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The behavior of chemical systems can be simply expressed in terms of 
a thermodynamic quantity called chemical potential; in theory as well as 
in practice' the chemical potential is of great utility, a large number of 
the laws of physical chemistry depending directly or indirectly on rela- 
tions involving this quantity, as shown in detail by Gibbs (6 ) .  In the 
application of the relations to actual measurements there have appeared 
to be certain difficulties in computation and presentation. Especially in 
very dilute solutions, or in gases a t  low pressures, the chemical potential 
may be inconvenient to tabulate, and the results do not easily give a clear 
picture of the change in properties of the solution as the concentration 
varies. Presumably for this reason various substitutes for chemical po- 
tential have been proposed and widely used, notably activity, activity 
coefficient, and osmotic coefficient. These are functions of the chemical 
potential (or of the partial molal free energy) and are readily obtained 
from it. For most concentrated solutions it has seemed to some investiga- 
tors that the advantage of these derived quantities is questionable. The 
writer in some recent work (2) on the properties of solutions and systems 
under high pressures, involving much computation of thermodynamic 
data, came to the conclusion (1) that for such purposes the chemical po- 
tential was as convenient as any other function. 

On the other hand, we should not lose sight of two important considera- 
tions, first, that the introduction of the function, activity, proved a power- 
ful stimulus to the use of thermodynamics by physical chemists, and sec- 
ond, that today activity and related quantities, rather than chemical 
potential and partial molal free energy, serve as the usual medium for 
expressing the results of thermodynamic measurements on solutions. This 
is strikingly evident from a survey of current articles on the subject in 

For example, in the determination of solubility curves in systems under pressure 
by graphical analysis of the chemical potential of a given component in the various 
phases. 
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various journals. If, for example, we count the pertinent entries in the 
index of Chemical Abstracts for 1934 (the most recent available a t  the time 
this is written) we shall find references to one hundred and three papers. 
The number of entries for activity is eleven, for activity coefficient forty- 
three, for chemical potential three, for thermodynamic potential one, and 
for free energy forty-five. Of the one hundred and three papers, sixty-one 
are concerned with solutions, eight using chemical potential or partial 
molal free energy, and flty-three activity or activity coefficient. 

But whether in the study of solutions we prefer to deal with the clas- 
sical chemical potential (partial free energy), or with the newer functions 
such as activity, or whether we number ourselves among the very few 
who do not object to using the one or the other as occasion may arise, it 
is important to have the interrelations in unambiguous form and to be 
able to avoid uncertainties in the interpretation of thermodynamic data 
expressed in any of the commonly accepted units. 

The writer’s attention was directed toward this subject in utilizing some 
measurements on solutions for determining the effect of pressure on activ- 
ity coefficient. Now that the experimental methods for such measure- 
ments have been developed, much interesting information will probably 
be obtained, allowing us to observe how the various well-known solution 
laws apply to solutions confined a t  pressures of 10,000 atmospheres or 
more. It has seemed worthwhile to reexamine critically the definition of 
activity (as well as other related quantities) and to put it in an equivalent 
form that is more amenable to the common mathematical operations such 
as differentiation. This, together with a correlation of the temperature 
and pressure coefficients of five related thermodynamic functions, is the 
object of the present communication. 

DEFINITIONS 

Activity 
The activity of a pure substance, or of a specified component in a solu- 

tion, is commonly defined (13, 15) in either of two ways: (1) in terms of 
the previously defined2 fugacity (12, IS), the activity of the material or 
component being the ratio of its fugacity in the given state to that in 
some “standard state”; or (2) by the relation 

F2- F:= RTlnaz  (1) 

2 For a critique of Lewis’ definition of fugacity see G. Tunell (J. Phys. Chem. 36, 
2885-913 (1931))’ who showed that the fugacity as used by Lewis and Randall (15) 
is rigorously defined by their equation 14 (Chap. XVII, p. 195)’ whereas i t  cannot 
be defined mathematically by their equation 2 (Chap. XVII, p. 191) and the equations 
P* = j*  when P* = 0 (Chap. XVII, p. 193). 
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in which a2 denotes the activity of component 2, T the absolute tempera- 
ture, R the gas constant, FZ the partial molal free energy (Le., the chemical 
potential per mole), and F: the value of Fz in the “standard state.” Equa- 
tion l is also applicable to a pure substance, the subscripts then merely 
identifying the material. While FZ and a2 are functions of temperature, 
pressure, and concentration, fli is by definition a function only of T. It 
may be noted that for the standard state, F2 = pi and by equation 1 
az = 1. (p :  is considered further in the following paragraph.) It is also 
important to note that the numerical value of F2 involves an arbitrary 
molecular weight or formula weight. The assumed molecular weight is a 
part of the definition of activity; in order to avoid ambiguity we should 
write 

Fz = M z p z  (2) 

M2 being the value taken for the molecular weight, and ,u2 being the chemi- 
cal potential per gram. 

The definition of activity is usually completed by giving more particu- 
lars concerning the state designated as “standard.” This may be done 
in a number of ways; for example, by letting this state refer to such a 
concentration that the ratio of activity to molality approaches unity as the 
solution becomes more and more dilute. That is, 

lim a2 
m 

in which m denotes the molality (moles per 1000 grams of solvent). 

m-0 - = 1 

definition this relation holds at any temperature but only a t  P = 1. It 
should be noted, however, that an activity may be defined (22) in such 
a way that the above limit turns out to be unity a t  all pressures. 

Let us suppose that an arbitrary value of fli be inserted in equation 1, 
and that from the az so obtained the value of the limit in equation 3a is 
taken. Then if the limit turns out to be finite, although not unity, it  
can be readily made equal to unity by an appropriate change in Pi. But 
it is important t o  note at this point that a priori there is no necessity for 
the limit ever to  have a finite value; whether it is finite or not is a matter 
to be decided by experiment or analogy. Lest this seem to be an item of 
no consequence we may observe that unless one particular value is assigned 
to the formula weight, Mz (for a given solute), the limiting value of az/m 
will either vanish or be infinitely great. 

