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Long ago Sir Isaac Newton perceived that the forces of cohesion 
and chemical affinity probably obey laws different from the simple 
law of gravitation (1). At the time of writing the “Principia,” 
however, his ideas on this subject were vague, as shown in the 
quotation : 

And now we might add something concerning a certain most subtle 
Spirit, which pervades and lies hid in all gross bodies; by the force and 
action of which Spirit, the particles of bodies mutually attract one 
another a t  near distances, and cohere, if contiguous; and electric bodies 
operate to greater distances, as well repelling as attracting the neigh- 
bouring corpuscles; . . . . But these are things that cannot be 
explain’d in few words, nor are we furnish’d with that sufficiency of 
experiments which is required to an accurate determination and 
demonstration of the laws by which this electric and elastic Spirit 
operates (2). 

Newton evidently perceived that cohesive forces must fall off 
more rapidly with increasing distance than in the case of gravita- 
tion, whereas electrical attraction resembles gravitation more 
closely as regards its distance-effect. The disastrous fire which 
consumed the results of so many years of Newton’s work prevents 
us from knowing how searchingly Newton may have discussed 
these matters. A hint of his line of thought, however, was 
published shortly before his death, indicating the important r61e 
which common sense played in his very penetrating ratiocination: 

The Parts of all homogeneal hard Bodies which fully touch one 
another, stick together very strongly. And for explaining how this 
may be, some have invented hooked Atoms, which is begging the 
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Question; and others tell us that Bodies are glued together by rest, 
that is, by an occult Quality, or rather by nothing; and others, that 
they stick together by conspiring Motions, that is, by relative rest 
amongst themselves. I had rather infer from their Cohesion, that 
their Particles attract one another by some force, which in immediate 
Contact is exceeding strong, at small distances performs the chymical 
Operations above mention’d, and reaches not far from the Particles 
with any sensible Effect. . . . . There are therefore Agents in 
Nature able to make the Particles of Bodies stick together by very 
strong Attractions. And it is the Business of experimental Philosophy 
to find them out (3). 

If, as Newton inferred, “the particles of bodies stick together 
by very strong attractions,” these attractions must cause the 
atoms to exert great pressure upon one another. The internal 
cohesive and chemical pressures (that is to say, the pressures 
produced by cohesion and chemical affinity, respectively) thus 
exerted must be an essential characteristic of each form of matter. 
Furthermore (although Newton did not carry his argument so 
far), there must be resident in the atoms some resisting pressure 
or pressures to balance these; for otherwise the cooler parts of 
the universe would shrink to a collection of widely separated 
mathematical points of infinite density. It is the business of 
this paper to discuss the history of the study of these internal 
pressures, which have been also variously named “molecular 
pressures,” “normal pressures,” “intrinsic pressures,” “Binnen- 
drucke,” “innere Krafte,” etc. 

The existence of internal pressure, important though it is, 
seems subsequently to have been ignored for thirty years, when 
the concept was revived by Segner (4) in 1750 to explain capillary 
action, a phenomenon long before discovered, probably by Leon- 
ardo da Vinci. Lack of experimental data doubtless contributed 
to this neglect,-which was continued for fifty years more, since 
not until 1804 did the question receive further attention. At 
that time Thomas Young ( 5 ) ,  in the course of his epoch-making 
studies on capillarity, assumed that cohesive affinity is independ- 
ent of distance “throughout the minute distance to which it 
extends;” but that it ceases entirely at the distance of 1 X 
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mm. His argument is somewhat obscure, but he saw that one 
must assume a “repulsive” or distending tendency to withstand 
cohesion, and ascribed all the intimate variations of the effect 
to  this latter tendency, which he assumed to diminish progress- 
ively with increasing distance. The nature of the “repulsive” 
force was not defined; as will be seen, it was often afterwards 
assumed to be purely thermal. 

Laplace (6) in his almost synchronous comprehensive mathe- 
matical investigation of surface tension, also based his theory 
upon powerful cohesive forces. Nevertheless, as Lord Rayleigh 
pointed out, 

In Laplace’s theory . . . . no mention is made of repulsive forces, 
and it would appear at first as if the attractive forces were left to 
perform the impossible feat of balancing themselves. But in this 
theory there is introduced a pressure which is really the representative 
of the repulsive forces (7). 

Laplace, perhaps quite independently, cast many of Young’s 
ideas into mathematical form. He was probably the first to 
suggest that the work done by cohesive pressure should be 
considered as an integral involving some function of the changing 
attractive force. 

After Laplace no other important addition to our knowledge of 
internal pressures seems to  have been made before the contribu- 
tions of Athanase Dupr6 in 1864. He was probably the first 
to point out that the expression Ta/p  (in which T i s  the absolute 
temperature, a the cubic coefficient of expansion and p that of 
compression) is a significant one (8) but he seems to have thought 
that this thermal pressure Ta/p  practically equals the total 
internal pressure. Dupr6 further saw clearly that cohesive 
pressure might account for heat of evaporation;-indeed there 
is no other reasonable explanation for this latter phenomenon. 
In  attempting to compute thus the value of the internal pressure, 
he drew, however, an erroneous conclusion, namely, that the 
internal pressure multiplied by the atomic volume is equal to the 
heat rendered “latent” (9). Expressed mathematically, this gives 

II = -, in which r~ is the cohesive internal pressure, L the atomic 
L 

V A  

CHEMIClL REVIEWS, VOL. 11, NO. 3 



318 THEODORE WILLIAM RICHARDS 

heat of evaporation and V ,  the atomic volume. The result is 
the same as it would be if the attracting pressure remained 
constant over a volume equal to  the atomic volume and then 
suddenly ceased, although he reached the conclusion in different 
ways. As will be seen, his values were probably of the right 
order of magnitude, but the fundamental assumptions involved 
in his integration are questionable. 

Hirn (lo), whose thoughtful excursions into thermodynamics 
were often suggestive, was perhaps the first to consider (in 1865) 
the effect of cohesive pressure upon the gas-law; he introduced 
into the latter an additional pressure to  account for the abnor- 
mally great contraction of imperfect gases on moderate com- 
pression, but made no attempt to relate this pressure mathe- 
matically to  the cohesion of liquids. 

The next important contribution to  the subject of internal 
pressure was the well-known equation of J. D. van der Waals (11) : 

(1873) in which the idea of Hirn was amplified by making the 
assumption that the cohesive pressure varies inversely as the 
square of the volume. The basis upon which this assumption 
was made is somewhat obscure (12); perhaps it was partly prag- 
matic. Moreover, not only the basis, but also the later inter- 
pretation of the assumption is clouded. Although the square 
of the volume means ordinarily the sixth power of the distance, 
W. C. McC. Lewis has concluded that the attraction between the 
molecules varies inversely as the fourth power (13) ; whereas 
Mie (46) and Gruneisen (47) have concluded that the cube of the 
distance is involved. The relation is not necessarily the same 
when the molecules are very close together as when they are 
widely scattered. An adequate review of all the comments 
upon the questions raised by this classic equation would require 
a volume in itself. 

