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I. INTRODUCTION 

In an optically active molecule there are always two influences at work 
which render the molecule capable of rotating the plane of polarization 
of plane polarized light. The first of these is the purely structural one 
which permits the molecule to exist in non-superimposable mirror image 
forms (enantiomorphs); the second is that which makes possible the inter
action of a given enantiomorphic form of the molecule with a plane polar
ized light wave so as to rotate its plane of polarization. 

The structural influences which make possible the existence of enantio
morphic forms are simple and diverse. The first to be recognized was the 
asymmetric carbon atom, but there are many other factors besides the 
occurrence of such an atom in a molecule which may operate to give rise 
to non-superimposable mirror image forms. Thus, it is conceivable for 
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such a highly symmetrical molecule as ethane to occur in conformations 
which, if they could be isolated, would undoubtedly be found to be op
tically active (e.g., a conformation resulting from a rotation of one methyl 
group relative to the other from either the staggered or opposed form). 
The only feature which distinguishes those mechanisms for the production 
of enantiomorphs which the chemist has been able to uncover from those 
which are theoretically possible but which have not yet been proven 
operative is the fact that some enantiomorphs racemize much more 
readily than others. As the technique of the chemist becomes more and 
more refined, it will undoubtedly be found possible to resolve an ever-
widening variety of types of substances into enantiomorphic forms. 

In contrast to the simplicity of the structural conditions leading to 
optical activity in a substance, the mechanism of the interaction of such a 
substance with a light wave causing the plane of polarization to be rotated 
has resisted such complete interpretation. Thus, although it is easy to see 
why secondary butyl alcohol exists in two optically active forms, it is quite 
another matter to explain why it should have a molecular rotation of 
10.3° in sodium D light at 2O0C. in the absence of a solvent, and why this 
rotation should be different in different solvents and at different tempera
tures and wave lengths. 

The structural conditions leading to optically active molecules have 
been adequately treated elsewhere, so need concern us no further here. 
I t is the purpose of this paper to consider the mechanism of the interaction 
of an optically active molecule with a light wave from the standpoint of 
recent quantum-mechanical theories of rotatory power. It will be shown 
that these theories are capable of accounting for the observed orders of 
magnitude of optical rotations, and that, by showing how the rotatory 
power depends on molecular structure, they provide a powerful means of 
studying such structures under a wide variety of experimental conditions. 
They will also be found to be capable of supplying information concerning 
the nature of forces which act between molecules. 

II . T H E PHYSICAL BASIS OF OPTICAL ROTATORY POWER 

A. SOURCE OP OPTICAL ROTATION; THE MOLECULAR ROTATORY 

PARAMETER; ROTATORY STRENGTHS 

The general theory of optical rotatory power has been presented in 
complete detail in the review article by Condon (8). We here summarize 
briefly the essential steps in the derivation of the fundamental equations, 
referring the mathematically inclined reader to Condon's paper for the 
justification of certain statements here given without proof. 
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The electromagnetic field in a region free from real charges or real 
currents is completely specified by Maxwell's equations: 

div D = 0 div B = 0 (1) 

curl E = - - - B c u r l H = - - D 
c dt c dt 

D = E + 4TTP B = H + 4irM 

(Heavy type indicates vector quantities.) For an isotropic medium which 
is not optically active, we may write 

D = eE B = MH (2) 

where a is the dielectric constant and n is the magnetic permeability. The 
solution of equations 1 then represents electromagnetic waves propagated 
with a velocity 

_ c 

where c is the velocity of light. For all cases in which we shall be interested, 
n is very nearly unity, therefore v = c/s/e. If n is the index of refraction 

of the medium, we have the familiar result n2 = I - J = e. For media 

which are optically active, equations 2 are no longer complete. If Ni is 
the number of molecules per cubic centimeter, we have P = iVip, M = 
Nixa, where p and m are the induced electric and magnetic moments per 
molecule. A theory which enables us to calculate p and m in terms of 
the structure of the individual molecule will thus give us the correct ex
pressions of the form 2, and hence a complete theory of the propagation 
of electromagnetic waves through the medium in question. The quantum-
mechanical calculations of Rosenfeld (34) showed that the electric and 
magnetic moments induced in a molecule by the perturbing electromagnetic 
field are given by the equations: 

p0 = a 0 E ' - ^ | - H ' + 7 . H ' (3) 
c dt 

m.= ^ | E ' + T a E ' 
c at 
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where E' is the effective electric field on the molecule, 
H' is the effective magnetic field on the molecule, 

OCa 
_ 2_ yp Vab I (a/p/b) 

Sh ^ -* 2 

o_i , i-1 

*> Vab — V 

Im {(a/p/b).(b/m/a)} 
Zirh b Vab — V 

= 2_yp ^ R e {(a/p/b). (b/m/a)} 
T" OU 4 ^ 2 2 Sh <> Vab — V 

The expressions for a„, /3a, 7a have been averaged over all orientations of 
the molecule with respect to the field, assuming all orientations to be 
equally probable. ptt , m0, aa , /30 , ya refer to the molecule in the state 
a; (a/p/b) and (b/m/a) are the matrix components of the electric and 
magnetic moments connecting states a and b; vab is the frequency of the 
transition between states a and b; Im and Re mean that we are to take 
the imaginary or real part of the scalar product (o/p/o)- (b/m/a), which 
will be in general complex. 

The terms in ya will produce only a very small second-order effect on 
the optical rotation (8), and are neglected in the following discussion. 
For an isotropic medium, we use the Lorentz field 

F = E +
 4 J ^ p 

This relation seems to hold quite well even for liquids in which the molecu
lar distribution would not necessarily be random. Since the intensity of 
magnetization M is quite small for non-magnetic media, we set H' = H. 
We shall need to consider only those states a which are available to the 
molecule at ordinary temperatures. The molecule may exist in various 
rotational-vibrational levels, or various configurations due to free rotation 
of the groups of the molecule. The average induced moments may then 
be written 

p . . ( , + « L . p ) _ J . H (4, 

where a — ̂  paaa, /3 = ^ p$a, and p„ is the probability that the molecule 
a a 

be in the state a of a certain conformation, a is the polarizability and 
/3 the molecular rotatory parameter of the molecule. 
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Use of equations 4 gives for D and B the relations 

D = E + 4irP = E + 4TTJVIP 

_ / 3 + 87TJVi a \ E _ 12TrN1PfC d ( ) 

\ 3 - 4iriV\a) 3 - 47TiV1C* dt W 

B = H + 4TTM = H + 4xiVim 

= H + . P " ^ 0 , | j E (to the first order in /3) 
(3 — 4xlVia:) dt 

By identifying the coefficient of E in equations 2 and 5 and indicating the 

coefficient of — H by g we have 
at 

- 1 47TiV1 ia 

e+ 2 3 
(6) 

g = AxNxfl/c 6 ^ - ? (7) 

Introducing e and gr, the equations 5 take the form: 

D = e E - f f | - H B = H + g | E (8) 

Equation 6 is the familiar relation between dielectric constant and the 
molecular polarizability. The optical rotatory power of the medium will 
be found to be a function of g. 

For a plane wave moving along the z-axis, the general solution for D 
may be written in the form 

D = Doe'* (9) 

where 

* - * - ( * - O - 5 ^ O - T ) 
with similar expressions for B, E, and H. We shall be interested only in 
the real part of D in equation 9, and in the following equations D refers 
only to the real part of the general solution (equation 9). 

D can be proved from equation 1 to be perpendicular to the direction 
of propagation, and so may be written in terms of its components as D = 
U)x + jD„ . 

D for right circularly polarized light (i.e., D rotating clockwise as viewed 
by an observer looking along the —z-axis) must be of the form 

D1. = D(i cos ypr — j sin 1̂-) 
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Similarly for left circularly polarized light 

Dj = Z) (i cos \pi + J sin \pi) 

Now we see that equation 9 will reduce to the above equations if we take 
the correct expression for the vector amplitude, i.e., if we take 

D r = Re{D(i + ij)ei'1"} 

D1 = R e { D ( i - ijy*'} (10) 

where D is the scalar amplitude. The solution of Maxwell's equations 
subject to the conditions 8 shows that the indices of refraction are different 
for the two types of circular polarization (8). The results are 

nr = 6
1/2 - 2,rvg (11) 

ni = e1'2 + 27T^ 

We therefore write 

^r = Ô + S it - ^0 - 5 (12) 

where 

* ( - 2 - ( ' - " ) ) 

is the phase of a wave propagated with the mean index of refraction 
n = em and 

* A 2 2 2 
o = 4TT V g -

c 

The superposition of the right and left circularly polarized waves leads 
to a plane polarized wave. If we substitute equations 12 in 10 and add, 
we have 

D = D1. + D; = 2D cos ^0 (i cos 8 — j sin 5) 

For 5 = 0, we have a plane polarized wave, with the electric induction 
vector in the x direction. For 5 > 0, the plane of polarization has been 
rotated through an angle S in the clockwise sense as viewed in the z direc
tion. The rotation of the plane of polarization in radians per centimeter 
is therefore 

, 5 4*V /fcrV (m 

« - ; - — 9 = {T)C9 (13) 

By comparison with equation 11, we may also write 

^ = Un1-Ur) (14) 
A 
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i.e., a medium is dextrorotatory if the refractive index for left circularly 
polarized light is greater than that for right circularly polarized light. 
Experimentally, the rotation <p is usually expressed in degrees per decimeter, 
or 

1800 , 
<p = — - f > 

IT 

The specific rotation, [a], is defined as [a] = <pjp, where p is the density of 
the active material. The molecular rotation, [M], is usually defined as 

[M] = W 1 ^ 0 

where M is the molecular weight of the active material. Using the above 
relations, and expressing g in terms of the molecular rotatory parameter 
/3 by equation 7, we have 

[M] = 2 J ^ ?L±-20 (15) 

2 I Q 

[M]D = 4.93 X 10 8 6 ^-J-? /3 D for sodium D light 
O 

Substituting for /3 

[M] = —r — 2^ Pai I , -y- L - ! —, (15a) 

/IC 6 o,- i( Vb{ai — V 

where 

Rb{ai = Im {(Oi/p/bj) • (bi/m/di)} 

Rbiai is called the rotatory strength of the transition a,- —> 6,-. pa< is the 
probability that the molecule lies in a particular electronic state with defi
nite relative positions for the atoms. Any particular relative position of 
the atoms in a molecule we call a conformation. The electronic state 
at includes all those corresponding translational, vibrational, and rotational 
states which have no appreciable influence on the optical rotation, so that 
a,- is actually made up of a set of states. If only one electronic level is 
accessible to the molecules in thermal equilibrium, as is usually the case, 
we may speak of the set of states Oj as making up a conformation i, so 
that pai is now equal to the probability of the molecule's occurring in a 
conformation i. 

In order to obtain some idea of the orders of magnitude of the quantities 
involved in equation 15, we may substitute values for a typical active 
substance, sec-butyl alcohol. Here [M]0 = 10.3° and nD = 1.397, so that 
we find /3 = 1.59 X 10~3S. 
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Equation 15a corresponds to the dispersion formula in general use in 
expressing the variation of rotation with wave length: 

M = Z ^4^2 (isb) 

In going from equation 15a to equation 15b, however, the effect of varia
tion of refractive index with wave length has been neglected. The factor 
(n2 + 2)/3 remains nearly constant throughout the visible for most sub
stances, but in careful work and in work extending into the ultraviolet its 
variation should be taken into account. 

B. SYMMETRY PROPERTIES OF ROTATORY STRENGTHS 

The operators p and m expressed in cartesian coordinates are 

p = e(ix + jy + kz) 

m = *!l(y± - , » ) + j ( , f - x £) +kfxf - yf)\ (16) 

If the molecule has a center of symmetry, we may classify the states of the 
molecule as odd or even, according as the wave function for a given state 
changes sign or retains the same sign when we reflect the function through 
the center of symmetry, i.e., replace each coordinate by its negative. Since 
the operator p changes sign upon reflection, we have a non-vanishing value 
of (a/p/b) only between odd and even states. The operator m does not 
change sign upon reflection, hence we have a non-vanishing value of 
(b/m/a) only between two odd or two even states. The scalar product 
(a/p/b) • (b/m/a) will therefore be identically zero for all states o and b, 
and the optical rotation will vanish. If the molecule has a plane of sym
metry, we may again classify the wave functions as even or odd with re
spect to reflection in this plane. Thus when there is a plane of symmetry 
there is no pair of states a and b for which the x components of (a/p/b) 
and of (b/m/a) are both different from zero. The same is true of the y 
and z components. A fundamental requirement for optical activity is 
thus that the molecule possess neither a plane nor a center of symmetry. 

We now consider the values of (a/p/b) • (b/m/a) for a given molecule 
and its mirror image. A molecule may be transformed into its mirror 
image by reflection of its coordinates in any plane, which is equivalent 
to changing from a right-handed to a left-handed coordinate system. If 
we reflect a molecule in the x-y plane, the new value of (a/p/b) • (b/m/a) 
for the molecule is obtained if we replace z by — z in the wave functions 
a and b in the corresponding expression for the old molecule. If we change 
z to —z in both eigenfunctions and operators, the product of the matrix 
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components will remain unchanged, as the values of the integrals involved, 
being pure numbers, are independent of the particular coordinate system 
in which they are evaluated. As we see from equation 16, p-m changes 
sign upon replacing z by — z; therefore (a/p/b) • (b/m/a) must change sign 
if we replace z by — z in the eigenfunctions only. An unsymmetrical 
molecule and its mirror image must therefore have equal and opposite 
optical rotations. If a molecule is the same as its mirror image, its optical 
rotation must vanish. 

C. A QUALITATIVE DISCUSSION OF THE ORIGIN OF OPTICAL ROTATION 

The preceding discussion can be made more explicit by giving a simple 
physical picture of the meaning of certain of the equations. Equation 4 
states that there is a contribution to the induced electric moment p pro
portional to the time rate of change of the magnetic field, and a contribu
tion to the induced magnetic moment m proportional to the time rate of 
change of the electric field. We may visualize how such contributions 
could arise if we assume that the potential field in an unsymmetrical mole
cule is such that the electrons are not free to move in the direction of ap
plied forces, but are constrained to move along a spiral path with a com
ponent of motion normal to the impressed force. If we have a circularly 
polarized wave moving along the z-axis (z-axis pointing below the plane 
of the paper), the electric and magnetic vectors and their time derivatives 
will at some instant have the configuration shown in figure 1 (the zz-plane 
being the plane of polarization): 

X X 

E H 

'H 
-y H 

-y 

i I i 
Right circular polarization Left circular polarization 

FIG. 1. Electric and magnetic vectors and their time derivatives 

Let us focus our attention on configuration I, and assume that the electron 
is forced to move along a right-handed spiral about the + z-axis. The 
electric dipole moment will arise largely from the displacement of the 
electron in the — x direction under the influence of the field E. But by 
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Lenz's law, the changing magnetic field will tend to move the electron in 
the right-handed direction about the +x-axis around a circle in the plane 
perpendicular to A. Since the electron is forced to move along the 
spiral path, it will be displaced in the +x direction, and thus we will have 
a contribution to the electric moment in the direction of E1 and propor
tional to 6. This proportionality constant is related to j3 in equation 4; 
and, as we see from our simple example, it depends upon the pitch of the 
spiral and hence upon the degree to which the potential field is unsym-
metric. The changing electric field will tend to move the electron along 
the — 2/-axis. The spiral forces the electron to move in a circular path, 
thus producing a magnetic moment proportional to E. Considering the 
induced electric moment only, we have for configuration I, pXj — aE — bfi. 
For configuration II, since E is in the same direction as before but H is 
in the opposite direction, we have Px1 = aE + bH, where the constants 
a and b will be the same in the two cases. The amplitude of the vibration 
of the electron will thus be greater for left than for right circularly polarized 
light; the former therefore loses more energy to the molecule than does 
the latter. This means that ni > nr and a medium composed of such 
"molecules" would be dextrorotatory. 