In  order to demonstrate that the limit can be finite, it  is sufficient to 
show that the limiting ratio of e ( p l - k ) l R T  to m is finite (k being a constant). 
For solutes that do not dissociate Gibbs (7) gave an equation for the ap- 
proximate relation in dilute solutions between the potential and the con- 
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centration (Le., the mass, m2, of component 2 divided by the total volume, 
V ) .  The later form of the equation, in which Gibbs utilized a genera,liza- 
tion due to van’t Hoff, is as follows: 

(4) Mu2 - const. = RT In - V 

and this equation has been verified by experiment. At low concentrations 
mz/V is nearly proportional to m. Therefore, since M2p2 = F2, the ratio 
of e ( h - k ) l R T  to m has a finite limiting value; and consequently the limit 
in equation 3a is also finite. 

But although for a large variety of solutes there can be found a concen- 
tration for the standard state such that equation 3a will hold, i t  will be 
observed in the case of dissociable substances, such as strong electrolytes, 
that equation 3a in the form given will not hold with any possible “stand- 
ard state.” The equation must then be modified by raising m to the 
power, Y, thus, 

m2 

v being the number of parts or ions into which one molecule of the sub- 
stance is assumed to dissociate. The factor, B, which is a constant for 
the given substance, is inserted arbitrarily for a reason explained in a 
later section; it is defined by the relation 

B = (v+)”+(v-)”- (5) 

in which v+ and v- are the number of the two kinds of ions. Activities 
based on mole fractions, (e)=, and on volume concentrations, (a&, 
have also been used, and may be evaluated by substituting XZ, the mole 
fraction of component 2, or C, the number of moles of component 2 per 
1000 cc. of solution, for m in equation 3b. The relation between a2 and 
(e)= is obviously, 

Nl being the number of moles in 1000 grams of component 1 (solvent). 
Similarly the relation between a2 and (a& is 

PO being the density of pure liquid 1. Concentrations have been expressed 
(9) in terms of the “modified mole fraction,” Ys, calculated on the basis 
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of the solute being completely dissociated. 
in terms of Yz,  and we have 

We may also define an activity, 

If we were to concern ourselves only with solutions of components misci- 
ble in all proportions, the definition of activity could be made much 
simpler; for in that event the ‘(standard state” (in this instance the con- 
centration to which pertains) could be-but does not need to be-taken 
as the pure component under consideration. In mixtures of water and 
ethyl alcohol, for example, the activity of the alcohol could be evaluated 
by using the pure alcohol as the fiduciary, or standard, state; equations 
3a and 3b and the limiting behavior in dilute solutions would not then be 
involved in the definition. 

The majority of solutions for which thermodynamic data exist show 
limited miscibility, and even in those that show complete miscibility it 
may be preferred to reckon always from one end of the diagram. In 
general, therefore, the definition of activit,y has required two equations, 
for example 1 and 3a. It is obvious that a single equation would be more 
convenient for mathematical treatment. 

Now equation 1 defines a2 except for an arbitrary multiplicative constant 
and equation 3 defines the constant. This circumstance led to the fol- 
lowing single equation for defining activity. 

For simplicity we have taken first the special case of a solute that does 
not dissociate. The equation is applied (at a given temperature and 
pressure) by choosing any concentration, m, and determining F: - F2, 
for a series of concentrations, m’, keeping m, and consequently Fz, constant, 
and then finding by graphical or other means the limiting value toward 
which the ratio on the right hand of the equation tends as m‘ approaches 
zero. Substituting this limiting value in equation 7a we find at, a t  the 
concentration m. Here F: pertains to a fixed pressure, that is, P =  1. 
This is equivalent to the statement that Fi is always to be taken at P = 1. 
It may be noted that although Lewis and Randall specify that the standard 
state of a pure liquid, and also that of a solute, is always taken a t  unit 
pressure, a similar definite statement is not made for the solute. The 
assumption here made is that the activities of solute and solvent are to 
be defined on the same basis. 

The operation of evaluating the limit as m approaches zero is analogous 
to the operation of evaluating a definite integral. Here m‘ and F: play 
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the part of variables, and m (or F2) is a parameter corresponding to one of 
the limits of the integral. Moreover, the determination of the limit in 
equation 7a is implied by, and presupposed in, Lewis’ definition; and the 
evaluation of the limit has in effect been carried out whenever az has been 
determined. In applying this equation a t  various temperatures and 
pressures (if it is to conform to Lewis’ definition of activity) we must ob- 
serve that R is a function of T and P, and that is a function of T but 
not of P. 

That equation 7a is equivalent to the two equations, 1 and 3a, which 
have previously been used to define activity, may be readily shown. We 
may write equation 7a in the form, 

Then for any az (the limit itself being constant) we have, after taking 
logarithms, 

RT In a2 = F2 - const. = 1”2 - F: 
since is the value of the constant for which u2 = 1. Equation 7a thus 
leads to an equation identical with equation 1.  Furthermore, by dividing 
equation 7a by m and taking the limit as m approaches zero, we have 
(at P = 1, since in that event one limit is the reciprocal of the other), 

- 
lim 2 = (lim e:)( lim m’ ) = 

m’+O - 
e F ; / R T  

m+ 0 m-0 

which is identical with equation 3a. 

