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A summary of the formulas of statistical mechanics is given, followed by a 
discussion of potential-energy surfaces. This is used as a background for a 
discussion of the theory of absolute reaction rates. The formal equations for 
viscous flow in liquids are then developed, followed by a discussion of the 
evaluation of the quantities entering into the equations. Applications of the 
theory to viscous flow in normal liquids, associated liquids, and ti- and X-sulf ur 
are then described, as well as the effect of high hydrostatic pressure on 
viscosity. Diffusion in liquids is then treated as a rate process, and con
clusions as to the nature of the process are drawn from inspection of the 
available data. 

With the aid of the theory and generalizations discussed here it is possible 
from thermodynamic data to calculate the viscosity of any normal liquid to 
within a small factor at any temperature from its freezing point to its boiling 
point, and at any pressure from 1 to 10,000 atmospheres. 

The treatment of the viscosity of liquids described here is based on the 
theory of absolute reaction rates developed to treat ordinary chemical 
reactions (13, 17, 18, 71). Since this theory is based on the concepts and 
equations of elementary statistical mechanics, a brief survey of the subject 
will be given at this point, followed by the development of the theory of 
absolute reaction rates. The applications which have been made to prob
lems of viscous flow and diffusion will then be described.1 

1 The symbols used in this paper are as follows: 
a = activity 
A = Helmholtz free energy 

A, B, C = moments of inertia for a non-linear molecule 
c = kinetic theory velocity 
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I. A BRIEF SURVEY OF STATISTICAL MECHANICS 

Suppose that we have a system, two of whose energy levels are «' and e. 
The ratio of the probabilities, p'/p, of the system being in these two states 
is given by the Boltzmann equation (24): 

p ' /p = e x p ( - ( a ' - t)/kT) (1) 

where k and Tare, as usual, the gas constant (Boltzmann) and the absolute 
temperature, respectively. Subject to the restriction imposed by the 
energy difference, all states are taken to be equally probable. In quantum 
statistics, different states of the system are distinguished not by different 
energies but by different solutions of \j/ in the wave equation 

h* 
8ir2m,-

OV/aei + aV/tyi + aV/fcJ) + (M - V)+ = o (2) 

Thus, two different states may have the same energy and, according to our 
postulate, should therefore be equally probable. The number of states 
having a certain energy is called the a priori probability or statistical 
weight and is designated by the symbol«. 

With the aid of the Boltzmann factor, one may readily obtain expressions 
for the thermodynamic properties of the system. Let a be the probability 

C = concentration 
Cp = specific heat at constant pressure 
Cv = specific heat at constant volume 
D = diffusion constant 
d = diameter 
E = energy 
F = partitition function with the volume divided out; Gibbs free energy 
/ = partition function per system; force 

H = Hamiltonian; heat content 
h = Planck's constant 
/ = moment of inertia for a linear molecule 
j = quantum number for rigid rotator 

K = equilibrium constant; thermal conductivity 
k = Boltzmann's constant 
k = rate constant 
I = length 

M = molecular weight 
m = mass of a molecule 
JV = Avogadro's number; mole fraction 
n = quantum number for particle in a box and harmonic oscillator; number 

of molecules per cubic centimeter 
P = pressure 
p = probability; momentum 
q = generalized coordinate; q = generalized velocity 

R = gas constant 
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that the system will be in the state of lowest energy. Then the ratio of 
the probability of the system being in any other state to the probability 
that it will be in the lowest state is given by equation 1. Since the sum 
of the probabilities that the system will be in some one of the states is 
unity, we have 

1 = Ctoo + Ctoi exp ( — ei/kT) + aoa exp ( — ei/kT) + ••• 

= o E ^ e x p ( - 6 , / f c D (3) 

or 
1/a = S^expC-e i / f cT) (4) 

where e< is the energy of the system in the ith state, referred to its energy 
in the lowest state. The average energy, i, in excess of that in the lowest 
state, is seen to be 

l = CtooO + awiei exp(—ei/kT) + aum exp(—a/kT) + • • • (5) 

]C «»«»exp( — ei/kT) 
i = a l »<« exp(-e</fcr) = ^ = —— (6) 

•• JL, w,exp(—a/kT) 

r = radius 
S = entropy 
T = absolute temperature; kinetic energy 
t = Centigrade temperature 

u = velocity of sound 
V = molal volume; potential energy 
v = volume per molecule; velocity 

Vf = free volume per mole 
V/ = free volume per molecule 

x, y, 2 = Cartesian coordinates 

a = accommodation coefficient 
/3 = compressibility ( • - ( l /F)(3V/3P)r) 
7 = ratio of Cp to Cr; activity coefficient 
E = energy level 
r\ = viscosity 
© = Einstein characteristic temperature 
K = partition function for a crystal; force constant; transmission coefficient 
X •= dimension of a molecule 
n = reduced mass 
v = frequency 
a = symmetry number; collision diameter 
(P = fluidity ( s \/n) 
\p = wave function 
w = statistical weight 
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The summation giving 1/a (equation 4) is called the partition function of 
the system and is designated by the symbol / . Using this notation, equa
tion 6 becomes 

e = kT*d(\nf)/dT (7) 

If we are concerned with a large number, N, of systems,2 the energy is N 
times that for a single one. Thus, if we wish to know the total energy of a 
mole of dilute benzene vapor, and / is the partition function of a single 
molecule, the required value is given by 

E = NkT2d(lnf)/dT = kT2d(lnf)/dT (8) 

This expression for the energy, E, in terms of the partition function, 
can be related to the Helmholtz free energy, A, by the thermodynamic 
relation, 

E = E= -T2d(A/T)/dT (9) 

where E is the usual thermodynamic energy. 
For these two expressions to be consistent we must have 

A/T = -klnf + constant (10) 

The value of the constant is found by the third law of thermodynamics 
or by quantum mechanics to be equal to the logarithm of factorial 
N (In Nl), where N is the number of identical systems in the assembly. 
If the systems are identical, and if one uses quantum mechanics to solve 
for the allowed energy levels of the ensemble, one would then find directly 
for the partition function, In (fN/Nl). In this case the Nl enters because 
the Pauli exclusion principle allows only eigenfunctions which are anti
symmetric in the N identical systems (9, 50). This treatment then gives 

A/T = -kin f + InNl (11) 

In order to simplify this formula, Stirling's approximation (8) may be used. 

\n Nl = N \n N - N (12) 

Substitution of equation 12 into equation 11 gives 

A = - ^ r [ I n (f/N) + 1] (13) 

a formula which, from the nature of its origin, must be valid for gases. 
s The word "system" is used here in the same sense as Fowler (24) employs it, to 

mean something which possesses a set of energy levels. This may be a single oscilla
tor, a molecule, an entire crystal, or a liquid. "Assembly" is the term employed to 
denote a large number of systems whose energy levels are coupled by an amount suffi
cient to permit exchange of energy but insufficient to cause these levels to be differ
ent from those for the isolated system. 
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The procedure for crystals is to calculate the partition function « for 
the N atoms or molecules as a single system so that, in this case, one has 
for the Helmholtz free energy 

A = -IcT In K (14) 

Having expressions for the free energy and the energy, the entropy in 
terms of the partition function follows directly from the thermodynamic 
equation, 

A = E - TS (15) 

Substituting equation 13 or 14 and equation 8 into equation 15, we 
obtain 

S = R[In (f/N) + 1] + E/T (gas) (16) 

and 

S = k In K + E/T (crystal) (17) 

The equation of state also follows from the partition function by means 
of the equation, 

P = -(dA/dV)r (18) 

A. Explicit expressions for the partition functions 

Thus far, the partition function has been defined in a perfectly general 
way in terms of the energy levels. However, the energy levels vary in a 
simple fashion for many systems met with in physical problems, so that 
the sums can be put into more convenient forms. 

The energy levels obtained by the aid of equation 2 for a particle moving 
in a cubical box of edge I and possessing kinetic but not potential energy are 

_ h2(nl + nl + nl) , . 
in 8 ^ U 9 ) 

where the n's are integers. The partition function defined by equation 4 
is found to be 

/ = (2irmkT/h2f2F (20) 

when the summation is approximated by an integration. The error intro
duced by this approximation is inappreciable, except at very low tempera
tures or high pressures. Even for the extreme case of hydrogen molecules 
at 1°K. enclosed in a box of 1O-2 cm. (neglecting molecular interaction as 
we have done), the error made is only 1 in 105 in / (32). 
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The energy levels for the harmonic oscillator are e„ = (n + l/2)Ac, 
and the partition function for a single oscillator of this type is 

/ , = [1 - expi-hv/kT)]-1 (21) 

The rigid linear rotator has energy levels, 

« , . _ f f i H i + i> f . 0 , 1 , 2 , . . . (22) 

each energy level being (2j + l)-fold degenerate, and the corresponding 
partition function is closely approximated by 

fa = 8ir2IkT/eh2 (23) 

Here J is the moment of inertia, and <r is the symmetry number. For a 
diatomic molecule composed of two like atoms, c is equal to 2. The 
quantum mechanics of the three-dimensional rotator with three unequal 
moments of inertia has not been completely solved, but the classical inte
gration over phase space (a procedure exactly analogous to taking the 
sum (4), except that the energy levels are considered to be continuous 
rather than discrete) yields 

fa = 87r2(8irWA£(7)1/2M3 (24) 

where A, B, and C are the three principal moments of inertia. 
The division of the complete partition function into factors corresponding 

to translational, rotational, and vibrational terms is valid only in case 
there is no interaction between these various degrees of freedom. In that 
case the energy levels can be expressed as sums of terms, and the partition 
function corresponding to each degree of freedom can be factored out. In 
making computations of the thermodynamic properties of gases from 
spectroscopic data, interaction terms between rotational and vibrational 
energy levels are often included. 

B. Classical integration over phase space 

It will be useful at this point to inquire into the relationship of the above 
formulae to those obtained by the use of classical statistics. 

