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I. INTRODUCTION 

Whenever all the energy levels of a system are known all its equilibrium 
properties may be calculated, including the heat capacity, heat content, 
entropy, and free energy with which this paper is concerned. The analysis 
of spectroscopic data is a powerful method of obtaining such energy levels, 
and within recent years this new thermodynamic tool has been developed 
rapidly. This review consists of three parts: the first sketches the funda- 
mental theory, the second outlines the more important techniques of 
numerical calculation, and the third discusses the results that have been 
obtained by use of the method. 

11. FUNDAMENTAL THEORY 

Consider an assemblage of N identical systems of one kind and N' of a 
second kind, where both N and N' are very large numbers. Let the pos- 
sible energy levels be e i  and e:., where i and j represent all the quantum 
numbers required to specify the condition of a system. Let the number of 
systems in the various states be N i ,  N : . .  The quantum weight of the 
assemblage in this condition is the number of permutations 

or 

log W = N log N - C Ni log Ni + N' log N' - N; log N; (2) 
t i 

The most probable state of the assemblage is determined by the conditions 

1 Published by permission of the Director, U. S. Bureau of Mines. (Not subject 
to copyright.) 
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from which, by Lagrange's method of multipliers, 
J 

Since appreciable deviations are easily shown to be very improbable, equa- 
tions 4 are the equilibrium conditions. Then since p is the same for two 
substances in equilibrium, it must be a kind of temperature. 

In what follows only the unprimed systems are considered. Define 

s = IC log (WIN!) (5 )  

where k is an as yet undetermined constant. Since this S is an additive 
property of an assemblage which approaches a maximum as the assemblage 
approaches equilibrium adiabatically, it must be proportional to the 
thermodynamic entropy; then by suitable choice of k the two can be made 
equal. 

Define 

Q = e-pt i  (6) 
i 

The total energy is then 

E =  - W/Q) (dQ/d~)  (7) 

(8) 

(9) 

A kind of specific heat is 

dE/dp = ( N / Q 2 )  (dQ/dp)' - W/&) (d2Qldp2) 

S = Nk log Q + pkE - k log N! 

At equilibrium 

from equations 4 and 5. Define 

- pA = N log Q - log N! (10) 

It is clear from equation 9 that A has the properties of maximum work. 
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The equations 7 to 10 are a complete set and could be used in that form. 
It is customary, however, to replace the statistical “temperature,” p, by 
the thermodynamic temperature, T ,  defined by 

I / T  = U / ~ E  = (as/ap)/(aE/ap) = pii ( 1 1 )  

When T replaces p in equation 4 the Maxwell-Boltzmann distribution law 
is obtained in its familiar form. When T is substituted in equations 7 to 
10 the results are 

E = - Nk(Q’/Q) (12) 
C, = dE/dT = (Nk /T2) [Q”/Q - (&’/&)‘I (13) 

(14) 
S = Nk[log Q - ( l /T ) (Q’ /Q) ]  - IC log N! (15) 

It is evident from the form of the foregoing equations that when the 

(16) 

- A / T  = Nk log Q - k log N! 

energy of a system splits into several independent parts 
I I1 

E i  = l?j + ck + * * *  

where no quantum number occurs in more than one subscript, then Q is a 
product of independent factors Q‘Q” . . . , and the thermodynamic func- 
tions are sums, for example E = E’ + E” + . . +.  Now for any system 
in field-free space the wave equation may be separated to  give 

[b2/bz2 + bs!/by2 + b2/bz2 + (8a2m/h2)W]IC/ = 0 (17) 

for the motion of the center of gravity. 
cubical box of edge 1 the energy levels corresponding to equation 17 are 

When the system is confined to a 

W = (h2/8mP)(nz + ni + n;), nu = 0,  I ,  2 . (18) 

Each translational degree of freedom thus makes a separate contribution 
m 

Q = e--n’h’/SmlPkT 

0 

or 

Q = (2amkT/h2)’I21 + 1/2 (19a) 

the summation being made by the Euler-Maclaurin expansion formula and 
becoming asymptotically exact as h2/8m12kT --+ 0. Such asymptotic sums 
and all functions derived from them will be printed in bold-face type 
throughout this paper. The error in equation 19a as found by direct 
summation of equation 19 is 1 in 103 for h2/8m12kT = 1.4 and 1 in los for 
h2/8m12kT = 0.7. These values are far larger than any of experimental 
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interest; for example, for Hz a t  1°K. with 1 = 
and the error in equation 19a has become totally insignificant; even when 
the second term is dropped the error is only 1 in lo5 in Q, corresponding to 
0.00015 cal. per degree in S and rather less in C,. When this very satis- 
factory approximation is made, three translational contributions give 

cm., h2/8m12kT = 

E = (3/2)NkT (20) 
C, = (3/2)Nk (21) 
S = Nk[log ( 2 ~ m k / h ~ ) ~ / ~  + log V + (3/2) log T + 5/2 - log N] 

= Nk[log ( 2 ~ m ) ~ ' ~ k ~ / ~ h - ~  + (5/2) log T - log P + 5/21 (22) 
- F/T = - A/T - Nk = Nk[log ( 2 ~ m ) ~ / ~ k ~ / ~ h - ~  + (5/2) log T - log PI 

(23) 
H = (5/2)NkT (24) 
C, = (5/2)Nk (25) 

Since the perfect gas law, PV = NkT, is used in obtaining equations 22 to 
25, it may be well to point out that this law follows a t  once from equation 
20, since for any distribution of velocities PV = (2/3)E. The constant k, 
however, must of course be determined experimentally from equation 21 or 
25. When numerical values of the constants are used, the molar entropy 
and free energy a t  atmospheric pressure become 

S = (5R/2) log T + (3R/2) log M - 2.300 
- F/T = (5R/2) log T + (3R/2) log M - 7.267 

(224 
(234 

where M is the molecular weight. This derivation of the Sackur-Tetrode 
equation is more satisfactory than any that were given before quantum 
mechanics was developed. It should be noted that the term - k  log N! 
in equation 9 has been included in the translational contribution to S and 
- F/T; it is not to be used again when the internal energy contributions 
are evaluated. 

111. THE TECHNIQUE OF NUMERICAL CALCULATIONS 

The rotational sum for diatomic molecules 
For all real molecules the translational energy is the only part that can 

be separated out as in equation 16. The rotation-vibration energy for a 
diatomic molecule is represented by some such expression as 

E = EO + hc[wov - zw0v2 + yw0v3 + . . .]  + hc(B,[J(J + 1) + const.] + 
where 

DvJ2(J + 1)2 + - * 1 (26) 

Be = Bo - O!V + YV' + * e *  

D, = Do + PV + * * a  

(264 
(26b) 
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The problem of finding Q for an energy of the form in equation 26 is con- 
veniently preceded by finding it for the rotational part 

= ~ C [ B J ( J  + 1 )  + D J ~ J  + i ) 2  + F J ~ ( J  + 1 ) 3  + . . . I  (27) 

where for convenience the subscripts v have been dropped. 
The wave functions for a rigid rotator are 

I) = Py(cos e)e iMp (28) 

where P y  are the associated Legendre polynomials. 
energy levels are 

The corresponding 

E = (h2/8n21)J(J + 1 )  = hcBJ(J + 1) (29) 

The quantum number J measures the total angular momentum and takes 
values 0, 1, 2 . . .. The quantum number M is the projection of J on a 
preferred external direction, with allowed values 0, & 1, f 2 . . =t J .  
When there is no preferred direction (absence of external fields) the level J 
is degenerate with a quantum weight 2J + 1. For such a rotator 

m 

Q = (2J + 1 )  exp. [- (hcB/kT)J(J + 1)l (30) 

When hcB/kT is large, successive terms in equation 30 decrease rapidly, 
but when it is small direct summation becomes extremely laborious. It is 
then convenient to  replace the sum by an asymptotic expansion2 

Q = ehcB’4kT[kT/h~B + 1/12 + (7/480)(hcB/kT) 

J - 0  

+ (31/8064)(h~B/kT)’  + (127 /92160) (h~B/kT)~  + * * ]  (31) 
= kT/hcB + 1/3 + ( 1 / 1 5 ) ( h ~ B / k T )  + ( 4 / 3 1 5 ) ( h ~ B / k T ) ~  

+ ( 1 / 3 1 5 ) ( h ~ B / k T ) ~  + . . . 
These expressions are never exactly equal to  Q, and will in fact always 
diverge if the series are carried far enough. For small values of hcB/kT, 
however, the first few terms are an excellent approximation. Thus for 
hcB/kT = (1 /2 )  log 2 = 0.34657 the first five terms give an error con- 
siderably less than 1 in lo6;  the speeds of convergence for the direct and 
the asymptotic sums are compared in table 1 ,  which gives the fraction 
contributed to  the sum by successive terms. For values of hcB/kT much 
larger than this, direct summation is the easier process, while for smaller 

* This result was first derived by Mulholland (80) from the theory of residues, 
but, in common with all the asymptotic expansions used in this work, it is obtained 
most easily by using the Euler-Maclaurin expansion formula. 
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0.30833 
0.46249 
0.19270 
0.03372 
0,00271 
O.ooOo5 

1.00000 

values the asymptotic summation becomes not only increasingly superior 
to the direct summation but also easier in an absolute sense. 

For an actual molecule which differs from the ideal simplicity of a rigid 
rotator only in the addition of small correction terms due to stretching, as 
in equation 27, use of the power series expansion3 

0.97011 
0.02802 
0.00170 
0.00015 
0.00002 

1.OOOOO 

exp.[- (hcD/kT)J2(J + 1 ) 2  - (hcF/kT)J3(J  + 1)3 ]  = 1 - (hcD/KT)J2 

X (J + 1)' - (hcF/kT)J3(J + l ) 3  + ( 1 / 2 ) ( h ~ D / l c T ) ~ J ~ ( J  + 1 ) 4  + . (32) 

and of asymptotic expansions related to equation 31, which have been pub- 
lished elsewhere (63), leads to . 