We shall now consider equation 15 in terms of the above model. The 
only quantities in this equation whose magnitudes depend upon the nature 
of the model are Vba and p6a-ni(,a . j>&„ is the frequency of a certain type of 
motion executed by the model. Classically, poj-nibo is P-M, where P 
and M are the vector amplitudes of the variable electric and magnetic 
moments associated with this type of motion. For an electron moving 
periodically back and forth along a spiral, M is directed essentially along 
the axis of the spiral, while P has a component along this direction, so that 
P • M will not vanish and there is a non-vanishing /3. The greater the pitch 
of the spiral, the greater will be the component of P in the direction of 
M, hence the greater will be the optical rotatory power of the model. If, 
on the other hand, the pitch of the spiral is zero, so that the electron moves 
in a circle, then P and M will be perpendicular, and the model will possess 
no optical activity. Thus we see that there is a direct relationship between 
the magnitude of P • M and b in the relation px = aE =fc bS given above. 

D. ROTATORY STRENGTHS, LINE STRENGTHS, AND ANISOTROPY FACTORS 

It can be shown (8) that for each state a 

y . Rba — 0 
b 

Therefore all the quantities Rba cannot have the same sign. We see from 
equation 15 that for v = °o 

[M] = const. ^2 Rba = Q 
b 
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also for v = 0, [M] = 0. Optical rotatory power is thus a property that 
tends to zero for very large and for very small frequencies. 

The polarizability can be written as 

2 T-i vba Sba 

3 « b Vba — V 

where Sba = I (o/p/fr) I2 = line strength of the transition a —> b or 

e2 v^ fba 
4x m b Vba — v 

(18) 

87T2Wl 
fba = -7TTT Vba Sba = oscillator strength of the transition 

Se'h 

For the oscillator strengths, we have the relation that for each state a, 

12fba = n 
b 

where n is the number of electrons in the molecule (17, 40). Since Sba is 
always positive, while Rba may be positive or negative, we see that optical 
rotatory power is a small effect in comparison to ordinary refraction. 

Kuhn (19) defines the anisotropy factor gab for the transition a —* b. 
For gases (n ~ 1) the definition leads to the expression 

(19) 
(ni 

(n 

— nr)a-,b v 

- D a -

9ba = 

-6 Vba 

: 4^1° 
Sba 

which is valid for condensed phases as well as for gases. The anisotropy 
factor is thus the number by which the contribution of a given transition 
to the polarizability must be multiplied to obtain the contribution to the 
optical rotatory power. In most cases, the wave functions of a molecule 
will be approximately either even or odd, hence for a given transition either 
(a/p/b) or (Ta/va./a) may be large, but in general both will not be large. 
Therefore strong absorption bands will have small anisotropy factors, 
and weak bands may have large anisotropy factors, with the result that 
the rotational strengths of both strong and weak absorption bands may be 
of the same order of magnitude. 

E . CIRCULAR DICHROISM 

An optically active medium also has different absorption coefficients for 
right and left circularly polarized light. The quantum-mechanical treat-
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ment has been presented in detail by Condon, Altar, and Eyring (9). For 
a given transition, it is found that 

« H i r _ 4 - l ^ - i « u (20) 
6 Via Oba Vba 

where e is the mean absorption transition probability, and er and ei are 
the absorption transition probabilities for right and left circularly polarized 
light. This unequal absorption of left and right circularly polarized light 
is known as circular dichroism, and is experimentally measured by deter
mining the ellipticity of an originally plane polarized beam, the ellipticity 
per unit length being 

0 = ^ ( e ; - € r ) 

Measurements of the absorption and ellipticity for a given band will give 
us the anisotropy factor gb„ for this band, and thus enable us to determine 
rotatory strengths from line strengths. 

The ellipticity is a maximum where the absorption is a maximum, i.e., 
in the absorption band. Taking 

8irs „ 
* = Wc Sba 

and using equation 15 for Bia in equation 20 we obtain: 

3hN vvba(ei - er)(n
2 + 2) 

[Mk = 2 2 
Vba — V 

This gives Natanson's rule that if a medium absorbs left circularly polar
ized light more strongly than right, then the partial rotation of the given 
transition is positive for v < vab. 

The expressions given above for a and /3 are of course not correct for 
v= vab. In this case, as Condon points out, analogy with the quantum-
mechanical theory of dispersion gives for the molecular rotation: 

961TiV (J2 + 2 V \ r AvL - v)Rba r, , , yon-iv n -\- A \-> <r-> 
he 3 V " T [(xL - v2)2 + v 2 rL] 

The ellipticity per unit length then has the form: 

_ T / _ v _ 167T 2Vi V-» V^ V TpbgRba 
6 - \ { t l ir) ~ -Zhc- ^Pa2f [(,L - v2? + v'Toba] 
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Here T0 (the half-width of the line) measures the strength of the damping 
factor. The change of sign of the partial contribution, plus the ellipticity 
produced in the band, is known as the Cotton effect; the general behavior 
of these quantities in the neighborhood of a band is shown diagramma-
tically in figure 2. 

FIG. 2. General behavior of the ellipticity and the partial rotation in the neighbor
hood of a band 

F. PARTIAL ROTATIONS, CHROMOPHORIC GROUPS, AND VICINAL 

ACTION 

We have seen that the molecular rotatory power may be expressed as 

[M] = const £ -p^-t 
b Vha— V 

where each term in the sum represents the contribution of a single transi
tion. Only electronic transitions will be of importance in producing optical 
rotation, as we see from the manner in which the mass enters into the 
expressions for magnetic moment in equations 16. Thus transitions in
volving changes in nuclear vibrations or rotations will be less effective 
than electronic transitions in contributing to optical activity by a factor 
of the order of the ratio of nuclear to electronic masses. For transparent 
substances, the electronic transitions with which we will be concerned will 
lie in the ultraviolet. Because of the factor vta in the denominator, 
transitions in the far ultraviolet will be of less importance than transitions 
of comparable rotatory strengths in the near ultraviolet, and in addition 
the contributions from the far ultraviolet absorption lines will tend to 
cancel out, since the several values for Rba will not all be of the same sign. 
In many cases, therefore, the resultant optical rotation will be due largely 
to the one or two absorption bands nearest the visible. If the dispersion 
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data are accurate enough, and especially if the dispersion has been meas
ured through the band, the constants for the bands nearest the visible may 
be fairly accurately determined, any residual rotation being expressed by a 
term representing the resultant of the remaining bands. It must be 
emphasized that in the cases where the empirical dispersion data are ex
pressed by a single term, the constants Rta and vba determined by this data 
will in general represent some sort of average of the constants of several 
bands. 

If the partial rotation of a single transition can be separated from the 
residual rotation, it is frequently found that this transition is localized in a 
particular group of the molecule, called the chromophoric group. The 
remaining groups of the molecule affect this partial rotation only through 
their vicinal effect on the chromophoric group, that is, they produce the 
dissymmetry necessary to make the transition in the chromophoric group 
optically active. 

The general discussion given above may be made more specific by several 
examples given by Kuhn (19, 20, 22). 

In 

H 

CH3-C—CON(CHs)2 

N3 

there is an absorption band at 2900 A. which can be associated with a 
transition in the N3 group. The oscillator strength of this band can be 
determined by integrating the absorption over the band. 

J mc\ 3 / 

The value found for this band is / = 5 X 1O-4. Since S/ <~ 50, we see 
that the N3 band at 2900 A. accounts for about 10-6 of the total absorption 
and polarizability. The anisotropy factor for this band is g = 2 X 10-2, 
and the band contributes about 20 per cent of the observed rotation in 
the visible. 

o t 

In camphor, the band at 3000 A. can be associated with a transition in 
the C = O group, as this band appears in all aldehydes and ketones. Meas
urements of circular dichroism and absorption show that this band is 
actually two superposed electronic bands, the one nearest the visible 
being optically active, the other inactive. The active band has an / 
value of 2 X 10~4, the inactive band an / value several times greater. 
This active band represents only about the 3 X 1O-6 part of the total 
absorption, but its partial rotation accounts for the greater part of the 
observed optical rotation. 
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III . THEORIES OF OPTICAL ROTATORY POWER 

A. THE COUPLED-OSCILLATOR THEORY 

With the derivation of equation 15 by means of quantum mechanics, 
the problem of optical activity can be said to be solved in principle. Any 
modern theory seeking to relate observed optical rotations to molecular 
structure should have this equation as its starting point. Two such theo
ries have been proposed in recent years,—the polarizability theory of 
Kirkwood and the one-electron theory of Condon, Altar, and Eyring. 
Considerable success has been obtained, however, in the interpretation of 

\ / 

l 

<< 

FIG. 3. Simplest system of coupled oscillators which gives optical activity 

experimental data, at least in a qualitative sense, by the use of the 
coupled-oscillator theory of Born (5), Oseen (31), and Kuhn (18), especially 
in the form developed and applied by Kuhn. Although this theory was 
originally formulated in classical terms, it has since been derived from 
equation 15 for Kuhn's simple model by Condon (8). 

For this simplest system of coupled oscillators (see figure 3) which gives 
optical activity, we consider that there are in the molecule two oscillators 
of charge ei, e2, and mass m.\, rw2, which in the absence of interactions 
will vibrate at right angles to one another with frequencies vx , v2 , the posi
tions of equilibrium being separated by a distance d. 

If now there is a coupling between the oscillators, that is, if the potential 
energy has the form V = 1/2 kix\ + 1/2 k\x\ + fcuXia^, the resulting mo-
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tion can be resolved into two normal vibrations by a transformation to a 
new set of axes which are related to the old set by a rotation through an 
angle a, which will be small if the coupling constant fcu is small. The 
normal frequencies, v\, y2, will be nearly equal to the original frequencies 
vi , vt in the case of small coupling. In the classical treatment it is shown 
that the energy transferred to these normal vibrations is different for right 
and left circularly polarized light, resulting in differing indices of refrac
tion for the two types of circular polarization, and thus in optical rotation. 
In the quantum-mechanical treatment, the rotatory strength, Rta, is 
calculated by the use of harmonic oscillator wave functions. Either 
treatment of this model leads to the result, for 2Vi molecules per unit 
volume, oriented at random: 

2TT2VI n2 + 2 d . eie2 / _ J _ 1 \ / 0 1 , 
a = "T- - T - X*sin a cos "(-Si^VT=V " A=?f (21) 

The presence of two non-parallel oscillators in a molecule will thus give 
rise to an optical rotation. Since the coupling forces between these oscil
lators may be expected to be small, both oscillators will maintain their 
characteristic frequencies, but by their mutual interaction they will become 
optically active. Oscillator No. 1 is said by its vicinal action to cause an 
induced anisotropy in oscillator No. 2 and vice versa. I t is in this way that 
Kuhn is able to account for the optical rotation associated with an absorp
tion band of a symmetrical group such as the carbonyl in an unsymmetrical 
molecule such as camphor. 

Inspection of equation 21 shows immediately that the sum rule is 
obeyed, since the rotatory strength associated with PI is the negative of 
that associated with v%. 

Since the details of this important theory and especially its application 
in interpreting experimental data have been thoroughly covered in a re
view article by Kuhn (21), we shall not devote so much space to it in the 
following pages as to the more recent theories. 

B. POLARIZABILITY THEORY OF KIRKWOOD 

Equation 15a has been applied to the calculation of optical rotations by 
Kirkwood (15), who was able to transform it into an expression for rota
tory power in terms of the polarizabilities and anisotropics of the groups 
in the molecule. The underlying principle is that the electrons of a mole
cule may be considered as assignable to definite groups between which 
there is no exchange. (This is nearly true "of all electrons in lower states 
except the small fraction involved in the bonding of one group to another.) 
Furthermore, each transition which a molecule can undergo is to a first 
approximation localized in a distinct group. (This is justified by the fact 
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that, for instance, the presence of a carbonyl group in a molecule is always 
accompanied by an absorption band in the neighborhood of 2900 A., and 
similarly for other groups.) 

The first of these assumptions is introduced by breaking up the electric 
moment and magnetic moment terms in equation 15a into sums over 
groups: 

Po 6 

m.^Zf^XPlf+^1) 
where the superscript k refers to the fcth group, R* is the radius vector of 
the center of gravity of the fcth group relative to some fixed point in the 
molecule, P(fc> is the total electronic momentum operator of group k, 
p t t ) is the electric moment operator of group k, and m<*) is the magnetic 
moment operator of the kth group relative to its center of gravity. Sub
stituting in equation 15a, 

* - A E ( ^ I m f r ' ^ a ) | = /3<w + /3<» + E ft (22) 
6rrh „,& 1, vba — v J * 

where 

/3<0) = ^ - Z E ^ Z T^-2 Re(R1-,- (pif X pff)) (22a) 
6H t>* a b>a Vba ~ V 

*<» = - - I m (pi?.mi?) 
OTTtI » > * o 6 > o Vba — V 

0» - A £ S ̂  E 1^ y i } - ^ (22c) 
Oir/ l ft a !>>a j<;,0 — j> 

Ra = Ri — Ri = vector from center of gravity of i to that of k. j3k is 
assumed negligible to the approximation considered here for symmetrical 
groups, it being the contribution of the kth group alone to the optical 
rotation parameter. /3(1), the contribution due to coupling of magnetic 
moment on one group with an electric moment on another, is neglected as 
probably small, although it deserves further consideration. /3(0> therefore 
remains as the major source of the rotatory power; it is similar in origin 
to the coupling of oscillators in the theories of Born and Kuhn. 

The second approximation (that of localization of transitions within 
definite groups) is now introduced in order to calculate /3<0). A set of zero-
order eigenfunctions is set up, characterized by quantum numbers assign
able to each of the groups of the molecule. First-order perturbation 
theory is applied, using as the perturbing potential, V, the expression for 
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thei nteraction of two dipoles, p» and p , , at a distance R,-, apart, where this 
distance is large compared with the separation of charge in the dipoles: 

y = P*|L' (cos 6 - 3 cos x cos 4>) (23) 
Ra 

where x is the angle between pi and Ri,-, \p is the angle between p,- and 
Ri,-, and 6 is the angle between p,- and p,-. 

The perturbed eigenfunctions are now used to calculate the pff, and 
it is found that by a series of transformations it is possible to replace the 
product 

Ra-(pi? Xpff) 
by an expression involving the polarizabilities, anisotropies, and relative 
orientations of the principal axes of the groups i and k. 

The de Mallemann theory of optical rotatory power results from an 
application of second-order perturbation theory, while the Boys theory 
would come out of a third-order calculation. Whereas the first-order 
calculation results in an expression involving simultaneous interactions of 
pairs of groups, the second- and third-order calculations result in expres
sions involving simultaneous interactions of three and four groups, 
respectively. 