The classical analog of the quantum-mechanical sum of states is de
fined by 

/ = (1/ft*) JJJ . . . . JJJ exp(-tf/fcT)dPl . . . . dpn, d2l . . . . d?n (25) 

where the integration is to be taken over the whole of momentum coordi
nate phase space and H is the classical Hamiltonian, defined by 

H = T + V (26) 



THEORY OF ABSOLUTE REACTION RATES 3 0 7 

where T is the kinetic energy, and V is the potential energy of the assembly. 
For a single particle, T is given by 

T = {l/2)mv2 m (l/2m)(rf + vl + v\) (27) 

px, pv , and p, being the momenta along the three axes. 
For a free particle, V is equal to zero, and equation 25 becomes 

/ = (1/h3) f [ ( [exp(-l/2mkT). (pi + pi + pl)]dpxdPvdp, 
J-OO J-OO J— OO 

fix ply /•£* 

X dxd^dz (28) 
Jo Jo Jo 

fT = (21rmkT/hyl2V (29) 

since the volume V is given by the product IxIyI1. 
The classical partition function for the one-dimensional simple harmonic 

oscillator may be obtained from equation 25 by direct integration, re
calling that 

H = (l/2m) (piJ) + (1/2) KX2 (30) 

and that the frequency, v, is related to the force constant, K, by the 
equation, 

v = (l/2r)(/c/m)1/2 (31) 

The expression obtained for the partition function, 

/ , = kT/hv (32) 

may also be obtained from equation 21 by expanding the exponential in 
powers of hv/kT and dropping all but the first two terms. Equation 32 is 
thus seen to be a good approximation only if hv/kT is small. 

The classical partition function for the two-dimensional rigid rotator is 
the same as that already obtained (equation 23) by replacing the summa
tion over states by an integration. 

II. THEORY OF ABSOLUTE REACTION RATES 

A. Potential-energy surfaces (22, 24, 43, 44) 

The statistical treatment of reaction rates involves the concept of a 
potential-energy surface giving the potential energy of the reacting mole
cules as a function of their position, orientation, and interatomic distances. 
Such surfaces giving the potential energy at every point in configuration 
space are generally drawn as contour graphs, each line on the graph being 
a line of equal potential energy, called an equipotential line. If a complete 
surface is considered, extending all the way from the stable reactants to 
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the stable products, it will be seen that there is an "easiest reaction path" 
between the two, i.e., a path drawn such that the potential energy at all 
points along the line increases in a direction at right angles to the line. 
The velocity with which the reaction proceeds depends on the temperature, 
on the difference in energy between the initial state and the point of 
highest energy on the easiest reaction path, and on other factors which are 
discussed below. Most of the thousands of compounds which are known 
are thermodynarmcally unstable; their apparent stability depends on the 
height of the easiest path that separates them from their more stable 
reaction products. On the basis of this picture, the existence of thermo-
dynamically unstable compounds and their reaction to form more stable 
products is easy to understand. The compounds correspond to potential 
energy valleys separated from their possible reaction products by passes 
which have potential energy mountains on either side. 

In general, 3n coordinates are required to describe the system of n 
atoms that are taking part in the reaction. But since the position of the 
center of gravity of the system is irrelevant^ and since the potential energy 
of the system is practically independent of the rotation of the complex as a 
whole, the number of coordinates required to define the potential-energy 
function and the essential details of the relative motion reduces to 3ra — 6 
or Zn — 5, depending on whether the configuration is non-linear or linear. 

Such a surface is illustrated in figure 1 for a simple three-atom reaction, 
the exchange of hydrogen for hydrogen in the para-hydrogen molecule to 
form an ortho-hydrogen molecule and a hydrogen atom. The surface 
is drawn for a linear triatomic molecule and should thus require 
3 X 3 — 5 = 4 coordinates. However, this is reduced to two if the two 
degrees of freedom corresponding to bending vibrations are excluded. The 
axes are inclined at an angle of 60° to each other in order that the repre
sentation of the potential energies of various configurations of the system 
of three atoms will have exactly the same variation of its coordinates 
with time as a single point moving in the potential field with the inclined 
axes would have. Stated in another way, the particular manner of con
struction that is used eliminates cross terms from the potential function. 
The method of determining the effective mass of the single particle and 
the correct inclination of the axes to each other has been given by Wigner. 
The result3 is quoted by Eyring and Polanyi (22). 

In terms of this surface the reaction is pictured as taking place as follows: 
As the hydrogen atom approaches the molecule of para-hydrogen, the 
bond between the hydrogen atoms weakens, and at the top of the easiest 
pass the configuration of lowest energy is one in which the three atoms 

8 Because of an error in sign, the angle between the axes was originally given as 
120° rather than 60°. 



THEORY OF ABSOLUTE REACTION RATES 309 

are arranged in a linear manner with the distances between neighboring 
atoms slightly greater than the distance in the normal hydrogen molecule. 
The potential energy is seen to become greater as the reactants approach 
each other, reaching a maximum value at two points where the configura
tion is intermediate between that of the reactants and products, and be
coming less again as the products are formed. The point of highest energy 
on the easiest path from reactants to products is known as the activated 
state, and the configuration of the atoms at this point is called the activated 
complex. Owing to the symmetry of the reaction we are discussing here, 

FIG. 1. Potential energy surface for three hydrogen atoms arranged in a line (20) 

there are two symmetrical saddle points along the easiest path which are 
separated by a potential-energy basin. The presence of two saddle points 
along the easiest path is of importance in treating the transmission coeffi
cient K, which will be discussed in the next section. 

The important point is that the 'properties of an activated complex are just 
those of an ordinary molecule except in the one degree of freedom along the 
easiest path, i.e., normal to the barrier. This becomes clear when it is re
called that by definition the activated complex is the configuration corre
sponding to the highest point (or points) along the easiest reaction path. 
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Thus the system is in stable equilibrium with respect to small displace
ments in every direction except the one normal to the barrier. The theory 
of small vibrations leads to a set of frequencies in exactly the same way 
as for an ordinary molecule, except that the square of the frequency for 
the degree of freedom normal to the barrier comes out with a negative 
instead of a positive sign, and hence from equation 31 it has a negative 
force constant. Figure 2 shows the normal modes of vibration for a sym
metrical linear triatomic molecule. The one marked A has the negative 
force constant, the force constants for the normal modes B, C, and D 
being positive. The frequencies C and D are equal and correspond to a 
bending vibration in planes perpendicular to each other. 

The mechanism described here for the reaction of H + H2(para) has 
the same general features as that of any other chemical reaction having 
an activation energy. There is always an easiest reaction path between 

* 

• 

/ • 

I -

• 

• 

/ -

T-
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• 

/ • 

1 -

A 

B 

C 
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FIG. 2. Normal modes for a linear symmetrical triatomic molecule 

reactants and products, and one or more saddle points along that path. 
The configuration at the highest saddle point is called the activated com
plex, which has the characteristics discussed above. Of course, the actual 
reaction paths will have a Boltzmann distribution about the easiest reaction 
path, and all these paths are included with their proper weight in the 
treatment of reaction rates by the ordinary statistical mechanical methods. 
Further, any rate process can be treated by the same general method. 
We now go on to develop the general equations which are applicable to 
any rate process. 

B. Statistical formulation of reaction rate equations 

Equations giving the absolute rate of any rate process taking place on a 
single potential-energy surface may now be formulated in a perfectly 

4 The formulation that we shall use is essentially the same as that given by Eyr-
ing (18). See, also, Pelzer and Wigner (51) for a treatment of reactions involving 
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general way as follows: The rate of reaction is given by the concentration 
of activated complexes, multiplied by the rate at which they decompose 
to form the reaction products. In general, the rate of reaction will be less 
than the rate of formation of activated complexes, since some of the 
activated complexes will return to the initial configuration without reacting. 
This can be expected to be the case in those very common instances where 
the easiest reaction path has two saddle points with a high-level basin 
lying between them. When there is no such high-level basin, the rate of 
reaction is simply the rate at which activated complexes reach the pass in 
such a direction that (regarded as classical particles) they can pass over 
and through it. When there is such a basin, the reaction rate is the rate 

3 J 1.0 IJ I.Z 13 
r^t—» Distance between the atoms b and c in A 

FIG. 3. The vibrational trajectory for linear H3, indicated by the line with arrows, 
was computed by employing the classical equations of motion (29). 

at which activated particles pass into it, multiplied by the probability 
that the exit will be in a direction corresponding to reaction. This proba-

three atoms and Wigner (68) for a treatment of leakage and a quantum-mechanical 
extension of the earlier treatment. For the treatment from the quasi-thermody-
namic point of view, see the papers of Evans and Polanyi (13) and Wynne-Jones 
and Eyring (71). A much earlier and interesting formulation of reaction rates by 
Marcelen (46) necessarily lacked the concept of the crossing of a potential barrier in 
configuration space which the London formulation suggested (44) and which led 
Eyring and Polanyi (22) to formulate explicitly the problem as the motion of a par
ticle on a suitably constructed potential-energy surface. Further quantum-mechan
ical corrections are carefully considered in a recent article by Hirschfelder and 
Wigner (31) and are found to be, in general, small. 
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bility, called the transmission coefficient, is given the symbol K. Figure 3 
shows a trajectory of a particle following a linear vibrational distortion 
given it after it has passed the activated point into the high-level basin. 
The randomness of the path, combined with the fact that in this case the 
entry and exit are symmetrical, leads us to the conclusion that in this 
case K must be very nearly equal to one-half. In other more complex 
cases the value of K cannot be predicted exactly, but there is reason to 
believe that its value will generally not depart greatly from unity for the 
adiabatic reactions considered here.5 Another effect that may contribute 
to the rate is that of tunneling through the barrier, i.e., the reaction of 
molecules which do not possess the requisite energy. This effect has been 
considered by Wigner (31, 51, 68) and by Eckart (10). The correction 
term thus introduced is small for barriers of small curvature, but may 
become of importance for very thin barriers. 

Then to the approximation that tunneling may be neglected, we may 
write for the specific reaction rate constant: 

k = KK*p/m* (33) 

where m* is the reduced mass of the activated complex, p/m* is its average 
velocity in the forward direction along the reaction path, and K* is the 
equilibrium constant between activated complexes and reactants expressed 
in concentration units, per unit of length along the reaction path and per 
unit of volume, respectively. K* may be written in terms of the partition 
functions of the activated complex and of the reactants. The expression 
for k then becomes: 

k = K(F*/Fn)(p/m*) (34) 

or 

k = K(F*/Fn)(p/m*) exV(-E0/RT) (35) 

where F* is the partition function of the activated complex, and Fn repre
sents that of the reactant molecules. 

In equations 34 and 35 the F's represent partition functions with the 
volumes divided out. Equation 34 differs from equation 35 only in that 
in the former the energy levels for both F* and Fn must be referred to a 
common zero, while the latter refers the energy levels to the lowest state 
of the molecule to which the partition function applies. These equations 
are applicable to reactions in any phase. However, the partition func-

6 The term "adiabatic" is used here in Ehrenfest's sense to mean a reaction that 
takes place on a single potential surface in configuration space. Cases of reactions 
involving the transition of the system from one surface to another can also be treated 
by special methods. See Stearn and Eyring (62) and Evans, Eyring, and Kin-
caid (12). 
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tions vary with the phase in question. The equilibrium constant between 
reactants and the activated complex and therefore the rates in the liquid 
phase may be readily obtained from the corresponding expressions in the 
gas if vapor pressures are known. This is, of course, true of all equilibrium 
constants, and the calculations of the change of reaction rates and of 
equilibrium constants on taking systems from the gaseous to the liquid 
phase should ultimately be the most important chemical application of 
theories of liquids and solutions. 

