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I. THE GENERAL LIMIT METHOD 

The general limit method is an exact thermodynamic method, but re- 
quires a knowledge of the properties of gas mixtures, as well as of pure 
gases. 

Ordinary thermodynamics gives us partial differential equations for the 
variation of thermodynamic functions with pressure or volume a t  constant 
temperature and composition. By integration of such equations we can 
determine the value of any desired function at a finite pressure in terms of 
an integration constant, which represents its value when the system is in 
the initial state. If we take this initial state a t  infinite volume and assume 
that the system a t  infinite volume has the properties of ideal gases, we can 
eliminate the constant of integration, thus arriving a t  a formal solution of 
the problem. 

For an understanding of this method it is necessary to know that when 
we calculate the relative value of a thermodynamic function by means of 
integration with respect to several variables the order of the integrations 
makes no difference in the final result, and we can choose the most con- 
venient order. This is to make the pressure or volume integration a t  
constant temperature and composition, and to make it last in the sequence. 

We know that a system of real gases a t  infinite volume does not in all 
respects resemble a system of ideal gases. For instance, the volume change 
on mixing real gases at constant temperature and pressure does not in 
general approach the ideal gas value-zero-at zero pressure, but a finite 
value. Since the entropy and the two free energies become infinite like 
the volume, a similar finite difference between the ideal gas and the in- 
finitely expanded real gas might reasonably be feared in these cases also. 
In any event, the limit method sketched above leads immediately to “in- 

1 Contribution No. 357 from the Research Laboratory of Physical Chemistry, 
Massachusetts Institute of Technology, Cambridge, Massachusetts. 
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finite” integrals2 which must be eliminated before any actual calculation 
can be made. 

Van der Waals (45) used the limit method to  calculate the Helmholtz 
free energy of a mixture of van der Waals gases. Van Laar in 1901 (29) 
stated what changes are necessary in the expression for the entropy of a 
mixture of ideal gases, in order to  obtain an equation for substances in any 
state of aggregation, and proceeded to deduce a general mass-action law. 
It is obvious now that his formal expression could have been justified by 
the use of the limit method, leaving only the infinite entropies and integrals 
to  be discussed. In  his paper with Lorenz in 1925 (31), however, he applied 
the limit method only to the energy, and obtained the entropy expression 
by correcting the ideal gas expression for the “free volume’’ of the gas 
mixture, stating that a rigorous derivation of the entropy expression would 
be published in full elsewhere. 

So far as the writer can discover, none of the immediate successors of 
van der Waals has brought the general limit method into a form suitable 
for actual calculation, nor has removed the difficulty of the infinite entropy 
or eliminated the infinite integrals and their partial derivatives. 

This seems to have been done first by the writer in 1925 (19), by means 
of the assumption that the equilibrium pressure, pl, of a gas in a mixture3 
becomes equal to the product of the total pressure, p ,  by the mole fraction, 
zl, of the gas, as the pressures are indefinitely reduced at  any temperature. 
This must of course be understood to mean that the ratio pl/pz1 approaches 
unity a t  zero pressure. Indeed, according to the very logical development 
of J. A. Beattie (8), this ratio should be expressible as unity plus a power 
series in p beginning with the first power of p and having bounded coeffi- 
cients, i.e., not infhite. With the aid of this assumption the following 
general equation was deduced for the fugacity, je,  of a gas in a mixture 

RT In fe = I” (51 - VI) dp + RT In j p  + RT In XI 

where 61 is the partial molal volume of gas 1 in the mixture a t  the variable 
pressure p, v1 its molal volume at  p ,  and fp is the fugacity of gas 1 at  the 
upper limit,-the pressure of the mixture for which j e  is calculated. This 
isothermal relationship, taken together with the treatment of fugacity by 
Lewis and Randall, solves in principle mass-action problems at constant 

2 Whose integrand, or one of whose limits becomes infinite. 
8 The pressure of the pure gas when in equilibrium with the mixture through a 

4 In accordance with a statement in  the paper (19), zero has been placed in the 
semipermeable membrane. 

lower limit instead of the p* originally printed. 
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temperature. With the aid of certain thermal data, problems involving 
change of temperature may also be solved. 

Starting with the above assumption and the second assumption that the 
energy of a pure gas is expressible a t  any temperature as a similar power 
series in the pressure-both are isothermal assumptions-Beattie (8) has 
given a very complete and logical treatment of the thermodynamics of 
gases and gas mixtures along classical lines, which includes a theoretical 
basis for the determination of thermodynamic temperature by gas ther- 
mometry. 