The final expression obtained by Kirkwood is: 

/3(0> = - * E Z alVa™(bj°.T1^)R*.(b"' X b<w) (24) 
i>k r,a 

where 

T - — (\ Q R ' * R ' A 
IiS; " p i U - O p 2 I 

ai%r are the three polarizabilities along the principal axes b,*' of group i, 
and similarly for a£,' and blk\ 

If the groups in the molecule are cylindrically symmetrical (two of the 
a.llr equal), this may be simplified to: 

Pm = - l Z ou«*Mj,Cbi.T«.b*)(R«-b< X b») (25) 
i>k 

where a.* and «* are the mean polarizabilities of the interacting groups 
i and k, and Si and S* are their anisotropies: 

a n — aii 
Oi = 

(Xi 

where ail' is the polarizability along axis of cylindrical symmetry, b i , 
and similarly for S*. The values of the polarizabilities <*< involved here 
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can be found from the molecular refractions of the groups present. The 
anisotropies 5< may be estimated from the depolarization of light by 
simple derivatives containing the group in question, and also from the 
Kerr constant of such substances. The other quantities, b<, Ru1, etc., 
are determined by a knowledge of the structure of the molecule in ques
tion. The vectors b, are, of course, of unit length. Unfortunately there 
may sometimes be some doubt as to the direction of some of the b's due 
to our inadequate knowledge of the origin of optical anisotropy. 

FIG. 4 

The above treatment bears a very close resemblance to the calculation 
of van der Waals forces, and indeed it may be said that the interactions 
which are taken into account are those which give rise to those forces. 

There are some indications that this theory is not able to deal adequately 
with all factors observed in connection with optical rotatory power. This 
is particularly true of the rotations associated with weak absorption bands 
and this is a typical defect of all polarizability theories, as was pointed 
out by Lowry and Allsopp (26). Thus, in camphor, for example, it is 
known that a major portion of the observed rotation is associated with 
the transition at 2950 A. in the carbonyl group (20). Yet this band is 
known to contribute very little to the polarizability of a carbonyl-contain-



3 5 8 W. J. KAUZMANN, J. K. WALTER AND H. EYRING 

ing molecule (26). This fact can only be brought into conformity with 
the theory if the anistropy ratio, 5, were to change markedly with wave 
length without altering the polarizability, which is unlikely. It seems 
probable that in this theory the optical activity associated with weak 
bands is contained in the terms /3(1) and /3W>, since such bands probably 
obtain the large values of their anisotropy factors from a large value for 
the magnetic moment of their transitions (see later). 

A further limitation to the theory is found in the inadequacy of the 
potential, V, of equation 23. This expression is only true for dipoles 
which are separated by distances large compared with the separation of 
charge within the dipoles. In the case under consideration, however, this 
condition is far from being met, especially when perturbations involving 
excited states are involved, since the eigenfunctions for these extend out 
over a considerable region of space and even overlap considerably most 
of the nearby groups. Of the similar calculation of the van der Waals 
forces between helium atoms, it is known (29) that the term in the potential 
given by equation 23 becomes seriously inadequate at a distance of 3 A. 
This distance would be increased when interactions between excited states 
are concerned. Therefore, it would seem that the theory cannot be ex
pected to give good results for more compact molecules where interactions 
between groups closer than, say, 4 or 5 A. give rise to the optical activity. 

It is instructive to calculate the optical rotation of a very simple model 
(figure 4) on this theory. Let there be two cylindrically symmetric groups 
whose principal axes have the following directions: 

b2 = ^ ( i + k ) 

The vector from the center of group No. 1 to the center of group No. 2 is 

Ri2 = dk 

so that d is the distance between them. Using these quantities in equa
tion 25 we find that 

bi-Ti2-b2 = j ; 
ds 

Bii.(6i X W = \ (i ~ J ~ k).dk = - ^ 

P ~ "•" 12d2 
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If the principal axes of the hydroxyl groups of hydrogen peroxide have 
the orientations postulated here (and they are probably not far from it 
(33)), we may calculate the optical rotation of one of the optically active 
forms of this substance. Taking a = 10.3 X 10~25 cc , 5 = 0.35, d = 
1.25 A., and refractive index = 1.414, we find that 

/3(0) = +6.8 X 10-35 

and 

[M]D = +45° 

on this model. 
If 5i = $2 = 1 we have the groups acting as linear oscillators, and the 

model takes on the aspect of that of Kuhn, except that more explicit 
account is taken here of the physical nature of the coupling of the 
oscillators. 

Since on this theory the optical rotation depends on the products of two 
polarizabilities, and since the polarizability depends upon the frequency, 
as follows, 

the effect on the optical rotation of changing the frequency of the light 
should be given by 

[M] = 23 7~2 2V7~2 *\ = 23 v2k'ij\~i 2 - ~i 2f (26) 
*>; Wi ~ V){V,- — V) ,•>,• {V{ — V Vj — V J 

A test of this relationship to find if it agrees with the observed behavior 
of rotatory dispersion is at present beyond the ability of experimental 
technique. 

C. THE ONE-ELECTRON THEORY OF OPTICAL ACTIVITY 

In applying equation 15 to actual molecules, the problem is to select a 
model which has the twin properties of tractability and accuracy in essen
tial features. In a mathematical sense the problem is completely solved, 
but this is not a particularly interesting remark to one interested in ob
taining numbers to compare with experiment. An inspection of experi
mental dispersion curves for optical rotatory power reveals, as equation 15 
already suggests, a striking correlation between absorption and optical 
rotation. The absorption by a molecule in the visible and ultraviolet is 
due to electronic transitions, so that electronic transitions must be the 
central feature of any model that is to treat the dispersion satisfactorily. 

Atomic spectra have been successfully interpreted as arising principally 
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from one-electron transitions (10). The same procedure is usually adopted 
in interpreting most molecular transitions. We thus expect that rotatory 
power can be treated by the same procedure. Our next problem is, there
fore, to find the intial and final states of these one-electron transitions. 
We note that the transitions which a molecule can undergo are generally 
each characteristic of one of the groups in the molecule. Thus hydroxyl-
containing compounds have an absorption band at ~ 1800 A., while com
pounds with an unconjugated C = C bond absorb at ~ 2150 A. In speak
ing of the optical activity associated with these transitions, we refer to 
the group primarily involved in the transition as the chromophoric group 
and the forces which act on it to make its transition optically active 
as vicinal actions. Therefore, in calculating the optical rotation we must 
first find out the natures of the electronic states of these groups. Insofar 
as previous descriptions of transitions define these states for the important 
chromophoric groups, the procedure here is straightforward. The pertur
bation of these electronic states by neighboring radicals leads to altered 
states which give transitions which are optically active provided the 
system as a whole has no plane or center of symmetry. 

The general procedure is as follows: The eigenfunctions for two non-
degenerate states of a chromophore which are acted on by a perturbation 
V can, using the usual perturbation theory, be expressed as: 

* *' + L (27) 
i*b 

where 

Mia — &\ HJ b — EJ j 

Using these new functions in calculating Rba in equation 15, we find 

Rba ~ Pab'Hl&o + Z-J Cia(^ib-V0ba + PoJ • Hlii) + 2~J C,6 (p0 ; • IQto + PoJ'Dljo) 
t J 

+ 2~1 (terms involving products of two c's) 

+ 2~1 (terms involving products of three c's) + • • • (28) 

where 

Pot = JVaP^bdr; Pai = /"AaP^dr; n u = / ^ m ^ J d r ; etc. 

For the unperturbed states \p\ and \p\ which are usually taken there is 
no optically active transition, so that Poj-nUo is zero. Furthermore, a 

1 See, for example, papers by R. S. Mulliken. 
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good many of the products p m are either zero or very small, so that in 
practice only a few of the coefficients cta and c,& need be calculated. 

We shall see that the coefficients, c, are made up of sums of contributions 
from the interactions of individual groups with each chromophore. There
fore, the optical rotation can be regarded as made up of the sums of inter
actions between groups taken two at a time, plus the sums over products 
of two of these interactions (i.e., sums over interactions involving three 
groups at a time), and so on. The first sum gives what we shall call the 
first-order contributions to the optical activity, the second sum gives the 
second-order contributions, etc. Since the interactions are always small 
(all c's < 1) the first-order effects will be the largest in general, while the 
second-order effects will be next largest, etc. And, since, as we shall see, 
vicinal actions fall off with increasing distance, the interactions involving 
the groups which are farther off will show a greater tendency to give rise 
primarily to first-order contributions. Thus the second-order contribution 
in 

CH2Br 
I 

C l - C H 2 - C - C H 2 I 
I 

CH2 

H 

will be much less than that in 

Br 

C l - C—I 

H 

If we are to use equation 28 in calculating the optical activity of a given 
substance, we must decide (a) what eigenfunctions are to be used in de
scribing the unperturbed states of the electrons in the chromophoric group 
and (b) what forces from the surrounding radicals perturb these states. 

(a) Whether we choose to describe a state of the chromophoric electron 
in terms of a linear combination of eigenfunctions for the three-dimensional 
oscillator, or in terms of the hydrogen-like functions, or in terms of any 
other complete orthogonal set is entirely a matter of convenience. This 
is true whether the electron spends its time moving about one center or 
moving about many centers. Only the two types of function mentioned, 
however, have been applied to the problem of calculating optical rotations 
on the one-electron model, and of these the hydrogen-like functions are 
the closer to reality, that is, they require fewer terms to give a good 
picture of the true state of affairs. 
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(b) The perturbing field V can usually be treated as being made up of a 
number of central force fields, V,-, arising from the various groups and 
atoms surrounding the given chromophore, the subscript j referring to 
the j t h such atom or group. The contribution to any cia by a V1- involves 
the calculation of the two-center integral 

For hydrogen-like eigenfunctions which are not spherically symmetrical, 
this integral will depend upon the direction of the center j from the center 
of the eigenfunction with respect to a set of axes denned by the eigen-
function. Now it is generally true that a transformation can be applied 

L chromopnoric 
center 

FIG. 5 

which will permit the integral to be expressed as a sum of the products of 
two types of functions (13); one of the types depends upon the distance, 
R, between the perturbing center and the center of the chromophoric group 
under consideration, while the other type depends upon the angles which 
the line R joining the two groups makes with the chosen coordinate axes 
of the eigenfunction of the chromophoric group. This may be represented 
as follows (the angles 6 are as given in figure 5): 

/ *\ Vrfldr = F{R)f(exeyez) + G{R)g{exeyet) + ... (29) 

where the sum usually contains a small number of terms, and where the 
forms of the functions F, f,G,g,--- depend upon the nature of \pa , ^. , 
and V1- . 

In the event that the potential V1- is not spherically symmetric about 
the center j but depends upon the angles <px, <pv , <p,, which the line R 
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makes with a set of coordinate axes in the center j , the integral may be 
expressed as 

J " K V i K d r = F(R)f(exeyez)H<P*<Py<P*) + Q(R)g(fimeve.)T(<p.<p,v.) (30) 
The functions / , g, • • • are the angular dependence functions of the 

chromophoric group; $, T, • • • are the angular dependence functions of 
the vicinal group. These functions are usually relatively simple expres
sions involving products of sines and cosines of angles. The functions 
F, G, • • • are the radial dependence functions of the vicinal action between 
the vicinal and chromophoric groups and are usually complicated func
tions of R best expressed by a graphical plot. 

When the perturbing fields Vj are sufficiently small to make the second-
order effects mentioned before negligible, the optical rotation is given in 
terms of these functions by: 

[M] = 9 ^ n-±^ Z A. E ft. Shi* - v2 (si) 
he 6 o b 

v (Ff^+ GgT + ...)ik , , 

+ 2-1 ^o So (.Poi-Illta + Pab-mia) 
hi Jib ~ El 

The first sum in Z^0 refers to the effect of perturbations on the lower state, 
while the second sum refers to the effect on the upper state of the given 
transition. The primes and subscripts on F, g, $, etc., refer to the fact 
that these must be calculated for each perturbation j and for each perturb
ing level k and I acting on each of the levels a and b of the transition. 

It is seen from equation 31 that insofar as the first-order contribution 
to the optical rotation is concerned, the rotation is additive in the vicinal 
actions of the perturbing groups in the sense that the introduction of a 
new vicinal group adds a quantity to the partial rotation of a given chrom-
ophore which is independent of the number, nature, and arrangement of 
the other vicinal groups. 

The problem of calculating optical rotations by the one-electron theory 
therefore resolves itself into a calculation of the radial and angular de
pendence functions for the various types of fields and states which we find 
in a given problem. 

An example of these functions and their use in calculating the optical 
rotation will be given later. Meanwhile, we must investigate the forces 
which can be expected to act as perturbations in giving rise to optical 
rotatory power. 
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Perturbations which can act as vicinal forces 

(1) Dipole forces may be treated in two ways: they may be considered 
as arising from a separation of charges, the effect of each charge being 
calculated as a separate spherically symmetrical perturbation, or we may 
use the expression for the potential of an electron in the field of a dipole 
of moment /z, the axis of which makes an angle 9 with the line of length R 
to the point at which the potential is calculated: 

F = g c o s 0 (32) 

Here the angular dependence function of the perturbing field is cos 0 if 
the distance between dipole and chromophore is large. 

That the fields from dipoles in a dissymmetric molecule may give rise 
to appreciable optical rotations was shown by Condon, Altar, and Eyring 
(9), who were able to account for the order of magnitude of the partial 
rotation of the nitrite band in phenylmethylcarbinol nitrite by using 
harmonic oscillator eigenfunctions and the accepted values for the bond 
moments occurring in the molecule. A further indication that dipole 
fields may affect the optical rotation in an important way is found in the 
work of Betti, Rule, and Beckmann and Cohen (see later). The latter 
workers, however, interpret the dipole effect as being due to a distortion of 
the molecular framework. 

That dipoles are not sufficient to account for the observed rotations in 
all cases, however, is shown by the work of Condon, Altar, and Eyring 
on sec-butyl alcohol. Following the same procedure here as for phenyl
methylcarbinol nitrite a rotation too small by two powers of ten was 
obtained. 

(2) The fields of ions and ionic charges in the neighborhood of a dis
symmetric molecule should produce a marked effect on the rotation, since 
they are more intense than dipole fields. These have the form 

V - * (33) 

where D is the dielectric constant and Ze the ionic charge. Here, of course, 
the angular dependence function of the perturbing group is independent 
of angle, hence is equal to unity. 

Linear fields should also be capable of producing optical activity. Here 

V= -zeF (34) 

where z is the distance measured in the direction of the field F. 
(3) Since the electronic clouds about a nucleus are spread out over a 

finite region, the potential in the neighborhood of even a neutral atom is 
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not zero. Therefore, if the electron cloud of the chromophoric group 
overlaps those of the surrounding atoms, a perturbation from this source 
will result. This is especially likely to occur when the chromophoric elec
tron is in an excited state. An example is the potential at a distance r 
from a neutral hydrogen atom in its lowest state: 

7H = - - e~H 1 + - ) (35) 

where a0, the Bohr radius of a hydrogen atom, equals 0.529 A. These 
potentials are usually spherically symmetric or nearly so about the per
turbing atom. 

Calculations by Gorin, Walter, and Eyring have shown that these forces 
are adequate to account for the observed rotations of sec-butyl alcohol and 
some of the sugars (12, 13). 