The average velocity, p/m*, with which the activated configuration 
travels over the barrier may be regarded as a pure translation for suffi
ciently flat surfaces, and its value is given in the usual way by the ex
pression : 

* 
m J" J= «»(-5&I>>"] [C^ (-5&r) "T (36) 

kT 
(2Tm*kT)1'2 

However, the partition function for the activated complex per unit 
length along the reaction path contains the term (2irm*kT/h2)112, so that 
the product of this term and p/m* equals kT/h. We then write as our 
final equation for k: 

k = K(kT/h)(Fx/Fn) exV(-E0/RT) (37) 

where E0 is the energy of activation at the absolute zero and F* is the 
partition function for the activated complex, taking the partition function 
for the degree of freedom in which the molecule is decomposing as equal 
to unity instead of (2TrmkT/h2)in. It may be noted that F* is formally 
the same as the partition function of a molecule exactly like the activated 
complex, with the degree of freedom normal to the barrier being a vibration 
sufficiently stiff for its partition function to reduce to unity. This idealized 
activated complex is a convenient concept for defining the free energy and 
entropy of activation in the usual way in terms of equilibrium constants. 
Thus, 

AFX = -RTInK1 (38) 

and 

AF1 = AH1 - TAS1 (39) 

Using relations 38 and 39, the equation for k may be written in the equiva
lent forms, 

k = (KkT/h) exp(-AFx/RT) (40) 

k = (KkT/h) exp(-AHx/RT) exp(AS7fl) (41) 
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These equations are not limited to the gaseous phase and may be applied 
to any rate process if the free energy of activation is known from any 
source. 

A point of view which is less useful than that employed above, but which 
may aid in giving one an intuitive feeling for the significance of the factor 
kT/h in equations 37 to 41, is the following: The degree of freedom in 
which the decomposition is occurring has been regarded as a translation, 
but it may equally well be considered as a vibration. In this case the 
classical partition function is kT/hv*. But the rate at which the decom
position is taking place must be equal to v*, the frequency of vibration 
along the coordinate normal to the barrier, since the force constant for 
this vibration is negative. That is, every vibration leads to decomposi
tion. The product of kT/hv* and v* then gives kT/h as before. 

In the use of equation 37 it should be emphasized that the partition 
functions contain all the energy levels which contribute at the temperature 
involved, i.e., excited electronic states should be included if they are not 
sufficiently high to be neglected. 

C. Kinetic theory equations 

Some of the simplest applications of the theory of absolute reaction rates 
are to be found in the derivation of ordinary kinetic theory formulae. 
The equations which are derived are, of course, identical with those secured 
by the ordinary methods, but the derivations are often simpler and clearly 
bring out the approximations which are made. 

The rate at which molecules at a pressure P and temperature T strike 
a square centimeter of surface is found as follows: The activation energy 
for this process is equal to zero, and the activated complex is a molecule 
just breaking away from the wall with two degrees of translational free
dom besides the one in which decomposition is occurring, K is unity for 
such a process, and there is no possibility of leakage through a barrier, so 
that equation 37 reduces to 

= (kT/h)(2Tm*kT/h2)FJFi , , 
(2irmkT/h?yi*FsFv

 K ' 

where FR and Fv are rotational and vibrational partition functions, respec
tively. Since m*, FR , and Fl are the same for the activated complex as 
for the normal molecule, equation 42 may be simplified by cancellation 
to give 

k = (kT/2Trm)112 (43) 

The rate is given by the product, nk, where n is the number of molecules 
per cubic centimeter, so that equation 43 reduces to 

Rate = nk = nkT / {2*mkT)m = P/{2rmkT)w (44) 
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Another illustration which may be given is the calculation of the number 
of collisions between molecules in the gas phase. Consider first the case 
of the rate of collision between unlike molecules. In order to arrive at 
the conventional formula it is necessary to assume either that the colliding 
molecules are monatomic and hence have no rotational terms in their 
partition functions or that the rotations in the normal state are the same 
as those in the activated complex. The activated complex can be taken 
as the system of two molecules just breaking away from each other. We 
have thus: 

F1 = (2Tr(Wi1 + m*)kT/hT'8*'lkT/h* (45) 

and 

F n = (2Tm1kT/h2f\2xnhkT/h2f2 (46) 

a n d for t h e r a t e of collision, Zx,2, 

Zi,2 = Ti1W2 k = nim -r-=- (47) 
Hrn 

On substituting equations 45 and 46 into equation 47 and simplifying 
we arrive at 

„ 2n1n2(27rfcr)1/2crf,2 ,,a. 
Z l-» = ^TTi ^ 

where n is t h e r educed m a s s denned b y n = Wi1Wi2Z(Wi1 + Wi2), a n d 0-1,2 is 
the usual collision diameter. The collision diameter enters into the expres
sion from the definition, I = /^1,2. 

As a final illustration we give a derivation of the formula giving the 
number of collisions between unlike molecules having a relative velocity 
greater than a certain value. Consider the motion of two molecules of 
masses Wi1 and Wi2 having velocities along their line of centers ^1 and g2, 
respectively. Then the relative velocity, Q, is defined by 

Q = Qi - h (49) 

The kinetic energy and momentum are given by 

T = ( l /2)wi$ + (l/2)mdl (50) 

and 

P — Wi1̂ 1 + Wi2̂ 2 (51) 

Since the motion of the center of gravity of the system may be taken 
equal to zero, we have 

qi = —mzqz/mi (52) 
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a relation which may be combined with equations 49 and 50 to give an 
expression for T in terms of $ : 

T = (1 /2)M$ 2 (53) 

Since this is the general expression for the kinetic energy relative to the 
line of centers, it must also be true at the point of collision. The rate 
expression may now be written 

„ = nM2r(m1 + mi)kT/h2f2(8Tr2IkT/h2)(2irm*kT/h2)w(p'/m*) ' . 
1,2 (2irmM'/h*y>»«(2irmjfcT'/hj"2 l ' 

where p'/m* is now not the over-all average velocity normal to the barrier, 
but the average velocity in the range of velocities we are considering. 
This value may be obtained by a procedure exactly analogous to that used 
in equation 36, except that the lower limit of integration is taken to be the 
minimum momentum P0 instead of zero. This procedure gives 

p'/m* = kT/(27rm*kT)112 exp(-Pl/2m*kT) (55) 

Combining these last two expressions, we have 

Zi,t = 2nm2(2xfcr//x)1/2exp(-MQ2/2^r) (56) 

if we remember that in this case m* = ju. 
It is interesting to note that if the term exp( — nQ2/2kT) had been 

regarded as an activation energy, we would have written down the ex
pression 56 directly from the theory of absolute reaction rates. While the 
usual kinetic theory derivations of rate processes and those obtained by 
using the activated complex theory are interchangeable for simple atoms, 
only the latter theory is adequate for treating complicated molecules. 

III. EQUATIONS FOR VISCOSITY AND DIFFUSION (19) 

In this section we shall develop the formal equations for viscosity and 
diffusion, based on the following mechanism: Viscous flow is assumed to 
take place by the activated jumping of an aggregate composed of one or 
more molecules from an initial normal configuration to a second normal 
configuration. In common with chemical reactions, normal configura
tions are assumed to be separated by an intermediate, activated state 
corresponding to the activated complex. It is thus possible to use all the 
machinery developed in the preceding sections for the treatment of vis
cosity and diffusion. The magnitude of the free energy of activation and 
the exact mechanism for flow will be treated in section IV. In this section 
we shall only assume that the mechanism is such that the theory of abso
lute reaction rates is applicable. 
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The perpendicular distance between two neighboring aggregates sliding 
past each other is taken as Xi. The average distance between equilibrium 
positions in the direction of motion is taken as X, while the distance be
tween neighboring aggregates in this same direction is X2, which may or 
may or may not be equal to X. The distance between aggregates in the 
plane normal to the direction of motion is written as X3. By definition 
we have for the viscosity, 

V = fh/Av (57) 

where / is the force per square centimeter tending to displace one layer 
with respect to the other, and Ay is the difference in velocity of these two 
layers which are a distance Xi apart. Now the process of diffusion is con
tinually taking place, with or without an applied force tending to cause 
viscous flow. The application of such a force simply tends to make a 
preferred direction in which the molecules move. On the basis of this 
picture, the velocity Av between two successive flow layers is simply the 
difference between the reaction rate in the direction of flow and in the 
opposite direction multiplied by the average distance it moves at each 
reaction. The general equation giving the rate of any reaction which has 
been modified by some external agency may be written: 

k' = (kT/h) exp(-AFx/RT - AF1'/RT) (58) 

Here AF*' is the contribution made by external agency to the free energy 
of activation, and K has been set equal to unity. The mag nitude of AF1' 
caused by the applied force may be evaluated in this case as follows: The 
force acting on a single aggregate is /X2X3, and it acts to lessen the work 
of passing over the barrier through the distance X/2. That this distance 
is just X/2 follows from the reasonable assumption that the activated 
complex is a configuration just half way between the initial and final 
states. Thus the applied force tends to lessen the free energy of activation 
in the forward direction by an amount /X2X3X/2, while in the backward 
direction it is raised by the same amount. If the reaction rate constant 
in the forward direction be denoted by k/ and that in the backward direc
tion by kb, we have 

k/ = (kT/h) expi-AFt/RT + NfX2X,X/2RT) = k exp(fX*X3X/2kT) (59) 

and 

k„ = (kT/h) exp(-AFl/RT - NfX2X3X/2RT) = k exp(fX2X3X/2kT) (60) 

Here k is the specific reaction rate constant giving the number of times 
per second that an aggregate will jump in the direction of flow when no 
force is applied, and AF* is the corresponding free energy of activation. 
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Now Av for each aggregate is also Ao for the layer as a whole. Thus the 
relative rate of displacement of neighboring layers is 

Av = Xk [exp(/X2X3X/2fcr) - exp(-f\s\s\/2kT)] (61) 

or 

Av = 2Xk sinh (fX2\s\/2kT) 

The viscosity then is given by 

V = Ai/2Xk sinh (f\^3\/2kT) (62) 

Since for the forces ordinarily employed in the measurement of vis
cosity, /X2X3X/2/CT <3C 1, the exponentials in equation 62 may be expanded 
and higher powers dropped, leaving 

Tj = /c T1XiA2X2X1Jk (63) 
or 

77 = (AXiA2X2X3) 
exp (AF*/RT) (64) 