It is known that the integral of equation 1 is not infinite or zero (22). 
With regard to the possible finite difference between the infinite entropy 
of mixtures of real gases and of ideal gases a t  infinite volume, it can be 
proved (23) from equation 1 that the entropy and also the free energy 
changes on mixing real gases a t  constant temperature and pressure are the 
same in the limit a t  zero pressure as for ideal gases (8). Equation 1 can 
be applied without further hypothesis in case there are enough data relating 
to  the volumes of gaseous mixtures. 

The thermodynamically equivalent relation (2) 

RT In j e  = ip (VI  - RT/p)  dp + RT In p x l  

was later derived by the writer (21), by Gibson and Sosnick (18), and also 
by van Lerberghe (35) (except that the infinite integral was not yet re- 
moved), and was applied empirically by Gibson and Sosnick to the exten- 
sive data of Masson and Dolley (38) on the volumes of mixtures of ethylene 
and argon. Similarly Merz and Whitaker (39) applied equation 2 to the 
data of Bartlett (1). 

These calculations were not really wholly empirical, as in the absence of 
complete data these authors assumed that the integrand was not only 
finite but also zero at zero pressure, which is not the case for the given 
mixtures, according to the writer (22). As there was no immediate chem- 
ical application for the fugacities thus calculated, the calculations represent 
in a. sense one-half a typical thermodynamic correlation. 

The methods now to be discussed are special methods, which, containing 
hypotheses about gaseous mixtures, do not require for their application 
any gas-mixture data, and are the methods promised in the title. 

11. THE METHOD O F  GIBBS 

Gibbs showed (17) that the law of Dalton in the comprehensive form 
given by Gibbs and its thermodynamic consequences are consistent and 
possible for a mixture of gases which are not ideal gases and indeed without 
any limitation in regard to their individual thermodynamic properties. 

CHEMICAL REVIEWS, VOL. 18, NO. 2 
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His proposition-that the chemical potential of a gas in a mixture will be 
equal to the potential of the same gas when pure and at the temperature 
and concentration which it has in the mixture-gives a solution of the 
problem. This solution is very convenient in certain cases, but implies 
that the Gibbs-Dalton law holds throughout the pressure range. Using 
the general limit method, and assuming that this law holds a t  infinite 
volume, the author (24) showed that it will apply a t  all pressures if the 
pressures are additive at constant volume. 

This method of Gibbs has been applied only in a few examples of what 
we may call the vapor pressure problem: by Lurie and Gillespie (37) to their 
data on mixtures of nitrogen and ammonia in equilibrium with barium 
chloride ammine, and essentially by Cupples (1 1), who developed inde- 
pendently by means of interesting physical reasoning a method of calcula- 
tion-which is the same as the Gibbs method-and applied it to the data 
of Larson and Black (33) on mixtures of ammonia, hydrogen, and nitrogen 
in equilibrium with liquid ammonia. The writer (24) compared the calcu- 
lated with the measured values of the mole fraction of ammonia in the 
equilibrium gas mixtures, for both sets of experiments, and stated that the 
deviations of the Gibbs-Dalton law are in all cases smaller than those of the 
ideal gas form, but the improvement is not in most cases impressive. 

Gerry and Gillespie (15) found in the calculation of the normal vapor 
pressure of iodine from the data of the gas-stream method that the errors 
of the Gibbs method are of the same order of magnitude and in general 
slightly greater than for the common assumption that the vapor pressure, 
corrected for the effect of total pressure, equals p q  at the experimental 
pressures. 

In terms of fugacities, the Gibbs-Dalton law states that the fugacity, 
fe, of a gas in a mixture equals the fugacity of the pure gas a t  the tempera- 
ture and concentration of the gas in the mixture. This is evident because 
the chemical potentials are then equal. The limit method gives the 
general equation 

RT In fe  = (dp,/dnl - dp/dnJ dV + RT In flC (3) 

where the first derivative is for the pure gas a t  the molal volume V/zl and 
the second is for the mixture a t  the average molal volume V;  the upper 
limit is the average molal volume of the mixture a t  the pressure and tem- 
perature for which fe is calculated. The derivatives are partial, being 
taken a t  constant volume and temperature, and without variation of any 
mole numbers except for gas 1. 