The equation of van der Waals was undoubtedly a highly 
important step forward, but it cannot, for many reasons (includ- 
ing the assumption just mentioned) be considered as exact. 
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That it represents qualitatively the main influences at  work, 
there can be little doubt. On the other hand, the assumption 
that a is unchanging with temperature is questionable; and so 
is the assumption that the change of a with volume is simply 
exponential. With regard to b the situation is even less promis- 
ing. Under very great pressures b is certainly not constant, and 
probably also it varies with temperature (14). These consider- 
ations were at  least partially recognized by van der Waals (15). 
Moreover, inferences drawn from the very extended gaseous state 
are not suitably applicable (in an unmodified form) to con- 
densed phases without further evidence. Hence van der Waals’s 
equation, useful as it is, must be looked upon merely as an 
approximation. The many later modifications of this equation 
are not sufficiently illuminating in relation to the internal pres- 
sures of solids and liquids to deserve mention here. That of 
Keyes seems to be by far the best for gases (16). 

The next important contribution was that by Maxwell (17), 
in connection with the theory of capillarity. He perceived with 
Laplace that if cohesive attraction diminishes with distance, 
the work done by this attraction should be represented by an 
integral to which he gave the form 

uf [b’M 

but not knowing the rate of decrease with distance, he was unable 
to give his equation definiteness. His integral equation, like 
Laplace’s, involved forces, not pressures, since f signifies distance, 

Not long afterwards various other authors offered assumptions 
concerning the rate of decrease of cohesive force with distance. 
Pilling (18) advocated the inverse sixth power, and seven years 
afterwards Eddy (in 1883) (19) contented himself with a vaguer 
assumption,-that “some power of the distance” is concerned. 
In 1884 Harold Whiting (20) published his thesis upon a new 
theory of cohesion and maintained that the true function is the 
fourth power of the distance. He admitted that this was an 
assumption. Pearson (21), in 1888, brought forward an elaborate 
hydrodynamic atomic theory indicating that the exponent of the 
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distance-effect might be variable, according to  circumstances, 
but never more than the fifth power. Five years later Richarz 
(22) attempted to prove by general theorems of mechanics that 
some of the propositions involved in the foregoing researches 
do not afford sufficient stability and must therefore be rejected. 
The experiments of Plateau, Quincke, Sohncke, Drude, Kelvin, 
Boltzmann (23) and others were designed to show the range of 
potent action, or the size of the molecules, rather than the rate of 
decrease of the diminished effect at  a distance. Most of these 
investigators and, indeed, most later ones, have confined their 
attention to cohesion, and have left chemical affinity entirely out 
of consideration. The distending potential of atoms was usually 
neglected. Moreover, (as has been seen) often there was a tend- 
ency to deal with a force acting through a distance rather than 
with a pressure acting through a volume. Even in the case of 
capillarity, however, the well-known equation of Laplace, 
(P = K + H ( l / R 1  + 1/Rz)/2), shows that the surface-tension 
effect is merely a small difference between two great internal 
pressures, P and K ,  and that pressures therefore should enter 
into the integral equation (24a). The advantage of employing 
pressures instead of forces in the analysis is obvious in the work 
of Dupr6, Hirn, and van der Waals. 

The valuable and comprehensive work of Amagat on the phys- 
ical effects of external pressure was rather experimental than 
theoretical, and concerned gases rather than liquids. Neverthe- 
less, some of his data concerning the behavior of gases under very 
high pressures are pertinent (24b). 

About forty years ago there was a marked reversion to the 
ideas of Dupr6, already explained. Prominent among the 
theorists who embraced something like this point of view was 
Stefan (25) who advocated (among other doubtful hypotheses) 
an expression for the relation of latent heat to internal pressure 
essentially similar to DuprB’s, except that the heat of evaporation 
was halved-because on an exposed plane surface a molecule may 
be supposed to be under the influence of half as many molecules 
as in the interior of the liquid. He seems to have left out of 
account the fact that when one molecule evaporates another must 
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rise to the surface to take its place (or, in other words, that the 
total shift is from complete immersion to vapor). Stefan’s logic 
was accepted by many followers, including Ostwald and Walden, 
who made it the basis of a calculation of heats of evaporation (26). 
Harkins and Roberts have pointed out, on the basis of experi- 
mental results, that Stefan’s principle is inconsistent with the 
change of surface tension with temperature (27). Rather recently 
Davies (28), and also W. C. McC. Lewis (29), used another 
expression, II = RT/(V - O.27Vc), in which V, is the critical 
volume. These investigations (to quote two examples) give 
values for the internal pressure of ether ranging from 1000 to 
2000 atmospheres, and for that of benzene ranging from 1400 to 
3000 atmospheres (75b). 

A better theoretical method of attacking the problem had 
nevertheless been proposed (in 1888) only two years after Stefan’s 
publication. G. Bakker felt, with Laplace and Maxwell, that 
an integral expression is necessary to represent the work in- 
volved, but suggested that this integral should involve the 
pressure-volume relation as the best indication of the work 
developed by cohesive attraction during change of volume (30). 
Thus he combined good points in the thought of Laplace and 
DuprB, although in many other respects his treatment was 
incomplete. He decided, like van der Waals, that the exponent 
of the volume to be used is 2, which leads to precisely DuprB’s 
expression, although obtained in a more logical manner. In this 
way (as Traube and van Laar did also at  a later date), he cal- 
culated heats of evaporation. None of these theorists considered 
the distending potential (except as indicated by the “constant” 
quantity b of DuprB, Hirn, Budde, and van der Waals) or the 
subsidiary thermal effects. Nine years after Bakker’s contri- 
bution, Milner (31) proposed the inverse integral expression, 
which is, however, far less intelligibly applicable. Sutherland’s 
rather speculative although interesting communications (1886 
to 1893) bearing upon the question brought no definitive evidence, 
but deserve mention (32). 

All of these investigations (except Isaac Newton’s) concerned 
themselves with cohesive pressure alone. In other words, among 
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other omissions, they left wholly out of account the usually still 
greater pressures which must be caused by chemical affinity. 
Let us, then, turning back more than one hundred years, briefly 
glance at the few early incomplete researches which had taken 
chemical affinity into account. 

Davy (33) in 1805 seems to have been the first to point out the 
great contraction which sometimes takes place when a solid 
compound is formed from solid elements; he inferred (in a foot- 
note) that this contraction is greater, the greater the affinity. 
Sixty-five years later the same idea occurred to Muller-Erzbach 
(34), who showed that in many cases the contraction is greater 
the greater the heat of reaction, which leads to the same con- 
clusion as Davy’s, if heat of reaction is taken as representing 
approximately the free-energy change concerned. In the last 
decade of the nineteenth century the comparison was amplified 
by Traube (35). There were, however, many apparent excep- 
tions to the general rule, and the idea received but a poor welcome 
from the physicochemical world. In the form then presented, 
the generalization was indeed both incomplete and inexact. 
None of these theorists distinguished adequately between the 
concomitant effects of chemical affinity and cohesion, and none 
considered the essential influence of the compressibilities of the 
factors in a reaction. 