The formula for the diffusion of one liquid into another when they form 
perfect solutions is very simply derived as follows: Assume that the con
centration gradient is in the X direction and is equal to dCi/dX and, fur
ther, that the distance between two successive potential-energy minima 
for the diffusing aggregate is X. Then if the concentration at one minimum 
is Ci, that at the next minimum in the positive direction is (Ci + X dCi/dX). 
Now the number of molecules passing through the Y1Z plane per square 
centimeter in the positive X direction is A7XkCi and in the reverse direc
tion is ATcX(Ci + X dCi/dX). The excess proceeding in the negative X 
direction is A"X2k dCi/dX, which must be equal to DN dCi/dX from the 
definition of the diffusion coefficient, D. Thus D is 

D = X2k (65) 

In the case of self-diffusion, k and X2 may be eliminated from equations 
63 and 65 to give 

r,D = ArXi/X2X3 (66) 

Equation 66 holds for perfect solutions whenever the mechanisms for 
viscous flow and diffusion are the same. In securing a similar relation for 
the diffusion of one liquid into another it must be remembered that neither 
k nor X2 is necessarily the same for the diffusing molecule as for the solvent. 
Designating the molecular species which is acting as the medium by the 
subscript m and the diffusing species by D, we have 

vD = A;71XiX2
Dkz)/X2X2X3km (67) 

VD = ^r(XiA2X3)(X
2Z)Am) exp (AFl - AFl) (68) 
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This equation, which applies when the solvent and solute molecules 
are of very nearly the same size, is to be compared to the well-known 
Stokes-Einstein diffusion equation, 

D = kT/far (69) 

which is applicable when the diffusing molecule is so large compared to 
the molecules of the medium in which it is diffusing that by comparison 
the medium may be thought of as a continuum. Here r is the radius of 
the diffusing molecule, considered to be spherical. Appropriate variants 
have been obtained by Stearn and Eyring (61) and by Powell, Roseveare, 
and Eyring (52) for treating imperfect solutions. If we picture a solute, 
partitioned at equilibrium between two different solvents, it is clear that 

FIG. 4. Potential barrier for diffusion process in non-ideal solution 

there is no net diffusion across the interface. Hence it is the activity, and 
not the concentration, which is the driving force in diffusion. 

Consider a unimolecular mechanism by which a diffusing molecule passes 
over a potential barrier as shown in figure 4, with concentrations and 
activities as illustrated. The general rate equation (40) will be modified to 

k = (kT/h) exp (-AFV^r)(TnA*) = k°(Tn/7*) (70) 
where the 7's are activity coefficients. 

The net diffusion rate will then be the difference between the forward 
and backward rates of transport, 

1 1 X d?i 

*•*- - ^k° — ^ - (*+* S ) *° ̂ f I ( (71> 
71 da; 71 da; 
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which, upon simplifying, becomes 

Katenet = — r -

dx M1 + IES]
 (72) 

Since the diffusion constant is defined by 

Ratenet = —D -j-
dx 

we have 

B - M 1 + I E S ] ™ 
If the molal volumes of the solute and solvent molecules, Vi and F2, 

are not too different, equation 73 may be put in the form 

D = xV d in* (?4) 
d In JVi 

In writing equation 74 for equation 73, a small correction factor, 

due to changing from concentration units to mole fraction, is neglected. 
This factor reduces to unity for Vi = Vi, and even, in general, since it is 
a linear function of mole fraction, it will simply be absorbed into the cor
responding values of \2. For systems such that AF* for viscous flow is 
the same as AF' for diffusion, we would have 

IV. THE FEEE ENEEGY OF ACTIVATION FOE VISCOUS FLOW 

In this section an attempt will be made to identify the quantities oc
curring in equation 64 with properties characteristic of the liquid to which 
it is being applied. To do this we shall employ the theorem, "The amount 
of energy required to make a hole in the liquid the size of a molecule is 
equal to the energy of vaporization" (19). This theorem is easily derived 
as follows: Suppose we have N molecules forming a liquid. Then each 
of them is bound to the others by bonds adding up to the total energy 

E = J^1 UiEi 
i 

where n,- is the number of bonds of a particular kind, each of which has 
the bond strength Ei. To vaporize the N molecules requires an energy 
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of NE/2, since each bond belongs to two molecules. Therefore to vaporize 
a single molecule requires the energy E/2, providing no hole is left in 
the liquid. However, if we vaporize one molecule leaving the hole, we 
must supply exactly the energy E. If we then return this gas molecule 
to the liquid we get back the energy E/2, so that it requires rigorously 
the same energy E/2 to make a hole in a liquid of a size which will just 
accommodate a single molecule as it does to vaporize one molecule without 
leaving a hole. Clearly a large hole will require more energy for its for
mation than a small one, but the energy of formation of a hole need not, 
and in general will not, be strictly proportional to the size of the hole. 
This is illustrated by the effect of pressure on viscosity discussed in a 
later section. 

In relating the quantities occurring in equation 64 with properties of the 
liquid, the first thing to decide is whether the flow aggregate is a single 
molecule or a group of molecules. In making the decision as to which is 
the more probable mechanism, a guiding principle that applies to all rate 
processes must be kept in mind: viz., any rate process proceeds by all 
possible mechanisms and therefore chiefly by the fastest ones. If different 
possible mechanisms do not involve greatly varying values of the contribu
tion of the entropy of activation to the free energy of activation, then 
the fastest process will be the one with the smallest energy of activation. 
Now a molecule can flow only if there is a hole in the liquid for it to flow 
into, and thus the difference in energy between the activated and normal 
states is chiefly due to the extra volume required by the activated state. 
Hence the most probable mechanism is one that requires the smallest 
amount of extra volume for the process to take place. Clearly, this con
dition will be most nearly satisfied by a mechanism involving only one or 
two molecules. Figure 5 illustrates one suggested mechanism by means 
of which one molecule could move past another. The figure illustrates 
the instantaneous formation of a double molecule which then rotates 
through an arc of about 90°. The initial position of the molecules is 
illustrated by the dotted lines, and after rotation they occupy the position 
indicated by the heavy black circles. 

This mechanism identifies the X's of the flow aggregate with the dimen
sions of a single molecule. If, further, the distance between successive 
minima, X, is identified with Xi, the perpendicular distance between ad
jacent layers of molecules, then the product X1X2X3, in the denominator 
of equation 64, is just equal to V/N, where V is the molal volume of the 
liquid. 

Equation 64 may then be written, 

7, = QiN/V) expiAFt/RT) (76) 
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There remains the problem of deciding the method for determining the 
free energy of activation for viscous flow. This may be estimated as some 
fraction of the free-energy change of an analogous reaction. Powell, 
Roseveare, and Eyring (52) base their choice of the analogous reaction on 
the following model of the unit flow process: An individual molecule oc
casionally acquires the activation energy necessary to squeeze past its 

FIG. 5. Viscous flow by means of double molecules as illustrated by Hirschfelder, 
Stevenson, and Eyring (30). Two molecules collide to form a double molecule. If 
there is sufficient space available, this double molecule can rotate and then dissociate. 
One layer of liquid can flow past another by a succession of these processes. 

neighbors into the next equilibrium position. The bonds which must be 
broken are the same bonds that would be broken in the process of vaporiza
tion. However, the work of expansion to the vapor state will not be 
needed, and the entropy of this expansion will not be available. Thus 
we may expect AF* to be correlated with 

AFV8P + TAZn, - RT = A# r a p - RT = AErap 
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In figure 6, AFi for viscous flow has been plotted against AEV*P for ninety-
three inorganic and organic liquids at their boiling points. The points 
fall along a straight line which passes through the origin, and has a slope 
1/2.45. Equation 76 can then be written 

V = Nh/V exp(AEnp/2A5RT) (77) 

When AH* is plotted against AEvap, the results for normal liquids are 
about as good as for AF*, but hydrogen-bonded liquids involve large devia
tions in the direction of high activation energies. These abnormal activa
tion energies are in large measure compensated by abnormal entropies of 

~Z ? Z % W ZZ-

AE OF Vaporization in K<j.-cal —* 
FIG. 6. The squares represent "permanent gases," the triangles represent hydro

gen-bonded liquids, and the circles represent the other liquids. 

activation. This compensation is a common phenomenon for both rate 
and equilibrium processes. 

I t is of interest to examine other proposed equations which, in general, 
permit prediction of viscosity to within a factor of 2 to 3. We first recall 
that AF% includes one more degree of freedom for the normal than for the 
activated state. The degree of freedom corresponding to decomposition 
of the activated complex is omitted from AF*, being included in the fre
quency kT/h. If classical statistics is applicable, there is no difference in 
the parts of the partition functions depending on kinetic energy for the 
normal and for the activated state. This may be seen by inspection of 
equations 25 and 26 if it is recalled that in classical mechanics the kinetic 
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energy, T, is independent of the potential field to which the system is 
confined. If we then make the approximation that the partition function 
for the liquid as a whole is obtainable from the partition function for an 
average molecule moving in the field of its neighbors, we have: 

/ = {2*mkT/h2)m JJJ exp(-V/RT) dxdydz (78) 

= (2rmkT/hY2Vf 

where V is the potential due to the presence of neighbors and 

v, (= JJJ exv(-V/RT)dxdydz) 

is the free volume. Only translational degrees of freedom are considered 
in equation 78. Since the extra degree of freedom in the normal molecules 
is a translation, we have, from equations 76 and 78, 

V= (hNA/V)(27rm*kT/hyVf'sexp(W/RT) (79) 

Here AF' includes all contributions to the free energy of activation for vis
cous flow other than those involving the degree of freedom in which de
composition is occurring. 

Equation 79 contains two unknown quantities, Vf and AF'. The free 
volume plays an important r61e in many properties of liquids other than 
the viscosity, and a discussion of its evaluation is given below. AF' may 
be divided into the energy of activation for viscous flow, A2?Vis, and an 
entropy of activation. Since a molecule cannot flow unless there exists 
a cavity for it to flow into, A2?Vi„ is due chiefly to the energy of forming 
a hole in the liquid. I t is thus closely related to the energy of vaporiza
tion, a relationship which has already been discussed. By comparison 
with experiment it is found that the entropy term in AF' is small and 
may to a good approximation be set equal to zero. 

V. FREE VOLUMES OF MOLECULES IN LIQUIDS 

A. Free volumes from the energy^volume coefficient 

In order to obtain values of the free volume, Vf, to use in equation 79, 
it is necessary to consider certain simple models for liquids. One simple 
model that has been used is that employed by Eyring and Hirschfelder 
(21). It is assumed that the potential energy does not change as the mole
cule moves from its equilibrium position until it collides with its neighbors. 
At this point the potential energy goes to infinity. The molecule thus 
moves in a potential box with a flat bottom and straight sides, the size of 
the box being governed by the total volume and the size and packing of 



* 

THEORY OF ABSOLUTE REACTION RATES 3 2 5 

the molecules. If, further, the rotational motion of the molecules is not 
changed on changing the volume of the liquid or on vaporization, a term 
for it need not be included in the partition function for the liquid in con
sidering the vapor pressure or the equation of state. The same thing may 
be said for the degrees of freedom corresponding to internal vibrations. 