Putting the integrand of equation 3 equal to zero can be shown equiva- 
lent to announcing additivity of pressures. This equation is given only to 
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show an analogy with the Lewis and Randall fugacity rule; other analogies 
have been given elsewhere (24). 

In  applying the method, the pressure of a pure gas must be determined 
for the same concentration as it has in the mixture. Since this concentra- 
tion, in the case of the vapor pressure problem, often exceeds the concen- 
tration at the normal vapor pressure, a certain degree of extrapolation into 
a metastable region is required. This is however much less than for the 
next method. 

111. THE METHOD OF LEWIS AND RANDALL 

This is based on a suggested rule (36) that the fugacity of a gas in a 
mixture equals its fugacity when pure, and a t  the temperature and total 
pressure of the mixture, multiplied by its mole fraction in the mixture. 
They stated that the rule implies the additivity of volumes at constant 
pressure and the additivity of heat content. Using the general limit 
method, and assuming that this rule holds a t  infinite volume, the author 
(19) showed that it will hold at  all pressures if the volumes are additive. 
A little consideration of equation 1 supplies the proof. 

The method is particularly convenient in studying the variation of the 
equilibrium constant with pressure. The first real test of the rule by 
chemical data was by the author (21), in which the Haber equilibrium 
data of Larson and Dodge (34) were correlated with the pressure data for 
the pure gases with the aid of the Keyes equation of state. It was con- 
cluded that the Lewis and Randall rule is verified excellently to 50 atmos- 
pheres and well at 100. Available constants in the Keyes equation of 
state were sufficient to determine the last two coefficients in the very 
simple equation 

log K ,  = A / T  - B - Cp/T  + Dp/T2 (4) 

The first two coefficients reproduce the absolute value of log K, at  zero 
pressure over the temperature range, and had been determined empirically 
by the author (20). 

The results of this simplified equation were substantially identical with 
the results obtained by exact integrations with the aid of the complete 
Keyes equation of state. Furthermore, different values for the equation 
of state constants as obtained by different authors led to equally satisfac- 
tory agreement with the experimental data. It is evident that “the danger 
of the use of an equation of state of imperfect accuracy for calculations of 
such functions as $’-the ratio of the fugacity to the pressure-as feared by 
Newton (40) can easily be overestimated. 

Newton and Dodge (41) have recently applied the Lewis and Randall 
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rule again to the Haber equilibrium data, using for the pure gases the fugac- 
ity graphs of Newton (40) with good results.6 

The practical significance of the success of the Lewis and Randall rule is 
twofold. First, the enormously important effect of pressure upon the 
yield of a chemical reaction can be calculated reasonably accurately at  
pressures not too high. Second, as pointed out already (21), such success 
means that the equilibrium constant will not vary greatly with composition 
at constant temperature and pressure, and hence not much improvement of 
yield can be expected in the use of unstoichiometrical ratios of reactants. 

On the other hand, success in the calculation of the equilibrium constant 
does not prove the accuracy of the separate fugacities found for the several 
gases involved in the reaction, since compensation of errors can and does 
occur in this calculation, and the writer (19) therefore proposed to study 
simpler systems in which no compensation is possible, such as barium 
chloride ammine in equilibrium with ammonia admixed with an inert gas. 

In the application of the method to the vapor pressure problem the inte- 
gral of (v - RT/p)dp has to be determined from zero to the total pressure 
of the mixture. If the phase emitting the vapor is a compound the method 
can be applied without extrapolation, until the total pressure reaches the 
normal vapor pressure. As thus applied by Lurie and Gillespie (37) to 
their data it gave good results. On the other hand, if the phase emitting 
the vapor is a practically pure liquid or solid, vaporizing without decom- 
position, a serious degree of extrapolation will be required. Gerry (14) 
found the results of the method “extremely bad for cases of condensible 
substances at  small mol fractions,” as illustrated by the case of iodine vapor 
mixed a t  1 atmosphere with air, hydrogen, or carbon dioxide. The errors 
here were from 3 to 8.7 per cent, much worse than the ordinary ideal gas 
treatment-whose errors were from -0.7 to f2.4 per cent-as judged by 
the equation of state method. 

IV. EQUATIONS O F  STATE FOR GASEOUS SOLUTIONS 

The contributions of van der Waals to our problem included not only a 
suggestion of the general limit method and his equation of state for pure 
gases, but also an important attempt toward an equation of state for 
gaseous solutions. 