(4) When there is any overlapping of the electronic orbits, it follows that 
the Pauli principle must be considered; this gives rise to the so-called 
"exclusion forces" or "exchange repulsions" similar in origin to the exchange 
forces in a valence bond. In order to evaluate the relative importance of 
these forces and the classical coulombic forces which were considered 
directly above and with which they will always be associated, we can com
pare their values in a molecule such as hydrogen for which they are well 
known. In making the comparison, however, we must remember that the 
coulombic repulsion between the hydrogen nuclei is included in the 
energy of a hydrogen molecule, and that this interaction is of no importance 
in determining the optical rotation arising from the interaction of two 
groups, since here only those interactions which involve electrons are 
important. This internuclear repulsion amounts to 440 kg-cal. for a 
nuclear separation of 0.76 A. The energy of H2 is 103 kg-cal., of which 
about 10 per cent, or 10 kg-cal., is the net coulombic energy (including 
nuclear repulsions) and 90 per cent, or 90 kg-cal., is exchange energy. 
Now, if the energy of repulsion of nuclei is 440 kg-cal. and the net coulom
bic energy is 10 kg-cal., the attractive energy of the electrons interacting 
with the nuclei less the repulsive energy of the electrons interacting with 
each other must be 450 kg-cal., or five times the exchange energy. (Of 
course, in this calculation our point of zero energy was taken as the two 
separated hydrogen atoms.) Furthermore, in bonds between atoms other 
than hydrogens the exchange energy usually makes up a smaller propor
tion of the bond energy than in the case of H 2 , so that the importance of 
exchange forces relative to coulombic forces in causing optical activity may 
be even less. 

It is also observed that in the excited states of hydrogen, triplet states 
(i.e., those in which exchange forces oppose molecule formation) are very 
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nearly as stable as the corresponding singlet states (i.e., those in which the 
exchange forces favor molecule formation). For example: 

INTER-
NUCLBAE 
DISTANCE 

1.08 A. 

~1.06 A. 

<~1.07 A. 

STATE 
C ONFIG-
UBATION 

1 Is 3d J 

I Is U I 

I Is id I 

ENERGY ABOVE NORMAL H 2 

111810 cm.-1 = 319.665 kg-cal. 
111860 cm."' = 319.808 

117404cm.-i = 335.658 
117522 cm.-1 = 335.996 

117574 cm.-1 = 336.144 
117656 cm.-1 = 336.379 

DIFFERENCE 

1 0.143 kg-cal. 

\ 0.338 kg-cal. 

I 0.235 kg-cal. 

E N E R G Y 
OF DIS

SOCIATION 

About 
60 kg-
cal. 
for all 

The data are from reference 39. 

This would indicate that where excited states are involved, exclusion forces 
are still less important than they are between atoms in normal states. 
This is the more significant because the overlapping of orbits is greatest 
where excited states are involved. 

It is noted that in general the ratio of exchange to coulombic energies 
is approximately equal to the square of the overlap integral, and this is 
usually a small quantity. 

(5) van der Waals forces. I t is only valid to speak of van der Waals 
forces between groups when the groups are rather far apart so that their 
electronic clouds do not overlap, since otherwise the assumptions under
lying the quantum-mechanical calculation leading to their formulation 
break down. Therefore, in small compact molecules like sec-butyl alcohol, 
and more especially in considering the perturbations on excited states, 
care must be exercised in applying this concept. 

In the one-electron theory, explicit account is not taken of the van der 
Waals forces between groups. This neglect is probably not serious, 
especially for more compact molecules, since in the calculation of the effects 
of the forces due to incomplete screening of atoms, a procedure is automat
ically adopted similar to that which Hartree has used so successfully in 
studying atomic energies; here the chromophoric electron is assumed to be 
moving in a static field due to the other electrons and protons of the 
system. From the success of the Hartree method in giving wave functions 
which in turn give good values for energy levels and charge distributions 
in atoms, we can assume that the same method will give the correct wave 
functions for optical activity, especially as the molecules being considered 
become more and more compact and also when the wave functions of ex
cited states are calculated. From the failure of the method to account for 
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van der Waals forces at larger separations, it evidently tends to become 
less true at greater distances between chromophoric and vicinal groups. 
But because of the breakdown of the assumptions underlying the study of 
van der Waals forces at intermediate distances, it is probably the best 
available approximation to the true state of affairs in these regions. 

It is to be noted again that the forces considered by Kirkwood when 
he formulated his theory (see elsewhere) are essentially van der Waals 
forces, so that the formula for optical rotation which he obtains should 
tend to be more valid as groups are more widely separated from one 
another. 

The large optical rotations associated with weak absorption bands are 
understandable in the one-electron theory, since weak bands (i.e., transi
tions with small electric moment) may have large magnetic moments. 
Thus, the carbonyl band at 2950 A. is believed (30) to be due to a transi
tion of a non-bonding 2pv electron on the oxygen to either a (Zc-Z0) or 
an (Xc-X0) antibonding orbital. The situation may be roughly approxi
mated by description of the transition in terms of hydrogen-like orbitals 
located on the oxygen atom. Then the transition is between a 2py state 
and a 2px or 2p, state, either of which would give rise to a large magnetic 
moment, which could then couple with the small electric moment associated 
with the band to give rise to optical rotation. 

In general, in the one-electron theory, although the sum rule, ^ Rta = 0, 
6 

still holds true, it does not hold true because of pairwise cancellations such 
as occur in the Kuhn and Kirkwood theories. Therefore, it will not be 
possible to write the dispersion in the form of equation 26. 

Owing to the inadequacy of the eigenfunctions used in practice in calcu
lating the optical rotation by the one-electron theory, one is restricted to 
giving at most signs of the partial rotations associated with given transi
tions and their relative orders of magnitude. The theory, however, allows 
us to form a new and broader concept of vicinal action which we shall find 
to be very useful in interpreting some of the experimental results concerning 
optical rotation. 

Calculation of optical rotation on the one-electron model 

In order to show that the one-electron theory can account for the ob
served order of magnitude of optical rotations in general, and also to illus
trate the type of procedure which is followed in calculating a rotation on 
this theory, we now consider an explicit example. A simple transition for 
our purpose, as expressed in atomic, hydrogen-like orbitals, is one between 
a 2py state and a 2pz state. Such a transition bears some resemblance to 
the transition which gives rise to the 2950 A. absorption band of the 
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carbonyl group, which according to Mulliken (30) is between a 2pv non-
bonding electron on the carbonyl oxygen and a (Zc-Zo) antibonding 
orbital between the carbon and the oxygen2 (the coordinate axes referred 
to here are as given in figure 6). Therefore, we shall assume that a transi
tion, 2pv —* 2pz, is occurring on the oxygen atom of a carbonyl group, and 
that this transition will give approximately, so far as the optical rotation 
is concerned, the behavior of an electron actually located in the carbonyl 
group. 

The simplest optically active carbonyl-containing compound is 3-methyl-
cyclopentanone; because of its simplicity we shall calculate the partial 
rotation of its 2950 A. absorption band on the above model. Since there 
are no appreciable dipoles or charges in the molecule which can perturb 
the carbonyl group, the major portion of this rotation probably comes 
from the incomplete screening of the nuclei of atoms surrounding the 

FIG. 6. Model of 3-methylcyclopentanone 

carbonyl by their electrons, so that this type of vicinal action alone will be 
considered here. 

When we apply equation 28, with \pl = 2py and $ = 2pz, and employ 
only the approximation which gives the lowest-order contribution to the 
optical rotation, we must recognize that since the electron cloud of the 
excited state is more spread out in space than that of the lower state, 
the upper state will be perturbed to a greater degree by the incomplete 
screening of neighboring nuclei, and hence will give a larger contribution 
to the optical rotation arising from this source. (At the distances involved 
in the present example, the upper state overlaps the perturbing atoms to 
an extent about fifteen times greater than does the lower state for the 
eigenfunctions actually used.) Secondly, it is to be noted that the transi-

2 It is possible that Xo-Xb IS the upper state. This corresponds to a transition 
2p„ —> 2px here, and an actual calculation shows that it would give a rotation which 
is equal but opposite in direction to that found for 2p„ —> 2pt . 

1 A more adequate treatment of the carbonyl will be made at a later date. 
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tion 2py —> 2pz gives rise to a large magnetic moment in the x direction and 
no electric moment in any direction, while the only perturbing function 
with a principal quantum number of 3 or less with which 2py will give 
an electric moment component in this direction is 3dx+y . Although some 
of the possible perturbing functions with principal quantum numbers 
larger than 3 will also give an electric moment component in this direction, 
this component will be very small, since the matrix element (2py/x/ndx+y) 
decreases rapidly with increasing n. 

Thus we find that as far as the first-order and major contribution of 
the transition to the rotation is concerned, the transition is 

a = \piVll —> b = (fcp' + CrpMx+y) 

The rotatory strength for the transition is, from equation 31, 

Ria = Im {[hvjv/itepi + C f c O ] •[(*»,; +ChdxJ/m/hv,)} 

= C I m {(hPy/ex/hdx+y)(hp^mx/hpy)} 
S i 

since 

eh ( d d\ 
lrmci V dz by) 

Now 

P <3„h 2 2 
d 1 r " Vba — V 

where /3' is the contribution of the absorption band in question to the rota
tion of the plane of light of frequency v. Taking the D line of sodium as 
the light employed (X = 5890 A., v = 0.507 X 1015 sec.-1) and taking the 
absorption band at 2950 A. (v = 1.02 X 1015 sec.-1), it is found that 

/3' = -2 .89 X 1 0 _ M ( ^ / a ! / ^ M > + 1 / ) ) K ; / l / ^ p . ) C 

Using the usual hydrogen-like eigenfunctions: 

*3d- = 8T^ ( f )(e~^) xy 



370 W. J. KAUZMANN, J. E. WALTE"R AND H. EYEING 

and setting Zx = 1.8 and Z2 = 1.5 from the observed values of the ioniza
tion potential of a 2py electron in the carbonyl and the energy of the transi
tion under consideration, it is found that 

ty'ivJxH'u.+y) = 1-077 X 10-8 cm. 

(fcpj/1/fcp.) = 0.98 

Substituting these values in the expression for /3', we find that 

p' = -3 .04 X 10~32 C 

It remains, therefore, to find C. Now, 

Q = J hvi Vtndx+U dr 

Eivi — Ezdx+y 

and 

&pl ~ Eidx+y = - ^ l - S 1 ^ ~ gi) = - 3 2 ^ 

V is here the sum of the potentials due to the surrounding atoms. We are 
concerned only with potentials due to incomplete screening of the nuclei 
for hydrogen atoms and carbon atoms, for which, at a distance r from the 
respective nuclei, 

Vn= -ele-%(l + *) (35) 
cso \ r / 

Vc = - — e~^ Um f - Y + 2.175 (-) + 2.213 + ^) (36) 

The integrals fip^Vfodx+ydr are best evaluated using elliptical coordi
nates, with the foci at the centers of the perturbing atom and the oxygen 
atom. A rotation of axes must be performed, however, which will bring 
the Z-axis into line with the line joining the centers of the two atoms. 
Because of the cylindrical symmetry about the new Z-axis of the potentials 
F H and Vc and of the radial parts, fop and \j/id, of the eigenfunctions, the 
integrals of odd powers of x and y vanish. And again, because of this 
symmetry, it is possible to arrange the x- and y-axes so that an integral 
over any power of y is the same as that over the same power of x. Then 
the rotation of axes will be found to transform the product xyz (which 
arises from the angular factors z and xy of fov't and ^MX+J) into 
YXYBYJ(Z'3 — X'2Z'), where yx, yy , and yz are the direction cosines of the 
line joining the two atomic centers in the odd coordinate system, and where 
z' and x' are the new coordinates. Since the overlapping of the functions 
in the integral ifoVzV\psdx+vdr will be greatest where z' is rather large and 
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x' rather small, we may neglect the term x'2z' as compared with z'3. Thus 
we have that 

where 

C = yxyyy.D 

O 6 

and where fcp- and fad refer to the eigenfunctions without the angular 
factors z and xy. 

3 4 - 5 

RUn A.)-* 
FIG. 7. Vicinal action of carbon and hydrogen atoms 

For /3' and [M]0 , the contribution to the molecular rotation, we find 

/3' = -3 .04 X 10"-B7*7v7.£ 

n2 + 2 
[M]'u •15.1 X 10s 7xyy-Yz D (37) 

Naturally, the value of D will depend upon the distance between the 
perturbing group and the chromophore. This dependence for F H and Vc 
is given in figure 7. Referring to the terminology in a previous section 
(page 363), yxyvyz is the angular dependence function of the carbonyl, while 

32 Oo 
5 e2 

We now possess all the information necessary to calculate the partial 
rotation of the present approximation to the carbonyl group in 3-methyl-

D, aside from the factor —— —, is the radial dependence function. 
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cyclopentanone from a knowledge of the structure of the molecule. The 
refractive index here is 1.434. The other necessary quantities appearing 
in equation 37 are given in table 1. R in this table is the distance from 
the oxygen to the atom in question. All distances are in Angstrom units. 
The calculated value of the partial molecular rotation measured in D 
light for the pseudocarbonyl transition in methylcyclopentanone is 
+ 59.2° for the configuration given in figure 6. The observed total 
molecular rotation of methylcyclopentanone is 130°. (The two values are 
not directly comparable.) Thus it is seen that the observed order of 

TABLE 1 
Coordinates of atoms in 8-methylcyclopentanone 

X 

y 
Z 

R 
X 

y'=R 

y 
y'=R 

Z 
7, = R 

yttvit 

D 
Contribution 

to [M]; 

O 

0 
0 
0 

C4 

1.258 
1.293 

-4.339 
4.699 

+0.268 

+0.275 

-0.923 

-0.0662 

+0.025 

+33.8° 

Hi 

-0.889 
1.140 

-4.130 
4.377 

-0.203 

+0.261 

-0.944 

+0.0480 

+0.016 

-15.7° 

H2 

2.148 
0.923 

-3.830 
4.487 

+0.479 

+0.206 

-0.854 

-0.0841 

+0.013 

+22.2° 

H3 

1.258 
0.943 

-5.071 
5.300 

+0.237 

+0.178 

-0.957 

-0.0404 

+0.002 

+1.6° 

H1 

1.258 
2.325 

-3.989 
4.785 

+0.263 

+0.486 

-0.834 

-0.1065 

+0.008 

+17.3° 

magnitude of the rotation can be accounted for sufficiently well on this 
model with only the incomplete shielding of nuclei by their electrons as 
the vicinal action which operates. 

IV. INTERPRETATION OF EXPERIMENTAL FACTS CONCERNING 

OPTICAL ROTATION 

There is a great mass of experimental data concerning optical rotatory 
power and the many factors which can affect it. We shall now seek to 
interpret some of the more important of these in the light of the theories 
mentioned on the previous pages. 

Before studying the individual factors which may operate to alter the 
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optical rotation of a molecule, it will be instructive to point out just where 
in equation 15a we might expect variable factors to occur. 

[M] = ^ ^ f - ? Z pt E Im [(a,-/pA) • fa/m/ad] - y - ^ — 2 (15a) 
HC 6 i bi vaibi — V 

The effect of changing the frequency, v, of the light used has already been 
mentioned. Relationships of the form of equation 15a are known experi
mentally to give the dependence of rotation on frequency with very high 
accuracy (25). The other factors which can alter the rotation include 
the refractive index, n, of the medium, the relative probabilities, p,-, of 
the different conformations, i, and the natures of the electronic states, 
at and bi. There are thus these three ways in which the optical rotation 
at a given wave length can be altered, and all of the different factors which 
are known to be capable of varying the optical rotation must operate 
through them. 

The sensitivity of the rotation to influences such as temperature, solvent 
action, and small changes in structure is annoying to one interested in 
forming a complete and accurate theory, but this same sensitivity makes 
it a potentially powerful tool in investigating the more or less minor 
alterations which other molecular properties (such as the refractivity) are 
incapable of disclosing. 

