself becomes unreliable. 

Unfortunately, it is a very complicated task to improve this 
equation. I shall render here, in more definite form than before, 
a suggestion made by Fuoss and myself (13), which seems sound, 
although it would involve much tedious labor. We consider a 
more general distribution-function than that of equation 13, 
namely 

fi&, . , . , i, P I ,  PI, . . . , P,) = 

- - ni,ni, . . . ni, ‘P” (PL, et,; PP, e i2 ;  . . . ; P,, eiY) (27) 

so defined that 
ft,,i,, ... ,ii dTi, dV2 . . . dv, 

equals the probability for finding ions of the species il, iz , . . ., 
i,, (some of which may be identical) in volume elements dV1, 

1 Except for a slight modification due to short range forces (u. i.). 
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dVz , . . ., d V ,  surrounding the points PI, Pz, , , . , P,, respec- 
tively. Moreover, let the electric field due to these ions in these 
positions, together with the charges which they induce in their 
environment possess at  the point P an average potential 

$i,,i2, ... , i, (Pi, Pz, . . . , P,; P )  = 

= E ,  (PI, ei,; PI, eiz; . . . ; P,, ei,; P )  (28) 

For simplicity, we assume that all the ions have the same diame- 
ter a, so that the functionsf and J/ (which always refer to  a given 
electrolyte) depend only on the points PI,  . . . P ,  and on the 
charges ei,, . , . , ei,, as indicated by the equations 27 and 28. 
We now focus our attention upon the functions cp, and E ,  and let 
these functions be defined, not only for all configurations 
(PI, . , . , P,),  but also for any set of charges (vi, . . , , v , ) ,  whether 
the concentrations of ions with these particular charges be finite 
or zero. The Poisson equation takes the form 

div grad E ,  (PI, m ;  Pz, m; . . . ; P , , d  = 

The main difficulty is to find a suitable generalization of the Boltz- 
mann equation. For this purpose, we adapt our equation 10 
as follows: The change of c p I  due to a change of, say, the charge 
q k  of the ion at the point Pkr can be computed from the work 
expended in discharging that ion a t  some point far away from 
PI, . . . , P,, and recharging it at  the point Pk. This considera- 
tion leads to 

a 
a?k  

- kT - log PV (Pi, vi; . . . ; Pk, qk; . . . ; Pv, 

= b w / h  = lim ( E ,  (PI, 71; . . . ; Pk, q k ;  . . . ; P,, 7,; P )  - €1 ( P k ,  q k ;  P )  1 (30) 

where the definition by a limiting process is necessary on account 
of the self-potential T ~ / D T  of the ion. The integration-constant 
in equation 30 will be nearly equal to 

P = Pk 

IT (1 - 8 (Pi, P J )  ( P I ,  0; P?, 0; . ; P,,  0) (31) 
i, k 
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where 

(32) 

but on account of deviations from random arrangement due to 
Coulomb forces as well as short range repulsion (expressed by the 
diameter a) ,  equation 31 will only be an approximation, although 
probably a good one. We shall leave this question aside, and 
return to the system formed by the equations 29, 30, 31. As it 
stands, this system is not determinate, but suppose that we 
expand c p P  and t y  in power series of vl, q2, . . . , q v ,  whereby the 
coefficients will be functions of the configuration (PI ,  P2, . . . , 
Py). Next, in t Y  we neglect all powers of order higher than Y 

(in all the charges ql, q2, . . . , v V  together); then tv+l will contain 
only the same types of terms that are already contained in E , ,  
and the difference between the coefficients of corresponding 
powers in t v  and in trfl  will probably be small. If we may 
neglect this difference, we can obtain a determinate system of 
equations. However, it remains to investigate how the power 
series for the functions q V  should be abbreviated, if a t  all, in order 
to obtain good approximations and consistent results; (the in- 
tegral of the differential equation 30 should be independent of 
the path of integration). Also, it seems likely that the approxi- 
mation expressed by formula 31 will give rise to similar questions. 
These problems have not been analyzed, and I do not expect to 
take them up in the near future. Incidentally, the above scheme 
for abbreviating the power series expansions of cp,  and t P  may not 
be the most suitable. 

I have made a few tentative computations of the corrections to 
be applied to equation 15, by the method outlined here. These 
computations indicate that as long as the difference between equa- 
tion 15 and the approximate equation 17 may be regarded as a 
correction to the latter, the corrections to equation 16 are of a 
higher order, involving higher powers of the concentrations as 
well as the charges. In such cases the Poisson-Boltzmann equa- 
tion 15 is probably a very good approximation. 