He concluded that the equation of state of a mixture of van der Waals 
gases is itself a van der Waals equation whose constants or parameters can 
be calculated by relations such as the following for a binary mixture: 

6 No stress should be laid on the fact that  their results a t  300 atmospheres are 
better than those of the writer, as the contrary is the case a t  100 atmospheres, and 
their deviations are changing sign between 100 and 600 atmospheres. 
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(5) 
b = biz; + 2312x122 + 622;  

A = A1221 + 2412x122 + A2zi 

in which the interaction constants b12 and A12 are not predicted by theory 
and may have to be determined from data as adjustable constants. Vari- 
ous authors have used simplifying assumptions such as the relations 6 and 7: 

b = b1x1 + b 2 ~ 2  + bgx3 + . . . . . . (6) 
(7) A’” = A : ” x ~  + A;”X~ + A : ’ 2 ~ 3  + . . . . . . 

which enable the calculation of the constants or parameters of the mixture 
equation, for any number of components, from the equations of the pure 
gases, without the introduction of arbitrary constants.6 

For an account of the early work on these suggestions reference is made 
to the paper of Beattie and Ikehara (9). They state “because of the failure 
of van der Waals’ equation to  give even an approximate representation of 
the compressibility of pure gases over a wide range of temperature and 
density, it has never been applied to compressibility data on gas mixtures 
except7 at  relatively low pressures.” 

It has already been emphasized (19) that a determination of the mixture 
equation, taken together with the general limit method, will bring with it a 
complete solution of the mass-action law for compressed gases. 

For convenience, the relations 6 and 7 will be designated hereafter as 
linear combination of parameters, in spite of the fact that the combination 
rules are theoretically derived from the quadratic relations 5.  

F. G. Keyes suggested (see Gillespie (19)) that the equation of state of a 
mixture of Keyes gases is of the Keyes form, and that the constants for the 
mixture can be determined by applying equation 7 to the A constant and 
equation 6 to the remaining constants. 

As will be mentioned later, Lurie and Gillespie (37) applied this sugges- 
tion in connection with the general limit method to their equilibrium data 
on mixtures of ammonia and nitrogen with very good results and also to  the 
previous equilibrium data of Pollitzer and Strebel (42) on mixtures of 
nitrogen and carbon dioxide with very good results to 80 atmospheres a t  
0°C. and to 50 atmospheres a t  -51.6”C. More recent tests by means of 
equilibrium data will be discussed later. 

Keyes and Burks (28) measured the compressibility of mixtures of 
nitrogen and methane to about 300 atmospheres and from 0” to 200°C. 
and found that the constants in the Keyes equation for the mixtures could 
be satisfactorily calculated by means of this combination of parameters. 

6 Relations 6 and 7 imply that  blZ is the arithmetic mean of bl and bs and tha t  

7 See, for instance, Trautz and Emert (43), Trautz and Narath (M), and Eueken 
Alz  is the geometric mean of At  and A z .  

and Bresler (13). 
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Beattie ( 5 )  found that the pressures of the nitrogen-methane mixtures 
of Keyes and Burks are well represented by the Beattie-Bridgeman equa- 
tion of state when the A constant is calculated by equation 7 and the others 
by equation 6. 

For other methods of attack on the problem of equations of state for gas 
mixtures, which have not yet been applied extensively to chemical data, 
reference will be made only to the paper of Beattie and Ikehara (9). 

V. THE CALCULATION OF VAN LAAR 

In discussing the experimental work of Bartlett ( l ) ,  who found very 
much more water vapor in a mixture of nitrogen and water vapor in equi- 
librium at high pressures with liquid water than can be explained by the 
long-known effect of pressure on vapor pressure as given by the Poynting 
relation, van Laar (30) states in 1929 ‘(we have repeatedly given the 
exact solution of this problem, the last time in 1928 in this journal.”* 

He assumes as in 1901 that the constant-volume heat capacity of the 
gas is constant a t  infinite constant volume. For thermodynamic correla- 
tions over an extended temperature range this should undoubtedly be 
replaced with a series expansion in the temperature, and there is no objec- 
tion to this on the basis of the general limit method. The thermodynamic 
derivations of van Laar are based on the van der Waals equation with 
constant A and b, but in the application of the resulting equations the A 
constant, which alone enters the final result, is recognized as variable with 
temperature and pressure, and a value is used for the experimental tempera- 
ture and pressure. These distinguishing features of the calculation are 
retained in other papers by van Laar and appear characteristic of his 
method of attack. 

