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Although the ignition of gases by local sources (mainly electric sparks) 
has been the subject of extended experimental investigations, there has 
been very little theoretical consideration of this topic. A paper by Taylor-
Jones, Morgan, and Wheeler (7), one by Silver (6), and another by Mole (2) 
exhaust the list. At present the literature on ignition seems to consist 
mainly of an enormous collection of experimental data with insufficient 
theoretical basis to coordinate the data, to indicate the significance of 
experimental results, or to supply a ground for prediction. It was there
fore felt that a theoretical study, even if only partially correct, might indi
cate lines of research that would help to eliminate the somewhat confused 
state of the literature on the subject. 

PHYSICAL ASSUMPTIONS 

In order to treat the problem mathematically, it is necessary to adopt a 
definite physical mechanism for the process. We conceive of the problem 
of the ignition of gases as follows: In a combustible gaseous mixture 
contained in a large vessel there is an arrangement for rapidly releasing 
energy within a small volume at a distance from the walls, for example, by 
passing an electric spark. It is assumed that the energy instantaneously 
heats up a small spherical volume and also creates active particles. These 
active particles are the chain carriers of the chain-reaction theory; it is 
not necessary to state whether they are ions, atoms, molecules with an 
excess of energy, or something else. It is also not necessary to specify 
the mechanism by which these active particles are created, but simply to 
assume that the release of energy does create them. The following 
processes then take place: There is a heat-generating reaction which is 
assumed to proceed at a rate proportional to the concentration of active 
particles, but this concentration varies with distance and time because 
the active particles are diffusing through the gas, and in addition are 
increasing in number at a rate proportional to their concentration; that is, 
chain branching is occurring. We are interested mainly in temperature, 
and so the chemical reaction enters the picture only insofar as it generates 
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heat; it is not necessary to make any statements about the mechanism of 
the reaction except that it proceeds at a rate proportional to the con
centration of active particles. Similarly, no particular mechanism for 
chain branching need be introduced. 

Now the temperature at the center of the sphere tends to fall because 
of conduction of heat away from it, and to rise because of the heat gen
erated. In some cases it rises continuously, and in others it shows a drop 
after a time (figure 1). Some criterion for ignition is needed, and the 
most natural one to use is the requirement that the temperature at the 

FIG. 1. Temperature at the origin for various values of A and m 
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center of the sphere shall never fall. This can be justified by the fact 
that both the rate of the heat-generating reaction and of chain branching 
increase with increasing temperature, so that a temperature drop would 
slow them down, thus causing a further drop in temperature, and even
tually making the reaction stop altogether. 

In the following section the partial differential equations for the con
centration of active particles and for temperature are stated and solved. 
Then the criterion for ignition is applied, giving a relation between the 
physical constants which must hold for ignition to take place. 
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It is assumed that the diffusion coefficient of the active particles is 
equal to the thermometric conductivity (thermal conductivity divided by 
specific heat per unit volume) of the gas through which they diffuse. If 
the active particles and the gas are the same molecular species, this is the 
result given by the elementary kinetic theory of gases (1). This is not 
quite exact, but the difference is not serious; experimental values for the 
ratio of diffusion coefficient to thermometric conductivity lie between 0.7 
and 1. It is not impossible to solve the equations without this assumption, 
but the result is not enough closer to physical reality to justify the greatly 
increased complications. 

It is obvious that many factors have been omitted from the picture given 
above. The rates of the heat-generating reaction and of chain branching 
are not merely proportional to the concentration of active particles, but 
are also functions of temperature. The effects of changes in pressure and 
of the presence of burned gas have also been left out of consideration. 
However, an attempt is not being made to set up a mechanism for the 
complete course of the reaction. This discussion is concerned only with a 
condition for ignition, and since the question as to whether ignition takes 
place or not is decided within a very short time, it is reasonable to assume 
that these omitted factors do not change very greatly within this time. 

SOLUTION OF EQUATIONS 

To make clear exactly what is involved, we restate in more general 
terms the problem which is treated here. 