A. EFFECT OF TEMPERATURE 

In the liquid or solid as distinguished from the gaseous state we must 
include in the specifications of the conformations, i, not only the different 
possible orientations of the groups within the molecule, but the different 
possible orientations of the neighboring molecules as well, since these 
latter may also influence the optical rotation. Then if the conformation, 
i, of the entire complex has a free energy, Fi, per mole, from statistical 
mechanics we know that 

-FiIBT 

P( ~ y> -FjIRT (38) 
I 

so that we obtain for the rotation of the actual mixture of conformations 

967TiV n + 2 1 Y- [ -FURT ^r v*Im[(o(/p/6i) • (bi/m/ajf [M] 
he 3 E 

y 

E [M]ie~
FilBT 

-FjIRT 
-FiIRT £ 

2 2 

bi V 6 i a < — V 

E 
-FjIRT (39) 

where [M]»is the molecular rotation corresponding to the pure complex i. 
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It was long considered that the unusual variations of the rotations of 
such substances as tartaric acid when temperature or even other factors 
were changed was due to the presence of several distinct molecular species 
in equilibrium. We see from the above and from the theoretical considera
tions of the earlier pages that as a result of the sensitivity of the optical 
rotation to molecular conformation, no very drastically different molecular 
species are necessary to account for these effects. A slightly different 
internal orientation or an altered amount of solvent effect may be sufficient 
to cause a marked change in the rotatory power. 

As an example of how the temperature variation of optical rotation may 
be treated to obtain interesting information, we here consider the data of 
Winther (44) on the optical activity of the dimethyl, diethyl, and dipropyl 
esters of tartaric acid. The variation of the optical rotations of these 
esters with temperature may be interpreted roughly by assuming a simple 
reaction 

B (low-temperature form) ?2 A (high-temperature form) 

to be the one chiefly responsible for the observed effects. The equilibrium 
constant for this reaction may be written: 

where a\ is the rotation of pure liquid A, b\ is that of pure B, and [a]\ is 
the observed rotation of the equilibrium mixture at a temperature T; all 
rotations are measured using light of wave length X. 

Values of the unknown constants of equation 40 were obtained which 
would give a fair agreement between observed and calculated rotations at 
various wave lengths. The values of AH are probably good to about 
±400 cal.; AS may be in error by ± 2 units. The values of a\ and espe
cially of 6x are strongly dependent on the values of AS and AH taken, but 
the relative values at different wave lengths for a particular choice of 
AS and AH are probably more reliable. The results are summarized in 
table 2. Since AS and AH were chosen to give a good fit at one particular 
wave length and the same values were used at other wave lengths with 
values of ax and b\ which give good agreement at but two temperatures, 
the agreement is better at some points than at others. Slightly different 
values of the constants would have given more even agreement, but the 
values used are sufficiently accurate for our purpose, which is that of ob
taining an estimate of the heat and entropy changes involved. 

The close similarity between the constants for the three esters leaves 
little doubt as to the essential correctness of the above interpretation of 
Winther's results. The large change in entropy between the two forms 



TABLE 2 

Variation of rotation of tartaric acid esters with temperature: values of constants in 
equation Jfi 

Dimethyl 
t a r t r a t e 

AS 

E. U. 

10.6 

AH 

calories 

2280 

SPECIFIC EOTATIONS OF FORMS A AND B 

X = 5890 A. 

a = +10 .2° 
6 = - 3 0 ° 

X = 4703 A. 

o = +10.94° 
b = - 6 1 . 4 ° 

X = 4445 A. 

a = +11 .1° 
6 - - 8 1 ° 

Diethyl tar
t r a t e 

2530 X = 5890 A. 

a = +18 .9° 
6 = - 1 3 . 6 ° 

X = 5335 A. 

a = +22 .1° 
b = - 1 9 . 1 ° 

X = 4655 A. 

a = +26 .5° 
6 = - 3 4 . 9 ° 

X = 4435 A. 

a = +27 .4° 
6 41.8° 

Dipropyl 
t a r t r a t e 

8.4 2300 X = 5890 A. 

a = +24.01° 
b = - 4 . 6 0 ° 

X = 4445 A. 

a = +37 .9° 
6 = - 2 2 . 6 8 c 

Dimethyl 
t a r t r a t e 

Diethyl 
t a r t r a t e 

Dipropyl 
t a r t r a t e 

T 

°K. 

325.3 
334.2 
344.9 
354.8 
365.7 

U 

S 
Jj1 

4.22 
4.69 
5.17 
5.57 
5.96 

4.22 
4.68 
5.16 
5.56 
5.96 

5890 A. 

°K. 
292. 
301. 
313.11 

325.0 
336.4 
344.3 
352.9 

7.30 
8.27 
9.37 

10.33 
11.13 

i 4703 A . 

T 

°K. 

323.8 
335.1 
344.3 
355.6 
364.3 

•d 

J 
_8 

0.02 
1.11 
1.85 
2.62 
3.22 

0.02 
1.11 
1.74 
2.62 
3.23 

•• 5335 A . 

7.31 
8.26 
9.38 

0JC. 

292.1 
303.9 
311.2 

10.35 321.4 

J 
S 

7.16 
8.80 

7.16 
8.71 

9.68 9.59 
10.73 10.69 

• 4445 A. 

°K. 

324.9 
335.1 
344.9 
356.0 
364.8 

% 
s 8 

- 2 . 6 4 - 2 . 6 2 
- 1 . 4 3 - 1 . 1 4 
- 0 . 0 6 - 0 . 5 0 
+ 0 . 5 8 + 0 . 5 3 
+ 1 . 2 7 + 1 . 3 1 

• 4655 A. 

11.15 334.511.99 11.93 
11.63 11.65343.6|12.75 12.76 
12.1312.15 354.8.13.56'l3.57 

• 5890 J 

11.36 
12.48 
13.40 
14.15 
15.05 
15.56 

11.39 
12.58 
13.41 
14.22 
15.10 
15.57 

: 4445 A. 

°K. 

289.1 
302.6 
312.4 
322.4 
335.4 
346.1 

11.1411.14 
13.73 
15.45 
17.04 
18.90 
20.25 

13.65 
15.56 
17.18 
18.99 
20.26 

"K. 
292 
302 
312 
322. 
336 
345. 
354 

i 
j 
JS1 

4.57 
6.64 
8.37 
9.98 

11.75 

• 4435 A. 

12.84! 
13.86 

°K. 
4.57 292.2 
6.61303.2 
8.21314.1 
9.89 324.7 

11.64335.6 
12.78J344.4 
13.86354.3 

2.70 
5.12 
7.27 
9.14 

10.73 
11 
13 

* 

2.70 
5.04 
7.20 
8.89 

10.63 
9311.87 
1813.14 

375 
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leads us to suspect that they differ in amounts of solvation or, more prob
ably, of free rotation, rather than merely in static configuration. 

Lucas (27) has pointed out that a maximum in the temperature versus 
rotation curve indicates the presence of at least three distinct substances 
in equilibrium. Such maxima are known to occur in the curves for the 
tartaric acid esters, so Lucas suggests that there must be three forms of 
these esters. On examining the actual data (32), however, it is found that 
the "maxima" are readily accounted for by the indirect effect of the 
density acting through the refractive index (see page 385), and that when 
account is taken of this, the maxima usually disappear. 

B. EFFECTS OF ROTATION ABOUT BONDS AND SYMMETRY OF GROUPS 

In discussing the modern theories of optical activity it was noticed that 
the theories of Kuhn and Kirkwood, as well as the one-electron theory 
when only first-order effects are considered, all assume that vicinal effects 
are additive; that is, the addition of a third group does not affect the 
interactions already existing between two other groups. We shall now 
examine some of the consequences of this assumption. 

First, consider the interactions between atoms or groups A and B both 
attached to the same atom C, where the lines AC and BC are axes of sym-

/ / C l \ 
metry of groups A and C, respectively I e.g., C<" J. Since such an ar-

V X Br/ 
rangement of groups has a plane of symmetry, no interaction between A 
and B can alorfte give rise to optical activity. 

Next consider four atoms arranged as shown in figure 8. (A plane 
passes through B, C, and D.) The interaction of AB with D when A is 
above the plane (position A') is equal and opposite in sign to that when 
A is below the plane (in position A", which is the reflection of A' in the 
plane). Therefore, if positions A' and A" are equally probable, these 
interactions will cancel off. And if all other possible positions of A above 
the plane are matched by equally probable positions below the plane, the 
interactions of AB and D will not influence the optical activity. 

The argument can be extended to groups of any size, as long as these 
groups can be split up into interacting units having planes of symmetry. 
It also holds true if there is restricted rotation in which the positions of 
minimum potential energy are equally probable on either side of a plane 
which passes through the asymmetric center and the group with which the 
given group is interacting, this being the situation in the figure accompany
ing the last paragraph. 

The following are some of the consequences of the above: (a) Factors 
which decrease the freedom of rotation of groups about bonds will cause 
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an increase in the first-order contribution to the optical activity, (£>) 
Insofar as an increase in temperature causes an increase in the amount of 
rotation of groups about bonds in such molecules as sec-butyl chloride, 
their rotations should tend toward a value corresponding to the second-
order contributions as the temperature rises, (c) Any optical rotation 
possessed by such compounds as CHClBrI must be due to second-order 
effects. 

Now we have seen (page 361) that second-order effects are in general 
smaller than first-order effects, especially as the groups which interact to 
give rise to optical activity become more and more widely separated. It 
will, then, be interesting to see if the conclusions which we can draw from 
this with a, b, and c above, agree with those found experimentally. 

(o) A powerful factor in reducing the possibility of rotation about single 
bonds is the formation of ring compounds from open chains, and it should, 
from the above, be accompanied by an increase in optical rotation. The 

FIG. 8 

fact that ring formation greatly increases the optical rotation has long been 
known experimentally (42). 

In table 3 are given the rotations of compounds chosen at random 
which are similar in all respects save that some have open chains while 
others have closed rings. The influence of ring formation is found gener
ally to be as predicted. Furthermore, the effect is the most pronounced 
in those compounds in which there is the most reason to believe that there 
is the greatest freedom of rotation in the open-chain form. Thus the in
troduction of the bulky acetyl in place of a hydrogen on a hydroxyl raises 
the rotation somewhat. (Even here, however, some of the increase is due 
to the fact that the acetyl has an absorption band nearer to the visible 
than does hydroxyl or the hydrocarbon residue.) A methyl group has a 
similar but less marked effect. The very low rotations of the poly hydroxy 
alcohols make it apparent that here there must be either very nearly free 
rotation or near-equivalence of the three equilibrium positions about each 
C - C and C - O bond. 



TABLE 3 
Comparison of rotations of open-chain compounds and ring compounds of similar constitution 

CO 

0 0 

OPEN-CHAINS 

Arabite, 

CH2OH-

Talite, 

CH2OH-

Mannite, 

CH2OH-

Idite, 

CH2OH-

Sorbite, 

CH2OH-

OHOHH 
C - C - C - C H 2 O H 
H H OH 

H OHOHOH 
C - C - C - C - C H 2 O H 
OHH H H 

H H OHOH 
C - C - C - C - C H 2 O H 
OHOHH H 

OHH OHH 
C—C—C-C CH2OH 
H OHH OH 

H H OHH 
C - C - C - C - C H 2 O H 
OHOHH OH 

(ML 

8.4° 

5.5° 

0.9° 

6.4° 

3.6° 

Ribose, 
OHOHOH 

C H 2 - C - C - C - C H O H 
I H H H I 
I o _ 1 

Arabinose, 
OHOHH 

C H 2 - C - C - C - C H O H 
I H H O E I 
I o 1 

Xylose, 

CH2 

H OHH 
- C - C - C-CHOH 
OHH OH I 

O > 

Mannose, 
H H OHOH 

CH2-C—C—C—C-CHOH 
I 

OH 
I OHH H 
1 O-

Galactose, 
H OHOHH 

C H 2 - C - C - C - C - C H O H 
I I H H OH I 

OH * O 1 

Glucose, 

CH2 
I 

OH 

H H OHH 
-C—C—C—C-CHOH 

I OHH OH I 
I ^ 1 

a-form 

/S-form 

a-form 

a-form 

/8-form 

a-form 

jS-form 

a-form 

0-form 

IM]n 

32.3° 

263° 

75° 

138° 

54° 

24.5° 

260° 

93.5° 

203° 

34° 

> d 

!2J 

> • 

I-1 

H 
W 

> • 

O 

W 

» 
Q 



Mannoae dimethylacetal.. 
(pentaacetate 

Galactose dimethylacetal. 
(pentaacetate 

Glucose dimethylacetal... 
(pentaacetate 

1.3° 
69°) 
34° 
?) 

34° 
52°) 

j8-form 

Methyl mannopyranoside.. 
(tetraacetate 

Methyl galactopyranoside. 
(tetraacetate 

Methyl glucopyranoside... 
(tetraacetate H 

a 
H 
O 
Sf 
I—* 
K 
DB 

O 

O 

^ 
1-1 
O > 
f 
SJ 
O 

> 
H 
O 
S) 
K! 
O 

H 
S) 

Arabonic acid 
2,3,4-Trimethylarabonic acid 
2,3,5-Trimethylarabonie acid 
2,3,4-Trimethyllyxonic acid 
2,3,5-Trimethyllyxonic acid 
3,4-Dimethylrhamnonic acid 
Rhamnonic acid 
Gluconic acid 
Mannonic acid 
Galactonic acid 
2,3,5,6-Tetramethylgluconic acid. 
2,3,4,6-Tetramethylgluconic acid. 

W B = 18° 
W» = 16° 
W D = 2° 
W D = 1.3° 
WD = 21° 
H D = 16° 
WD = 7.7° 
WD - 7° • 
W D - 10° 
WD - 13° 
WD - 34° • 
H n = 22° • 

• 7-Lactone, WD = 74° 
• 7-Lactone, H D = 178° 
• 7-Lactone, W D = 44° 
• 7-Lactone, W„ = 35° 
• 7-Lactone, WD = 82" 
• 7-Lactone, W„ = 153° 
• 7-Lactone, WD = 40° 
• 7-Lactone, W n = 68° -
• 7-Lactone, WD = 52° -
• 7-Lactone, WD = 77° 
• 7-Lactone, H n

 = 72° 
• 7-Lactone, WD = 101° 

• 8-Lactone, WD = 98° 
• S-Lactone, H D = 62° 
• S-Lactone, H D = 112° 

CH3CH2CH (CH,) CH2CHO. [M]n = 8.7° 
H3Cr 

[M]n = 120° 
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If we say that, on the average, ring formation causes a tenfold increase 
in optical rotation, and that this represents the difference in order of 
magnitude between first- and second-order effects, then this corresponds 
to values of the coefficients c in equation 28 of about 0.1,—a reasonable 
value such as has been found in actual calculations. 

Another factor besides ring formation which acts to hinder the movement 
of one part of a molecule relative to another is the formation of the crystal
line state. Therefore we expect that solidification will cause an increase 
in optical rotation. Thus for quartz, sodium perchlorate, etc., the optical 
rotation goes from zero for the melt to exceedingly high values for the 
crystal. For tartaric acid, the amorphous acid at room temperature has 

+ 
0 

\" 
[M] 

lemperoture-*Tl Tz 

FIG. 9. Effect of temperature on rotatory power 

a specific rotation of +0.76° at X = 5920 A. and +15.9° at 18O0C. for X = 
5880 A., while the crystalline acid at room temperature has a specific 
rotation of -636° for X = 5780 A. 