He computes the A constant for water from the heat of vaporization, 
corrects the A value of nitrogen given by van der Waals for the difference of 
temperature and pressure, and combines these A parameters according to 
equation 7. He is able to calculate essentially the mole fraction of water in 
the gas mixture in equilibrium with the liquid within about 2 per cent of 
the observed value at the one point studied,-5O0C. and 1000 atm. 

In conclusion, he states “And herewith we have indeed said everything 
which is to be said theoretically about this interesting problem.” This 
need not be taken to indicate any estimate of the previous American work, 
particularly the calculations of Lurie and Gillespie on the data of Pollitzer 

* Z. physik. Chem. 137A, 421 (1928); see also Z. anorg. allgem. Chem. 171, 42 
(1928). 

9 Instead of for some average value of the pressure. Really there would be an 
integration from zero to the final pressure, were the variation in A introduced in 
the beginning. 
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and Strebel, as none of this work is mentioned by him. It refers probably 
to certain experimenters who did not realize that the pxl product for a gas 
mixture in equilibrium with a condensed phase emitting the gas 1 need not 
theoretically be equal to the vapor pressure after this is corrected for the 
total pressure by the Poynting relation. 

This theoretical lack of equality is shown by the calculations of van Laar. 
It had been shown in a general manner by Lurie and Gillespie that the lack 
of equality is a necessary consequence of the fact that the laws of Boyle and 
Avogadro fail a t  the experimental pressures. This follows from their 
prooflo that these laws must hold if such equality holds for various values 
of p and x1 at any given constant temperature. 

VI. THE EQUATION OF STATE METHOD AND ITS APPLICATIONS 

We have seen that the general limit method furnishes equations which 
need integration. An equation of state for mixtures, obtained by combina- 
tion of parameters, permits the integration, either graphically-as in the 
case of the Keyes equation-or explicitly in terms of simple functions-as 
in the case of the Beattie-Bridgeman equation. Such integration of the 
equations of the limit method gives us what we may call the equation of 
state method. It is special, like those of Gibbs and of Lewis and Randall. 
The method of Gibbs involves addivity of pressures; that of Lewis and 
Randall, the additivity of volumes; and the equation of state method 
involves a kind of additivity of equation of state constants. It is of course 
true that additivity of pressures or of volumes furnishes a t  once the equa- 
tion of state of mixtures in terms of the equations for the pure gases, but 
this circumstance need not be the occasion of any confusion in our use of 
the term “equation of state method,” especially since it is only for this 
method that equations of state are indispensable. 

The equation of state method furnishes useful if not indispensable aid 
in the empirical application of the general limit method. As a matter of 
fact, neither this latter method, nor the method of Lewis and Randall, can 
be applied purely empirically. There are integrals to be found-under 
curves that must be extrapolated from the experimental region to the axis 
of zero pressure-and for this extrapolation some hypothesis must be 
used, such as (1) that the limit intercept is zero, or (2 )  that the experi- 
mental curves should be continued to the axis without introduction of new 
curvature, or (3) that the limit intercept and its slope at the axis can be 
found for the general limit method by combination of parameters and for 
the Lewis and Randall method by the use of the individual equations of 
state. The first assumption was tacitly made by several authors, as men- 
tioned above, but the writer showed (22) that in application this vio- 

lo Later repeated more fully by the writer (24). 
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lated both the second and the third, which were together in agreement. 
A judicious use of equations of state is therefore recommended even to 
those aiming at pure empiricism in the treatment of data, whether for 
mixtures of gases or for pure gases. 

As mentioned above, the equation of state method was applied by Lurie 
and Gillespie to their data on mixtures of ammonia and nitrogen in equi- 
librium with barium chloride-barium chloride octammine. They found a 
good agreement of computed to experimental values, possibly within the 
uncertainty of the latter. They applied the method also to the previous 
data of Pollitzer and Strebel on the compositions and pressures of nitrogen 
and carbon dioxide in equilibrium with liquid carbon dioxide, with very 
good agreement at 0°C. to 80 atmospheres and at -51.6”C. to about 50 
atmospheres. For these calculations they used the Keyes equation of 
state. Later calculations of Dr. Eli Lurie (unpublished) showed that when 
the Beattie-Bridgeman equation is used for mixtures linear combination 
must not be applied to the first power of the c constant-because of its large 
value for ammonia-but may be applied to its square root. 