Q = kT/hcB + 1/3 + (1/315)(hc/kT)(21B - 8D - 6F) + 
- 2(D/B)(kT/hcB)' + [12(D/B)2 - G(F/B)](kT/hcB)' + * * * (33) 

TABLE 1 
Comparison of speeds of conoergence 

Q FIRET FORM Q I Q BECOND FORM 

0.88960 
0.10277 
0.00712 
O.OOO47 
0.00004 

1 . m o  

The first line converges better for high T, the second for low, but for a wide 
range of temperature, up to beyond 5000"C., both converge with practical 
rapidity. D is always negative, and in many cases only B and D are 
known. The empirical energy level formula then leads to absurd results 
for J ( J  + 1 )  > B/2D,  and the second line of equation 33 eventually 
diverges. Essentially the same mathematical difficulty is almost always 
present in a more subtle form. If the empirical energy level formula leads 
to levels which increase indefinitely with J ,  the second line of equation 33 
will converge; but if there is an upper limit to the levels, as there is for all 
real molecules, then summation over an infinite number of levels must give 
an infinite Q. There are actually only a finite number of rotational levels, 
but this fact does not reduce the pitfalls in a mathematical summation 
from J = 0 to 03. It can be shown, however, by easy though somewhat 

a This device was first used by Giauque and Overstreet (30). 
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inelegant marginal calculations, that whenever the empirical energy-level 
formula represents the actual levels satisfactorily out to a J such that 
(2J + 1) exp. ( - e J / k T )  makes a negligible contribution to &, the succes- 
sive terms in the second line of equation 33 will decrease, at least until a 
negligible contribution of similar magnitude is reached. It can be shown 
further that when the series in equation 33 is broken off a t  that point, the 
result is equivalent to breaking off the direct sum at the J value specified 
above. In practice, this means that the second line of equation 33 can be 
treated like the first; the successive terms initially decrease, and if they 
become small enough to be neglected, the series may be broken off without 
appreciable error; if the terms in either line begin to increase before becom- 
ing negligibly small, term-by-term summation is necessary. The second 
line of equation 33 must always become unsatisfactory for large enough T, 
but for all molecules for which calculations have as yet been made, the 
break-down occurs well above the temperature range of interest. 

When the molecule is composed of two identical atoms only those states 
are allowed which have eigenfunctions symmetric for an exchange of nuclei 
if the nuclei obey the Bose statistics, and only those states which have 
antisymmetric eigenfunctions if the nuclei obey the Fermi-Dirac statistics. 
The symmetry of the total eigenfunction depends upon several parts which 
must be considered separately. All energy levels of diatomic molecules 
are either positive or negative, according to whether + remains constant or 
changes sign when all positional coordinates (nuclear and electronic) change 
sign. When A > 0 (IT, A . . . states) each rotational level is a doublet, one 
member being a positive and the other a negative level. When A = 0 
( 2  states) the levels do not have this type of doubling. There are two 
possibilities here; for 2+ states levels with even K are positive and levels 
with odd K negative, and for 2- states levels with even K are negative, 
levels with odd K positive. For diatomic molecules composed of two 
chemically identical atoms there is an additional type of symmetry which 
relates to the electronic eigenfunction alone; when this function is constant 
on reflection in the origin the state is called even and designated by the 
subscript g (for German gerade); when the function changes sign on reflec- 
tion the state is odd, designated by u (for ungerade). Finally, when the 
two nuclei are identical, the nuclear spin eigenfunction may be either 
symmetric or antisymmetric for an exchange of nuclei. Then the total 
eigenfunction will be symmetric for any of the combinations 

even positive symmetric spin function 
odd negative symmetric spin function 
even negative antisymmetric spin function 
odd positive antisymmetric spin function 
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and antisymmetric for the remaining combinations 

even positive antisymmetric spin function 
odd negative antisymmetric spin function 
even negative symmetric spin function 
odd positive symmetric spin function 

Proofs of all these statements have been given in an excellent review by 
Mulliken (8 1). 

The symmetry properties of the spin eigenfunction are conveniently 
studied by supposing each spin separately coupled to a strong field. This 
procedure is permissible, since the number of functions of each type is 
independent of the coupling scheme. When the spin is zero there is only 
one atomic spin function, say a, and hence only one molecular spin function, 
a(l)a(2), which is evidently symmetric. It is very probable that all nuclei 
with zero spin obey the Bose statistics; when that is so, the allowed com- 
binations are even-positive and odd-negative. Thus, for example, a Z t  
state of a molecule with identical atoms of zero spin must have negative 
levels and hence can have only odd values of K.  For electronic states 
with A > 0 there are no missing K values, but only one member of each 
A-doublet has the allowed symmetry properties and hence the doubling 
disappears for homonuclear molecules. 

When the nuclear spin is 1/2, its projection on the external field has two 
eigenvalues, 1/2 and - 1/2; the corresponding eigenfunctions may be 
called a and 8, It is then possible to construct three symmetric spin 
functions for the molecule, namely a(l)a(2), p(l)@(2), and 2-1/2[a(1),6(2) + 
/3(l)a(2)] and one antisymmetric spin function, 2-1’z[a(l),9(2) - P(l)a(2)]. 
In general, when the spin is i, there are 2i + 1 atomic spin functions. Then 
there are obviously 2i + 1 symmetric molecular functions of type a(l)a(2) 
and (2i + 1)iof type 2-’/*[41)/3(2) + /3(l)a(2)], a total of (2i + l ) ( i  + 1). 
There are (2i + 1)i antisymmetric molecular functions, all of type 2-’12 
x [41)8(2) - 8(1)42)1. 

Under some experimental conditions equilibrium between the states 
with symmetric and those with antisymmetric spin eigenfunctions is almost 
completely frozen, and the two states behave as separate chemical species. 
It is customary to use the term “ortho” for states with symmetric spin 
functions and “para” for those with antisymmetric spin functions. The 
normal electron state of Hz is l2:; protons obey Fermi-Dirac statistics 
and have a spin of 1/2; hence for orthohydrogen the spin weight is 3 and 
only odd J are permitted, while for parahydrogen the spin weight is 1 and 
even J are required. Deuterons have a spin of 1 and obey Bose statistics; 
the normal electron state of Dz is the same as that of Hz; hence ortho- 
deuterium with even J has a spin weight of 6, paradeuterium with odd J a 
spin weight of 3. 
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It is evidently necessary to calculate the Q-sum for even J and for odd J 
separately. It has been shown (63) that for the energy levels of equation 
27 and rotational quantum weights 2J + 1, for unit spin weight 

(34) Q(evenJ) = Q(odd J )  = (1/2)Q 

Hence for the temperature range to which the asymptotic expansion is 
applicable, the abundance ratio of ortho and para forms is simply the ratio 
of their spin weights. For lower temperature, however, 

&(odd J )  + 0 
&(even J )  + the spin weight 

and the equilibrium mixture approaches 100 per cent the form with even J .  
In this temperature range Q for the equilibrium mixture and for the equi- 
librium frozen a t  the high temperature value take entirely different courses. 
The derived thermodynamic functions likewise differ. The discovery of 
the ortho and para states of hydrogen was an immediate consequence of 
Dennison's successful calculation of the specific heat of hydrogen on the 
assumption of a frozen equilibrium; all previous attempts to reproduce the 
experimental curve by more or less arbitrary quantum weight assignments 
had been failures. Phenomena of this sort are of the greatest interest both 
theoretically and experimentally, but of no interest as a problem in calcula- 
tion. There is nothing to do with the Q-sum except to add i t  up term by 
term; since only four or five terms are needed, this is very easy to do. 

The calculation which led to equation 33 applies only to lZ molecules. 
The calculations become more complicated when S > 0, giving multiplet 
states. A comparatively simple example is the normal state of 02, a 
32; with S = 1. In  Hund case b coupling, which is followed here as in 
most other Z states (case a being impossible), the orbital angular momen- 
tum A and the nuclear angular momentum N combine to give a quantum 
number K ,  which has values A, A + 1, . . . I n  this case A = 0 and K = 0, 
1, 2 It is the different possibilities 
in this last coupling which give rise to the multiplicity. Thus for O2 the 
three components of the triplet are designated F1, F2, Fa according as 
J = K + 1, K ,  or K - 1. The rotational energy is given by 
hc[BK(K + 1) + . .] + T ~ ( K ) ,  where T ( K )  is the K-S coupling energy, 
which depends upon K and which is slightly different for each member of 
the multiplet. For K = 0 the K-S coupling can give only J = 1, and 
hence only the F1 component exists. For K > 0, all three components are 
present, the quantum weights being 2J + 1, hence 2K + 3, 2K + 1, 
2K - 1, respectively. For 016016, since the nuclei have zero spin and obey 
the Bose statistics and since the normal state is %;, only odd values of K 
are allowed. 