Furthermore, Traube complicated his presentation with several 
doubtful assumptions. Being an unqualified adherent to the 
van der Waals equation, he conceived of an incompressible 
atomic kernel and a “eo-volume” (u - b, which, like the b of van 
der Waals, appears to me to be really rather a mathematical 
device than the index of a physical entity) and further com- 
plicated his thought by assumptions concerning “free-” and 
“bound-ether.” These unnecessary assumptions tended not 
only to hide the real merit which his investigations possessed, 
but also to lead him astray. 

Here the matter stood at the beginning of the present century. 
A number of physicists had interested themselves in the attracting 
pressure caused by cohesive forces and practically all of them had 
adopted van der Waals’s assumption that this pressure varies 
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inversely as the square of the volume. A very few chemists had 
concerned themselves with the force of chemical affinity, but 
had made no attempt to represent mathematically its distance 
effect. All of the above mentioned later experimenters and 
theorists of both classes had omitted to take any account what- 
ever of the inherent distending tendency in matter except as it is 
represented inelastically by van der Waals’s “constant” b, which 
was not adequately interpreted. Van der Waals had assumed 
the atoms to be incompressible, and that their kinetic impact is 
instantaneous. There was, concomitantly, a general tendency 
(which was continued far into the present century) to assume 
that the only variable distending potential in matter is due to 
heat. Although van der Waals’ equation received prompt and 
well deserved acclaim, the importance of the internal pressures 
of solids and liquids had produced so slight an impression on the 
minds of most chemists (or even of most physicists) that these 
internal pressures were scarcely mentioned in the textbooks of 
that time. Indeed even today they occupy a very unimportant 
place in most chemical treatises. 

Nevertheless, Young’s appreciation of the fact that the con- 
cept of a variable “repulsive” or distending potential inherent 
in matter is necessary in addition to the cohesive pressure, had 
not been wholly forgotten. In an interesting paper written 
thirty-five years ago (before many of the publications just men- 
tioned) Lord Rayleigh (36) evidently felt the necessity of imagin- 
ing some such pressure, but he did not essay to treat it mathe- 
matically, remarking : 

The repulsive forces which constitute the machinery of this pressure 
are probably intimately associated with actual compression, and can- 
not advantageously be treated without enlarging the foundations of the 
theory. 

He had much more to say about the attractive or cohesive 
internal pressure, which he called the “intrinsic” pressure; for 
example : 

. . . . the progress of science has tended to confirm the views of Young 
and Laplace as to the existence of a powerful attraction operative at  
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short distances. Even in the theory of gases it is necessary, as van 
der Waals has shown, to appeal to such a force. . . . . Again, it 
would appear that it is in order to overcome this attraction that so 
much heat is required in the evaporation of liquids (37). 

Further commenting on the question, Lord Rayleigh pointed out 
that the existence of great internal pressures is not only con- 
ceivable but is necessary, and that “all that we need to take 
into account is then covered by the ordinary idea of pressure.” 

Lord Rayleigh was dealing primarily not with the problem of 
internal pressure, but rather with that of surface tension, so 
that these remarks are incidental rather than basic. His preg- 
nant suggestions might have served as the initial inspiration of 
my own work in this direction, if his paper had been known to me 
at the time. As regards the energy needed for evaporation, he 
accepted DuprB’s equation, without analyzing its details, as a 
rough indication of internal cohesive pressure,-feeling with 
Dupr6 that the work of evaporation should be the mechanical 
equivalent of the heat involved. A concluding quotation from 
this paper may help to dispel1 a source of perplexity which some- 
times influences commentors on the concepts involved in this 
discussion. 

It may be objected that if the attraction and repulsion must be 
supposed to balance one another across any ideal plane of separation, 
there can be no sense or advantage in admitting the existence of either. 
This would certainly be true if the origin and law of action of the forces 
were similar, but such is not supposed to be the case. The incon- 
clusiveness of the objection is readily illustrated. Consider the case 
of the earth, conceived to be at  rest. The two halves into which it 
may be divided by an ideal plane do not upon the whole act upon one 
another; otherwise there could not be equilibrium. Nevertheless no 
one hesitates to say that the two halves attract one another under 
the law of gravitation. The force of the objection is sometimes di- 
rected against the pressure, denoted by K, which Laplace conceives to 
prevail in the interior of liquids and solids. How, it is asked, can 
there be a pressure, if the whole force vanishes? The best answer to 
this question may be found in asking another-Is there a pressure in 
the interior of the earth? (38). 
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A more comprehensive attempt to solve the problem was 
undertaken at  the beginning of the present century. The subject 
was approached independently from the chemical side. In  1901, 
eleven years after the publication of Lord Rayleigh’s thoughtful 
paper, the first of the present author’s early papers on atomic 
compressibility was published. This and the immediately 
succeeding papers (39) brought evidence that the atomic volume 
is essentially dependent upon opposing pressures, and that the 
large incompressible kernel of the atom is a purely imaginary, 
(indeed an unnecessary and irrelevant) assumption. Thus the 
volume of the atom was assumed to be variable. For all theoret- 
ical as well as all practical purposes, it was taken to  be the appro- 
priate fraction of the actual volume of a solid or liquid element 
under given conditions,-that is to  say, the “atomic volume” 
divided by Avogadro’s number. Evidence was brought forward 
not only showing (in independent rediscovery of the outcome of 
Davy, Muller-Ersbach, and Traube) that cohesion and chemical 
affinity exert pressure and cause diminution in this volume (just 
as external pressure causes similar contraction) ; but also showing 
(for the first time) that the extent of this diminution of volume 
is determined also by the compressibility of each atomic sphere 
of influence under the particular conditions concerned. It was 
evident, from the considerable volume-changes occurring during 
the act of chemical combination and the very small compressibil- 
ities concerned, that the internal pressures produced by chemical 
affinity must be very great. 

In  short, the question was reduced simply to the idea that the 
balance of two opposing internal pressures, together with the 
external and thermal pressures, is the real key to the problem, 
although this conclusion was not expressed as clearly as it might 
have been. iMany actual examples, of a partially quantitative 
type, were adduced to confirm the reasoning. Especially the 
parallelism of compressibilities (40) (determined for this purpose) 
and atomic volumes, together with the behavior of the alkali 
metals on combination, supported the argument. The origin 
of the idea was the conviction, based upon experiment, that the 
quantity b of van der Waals’s equation is not constant (except 
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in an expanded gas at constant temperature, where it represents 
an abstraction which might be called the “collision volume” of 
the molecules) (41). 