all classes of solutes. Thus 
Equation 7a may readily be put in the more general form applicable to 

in which, as before, B =v;’ . vL-. By following the same procedure as for 
equation 7a it may be readily shown that equation 7b is equivalent to the 
two equations (1 and 3b) used in the general dehition of activity. Here, 
also, PZ is a function of T and P, and F: is a function of T but not of P. 
For purposes of this definition v may be regarded as that number which 
will give a finite value for the limit. With a larger number the limit is 
zero and with a smaller number it is infinite. Experimentally i t  will be 
found that v is a small positive integer, and is usually in agreement with 
the number of parts into which, from other considerations, the component 
is known to dissociate. 
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In  many instances the quantity directly measured is the difference be- 
tween Fz a t  a concentration m, and P:‘ a t  some fhed arbitrary reference 
concentration. Equation 7b may be put in a slightly different form, which 
is more directly applicable to the data from which az is usually determined. 
Inserting e(F:’-F;‘)/RT (= 1) in equation 7b, and making use of the fact 
that (at P = 1) the value of the limit involving only Fi and m’ as vari- 
ables is the same as that of the limit involving only FZ and m as variables, 
we have 

m m--t 0 

In  determining the value of the limit by graphical means i t  is convenient 
in the case of strong electrolytes to plot the ratio (whose limit is sought) 
against d%, because a t  low concentrations a nearly straight line will be 
obtained. This equation is primarily suitable for calculating az at  some 
fixed temperature and at  one atmosphere pressure. For variations in T 
and P, the quantity Fy,  and also the quantities determining the limit, must 
be taken a t  the given temperature but a t  a fixed pressure. 

If i t  is desired to work with logarithms rather than exponentials, we can 
alter equation 9 by taking the logarithms of both sides. But it should be 
noted that a limiting ratio is often less troublesome to  work with than the 
limiting diference that occurs in the altered equation. In  order to define 
( u ~ ) ~ ,  the activity based on mole fractions, XZ or XL may be substituted 
for m or m’ respectively, in equations 7, 8, and 9; similarly, (a& may be 
defined by the equations after substituting C and C’ for m and m’. 

These equations may be easily applied by an appropriate choice of sub- 
scripts to any component in a solution, the limiting composition, and its 
distinguishing sign, corresponding to one of the pure (liquid) componentti; 
and the equations readily take the simpler form that suffices for defining 
the activity of a component, when the component itself in pure liquid 
form is chosen as the limiting state (10). If we write the analog of equa- 
tion 7a or 7b with Xi in place of m’, the limit being taken as X i  approaches 
one, and note that here Fi has the finite limiting value PT (the value of 
Fl for pure component 1) we obtain an equation, similar to equation 1, 

al = e ( F i - F : ) / R T  (10) 
- -  

for completely defining the activity in this instance. The above equations 
may be made more general by using a generalized subscript instead of the 
numerals 1 and 2, which have been used above in order to emphasize the 
fact that more care is needed in the dehition and evaluation of the activity 
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of the solute than in the case of the solvent, 
defhition than equation 7b is, 

A more general form of 

The question sometimes arises as t o  whether, in the case of electrolytes, 
the activity, a2, refers to  the undissociated solute or to the dissociated 
part, or to something else. In  order to avoid confusion i t  should be care- 
fully noted that, inasmuch as a2 (at a fixed T and P )  is proportional to 
eh, and inasmuch as p2 is simply the chemical potential of one gram of the 
solute, then a2 for, say, sodium chloride, as commonly used and as defined 
above, may be regarded as merely the activity of a solute whose condition 
is not qualified except by the statement that its gross composition (in this 
instance) corresponds to the formula NaCl. It may be noted, however, 
that a2 is equal to, or proportional to, the activity of the undissociated 
part, and to the geometric mean of the ion activities. 

Aclioity coeflcient 
As usually defined, the activity coefficient, y, of a given solute (at P = 

1) bears the following relation to the activity, a2, of the same component, 

7'- (at P = 1) 
B ' / * m  

From equation 3b it  is evident that y, defined in this way, approaches 1 as 
a limit, as m approaches zero. Instead of defining y in terms of the pre- 
viously defined a, we may define it directly in terms of F2. Upon com- 
bining equations 7b and 11, we have 

Since this was obtained from equation 10 (with having the meaning 
specified in equation 7b), y ,  by equation 3b, approaches 1 as a limit only 
at  P = 1. Now, from the pressure coefficient of az (see below) it is evident 
that a more general form of equation 3b is 

in which I is written for the integral PZdP, 7: being the limiting value /I' 
of the partial molal volume of component 2. Since we wish to  hare y 
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approach 1 at all pressures, we therefore divide the right-hand side of 
equation 12 by $ I V R T .  This is equivalent to adding I/vRT to Fi, which 
originally was always a t  P = 1, and thus changing to the value it would 
have at the given pressure. Hence in order to define y so that for any 
pressure i t  approaches 1 as m approaches zero, we merely specify that in 
equation 12 pi, as well as e, is a function of P. That is, F2 and Fi are 
both taken at  the given pressure and temperature. 

For actual calculation of y a somewhat more convenient form is obtained 
by combining equations 9 and 11. Thus, 

~ ( F ~ - ? ; ’ ) / V R  T 

m m+ 0 

By reasoning similar to that employed in connection with equation 11 i t  
follows that here l 7 2  and py are both functions of T and P. Of the two 
equations, equation 12 is the simpler, but equation 14 is the more generally 
useful; it is directly applicable to measurements of l 7 2  - F y ,  such as those 
obtained from the E.M.F.’S of concentration cells without liquid junctions, 
by use of the well-known relation, I72 - P, = nFE, in which E is the 
E.M.F. of the cell in volts, F is the number of energy units (e.g., calories) 
per volt equivalent, and n is the number of equivalents associated with 
the particular formula weight, Mz,  that is used in connection with Fz. The 
sign of Fz - P y  can be kept correct by recalling that F2 always increases 
algebraically with the concentration of component 2. 

The operation of finding the value of the limit in equation 14 is analogous 
to that used by Lewis and Randall (17) in connection with their equation 
XXVI-15 for calculating y from E. If we take the natural logarithm of 
the limit and multiply by -vRT/nF we obtain the quantity designated 
as Eo by Lewis and Randall. 