. . K then couples with S to give J .  
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The most interesting effects due to these multiplet terms are rather sharp 
maxima in the specific heats at temperatures which may lie below 1°C. 
or above 100°C., depending upon the separations. When, as in 02, this 
electronic heat capacity is excited before the rotational heat capacity 
approaches its equipartition value, the effect can be studied only by direct 
summation. For the higher temperatures where asymptotic summation is 
possible, a comparatively rough treatment of the small multiplet separation 
is allowable. Thus the separations may be approximated by the empirical 
equations 

} (35) 
71(K) - 7a(K) = a(2K + 3 ) 4  + b + c(2K + 1) 
72(K) - T ~ ( K )  = d(2K + l)-l + e + f(2K + 1) 

the F a  state being the lowest. Then 

Q = E(') ((2K - 1) + (2K + 1) exp. [ -  (kT)-I{d(2K + 1)-1 

+ e + f(2K + 1) 1 1  + (2K + 3) exp. [- (kT)-1{a(2K+3)-1 

+ b + c(2K + 1) ) I )  

m 

X- 1 

(36) 

where 
T ( K )  = hc[BJ(J + 1) + DJ2(J + 1)Z + * * - 1  (37) 

is the same for all members of the multiplet and the superscript (2) on Z 
indicates summation over alternate values of the index, that is, over odd K .  
When the exponential terms within the braces are expanded and only the 
first two terms in each expansion retained, equation 36 becomes 

Q = E(') [(3 - 2 ~ ) ( 2 K  + 1) - (U + d)(kT)-' 
00 

(38) K-1 

- (c + f)(kT)-1(2K + I)] e-T(K)'kT 

a form very convenient for asymptotic summation. 

The normal state of NO is 2 1 1 ~ / ~ ,  1 1/2, with Hund case a coupling. Here 
S = 1/2 and its projection on the axis, 2, = 1/2, - 1/2. Then 0 = 
Ih + 21 = 3/2, 1/2, measures the total angular momentum parallel to the 
axis. This combines with the nuclear rotation angular momentum to 
give J ,  with allowed values 0, 0 + 1, . . .. Then for 2111/2 the energy is 

hc(Bl&(J + 1) - 1/41 + . . )  + const. J = 1/2, 3/2 * (39) 

and for 112 

hc(B1 1/2[J(J + 1) - 9/41 + - .  . ]  + const. J = 3/2, 5/2 * (40) 



CALCULATION OF THERMODYNAMIC FUNCTIONS 287 

The theoretically interesting terms - (1/4)hcDl,z  and - (9/4)hcB1 112 in 
practice frequently are absorbed in the constants, but can of course always 
be rescued when they are desired. A very pretty method of summation 
has been suggested by Witmer (107) for case a molecules. The rotational 
and vibrational constants for all members of the multiplet are assumed 
equal as a first approximation. Then the summation over J for a single 
member gives 

Qrot = kT/hcB + 1/3 + (hcB/kT) ( l / l l i  - Qaz/6) (41)  

for J integral, as is shown by the argument in the following section where 
1 plays exactly the same mathematical r81e as Q8 and gives a similar expres- 
sion with only a feeble dependence on Qa for the other possible cases (half- 
integral J ,  alternate J values). The multiplet spacing in case a is uniform, 
the positions being given by a term (s - 1)A.  Then as a first approxima- 
tion the multiplet structure contributes a factor to Q 

Qmult = 1 + e-hcA/kT + e--ihcA/kT + . , . + e - ( m - l ) h c A / k T  

(42) 

This factor is the ratio of two vibrational factors, and the contribution to 
the thermodynamic functions is thus the difference between two vibrational 
contributions. The contribution to C passes through a maximum the 
height of which depends only on m, approaching R as m increases. The 
contribution to H reaches a limiting value of ( 1 / 2 ) ( m  - 1 ) A  and that to S 
and - F/T a limiting value of R log m as T increases. 

If the rotational and vibrational constants are too greatly different for 
the various members of the multiplet, the anharmonic term associated with 
Witmer’s calculation would be inconveniently large, and separate treat- 
ment of each member would be easier. In any case, formulas for sums 
over half integral J values are needed. These have been given elsewhere 

) / ( I  - e--hcA/kT 1 - - ( 1  - e-mhcA/kT 

(63) * 
The rotational sum for  polyatomic molecules 

The simplest polyatomic molecules are linear, but even these lead to 
complexities absent in the diatomic case. The linear triatomic molecule 
has been shown by Dennison (17) to have two stretching vibrations, w1 and 
wg, and a double bending vibration w2 with a subsidiary azimuthal quantum 
number 1 which measures the angular momentum of the bending vibrations 
parallel to the molecular axis. The allowed values of E are - v z ,  - v 2  + 2, 

The 
allowed values of J are J 2 IZI. The first approximation to the rotational 
energy is 

v2 - 2, v2, where v2 is the quantum number for the vibration 02. 

E = hcB[J(J + 1) - 1’1 (43) 
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Then if the molecule is unsymmetrical, so that there are no alternating 
weights for the rotational levels due to spin and symmetry, 

Q = e(hcE/kT)(12+l/4)  [kT/hcB + 1/12 + (7/480) (hcB/kT) + -1  
- e(hcB/kT) l '  - 3e(hcB/kT)(12-Z) - . . . - (21 - 1 )  e(hCB/kT)( l2-1 ' -1)  

= e (hcB~kT) (~ '+1~4) [kT/hcB + 1/12 + (7/480)(hcB/kT) + - - .I 
- 12 - ( 1 / 2 ) ( ~ 3 / ~ ~ ) ( 1 4  + 1 2 )  - . . . = ~ T / ~ C B  + i / 3  

(44) 

+ (hcB/kT)(1/15 - P/6)  + 
This result is in a form suitable for use in summing over I ,  a step which is 
part of the vibrational treatment. The method used here can be applied 
equally well when the desired sum extends over only alternate J values. 

The rotations of non-linear polyatomic molecules are vastly more com- 
plicated. The quantum mechanical treatment of a rigid symmetrical top 
with moments of inertia A ,  A ,  C gives the energy levels 

E = (hz /8x2A)[K(K + 1 )  + n2(A/C - l ) ]  In1 5 K (45) 

(If only positive n 
Then 

with a quantum weight of 2K + 1 for each pair K ,  n. 
are considered, the quantum weight is 2(2K + 1 )  for n > 0). 

W K  

Q = exp. - (hz/8n2AkT)[K(K + 1 )  + n2(A/C - l ) ]  (46) 
K-0 n=-K 

The asymptotic expansion of this double sum has been shown (103,63,104) 
to be 

Q = n1/2u-3/2eu/4(p + l ) - l l2[ l  + (1/12)/3(/3 + l ) - b  

where 
+ (7/480)/3*(p + 1 ) - 2 ~ 2  + * a * ]  (47) 

u = h2/8a2AkT 
p = A / C  - 1 

Asymptotic formulas have also been given (63) by which stretching effects 
expressed as higher powers of K ( K  + 1 )  and n2, as well as cross products, 
can be treated. The asymmetrical top has been solved quantum mechan- 
ically, but it is hard to make much use of the results owing to their com- 
plicated form. There are still the same quantum numbers K ,  n and the 
same weights as before, but there is no closed formula for the energy levels. 
Instead, when K is even the levels are given as the roots of three algebraic 
equations of degree K / 2  and one of degree K / 2  + 1; when K is odd they 
are the roots of three equations of degree ( K  + 1) /2  and one of degree 



CALCULATION OF THERMODYNAMIC FUNCTIONS 289 

( K  - 1)/2. The expansion for the symmetrical case, however, may be 
written 

Q = ~‘12(h2/8~2kT)312(A2C)-l/e + . . (49) 

and one might guess that for the asymmetrical top 

Q = n”2(h2/8~2kT)3/2(ABC)-112 + . . (50) 

Gordon (36) has shown by numerical calculations that this is correct. 
Many polyatomic molecules possess internal rotations as well as external. 

It will be understood readily that little progress has been made in the 
theoretical treatment of rotation in such cases and a fortiori in the calcula- 
tion of the Q-sum. The model of ethane-two identical coaxial symmet- 
rical tops-has been solved both for free rotation (78) and for an assumed 
potential function (83). The model of tetramethylmethane has been 
solved for the case of free rotation (68). Asymptotic expansions have 
been found for Q in both cases of free rotation (78, 65). Eidinoff and 
Aston (19) have obtained the first term in Q, corresponding to replacing 
the summations by integrals, for the more general case of two coaxial 
asymmetric tops, the common axis being a principal axis for each. Typical 
molecules are * 

X Y 

0 - Z  
X Y 

X Y  

x-c-c-Y 
I I  
I 1  

X Y  

where X, Y, Z are atoms or linear radicals, such as - C r  N. The general 
method used by Eidinoff and Aston has been further developed by Kassel 
(Ma), and applied to a number of more complex cases, including propane, 
butane, isobutane, propylene, 1-butene, cis- and trans-Bbutenes, isobutene, 
trimethylethylene, tetramethylethylene, butadiene, and all the methyl 
derivatives of benzene. The assumption of perfectly free rotation cannot 
be entirely correct in any of these cases; even if there were no real potential 
energy resisting rotation, there would still be the pseudo-potential energy 
discovered by Kassel (66) ,  caused by change of vibration frequencies with 
change of angle. In  the case of butane, this pseudo-potential energy 
amounts to about 50 cal. For most of the molecules listed above the 

4 The symmetrically substituted groups such as 6- have three different 
X 

moments of inertia, hence are asymmetrical tops; if substitution were unsymmetri- 
cal, the tops would not be coaxial. The group C X ,  however, is a symmetrical top. 
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true potential energy also is likely to be small, and the assumption of free 
rotation should give fair results. When there are dipole moments, as in 
ethylene chloride, or large rotating groups, as in triphenylmethane, or 
long floppy chains whose ends could strike, as in hexane, the assumption of 
free rotation would not be permissible. In such cases there is no way 
known by which thermodynamic calculations could be made. 

The application of symmetry considerations to polyatomic molecules 
presents very considerable difficulties. Hund (48) solved the problem 
for ammonia, and Elert (20) applied his method to methane; but greatly 
simplified calculations for these molecules, as well as for benzene, tri- 
methylene, ethylene, and several others, have been made by Wilson (106) 
with the aid of group theory methods. As an example of the procedure 
which must be used to obtain the Q-sum in such cases, a brief treatment of 
CHI and CDk is given here; this calculation has not been published else- 
where. 