An important suggestion, made in the paper of 1901 (70, p. 8) 
was: that because the “atomic heat capacity” (i.e., the specific 
heat multiplied by the atomic weight) of a solid or liquid is partly 
due to the work involved in thermal expansion, it must be an 
approximate guide (in connection with the coefficient of expan- 
sion) to the amount of internal pressure present. Of course, 
as was there clearly indicated, not all of the heat needful to 
warm anything is available for work. Some of the heat must be 
used to provide added kinetic energy and the potential energy of 
temporary atomic displacement caused by vibration (42). But 
at any rate the heat and the work against the internal pressure 
(although not equal to one another) ought to be about propor- 
tional in different cases. Therefore the quotient of atomic heat 
capacity divided by the atomic expansion per degree (C/V,CY) 
ought to be an index of relative internal pressures (n) in different 
substances. Mathematically, one might express the idea thus : 
II = f C / V A a ,  where II is the internal pressure, f an unknown 
fairly constant fraction, C the gram-atomic heat capacity, V, 
the atomic volume, and CY the coefficient of expansion. The 
inference was verified by examples and comparison with other 
properties. The original statement of the qualification stated 
above (that f must be less than unity) was overlooked by Traube 
(44) and by W. C. McC. Lewis (75), the former applying it 
partially on his own account, and the latter rejecting entirely the 
suggestion. A fairer estimate of the situation was made by Carl 
Benedicks (43), who saw that i f f  is taken as 1/3, the tenets 
advanced in 1901 lead to the equation II = R/V,CY. This 
simple equation (in which, as in the previous one, r~ = internal 
pressure, V A  = atomic value, and CY = cubic coefficient of expan- 
sion while R is the gas constant) Benedicks offered only very 
tentatively as of distinct interest, but did not further apply 
numerically to the actual behavior of any form of matter. The 
probable significance and limitations of this equation will be 
discussed shortly, in connection with later work. 
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The American paper of 1901 seems to have stimulated Traube 
to calculate (in 1903) internal pressures and heats of evaporation, 
with results of a reasonable order of magnitude (44), by the equa- 
tion of van der Waals. Traube’s results were inevitably vitiated, 
however, by incomplete logic and by the merely approximate 
character of van der Waals’s equation, especially as applied to 
matter greatly compressed either by external or by internal 
pressure; they were appropriately criticized by Benedicks (43). 
A much more exhaustive prosecution of a somewhat similar line 
of thought has been recently offered by J. Berger and severely 
criticized by van Laar (45). 

Almost at the same time, in 1903, &fie (46) published an im- 
portant mathematical paper which contained, perhaps for the 
first time, an attempt to  represent mathematically the effect of 
the distending or repulsive potential of matter already mentioned 
as having been studied qualitatively. Mie was interested not so 
much in the magnitude of the internal pressures concerned, 
as in the calculation of the volume-changes caused by heat and 
by externally applied mechanical energy. His equation was 
therefore an energy-equation, into which, however, he introduced 
the idea of integrating the pressure-volume effect of cohesive 
pressure after the manner of Bakker (30). With the help of 
kinetic hypotheses, he analyzed the work iiivolved in the volume- 
change of a monatomic metal, taking account of a distending 
as well as a compressing potential and assuming each to be a 
function of volume. His equation of state took the forrn, 

In  this equation, the first term represents the work due to  
external pressure, the second that due to cohesive pressure, the 
third that due to distending potential, and the fourth that due to  
heat. The discussion of details would require too much space 
for the present brief history, especially because the result was not 
definitive. 

Mie’s excellent but incomplete theory was amplified and altered 
by E. Griineisen (1911-1912), who has done valuable experi- 
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mental work. The latter also, in very elaborate mathematical 
papers (47), computed with success compressibilities and co- 
efficients of expansion by consideration of the work derived from 
four sources-external mechanical work, work done against 
cohesive pressure, work done by the distending potential, and 
work corresponding to heat. His equation of state (47b) took 
the form: 

A B (y + 2)D, - (X + 2) D,E 
U Vrn 6 D  

p v + n ~ - m - =  

which (like Me’s) involved the use of frequency. However, he 
immediately concealed the two most important terms in this 
expression (the second and third) by combining them in a single 
quantity, which represents their difference. Later he simplified 
the full equation of state (47c). Keither Mie nor Griineisen 
attempted to  compute the essential internal pressures concerned; 
neither of them employed the expression Ta/p for thermal pres- 
sure; and neither looked upon the equilibrium which determines 
the bulk of a solid or liquid from the point of view of a balance 
of pressures. They dealt primarily with energy-equations, and 
rested their argument upon kinetic hypotheses. Nevertheless 
some of their suggestions are important, as has been said. In a 
contemporaneous paper, Debye (48) related the quantitative 
connection of energy and absolute temperature to the acoustical 
spectrum, deriving a well-known equation for specific heat a t  
low temperatures, and in 1914 showed that neither Mie nor 
Griineisen really made use of the two different terms for opposing 
internal pressures in their formulas for the potential energy, 
but that so far as their analysis goes, the only thing needed is that 
deviations from the simple Hooke Law should exist-the sense 
of these deviations being that more potential energy-change is 
involved in the diminution of the volume by the amount AV 
than in an increase by the same amount. In this very interesting 
lecture, Debye introduced the Quantum Hypothesis into the 
equation of condition of a solid, considering the latter as an 
asymmetric oscillator. He arrived deductively at  Gruneisen’s 
Rule, but did not attempt to compute internal pressures. 
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The contributions of Marcel Brillouin (who corroborated 
Debye) should also be mentioned, as well as those of Everdingen, 
H. A. Lorentz, Ornstein and Zernike, and Tresling. All of these 
authors (59) dealt largely with the meaning of the Gruneisen 
rule, considered from Debye’s point of view. 

More or less contemporaneously with these papers, a number 
of suggestions appeared concerning the rate of change with 
changing volume, which perhaps should be mentioned. In a 
long series of papers, Mills (50) assumed that the force of cohesion 
varies inversely as the square of the distance between the mole- 
cules-an assumption which might give cohesion a r81e in deter- 
mining the motions of planets and satellites. Mills’ assumption 
was supported by Kam (51), but controverted by Kleeman (52), 
(who advocated assuming the fourth to  the sixth power of the 
distance) and by Mathews (53). Winther’s (54), Tryer’s (53) 
and Tammann’s (56) papers should likewise be mentioned in this 
connection. 

Later Wohl (57) adopted an equation somewhat similar to 
to Gruneisen’s, but was inclined to ascribe the “repulsive” force 
primarily to rotation. Concerning the contributions of I<. K. 
Jarvinen (58) for which nothing more than approximate accuracy 
was claimed, it is only necessary to call attention to the fact that 
his results agree with the now discredited determinations of the 
compressibility of mercury made by Jamin. S. Pagliani (59) 
considering the internal molecular forces of solid substances and 
their relation with the elastic properties, devised a more com- 
plicated theory, subdividing the cohesive pressure into several 
components. The contributions of Drude and Nernst (60), 
Tammann (61), and Polowzow (62) concerning internal pressures 
of solutions deal with systems so complicated that any attempt 
to derive a simple law was foredoomed to  failure at the present 
time. The complications involved are excellently set forth in 
recent papers by Baxter (63). 