I )  

Other kinds of activity coefficient of the solute, such as 

Y Xt ( = (a*) Y/B%) 

based on mole fractions, or y c  (= (u2)’,/’/B”’C), based on volume concen- 
tration, have been used, and can be defined by substituting X 2  or C,  re- 
spectively, for m in the above equations. The interrelations of these 
various activity coefficients may be readily obtained. If the analog of 
equation 12, containing XZ in place of m, and y X 2  in place of y, be written, 
and the one equation divided by the other, we obtain 
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(N1 being the number of moles of solute in 1000 grams). Thence, 

Similarly, it follows directly that 

m Po Y c = Y - P o = Y -  C 2 1  

in which p and po are the densities of solution and solute and x1 is the 
weight fraction of the solvent. We may also define yyz (= ( U ~ ) ~ ” ’ / B ~ ’ ~  Y z )  
by substituting Yz for m in equation 12, and we have, 

xz 
Y Y 2  = YxzV- Yz 

Although it is the activity coefficient of the dilute component (solute) 
that is the most useful one in actual practice, the activity coefficient of 
the solvent (or in general the activity coefficient of any component in a 
solution) may be similarly defined in terms of the activity of the component 
and its concentration. If component 1 is the solvent, then both Xl and 
al, as defined by equation 10, approach unity in dilute solution. There- 
fore any power of al, divided by any power of Xll might be chosen as the 
activity coefficient, for example of water in an aqueous solution. The 
natural choice would seem to be ul/X1, and this coefficient is the one 
commonly used (11). But it should be noted that in general (uz)x be- 
comes nearly equal to X i  in dilute solution; whence by the well-known 
relation connecting al and a2 it follows that in dilute solution ul is more 
nearly proportional to X i  than to X1. Accordingly the activity coefficient, 
yxl, of the solvent will be defined by the equation, 

This of course includes the special case for which v = 1. It may seem 
strange that the definition of the activity coefficient of the solvent should 
involve the factor v, which is entirely a property of the solute. But as 
a matter of fact the definition does not need to involve v ;  putting in the v 
as indicated in equation 17 merely makes the yxl, so dehed ,  more nearly 
equal to unity (as a rule), and causes the relations between yxl and other 
quantities such as osmotic coefficient (see below) to be more simple than 
they otherwise would be. 

An activity coefficient of the solvent based on Y1, the “modified mole 
fraction,” has also been used (9, see also 8). The Y1 is calculated from 
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the known weight of the constituents by taking the (mean) molecular 
weight of the solute as 1/v of the formula weight used in calculating XI. 
The activity coefficient y y l  is then defined as 

a1 
Y Y 1  = - Y1 

When XI is nearly equal to 1, X ;  is approximately equal to Y1;  from which 
it may be shown that y& and yyl have nearly the same numerical values 
for dilute solutions, although they differ appreciably for higher concentra- 
tions. The exact and approximate relations between these two varieties 
of activity coefficient of the solvent are as follows: 

Alternate definition of activity 
By Lewis’ definition of activity az/mY does not in general approach unity 

as a limit as m approaches zero, even at  P = l ; . i t  does so only for di-ionic 
electrolytes or non-dissociable substances ( v  equal to 1 or 2). This is 
because Lewis, for strong electrolytes, writes a? . a t / a z  as an equilibrium 
constant involving the activities of the individual ions and adopts the 
arbitrary convention (20) that the equilibrium constant is equal to 1. 
Now, the activities of the individual ions may be taken as sensibly equal 
to v+m and v-m, respectively, at  high dilutions, and therefore a’+. a t  
at atmospheric pressure will approach Bm‘ as a limit as m approaches zero. 
Hence, by the above convention as to equilibrium constant, az approaches 
Bm” as a limit (which is in accord with equation 3b); and the factor B thus 
enters into the definition of a2. 

But it would be better for many purposes to define an activity in such 
a way that the factor B would be omitted. This could be done by adopt- 
ing the convention that a?. a t / a z  equals B rather than 1. If this were 
done, az at high dilutions would approach the limit Bm’/B, or my. That is, 

in which we put [a21 for the quantity that bears a simple relation to a2, 

the activity as ordinarily defined (being identical with a2 when v is 1 or 
2). Since [azl = Ba2, we may now omit the B in the fundamental defini- 
tion of activity, and write 
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by analogy with equation 7a. Here, as before, F2 is a function of P and 
T ,  and Fi a function of T but not of P. It is thus possible to define a 
useful variety of solute activity, in terms of measurable quantities, without 
any reference to the activities or properties of individual ions, v as stated 
above being merely that number which gives the limit a finite value. The 
only disadvantage of the alternate definition is that [az] is less simply re- 
lated to the activities of the individual ions, and this is offset by the greater 
simplicity of the relation between [az] and y .  

As is evident from equation 11, y may  be defined independently of any  
convention regarding a2; hence the value of y is not affected by the suggested 
change in the definition of activity. 

We have, moreover, 

(at P = l), and instead of the usual equation, 

F2 - 8 = vRT In (my) + RT In B 

Fz - [E]  = vRT In (my)  

(23) 

we have the simpler equation, 

(24) 

in which [E]  pertains to a “standard state” for which not only [aJ but 
also my is equal to 1. 

Osmotic coeficient 
A now familiar thermodynamic function is the osmotic coefficient, in- 

troduced by Bjerrum (3) and originally defined in terms of osmotic pres- 
sure. For any solution, fp, the osmotic coefficient of the solute, may be 
defined as the ratio of T ,  the osmotic pressure of the solution, to what the 
osmotic pressure would be if the solution followed some ideal-solution law; 
that is, 

(25) 
T 

r i d  
fP = - 

The numerical value of fp thus depends on the particular ideal law that is 
chosen. 