For the methane framework there are three symmetry types, A ,  E,  and 
T, which play a rdle similar to the two types S and A (not the same A )  
for diatomic molecules. When the product of electronic and vibrational 
eigenfunctions has the symmetry A ,  as is the case for the non-vibrating 
normal state, the weights for each symmetry type of nuclear spin eigen- 
function are as follows: 

I I I 
. . . . . . . . . . . .  A , .  5 p  + 5  5 p  5P 

E . .  . . . . . . . . . . . .  2 p  2 P + 2  
T . . . . . . . . . . . . . .  1 9 p  1 : ; + 3  1 9 p + 3  

Total . . . . . . . . I  1 6 p + 5  I 1 6 p f 3  I 1 6 p + 5  

J = 6 p + 3  

5 P f  5 
2P 
9 p +  6 

16p + 11 

J = 6 p + 4  

5 P f  5 
2 P f  2 
9 p +  6 

16p + 13 

J = 6 p + 5  

5P 
2 P f  2 
9 P +  9 

16p f 11 

All the weights in this table must be multiplied by 2J + 1 to obtain the 
total quantum weight for a given J and spin symmetry; it should perhaps 
be mentioned explicitly that since methane is a top with three equal mo- 
ments the quantum number n effectively disappears. Any weight factors 
which can be represented by a table of this sort can be expressed ana- 
lytically by a weight factor 

G(2aP + 2b + 1) [ @ U P  + 2b + 1 )  + f@>l 
for the level J = up + b, where the constant G depends upon the symmetry 
type of the nuclear spin function. Then 

Q = 
a-1 w 

G(2ap + 2b + 1)[(2up + 2b + 1 )  + f (b>l  e-r(J+l)u 
8-0  p - 0  

w a-1 00 (51) 
= G(2J + 1)2e-J(J+l)u + Gf(b)(2ap + 2b + l )e -J(J+l )u  

J - 0  b - 0  p-0  
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Q = Gd/2es/4u--3/2 + G f ( b ) X ( b )  
b-0  

where 

X ( b )  = e -b (b+ l ) r  { l/au + b + 112 - a/6 
(53) 

The first asymptotic expansion has already been given and the second is 
easily made. Now by the substitution b = a - 1 - bo in X ( b )  and ex- 
pansion of part of the exponential it can be shown that 

+ Q [ (~ /12 )  (2b + l ) z  - aa/60] + * * * 1 

X ( a  - 1 - b) = X ( b )  (54) 

In  Wilson's weight tables, partly reproduced above, 

for all nuclear spin 
metry types for both 

f ( a  - 1 - b) = - f (b)  (55) 

symmetry types for all electronic-vibrational sym- 
CH4 and CD4. Hence in all these cases 

and 
Q = GT1/2e~/4g-S/2  (57) 

For the particular case being considered, the normal state of methane, 
G = 5/12, 1/6, and 3/4 for A ,  E, T spin symmetries respectively, or 413 
for the three together. This same factor 413 is given by the empirical 
rule that the effective weight is the product of the spin multiplicit,ies for all 
the atoms divided by the symmetry number of the molecule, here 24/12 = 
4/3. For the corresponding states of CD, the weights are 514, 1, 9/2, a 
total of 27/4 = 34/12. The range of validity of these asymptotic expan- 
sions has been tested by direct summation. For u = 0.11512925, for CH4 

Q = 62.27472 Q = 62.26373 & / Q  = 1.00018 
and for CD, 

Q = 315.23487 Q = 315.21013 Q / Q  = 1.000078 
For u = 0.23025851, for CH4 

Q = 23.12567 Q = 22.65636 Q / Q  = 1.0207 

The asymptotic expansion thus fails for u only a little greater than 0.1, 
very considerably sooner than is the case with the simple symmetrical top, 
where for u = 0.2302585092994046 

Q = 16.99227012072823 Q = 16.99227012072823 
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For CH,, u = 0.1 is at  72"K., u = 0.23 a t  31.5"K. There is thus little 
likelihood that any calculations ever will be needed for which Q is not 
satisfactory for this or any other polyatomic molecule; should such calcula- 
tions prove necessary, however, they could always be made by direct sum- 
mation with comparative ease. 

The vibrational sum 

The next operation to be considered is the summation over vibrational 
states. Since i t  is an experimental fact that B,, D,, etc. can be repre- 
sented by rapidly converging power series in v, the result of the rotational 
summation may be put in the form 

Q ( v )  = K O  + Kiv + K~v' + - * - (58) 

for a diatomic molecule, or a similar power series expansion in several 
variables for a polyatomic molecule. Then 

00 

Q = Q ( v )  exp.[-hc(wov - zcrrovz + . . . ) / k T ]  
V ' O  

00 

= P ( V )  exp. [ -  ~ c w ~ v / ~ ]  
v = o  

(59) 

where P(v)  is the product of Q ( v )  and the power series expansion of exp. 
[- hc( - xwov2 + . An exact term-by-term evaluation of this 
sum is possible by means of the following formulas (61), where 

)/lcT]. 

z = e-hcooIkT (60) 

l o  = 1 
fi = z(1 - 2)-1 

fi = z(1 + z)(l  - z)-Z 
f3  = z(1 + 42 + z2)(1 - z)-3 
f4  = z(1 + 112 + 119 + z3)(1 - z ) - ~  (62) 
f 6  = z(1 + 262 + 66z2 + 26z3 + z4)(l - z ) - ~  

f7 = z(1 + 1202 + 1 1 9 1 ~ ~  + 2 4 1 6 ~ ~  + 1 1 9 1 ~ ~  + 120z5 + z6) (1 - z)-' 
f6 = Z (1 + 572 + 3 0 2 ~ ~  + 3 0 2 ~ ~  + 57z4 f Z 5 )  (1 - 2 )  -' 
fs = ~ ( 1  + 2472 + 4 2 9 3 ~ ~  + 1 5 6 1 9 ~ ~  + 15619.~~ + 42932' + 2 4 7 ~ ~  + 2') 

x (1 - 2) - *  

The result of the vibrational summation with the use of these formulas is 
then (for a diatomic molecule) 

Q = (pkT/hcBo)(l - 2)-' C figi (63) 
m 

i - 0  
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Here the first factor contains the contribution from a rigid rotator with 
moment of inertia h/8&Bo, the constant p taking care of symmetry and 
of nuclear spin, the second factor the contribution of a harmonic oscillator 
of frequency cwo, and the third factor all corrections for stretching, an- 
harmonicity, missing levels, etc. In  this factor the ji are the previously 
given functions and the gi are power series in T and 1 / T  with numerical 
coefficients (Laurent series). I t  is clear from the form of the fundamental 
equations that each factor in Q makes an additive contribution to the 
thermodynamic functions. The rotational factor gives (per mole) 

The vibrational factor gives 

Several convenient tables of these vibrational contributions, often called 
Einstein functions, are available (69,82). 

The anharmonic factor is 

i 

Then 

h” = ( j i g :  + 2j:g: + f’i’gi) (68) 
i 

where, as always in this paper, a ‘ means differentiation with respect to 
1 / T .  The gi can be differentiated at sight. The derivatives of the ji, 
which have not been published previously, are 

f i  = - (hcw/k)z(l  - z)-’ 
j ;  = 0 

f i  = - (hcw/k)z(l  + 3z)(1 - z ) - ~  
j i  = - (hcw/k)z(l  + 102 + 7z2)(1 - z ) - ~  
f: = - (hcw/k)z(l  + 252 + 559  + 15z3)(1 - z ) - ~  

j i  = - (hcw/k)z(l  + 1192 + 1134z2 + 2 1 1 4 ~ ~  + 889z4 
f: = - (hcw/k)z(l  + 562 + 2769 + 2362 + 31z4)(1 - z ) - ~  (69) 

+ 63z6)(1 - 2)-’ 
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f: = - (hco/k)z(l + 2462 + 41739 + 1 4 4 2 8 ~ ~  + 132032' 

f i  = - (hcw/k)z(l + 5012 + 143619 + 8 3 9 4 1 ~ ~  + 1405712' 
+ 31022' + 127z6)(1 - z)-* 

+ 726152' + 1 0 3 1 5 ~ ~  + 255z7)(1 - z ) - ~  
jb' = 0 
j: = (hcw/k)2z(l + z)(l - 2)-3 

f:' = (h~w/k)~z(l  + 82 + 3z2)(1 - z) - (  
f y  = (h~w/k)~z(l + 232 + 41z2 + 7z3)(1 - z ) - ~  
f; = ( h ~ w / k ) ~ ~ ( l  + 542 + 2409 + 1 7 0 ~ ~  + 15z4)(1 - z ) - ~  
fi = (h~w/k)~z(l  + 1172 + 1 0 5 2 ~ ~  + 1 7 7 2 ~ ~  + 6 2 7 ~ ~  

f y  = (h~w/k)~z(l  + 2442 + 3 9 9 7 ~ ~  + 129929 + 107872' 

f; = (hc~/k)~z( l  + 4992 + 1 3 9 9 5 ~ ~  + 785772 + 1237272' 

f y  = (h~w/k)~z(l  + 10102 + 4 6 5 9 0 ~ ~  + 4219309 + 1122560~~ 

It is convenient to calculate the anharmonic correction at a few widely 
spaced temperatures, say 250, 500, 750, 1000, 2000, 3000, 4000, and 
5000"K., and fit the results by least squares to 

(71) 

(70) 
+ 31z6)(1 - z)-' 

+ 21562' + 63z6)(1 - z ) - ~  

+ 582212' + 7 0 9 3 ~ ~  + 127z7)(1 - z ) - ~  

+ 9979742' + 290050~~ + 226702' + 2552*)(1 - ,)-lo 

Fanh/T = a + b/T + c log T + dT + eT2 

and the thermodynamically consistent equations for Hanh and Canh. 