Van Laar, who for a number of years has published interesting 
mathematical papers dealing more or less with internal pressures, 
has recently summed up his conclusions in his book (64). He 
employed an integral equation, depending upon the equation of 
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van der Waals, and yielding a result very like that of Dupr6, but 
somewhat modified by temperature terms. The well-known 
formulas for specific heat of Einstein (65) and of Nernst and 
Lindemann (66) (introducing half quanta, and preceding that of 
Debye) are connected with the interpretation of the phenomena 
under consideration, but need not be further discussed in this 
place. 

Very recently important investigations have been made by 
several physicists, attacking the subject from an entirely different 
standpoint, and founding the argument upon hypotheses con- 
cerning the electronic nature of the atom. The three chief 
investigators in this direction have been, F. Haber, Sir J. J. 
Thomson, and Max Born (67). These contributions are stim- 
ulating and suggestive; but they, like Mie’s and Gruneisen’s, 
possess the inevitable disadvantage which always inheres in any 
deductive attempt to predict the facts when only hypothetical 
premises are employed. Both Thomson and Born came to the 
conclusion that compressibility is a function of atomic or molec- 
ular volume alone. That molecular volume is indeed one of the 
essential premises in the argument had been shown long before 
in the first comprehensive research on the compressibilities of 
the elements (68); but this early research showed also that 
molecular volume is not the only variable to be taken into 
account. Hence neither of these more recent suggestive dis- 
cussions could be expected to yield more than approximate 
results. That the outcome should be as satisfactory as it was 
is a cause for congratulation. 

Some of those who advocate the electronic explanation believe 
that both the repelling and attracting forces are due to the same 
cause, and that the condition of equilibrium is one not of opposi- 
tion but rather of a kind of neutrality. This view involves the 
assumption that Coulomb’s Law is greatly modified at  short 
range (perhaps by quantum forces). A simple definitive explana- 
tion along this line seems far to seek. 

Is it indeed possible to gain exact quantitative knowledge, from 
any source, concerning a problem so recondite, dealing with 
concealed pressures so mutually entangled and so far removed 

They are reviewed interestingly by Griineisen. 
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from the range of actual experiment? Recently (in 1916) Jeans 
has written: “The effect of the forces of cohesion is too complex 
for an exact mathematical treatment to be possible’’ (69); and 
this feeling has been at times shared by others, including the pres- 
ent author. Nevertheless, the question is so fundamentally impor- 
tant that even an incomplete answer is vastly better than none. 

The attracting and repelling tendencies which determine the 
behavior of solids and liquids are different in many ways from 
any other forces in nature. It would appear, then, that for their 
understanding and evaluation one must pursue an inductive 
quest, relying in phenomenological fashion upon the actual 
effects which are produced by the powerful influences involved. 
That is to say: the basis for the determination of internal pres- 
sures would seem to be found in the actual behavior of solids 
and liquids under the action of thermal and mechanical energy. 
This proposition was indeed implicitly recognized by many of the 
earlier authors already quoted. That density, coefficient of 
expansion, specific heat, heat of evaporation, and compressibility, 
as well as many other properties of matter having to do with 
physical and chemical condition, must be dependent upon internal 
pressure, was especially emphasized in 1901 (70). 

At that time, and in the immediately following years (71), 
it was shown that in all probability, as a general rule, the greater 
the coefficient of expansion, the less the internal pressure; again, 
the greater the compressibility, the less the internal pressure; and 
yet again, the greater the decrease of compressibility with 
increasing external pressure, the less the internal pressure. 
Nevertheless data were lacking for numerical calculations leading 
to an exact quantitative theory. 

In 1922, however, the remarkable work of Bridgman on the 
compressibility of thirty metals to 12,000 atmospheres’ pressure, 
was published (72). These results, which had been kindly 
communicated to  me by Professor Bridgman some months before 
publication, promised at  last a means of penetrating more deeply 
into the mystery. Bridgman’s thermodynamic treatment of 
them was primarily concerned only with external pressures, 
and he made no attempt to compute from them the much greater 
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internal pressures involved. Nevertheless they furnished an 
exceptionally good basis for inference concerning these internal 
pressures, especially because many of the metals studied were 
isotropic and therefore presented a simple and more intelligible 
basis of analysis of the problem than is possible where more than 
one intensity of internal cohesive pressure is present at  the same 
time in the same substance. 

The opportunity was immediately grasped, and the first hope- 
ful outcome was the discovery of a very simple hyperbolic inter- 
polation equation (73) which represents with great precision 
the effect of pressure and temperature on the volume of heavy 
metals such as gold and silver. This equation took the form 

(P + P) (0 - BJ = ki + CT 
In it p is the external pressure applied by a pump and measured 
by a gauge; P represents (but is not necessarily exactly equal to) 
the hidden internal cohesive pressure which holds the metal 
together; v is the volume; B1, kl,  and c are constants; and T is the 
absolute temperature. The agreement of this equation with the 
actual results for many heavy metals was within the limit of error 
of experiment, and an approximate agreement existed even with 
the more compressible alkali metals. Somewhat similar equa- 
tions had previously been used over short ranges for organic 
substances by Tumlirz and Tammann (74). Their treatment of 
temperature was, however, inadequate and not illuminating, 
and their equations were merely first approximations as regards 
the behavior of the complex substances concerned. 

The above stated equation is an energy-equation, analogous to 
that of van der Waals,-although the B1 value is smaller in mag- 
nitude than the b of the latter’s treatment. But we are con- 
cerned primarily with pressures, and not with quantities of 
energy; because the equilibrium which exists in a solid or liquid 
at ordinary temperatures must be really a balance of pressures. 
Therefore this expression was reduced to an equation of pressures 
by dividing it through by the volume (v - B1) as follows: 

p + P = -  
IC cT 

v - B l + G z  
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The transformed equation still has four terms, but now each 
represents a pressure. The first term, p ,  is simply the external 
pressure; the second represents pressure caused by cohesion, 
the third represents that portion of the distending, “repulsive” or 
repelling tendency which is independent of heat, and the last, 
the remainder of the distending pressure, caused by heat. 
The compressing tendencies are in the left-hand member, and the 
distending tendencies in the right. 