(b) If we restrict ourselves to substances whose second-order contribu
tion to the optical rotation should be small (as in CH3CH2CHClCH3, 
where the groups responsible for the asymmetry,—namely, the CH3 of 
the ethyl, the H of the methyl, and the H and Cl directly attached to the 
asymmetric center,—are considerably farther apart than the corresponding 
ones in, say, tartaric acid) then we must conclude that an increase in 
temperature will generally cause a considerable decrease in the numerical 
value of the rotation. Since the sign of the second-order contribution to 
the optical rotation need not be the same as that of the first-order contribu-



THEORIES OF OPTICAL BOTATOBY POWEB 381 

tion, this is not to say that over a small range of temperatures an increase 
in the rotatory power with increasing temperature will not be observed. 
Thus, in figure 9, although there is a change in rotation from a large to a 
small value, measurements in the interval Ti to Ti would show an increase 
in rotatory power with increasing temperature. 

Now it has been noted in the past that the optical rotations of simple 
substances generally seem to decrease with increasing temperatures. 
Guye and Aston (14) found that for every one of thirty substances which 
meet the requirement given above, a temperature increase lowers the ro
tation. Several other substances noted by Walden (43) show the same 
effect. The magnitude of the decrease with temperature is, however, 
usually rather small, so that one wonders whether in many of the cases 
cited, at least, the decrease is not caused largely by a decrease in the refrac
tive index consequent on the lower density at higher temperatures (see 
later). If this is the case, we are forced to the interesting conclusion that 
in these substances the molecules already possess freedom of rotation and 
that an adequate test of the principle is only possible with those sub
stances having groups sufficiently bulky so that freedom of rotation only 
occurs at higher temperatures. A study of substances of this type is now 
being made, and preliminary findings tend to confirm expectations from 
the above. 

(c) Recently, Berry and Sturtevant (2) have prepared CH3CHBrCN 
in optically active form. This substance was found to have a molecular 
rotation in sodium D light of at least 20.5°, and since the bonds joining 
the groups to the center of asymmetry all lie along axes of symmetry of 
the respective groups, this must be entirely a result of contributions of 
second order and higher. The proximity of the groups, along with the 
nearness of the absorption bands of Br and CN to the visible, makes this 
value quite reasonable. (In the polyhydroxy alcohols and the substances 
studied by Guye and Aston the value seems generally to be of the order 
of 10° or less.) It is worth noting that the value 20.5° is still very much 
smaller than the rotation of 120° by the even simpler methylcyclopen-
tanone; in this compound there is a first-order contribution to the optical 
rotation (see later), and the comparison is the more striking when it is 
learned that this large rotation arises from an interaction over the very 
considerable distance of 4.5 A., whereas in CH3CHBrCN the distances 

o 

are of the order of 2.5 to 3 A. 

C. SOLVENT EFFECTS 

In this discussion the solvent is considered as being made up of all those 
molecules which surround a given optically active molecule. These 
neighboring molecules may or may not be of the same species as the 
active molecule. There is obviously no distinction in principle between 
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solvent effects of, for example, water on sec-butyl alcohol and the effects of 
one sec-butyl alcohol on another. Thus solvent effects will occur in all 
states except the dilute vapor. 

It will be convenient to divide the effects which may act here into two 
types according to origin; the first will be the effect of refractive index, 
and the second the effects of alterations of /3, which are more deep-seated, 
hence more interesting. 

1. Effect of refractive index 

The refractive index, n, enters into the expression for optical activity 
as a factor (n + 2), or better as {ri + 2)/3, since this reduces to unity for 
the vapor. Therefore, if /3 in equation 15 is a constant, the quantity 
[M]/{n + 2) should be a constant, in going from one solvent to another. 
Wolf and Volkmann (45) conclude that where non-polar solutes are in
volved, this quantity actually is a constant. Beckmann and Cohen (1) 
conclude the same and suggest that in investigating solvent effects on op
tical activity the variation of 

should be studied. (For the reason mentioned above, it might be better 
to use three times this quantity, it having a value more nearly related to 
that of the conventional [a].) They call U the rotivity in analogy to the 
relation between the refractive index and the refractivity. The reasoning 
behind the use of O instead of [a] is sound, since O is proportional to the 
more fundamental molecular quantity /3 and its variation is of greater 
significance than the variation of [a]. 

The factor (n2 + 2) in the optical rotation, as in the theory of dipole 
moments, corrects the local field around a molecule for the polarization of 
neighboring molecules. 

That /3 itself may in some way depend upon the refractive index is indi
cated by the results of Rule and Chambers (37) on the effect of refractive 
index on the rotation of the saturated hydrocarbon pinane in various 
solutions. In table 4 and figure 10 are given the dependence of [M]D 
of pinane solutions on WD , the refractive index of the solution, on 
(n2 + 2)/3, and on [{n + 2)/3]2. Although all of the variable factors have 
not been accounted for, the most important one in this case is clearly the 
refractive index. The major portion of this dependence appears to be 
eliminated when account is taken of the factors (n2 + 2)/3 or [(n + 2)/3]2. 
Both of these factors give some residual dependence on the refractive in
dex, but when account is taken of the fact that p-fold division by 
(n2 + 2)/3 tends of itself to give a smaller slope to any plot of 
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TABLE 4 
Refractive indices and rotations of solutions of pinane (reference 37) 

Methyl cyanide 
Methyl alcohol 
Acetic acid 
Nitromethane 
Pentane 
Acetaldehyde 
Hexane 
Acetone 
Methylene chloride 
Chloroform 
Phenyl cyanide 
Methylene bromide 
(Homogeneous) 
Carbon tetrachloride... 
Pyridine 
Mesitylene 
Nitrobenzene 
Methyl iodide 
Benzene 
Acetophenone 
Benzaldehyde 
Toluene 
Anisole 
Chlorobenzene 
o-Dichlorbenzene 
a-Chloronaphthalene... 
Bromobenzene 
a-Bromonaphthalene... 
Ethylene dibromide 
Iodobenzene 
a-Methoxynaphthalene. 
Aniline 
Methylene iodide 
Quinoline 
Carbon bisulfide 
a-Iodonaphthalene 

n£ OF 
SOLUTION 

1.3441 
1.3266 
1.3718 
1.3864 
1.3640 
1.3316 
1.3835 
1.3653 
1.4245 
1.4489 
1.5255 
1.5385 
1.4630 
1.4616 
1.5088 
1.4944 
1.5468 
1.5291 
1.4992 
1.5310 
1.5431 
1.4930 
1.5141 
1.5229 
1.5466 
1.6332 
1.5580 
1.6558 
1.6303 
1.6162 
1.6201 
1.5842 
1.7341 
1.6246 
1.6246 
1.7054 

[M]-

25.8 
26.4 
26.9 
27.3 
27.4 
27.7 
27.8 
28.9 
29.0 
30.2 
30.8 
31.4 
31.5 
31.6 
32.3 
32.5 
32.5 
32.6 
32.9 
33.2 
33.2 
33.7 
34.5 
34.7 
34.7 
34.9 
35.1 
35.1 
35.3 
35.6 
35.6 
36.4 
36.6 
38.6 
38.7 
39.7 

t*S + (i+J) 

20.4 
21.1 
20.8 
20.9 
21.3 
22.0 
21.3 
22.5 
21.6 
22.1 
21.3 
22.2 
22.8 
22.9 
22.6 
23.1 
22.2 
22.5 
23.0 
23.0 
22.8 
24.0 

24. 
24. 
23. 
22. 
23. 
22. 
22. 
23. 
23. 
24. 
22.0 
25.0 
25.0 
24.8 

/ 2 . n\P 

[M] 4- ( — - — J versus n, it is found that the rotation4 is more nearly 

proportional to (n2 + 2) than to {n + 2)2. 
4 Rule and Chambers find that for solvents with zero dipole moment the rotation 

is more nearly proportional to (ft2 + 2)2 than to (n2 + 2). The dipole moment, 
however, does not appear to be related to those factors which, besides the refractive 
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Often data concerning refractive indices are not available, so that the 
rotivity cannot be found. In case the dependence of rotation on tempera-

fOr— — 

rfZAf}^^ 

1.30 m I'so i:eo 
Refractive index of solution —»-

FIG. 10. Dependence of rotation of d-pinane on refractive index of its solutions. 
Distance between parallel straight lines indicates magnitude of probable experi
mental error. 

ture is being investigated, however, the following method may prove 
satisfactory: We know that the Lorenz-Lorentz equation, 

vf -IM 
n2 + 2 d 

= P 

index, can alter the rotation of pinane, so that the basis of the criterion upon which 
they base their conclusion is not valid. A dependence of V in equations 23, 32, 
and 33 on the dielectric constant, hence on the refractive index, might, however, 
cause a trend such as is observed in the rotivity versus refractive index plot. 
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where P is a constant, is accurately obeyed by most substances under 
varying conditions. For solutions, M and P may be calculated in the 
same way as any colligative property, or P/M may be found if the refrac
tive index and density are known at any temperature. Now, from the 
Lorenz-Lorentz equation it is found that 

i±l = I (42) 
3 1 - (P/M)d K } 

so that once P/M is known, the rotivity of a given solution may be found 
at any temperature from a knowledge of the density variation alone. An 
example is given in table 5. Here a maximum in the rotation as the tem
perature increases does not appear in the rotivity. 

TABLE 5 
Effect of refractive index changes on rotation of ethyl tartrate at different temperatures 

P = 45.70 from atomic refractions; M = 206; P/M = 0.222 

t 

- 2 2 . 0 
0.0 

15.5 
59.5 

114.9 
190.0 
223.5 

d 

1.2472 
1.2254 
1.2097 
1.1656 
1.1095 
1.0345 
1.0003 

[MU 

3.84 
11.03 
15.09 
23.77 
29.60 
31.99 
31.75 

(1 - 0.222(J)[M]S781 

2 . 7 8 

8.03 
11.04 
17.62 
22.31 
24.64 
24.70 

Data from reference 32. 

2. Solvent effects which act through /3 

Changes in the rotivity must all result from alterations in the states 
a,- and b, of the molecule. These alterations must in turn arise from 
compound formation of one sort or another, that is, there must be formed 
some kind of bonds, be they loose dipole-dipole bonds, or strong "chemical" 
bonds, between the solvent molecules and the active molecule. We shall 
here distinguish between the following mechanisms by which such com
pound formation alters the rotation: (a) action of a group or groups in 
the solvent molecule as chromophores; (b) direct vicinal action of the 
solvent molecule on the chromophores of the active molecule; and (c) 
distortion of the molecular framework of the active molecule by the solvent 
and consequent effect on the optical rotation. 

(a) Action of groups of the solvent molecule as chromophores will certainly 
always occur to a considerable extent when a covalent bond between the 
solvent and the solute is formed. An example might be found in the fact 



386 W. J. KAUZMANN, J. E. WALTER AND H. EYRING 

that on addition of chromium ions to tartaric acid solutions, the absorption 
bands of chromium show anomalous dispersion of the optical rotation due 
to the formation of a chromi-tartrate complex. But of the very great 
and irregular effects of solvents which undergo a chemical reaction with 
the optically active molecule we need only remark that they are entirely 
understandable as compared with the more obscure and smaller variations 
caused by solvents which certainly undergo no ordinary chemical reaction 
with optically active molecules upon which they can act. It is therefore 
the latter which will interest us here. 

Unless there is a very strong bond between the solvent molecule and the 
optically active molecule, it is questionable if the solvent will act appreci
ably as a chromophore. First of all, the many possible orientations of 
nearly the same energy which the solvent molecules could take on about 
an optically active molecule with which they form no complex of definite 
structure would tend to cause the contributions from this source to cancel 
out. Secondly, vicinal actions capable of causing the solvent to act as a 
chromophore fall off rapidly with distance, and two neighboring molecules 
in a solution are usually relatively farther apart than those groups in the 
molecule whose interactions determine the optical rotation. 

Experimental evidence for the deduction that a solvent may have an 
effect on the optical rotation without itself acting as a chromophore is found 
in the work of Lifschitz (24). Lifschitz finds that several metal ions which 
have an appreciable effect on the rotation of oxymethylenecamphor and 
which have absorption lines in the visible show no anomalous dispersion 
in the neighborhood of these lines. 

(b) and (c). Alteration of /3 both by direct vicinal action of the solvent 
molecule on the chromophores of the active molecule and by distortion of the 
molecular framework of the active molecule may occur and both will be con
sidered together in the following treatment. Here the theory of Beckmann 
and Cohen (1) finds its application. 

These writers begin by assuming that the rotivity of a molecule is 
linearly proportional to the electrostatic field acting on the active molecule. 
That is, 

fi = fio + O'F (43) 

where fi' is the change in rotivity per unit field acting along a certain 
chosen direction. We shall see later that we need only be concerned with 
fields which act along the direction of the resultant dipole of the optically 
active molecule, so that O' will be defined here with respect to that 
direction. 

I t is instructive to ask if the theories of optical activity which we have 
outlined lead us to expect such a linear relationship. In the first place, 
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we note again that since the development is made in terms of the rotivity, 
we are directly concerned with effects involving /3, the molecular rotatory 
parameter. (Beckmann and Cohen, however, regarded the rotivity as a 
measure of the third-rank Darwin scattering factor, which they treat as a 
molecular constant.) We must therefore ask how /3 will be expected to 
depend on the field. The following mechanisms suggest themselves: 
first, the applied field might distort the structural framework of the mole
cule. Such distortions would affect the optical rotation, since this is so 
sensitive to the positions of atoms and groups with respect to the various 
chromophoric groups of the molecule. If the force resisting distortion 
obeys Hooke's law and if the force acting to cause distortion is propor
tional to the field (both assumptions are reasonable), there should be a 
linear relationship between the field and the amount of displacement of 
the groups of the molecule, even for quite large displacements. Now over 
a sufficiently small range of displacements it is possible to say that the 
effect on the optical rotation will be proportional to the amount of dis
placement. Therefore we have that the change in rotivity will be propor
tional to the field. 

A second mechanism whereby a field might influence the optical rota
tion is illustrated by the following example: Suppose that there are two 
positions, A and B, in which a group is predominantly found with respect 
to rotation about a bond. Then the optical rotivity will be given by 
Q = UASIA + nBQ,B where nA and nB are the fractions of molecules having 
the group in question in positions A and B, respectively, while ttA and QB 

are the rotivities corresponding to each position. Now, in a field F posi
tion A may become more stable by an energy dAF, while position B may 
become less stable by an energy dBF, due to interaction of dipoles or 
polarizability ellipsoids with the field. nA will then be increased by an 
amount proportional to e

dAFIkT, while nB will be decreased by an amount 
proportional to e

dBFIkT. If the energies dAF and dBF are small relative 
to kT, the exponentials may be expressed as (1 + dAF/kT) and 
(1 + dBF/kT). Introducing these into our expression for Q in terms of 
nA and nB , we see that the rotivity will depend linearly upon the field. 

A third mechanism, distinct from the above, suggests itself when we 
inspect the experimental data concerning the relative orders of magnitude 
of the effects of solvents on rigid and non-rigid molecules. If the mecha
nisms proposed above were the only ones operating, we should expect the 
rotations of such molecules as camphor and fenchone, which possess cross-
braced, rigid structures, to show very much less susceptibility to solvents 
than non-rigid substances such as menthylmethyl naphthoate. This is 
often found not to be the case; some rigid molecules show large solvent 
influences, while some non-rigid molecules show small ones. This would 
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indicate that the solvent field is exerting some direct vicinal action on the 
chromophores of the active molecule. Such actions would be expected 
from the one-electron theory and have been shown in section III C to 
have a linear effect on the rotation to a first and probably good approxima
tion. I t is to be noted that arguments of symmetry similar to those of 
IV B lead to the expectation that such vicinal actions will be greatest when 
they do not lie along the axes of the more strongly chromophoric groups. 
That is, the direction of the resultant dipole moment of the active molecule 
must lie in a different direction from those of the axes of the important 
chromophoric groups. It is of interest that those molecules whose rota
tions show the greatest susceptibility to solvent action generally appear 
to conform to this requirement. 