Values at intermediate temperatures are given by the resulting equations 
with an error considerably less than 0.001 cal. per degree when the under- 
lying calculations are made with equal accuracy. 

In  the case of polyatomic molecules with no two vibrations of the same 
frequency the procedure is obvious. When there are n identical frequencies 
the level vhcw has a quantum weight (n + v - l)!/(n - l)!d, which is a 
polynomial in v and could be multiplied out into P(v ) .  It is much more 
convenient to proceed a little differently, however, as indicated by the 
following example with n = 4. The weight factor is then (1/6)(v + 1) 
(v  + 2)(v + 3). Define 

(1 - 2)-'mi = (72) 
00 

(1/6)(v + l)(u + 2)(0 + 3) vizU 
Y - 0  

so that mi will play a r6le analogous to the previously used f i .  

easily shown by using the formulas forfi that 
Then it is 

mQ = 1 
m1 = 42(1 - z)-' 
m2 = 42(1 + 42)(1 - z ) - ~  
ma = 42(1 + 132 + 16z2)(1 - z ) - ~  
m4 = 42(1 + 322 + 113z2 + 64z3)(1 - 2)-' 

(73) 
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Tables of the derivatives mi and my can then be prepared and used in 
exactly the same way as f and f 7 .  This procedure has the very great 
advantage of isolating the complete harmonic factor (1 - z ) - ~  and keeping 
a relatively small anharmonic contribution. 

I t  is to be expected that the higher levels will be somewhat less degen- 
erate than simple theory indicates. An example is furnished by the linear 
triatomic molecule which has been shown by Dennison (17) to have two 
single valence vibrations w1 and w3 and one double bending vibration w2. 
The energy is 

E = hc[wivl + 0 2 ~ 2  + ~ 3 ~ 3  - U U ~  - b ( ~ :  - (1/3)12} - CV:  - dvlvz 
- ~ 1 ~ 3  - fvzv3 + higher terms] (74) 

where 1 is a subsidiary azimuthal quantum number with values - v ,  - v 
+ 2, Then the degeneracy is removed when 1 is considered, 
and 

. v - 2, v .  

where z(2) means summation over alternate values of the index. In 
handling this summation the first of the following formulas is necessary; 
if higher anharmonic terms are to be considered, the second one also will be 
needed. 

+ v  

X(2) 12 = ( v / 3 ) ( v  + l)(v + 2 )  

(76) 
- V  

+ v  c(') l4 = (v/15)(v + l ) ( v  + 2)(3v2 + 60 - 4) 
- V  

The resulting formula for Q has been published elsewhere (64) and need not 
be repeated here. It consists of harmonic and anharmonic factors and 
hence is convenient for computation. Similar methods undoubtedly can 
be used for more complex polyatomic molecules whenever the spectroscopic 
data become available. 

Another complication which can arise in polyatomic molecules is degen- 
eracy involving unequal frequencies whose ratio is approximately that of 
two small integers. Thus in carbon dioxide w1 is almost exactly 2w2, and 
there are as a result perturbations of the order of 50 cm.-l in the positions 
of the levels from locations based on a simple equation such as equation 
74. An exact analysis of the data for carbon dioxide has been given by 
Adel and Dennison ( l ) ,  and their equations have made possible exact 
calculation of Q (64). The computations are somewhat lengthy, however, 
and since rather special methods are needed the details will not be dis- 
cussed here. 
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A n  alternative method of vibrational summation 
* An alternative method has been developed by Gordon and Barnes (42) 

and extended by Gordon (38).  Consider an unsymmetrical '2 diatomic 
molecule with energy levels given by 

E = ~ c [ ( v  + 1 / 2 ) ~ e  - (V  + 1 / 2 ) ' ~ e ~  + Bv(J + 1/2)' 

+ Du(J + 1/214 + Fv(J + 1 / W I  (77) 

qv = kT/Bvhc d v  = - 2(Dv/Bv)qv fv = - 6(Fv/Bv)q: (78) 
Put 

In  this notation equation 33 becomes 

Qrot = e 1 / * q u p v ( l  + 1/12qv + d ,  + 3d: + fu + . . .) (79) 
Now use the unconventional representation 

Q = Q ~ e ' / ~ ~ o q 0 ( 1  + PIE + PzB2) ( l  + 1/12q0 + do + 3di + fo) (82) 

3 = ( l / Q v )  y'2e--rvhc/kT 
U 

It is at  this point that Gordon and Barnes introduce the essential feature 
of their method. It is evident that log Qv, 8, and 8' are functions of hcw,/kT 
and 2. They give double-entry tables for these three functions as well as 
for a number of others needed in calculating Q' and Q". Once these tables 
have been prepared the thermodynamic functions can be computed some- 
what more rapidly than in the purely analytic way. The method is some- 
what inflexible, but not to  the extent that might be imagined. It lacks 
the capability of making calculations of unlimited precision, but it has 
been shown to yield accuracy as great as is aimed a t  in most current calcu- 
lations. The account of the method given here is very incomplete; it must 
not be thought that the space devoted to i t  is a measure of the utility of the 
technique. 
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IV. APPLICATIONS 

Methods 
Thermodynamic functions obtained by the methods of the foregoing 

pages may of course be used in exactly the same ways that have now be- 
come classical for functions obtained from experimental specific heats, 
equilibrium constants, electromotive force values, etc. Somewhat differ- 
ent procedures, however, may be used with advantage. Both H and F 
as given by these calculations are referred to the gas at O’K., that is, in the 
non-vibrating, non-rotating, non-translating state of lowest electronic 
energy. This is frequently indicated by writing F o  - E: in place of F .  
It is necessary to correct the purely spectroscopic “AF” for a reaction by 
adding AE: . When accurate spectroscopic dissociation energies are 
known, AE: can be obtained directly; then to calculate equilibrium con- 
stants it is necessary to calculate spectroscopic values only for FIT,  and 
hence only Q is needed. When a calorimetric heat of reaction is used, it is 
necessary to calculate H up to the temperature of the calorimetry to obtain 
AE; , but equilibrium constants for higher temperatures may then be 
obtained from F/T. Even when all the thermodynamic functions have 
been computed, the foregoing method is considerably more expeditious 
than the more conventional procedures that have sometimes been used. 
Likewise it will be found that H is far more useful than C,, and the habit of 
talking about specific heat when only integrated values are actually used 
should not mislead one into graphical integrations of spectroscopic C, 
values. 

Historical 
The earliest actual calculations seem to be those of Urey (97), Tolman 

and Badger (95), and Hicks and Mitchell (47), all dealing with HCI. In  
all these calculations incorrect quantum weights were used. Giauque and 
Wiebe (31) made the first correct calculation of the entropy of HC1, and 
Hutchisson (49) the first correct calculation of its specific heat. Mean- 
while Dennison (16), assuming a frozen ortho-para equilibrium, had 
successfully calculated the specific heat of hydrogen. The method was 
thus well-established in 1928, though the development of convenient 
mathematical techniques came somewhat later. 

Results of calculations 
In  the following pages there is an attempt to include all but the most 

trivial calculations that have been made. Compounds are arranged 
according to the system used in the International Critical Tables; the key- 
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numbers used here are 

0 H C1 Br I S N C 
1 2 4  5 6 8 11 16 

All isotopes of an element are assigned the same key number. Equilibria 
are discussed under the component of highest key number. 

Values of - F/T for atomic oxygen have been 
tabulated by Johnston and Walker (58); a few minor corrections to these 
values were published later (59). 

Molecular oxygen, 02. Johnston and Walker (57) calculated C,, S, and 
- F/T to 5000°K.) taking account of the normal 2 2 ,  state and the lZ; state 
a t  1.62 v. above the normal. They omitted the lA level, which had been 
predicted to lie 0.8 v. above the normal state but had not yet been observed. 
They (58) combined their - F/T values with a spectroscopic heat of disso- 
ciation to calculate equilibrium constants for 

0 2  = 2 0  

Spencer and Justice (93) gave an empirical equation to fit the spectro- 
scopic C, values. Lewis and von Elbe (71) calculated from the excess 
observed specific heat of O2 in Os explosions over Johnston and Walker's 
values that the lA state lay 0.75 v. above the normal; revision (74) of this 
calculation, with correction for temperature gradients in the bomb, sub- 
sequently gave 0.85 v. Meanwhile Herzberg (46) had observed the 0, 0 
band of the system az;-lA: at  7881.6 cm.-', thus definitely fixing the lA 

state 0.97 v. above the normal, and Johnston and Walker (60) had recalcu- 
lated their earlier values of C,, S, and - F/T for O2 and of K for the disso- 
ciation 

0 2  = 2 0  

from 1000 to 5000'K. and given a complete table for H from 90.13' to 
5000°K. The agreement between the position of the lA level, as deter- 
mined by spectroscopy and as estimated by Lewis and von Elbe from 
experimental specific heats in combination with the incomplete spectro- 
scopic values, is really excellent. This will be realized when it is stated 
that a t  2500°K.) slightly above the highest explosion temperatures, a lA 
level a t  0.97 v. increases H by 160 cal., and one at  0.85 v. by 250 cal. This 
difference of 90 cal. amounts to a temperature difference of less than 10°C.) 
and is in the direction to be accounted for by a slight heat loss during the 
explosion. 

Urey and Greiff (98) calculated the ratio of Q 
(including the translational part) for 0:' to that for O'," at 273.1, 293.1, 

Atomic oxygen, 0. 