Consider a heat-conducting medium of infinite extent which is initially 
at temperature, To, except within a sphere of radius, R, where the initial 
temperature is Tx, At the start this sphere is filled with active particles 
in the concentration n0 per unit volume. These active particles diffuse 
through the medium; each generates Q units of heat in unit time and 
they increase in number at a rate proportional to their concentration. We 
wish to determine the relation that must exist among the physical con
stants for the temperature at the center of the sphere never to decrease. 

The differential equation for the concentration of active particles is 

dn 2—2 , , , \ 

j j B A i + «n (D 

with the initial condition 

n = n0for 0^.r<R\ , . n ... 
n f ^ n when t = 0 (2) n = 0 for r>R\ 



248 H. G. LANDAU 

where n = n(r, t) is the concentration of active particles at a distance 
r and time t, 

M2 = diffusion coefficient, 

V2 = Laplacian differential operator, here V2 = - — 
r2 dr H) 

a = branching coefficient, and 
UQ = initial concentration in the sphere of radius R. 

Equation 1 is merely the diffusion equation (4) with the additional term 
cm giving the rate of increase of active particles. 

To solve this put n = ea'f(r, t). Then/(r, t) satisfies the diffusion equa
tion (that is, equation 1 without the branching term cm) and the same 
initial condition. This has the solution (5) 

f(r, t) = n0U(r, t) 

where 

U{r,t) = \ 'A^h" 
Wr) I (3) 

erf x = —= / e 8 ds (4) 
V "" J" 

being the error function or probability integral. Then 

n(r, t) = n0e°>U(r, t) (5) 

is the solution of equations 1 and 2. 
Since the function U(r, t) is to be used again, it is worth noting its mean

ing. As here introduced, U(r, t) gives the concentration of diffusing par
ticles in an infinite medium when the initial concentration is 1 within 
a sphere of radius R, and 0 outside this sphere. Since the heat conduction 
equation (3) is of the same form as the diffusion equation, JJ{r, t) also gives 
the temperature in an infinite medium due to an initial temperature of 1 
within the sphere and of 0 outside. 

U(r, t) can also be regarded in a slightly different manner. Instead 
of considering an initial temperature distribution, consider an instantane
ous spherical volume source of heat which generates enough heat to raise 
the temperature of the sphere from 0 to 1. If this generation of heat 
occurs at time t = 0, the temperature will be given by U(r, t). If it occurs 
at time t = r, the temperature at any later time will be given by U(r, t — r). 
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These considerations will be used in finding the temperature distribution 
in the gas. 

The partial differential equation for temperature is 

f = A ! r + ^(r(D (6) 
at c 

with initial condition 

r = r 0 f o r \>R\ w ^ n i = 0 (7) 

where T = T(r, t) is the temperature at distance r and time t, 
yu2 = thermometric conductivity (The same symbol is used as 

for diffusion coefficient because these are assumed equal 
as explained above.), 

Q = quantity of heat generated in unit time by the action of 
each active particle, 

c = specific heat of unit volume, 
Ti = initial temperature of the sphere of radius Tt, and 
T0 = initial temperature outside this sphere. 

Equation 6 is the heat conduction equation (3) with the additional 

term —n(r, t), which gives the rate of temperature rise due to the heat 
c 

produced by the action of the active particles. 
This may be solved as follows. Put 

T = T0 + (T1 - T0) U(r, t) + V(r, t) (8) 

Then T0 + (T1 — T0) U(r, t) satisfies the heat conduction equation (that is, 

equation 6 without the term -n) and the initial condition. V(r, t) must 
c 

then satisfy equation 6 and vanish everywhere when £ = 0; it is the tem
perature due to a heat source generating Qn(r, t) units of heat in unit time. 

Now, as noted before, the temperature due to an initial distribution 
can be reinterpreted as that due to an instantaneous heat source. The 
temperature due to a spherically symmetric initial distribution, <j>(r), is (5) 

2/ir\/: 

1 f™ -.(JZ^LY * 
—j= I <j}(p) e \z*\/7' p dp (withtf>(—p) put equal t o <j>[p)) 
Vtrt J-X, 

* U(r, t) is, of course, obtained by putting 
</>(p) = 1 for - 1 < p < 1 
0(p) = 0 elsewhere 
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Then the temperature due to an instantaneous volume source which gen
erates Qn (r, t) units of heat at time t = r is 

W(r, t; r) = / T ? n(p, r) e~ (i^k) p dp (9) 