Here we have experimental evidence that a distending poten- 
tial, independent of heat, is an important influence in the balance 
of pressures. It is indeed, except in very volatile substances, 
much greater than the thermal pressure. The latter (the fourth 
term in the immediately preceding equation) was shown, by a 
process of reasoning too extended for exposition here, t o  be equal 
to the absolute temperature multiplied by the coefficient of ex- 
pansion and divided by the compressibility, (Ta/@)-one of 
DuprB’s old expressions. Thermodynamically it is a valid 
quantity, equal to - T(dp/bT),. This quantity represents only 
one of the four opposing pressures, namely, that due to thermal 
energy. In  the case of very volatile substances, Ta/@ is indeed 
not very much less than the total distending pressure, but with 
non-volatile substances this thermal pressure is only a small part 
of the total tendency which resists compression. If the sole 
distending tendency in matter were this one, due to  heat, (14b, 
page 626) matter would shrink to zero volume at the absolute 
zero of temperature;-for example, Kamerlingh Onnes’ apparatus 
for liquefying helium would have been reduced to very small 
dimensions before the liquid could have been obtained. 

An obvious difficulty in the preceding equation is the assump- 
tion of the constancy of the quantity representing cohesive pres- 
sure, P, whereas really this pressure must increase very rapidly 
with decreasing volume. If this latter conclusion is true, in 
order that the equation may (as it does) represent the facts, 
the expression for the distending tendency k / ( v  - B1) must also 
increase with decreasing volume. Therefore a different method of 
stating the second and third terms is needful. 

CHEJIICAL RBVIEWS, VOL. 11, NO. 3 
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In its most general form the equation of state of any condensed 
phase composed of a single species of monatomic molecules 
under definite conditions may evidently be expressed by the 
simple equation' 

P + = I I p  + Tq'B 

in which TI depicts the true internal cohesive pressure (repre- 
sented roughly by P in the preceding equation) and II, depicts 
the true internal repelling or distending pressure independent of 
heat. But because each of these internal pressures must be 
assumed to change with changing volume, as has been said, 
the following amplification (73b) presents a much better picture 
of the situation : 

This equation (in which TI, and TIP, correspond to the volume v,) 
appears to  be rather complex, but the ideas concerned are really 
simple enough. It is easy to see that (at ordinary temperatures) 
since TI, is larger than Dp0,  whereas n is larger than m, the 
difference between the actual changes in the second and third 
terms with moderately changing volume might very well be equal 
to the increase in p-a supposition which would explain the 
approximate validity of the simpler hyperbolic equation already 
given. So far as present analysis can show, m is usually not far 
from 2, being often about 1.7. The exponent n is much larger 
than m; if it were not, all matter would collapse under slight 
external pressure. 

The above equation combines the static and the dynamic points 
of view by virtue of its use of the dimension of pressure as the key 
to the situation-for pressure may be exerted either by a steady 
push (as in the cases of p ,  TI, and 11,) or by a succession of kinetic 
impulses (as in the case of Ta/p). The impulsive pressure 

1 This equation represents mathematically the basic idea in the author's work 
since 1901. The idea was perhaps somewhat vaguely expressed a t  first, but it had 
assumed very definite form shortly afterwards (71, pp. 2435-2437). See also 73a, 
p. 425, and the paper written in collaboration with E. Saerens (67). 
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produced by heat must cause an oscillation determined in its 
range by the rate of increase and falling off of the two great static 
opposing internal pressures. It appears to act in the whole 
volume occupied by the atom. Obviously when any given ther- 
mal impulse is great enough to over-balance the above-mentioned 
equilibrium, the atom (or molecule) carrying the impulse must be 
set free,-i.e., evaporate. The situation appears to be well 
adapted to furnish a suitable mechanism for the physical and 
chemical reactions necessary for constructing a workable universe 
and a physical basis of life. 

The new equation for monatomic elementary substances, 
thus independently developed, seems to make possible the weav- 
ing together into a consistent fabric many of the diverse threads 
which other investigators had gradually accumulated. It con- 
tains, like the equations of Mie and Gruneisen, a term for each 
of the four separate tendencies affecting the volume of a condensed 
phase. It gives prominence to the third term depicting the non- 
thermal distending or repelling tendency in matter, which has 
been so often neglected. In  keeping the second and third terms 
separate from one another it emphasizes their essentially opposite 
nature. It installs as the fourth term a quantity which seems 
to express the true thermodynamic magnitude of thermal pres- 

sure, Ta/p (or -T (-),). 3P It shows, on the other hand, that 
bT 

this last term does not represent (as Dupr6 (8) and others (75) 
appear to have thought) the whole of the distending tendency in 
matter. Finally it assigns to the exponents of the two volume 
ratios symbols (m and n) which are independent of the gas- 
equation of van der Waals, and which challenge evaluation on the 
basis of the behavior of the condensed phase itself under mechan- 
ical and thermal pressure. 

The most important distinguishing feature of the new equation 
is the treatment of the two opposing pressures TZ and II, as 
separate entities, operating presumably by different mechanisms. 
This feature is probably that least acceptable to many physicists, 
who may prefer dealing merely with the difference (TZ - TZ,), 
after the manner of Gruneisen, Kleeman (52) or Eucken (83), 
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or else prefer maintaining (as has been said) that equilibrium is 
a neutral point in an hypothetical electrical system governed by 
anomalous quantum forces. But if as it appears, the exponent 
m is the same (somewhat less than 2) with many substances (81, p. 
734) and since, furthermore, both thermal expansibility and 
latent heat of evaporation as well as chemical heat probably 
point toward pressures of the full magnitude of II, does not the 
individual quantity II acquire real significance? And is not then 
the use of the mere difference between n and II an evasion of 
the issue? Moreover, the dissociation of the treatment of these 
two tendencies has much to recommend it, not merely for mathe- 
matical convenience, but also because of analogy with other 
physical phenomena. In general, when in a series of observations 
a maximum or minimum exists, strong evidence is afforded that 
two different mechanisms are at work. Such an inflection ap- 
pears in the relations of the internal forces to distance,-an 
inflection too marked to be accounted for without the assumption 
of a concrete distending tendency other than heat. The fact 
that I1 and IIp must ultimately be referred to forces does not 
invalidate the treatment of these tendencies as pressures con- 
comitantly with external and thermal pressures. 

The four unknown quantities no, I I p o ,  m, and n could theoreti- 
cally be determined by four equations, involving different relative 
volumes and pressures, and representing the actual behavior of 
an isotropic element, provided that m and n were unchanging in 
value. But this last proviso is not necessarily fulfilled, although 
for a comparatively small range of volume definite values may be 
_assumed without serious erroy. The range of volume experi- 
mentally available with comparatively incompressible sqb- 
_stances is of necessity small. 

A more convenient method of advance was found in the study 
of a series of “synthetic” pressure-volume curves, built ’up on 
definitely assumed internal pressures and exponents, and in the 
comparison of these with the pressure-volume curves actually 
exhibited by isotropic substances. This study cap not be 
detailed here, It sufficed to show that the no values are of the 
order of magnitude of the P in the hyperbolic interpolation 



INVESTIGATION O F  INTERKAL PRESSURES 337 

equation; and that when m is 2 and n is 7, the two quantities 
P and TI are nearly equal. Increasing n increases P and diminish- 
ing n diminishes P in relation to TI. From these considerations 
also, the initial compressibility p, at the absolute zero (where 
Ta/P is 0) was found to be p, = 1/ (& (n - m))-an important 
relation which may be used for the direct computation of II, 
when the difference (m - n) is certainly known, or of (m - n) 
where no is known (77, p. 733). 