Osmotic pressure and chemical potential (partial free energy) are con- 
nected by the well-known exact relation, 

AF1 = - P: = - ( V ~ ) O T  + I ,  (26) 

in which Pl and P:’ are the partial molal free energies (at atmospheric pres- 
sure) of component 1 and of pure liquid 1, respectively, (vl)o is the fictive 
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volume per mole of component 1 in the given solution a t  atmospheric 
pressure, and I, is given by 

I, = - 1‘ A p P l d P  

Ap Vi being the difference between the value of P1 a t  any pressure P and 
that at  atmospheric pressure.3 From equation 26 it is evident that the 
ideal-solution law employed to determine rid also determines (AFl)id, the 
value of AP1 in the hypothetical solution that follows the chosen ideal 
law. We have, then, 

(AFl), = - ( v l ) o ~ ; d  + (1,) (27) 

in which (I,,) is written for the integral taken between the limits 1 and 
r i d  * 

From equations 25, 26, and 27 it follows that 

The osmotic coefficient, fp, can thus be defined in terms of measurable 
quantities and an arbitrary assumption as to the course of either r or 
AP1 in an ideal solution. Therefore in order to complete the definition of 
fp, we may choose an ideal law for AFl. 

For the sake of convenience it is preferable to have a “law” that does 
not deviate too much from the actual measurements, and it is necessary 
that in dilute solution (AFJid should approach AFl if the limiting value 
of fp is to be 1. Although there are a number of relations that may 
serve the purpose, there appears to  be no simple relation that is entirely 
satisfactory for all classes of solutions. The most convenient one for 
many purposes is, 

m 
(AFI)id = -vRT - 

Ni 

The well-known expression that includes Raoult’s law and puts AF1 
equal to RT In X1 is not even approximately true for solutions of elec- 
trolytes, dilute or concentrated; but a slight modification makes it more 
generally applicable. 

(30) 

Thus, if we write 

(LIPl);; = vRT In Xl 

a For the special case of constant compressibility, or more exactly, of linear 
variation of VI with P, the term (Pl)or - I ,  becomes equal to 7r times the value of 
VI at P / 2 .  See reference 11, pp. 109, 120. 
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the equation conforms fairly well to the actual course of Fl in very dilute 
solutions of electrolytes; and for non-electrolytes ( v  then being equal to 1) 
it reduces to the familiar form. Another expression nearly equivalent to 
equation 30 in dilute solutions is 

(AFl)Li = RT In Y1 (31) 

Y1 being the “modified” mole fraction (see above). 

25, 26, and 28 we have 
If we choose equation 29 for our ideal-solution law, then by equations 

Other choices of ideal law would, of course, lead to different 
and to  different numerical values of fp. 

Now, I ,  is usually small in comparison with the terms to 
added. For example, - AFl for a 4.277 molal solution of sodium chloride 
in water at  25°C. is 103.8 cal., vRTm/N1 is 91.3 cal., ?r is 243.8 bars (cal- 
culated from AFI), and I ,  is 0.6 cal. The fact that I, is small suggests 
that another variety of osmotic coefficient‘ might be defined by the equa- 
tion. 

(32) 

expressions 

which it is 

- AFi  
fr = 

vRTm/N1 (33) 

It is evident that when, as is approximately so in sufficiently dilute solu- 
tions, equation 29 represents the variation of AFl with m, fr will be 1. 
For the purpose of defining fr, the factor v may be regarded as that number 
(usually an integer) which will make fr tend toward unity in dilute solu- 
tion. 

Since I ,  and ( I , )  are nearly proportional to a2 and 7r& respectively, an 
approximate relation between fr and fp may be obtained by combining 
equations 32 and 33. Thus, 

For ?r less than 1000 bars the difference between fp and fr is less than 
can be determined by any method that has been used for measuring AFI. 
The two coefficients, fp and fr, become strictly identical for an incompres- 
sible solution ( I ,  = 0). Moreover, if not only I, = 0, but Vl = VI, 

the molal volume of the pure solvent, and if the ideal-solution law is 

4 Called the “osmotic coefficient for the chemical potential” by Scatchard and 
Prentiss (J. Am. Chem. SOC. 66, 1486-92 (1934)). 
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equation 29, then it follows that [rid]', the osmotic pressure under the 
specified conditions, would be 

(35) 

in which V denotes the total volume of the solution and N2 denotes the 
total number of moles of solute. This is the van't Hoff equation in more 
general form (5) on account of the inclusion of the factor v ,  and indicates 
that if an osmotic coefficient were defined as nV/yN2RT this coeacient 
would, under the assumed restriction (incompressibility and no volume 
change on mixing), be identical with fr. 

Equation 30 suggests the definition of a third well-known kind of osmotic 
coefficient, thus, 

[ r i d ]  ' V = v N ~ R T  

A F I  fx = 
vRT In X I  

By combining equations 34 and 36 and expanding In XI, the relation be- 
tween f, and fxmay be expressed as follows, 

Again, a coefficient fy may be defined by the equation, 

AF1 
fY = 

RT In Y 1  

and we have, 

Still another common way of defining an osmotic coefficient6 is in terms 
of the freezing-point depression, which by well-known thermodynamic 
equations is directly related to the osmotic pressure of the solution. Let 
us define f by 

f E -  l? 
8 i d  

in which 9 = T O  - T' (TO being the freezing point of the pure solvent and 
TI that of the solution), and l?id is determined by some ideal-solution law. 