The mathematical statement of this picture is as follows: If fN is the 
partition function for the liquid, it may be written 

f = [(2irmkt/hy'\v,)]N exV(ASc/R) exp(-AET*p/RT) • (80) 

where AS0 would be equal to zero if the function / were like that for a 
solid and would equal R if it were like that for a gas. Hirschfelder, 
Stevenson, and Eyring (30) considered that ASC should approach the limit
ing value R and called it communal entropy. Lennard-Jones and Deven-
shire (40) and Monroe and Kirkwood (47) have more recently estimated 
this extra randomness of liquids over that for solids. Lennard-Jones and 
Devenshire assumed that it arose from a random distribution between 
lattice positions present in the solid and new lattice positions which ac
companied the increase in volume during melting and subsequently. Later 
in this paper we shall have more to say about the nature of AS0. To the 
approximation employed here, the energy of vaporization, AjBvap, is just 
the difference in potential energy between the liquid and gas. This follows 
because the kinetic-energy terms are the same for both phases, and it is 
assumed that no potential-energy terms are associated with either the rota
tion of the molecules or with their oscillation about their equilibrium posi
tions. V/ is the size of the box in which the geometrical center of the 
molecule can move without change in potential energy. 

In order to determine v/, suppose that the molecules in the liquid are 
arranged in a simple cubic lattice and that each molecule, on the average, 
can move until it touches its neighbors when they are in their mean posi
tions. Then if d is the incompressible diameter of each molecule, we have 
from figure 7 that 2(F/JV)1/3 — 2d is the distance that the central molecule 
is free to move along each axis. Vf is then this quantity cubed,6 i.e., 

Vf = 8[(V/N)m - df (81) 

The equation of state is obtained by differentiation of \nfN with respect 
to the volume and multiplication by JcT. 

We have from equations 13, 18, and 80, 

P = -kT(d lnf/dV)T = RT(d ]nvf/dV)r - (dAEv^/dV)T (82) 

6 I t will sometimes be convenient to use the quan t i ty Nv/ = Vf. Similarly, we 
shall use v = V/N to indicate the volume per molecule. 
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From equation 81 

(d In v//dV)r = (V - N1'* d72 '3)-1 = 2/VmV)11 (83) 

On combining equations 82 and 83 we arrive at 

[P + (3A£V6p/dF)r]V2/V}/3 = 2RT (84) 

an equation which relates the free volume to known properties of the liquid. 
In employing equation 84 it must be remembered that the quantity 
(dAl?vap/dV) T is, in general, not known and must be estimated. A closely 
related quantity is (dE/dV) r, but this is also frequently unknown. The 
difficulty is resolved with the aid of the generalization, pointed out by 
Hildebrand (28), that (dE/dV)T is very nearly equal to AEy&p/V at low 
pressures for a large number of cases. Water and other hydrogen-bonded 
liquids, liquid metals, and all liquids at high pressures have values of 
(dE/dV)T which are less than AEy&p/V. Free volumes computed from 

f lift—* 

0 0 0 
W r*i W 

FIG. 7. The relationship between the free and the total volume 

t>y» = 2D1'1 - 2d 
equation 84 agree well with those obtained by other methods, which are 
discussed below. Further considerations similar to those discussed above 
lead to reasonable agreement with experiment for expansion coefficients 
and compresibilities of liquids, as well as to a derivation of Trouton's and 
Hildebrand's rules (21). 

B. Free volumes from velocity of sound 

It has been found possible to modify certain kinetic theory formulae for 
gases in such a way as to make them applicable to liquids (37). The point 
of view employed is to treat the molecule moving in its free volume in 
the liquid as equivalent to the molecule moving in the total volume in the 
gas phase. 

The velocity of sound, u, in any homogeneous medium is given by the 
general hydrodynamic formula: 

u = (F//3,)1/2 (85) 
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where v is the specific volume and /9, is the adiabatic compressibility de
fined by 

ft m -(1/V)OV/dP). 

For the special case of an ideal gas, equation 85 becomes 

u = (RTy/M)w (86) 

where y is the ratio of the specific heat at constant pressure to that at con
stant volume, and M is the molecular weight of the gas. 

Equation 86 may be compared to that for c, the average kinetic theory 
velocity of the molecules. 

c = (8RT/*M)W (87) 

It is seen that u is proportional to c but is slightly smaller, since the factor 
(8/ir)1/2 is always greater than ym. This is what one might suppose, 
since a wave propagated by matter would hardly be expected to travel 

ft* 
C 

FIG. 8. Illustration of the mechanism which explains the observation that the 
velocity of sound in liquids is greater than the kinetic theory velocity of the mole
cules. 

faster than the molecules which carry it. However, when the velocity 
of sound in liquids is- compared to the kinetic theory velocity of the mole
cules, it is found that u for most liquids is greater than c by factors ranging 
from 5 to 10. For example, for benzene at 250C, c is 2.83 X 104, u (gas) 
is 1.88 X 104, while u (liquid) is 13.0 X 104 cm. per second. Figure 8 illus
trates the mechanism responsible for the fact that the velocity of sound in 
liquids can be so much greater than the kinetic theory velocity of the 
molecules. The wave front is assumed to travel from the edge of molecule 
A to the adjacent edge of molecule B with the velocity given by equation 
86. As A collides with B, however, the signal is transmitted almost in
stantaneously to the opposite edge of molecule B. 

This follows from the fact that sound waves are longitudinal, or com
pression, waves. Since the ratio of the total distance to the free space 
between two points in the liquid is given by the ratio {V/V/}111, this leads 
at once to the equation, 

u (liquid) = u (gas) (V/Vf)
w = [RTy/M)w{V/Vf)

w (88) 
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Equation 88 may be employed either to find the velocity of sound in liquids 
if Vf is known from some other source, or to determine free volumes if 
sound velocity measurements have been made. 

C. The relation between free volume and thermal conductivity in liquids 

A test of the general point of view outlined above is desirable, and is 
provided by considering the thermal conductivity of liquids (37). 

A straightforward application of the kinetic theory of gases gives the 
relation for the thermal conductivity K, 

K (gas) = (1/S)(NZV)HLc. (89) 

where N/V is the number of molecules per cubic centimeter, L is the mean 
free path^ and c„ is the specific heat per molecule. I t is found, however, 
that equation 89 gives values which are too low for the thermal conductiv
ity of gases, and Eucken (11) gives the correction factor l/4(9y' — 5), 
where y' is the ratio of cp to Cx. Equation 89 may now be rewritten, 

K (gas) = (l/3)[l/4(&y - 5))(NZV)cLc, (90) 

a relation which may be tested in the form, 

K (gas) = „(c./m)(l/4)(97' - 5) (91) 

since the viscosity, r/, is given by (1/3) (JV/V)mcL. Equation 91 has 
been observed to give excellent agreement with experiment (42). 

In order to convert equation 90 into a form applicable to liquids the 
following identifications may be made: (N/V) becomes the number of 
molecules per cubic centimeter of liquid rather than per cubic centimeter 
of gas. The average velocity c must be multiplied by the ratio (V/V/)llz, 
for the same reasons as are given above for justifying equation 88. The 
distance that the energy is carried is now (v)13 rather than L, the mean 
free path for the gas. c„ for the gas is replaced by acv, where a is the 
accommodation coefficient which takes account of the number of degrees 
of freedom which come into equilibrium in the thermal conduction process. 
Making all these substitutions we have: 

K (liquid) = (1/12)(V - 5)(l/v)(8RT/TrM)ll2(V/V/)
w(v)w(acv) (92) 

On substituting equation 88 and simplifying, we have 

K (liquid) = (1/12) (9y' - 5)(%/irf)W(N/V)mu(acv) (93) 

Here u is the velocity of sound in the liquid, y' is the effective value of the 
ratio of cp to c„ for thermal conduction in the gas, and y is the same quantity 
for the transmission of sound. 

Equation 93 is very similar to one given by Bridgman for the thermal 
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conductivity of liquids (5, 6). In order to have equation 93 reduce to 
the one successfully employed by Bridgman, acv must be assigned the 
value 3& per molecule. For the liquids composed of polyatomic molecules, 
which Bridgman studied, this is understandable if only the kinetic energy 
of translation and rotation transfer appreciable energy in the process of 
thermal conduction. Using a value of acv equal to Sk, y' becomes 4/3 and 
equation 93 reduces to 

K (liquid) = (0.931/7 ' ) 3fc (N/V) \2/3„ (94) 

This formula has the same form as that employed by Bridgman, but the 
numerical coefficient is about 12 per cent smaller, as a result of the factor 
0.931/?1'2 replacing unity in his expression. 

TABLE 1 

Comparison of the observed thermal conductivities of liquids at 30°C. with those computed 
from equation 94 

SUBSTANCE 

Methyl alcohol.. 
Ethyl alcohol 
Propyl alcohol.. 
Butyl alcohol... 
Isoamyl alcohol. 
Ether 
Acetone 
Carbon disulfide 
Ethyl bromide.. 
Ethyl iodide 
Water 

K 
(OBSEBVED ( 5 ) ) 

X)O3 c.o.s. units 
21.1 
18.0 
15.4 
16.7 
14.8 
13.7 
17.9 
15.9 
12.0 
11.1 
60.1 

K 
(CALCULATED) 

XlO' C.G.3. unitt 

22. 
19. 
17. 
13. 
14., 
10. 
16. 
16. 
12.8 
10.6 
51.7 

K(OBBERVED) 

K (CALCULATED) 

0.95 
0.94 
0.89 
1.26 
1.05 
1.26 
1.10 
0.99 
0.94 
1.05 
1.16 

Table 1 shows values for K at 3O0C. for a number of liquids computed 
by equation 94 for comparison with Bridgman's experimental values. The 
agreement, somewhat better than Bridgman's earlier computations, sug
gests that the general point of view cannot be far wrong. Equation 94 
not only works remarkably well for the variation of K from liquid to liquid 
at atmospheric pressure, but, as Bridgman has pointed out, it also gives 
approximately the temperature variation of K. It is, therefore, quite 
surprising that it does not predict the pressure effect correctly. Whereas 
most liquids increase their thermal conductivity by approximately a 
factor of 2 on going from atmospheric pressure to 12,000 atmospheres, the 
formula predicts an increase by about a factor of 4. It has been suggested 
that such a decrease in the value of a might be due to quantization of the 



3 3 0 J. F. KINCAID, H. EYEING AND A. E. STEARN 

mass motions of the molecules at high pressures (37). The effective heat 
capacity, acv, would have to become 1.5k in order to explain the observa
tions at the highest pressures to which the experiments extend. 