Keyes (27) developed equations for chemical equilibria in non-ideal 
gases whose isometrics are linear, starting with an entropy expression 
derived from a consideration of the modifications of the ideal gas result 
necessary in such a case. As the entropy expression is consistent with that 
derived from the limit method the results are treated in this group. Com- 
parison of the results with the experimental data of Larson and Dodge (34) 
and of Larson (32) showed tolerable agreement to 600 atmospheres, and 
agreement as to order of magnitude throughout, 

Gillespie and Beattie (25) undertook to correlate all the Haber equilib- 
rium data with respect to both temperature and pressure. Empirical 
equations for the heat capacities of the pure gases as functions of the 
temperature a t  infinitely low pressures were deduced from 1 atmosphere 
values by means of a relation given by Beattie (6), and the general limit- 
method was applied with the use of the Beattie-Bridgeman equation of 
state of mixtures. Instead of using the empirical two-constant equation 
of Gillespie (20) for K ,  a t  infinitely low pressure, a new equation was 
derived containing terms from the known heat capacities and two adjust- 
able constants, determined from the whole body of data. They compared 
the experimental with the calculated percentages of ammonia in the equi- 
librium mixtures and found an agreement within the experimental error 
over the whole field of temperature and pressure. The deviations are 
small, and the deviation plot shows no significant trends in the deviations. 

Newton and Dodge (41) have recently stated: “however, they do not 
strictly calculate the high pressure equilibrium constants from the low 
pressure ones, but rather leave two adjustable constants in their final equa- 
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tion and select their values to  fit the data best." Without explanation, 
this statement may prove very misleading. It ought therefore be empha- 
sized, that the two adjustable constants were used substantially in the 
same way as the two used by Newton and Dodge, not being used at  all in 
the calculation of the pressure effects. Furthermore, a recent examination 
of the published papers shows that Gillespie and Beattie would not have 
found a less satisfactory agreement with the limited field of data considered 
by Newton and Dodge if they had in fact used the same empirical equation 
and constants as were used by the latter authors, but on the contrary a 
slight over-all improvement, which would have been gained at  the expense 
of the agreement with the high temperature data of Haber. 

The pressure effects were in fact calculated from existing equation of 
state constants without any use or benefit of arbitrary constants, and if, 
for example, the equilibrium constant is known at one temperature and 
pressure and the heat effect of the reaction similarly known at one point, 
then calculations similar to those of Gillespie and Beattie will reproduce the 
whole body of equilibrium data, which extend at 30 atmospheres from 325" 
to 952°C. and at  some temperatures from 10 to 1000 atmospheres. The 
superior results given by their method over those given by the Lewis and 
Randall rule is not due to  a better management of the two necessary 
adjustable constants, but to the known superiority of combination of 
parameters over the rule of additive volumes. Likewise, these results 
serve to verify the precision of the equilibrium data" and thus to show that 
the discrepancies introduced by this rule of additive volumes are real and of 
chemical significance. 

Gillespie and Beattie further calculated the entropy constants of am- 
monia, nitrogen, and hydrogen, and the heat effect ( - A H )  of the Haber 
reaction as a function of pressure and temperature. With the aid of the 
papers of Beattie (4, 7, 8) all numerical values for any desired thermo- 
dynamic function can be calculated for these gases, severally or in mixtures. 

Again, they calculated (26) the optimum hydrogen: nitrogen ratio for 
ammonia formation in the Haber equilibrium. At, for example, 500°C. 
and 1000 atmospheres the best ratio, when argon is absent, is not 3, as 
would be the case according to the ordinary mass-action law and according 
to the Lewis and Randall rule, but 2.91 in the initial reactant mixture and 
2.68 in the final equilibrium mixture. When argon is introduced with the 
nitrogen in the usual amount, the ratio of hydrogen to (pure) nitrogen is 
not 3.036, as would be the case according to the ordinary mass-action law, 

11 Actually, their calculated percentages of ammonia agree better with the meas- 
ured values than will percentages calculated from the K p  values given by the ex- 
perimenters, since these used an approximate relation for finding K9 which has 
less precision than the data  warrant. 
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but 2.92 in the initial and 2.72 in the final mixture. The corresponding 
improvement in yield that could be realized by the use of optimum rather 
than stoichiometrical ratios turns out however to be insignificant-only 
about 0.03 to  0.04 per cent ammonia, when the final mixture contains about 
58 per cent ammonia. On the other hand, if the yield at a ratio of say 3 
were to be calculated from the actual yield at a quite different ratio, the 
error of the ordinary mass-action law, even at constant temperature and 
pressure, might easily be important. 