These considerations make possible the approximate deter- 
mination of the internal pressures in the isotropic metals, 
depending upon the experimental results of Bridgman. It appears 
that TI, is, for example in the case of silver, about 160,000 mega- 
bars. The amount of calculation involved is great and has not yet 
been applied to many other cases, but there seems little doubt 
that the outcome is reasonable and that the equations just 
given afford an adequate picture of the behavior of isotropic 
solids. Very recently J. E. Jones, from a study of solid argon 
(76) has confirmed in a remarkable manner not only the point 
of view, but also some of the quantitative aspects of the devel- 
opment. 

This outcome is supported in rather striking fashion by an 
entirely different method of approach depending upon facts 
of a different kind, namely, by the study of the coefficient of 
expansion, a property like compressibility concerned with the 
great internal pressures existing in solids and liquids. That the 
coefficient of expansion is primarily dependent upon internal 
pressure was perhaps first emphasized (70) in 1901 as has been 
already indicated above. 

The coefficient of expansion of a solid or liquid is always much 
less than that of a perfect gas. The probable reason for this 
difference may well be as follows: In solids and liquids the pres- 
sure produced by heat must be only a small part of the total 
pressures concerned (as is shown by the foregoing equations) 
whereas in the case of a perfect gas the energy of heat must cause 
the whole distending effect. Is it not then reasonable to draw an 
inference concerning the magnitude of this greater pressure from 
the comparison of the two coefficients of expansion? The 
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coefficient of expansion of silver at 20" is about one sixty-first 
of that of a perfect gas. The kinetic energy involved is generally 
believed to be identical in the two cases. May it not then be 
that the total pressure involved in the expansion of silver is 
sixty-one times that which a gram-atom of a perfect gas would 
exert in the same volume? If this is the case in general, the 
internal pressure of a metal at 20", for example, would be 

RT 0.00341 R n = - -  E-  

V A  vAffa 

This expression makes precisely the above comparison (73b). 
In  it II, as before, signifies cohesive internal pressure; T ,  absolute 
temperature; R, the gas-constant; 0.00341 = 1/T = ag (the 
coefficient of expansion of a gas) a, the coefficient of expansion 
of the solid; and TI, the atomic volume. The above equation 
is identical with that tentatively suggested but not applied by 
Benedicks (43) in entirely different fashion upon the basis of an 
earlier proposition (70). 

From the point of view here adopted, this equation is, however, 
only a first approximation. The expansion of a perfect gas is 
measured under constant pressure, whereas the expansion of a 
solid is measured under a slightly changing total pressure (al- 
though under a constant external pressure); for as the solid 
expands the internal pressure II must diminish; and even if the 
external pressure is kept constant, the total pressure against 
which the energy of heat is acting must be diminished during the 
expansion. In  order to be entirely consistent, then, a! should here 
signify the coefficient of expansion when the total pressure 
( p  + II + Ap)  is kept constant ( A p  being the slight change in p 
necessary to replace the small loss of II due to the increased 
volume on heating (77). The correction is, however, a small 
one; it leads to values of r~ slightly higher than the uncorrected 
values. Its exact amount can not be precisely determined until 
the constancy of r~ in constant volume with changing temperature 
has been proved (78). 

At very low temperatures the equation needs modification 
for the little understood reason which causes the failure of Dulong 
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and Petit’s Law. The “Gruneisen Rule” that for a given sub- 
stance a! is approximately proportional t o  C (the molecular heat 
capacity), indicates this parallelism. Evidently a more correct 
expression is that advocated (and expressed in words, but not 
in symbols) in 1901 (70), namely, 

D = f (CIYAa)  

At ordinary temperatures C = 3R approximately, and f = 1/3. 
At very low temperatures C/3 is no longer equal to R. Further 
discussion of this aspect of the matter must be postponed. 

However this may be, the equation 

II + A l l  + p = R/vAa 

gives a t  ordinary temperatures a good means of predicting rather 
closely the effect of pressure on the coefficient of expansion and 
compressibility, as will be shown in a subsequent paper. For 
example, the coefficient of expansion of mercury under 3,000 
megabars pressure (p’) is computed to be aP’ = R/14.75 (31,000 
+ 515 + 3,000) = 0.000163, whereas Bridgman’s experimental 
value is 0.000164, both being referred to $’’A at 0°C. The value 
An[ = 515 is calculated on the assumption that m = 1.7; it 
represents here the increase of cohesive pressure due to the 
diminished volume caused by the external pressure, p’ = 3,000. 

Taking everything into consideration, it accordingly appears 
that 

= c/3vAa; or R / V A ~  

(for ordinary temperatures) may therefore be accepted as a 
promising, if not rigorous, means of computing internal pressures, 
which gives results somewhat, but not much, too low. Accord- 
ingly, table 1 is given to  show the approximate internal pressures 
in a number of isotropic” metals compared in this way, R being 
83.16 megadyne-em. /“C. 

That 
at least they are not far from the right order of relative magnitude 

These pressures are very large, but not unreasonably so, 

* “Isotropic” is used here in  its original sense and not as synonymous with 
amorphous.” 11 
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is likely. Moreover the fact that they are about equal to values 
computed from the pressure-volume curves alone (that is to say, 
from compressibility), strongly supports their approximate 
accuracy. If volatile liquids possess internal pressures of the 
order of a thousand or more atmospheres, as is generally conceded, 
the magnitude of these values for metals is not excessive. They 
are not far from the values calculated by Traube (44) from the 
equation of van der Waals. Griffith has found experimentally 

TABLE 1 

Approximate internal pressures of isotropic metals based on atomic volumes and 
cubic coeflcients of expansion (at 20°C.) 

METAL 

Caesium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Potassium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Sodium. . . . . . . 
Mercury.. . . . . . . . . . . . . . . . . . 
Lead.. . . . . . . . . . . . . . . . . . . . . 
Calcium. . . . . . . . . . . . . . , , . . . . . . . . . . . . . . . . . 
Magnesium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Aluminum. , . . . . . . . . . . . . . . . . . . . . . . . . . , . . . 
Silver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Gold. . , . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . , 
Copper. . . . . . . . . . 
Palladium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Tantalum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Nickel. . . . . . I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Cobalt. . . . . . . . . . . . . . . . . . . . . . . , . . . . . , . . . . 
Iron.. . . . . . , . . . , . . . . . . . , . . . . . . . . . . . . . . . . . 
Platinum. . . . . . . . . . . . , . . . . . . . , . . . . . . . . , . . 

..................... 

. . . . . . . . . . . .  

. . . .  . . . . . . . . . . . . . . . . . .  