D. A comparison of values of free volumes of liquids computed by 
different methods 

Table 2 gives a comparison of free volumes for a number of liquids 
calculated from equations 84 and 88. The agreement indicates that, for 
the type of liquid considered in table 2 at atmospheric pressure, it is im
material whether equation 84 or equation 88 is employed in the viscosity 
equation. Since equation 84 fails badly when applied to liquid mercury 
(21), it provides no check of the sound velocity equation 88 for this 
case. Consequently it is of interest to compare equation 88 with an equa-

TABLE 2 

Values of the free volume for various liquids (SO) 

Sub
stance. . 

( 

°C. 

0 
10 
20 
30 
40 
50 

Acetone 

OO 
OO 

Z 
O 

a H 
O < 
a o 
fc or 

CC. 

0.45 

0.64 

OO 

Z 
O 

S H o < 
M B 
b or 
s , S 

CC. 

0.54 

0.63 

Ether 

OO 
OO 

g 
O 

as 
O < 
BS P 
b. GT 

CC. 

0.48 
0.57 
0.70 
0.90 

OO 

Z 
O as o S 

a P 
B. a 
s ,H 

CC. 

0.47 
0.55 
0.65 
0.79 

Chloroform 

OO 
OO 

O as 
O < 
a p 
e* or 
- , H 

CC. 

0.21 
0.24 
0.29 
0.34 
0.40 
0.48 

S* 
OO 

Z 
O 

as 
O 5 
a P 
fc or 
SsH 

CC. 

0.25 
0.29 
0.34 
0.40 
0.47 

Toluene 

OO 
CO 

O 

a S 
O < 
B P 
h or 
V1H 

CC. 

0.16 
0.19 
0.22 
0.26 
0.31 
0.36 

35 
O 

as 
O < 
K P 
fe O* 
ssH 

CC. 

0.16 
0.19 
0.22 
0.26 
0.31 
0.36 

Carbon 
tetrachloride 

OO 

Z 
O 

a s 
O < 
K P 

h cr 

£ H 

CC. 

0.16 
0.24 
0.28 
0.33 
0.38 
0.45 

*4> 
OO 

Z 
O 

SS 
S P 
e« c 
s , H 

CC. 

0.21 
0.26 
0.31 
0.37 
0.43 
0.50 

Carbon 
disulfide 

OO 
OO 

Z 
O 

as 
O < 
« o 
fe cr 

s ,H 

CC. 

0.23 
0.26 
0.30 
0.36 
0.39 
0.47 

*̂ 
OO 

O 

as 
O < 
K P 
fc Cf 
CC. 

0.45 
0.52 
0.58 
0.66 
0.75 
0.84 

tion for the free volume of mercury which is known to be consistent with its 
thermodynamic properties. The simplest model which might be employed 
is to assume that the Einstein characteristic temperature is the same for 
the liquid as for the solid phase. Application of equation 78 should then 
lead to approximate values for V/. A better value of the characteristic 
temperature of the liquid may be obtained by choosing it so as to fit the 
observed entropy of fusion (36). Further, since the observed values for 
the specific heat at constant volume for mercury fall below the classical 
value for a harmonic oscillator as the temperature is raised, the expression 
for the free volume must be modified to take account of this effect. An 
expression for V1 consistent with these requirements is 
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Here © is the characteristic temperature of the liquid and V0 is identified 
as the volume of the liquid at the melting point. The form of the potential 
function corresponding to equation 95 is shown in figure 9, and values for 
V/ computed from equation 95 are compared with those obtained from the 
sound velocity equation in table 3. The general agreement is of particular 

-.30 -.20 -.10 0 JO 20 .30 
Displacement in Angstroms-+--

FIG. 9. Potential-energy function for displacements of a mercury atom from its 
equilibrium position (37). 

TABLE 3 
Free volumes for liquid mercury at different temperatures and pressures 

t 

'C. 

-39 
0 

100 
200 
300 
357 

0 
0 
0 
0 
0 
0 
0 
0 

P 

atmospheres 

1000 
2000 
3000 
4000 
5000 
6000 
7000 

V/ FBOlI EQUATION 88 

CC. 

0.0120 
0.0220 

0.0120 
0.0117 
0.0114 
0.0111 
0.0107 
0.0104 
0.0101 
0.0098 

V / FEOM EQUATION 95 

«. 
0.0081 
0.0120 
0.0256 
0.0434 
0.0718 
0.0904 
0.0120 
0.0116 
0.0114 
0.0111 
0.0109 
0.0107 
0.0105 
0.0103 

interest, since the free volumes are of a different order of magnitude than 
those of the non-metallic liquids discussed above. 

VI. THE VISCOSITY OF LIQUIDS 

Since means are now available for estimating the free volume, it is 
possible to apply equation 79 to the problem of the viscosity of liquids. 
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The equation may be rewritten in the form, 

r, = (hN/V)(2irm*kTZh2Y1V/3 exp(AEvie/RT) exp(-AS'/R) (96) 

where Ai?' will be some fraction of the energy of vaporization. This fol
lows from the assumption that the energy of activation for viscous flow is 
due chiefly to the extra volume required by the activated complex, since 
the energy of formation of a hole of molecular size is equal to the energy 
of vaporization. The hole required for the flow process to take place will 
not, in general, be as large as a cavity of molecular dimensions, since this 
would be unnaturally extravagant of free energy. The bimolecular mech
anism illustrated in figure 5, for example, would require a cavity of about 
one-third the size of a molecule. The situation is somewhat different when 
each molecule forms directed bonds (e.g., hydrogen bonds) with its neigh
bors, and these cases will be discussed later. 

For those cases where (dAEvap/dV)r may be taken equal to AEVS.P/V, 
and where the external pressure may be neglected in comparison to AEnp/V, 
equation 84 reduces to 

V1/3 = 2RTVll3/AEvap (97) 

If, further, AE^ is written as AEy&p/n, then equation 96 may be written 

r, = 7.71 X KT4(M1/2!T2/7F2/3A.ETCP) exp(AEvap/nRT) exp(-AS'/R) (98) 

where AEV„P is in calories per mole.7 Equation 98 has been tested by Ewell 
and Eyring (16) in the following manner: The n appearing in the exponen
tial of equation 98 was chosen to give the correct temperature coefficient 
of viscosity by computing values for r\ neglecting the entropy of activation. 
The computed values of the viscosity are then plotted as In 77 against 1/T. 
The value of n which gives a plot parallel to the straight line of the ob
served viscosities is taken as the value of n which gives the correct tem
perature coefficient. The calculations were carried out for most of the 
liquids for which reliable values of the viscosities and the heats of vaporiza
tion are known over a temperature range. The results to the nearest half 
integer are given in table 4. As examples, table 5 shows the calculations 
for carbon tetrachloride, and figure 10 shows the plots for carbon tetra
chloride, nitrogen, hexane, and chloroform. Computations similar to those 

7 The coefficient 7.71 X 10~4 given in equation 98 is smaller by a factor equal to 
y/2 than the coefficient given by Ewell and Eyring (16). This is because Ewell and 
Eyring assumed a unimolecular mechanism, while a bimolecular mechanism is as
sumed in equation 98. It is difficult to choose between the unimolecular and bi
molecular mechanism from the viscosity data alone, but when this is taken in con
junction with diffusion data, the unimolecular mechanism seems the more likely, as 
we shall see. 
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given in table 5 and plots similar to those in figure 10 were made for all 
the liquids listed in table 4. 

Inspection of table 5 reveals the fact that there seems to be some correla
tion between the symmetry and polarity of the molecule and the value of 
n required to give the correct temperature coefficient of viscosity. Thus, 
all the liquids with a value of n equal to 3 are non-polar,8 and many of 
them are spherically symmetrical. This is certainly true of carbon tetra
chloride, methane, and argon and is approximately true of nitrogen and 
carbon monoxide when the kinetic theory shell is considered. The liquids 

TABLE 4 

Values of n for different substances 

Carbon tetrachloride, benzene, cyolohexane, methane, nitrogen, 
carbon monoxide, argon 

Dichloroethane, dibromoethane, oxygen 

Pentane, hexane, heptane, carbon disulfide, chloroform, toluene, 
ether, ethyl acetate, acetone, ethyl iodide, ethyl bromide, methyl 
iodide, ethylene 

TABLE 5 

Computation of viscosity of carbon tetrachloride 

t 

•c. 
0 

20 
40 
60 
80 

T 

ec. per mole 

94.3 
96.6 
99.0 

101.6 
104.4 

AiJ vap 

kg.-cal. per 
mole 

7.56 
7.30 
7.06 
6.81 
6.56 

![(OBSERVED) 

millipoises 

13.47 
9.69 
7.38 
5.84 
4.68 

!((CALCULATED) + l;(OBSEHVED) 

n - 2 

30.7 
24.0 
19.7 
16.4 
14.2 

n - 3 

2.12 
2.11 
2.07 
2.06 
2.08 

n = 4 

0.95 
1.04 
1.13 
1.24 
1.36 

with values of n greater than 3 are not spherically symmetrical and most 
of them are polar. If the molecule is not symmetrical and makes a better 
bond with one neighbor than with the others, it will be able to preserve 
this bond in the activated state, so that the energy of activation will tend 
to fall below the normal value for symmetrical molecules. On the other 
hand, if a molecule forms strong directional bonds with a number of 
nearest neighbors, the energy of activation will tend to be above the normal 
value. Molecules with a single large dipole, such as ethyl iodide, ethyl 

8 Carbon monoxide has a small dipole moment of the order of 0.15 Debye unit. 

n = 3 

n = 3.5 

n = 4 
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bromide, and acetone, are examples falling in the first category, while water 
(to be discussed later) exemplifies the second. 

-"nitrooen 

n i i — r 
/ ^ L chloroform 

T T 

L L i tf Z$ '30 31 SZ SS Sf 35 3£ 37 ZS Z3 30 31 3Z 33 3+ 36T 36 37 
+ .»« 

F I G . 10. Plots of log T; versus \/T for observed and calculated viscosities, using 
integral values of n in equation 98 (from Ewell and Eyring (16)). Ordinates are 

log i] in millipoises; abscissas are — X 104. 