We might also define an osmotic coefficient in terms of C, the volume concen- 
tration or molality, by substituting C for m in equation 33. 
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The familiar equation for freezing-point lowering in a dilute solution may 
be expressed as follows, 

lim dT‘- R T ;  
m-rO - - - v - = V X  

dm N I A H o  

in which R is the gas constant, N 1  as before is the number of moles of 
solvent in 1000 grams, AH0 is the heat absorbed in the melting of one 
mole of solvent at TO, and X is a factor defined by the second part of the 
equation (A = 1.858 for aqueous solutions). Now, 8 i d  is conveniently 
defined as m(dT/dm)o, that is, vXm; whence 

In order to write an expression for the exact relation between f and one 
of the other osmotic coefficients, we first note the equation given by Lewis 
and Randall (18) for connecting AFl and 9. This is 

which is equivalent to 

(44) 
1 

NIX - In (al)’ = - ~9 + b~92 + ~ 9 3  + . . . 
Here 

and ACp (assumed constant) is the molal heat capacity of the pure liquid 
solvent minus that of the solid. For aqueous solutions, A.Ho/To = 1438 
cal. per degree, ACp = 9,  b = 5.16 X 

When 9 for a given concentration has been determined, equations 43 
and 44 give AF1 and al for that concentration and ut a temperature equal 
to the freezing point of the particular solution. The AFl’s obtained in this 
way from a series of 9’s thus pertain to various temperatures. Now, fv 
may be calculated from APl  by equation 33, which involves also the 
temperature T ,  and we designate by the symbols (fr)’, (AFl ) ’ ,  and (uI)’ 
those values pertaining not to a single fixed temperature but to a tempera- 
ture that for each concentration is T’ (= To - 9). We have, then, by 
equations 33 and 43, 

c = 1.8 X lo+. 

(45) 

*(!! - 9- ACP - 
2 To 

vR Tm,! Nl (fi.1’ = 
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and by equation 42 

Noting that To/T' = 1/(1 - 8/To), expanding and 
containing 88 and higher powers of 3, we obtain finally 

(fr>' = 1 + bN1X2vfm + cN1XavY2m2 I 

neglecting terms 

(47) 

The last term in this equation can usually be neglected, and we then have 
for aqueous solutions, 

(fr)' = 1 + 0.00099 v j m  f 
Equation 47a is practically the same as that given by Scatchard and 
Prentiss (21). Equation 47 can be put in the following form, 

In  order to pass from (fr)' to f r  we may make use of the equation given 
below for calculating the variation of f r  with temperature. It should be 
noted that whereas fr, f x J  f y ,  and f p  are functions of T, f and (f,.)' are not. 
All six of these quantities (by definition) approach 1 as a limit as the con- 
centration of the solute decreases. At m = 0.01 they are practically 
identical, but at  higher concentrations they differ appreciably among 
themselves. For example, f for a 4.277 molal sodium chloride solution 
in water is 1.042, (f,.)' is 1.051, and a t  25"C., f r ,  fx, f y ,  and f p  are respec- 
tively 1.137, 1.180, 1.223, and 1.138. 

Relat ion between activity c o e f i i e n l s  a n d  osmotic coe f i i en t s  
By equation 23 and the well-known equation connecting PI and Pt we 

have (at constant temperature and pressure), 

- 5 = dp2 = vRT d In (mr) (49) m 

Then from equation 33 it follows that 

d(frm) = m d In (my) = m d In y + dm (50) 

This equation, in slightly different form, has been given by Bjerrum (4). 
Integrating (temperature and pressure being constant), we obtain 

m c l l n y = l + l n y - -  /" In ydm (51) 
m o  
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since j r  = 1 and y = 1, when m = 0. 
f, and y at any concentration and a t  a given constant T and P. 

also be written. By equation 49, we have, 

This is an exact relation between 

An equation resembling equation 51 but involving f rather than fr may 

(52) 
N1 

m - - d In ul = d In az = vd In (my) 

and by differentiating equation 44, the last term being neglected, we 
obtain 

(53) 
1 - d In (al)’ * - d9 + 2b9dt? 

NlA 

Now, equation 52 gives the relation between ul and y ut a fixed temperature. 
Nevertheless we may apply the first and last terms to connect (ul)’, which 
is the activity at  the varying temperature T’, with a number, (y)’, which 
is not the activity coefficient but becomes equal to it if ul is independent 
of T. Combining this modification of equation 52 with equation 53 and 
with the differential form of equation 42 we obtain, 

d(jm) 2bNdd9 d In (my’) = - + - 
m wn 

and, by integration, 

f * l + - /  1 -f’ mdln(y)’--  bN1tY 
m l  vm 

(54) 

(55) 

A closer approximation can of course be obtained by not neglecting the 
term containing 88 in equation 44. 

Equation 54 is essen- 
tially the equation given by Lewis and Randall (19) for connecting (7)’ 
with the function j ,  which is closely related to f (see below). In  general 
y differs from (y)’,-by an amount that depends on the heat of dilution. 
In  moderately dilute solutions this effect becomes inappreciable and (y)’ 
is then (sensibly) equal to y. By subtracting equation 48 from equation 
55 it may be observed that 

For aqueous solutions bN1 is equal to 0.000286. 

(fr)’ = 1 + 11” m d In (7)’ 
m l  

The exact relation between fx and yxz is easily obtained. Since 
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we have, by applying equation 36, 

d(fr In X I )  = - 2 d In (XzyXz) 

Furthermore, the relation between yxl, the activity coefficient of the sol- 
vent, and its osmotic coefficient, fx, is obtained by combining equations 
17 and 36. Thus 

In yx, = c f x  - 1) In X, (60) 
These and other interrelations between activity coefficients and osmotic 
coefficients have been given previously, for example by Guggenheim 
(reference 11, p. 107), who has also pointed out that in dilute solutions the 
activity coefficient of the solvent differs from unity by a much smaller 
quantity than does the osmotic coefficient. This is immediately evident 
from the approximate form of equation 60, obtained by expanding In X,: 

7x1 = 1 + (1 - f X ) X 2  (61) 
Since in dilute solutions both X2 and 1 - f x  are small quantities, it follows 
that yxl - 1 has a magnitude that is one order smaller than 1 - fx. 
For example in a 0.01 molal sodium chloride solution at  ordinary room 
temperature fx is 0.9703 and yxl is 1.00000535. In general, for dilute 
solutions, if 1 - yx2 is proportional to Xi or X s ,  then 1 - fx is propor- 
tional to X $  or XZ, respectively, and yxl - 1 is proportional to Xi,  or Xi, 
respectively. Moreover, 1 - yxz, 1 - jx, and yxl - 1 have the same 
sign (usually positive in dilute solutions for electrolytes and negative for 
non-electrolytes). 