In  all these calculations the first power of the c constant was combined 
linearly, instead of the square root, as is now believed better. (When the 
constants are small, or the temperature high, the difference is slight.) 
Professor Beattie has studied the differences made in the former calcula- 
tions of the equilibrium constant when the root of c is combined, and finds 
that they are small,-the recalculated values fit the data as well as the 
previous values, the deviations being simply distributed differently among 
the points. 

In the determination of normal vapor pressures from the data of the gas- 
stream method it becomes necessary to make a correction for the failure of 
the ideal gas laws. When equation of state constants are available for all 
the substances concerned, the problem is like the vapor pressure problem 
previously discussed. In the case of iodine, there are no pressure-volume- 
temperature data from which such constants can be deduced. Braune and 
Strassman (10) obtained gas-stream data for iodine, using two different 
inert gases, hydrogen and carbon dioxide, and worked over a field of tem- 
perature and pressure. Gerry and Gillespie (15) showed that these data 
could be used to determine the constants Ao, BO, and c in the Beattie- 
Bridgeman equation of state, as simplified for low pressures, and the results 
in turn used to  calculate the normal vapor pressure of iodine from the very 
accurate measurements of Baxter and his coworkers (2,3). The effect of 
the correction for the failure of the ideal gas laws as applied at  1 atmosphere 
was found decidedly important, compared with the precision obtainable 
in the best measurements. A simple equation for the vapor pressure of 
iodine as a function of the temperature was given. This utilizes their 
pressure corrections and the temperature smoothing by Giauque (16) of 
the Baxter data by means of spectroscopic and specific heat data. 

In  most previous cases of a solid or liquid evaporating into a gas mixture, 
the experimenters have found more evaporated substance at equilibrium 
than they expected from the ordinary assumption that the vapor pressure 
(corrected for total pressure) is equal to the pzl product, and they have 
therefore spoken of a solvent effect. In the case of iodine, the results for 
air and for carbon dioxide at  the experimental temperatures were in this 
same sense, but the results for hydrogen were opposite. 
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VII. CONCLUSION 

Corresponding to a greater activity of experimenters in the study of 
chemical and physical equilibria involving gas mixtures a t  high pressures, 
and to renewed attacks on the equation of state problem, there has been 
in the last few years considerable progress in the thermodynamic correla- 
tion of the results of equilibrium studies with equations of state and 
thermal data. Much of this has been with the aid of equations of state 
for mixtures, deduced from equations for the pure gases by means of a rule 
for combination of parameters. 

Although an exact solution of any of the problems is complicated, in 
many cases solutions are possible by means of simple equations, obtained 
by omission of terms of the higher orders. 

The only very polar gas involved in a complete correlation is ammonia. 
Extension to the cases of other polar gases may introduce difficulties, espe- 
cially at low temperatures. These difficulties appear already in the devel- 
opment of an equation of state for the pure gas. At present the limiting 
factor in future progress appears to be, not the linear combination of pa- 
rameters, but the experimental inaccuracy of the equilibrium data and, in 
some cases, lack of suitable equations of state for the pure gases. 

Newton (40) has recently presented fugacity values for a great variety of 
gases, obtained without equations of state, and some of these were used by 
Newton and Dodge (41) in connection with the Lewis and Randall rule, 
as mentioned above. In order to use them in connection with the Gibbs 
method it would be necessary to  know the molal volumes of the pure gas 
a t  certain important pressures. In  order to use such fugacity values in 
connection with corrections of the Lewis and Randall rule, found from 
linear combination of parameters, it would of course be necessary to have 
equation of state constants for the various pure gases. But it would not be 
necessary to have these with the same accuracy as would be necessary for 
calculation of the fugacity values themselves; and it may be that some 
approximate calculation of the constants-for instance, by van der Waals 
theory from critical data-will in some cases be good enough for the pur- 
pose of calculating the correction terms. 