In order to calculate the rotivity for an actual system of molecules, 
using equation 43, it is necessary to weight the rotivity corresponding to 
each configuration of the active molecule and its neighbors by the proba
bility of occurrence of the configuration. For the term in the rotivity 
proportional to the field, the same result is obtained by simply averaging 
the field over all configurations and introducing the resultant value of the 
field directly into equation 43. This is accomplished as follows: If the 
active molecule has a dipole moment /xa , it will induce a moment in the 
surrounding molecules and it will also interact with their permanent 
moments. Each configuration of the system gives an electric field acting 
on the optically active molecule due to this polarization of the surrounding 
molecules, and each configuration has a probability of occurring which is 
proportional to e~llkT, where e is the energy of the configuration. An 
average field is obtainable by the usual statistical mechanical methods. 
Assuming the molecules to be hard spheres with dipoles at their centers, 
and assuming the interaction energies to be small relative to JcT, the 
average field will be in the direction of the dipole of the active molecule 
(whence the form of our definition of Q' at the start) and has the value, 

where na = number of optically active molecules per unit volume, 
rip = number of solvent molecules of type /3 per unit volume, 
N = Avogadro's number, 

da a = distance of closest approach of two active molecules, taken 
as hard spheres, 

da& = distance of closest approach of an active molecule and a 
solvent molecule of type /3, 

Pa = -^r- A + ^p=, , where A = mean polarizability of an ac-
L J tive molecule, 
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PB = 
AvN 2 • 

where B = mean polarizability of a sol
vent molecule of type /?, and 

lia , Ha = dipole moments of active and solvent molecules. 

It is to be noted that A and B are independent of the concentrations of 
the molecules in the solution to a very good approximation (38). Owing 
to the association of molecules, however, na and us may depend upon the 
concentration, but as long as the result of this association is the same for 
the microscopic field about an active molecule as for the microscopic field 
used in measuring dielectric constants, Pa and PB may be found from the 
relation 

- 1 (naPa + nsPs + •••) 
e + 2 JV 

where e is the dielectric constant of the solution. 

(45) 

-«yi ioo 

.3 & .S , rs I -7 •> -S 
£z± of solvents—* 
e-tz 

FIG. 11. Plot of Q against (e — l)/(« + 2) for Z-menthylmethyl naphthoate in 
aliphatic solvents 

Substituting equations 44 and 45 in equation 43 and taking dilute solu
tions of the optically active molecule of a definite concentration, we find 

O = U0 + fl' 
, 2fia e — 1 

d3 e + 2 
(46) 

where d is approximately constant for solvents of similar structures. Tak
ing e for the pure solvent, Beckmann and Cohen find that O plotted against 

—j—jj gives a fairly good straight line (see figures 11, 12, and 13) for several 

substances investigated by Rule. 
The deviations from linearity and the fact that a distinction must be 
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made between aromatic and aliphatic solvents show that other effects must 
be active but that the main effect is probably due to the action of dipoles 

in the manner pictured above. Furthermore, the independence of 
e T £ 

and the rotivity of pinane, whose dipole moment is zero, follows from 
equation 46. 

The connection between the dipole moment of solvent molecules and 
their effect on the rotation had been demonstrated previously by Rule and 
his coworkers (35). This is now understandable, since the major contribu
tion to the polarization of polar substances occurs through their dipole 
moments. 

IfO 

.2 .3 e-i' of solvents 7 .8 .9 

FIG. 12. Plot of U against (e — l)/(e + 2) for Z-menthylmethyl naphthoate in 
aromatic solvents 
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FIG. 13. Plot of fi against (« — !)/(« + 2) for i-pinane 

Beckmann and Cohen performed experiments in which they measured 
the optical rotations of active substances having a fixed concentration in 
mixtures of polar and non-polar solvents of different concentrations. They 
verified that there is a linear relation between the change in rotivity per 
unit amount of polar solvent and the polarization of the polar solvent at 
a given concentration. That is, as can readily be shown from their theory, 

Q — Q0 = G + KP (47) 

where n = concentration of polar substance in moles per cubic 
centimeter, 
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Q = rotivity of a fixed concentration of active substance in the 
mixed solvent, 

fio = rotivity of active substance at the same concentration in 
pure non-polar solvent, 

G and K are constants depending on the nature of the polar substance, 
among other things, and 

P = molecular polarization of polar substance as found from 
equation 45 for each value of n. 

~1f0 tffi W 
Polarization of nitrobenzene in solution (in cubic centimeters) 

FIG. 14 

G measures, at least in part, the difference in the rotivity when polar 
molecules replace non-polar ones owing to other than polarization forces. 
The linearity of the relation, equation 47, does not, however, prove that 
this difference is really independent of the polarization, since any linear 
dependence is included in K. A selective crowding out of non-polar 
molecules by polar ones in the neighborhood of the active molecule due to 
differences in polarization might be expected to introduce such a linear 
dependence on P. 

The excellence of the relationship in equation 47 is shown by the curve 
in figure 14 for diethyl diacetyl-d-tartrate in mixtures of benzene and 
nitrobenzene, varying from 2 g. of nitrobenzene per 50 cc. of solution to 
100 per cent nitrobenzene as solvent, with 5 g. of tartrate per 50 cc. 
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throughout. Neither P nor 0 varies linearly with the concentration of 
nitrobenzene, yet the two are themselves related linearly. For further 
deductions from the theory, the reader is referred to the original articles (1). 

D. EFFECTS OF POLAR GROUPS WITHIN THE ACTIVE MOLECULE 

We have just seen that a field applied along a certain direction of an 
optically active molecule causes a linear change in the rotivity. If such a 
field is produced directly by introducing a dipole into the molecule itself, 
a similar result both as to origin and magnitude is to be anticipated. Rule 
and Betti have indeed sought to establish a relationship between the polar
ity of a group substituted at some point in an optically active molecule and 
the optical rotation of the molecule. 

Unfortunately there are a number of factors which complicate the 
problem. In the first place, the various groups which are introduced may 
themselves act as chromophores and the resultant contribution to the 
optical rotation may bear no relation to the polarity of the group. 
Secondly, no account is usually taken of the "solvent effect" of the dipoles 
in one active molecule on the rotation of another molecule of the same 
species. This action is the same as that discussed in the previous section 
and is certain to occur unless rotations are measured in dilute solution. It 
would lead to an apparent relationship between the polarity of the group 
and the optical rotation which is actually no different from the question 
of solvent action discussed before. Thirdly, even if the above factors were 
eliminated, although a definite relationship between the optical rotation 
and the magnitude of the dipoles in a molecule is to be expected from the 
one-electron theory, the directness of this relationship would be reduced 
by the fact that not only the magnitude of the moment but its orientation 
in space as well must be considered. 

In the light of these considerations, then, the results obtained by Rule 
(36) and Betti (3), some of which are given in table 6, are understandable 
both in the regularities and in the discrepancies which they exhibit. Since 
Betti's measurements were made in benzene solution, the "solvent effects" 
of the molecules on one another are reduced and more regularity is ex
hibited than in the results of Rule, whose measurements were made using 
the undiluted material. Furthermore, the strikingly large changes in 
rotation which are obtained by Betti indicate that something more than 
simple solvent action must be acting here. 

The key to the understanding of the unmistakable relationship found 
by Betti between the rotation of R C H = N C H ( C 6 H 5 ) C 1 0 H 6 O H and the 
strength of the acid RCOOH is probably to be found in the work of 
Bjerrum, and Kirkwood, Westheimer, and Shookhoff (4, 16) on the effects 
of electrostatic fields resulting from dipoles and charges in an acid on the 
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strength of the acid. These workers are able to account rather well for 
the values of the dissociation constants of acids in which there are dipoles 
and free charges by assuming that these, through their electrostatic fields, 

TABLE 6 
(A) \M]o of homogeneous esters of XCH2COOH (reference $6) 

X 

N(CHa)2 

H 
CH3 

COOH 
OC2H6 

OCH3 

OH 
Br 
Cl 
CN 

DIPOLE 
MOMENT 

+ 1.4 

+0.4 
- 0 . 9 

- 1 . 2 
- 1 . 7 
- 1 . 5 
- 1 . 5 
- 3 . 8 

k OF ACID 
DISSOCIATION 

1.3 X 10-'° (?) 
1.8 X 10~5 

1.4 
160 
23 
33 
15 

138 
155 
370 

[M}% OF 

I -MENTHYL E S T E B 

-156.9° 
-157.3° 
-160.2° 
-160.2° 
-160.6° 
-165° 
-165° (94°C.) 
-169° 
-171° 
-174° 

W% OF 

!-OCTTL ESTEB 

-11.8° 
-13.0° 

-16.3° 

-28.8° 
-17.9° 

(B) [M]-D of benzene solutions o /RCH=N CH (CsH6) CioH8OH derivatives (references) 

ALDEHYDE USED TO FOBM = C H R 

p-Dimethylaminobenzoic 
p-Oxybenzoic 
3-Bromo-p-oxybenzoic... 
Protocatechuie 
3-Nitroanisic 
m-Toluic 
Benzoic 
w-Oxybenzoic 
p-Chlorobenzoic 
m-Bromobenzoic 
OT-Chlorobenzoio 
m-Nitrobenzoic 
Salicylic 
o-Chlorobenzoic 
o-Bromobenzoic 
o-Nitrobenzoic 

I«l„ 

+2676.0 
+1049.5 
+648.0 
+588.8 
+559.6 
+504.5 
+373.1 
+362.6 
+311.8 
+280.9 
+255.9 
+167.6 
-85 .7 

-128.4 
-308.2 
-990.7 

* X 10» (25°C.) OF 
COEEESPONDING 

ACIDS 

0.94 
2.9 

3.3 

5.6 
6.6 
8.33 
9.3 
13.7 
15.5 
34.8 
106 
132 
145 
657 

LOG (* X 10«) 

0.974 
1.463 

1.519 

1.749 
820 
920 
969 
137 
190 
541 
025 
121 
161 
826 

alter the potential energy of a proton on the carboxyl group. They thus 
find that 

, ,, en cos 0 
l 0 g k - 2SMkTDB + C ° n s t -

(48) 



394 W. J. KAUZMANN, J. E. WALTER AND H. EYEING 

where k' is the dissociation constant of the acid under consideration, y. is 
the dipole moment of a substituent in the molecule, D is the effective 
dielectric constant of the medium between the dipole and the carboxyl 
(D depends on the shape of the molecule and the point of attachment of 
the dipole as well as on the nature of the molecule and its surrounding 
solvent), R is the distance from the dipole to the carboxyl, 9 is the angle 
between the axis of the dipole and the direction of the carboxyl from the 
dipole, e is the charge of the proton, k is the Boltzmann constant, and T 
is the temperature. 

Li OOS 0 

Now the factor in equation 48 gives the potential due to a 

dipole; in section III C we have seen that such a potential can influence 

the optical rotation caused by a given chromophore by an amount pro

portional to ^ cos 6 f(R), where D is assumed constant for points in the 

neighborhood of the chromophoric group, where R is large enough that 
cos 6 is the angular dependence function, and where f(R) is the radial de
pendence function of the perturbation acting on the group. Therefore, we 
may write 

Q = O0 + g cos 6f(R) (49) 

For any given value of R (that is, for any series of ortho-, meta-, or para-
derivatives, in the example under consideration) we may combine equa
tions 48 and 49 to obtain 

O = Q0 + 2.303kTR2f(R)(log k' - const.) 

or 

G = Oo + 2.303JtT1E2Z(^) log k' (50) 

That is, there should be a linear relationship between the logarithm of the 
dissociation constant of all derivatives of an acid having substituents in 
the same position and the rotivities of derivatives of the acid. Further
more, the plots of £2 versus log k' for all sets of derivatives must intersect at 
the point given by the derivative for which all /J, = 0 (in this case for the 
benzoic acid derivative). 

In figure 15 are given plots of the rotation (which is here very nearly 
proportional to the rotivity, since dilute solutions of benzene were used 
for all measurements, so that the refractive index is nearly constant) 
against the logarithms of the dissociation constants of the acids related to 
the active molecules. The agreement is satisfactory throughout, con
sidering the approximations made. It is interesting that the ortho-
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derivatives give the poorest agreement, and it is just these for which we 
should expect the largest disturbance by the substituents acting as chromo-
phores and also by their exerting vicinal actions different in nature from 
those pictured here, on account of their relative closeness to the asym
metric center of the molecule. 

+3000 - -

moo 

tlOOO 

M0 

0 

/of Kx io6—+ 
FIG. 15. Relation between optical rotation of RCH=NCH(C6H5)CioH6OH and 

strengths of the acids RCOOH (data by Betti). ©, p-benzoic acid derivatives; 
E, m-benzoic acid derivatives; *, o-benzoic acid derivatives; • , benzoic acid. 

The data of Rule are also plotted (figures 16 and 17). Here the dis
tances R are very nearly equal, while the angles B probably are not too 
widely different, so that a plot both of dipole moment versus the rotation 
and of acid strength versus the rotation should give fairly straight lines. 
The other complicating factors mentioned above, however, make any 
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agreement which might exist obscure. In addition, the effects which are 
produced are not very large as compared with those obtained by Betti. 

If the values for X = COOH and OH are neglected (these are marked 
with circles in the figures), the agreement becomes better. This may be 
caused by auxiliary disturbances from hydrogen-bonding between two ac
tive molecules, which are only possible in these compounds. Furthermore, 

FIG. 16. Effect of bond moment of subatituent on rotations of Z-menthyl esters 
of XCH2COOH 

.Z .6 1.0 l.f 1.8 HZ 

Bond moment ofsubstituentklif} 
FIG. 17. Effect of acidity of XCH2COOH on rotation of its J-menthyl ester 

the rotation of the OH derivative was not taken at the same temperature 
as the others. On the whole, therefore, it may be said that these data 
tend to verify the ideas presented here. 

E. OPTICAL SUPERPOSITION 

van't Hoff's theory of the asymmetric carbon atom as a structural 
condition giving rise to the ability to rotate the plane of polarized light 
led him to propose an additivity relationship known as the principle of 
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optical superposition. According to this, in a molecule containing several 
asymmetric centers, each center contributes to the optical rotation in
dependently of the others. Such a principle would be expected to be 
valid whenever the centers involved are widely enough separated; let us, 
however, examine a sugar, in which the centers are close to one another. 