Molecular oxygen, 0:'. 
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and 600°K.; these values are referred to the non-vibrating state as a 
zero of energy and are thus immediately applicable to the calculation of 
equilibrium constants in isotopic exchange reactions. In  what follows this 
somewhat specialized Q will be designated f, following the notation used by 
Urey and Greiff. 

Ozone, Os. Kassel (62) calculated approximate values of - F/T for 
ozone up to  5000°K. on the basis of an approximate frequency assignment, 
and from the thermochemical heat of formation of ozone calculated K for 

and 
os = 02 + 0 

os = 802 

The results showed that earlier experimental attempts to determine the 
entropy of ozone by electromotive force measurements and also by the 
formation of ozone when filaments were heated in liquid oxygen (24) had 
given wholly incorrect values. The maximum concentration of ozone 
in the system O-Oz-03 at  equilibrium at  a total pressure of 1 atm. is 
atm. at 3500°K.; at all temperatures above 900°K. 0 is more abundant 
than 03. The 1 per cent of ozone formed in liquid oxygen must have been 
due to the escape of atomic oxygen from the hot region; the mole fraction 
of 0 at 2300°K. is about 0.5 per cent, a value of the right order of magnitude 
to support this interpretation. The same spectroscopic data were used 
later to calculate H for ozone up to 1000'K.; the values may be found in 
the useful tabulation of Lewis and von Elbe (73). 

Atomic  hydrogen, H. 
Deuterium,  D. Johnston and Long (55, 56) have tabulated -FIT to  

3000°K. 
Molecular hydrogen, Hz. The first successful spectroscopic calculations 

for hydrogen were the historic specific-heat calculations of Dennison (16)) 
in which a rigid molecule was assumed, and hence no high accuracy was 
obtained. Giauque (25) used the actual energy levels to calculate the 
equilibrium ortho-para ratio up to 298.1°K., where the composition is 
25.074 per cent para, 8 at  298.1"K.) Hand C, up to 298.1"K. for pure ortho, 
pure para, the 3 : 1 mixture, and the true equilibrium composition, and 
- F/T from 298.1"K. to 5000°K. Using the spectroscopic heat of dissocia- 
tion given by Richardson and Davidson (85), he calculated also the equilib- 
rium constant for 

Giauque (25) has tabulated - F/T to 5000°K. 

obtaining values surprisingly close to the experimental results of Lang- 
muir (70). The calculated entropy agreed with the experimental third 
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law value only when the entropy of mixing of ortho and para states in the 
solid, - (R/4) log 1/4 - (3R/4) log 1/12, was added to the observed value. 
The controversy concerning the legitimacy of this addition has now sub- 
sided and need not be revived here. Gordon and Barnes (40) calculated 
approximate values for C, and S up to 1200°K. Davis and Johnston (15) 
subsequently calculated C,, H and S to 5000°K.; they also gave a corrected 
table for - F/T which replaces the corresponding values given by Giauque, 
and gave a few additional corrections to Giauque's calculations. Empiri- 
cal equations for C,  have been given by Spencer and Justice (93) and 
by Chipman and Fontana (8), both based on Davis and Johnston's 
calculations. 

Urey and Rittenberg (99) used theoretical spectroscopic 
relations to calculate the rotation-vibration levels of HD and of D2 from 
those of H2, and used these levels to calculate - F/T from 50 to 700°K. 
and also the equilibrium constant for 

HD and D2. 

H2 + D2 = 2HD 

Johnston and Long (55) calculated C,, H ,  S, and - F/T for HD and D2 
up to 3000°K. They give C, and H for D2 for the pure para form, the 
pure ortho form, the 1 : 2 ratio, and the true equilibrium composition at  
temperatures up to 300°K.; at  higher temperatures the values become 
essentially identical for all four cases. The calculated ortho-para equilib- 
rium ratios have been confirmed by Farkas, Farkas, and Harteck (23). 
Farkas and Farkas (22) showed that the equilibrium constant for 

H2 + D2 = 2HD 

wa8 about 4. More precise measurements by Rittenberg, Bleakney, and 
Urey (86) checked closely with the theoretical values over the range 298 
to 741°K. Later experiments by Gould, Bleakney, and Taylor (44) using 
CrzOa and Ni catalysts to obtain equilibrium carried this confirmation 
down to 83"K., where K = 2.2. 

OH. Villars (100, 101) calculated S288, but made an error in electronic 
quantum weights. The lowest states of OH are an inverted 2 1 1 1 p , 1 ~ / 2  

doublet, each level of which has of course A-type doubling, which in this 
case is unusually large (due to the small moment of momentum). John- 
ston and Dawson (53) calculated C, from 0.01 to 5000"K., the lower part 
of this range being of course only an amusing exercise. The A-doubling 
contribution to C ,  reaches a maximum at  0.060"K.) the 21T1/2 excitation 
contribution a maximum at 100"K., which is about the point where the 
rotation has become fully developed. Johnston and Dawson also calcu- 
lated S from 250 to 5000°K. and H and -FIT from 298.1" to 5000°K. 
The underlying spectroscopic data are precise, but exact equilibrium con- 
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stants cannot be calculated since no heat of reaction involving OH is 
precisely known. Lewis and von Elbe (72), however, have determined an 
approximate value for AH0 for 

H2O = OH + 3 0 2  

This reaction is discussed in the following paragraph. 
Water, HzO. Gordon and Barnes (40) calculated rough values for C, 

and S from 400" to 1200°K. Gordon (35) used somewhat more accurate 
data to calculate - F/T to 3000°K. Finally, taking into account anhar- 
monic terms and rotation-vibration interactions, Gordon (36) gave precise 
values for - F/T,  S, and C, to 1500°K. and less accurate values (37) up 
to 3000°K. Spencer and Justice (93) gave an empirical equation to repre- 
sent these C, values. 

Lewis and von Elbe (73) used the data of Giauque (35) on H2, of John- 
ston and Walker (57) on 02 with an approximate correction for the lA 
level, and Gordon's final values for HzO, together with AH0 = -57, 
111 cal., based on Rossini's (90) precise heat of combustion of hydrogen, 
to calculate equilibrium constants for 

H2 + 302 = H2O 

from 300" to 3000°K. They used the same data for H2 and HzO, together 
with their (72) explosion value of AH0 = -63,000 cal. to calculate equilib- 
rium constants for 

OH + $Hz = HzO 

from 300' to 3000°K. 
Water, HzOls. Urey and Greiff (98) calculated the ratio of f values 

for H20l8 and H2Ol8 at  273, 298, and 600"K., and the equilibrium constant 
for 

0;' + 2HzO"(g) = 0:' + 2HzO1'(g) 

a t  the same temperatures, the values being 1.048, 1.041, and 1.006. 

for HDO and D20, estimated the equilibrium constant for 
HDO and D2O. Topley and Eyring (96), using theoretical frequencies 

H2O + D2O = 2HD0 

as 3.26 at  298°K. and 3.40 at 373°K. for the gaseous state; they predict 
that these values will apply also to the liquid. Crist and Dalin (11) 
calculated equilibrium constants for 

HDO + H2 = H2O + D2 
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from 300" to 900°K. and also determined an experimental value of 0.66 at 
800°K. Upon correction of an error in the first calculation the theoretical 
values became (12) 0.35 at  300°K.) 0.62 at 525°K.) and 0.83 at  900°K. 
This calculation is based upon that of Urey and Rittenberg (99) for H2 
and HD and upon Topley and Eyring's (96) frequencies for HzO and D2O. 
Crist and Dalin (13) showed that the system H~-HD-Dz-H~O-HDO- 
DzO depends upon three equilibrium constants which may be taken as 

H2 + D2 = 2HD 
DzO + Hz = HzO + D1 

HDO + Hz = H20 + H D  

The first and third of these had been calculated previously. Crist and 
D a h  calculated the second also, finding 0.2 at  373°K. and 0.606 at  800°K. 
They present curves giving the equilibrium concentrations of all six con- 
stituents as a function of the ratio D/(H + D) for the special case 

(H2) + (HD) + (D2) = (HzO) + (HDO) + (D2O) 
at 373" and 800°K. The calculated results a t  the higher temperature were 
shown to agree with experimental values. 

Chlorine, Cla6 and CP7. Giauque and Overstreet (30) tabulate - F/T 
for the normal isotopic mixture. 

Chlorine, Cli6, Cla6CIa7, and Cli7. Giauque and Overstreet (30) calcu- 
lated - F/T for each of these molecules from 250" to 3000°K. They showed 
that at 298°K. the equilibrium constant for 

C1i5 + Cl:' = 2CPCP 

was 3.9997, against the value 4, which would correspond to no preference 
among the three types of molecules. They interpreted this close agree- 
ment to mean that no isotopic separations would occur to an appreciable 
extent at 298°K. or higher temperatures. They, therefore, combined the 
three - F/T values to a weighted average "practical" - F/T from which 
nuclear spin and mixing effects are excluded; they discuss in detail the use 
of such practical functions. It may be seen, however, that this averaging 
process is not allowable when the highest accuracy is desired. Thus one 
can calculate from the data given by Giauque and Overstreets that -AF/T 
= 0.012 and K = 1.006 for 

c i p  + 2 ~ ~ 1 3 7  = c1;7 + 2 ~ ~ 1 3 5  

6 In  making this calculation, it should be noted that the astonishing figures given 
by Giauque and Overstreet for the zero-point energies of the Clr, Cl"ClS7, and Clp 
molecules, 800.46, 789.60, and 778.56 cm.-1 are numerically correct, but are calories 
instead of cm.-' 
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These authors failed to make this calculation, and thus failed to note the 
possibility of slight isotopic separation. When this separation is not 
important, the weighted averages may be used. 