It is worth pointing out that Bjerrum’s method of computa- 

1, for T , L  < a c 0, for r,k > a 6 (Pi, Pr) = 
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tion takes into account the reduction of the effective ion concen- 
tration due to pair-wise association, perhaps the most important 
among the effects that are neglected by the Poisson-Boltzmann 
approximation. Therefore, while one may expect that the latter 
will be the more accurate for relatively strong electrolytes, it seems 
probable that Bjerrum’s method will give better results in cases 
where the majority of the ions are present in the form of neutral 
pairs (corresponding to higher powers in the expansion of the 
Boltzmann formula). 

SHORT RANGE FORCES 

The fact that the electrostatic energy of the ions is finite 
proves that repulsive forces are superimposed on the Coulomb 
forces for molecular distances. So far, we have represented 
these repulsive forces by a minimum distance of approach, the 
“diameter” a, and we have considered their effects only to the 
extent that they limit the electrostatic energy. Now, whether 
there are Coulomb forces (ions) or not (molecules), repulsive 
forces will cause a direct contribution of their own to the free 
energy of any system. Incidentally, we have reasons to believe 
that the repulsive forces between the molecules decreasl quite 
rapidly with the distance, even faster than the forces of ordinary 
cohesion. If so, then these forces can be represented for most 
purposes by a large discontinuity of the potential energy at some 
distance T = a, and the corresponding contribution to the free 
energy can be computed in terms of the excluded volume, per 
particle 

= kT (Z 4n - ar /V)  
3 (33) 

where V is the total volume of the system. Van der Waals (14) 
derived the equivalent of this formula while dealing with inter- 
molecular forces in gases (the well-known “b” in his equation). 
Boltxmann and others computed certain corrections due to the 
overlapping of “excluded spheres,” but we shall not enter into 
such refinements. 

The activity coefficients exp (Ak k T )  of the strongest electro- 
lytes in water increase for high concentrations and exceed unity, 
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which means that the effect of the repulsive forces, as expressed 
by formula 33, outweighs that of the Coulomb attraction. The 
magnitude of the effect requires appreciably greater diameters 
a for the ions in solutions than in crystals; the difference must 
of course be ascribed to the attraction between the ions and the 
solvent. The a values derived from formula 33 need not agree 
exactly with those that are used in computing the Coulomb 
energy, because the picture of “hard billiard balls” is certainly 
too simple. Nevertheless, there seems to be a fairly close corre- 
spondence. A more complete study of this question might be 
worth while; it would show to what extent the thermodynamic 
functions of different electrolytes form a one-parameter family 
in regard to their dependence on the concentration, and give us 
more detailed information about the short range forces. 

The assumption of short range repulsion is necessary ahd suffi- 
cient to explain the increase of the activity coefficients a t  high 
concentrations. The magnitude of the effect is primarily a 
measure for the range of the forces, as we have shown above, 
and the variation with the concentration is apt to be linear, 
no matter what the nature of the forces is. Huckel(l5) suggested 
that the dielectric constant of electrolytes ought to decrease with 
increasing concentration, and he was able to show that his assump- 
tion would lead to an effect of the observed type. While this 
agreement is of little discriminatory value, Huckel’s explanation 
is certainly plausible, and it seems difficult to account for the 
effect by any very different picture. As regards the direct evi- 
dence for the decrease of the dielectric constant, the measured 
variations turned out to be much larger (16) than those predicted 
by Huckel; but the data scatter so widely that they cannot be 
said to contradict a very small actual effect. A theoretical 
computation of the decrease in the dielectric constant to be 
expected from the saturation of the solvent dipoles has been 
made by Sack (17) ; again, the computed variation of the dielec- 
tric constant was much greater than what Huckel had inferred 
from the properties of electrolytes. My own opinion is that 
Huckel’s relation between the dielectric constant and the thermo- 
dynamic properties of electrolytes ought to give the correct order 



86 LARS ONSAGER 

of magnitude. If so, then it is difficult to reconcile Sack’s con- 
clusions with the observed behavior of electrolytes. Inciden- 
tally, such properties of ions as their mobilities also seem to 
contradict Sack’s theory. 

We may expect that all the various kinds of forces that are 
responsible for the cohesion of matter may take part in the short 
range interaction of ions. The forces which have been discussed 
here deserve special interest because they are peculiar to 
electrolytes, and also because they may be of somewhat greater 
range than ordinary molecular repulsive forces. Probably a bet- 
ter understanding of this phenomenon must be sought in con- 
nection with an improved theory of polar liquids. Certain 
properties of electrolytes seem to indicate that the electric mo- 
ments of the solvent molecules are in many instances greater 
than is assumed by the present dipole theory. 