1 HCOH \ 
Z HCOH I 
3 HOCH 0 
1- HC1OH 

nr 1 5 HC-
CHoOH 

HqOH 
HC1OH 
HCOH °, 
HCOH 
Ht 1 

CHj1OH 

HCOH 
HtOH 

HOlH C 
HOCH I 

ir 1 

H5OH" 
HtOH 

HOi^H 0 
HOCH 

HC1 ' 
CHzOH 

FIG. 18 

It is readily seen from figure 18 that when the configuration about one 
center is changed, the changes occurring in the various inter-group dis
tances and directions (these being indicated by the heavy dotted lines) 
depend very much on the configurations of the neighboring asymmetric 
carbon atoms. This is the more marked if the ring is puckered rather than 
planar. 
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For open-chain sugar derivatives a change of configuration about one 
center may not only bring about changes such as the above, but may 
also cause the chain to tend to assume a new conformation in order to 
adjust itself to the altered steric forces which are involved. Thus (see 
figure 19) if hydroxyl groups are assumed to repel each other very strongly, 
the chain will be found to be forced to assume different shapes for each 
diastereoisomer. This means that the rotation of a given isomer will 
depend on the configurations about all centers taken as a whole in contra
diction to van't Hoff's principle of superposition. Therefore, it is not 
surprising that open-chain sugar derivatives fail to obey the principle of 

CHgOH 
HCOH 
HQOH 
HCOH 

CH2OH 

CHxOH 
HQOH 
HCOH 

CH2OH 

CH2OH 
HCOH 

HOCH 
HCOH 

CH1OH 

FIG. 19. Form of carbon chains if hydroxyls on neighboring atoms repel one another 
very strongly 

superposition. For instance, we consider the case of four sugar-acids cited 
by Freudenberg and Kuhn (11): 

COOH 
I 

HCOH 

HOCH 

HCOH 
I 

HCOH 
I 
CH2OH 

d-Gluconic 
acid 

[M]D = -13° 

COOH 

HCOH 

HCOH 

HOCH 
I 

HOCH 

CH2OH 

Z-Mannonic 
acid 

[MID = +1° 

COOH 
I 

HOCH 
I 

HCOH 
I 

HCOH 

HOCH 
J CH2OH 

Z-Galactonic 
acid 

[M]D = +24° 

COOH 
I 

HOCH 
I 

HOCH 
I 

HOCH 
I 

HCOH 

CH2OH 

d-Talonic 
acid 

[M]v = +33' 
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The rotations of these acids, according to the principle of superposition, 
should be made up of the following contributions by each asymmetric 
atom: 

+ A + A - A - A 
- B + B + B - B 
+ C - C + C - C 
+ D - D - D + D 

Now it is apparent that the principle of superposition would predict the 
sum of the rotations of these compounds to be zero. It is actually +45°,— 
even larger than any of the individual rotations. 

An instance in which the principle of superposition is probably obeyed 
because of the large distance between asymmetric centers is found in the 
dimenthylurethans of the diethyl tartrates (41): 

C10Hi9NHCOOCHCOOC2H6 

C I O H 1 9 N H C O O C H C O O C 2 H B 

Z-Menthylurethan of diethyl rf-tartrate: W D = —74.34° 

Z-Menthylurethan of diethyl Z-tartrate: [a]D = —38.76° 

-57.78° (mean) 

Z-Menthylurethan of diethyl mesotartrate: [a]D = —56.55° 

Similar results are found for the D-Z-fenchyl urethans of the tartaric acids. 
In these substances it would appear that the distance between the 

asymmetric centers in the menthyl radicals and those in the tartrate por
tion of the molecule is so great that the interaction is negligible. In taking 
the mean of the d- and Z-esters, the effect of the tartrate portion cancels 
out, while in the meso compound the contribution is nil, so that the same 
residual rotations remain in both cases. 

It might be surprising in the light of what has been said above that 
superposition appears to hold very well for many of the closed-ring sugars 
and their derivatives. This has led to the formulation of the so-called 
Hudson's rules of isorotation, whereby constant differences are found 
between the rotations of isomers which differ only in the configuration 
about a given asymmetric center. There are exceptions to these rules, 
particularly in the mannose, talose, and ketose series. 

Freudenberg and Kuhn (11) explain both the occurrence of and the 
exceptions to Hudson's rules by assuming that groups attached to atoms 
twice removed from a given center are too far distant to be able to act 
appreciably in contributing to the rotation by the groups directly attached 
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to the given center. Then the differences in the rotations of sugars con
taining the configurations 

H—C—OH 
I 

H—C—OH O 
and 

H O — C - H 

H—C—OH 
O 

should be constant, regardless of the nature of the rest of the molecule. 
Furthermore, the value of this constant will not be the same as that 
obtained in the series 

H—C—OH 
I 

HO—C-H 
O and 

HO—C-H 
I 

H O — C - H O 

Since mannose and talose are of the second type, while the other sugars 
which are known to obey Hudson's rules belong to the first, this explana
tion is convincing. 

The explanation becomes less convincing, however, when actual models 
of the sugars are made. If tetrahedral angles are maintained, it is seen 
that the groups on an atom twice removed from a given atom are in very 
close proximity to one or the other of the groups on the given atom. 
Besides, a large number of conformations of the ring are possible, and the 
stabilities of these would be expected to depend on the orientations of 
each and every group in the molecule, and so in turn affect the optical 
rotation to a marked degree. Furthermore, although vicinal actions fall 
off with distance, they probably do not fall off so rapidly as to have no 
more noticeable effect than they do on the validity of Hudson's rules. 
Therefore, it would appear that the problem deserves further consideration. 

No final answer can be said to have been given, but some more general 
conditions under which Hudson's rules or superposition in general would 
hold have been developed (12). These are as follows: (1) that the vicinal 
actions of groups on a chromophore be additive (that is that the effect of 
one group on a chromophore is independent of the presence of other 
groups), and (2) that the structure to which the various groups whose 
configurations are changed are connected be symmetrical on the average 
(that is, that simultaneous change of configuration about two centers shall 
result merely in a change of sign of the vicinal actions between the groups 
involved in the change). If these conditions are satisfied, then regardless 
of how rapidly vicinal actions decrease with distance, there will appear 
to be superposition in the van't Hoff sense. 
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If it is these conditions which control the validity of Hudson's rules in 
the sugars, then some interesting conclusions can be drawn as to the struc
ture of the rings involved. Thus, either the ring is flat, or else, if puckered 
in any way, it must exist in equal amounts in two conformations for each 
type of puckering which it can exhibit, so that the condition of the existence 
of the requisite effective symmetry in the ring is met. Presumably devia
tions from superposition occur whenever this is not true, and also when 
the additivity condition is violated (which is possible whenever there can 
be restricted rotation about the bonds of the attached groups, since a third 
group can then influence the vicinal actions between two other groups by 
influencing the position of maximum stability of one or the other of these 
groups about its axis). 

F. OPTICAL DISPLACEMENT 

Consider the differences between the rotations of configurationally re
lated a-hydroxy acids, RCHOHCOOH, and their amides, RCHOHCONH2, 
where R may be any group (CH3 , C2H6, C6H6, etc.). The interactions 
which we must consider in calculating these differences are as follows: 

(a) Interactions involving R and OH as chromophores and CONH2 

and COOH as vicinal groups. Since the COOH and CONH2 groups are 
not very different, we would not expect them to act very differently as 
vicinal groups. (Thus, on the Kuhn theory and the Kirkwood theory, 
the similarity is expressible by similar orientations of the axes of the 
oscillators in the groups and similar values of the force constants and 
polarizabilities, while in the one-electron theory the charge distributions 
and dipole fields around the two groups are about the same, both groups 
having the same number of electrons and similar structures.) Therefore, 
if the substitution of CONH2 for COOH produces no marked effect on the 
spatial structure of the group R (especially with respect to rotation about 
bonds, etc.), we should expect these interactions to remain about the 
same when we replace COOH by CONH2 , regardless of the nature of R. 

(b) Interactions involving COOH and CONH2 as chromophores and 
R and OH as vicinal groups. Since these groups are likely to show 
some difference when they act as chromophores, it is here that we would 
expect the major effect on the optical activity to show itself. Furthermore, 
the direction of the change in rotation when we pass from the acid to the 
amide should be the same for all R groups which are sufficiently similar. 
Just what is meant by "sufficiently similar" depends upon the theoretical 
approach that is taken. The Kuhn and Kirkwood theories require that 
the orientations of the axes of the oscillators in the different groups be 
similar. The one-electron theory requires that, insofar as dipoles are 
important, the dipoles possess about the same directions in space, and that. 
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insofar as incomplete screening of atoms is important, the atoms merely 
lie in the same direction in space with respect to the group being changed. 
In actual practice, such groups as methyl, phenyl, and cyclohexyl appear 
to meet well enough whichever of these criteria are actually operative, so 
that they may be called similar in the present sense of that word; this, 
along with a general experimental proof of what has been presented above, 
is indicated by the data (11) given below. All of the substances shown 
are, of course, configurationally related. 

COOH 
I I 

HCOH 
I I 

CH3 

[M]D of: lactic 
acid -3 l , „„ 
amide +20/ ^ 

COOH 
I I 

HCOH 
I I 

CH 
/ \ 

H2C CHa 

H2C CH2 
\ / 

CH2 

hexahydromandelic 

4 +» 

COOH 

HCOH 
I I 

CeHg 

mandelic 

COOH 

HCOH 

CH2OH 

glyceric 

+7o} +72 

COOH 
I I 

HCOH 

HCOH 

HOCH 
I 

HOCH 

CH2OH 

Z-mannonic 

+"S) +33 

The ten other known cases in which one can convert an a-d-hydroxy acid 
to its amide all show a change of sign in the same direction as the above. 

The reasoning which has been carried out for this more or less specific 
set of substances may be generalized to give the displacement rule (which 
was first6 proposed by Freudenberg and later explained by Freudenberg 
and Kuhn in essentially the same terms which we have used here): Dif
ferences in rotation between analogous derivatives of analogously con
structed compounds are approximately the same in magnitude and 
direction (21). 

This rule is of great importance in explaining many of the qualitative 
relationships found in the data on optical rotation. Freudenberg proposed 
it as a basis for finding the relative configurations of similar substances 
which could not be related in any other way. The manner in which 
lactic acid and alanine were thus related to one another is illustrated in 
figure 20. The parallelism in the trend of the rotations of derivatives of 
( + ) lactic acid and ( + ) alanine shows them to be configurationally similar. 
The method has also been employed in establishing other configurational 
relationships, but care must obviously be exercised in order to avoid its 
application to too widely different sets of compounds. 

6 Clough (7) in 1918 put forward a rule nearly identical with this. 
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In going from acid to neutral to basic solution, all amino acids probably 
undergo the following sequence of changes: 

H H H 
I I I 

R—C-COOH * R—C—COO- • R — C - C O O -
I 

NH3+ NH3
+ NH2 

(acid) (neutral) (basic) 

Since the groups R are all fairly similar (in our sense of the word), we 
should expect to observe some regularity in the rotations which accompany 
these changes, provided all amino acids possess the same configuration. 
Lutz and Jergensons (28) have found such a regularity for natural amino 
acids, and their results are shown in figure 21. We may count this as the 
best sort of evidence that these naturally occurring amino acids possess 
the same configuration about their alpha carbon atoms. It is to be 
especially noted that in the details of the data shown there is considerable 
dependence on the nature of R, but that the general shapes of the curves 
are similar. This illustrates well the type of approximation which is 
embodied in the displacement rule. 

Callow and Young (6) have pointed out some regularities in the rotations 
of the sterols which warrant attention here. The fundamental require
ments which make these regularities possible seem to be (1) that vicinal 
actions are negligible beyond a certain distance, (2) that the steroid frame
work is spread out in space over a considerable area (so that any changes 
about position 17, for instance, have little effect on position 3), (S) that 
introduction of double bonds or a change in the cis-trans relationship of 
rings A and B does not result in any major movement of the atoms of the 
framework to new positions with respect to their more immediate neigh
bors, and (4) that when the effect of a given change at a certain point in 
the molecule is being examined, the changes which are allowed to occur 
at other points in the molecule are located at a sufficient distance from 
the given point as not to be able to exert any vicinal action on it. 

C21 

C2 0-C2 2-C2 3-
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h* 
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^ NHX 
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FIG. 20. Comparison of rotation of CH8CHOXCOR and CH3CH(NHX)COR 
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FIG. 21. Rotation of natural amino acids and acidity of their solutions. 1, glu
tamic acid; 2, aspartic acid; 3, tryptophan; 4, dihydroxyphenylalanme; 5, lysine; 
6, ornithine; 7, alanine; 8, arginine; 9, leucine; 10, histidine; 11, tyrosine; 12, hy-
droxyproline; 13, proline; 14, cystine. 
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The observed regularities are of interest both in themselves and with 
regard to the exceptions which occur. They are therefore summarized 
below: 

(a) A given change in configuration of a hydroxyl at position 3 for most 
epimers results in a change of optical rotation in the same direction. 
The magnitude of the change depends on the compound: for saturated 
sterols the change in molecular rotation is around 20°, while in the presence 
of a double bond the change6 is larger, ranging from 50° to 400° depending 
on the proximity of the double bond to position 3. 

(b) Introduction of a double bond at 4:5 increases the d-rotation by 
150-200°. There are two exceptions, both involving the presence of a 
hydroxyl at 3: when this hydroxyl is cis to the methyl group, Cis, there 
is a decrease in d-rotation by 72° when the double bond is introduced, while 
when it is trans to Cis there is an increase in d-rotation by 373°. This 
discrepancy is readily explained: the 3-hydroxyl is very close to the posi
tion at which the double bond is introduced. Furthermore, in going from 
the as-position to the trans, something close to reflection in one of the 
planes of symmetry of the double bond will be found to take place if a 
model is constructed. Therefore, the interaction of hydroxyl will be very 
large (say around 250°), and for the hydroxyl in the cis-position it depresses 
the normal change of +150° or 200° down to —50° or —100°, while for the 
£rans-position it increases the normal change up to around +400°. 

(c) Introduction of a double bond at 5:6 decreases the d-rotation by 200° 
or 300°. In one case in which there is already a double bond at 7:8, so 
that conjugation occurs when the new double bond is introduced, the de
crease amounts to 436°. The bigger effect probably has largely to do with 
the movement of the absorption band nearer to the visible. 

(d) Introduction of a double bond at 7:8 lowers the d-rotation by 62° in 
one case in which there is no conjugation, by 250-300° in two cases in 
which there is conjugation with a double bond at 5:6, and by 476° in one 
case in which there is conjugation with a double bond at 14:15. In two 
cases in which ring A is benzenoid (double bonds at 1:2, 3:4, 5:10) the 
introduction of a double bond at 7:8 results in an increase in d-rotation 
by 381° and 392°. Since the methyl at position 10 is no longer present, 
and since the benzene ring will act in an entirely different way as a chromo-
phoric group, some such discrepancy is readily understandable. 

(e) Introduction of a double bond at 8:14 is anomalous in its results on 
the optical rotation. This may be because in all cases the effect is small 
so that minor factors are able to throw the direction of change one way or 
the other. 

6 The fact that in the presence of double bonds at different positions the direction 
of change of rotation remains the same must be counted a matter of chance. 
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(/) Introduction of a double bond at 14:15 results in a small increase in 
d-rotation. 

(gf) Introduction of a double bond at 22:23 results in a decrease in 
d-rotation by 36° to 174°. 

[K) Reduction of a carbonyl in position 17 to hydroxyl results in a 
decrease in d-rotation by about 200°. 

(i) A few other operations on the sterol molecule appear to exert a 
regular effect on the rotation but too few data are available to draw 
safely any conclusions about them. 

It should be clear from the discussion above that these regularities ought 
to be considered as illustrating the displacement rule rather than optical 
superposition, since they are then given a wider scope and the mediocre 
quantitative agreement which is found becomes less objectionable. 

We take this opportunity to thank Dr. E. Gorin for many helpful dis
cussions on the subject of optical rotatory power, and Dr. J. M. Sturtevant 
and Mr. K. L. Berry for sending us some of the results of their experi
mental researches bearing on section IV B in advance of publication. 
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