Giauque and Overstreet (30) used their - F I T  values and a spectro- 
scopic AEo of 56,900 cal. to calculate AF/T for 

Cl2 = 2c1 

from 250" to 3000°K. Spencer and Justice (93) calculated the specific heat 
from 300" to 1500°K. and gave an empirical equation to fit their values. 

Urey and Greiff (98) calculated the ratio of f values for Cl;' and Cl;'. 
Chlorine diozide, C10:' and C10:'. The three fundamental frequencies 

of C10:' are known from the work of Ku (67), but there is some uncer- 
tainty as to the shape of the molecule; the more probable value for the 
angle 0-C1-0 is 65", but 121" 20' is not excluded. Using both sets of 
constants and theoretical isotope shifts, Urey and Greiff (98) calculated 
the f ratio, and found for the equilibrium constant of 

C10i6 + 2H20"(g) = C10i8 + 2H20"(g) 

the values 1.021, 1.015 at  298°K. 
Hydrogen chloride, HCla5 and HCP7. Giauque and Overstreet (30) 

gave - F / T  for HCP5, HCP', and the equilibrium mixture, and AF/T for 

+Hz + 3C12 = HCl 

from 250" to 3000°K. In  calculating AF/T they used the value AF208.1 

= -22,741 cal. obtained by Randall and Young (84) from electromotive 
force measurements, corresponding to AEo = -21,984 cal. Rossini (91) 
found the calorimetric value AHze~. 1 = -22,063 f 12 cal., giving AEo = 
22,019 f 12 cal. He assigns an uncertainty of 33 cal. to the Randall and 
Young value, arising almost entirely from the step 

HCl(aq) = HCl(g) 

A slight revision of Giauque and Overstreet's AF/T  values is thus perhaps 
desirable. Giauque and Overstreet also calculated 8298 .1  more accurately 
than Giauque and Wiebe (31) had done, finding 44.658 (with entropy of 
mixing and of nuclear spin excluded) against the latter workers' experi- 
mental third law value of 44.5. Spencer and Justice (93) calculated C, 
from 300" to 1500°K. and gave an empirical equation to fit their results. 
Urey and Greiff (98) calculated f ratios for HCP7 and HCla5 and K for 

c i ; ~  + 2 ~ ~ 1 3 7  = c1;7 + 2 ~ ~ 1 3 5  

Deuterium chloride, DCP5. Urey and Rittenberg (99) used theoretical 
spectroscopic relations to obtain energy levels of DCP5 from those of HClaa; 
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they calculated - F/T for DCP6 from 200" to 700°K. Since they used a 
slightly different energy formula for HCP6 than that adopted by Giauque 
and Overstreet, and also a slightly different value of R, they calculated 
also the corresponding consistent values for HCP.  They thus obtained 
the following values for K of 

H~ + 2 ~ ~ 1 3 5  = D~ + ~ ~ 1 3 5  

T . . . . . . . . . . . . . . . . . . .  0" 200' 298.1' 400" 575" 700°K. 
K . .  . . . . . . . . . . . . . . . .  0.000 0.309 0.502 0.647 0.807 0.874 

Atomic bromine, Br. - F/T has not been tabulated explicitly, but dis- 
sociation constants are given below. 

Bromine, Br2. Gordon and Barnes (43) have calculated -FIT, S, 
and C, from 200" to 1600" K., using the spectroscopic constants for BrT9B1.8I. 
They show that this is equivalent within their limit of error to weighting 
the separate isotopic varieties as Giauque and Overstreet (30) did for 
chlorine. They calculated the equilibrium constant for 

Br2 = 2Br 

using the accurate spectroscopic value AEo = 45,230 cal. given by Brown 
(6). The experimental values of R log K given by Bodenstein (5) are 
about 0.5 cal. per degree less than the calculated values. It has been sug- 
gested to the writer (89) that this discrepancy may indicate the formation 
of Br3. Spencer and Justice (93) have given an empirical equation to fit 
the C, values of Gordon and Barnes. 
ratios for Bri', Brio. 

Giauque and Wiebe (32) calcu- 
lated 8298.1, finding 47.53 as against their third law value of 47.6. This 
calculated value was revised subsequently (33) to 47.48. Gordon and 
Barnes (43) calculated -FIT, S, and C, from 200 to 1600°K.; they give 
8 2 9 8 . 1  = 47.481. They also calculated K for 

Urey and Greiff (98) calculated 

Hydrogen bromide, H B P  and HBrsl. 

$H2 + 3Brz = HBr 

using a calorimetric heat of reaction. 
given an empirical equation to fit the above C, values. 
(98) calculated f ratios for HBrS1 and HBrn, and found K for 

Spencer and Justice (93) have 
Urey and Greiff 

Bri9 + 2HBr8' = Bri' + 2HBr" 

The values of 1.001 at 273"K., 1.0008 at 298°K. and 0.99994 a t  600°K. 
effectively discourage the use of isotopic exchange reactions to separate 
isotopes of elements with large atomic weights. 
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Iod ine ,  1 2 .  Gibson and Heitler (34) used the spectroscopic values for 
IO, W O ,  and D, with a slight anharmonic correction not clearly explained, 
to calculate K for 

I 2  = 21 

from 1073" to 1473°K. Their results agree to within less than 1 per cent 
with experimental values of Starck and Bodenstein (94). Giauque (26) 
calculated S Z ~ ~ . ~  = 62.29 for IZ gas a t  1 atm. He combined spectroscopic 
data with accurate vapor pressure measurements to obtain AEo = 15,640 
f 3 cal. for 

Hydrogen iodide,  HI. Giauque and Wiebe (33) calculated S298.1 = 
49.4, using the spectroscopic moment of inertia but assuming a rigid mole- 
cule, owing to lack of sufficient data; their third law value was 49.5. 

Urey and Rittenberg (99), likewise handicapped 
by insufficient data, calculated the following K values for 

Deuter ium iodide,  DI. 

Hz + 2DI = Dz + 2HI 
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0" 298.1" 400" 575" 700°K. 
K. .............................. 0 1.164 1.212 1.234 1.222 

These values were confirmed experimentally by Rittenberg and Urey (87). 
McMorris and Yost (77) calculated from spectro- 

scopic data S298.1 = 59.2; by combination of this value with the values 
S2s8.1 = 62.29 for I2(g) and S298.1 = 53.31 for Clz given by Giauque, and 
with a spectroscopic AEo they find 

Iod ine  chbr ide ,  IC1. 

-AF/T = 3461/T + 1.40 
for 

$Iz(g) + $ClZ = IC1 

They quote a more recent calculation by Brown, according to which Sz98.1 
for IC1 is 59.15 and -AF/T = 3280/T + 1.36. 

-FIT values have been tabulated by Montgomery and 
Kassel (79) from 250" to 5000°K. 

Montgomery and Kassel (79) calculated - F/T from 250" 
to 5000°K. If the reinterpretation of the underlying spectroscopic data 
suggested by Badger (2) is accepted, these values must be increased by 
0.55, as was shown by Cross (14). Montgomery and Kassel also gave 
loglo K for 

Sulfur, S. 

Sulfur, Sz. 

Sdg) = 2 s  
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These values must be decreased by 0.120 to take care of the above correc- 
tion. Cross calculated S298.1 = 54.417. 

Sulfur monoxide, SO. Montgomery and Kassel (79) calculated - F/T 
for SO and by the use of an accurate spectroscopic energy of dissociation 
and of Johnston and Walker's (57) values of - F/T for 0 2 ,  uncorrected 
for the lA state, calculated loglo K for 

4Sz(g) + a02 = so 
These values must be decreased by 0.060 to take account of the changed 
values for SZ, and by 0.002 a t  2000°, 0.015 at 3000", 0.038 a t  4000" and 
0.065 a t  5000°K. for the IA level. 

Sulfur dioxide, S0i6 and S0i8. Gordon (39) calculated -FIT for 
sulfur dioxide from 298" to 2800°K., using somewhat incomplete spectro- 
scopic data. He obtained AEo for 

*Sz(g) + 0 2  = so2 
from a combination of spectroscopic calculations with calorimetric data 
for 

s r h  + 0 2  = SO2 

and 

Srh + HZ = HzS 

and thus calculated K for the first reaction above. He used the SO values 
of Montgomery and Kassel (79) as revised by Cross (14) and the 0 2  

values of Johnston and Walker (57) uncorrected for the lA level, to calcu- 
late K for 

so + 302 = so* 
Urey and Greiff (98) calculated the f ratio for S0i8 and SO:'. 

Hydrogen sulfide, H2S. Cross (14) used incomplete spectroscopic data 
to calculate - F/T,  S, C, from 212.77" to 1800°K. Comparison of spectro- 
scopic values with equilibrium measurements gives for 

the precise value AEo = 19620 f 30 cal. 
Nitrogen, N. -FIT values have been tabulated up to 5000°K. by 

Giauque and Clayton (28). 
Nitrogen, Ni4. Giauque and Clayton (28) calculated - F/T to 5000°K. 

and also 8288.1 = 45.788 excluding the nuclear spin entropy R log 9. The 
experimental value is 45.9. The agreement shows that ortho- and para- 
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nitrogen are present in the solid state at low temperatures in the high- 
temperature proportion of 6:3, but that the paranitrogen is present in 
the solid in a form carrying only the spin weight of 3. There are then nine 
forms present in the solid in equal quantities, giving a contribution R 
log 9 to the entropy which does not appear in the specific heat measure- 
ments; since this is just equal to the excluded spin entropy, the third law 
value agrees with the spectroscopic one. If the paranitrogen molecules 
were rotating in the crystal, they would have an extra weight factor of 3; 
the unmeasured entropy of the solid would then be 2/3 R log 9 + 1/3 
R log 27 = R log 9 + 1/3 R log 3, and the third law value would be 0.7 
cal. per degree less than the spectroscopic value. 