APPENDIX 

Critique of Fowler’s fluctuation theory 

Fowler (11) defines a function WaS (r) ,  equal to the potential 
of the average force acting on a pair of ions (Y and p at a distance 
r in the electrolyte. By differentiation of the Gibbs phase integral 
he correctly derives his equation 15, which may be written 

1 ’ 1- 
diva grads Was - - grads2 Was = divB grads W - - grad,? W (15F) kT kT 

Here, W denotes the potential energy of the entire collection of 
ions, that is, a function of the coordinates of all the ions in the 
system; the differentiations corresponding to gradp, etc., are car- 
ried out with respect to the coordinates of the particular ion p, 
and the averages are taken for fixed positions of the two particular 
ions QI and p. 

Fowler now assumes that the only forces acting are Coulomb 
forces; this invites trouble, because then the phase integral does 
not converge. In order to make the phase integral convergent, 
one must introduce additional repulsive forces for small dis- 
tances (v. i.). 
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For the moment, we grant Fowler's assumption; then the 
potential W of the forces obeys the relation 

divg grad@ w = - (4n/D) 7 e5 (16F) 

Fowler where p is an appropriate average of the charge density. 
obtains accordingly 

(17F) 

where p a  denotes the mean charge density a t  the distance rag from 
the a ion. 

Consider 
the limiting case when the ions (Y and p are far apart; then 

1 
k T  divg gradg Wag + (47r/D) eg = - (grad$ Wag - grad$ W )  

We shall show that equation 16F cannot be correct. 

Wa# = 0 

together with its gradient etc., and the charge density F a  induced 
by the a ion also vanishes, so that equation 16F may be written 

0 = - grad62 W (34) 

This equation states that there are no  forces whatever acting on 
the p ion. 

In order to estimate the order of magnitude of the discrepancy, 
we recall that, assuming electrostatic forces only, 

- gradg W = Eg eg 

where E@ denotes the electric field strength (due to other ions) 
at the point of the ion p. The density of other ions in the neigh- 
borhood of a given ion p is certainly comparable to the mean 
density in the solution-probably greater-and the same holds 
for the mean square field. That leads us to 

eg2 8rU,, e g  
DkT V DkT ?Dagy 

=---eg2. 4 H  2: 

The integration is performed, for a representative configuration 
of the other ions, over all places that are accessible to a p ion, 



88 LARS ONSAGER 

(rPr > u@J, and Uel is the total electrostatic energy (mainly 
self-energy) of a system of charged spheres of radius uo7. Taking 
all up,, = a we obtain, in terms of the Debye-Huckel K ,  

(35) 

which is (according to Debye and Huckel) of the same order of 
magnitude as the maximum of either term in the left member of 
equation 17F. 

If we introduce repulsive forces of short range (=  a), so as to 
make the phase integral converge, we may expect reasonable 
results. In this case equation 16F will contain an additional 
term 

1- - grad$ W - K~ e,$/ Da 
kT 

dive gradb W ,  (36) 

where ?V8 is the potential of the repulsive forces, and in general, 
?V now contains W ,  in addition to the electrostatic energy. 
It may be worth while to show more clearly the significance of 
the term given by formula 36; for this purpose, we chose a pro- 
cedure that is very similar to Fowler's. Consider a given ion 
p in the field of N fixed ions, and let the energy of interaction 
between p and the other ions be 

N 

u = ~ ~ + u .  
" = I  

where the function 21, is chosen in such a manner that u = + to 
at all singularities and boundaries. The Coulomb energy obeys 
the Laplace equation; hence 

div grad u = div grad u, 

We shall compute the time-average of this function on the as- 
sumption that the ion p will distribute itself among all positions 
according to the Maxwell-Boltzmann law. Write 

Q = f exp(- u /kT)  dV 
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then 

Q div grad ua = Q div grad u = f exp(- u /kT)  div grad u dV = 

= - s (grad u, grad (exp (- u/kT)  ) dV = (l/kT) 

= Q (l/kT) grad* u 

exp( - u/kT)  grad* u dV = 

The difference from equation 15F is that here we have extended 
the averaging over the coordinates of the p ion, while in equation 
15F the ions a and p are kept fixed. This difference is immate- 
rial when a and p are far apart, because then the position of the 
ion p does not matter anyway; in other words, we have shown 
that the terms in the right member of equation 15F actually do 
cancel each other when rap = m. 

The above evaluation of the right-hand member of equation 
15F for the trivial case r a ~  = m amounts to a reversal of Fowler’s 
derivation, and does not bring us any nearer to the real problem 
of computing the same quantity for finite distances ~ ~ p .  While 
it is impossible to foresee what results Fowler’s method might 
yield with the aid of new devices, its value has not been demon- 
strated so far. 
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