REFERENCES 
(1) BARTLETT: J. Am. Chem. Soc. 49, 1955 (1927). 
(2) BAXTER AND GROSE: J. Am. Chem. Soc. 37, 1061 (1915). 
(3) BAXTER, HICKEY, AND HOLMES: J. Am. Chem. Soc. 29, 127 (1907). 
(4) BEATTIE: Phys. Rev. 31, 680 (1928); 32, 691, 699 (1928). 
(5) BEATTIE: J. Am. Chem. Soc. 61, 19 (1929). 
(6) BEATTIE: Phys. Rev. 34, 1615 (1929). 
(7) BEATTIE: Proc. Nat. Acad. Sei. 16, 14 (1930). 
(8) BEATTIE: Phys. Rev. 36, 132 (1930). 



372 L. J. GILLESPIE 

(9) BEATTIE AND IKEHARA: Proc. Am. Acad. Arts Sci. 64, 127 (1930). 
(lo) BRAUNE AND STRASSMANN: z. physik. Chem. 143A, 2% (1929). 
(11) CUPPLES: J. Am. Chem. SOC. 61, 1026 (1929). 
(12) DEDONDER: Compt. rend. 180, 1922 (1925). 
(13) EUCKEN AND BRESLER: z. physik. Chem. 134, 230 (1928). 
(14) GERRY: Thesis, Massachusetts Institute of Technology, Cambridge, Massa- 

(15) GERRY AND GILLESPIE: Phys. Rev. 40, 269 (1932). 
(16) GIAUQUE: J. Am. Chem. SOC. 63,507 (1931). 
(17) GIBBS: Collected Works, Vol. I, pp. 157-8. Longmans Green and Co., (1906) 

(18) GIBSON AND SOSNICK: J. Am. Chem. SOC. 49, 2172 (1927). 
(19) GILLESPIE: J. Am. Chem. SOC. 47, 305 and 3106 (1925). 
(20) GILLESPIE: J. Math. Phys. Mass. Inst. Tech. 4, 84 (19%); also summarized 

(21) GILLESPIE: J. Am. Chem. SOC. 48, 28 (1926). 
(22) GILLESPIE: Phys. Rev. 34, 352 (1929). 
(23) GILLESPIE: Phys. Rev. 34, 1605 (1929). 
(24) GILLESPIE: Phys. Rev. 36, 121 (1930). 
(25) GILLESPIE AND BEATTIE: Phys. Rev. 36, 743, 1008 (1930); 37, 655 (1931). 
(26) GILLESPIE AND BEATTIE: J. Am. Chem. SOC. 62, 4239 (1930). 
(27) KEYES: J. Am. Chem. SOC. 49, 1393 (1927). 
(28) KEYES AND BURKS: J. Am. Chem. SOC. 60, 1100 (1928). 
(29) VAN LAAR: Lehrbuch der mathematischen Chemie. Leipzig (1901). 
(30) VAN LAAR: Z. physik. Chem. 146A, 207 (1929). 
(31) VAN LAAR AND LORENZ: Z. anorg. Chem. 146, 239 (19%). 
(32) LARSON: J. Am. Chem. SOC. 46, 367 (1924). 
(33) LARSON AND BLACK: J. Am. Chem. SOC. 47, 1015 (1925). 
(34) LARSON AND DODGE: J. Am. Chem. SOC. 46, 2918 (1923). 
(35) VAN LERBEROHE: Compt. rend. 181, 851 (1925). 
(36) LEWIS AND RANDALL: Thermodynamics, pp. 226-7. McGraw-Hill Book Co., 

New York (1923); quoted in advance of publication by Bichowsky, J. Am. 
Chem. SOC. 44, 116 (1922). 

chusetts, 1932. 

and (1928). 

in Proc. Nat.  Acad. Sci. 11, 73 (1925). 

(37) LURIE AND GILLESPIE: J. Am. Chem. SOC. 49, 1146 (1927). 
(38) MASSON AND DOLLEY: Proc. Roy. SOC. London 103A, 524 (1923). 
(39) MERZ AND WHITTAKER: J. Am. Chem. SOC. 60, 1522 (1928). 
(40) NEWTON: Ind. Eng. Chem. 27, 302 (1935). 
(41) NEWTON AND DODQE: Ind. Eng. Chem. 27, 577 (1935). 
(42) POLLITZER AND STREBEL: Z. physik. Chem. 110, 768 (1924). 
(43) TRAUTZ AND EMERT: Z. anorg. allgem. Chem. 160, 277 (19%). 
(44) TRAUTZ AND NARATH: Wied. Ann. Physik [41 79, 637 (1926). 
(45) VAN DER WAALS: Die Continuitlit des gasformigen und fliissigen Zustandes, 

Vol. 2. Leipzig (1900). 