It is of interest to note that the factor v in the more general definitions 
of yx2, fx, and yxl does not appear in the transformation equations. On 
the other hand, for the activity coefficient, al/X1, in dilute solutions we 
have the following approximate relation, 

- 1 - ( v fx  - 1) xz (62) 
a1 x- 

The Lewis and Randall junction, j 
This was devised (14) as an aid in the calculation of activity coefficients 

from freezing-point measurements. It is defined in terms of 8, the freez- 
ing-point lowering, as follows : 
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(v being 1 for a non-dissociable solute) and is closely related to one of 
the several varieties of osmotic coefficients. From equation 42 it is ob- 
vious that 

j = 1 - f  (64) 

This function, like f, readily determines (AP,)’ for a given concentration at  
the temperature T’, the freezing point of the particular solution. By the 
same procedure used with f i t  follows that, to a sufficient approximation, 

j =  - L /  7’ m d l n ( 7 ) ’ f -  bNr8’ 
m~ vm 

which is one form of Lewis and Randall’s equation, and connects j with 
(T)’, the “uncorrected activity coefficient.” Since j is uniquely deter- 
mined by (AFl)’, it may properly be called a thermodynamic function. 

Other functions 
The van’t Hoff mole number (23) is the ratio of the magnitude of some 

effect, such as freezing-point depression, osmotic pressure, or vapor-pres- 
sure lowering, to the effect expected from an arbitrary ideal-solution or 
dilute-solution law applied to an undissociated substance with the assumed 
molecular weight. The effect most commonly used is that involved in 
equations 41 and 42 with v equal to 1, namely, 8 = Am. Accordingly the 
mole number, i, may be defined by the equation, 

. 9  -&=-  
Xm 

It follows that 
i = vf 

and from equation 55 that 

bNltP m d In (7)’ - - 
m 

For a solute that does not dissociate i is identical with f; but of course the 
mole number is ordinarily used only in connection with electrolytes. 

It is also worthwhile to include in our list of the thermodynamic func- 
tions, frequently employed in the study of solutions, the Arrhenius dis- 
sociation factor CY. This is the classical “degree of dissociation” and is 
commonly defined in terms of the mole number i. For a di-ionic elec- 
trolyte CY is put equal to i - 1, and in general is defined by the equation, 

i - 1  
v - 1  

a=- 
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From equations 55 and 67 we have an equation connecting a and (-y’), 

Defined in this way i and a are thermodynamic functions in the same 
sense and for the same reason that the osmotic coefficient f is a thermo- 
dynamic function. For a solution of any specified concentration, the 
mole number i determines (AP,)‘ at T’ and, if the heat of dilution is known, 
AFl  a t  any temperature. The same applies to a, which, i t  may be noted, 
can not be used if v = 1. The conductance ratio, also designated some- 
times by the symbol a, bears no exact relation to the a here defined, al- 
though in many instances the two factors are strikingly similar in mag- 
nitude. 

It is interesting to compare the four quantities: a, the Arrhenius dis- 
sociation factor; i, the van’t Hoff mole number; f, (one form of) the 
Bjerrum osmotic coefficient; and j ,  the Lewis and Randall function-each 
of which has played an important part in the development of physical 
chemistry. Their interrelation may be summarized as follows 

(v - 1) (1 - a) = v - i = v(l - f) = vj (71) 

VARIATION WITH TEMPERATURE 

Activity 
When once the definition of a quantity has been formulated it is usually 

a simple matter to differentiate the function with respect to temperature 
and thus to find its temperature coefficient. An exception to this rule is 
found in activity as ordinarily defined. If we attempt to find daz/dT a t  
constant concentration by taking the derivative of equation 1, we a t  once 
run into difficulty. This is because ET (for the solute), in general, pertains 
to a different concentration for each temperature. Solutions of the 
problem have been obtained by utilizing the two equations (1 and 3) of 
the complete definition of az, an essential part of which is a statement 
concerning the limiting behavior of a2 in an infinitely dilute solution. Al- 
though the correct answer has been given, i t  appears that the methods 
used for deriving the expression for the change with temperature of the 
activity of the solute have proved troublesome for many serious students 
of the subject. 

On the other hand, the single equation (7b) for defining activity is 
easily amenable to rigorous mathematical treatment. For determining 
the temperature coefficient of a2 a t  constant composition and pressure we 
note first that the operation of taking the limit is associative with respect 
to the other common mathematical operations, as illustrated by the 
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well-known rule that “the limit of a product is the product of the limits,” 
and second, the familiar relation between p2 and T: 

’’ (constant m and P )  d@2’2/7’) - 
dT T2 

I 7 2  being the fictive enthalpy (per mole) of component 2 (that is, (aH2/ 
~ N Z ) * , ~ ,  N,, HZ being the enthalpy, or heat content, and N 1  and N2 the 
total number of moles of component 1 and 2, respectively). We note also 
that p2 and pi in equation 7 are functions of T, and that the limit refers 
to a series of values of m’ that may be taken to be the same a t  all temp- 
eratures; m’ is not a function of T. Taking the derivative of equation 
7b we have 

Let the limiting value of Rz, as m’ approaches zero, be 27;. (By experi- 
ment it is known that (I71 - Rz) has a finite and readily determinable 
limit.) Then, 

R2 - R; (const. P and m) dlna2  - -- - 
dT RT2 (73) 

It might possibly have been somewhat simpler to take the logarithm of 
both sides of equation 7b before taking the derivative. The derivative 
of of I ~ ( U ~ ) ~ ,  and of In(a2)y will be found to be the same as that 
of In u2. By changing subscripts in equation 73 we obtain d In al/dT (also 
a t  constant composition and pressure). The quantity RT that occurs 
here is the molal enthalpy (heat content) of the pure solvent. 