Since TF(r, <; r) is the temperature at r and t due to a source at time T, 
the temperature due to the continuous source Qn(r, t) can be obtained by 
integrating W{r, t; T) for T = 0 to T = i. Thus, 

V(r,t) = £w(r,t',T) dr (10) 

The reasoning by which this result has been obtained has been more 
physical than mathematical. A more rigorous proof of the fact that 
V(r, t) satisfies equation 6 can be given along the following lines. First 
note that W(r, t; r) satisfies 

9Z = M2V2TF (11) 
at 

for all T < t, as can be shown by direct calculation. Then 

9Z= f'~dr + \imW(r,t;r) (12) 
dt Ja dt T-»I 

It can be shown that 

Iim Tf (r, f,r) = ^ n(r,t) (13) 

as follows: Put p = r + 2/<\/i — r X and substitute in equation 9; then 

W(r, t;r)=~ f 9- n(r + 2ny/f^~T X, T) e~xV + 2M V ^ T X) dX 

= 4 = / - n(r + 2 M V T ^ 7 X, T) e"x2 dX 

+ W * ~ T r ^ n ( r + 2 M V ^ " r X , r ) - ^ 2 X d X 
rVir 7-«. c 

Putting T = t, the second integral vanishes and the first is 

Qn(x, t) J _ T e-x2 d x = Qn(r, t) 
c \/T J-X C 

giving equation 13. Then, 

M2V2 V(r, t) = M2 f V2TF(r, t; r) dr = /x2 f ~&r (14) 
Ja dt 

from equation 11. 
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From equations 12, 13, and 14 it follows that 

—- = M V V + - n(r, t) 
at c 

showing that V(r, t) satisfies equation 6. 
Substituting the value of n(r, l) from equation 5 in equation 9 and carry

ing out the integration1 there results 

W{r,f,T) = Q-^U(r,t) (15) 
c 

It is worth noting the physical reason for this simple result. U(r, t) 
is the temperature distribution due to an instantaneous spherical volume 
source at t = 0. Since our source, 

c c 

has the value of U at time r (except for the factor ear), it follows that it 
will have the same value as U at any later time. 

1 The following definite integrals are involved 

/ erf (o + bx)e~x* dx = V ^ erf ( —,•• ° ) 

f 
J-" 

_ 2 6e-
a2/(1+!>!) 

erf (a + bx)xe " d i = 

These can be established as follows: Let 

I(a, b) = I erf (a + bx)e~x% dx 

a/ 

2 

A / 1 +b2 

Then, 

e-a2/(l+6!) 

/(«,«- V? erf ( ^ = ) + ; • / ( 6 ) 
\ V 1 -t- »</ 

but 7(0, b) = 0, since 

erf (bx)e~~x dx = — I erf (bx)e~x2 dx 

so that /(6) = 0. Similarly for the other integral. 
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From equation 10 there results 

V{r,t) = ^el^lu{r,t) (16) 
c a 

and finally, from equation 8 

T(r, t) = T0 + (T1 -T0 + ^-0 6 ^ 1 - 1 ) U(r, t) (17) 

giving the desired temperature distribution. 
CONDITION FOR IGNITION 

To obtain the condition for ignition, consider the temperature at the 
origin 

T(O, I) = T0 + (T1 - To + ^ ! €Lll) (erf - A = - - A = e-*
v«u) (18) 

This changes with time at the rate 

BT(O, t) _ / „ m _,_ Qn0 e
at - l \ R3

 _ B W ( 

- ^ - - -^r1 - T0+ — - ^ J 4 v W t 6 , 2
e 

+ ?«• e« (eT{ « _ « e—/4,.A ( 1 9 ) 

To determine the relation which holds between the physical constants 
when 

dt ' 

put 

R 
x = 2MVT 

a = m ( | ) 

-̂ ~ —7\—DT~~ (* = thermal conductivity = M2C) 
Qn0R

2 

then, 

dT(Q, t) _ 2Qn0 6 -X2 „m/x2 -*+** . €"'• - 1 , e* (\/lr , — A — \- —r- I -V- erf x — xe m x6 \ 2 ')} (20) 
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The function 