For the rolling mechanism indicated in figure 5, the ratio of the size of 
the hole required to the molecular volume will vary with the liquid struc-



THEORY OF ABSOLUTE REACTION RATES 335 

ture, which in turn will depend on the shape of the molecules. Experi
ments seem to indicate that for the long cylinders, such as the paraffins, 
this ratio is smaller (about 1:4) than for spherical molecules, where the 
ratio is about 1:3. A different value for n is to be anticipated for molecules 
with shapes which preclude the above mechanism. Large flat molecules 
of the anthracene type will presumably provide such examples. 

TABLE 6 
Comparison of values of n with AE,.V/B 

CCU 
C«H« 
CeHu (oyolohexane) 
CH, 
A 
N2 

CO 

O2 

C2HiCl2 

C2HjBr2 

CsH12 (pentane).... 
CjH14 (hexane) 
CHCl, 

C2H6I 
C2H6Br 
CS2 

CSHBCHJ 
(C2H6)20 
CH3COCH, 
C2H< 

JB 

kg.-ctU. per mole 

2.50 
2.54 
2.89 
0.72 
0.52 
0.45 
0.47 

0.40 
2.27 
2.59 

1.58 
1.72 
1.76 

1.72 
1.59 
1.28 
2.12 
1.61 
1.66 
0.79 

AEvap AT 
BOILINQ POINT 

kg.-cal. per mole 

6.60 
6.66 
6.70 
1.82 
1.42 
1.21 
1.31 

1.47 
6.93 
7.89 

5.51 
6.22 
6.63 

6.40 
6.08 
5.92 
7.24 
5.70 
6.40 
3.50 

Ai?yap 
B 

2.7 
2.6 
2.3 
2.5 
2.8 
2.7 
2.8 

3.7 
3.1 
3.0 

3.5 
3.6 
3.8 

3.7 
3.8 
4.6 
3.4 
3.5 
3.9 
4.4 

n 

3 
3 
3 
3 
3 
3 
3 

3.5 
3.5 
3.5 

4 
4 
4 

4 
4 
4 
4 
4 
4 
4 

Inspection of figure 10 shows that the plots of the logarithms of the 
viscosity against the reciprocal of the temperature are straight lines for 
both the calculated and the observed curves. This means that they can 
be fitted with an equation of the form 

V = A exp (B/BT) (99) 

Here A is an entropy-dependent factor, and B is an energy factor. 
Then B will be the experimentally determined quantity, R d In ?7/d(l/T). 

Because this can be taken as a constant for most liquids throughout their 
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normal liquid range, it can be considered to be an average activation 
energy for viscous flow. Since AI?Vap varies only slowly with temperature, 
the ratio AEvap/B should be approximately equal to 3 or 4 anywhere in 
the temperature range where B is a constant. Table 6 gives a comparison 
of values of n, as determined by the method given above, with AEyap/B, 
where AEvap is taken at the normal boiling point for all the liquids in the 
table. Inspection of table 6 shows that there is a correlation between the 
values of n and the ratio AEVB.P/B, so that this ratio may be taken as a 
rough measure of n. 

A correlation between B and A£via having been established, it is of 
interest to examine further approximate values of n for quite unsymmetrical 
molecules, cases for which complete data for applying equation 98 are not 
available. Table 7 shows values of AEV!>P/B for the normal paraffin hydro-

TABLE 7 

Values of AEv^/B for normal paraffin hydrocarbons 

HYDROCARBON 

B-CsHl2, 
Ti-CeHi4. 
71-C7H16. 
Jl-CeHi8. 
71-C9H20. 
n-Ci CiH22 

Ji-CnH24. 
71-Ci4H3O 
n-Ci6H84. 
M-CiSH38 

0C. 

0-b.p. 
0-b.p. 
0-b.p. 
0-b.p. 
0-40 
0-30 
0-30 
20-40 
20-40 
40-60 

B 

kg.'cal per mole 
58 
73 

.91 
14 
44 
.60 
.06 
.60 
.01 

4.15 

AEy 

kg.-cal per mole 
5.71 
6.96 
8.11 
9.21 

10.21 
11.11 
11.96 
14.21 
15.51 
16.76 

AEy&p/B 

4.0 

carbons (16). This ratio is seen to be about 4 for all these molecules. 
Part of the increase in the ratio with increasing molecular weight is due 
to the fact that the comparison is made at 250C. rather than at correspond
ing temperatures, such as their boiling points. Here, again, the energy 
of activation for viscous flow is seen to be about one-fourth the energy of 
vaporization. This result for long-chain molecules is consistent with the 
mechanism illustrated in figure 5, if the circles in figure 5 illustrate cylin
ders rolling over each other as viewed along their axes. A pile of logs 
might be expected to roll over each other by an analogous mechanism. 

A. The entropy of activation for viscous flow 

Inspection of figure 10 will reveal that the plots of the observed viscosity 
and the parallel ones which were calculated neglecting AS' do not coincide. 
The calculated values are greater by an average factor of about 2, when 
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the value of n giving the right temperature coefficient is used and the en
tropy of activation is neglected. The following are the factors by which 
the viscosities calculated, neglecting the factor (— AS'/R), are too high: 
carbon tetrachloride, 2.5; benzene, 2.5; cyclohexane, 1.5; methane, 2.5; 
argon, 1.6; nitrogen, 1.7; carbon monoxide, 1.8; pentane, 1.2; hexane, 1.2; 
heptane, 1.4; carbon disulfide, 1.3; ether, 1.4; ethyl acetate, 1.5; toluene, 
2.5; acetone, 1.6. 

If all the other terms in the equation are correctly evaluated, these 
factors indicate a value of AS' of the order of one entropy unit. That the 
activated configuration should have a greater entropy than the normal 
one is a reasonable result. Indeed, it would be surprising if AS' were 
exactly zero, and it is an interesting fact that it is almost equal for such a 
wide variety of substances. 

A number of the approximations that have been made in order to apply 
equation 98 may be responsible for part of this factor which is interpreted 
as AS'. The expression 97 for Y)3 may not be just equal to what one 
would obtain by an exact integration over potential energy if such an in
tegration could be carried out. K may not be unity for the flow process, 
and a value smaller than unity would lead to greater calculated entropies 
of activation. The identification of X and Xi may not be justified in all 
cases. 

We now consider in greater detail the methods available for estimating 
the energy of activation. Various thermodynamic processes may be used 
to estimate the energy of forming a hole. How exact an estimate they 
provide of the energy of activation for viscous flow depends on how nearly 
the thermodynamic process approximates the formation of the hole in the 
flow process. The energy of vaporization measures exactly the cost in 
energy of a hole into which a molecule fitted if all the other molecules re
mained exactly as they were before the molecule was removed. However, the 
molecules surrounding such a hole will tend to decrease this free energy 
somewhat by reorienting. This effect has been considered in detail by 
Kirkwood (39). 

The thermodynamic quantity (dE/dV)T measures the energy required 
for a uniform expansion of the liquid. This function, multiplied by the 
extra volume required by the activated complex, gives the energy of acti
vation for viscous flow if the uniform volume expansion takes place in just 
the same way as the process of forming a hole required for viscous flow. For 
the liquids considered in the previous section the two methods of estimat
ing AEvu give the same results, and as V(dE/d V) T and AEve.v have essen
tially the same magnitude and temperature dependence at atmospheric 
pressure. However, at the high pressures considered in the next section, 
the two quantities are quite different. Figure 11 illustrates the fact that 
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the pressure at which — AEvap is a maximum is the point at which (8E/dV) T 

equals zero. Hence, if A7 is the extra volume required for the flow process, 
the heat of activation in the two cases will be 

Affvi, = AEystp/n + PAV (100) 

and 

A#v i . = (dE/dV)TAV + PAV (101) 

depending on which process most nearly approximates the process of form
ing the cavity for flow. Both equation 100 and equation 101 have been 
applied to data at high pressures. 

73 

6.8 

T 

UJ 

•'"O 2000 4000 6000 8000 10000 

Pressure in Ka. cm:2 -» 

FIG. 11. The energy of vaporization of n-pentane at 3O0C. as a function of the 
external pressure. 

B. The effect of pressure on viscosity 

The application of external pressure has the greatest effect on the rate 
of those reactions in condensed phases which have the greatest increase 
in volume resulting from the formation of the activated complex from the 
reactants. Since the free-energy difference between the normal and acti
vated states for viscous flow in normal liquids results almost entirely from 
this increase in volume, it is not surprising that viscosity has a greater 
variation with pressure than any other property of pure liquids which has 
been studied. 

In order to test equation 101, AF is identified with V/n, where n is the 
value required to give the correct temperature coefficient of viscosity. 

t I 1 1 L 
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This is equivalent to assuming that there is a linear relation between the 
size of the hole and the energy required to form it, and thus an n equal to 
3 means that a cavity just one-third the size of the molecule is required. 

80 90 100 
molal vo/ume cc/mo/e 

IZO 

F I G . 12. Plots of internal pressure versus molal volume for ether and n-pentane 
(16). The circles are values computed from equation 102, using Bridgman's data for 
viscosity under pressure (6). The triangles and squares are values computed from 
the thermodynamic equation Pi = (BEfBV)T = T(dP/dT)r — P, using Bridgman's 
newer (1931) and older (1914) compression data , respectively (6). 

If, following Hildebrand (28), we designate (dE/dV)T as P< (the internal 
pressure), we have from equations 79, 84, and 101 

T7 = 7.71 X W^[M1'2 T213ZV^(Pt + P)] 

exp[(P< + P)V/nRT] exp(-AS'/R) (102) 

Equation 102 may be most readily tested by making P,- the unknown 
and using observed values of viscosity to compute internal pressures for 
comparison with those obtained directly from P-V-T data. Figure 12 
illustrates the application of this method, using Bridgman's data (6). 

Equation 102 fails when applied to certain other liquids, notably mer
cury, and a viscosity-pressure equation based on equation 100 has proven 
to be more generally useful. This equation, giving the heat of activation 
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for viscous flow in terms of the energy of vaporization and the work against 
the external pressure, has been tested by Frisch, Eyring, and Kincaid (25). 
The expression employed for AHvit is 

AtfvU = AEnp/n + PY/n' (103) 

Here AEVW is the energy of vaporization at the particular pressure consid
ered, and V/n' is the extra volume required for viscous flow. It is found 
that n' does not have the same value as n, being somewhat greater. 

3O JoSo m> Jem looo Tiooo IiM 
Pressure in Kg. a i r 1 

FIG. 13. Observed viscosities of ether (solid curve) as a function of pressure com
pared with calculated values (circles) computed on the internal pressure hypothesis 
(equation 102). 