Activity coeficient 
The variation of y with temperature offers comparatively little diffi- 

culty; it may be obtained in a variety of ways, for example by taking the 
derivative of equation 12, which yields the expression, 

(const. P and m) 
d l n r  - I 7 2  - R; 

d T  vR T2 (74) 

and the same for d In yx2 /dT, for d In yy2 /dT, and for d In yc/dT. Simil- 
arly, from equation 17, 

d In 7 x 1  = - R1 - *’ 
d T  vRT2 (const. P and m) (75) 
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and the same for d In yyl /dT, except that the v is omitted. 
rected” activity coefficient, (7)’) can not be considered a function of T .  

The “uncor- 

Osmotic coeficient 
The variation of fr  with temperature, obtained by taking the derivative 

of equation 33, may be expressed as follows: 

(const. P and m) 
dfr = R1- RT 
dT vRT2m/NI 

If Acpl is the (constant) difference between the fictive molal heat capacity 
of the component 1 and the pure solvent, then the integrated form of 
equation 76 is, 

in which e = T - T’ and (ARJT = Rl - R: a t  T. Equation 77 is in 
convenient form for calculating f r  a t  a fixed temperature T, when (f,.)’ a t  
a given temperature T’ is known. Incidentally the equation closely re- 
sembles equation 44. It may be noted that the determination of y from 
f (or from i, j, or a) would involve the calculation of (fr)’ by equation 47 
or 48, the calculation of f,. by equation 77, and the calculation of y by 
equation 51. 

From equation 36 we obtain the expression, similar to that for fr,  

dfx - R1- RT 
dT vRT2 In XI 

The equation for dfy/dT is of the same form (without the v ) .  An ex- 
pression for dfp/dT can be written, but it is somewhat complicated. The 
other variety of osmotic coefficient, f) is not a function of temperature; 
the same applies to i, j, and a. 

VARIATION WITH PRESSURE 

Activity 
The change of az with P (at constant m and T) can be obtained from 

equation 7, or still more easily from equation 1, since by definition E is 
not a function of P,-which accounts for the fact that the variation with 
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P is more simple in form than the corresponding variation with T .  
have then (since dFz/dP = VZ) ,  

We 

- - - -  In az " (const. m and T )  
dP RT (79) 

and the same expression for ( U Z ) ~ ,  (u&, or ( u ~ ) ~ .  The quantity Vz is 
the fictive volume of component 2 (per mole). Similarly, from equation 
10 we have, 

In " - " 
d P  RT (const. X1 and T )  

Act iv i ty  coeficient 
From equation 12 we obtain, 

d In y - P, - V i  
d P  vRT 
-- 

This may be put in the integrated 

(const. m and T) 

form, 

Here V: is the limiting value of p2 as m approaches zero, and AxV2 is 
written for VZ - 7; a t  any pressure, P .  The same expression is ob- 
tained when yxz, yyz, or yc is substituted for y. 

It is well known that if, as is true for strong electrolytes in dilute solu- 
tion, lny = -urn$ (a being a function of T and P but not of m) then 3 2  - 
n: is proportional to m+ and 27, - HT is equal to -m(Rz - R:)/3N1. 
From this it follows that for such solutions (a In Y / ~ T ) ~ , ,  = 3(af,/aT)p,,. 
This relation is in agreement with, and might have been derived from, 
the relation shown by Lewis and Randall (reference 15, p. 346) to exist a t  
low concentrations between In y and j, which in dilute solutions is ap- 
proximately equal to 1 - jr. 

From equation 10 we have also 

(const. XI and T) d In Yx, - P, - P: ~- 
d P  vRT 

On the other hand, for the other varieties of activity coefficient (of the 
solvent), al/X1 and y y l ,  we have equations similar to equation 83 except 
that the Y is omitted. 
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Osmotic coeficient 
The change of jr and of fx with P is obtained directly from equations 

33 and 36, respectively. Thus 

df7 - - " (const. m and T) dP - -vRTm/N1 

and 

dfx - -  - " - " (const. XI and T) dP vRT1nX1 

(84) 

(85) 

The equation for dfy/dP is obtained by replacing v In XI by In Y,. 
It may be noted that by experiment i t  has been found that for all types 

of solutes the limit of (VI - VT)/m, as m approaches zero, is zero. This 
is in accord with the definition of f r ,  by which f r  has the limiting value 1 
a t  all pressures. In  dilute solutions of strong electrolytes it is known that 
V2 - Vz is proportional to mi; whence, 8, - VT is equal to -m(Vz - 
V:)/3N1, and (a In r/aP),, =3(8j,/aT),,, for such solutions. 

The derivative of f p  with respect to P can not be written, because from 
the method of defining i t  f p  can not be considered a function of P. If 
f p  were defined (more generally) on the basis of an osmotic pressure, a, 
measured from P as a starting point, then f p  obviously would depend on 
P, and dfp/dP would have a meaning. 

Since f is a function of (APJ'  i t  is also a function of P-although not of 
T ,  because (AP1)' is at a predetermined temperature. An expression for 
dj/dP can be obtained, but the complete equation is rather complicated, 
and it will suffice, for the present, to note that in dilute solutions, or when- 
ever B1 - H: is negligible, f is nearly equal to f r  and therefore 

AX'l (approx., in dilute solution) (86) ,,, vRTm/N1 

Under the same conditions a similar expression can be written for the 
variation of i, j, and cy with pressure. 

SUMMARY 

It is shown that activity may be defined by a single equation equivalent 
to the two equations of the usual definition. This equation is easily 
amenable to mathematical operations such as differentiation. 

It is furthermore suggested that activity be d e h e d  so as to omit the 
factor vp. vE that appears in:the customary definition of the activity of 
an electrolyte. 

Several varieties of activity coefficient, osmotic coefficient, and other 
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related functions are in common use. A number of these are defined and 
correlated, and their derivatives with respect to temperature and pres- 
sure are given. 
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