F(x) = 'yfr erf x — xe 

m 

A _ e*1 - 1 
/ m 

approaches + <» as x approaches 0 or w for m > 0. By differentiation it 
is found that F(x) has a single minimum given by the following relation 
between x and m. 

m = x 
erf x H r= xe 

„2 I VTT 
* 2 -i erf x 7= xe 

(21) 
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FIG. 2. Condition for ignition 

From this there can be found the value of x which makes F(x) a mini
mum for a given m, and then the value of F(x) for this minimum. If A 
is not greater than this value, then from equation 20, 

a r(o, t) 
dt > 0 

for all t. 
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This then gives the desired relation which must be fulfilled for a non-
decreasing temperature at the origin. It is that 

_ 4(7\ - r,)fc 
Qn0R

2 

must be less than or equal to a value depending on a, since m is merely a 
expressed in convenient units. The ignition limit is, of course, given by 
the equality in this relation. 

Figure 2 is a graph of the relation between A and a, and figure 1 shows 
the course of the temperature at the origin for five pairs of values of A 
and a. 

SIGNIFICANCE AND APPLICABILITY OF THE THEORY 

Unfortunately the result obtained in the last section cannot be tested 
by direct comparison with experiment, because the quantities which enter 
have not been measured in experiments on the ignition of gases. In fact, 
they may be incapable of direct experimental determination. However, 
certain conclusions can be drawn from this theoretical result as it stands, 
and it should be possible to perform experiments which will give some 
information about the needed quantities. 

From figure 2 it can be seen that ignition does not occur if a = 0; that is, 
chain branching must take place for ignition to occur. This could have 
been expected to follow from the physical assumptions; because if the 
active particles do not increase in number, they eventually become very 
thinly spread out owing to diffusion and cannot generate enough heat to 
cause much rise in temperature. According to von Elbe and Lewis (8) the 
chain-branching reaction in the oxidation of hydrogen is negligible at low 
temperatures. Our conclusion would then be that ignition of a hydrogen-
oxygen mixture by a local source can only occur if the source raises some 
volume to a high enough temperature for branching to be significant. 
This statement sounds very similar to those made by the proponents of a 
thermal theory of ignition. However, it is obvious that our theory does 
not state that ignition is assured by merely raising some volume to a suffi
ciently high temperature. The statement above is simply a limitation in 
the case where branching is known not to occur at low temperatures. 

There is one set of experimental data which, though not exactly fitting 
the conditions assumed here, can be shown to give at least qualitative 
agreement with the theory. Silver (6) has studied ignition by shooting 
heated spheres of platinum and quartz into gases. He gives the minimum 
temperature to which spheres of various sizes must be heated to cause 
ignition in mixtures of 10 per cent coal gas, 3 per cent pentane, and 20 
per cent hydrogen, each in air. 
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It is possible to relate Silver's experimental data to the considerations 
of this paper as follows. From figure 1 the condition for ignition is that 

A - 4 ( T l ~ To)k 

Qn0R
2 

have a value which depends on 

R2 

The relation between A and TO is, over a considerable range, close to a 
straight line passing through the origin, so that 

R2 

A = constant X -r~5a 

4/r 

is the ignition relation. Now a depends on temperature according to 

a = constant X e " 

also Q, being proportional to a reaction rate follows a similar relation, 

Q = constant X e " 

The initial concentration of active particles probably depends on a surface 
-Ii 

reaction and can, therefore, also be assumed to be proportional to e RT. 
Then 

rp rp _Ei+Et+E3 

' ° = constant X e 
R" 

/rp T \ 1 
and the graph of log f ———° J against = should be a straight line. This 

graph is shown in figure 3 and it can be seen that the experimental values 
satisfactorily approximate a straight line. 

The variation of k and c with temperature has been neglected. Inclu
sion of this factor would make no real difference in the appearance of 
figure 3; the slopes of the lines would be slightly increased. 

Silver gave a theoretical discussion of his work, using as a criterion for 
ignition the requirement that the initial rate of heat production by the 
reaction shall be greater than the rate of heat loss by conduction. This 

rp rp J 
led to the conclusion that the graph of log =—^-against ^ should be a 

R i 
straight line with a slope equal to the activation energy of the reaction. 
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The experimental points fell as close to straight lines as in the present 
analysis, but the slopes of the lines were approximately equal, whereas 
pentane and hydrogen have very different activation energies. The slopes 
of our lines are also not very different, but this is not contrary to the theory, 
since they should be proportional to Ei -\- E2 + Es. 