COEFFICIENT 
3 F  EXPANSION 

300 
245 
215 
181 
85 
50 
74 
65.5 
55.6 
43.2 
48.4 
34 
24 
38 
37 
34 
26.4 
13.7 

ATOMIC 
VOLUME 

71 
45.4 
23.7 
14.8 
18.3 
25.3 
13.3 
10 .1  
10.3 
10.2 
7 . 1  
8.77 

10.9 
6 .7  
6.85 
7 . 1  
9 . 1  
9 . 6  

I N T E R N A L  
P R E S S U R E  

4,000 

16,300 
31,000 
53,000 
66,000 
85,000 

126,000 
145,000 
189 , 000 
242,000 
279,000 
315,000 
327 ~ 000 
329,000 
345,000 
347,000 

7,500 

632,000 

values of the same order of magnitude from the tensile strength 
of glass fibers (79). 

The heat of evaporation of mercury affords support for the 
corresponding value given in the above table, and therefore 
indirectly for the other values. When the attracting and repel- 
ling pressures and m and n are known, one should be able to  
compute from the second equation on page 334 the work re- 
qaired for pulling the atoms apart-in other words, for evaporat- 
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ing the substance. This work (when corrections for such small 
concomitant effects as external work and heat expelled because 
of change of heat capacity are made) should be equal to the 
heat of evaporation. The difference between the pressure- 

, ,  

Volume 
FIG. 1. THE WORK OF EVAPORATION DONE AOAINST COHESIVE PBESSURE 

Multiples of the atomic volume are plotted as abscissse (abscissa 1 correspond- 
ing to  the atomic volume of the condensed material). Pressures in megabars are 
plotted as ordinates. The difference between any two integrals, tha t  is to  say, 
the urea between any upper curve (representing the decrease of cohesive pressure 
with increasing volume) and m y  curve below i t  (representing the decrease of 
internal repelling pressure with decreasing volume) represents the work required 
to separate molecules from a condensed condition to  a distended vapor. This 
diagram holds precisely only a t  the absolute zero, therms1 pressure not being 
included in it.  It assumes that the internal pressure in the  liquid or solid 18 100,000 
atmospheres; for any other internel pressure, the appropriate fraction or multiple 
of the differences between integrals gives the corresponding work. 

volume integrals of the second and third terms of this equation 
constitute the chief part of the energy in question. This differ- 
ence is represented by the urea between any two curves in the 
diagram (fig. 1) in which the numbers on the face of the diagram 
near the curves represent the exponents of the volume ratio. 
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On the other hand the equation of Dupr6 is represented by the 
rectangle a t  the left of ordinate 1. Evidently, for any reasonable 
values for n or m, the area between the curves will be of about the 
same order of magnitude as DuprB’s expression. In the case of 
mercury m has been estimated as 1.7 and n as 9.8. The internal 
pressure of liquid mercury is probably somewhat over 30,000 
megabars. Therefore the area as depicted on this diagram 
(in which the internal pressure is chosen arbitrarily as 100,000 
atmospheres) will be about three times too great, to correspond 
to mercury. Dividing the area (as found exactly by integration) 
between the continuous curves 1.7 and 9.8 (up to infinite volume) 
by 3, one should obtain a result for a quantity of work about 
equal to  the heat of evaporation. This is indeed the case (73b, 
p. 1433; also 81, p. 735). 

These confirmations, from so many sides, give the theory con- 
siderable probability, and warrant its use at  least as a working 
hypo thesis. 

All of the immediately preceding discussion applies in an 
unmodified shape only to  isotropic or rather monatomic elements. 
When chemical affinity is present, modification of the treatment 
is needful. 

As has been said, few of the many investigators upon the 
subject have included chemical affinity in their consideration. 
Yet this force is no less important than cohesion, which in many 
respects it resembles (84). Like cohesion, chemical affinity must 
produce very great pressures which fall off very rapidly as the 
attracting atoms recede from one another (2, 80); and like 
cohesion, chemical affinity may in many cases be overcome by the 
energy of heat. The similarity is great enough to  warrant the 
application of the foregoing principles, inferred from one set of 
phenomena, to the more complicated situation presented by the 
other. New difficulties arise in the treatment, due not only to the 
fact that in a compound at least two different elements are present 
at  the same time, but also to the probability that each chemically 
combined atom is subjected to different intensities of pressure on 
different portions of its surface. Nevertheless, the venture 



INVESTIGATION OF INTERNAL PRESSURES 343 

seemed to be worth making, since even a vague outcome would 
be better than none. 

Accordingly, within a few months (81) the method of treat- 
ment outlined in the immediately foregoing pages has been 
expanded to include the pressures produced by chemical affinity. 
The outcome shows that the same principles which apply to 
cohesion may apply also to chemical affinity, bearing in mind the 
fact that chemical affinity acts most strongly on the portions 
of the atoms in closest juxtaposition and does not envelop each 
atom equably over its whole surface after the manner of cohesion 
in an isotropic element. Just as the heat of evaporation may be 
accounted for chiefly by the work involved in separating atoms 
under the influence of the changing balance of pressures, so the 
heat of chemical combination may be accounted for chiefly by 
the work done by the more considerable one-sided pressures 
usually produced by chemical affinity. This verifies a much 
earlier prediction based upon the relation of volume-change to 
heat of reaction (82). Even the recent discussion was inevitably 
tentative, because the portion of the atom involved by the one- 
sided action of chemical affinity is not easily defined. Never- 
theless it was possible to show that the amount of work which 
may be done by the chemical union of two atoms is of the order 
of magnitude of the heat evolved. Of course, for completeness 
in this case, as in the other, correction must be made (on the basis 
of the so-called third law of thermodynamics) for the change of 
heat capacity during the reaction. 

The equations presented by the most recent investigations 
thus seem not only to explain the pressure-volume-temperature 
behavior of solids, and liquids, but also to  give a roughly quan- 
titative picture of the raison d’&e of heat of evaporation and of 
chemical reaction. Further investigation now in progress must 
proceed slowly, partly because of the time needed for calculation, 
and partly for the reason which halted Newton at  a much less 
advanced state of the inquiry, namely, the lack of “a sufficiency 
of experiments.” But nevertheless, although incomplete, the 
knowledge already gained, step by step, through the successive 
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advances of many investigators, gives a conceivable and rational 
picture of the action of the mechanism whereby solids and liquids 
(forming the framework of the universe) maintain their equili- 
brium. What the basic causes of the great pressures indicated 
may be, cannot yet be definitely decided. Perhaps these causes 
may be entirely electronic, but of course the demonstration of 
such a cause can be complete only when it is conclusively shown 
that electrical attractions and repulsions may really be capable 
of producing the very great but balanced pressures which are 
indicated by the actual behavior of condensed matter. 

Incomplete although our knowledge of internal pressures may 
still be, one feels that at least something has been accomplished 
toward the fulfilment of Newton’s parting injunction: “It is the 
Business of experimental Philosophy to find them out.” 
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