Giauque and Clayton made a tentative calculation of K for 

Nz = 2N 

based on AB0 = 182,000 cal. 
Johnston and Davis (52) gave a curve showing C, for the ortho, para, 

equilibrium, and non-equilibrium mixtures up to 20°K. They have tabu- 
lated C, and S from 50" to 5000"K., and H from 100" to 5000°K. Spencer 
and Justice (93) fitted an empirical equation to these C, values. 

Nitrogen, Ni5. Urey and Greiff (98) calculated the ratio of f values 
for N i b  and Ni4. 

Nitric o d e ,  NO. Johnston and Giauque (54) calculated S121.36 = 
43.75, and interpolation of the later calculations of Johnston and Chapman 
gives S1~1.36 = 43.753. Johnston and Giauque found an experimental 
value of 43.0 from specific heat measurements. The discrepancy of 
0.75 - R/2 log 2 was explained by them as due to the existence in the 
solid of two forms of NzOz differing in coupling. Later Blue and Giauque 
(4) proposed that the extra entropy in the solid arises from two different 
orientations of a single kind of NzOZ. Johnston and Chapman (50) calcu- 
lated - F/T from 50" to 5000"K., S from 1" to 5000"K., and C, from 0.5" 
to 5000°K. A numerical error in the value of - F/T  at  1125°K. was cor- 
rected subsequently (51). Witmer (108) pointed out an error by John- 
ston and Chapman in interpretation of the spectroscopic data and gave 
revised tables for C,, S, and -F IT  from 1" to 500°K.; at higher tempera- 
tures the error produces a negligible effect on the calculated thermody- 
namic functions. Johnston and Chapman used the estimate AEo = 
142,000 cal. to calculate approximate values of K for 

This value is still uncertain. 

N O = N + O  

Giauque and Clayton (28) used their own - F/T for Nz, those of Johnston 
and Chapman for NO, those of Johnston and Walker (57) uncorrected for 
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the lA level for 02 and unusually concordant calorimetric data of Thomsen 
and Berthelot equivalent to AEo = 21,400 cal. to calculate K for 

+Nz + 302 = NO 

from 298" to 5000°K. These values must be considered provisional until 
a more certain value of AEo is available. 

Nitric ozide, N160. Urey and Greiff (98) calculated K for 

Ni4 + 2N"O = Ni6 + 2NI4O 

Nitrous ozide, NzO. Kassel (64) used spectroscopic data which gave 
the anharmonic constants, but not the probably less important rotational 
stretching correction, to calculate - F/T, H, and C, from 250" to 1500°K. 
Recent calorimetric data for the reaction 

Nz + 3 0 2  = NzO 

give AEo = 20,429 cal. The equilibrium constant then was calculated as 
6.87 X at 300"K., 6.87 X lo+' at  1000"K., and 1.98 X 10-7 at  1500" 
K., on the basis of Giauque and Clayton's (28) data for Nf and Johnston 
and Walker's (57) data for 02, uncorrected for the lA level. 

Kassel gave SZO~.I = 52.575 with nuclear spin excluded. Blue and 
Giauque (4) calculated 52.581. Previous less accurate calculations had 
been made by Badger and Woo (3), who found 52.58, and by Rodebush 
(SS), who used an incorrect moment of inertia. Blue and Giauque's ex- 
perimental third law value is 51.44, 1.14 lower than the calculated value. 
If in the actual crystal at the lowest temperatures reached the orientations 
NNO and ONN occurred at random, the crystal would possess an entropy 
R log 2 = 1.377 which would have to be added to $(C,/T)dT. The 
discrepancy is slightly less than this, a fact which may be taken to indi- 
cate a partial orientational ordering. 

No extensive calculations have been made for am- 
monia. An old controversey involving Villars (102), Giauque, Blue and 
Overstreet (27), and MacDougall (75) with regard to the entropy need 
not be revived now. The absolute S29s.l is 52.10; with all nuclear spin 
excluded the "virtual" entropy is 45.79. One or the other of these values 
should be used in all calculations. 

Bryant (7) has given an empirical equation to fit his approximate spec- 
troscopic C, values from 300" to 2000°K. 

Carbon, C. By integrating experimental heat-capacity data, Clayton 
and Giauque (9) have calculated - F/T for &graphite from 250" to 3000°K. 
These are not spectroscopic values, of course, but are included here for 
convenience. 

Ammonia, NH3. 
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Carbon monoxide, Cl20l6, C13018, and C12018. Clayton and Giauque (9) 
calculated -FIT for CO to 5000°K.; they later (10) published a revised 
table, as the first had been based on an incorrect energy level equation. 
They gave S2ss.l = 47.316; the experimental third law value was 46.2. 
The difference of 1.1, slightly less than R log 2 = 1.38, was considered to 
indicate an almost random distribution as between CO and OC in the 
crystal, with a slight preference for regularity. They used heats of com- 
bustion of graphite and of carbon monoxide to calculate equilibrium con- 
stants for 

C (@-graphite) + 3 0 2  = CO 

up to 3000°K. These calculations, owing to the uncertainties in - F/T 
and the heat of combustion for graphite, were not considered worth revis- 
ing along with the - F/T values for CO. Kassel (63) calculated the other 
thermodynamic functions for CO, using Giauque's original incorrect 
energy equation. Johnston and Davis (52) used correct data to calculate 
C, and S from 50" to 5000'K. and H from 100" to 5000'K. Spencer and 
Justice (93) gave an equation to represent these C, values. Urey and 
Greiff (98) calculated f ratios for C130, Cl20 and for C0l8, C0l6, and K for 

C12 (@-graphite) + C130 = C13 (@-graphite) + C'20 
CO" + H201' = CO'* + Hz016 
2C0'6 + 0;' = 2C0'8 + 0 : e  

Carbon dioxide, Cl20:", Cl20:', and C"O:'. Approximate calculations 
for COz were made by Gordon and Barnes (40) and Gordon (35). Kassel 
(64) later used more complete data to calculate accurate values for - F/T, 
H, and C, up to 1500°K. and somewhat uncertain estimates up to 3500°K. 
He used the data of Clayton and Giauque (9) on C, their revised data (10) 
on CO, the data of Giauque (25) and of Davis and Johnston (15) on H2, 
of Johnston and Walker (57) on 0 2 ,  and of Gordon (36, 37) on H20,  
together with precision heats of combustion, to calculate equilibrium 
constants for 

2c02 = 2 c o  + 0 2  

GO2 + c = 2 c o  
C02 + H2 = CO + H2O 

The values for the water gas equilibrium agree well with the best experi- 
mental values. Those for the producer gas reaction suggest a "zero- 
point" entropy of 0.5 cal. per degree for graphite, as had been pointed out 
by Gordon (35). 

Urey and Greiff (98) calculated f ratios for COi8, CO:" and for C1302, 
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Cl202, and K values for 

CO;' + 2H2018(g) = C0i8  + 2H2016(g) 
cop + c0;a = 2C0'6018 
Cla0 + C1202 = Ci20 + Ci302 

C12 + C1302 = C13 + C1202 

Methane, CHI. Approximate values of -FIT up to 5000°K. were 
calculated by Kassel (60a) and used to obtain K for 

C (&graphite) + 2H2 = CHI 

Void (105) used essentially the same data to calculate C, from 273" to 
773°K. 

Kassel (60a) calculated -FIT to 3000°K. and also 
K for 

Acetylene, C2H4. 

2C @-graphite) + Hz = CZHZ 

These later values are considerably in doubt, owing to the uncertain heat 
of combustion of acetylene. 

Kassel (60a) used very imperfect spectroscopic data 
to estimate - F/T for ethylene and K for 

Ethylene, C2H4. 

2C @-graphite) + 2H2 = C2H4 

up to 3000°K. He also calculated C, at 300" and 350°K. Smith and 
Vaughan (92) calculated S and H from 298" to 973°K. and C, from 143" 
to 464"K., using somewhat different frequencies than those given by Kwsel; 
these frequencies were chosen in such a way as to give improved agree- 
ment with the experimental values of C,. 

Smith and Vaughan (92) used frequencies given by 
Eucken and Parts (21) as follows: 712 cm.-' (2), 826 (2), 990 (l), 1460 
(2), 1465 (2), 1499 (2), 2975 (6), the multiplicity being indicated in paren- 
theses. The 712 and 826 cm.-1 frequencies have no appreciable support 
from spectroscopic work, but give low temperature C, values in agreement 
with Eucken and Parts experiments. Smith and Vaughan calculated C, 
from 143" to 373.5"K. and S and H from 298" to 973°K. They then 
calculated K for 

Ethane, C2Ha. 

C Z H ~  = C2H4 + HZ 

The calculated values are larger than the experimental, the excess in R 
log K being about 1.2 cal. per degree. They made an error in calculating 
the largest moment of inertia of ethane from interatomic distances; when 
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this error is corrected the discrepancy is increased by 0.27 cal. per degree. 
As was pointed out in an earlier section, ethane has an internal "free rota- 
tion." Smith and Vaughan are inclined to ascribe this disagreement to 
lack of freedom in that rotation. 

Very rough, approximate values for -FIT, H ,  
S ,  and C, for the normal paraffins from ethane through hexane will be 
published by the author in the near future. 

Chloromethanes, CHSC1, CHzClZ, CHCl,, and CCL. Vold (105) used 
incomplete data to calculate C, from 273" to 773'K. 

Hydrogen cyanide, HCN. Badger and Woo (3) calculated Sm.1 = 
48.23 exclusive of nuclear spin entropy. Bryant (7) calculated the specific 
heat and gave an approximate equation. 

Parafins, CnHZn+2. 
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