In the experiments just discussed, T1, the initial temperature of the 
sphere, was determined directly. This is one of the quantities needed to 
test the theory, but in the case of an electric discharge it appears to be 
impossible to relate Ti to measured quantities. This suggests that it 
might be worth while to perform experiments with an energy source that 
released a known amount of energy, perhaps something like a percussion 
cap. It should then be possible to make statements about Ti. This 

FIG. 3. Data of R. S. Silver (6) on ignition of gases by heated spheres. Experi
mental values: X, platinum spheres; O, quartz spheres. 

would be of value not only for testing the present theory, but should also 
put an end to the controversy over the thermal theory of ignition by giving 
a direct answer to the questions involved. 

To test the present theory it is also necessary to have information about 
no, the initial concentration of chain carriers. This requires a knowledge 
of the kinetics of the reaction and of the physical mechanism of the crea
tion of these initial chain carriers. 

If such information were available, it would be possible to make state
ments such as the following. Suppose Ti is held constant, then for a 
given mixture a and Q should be constant. Let R and n0 vary, then from 

4(T1 - T0)Zc . . „ R2 

- Q ^ - = constant X ^ 2 « 
a relation of the form, n^R* = constant, follows. 
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Again, if Ti is constant and pressure, p, and R vary, a relation between p 
and R is obtained. The form of the relation depends on the kinetics of 
the reaction. Suppose that chain branching, a, requires the collision of 
mi molecules, that the heat-producing reaction involves m2 molecules, and 
that the creation of the initial active particles involves m3 molecules; 
then a = constant X pmi, Q = constant X pm, n0 = constant X pm3. 
Also M2 is inversely proportional to density, hence inversely proportional 
to pressure. So that the relation is pmi + mi + m* + l Ri = constant. 

If the theory could be verified for reactions for which the kinetics is fairly 
well established, it should be useful to test hypotheses about the mecha
nism of other reactions. 

SUMMARY 

When energy is released by a local source such as an electric spark in a 
combustible gaseous mixture, it is assumed to heat instantaneously a small 
volume and also to create active particles, chain carriers, which diffuse 
through the gas and increase in number by chain-branching processes at a 
rate proportional to their concentration. The heat-producing reaction 
proceeds at a rate proportional to concentration of active particles. Tak
ing as a criterion for ignition the requirement that the temperature at the 
point of ignition shall never decrease, the following condition for ignition 
is obtained: 

_ 4(f i - T0)k 
Qn0R* 

must be less than or equal to a value depending on a, the relation being 
given in figure 1. 

The significance and applicability of this result are discussed. 

This problem was suggested by Guenther von Elbe and Bernard Lewis. 
The author gratefully acknowledges his indebtedness to them and to M. A. 
Mayers of this laboratory for many helpful suggestions during the course 
of the work. 
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DISCUSSION* 

Louis S. KASSEL (Universal Oil Products Company, Chicago, Illinois): 
This paper certainly represents an interesting attempt to provide a mecha
nism for this important process. It may be worth while, however, to 
point out one feature of Landau's treatment that is perhaps over
simplified. 

This is the assumption that the branching rate is independent of tem
perature; this admittedly incorrect proposition is justified by the state
ment that "the question as to whether ignition takes place or not is decided 
within a very short time." Inspection of figure 1, however, shows that 
when ignition fails the temperature at the origin may have risen, owing to 
the reaction, by 20 to 50 per cent as much as it had owing to the local 
source. Thus it is apparently required to assume that the branching rate 
is constant over a temperature interval of something like 100°C. It is to 
be expected that a theory which assumes a reasonable temperature coeffi
cient for the branching rate will give a more rapid determination of whether 
ignition is to occur, and that failure to ignite will be preceded by only slight 
temperature rises. Even for these intervals, however, the increase of 
branching rate with temperature seems an essential feature of the theory, 
since it is only the effect of this increase which limits the abortive rise to 
a range over which one might think the branching rate could be con
sidered constant. 

2 Received September 17, 1937. 