If the sound velocity method of getting the free volume is used, the 
equation giving the viscosity incorporating equation 103 may be written 

V = (yrRMTft{ua/ui)N~l'tVJtn exp(AEmp/nRT + PV/n'RT) (104) 

Here U9 is the velocity of sound in the gas, Ui is the same quantity for the 
liquid, and the other quantities have been defined. The procedure em
ployed in testing equation 104 was to use the experimental viscosity, the 
energy of vaporization, the sound velocity in both the liquid and the gas, 
and the other terms on the right-hand side of equation 104 to determine 
the n giving the proper temperature variation of viscosity at atmospheric 
pressure. The values of n obtained in this way, given in table 8, are then 
employed in equation 104 in order to obtain values of n' at a given tempera
ture and different pressures. A summary of the results for n' is given in 
table 9. 
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The values of n given in column three of table 7 are slightly different 
from those of Ewell and Eyring, because a different evaluation of the free 
volume has been used. Column six of table 8 shows that the value of n 
which gives the right temperature coefficient of viscosity also gives the ab
solute value to within an average value of 2 for liquids other than those 
classed as "hydrogen-bonded." 

The individual computations of n' are shown in table 9. The treatments 
possible for benzene and for isopentane warrant giving only one value for 

TABLE 8 
Values of n which give the proper temperature variation of viscosity at atmospheric 

pressure (25) 

SUBSTANCE 

7i-Pentane.. 
Ethyl ether 
Benzene.... 
Isopentane. 
Mercury 

TABLE 9 

Values of n' as computed from the data at various pressures 

F B E S S U B B 

kg. per cm.2 

1,000 
2,000 
4,000 
6,000 
8,000 

10,000 
12,000 

n - P E N T A N E 
AT 30°C. 

6.0 
6.9 
8.5 
9.7 

10.4 
10.8 

DIETHYL 
E T H E R AT 

52.5°C. 

4.7 
6.0 
6.8 
7.2 
7.6 
7.9 

B E N Z E N E 

AT 25°C. 

5.5 

ISOPENTANE 
AT 60°C. 

8 

MEBCUBT 
AT O 0 C . 

25.0 
23.0 
21.2 

TVATEB AT 0 ° C . 

124 
14 
8.0 

(5000)7.2 

n'. I t will be noted that n' for n-pentane, ether, and mercury does not 
vary greatly over the entire experimental pressure range, but that n' 
for water ranges from 124 at 1000 kg. per cm.2 to 7.2 at 5000 kg. per cm.2 

This variation is interpreted as follows: At low pressures water has an 
open, 4-coordinated structure (3), and no extra volume is required for the 
activated complex for flow to form. As the pressure is increased, the 
open structure collapses, and at high pressures the activated complex needs 
as much extra space to form as is required by any other non-spherical 

(Ewell and 
Eyring (16)) 

20 

n 
(Frisch, 

Eyring, and 
Kincaid (25)) 

4.4 
4.5 
3.3 
4.4 

11 

Tl' 
MEAN VALUE 

7.8 
7.8 
5.5 
8 

23 

n'/n 
(Frisch, 

Eyring, and 
(Kincaid (25)) 

1.8 
1.6 
1.7 
1.8 
2.1 

T; (OBSERVED) 

IJ (COMPUTED) 

1.1 
1.9 
0.6 
1.9 
2.8 
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molecule. I t is probably incorrect to assume that n is constant for these 
liquids at one temperature and varying pressures, but the value of n' is 
not greatly affected by a considerable change in n. Table 10 illustrates 
that the n' values computed for water using different n's converge to about 
the same limit at high pressures. 

The fifth column of table 8 gives the ratio of the mean value of n' over 
the pressure range to the value of n. The fact that this ratio is nearly 
constant and equal to 1.6 to 1.8 for the four non-metallic liquids in table 8 
is of some significance. It has been previously shown that the energy 
required to form a hole in a liquid the size of a molecule is equal to the 
energy of vaporization. Although it might be reasonable to assume a 
linear relationship between the size of the hole formed and the energy re
quired to form it, the fact that the ratio n'/n is not unity but 1.75 indicates 
that this may not be the case. Taking the data for ether as an example, 

TABLE 10 

Values of n' for water for different values of n at 0°C. (,BS) 

P 

kg. per em.1 

1000 
2000 
3000 
4000 
5000 

n-=2 

32 
19 
14 
10.6 

VALUES OF n' 

n = 4 

16.1 
16 
11 
8.8 
7.7 

n-5.4 

124 
14 
9.7 
8.0 
7.2 

we find an n' of 7, indicating that a hole approximately one-seventh the 
size of the molecule is required for viscous flow. However, the activation 
energy is two-ninths of the energy of vaporization. We accordingly have 
the interesting physical result that there is an energy of dissociation of 
large holes into smaller ones, i.e., two holes, each one-seventh the size of a 
molecule, cost considerably more energy than one hole two-sevenths mo
lecular size. In the case of ether, seven holes, each one-seventh the size 
of a molecule, would liberate energy equal to fourteen-ninths of the energy 
of vaporization, on being combined into a single cavity of molecular 
dimensions. 

The ratio n'/n for mercury does not differ greatly from that for the non-
metallic liquids in table 8, but n and n' are themselves much greater. 
That the ratio of n' to n is again approximately 2 for a hole as small as 
one twenty-third the size of the atom is an interesting fact. 

Figure 14 shows plots of observed and computed viscosities as a function 
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of pressure for ether, mercury, and n-pentane, with constant values of n 
and n' in equation 104. The agreement, while perhaps not as satisfactory 
as might be hoped for, is probably as good as can be expected. 

It is clear that additional evidence is desirable before choosing between 
the two methods outlined above for treating the pressure variation of 
viscosity. The essential requirement is a simple, accurate method for 
securing the free energy of formation of a cavity in the liquid at any given 
temperature and pressure, and an entirely adequate treatment of viscosity 

0O WOO 6p00„ 8,00Oz 10000 IZ1OOO 
Pressure /n Ko. cm 

FIG. 14. Comparison of observed viscosities and those computed from equation 
104. The values of n are 4.5, 12, and 4.4, and those of n' are 8, 23, and 10 for ether, 
mercury, and pentane, respectively. 

under pressure cannot be given until this is available. The recent work of 
Kirkwood (39) may prove of value in this connection. 

VII. APPLICATION TO VARIOUS CLASSES OF LIQUIDS 

A. A classification of types of liquids 

From the point of view of viscous behavior and of many other properties 
as well, Ewell (14) has given a classification of liquids which is essentially 
the same as that given below. 

I. Those in which the forces between molecules are almost exclusively 
undirected:—(a) Relatively small molecules: e.g., carbon tetrachloride, 
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chlorine, argon, benzene, (b) Very long chain molecules: e.g., linear poly
meric resins, such as polystyrene, polyisobutylene; very long chain hydro
carbons, such as some lubricating oils; selenium and /u-sulfur; raw rubber. 

II. Those in which the cohesive forces are directed in part:—(a) Mole
cules containing dipoles: e.g., those with a single strong dipole making 
possible a weak association into pairs, e.g., ethyl chloride, ethyl bromide, 
acetone; those with two or more strong dipoles making possible a two- or 
three-dimensional network of dipole bonds, e.g., 1,5-dichloropentane, 
p-dinitrobenzene. (b) Molecules capable of forming hydrogen bonds,— 
e.g., water, phenol; in general, any liquid whose molecules have OH or NH 
groups, (c) Molecules capable of forming intermolecular covalent bonds, 
e.g., silicon dioxide, germanium dioxide, boron trioxide, beryllium fluoride, 
and all silicate, borate, and phosphate liquids which are not too basic. 

III. Metallic liquids: molten metals.9 

IV. Ionic liquids: molten salts.9 

The applications of the theory thus far have been confined to examples 
chosen from types 1(a), 1(b), and 11(a),—the so-called normal liquids. 
Although these are the ones to which the theory may be most easily applied, 
liquids of more complex structure may also be treated qualitatively, and a 
discussion of the applications to ^-sulfur and water will comprise the next 
two sections. 

B. The viscosity of sulfur 

As is well known, liquid sulfur is a fluid yellow liquid between the 
melting point and about 1600C. and also in the supercooled liquid region 
below the melting point. Above 16O0C. the viscosity increases rapidly, 
increasing several thousandfold between 160° and 19O0C, and thereafter 
the viscosity decreases in a normal way. Figure 15 shows the data of 
Rotinjanz (54) plotted as In t\ against 1/T. Rotinjanz's data show that 
between 160° and 25O0C. the viscosity of sulfur is a function of the time 
as well as the temperature, and the values given in that range are only 
rough averages and probably not equilibrium values. 

It is seen that the plot has two linear portions, below 160° and 25O0C, 
for which B is 7.04 and 18.35 kg.-cal. per mole, respectively. In the region 
below 1600C, x-ray evidence (66) indicates that the molecule is a puckered 
Ss ring, and by comparing this structure with cyclohexane, it seems likely 
that n would be 3 for this type of molecule. The heats of vaporization of 
sulfur have been accurately measured by West and Menzies (67). Their 
value of A2?vap at 12O0C (the middle of this linear part of the plot) is 2.59 
kg.-cal. per gram-atom or 20.7 kg.-cal. per mole of Ss. This is very nearly 

9 Groups III and IV are really subdivisions of Group I, but are classified separately 
for obvious reasons. 
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three times 7.04, the value of B in this range, and this may be considered 
as further evidence toward confirming the S8 molecule in the liquid in 
this range. 

In the range above 25O0C. the much larger slope of the curve indicates 
that the molecule is much larger than it is below 160°C. This larger sulfur 
molecule might be either a large ring, a branched chain, or a long straight 
chain, of which the latter seems most likely to be the correct structure. 
By analogy with the straight-chain hydrocarbons, n should be 4 for this 
type of molecule, and this would indicate a value of AEvt,p of 4 X 18.35 = 
73.4 kg.-cal. per mole on our hypothesis. West and Menzies give 2.05 
kg.-cal. per gram-atom for A#vap at 350°C. (the middle of this linear part 

^ y f -w Ul IQO', V° "C 

" 7 ^ W S KS ~77T 30 

FIG. 15. Plot of log it versus 1/T for liquid sulfur from the data of Rotinjanz (16, 54) 

of the curve) and, comparing this with the value deduced above, the 
molecular weight of the unit of flow is calculated to be S3e • In contrast 
to such a molecular weight of the unit of flow, the unit of vaporization is 
still Sg, as shown by vapor density data (16). 

This figure of 36 can be interpreted as an average chain length averaged 
over all the molecules in the liquid and averaged over the whole tempera
ture range from 250° to 4500C. The alternative is that, although the 
chains may be longer, they flow in segments, the approximate number of 
atoms in the units of flow being 36. These segments, although tied to
gether, jump as units. At any temperature there is probably an equi
librium mixture of chains of varying length, and, as the temperature is 



346 J. F. KINCAID, H. EYBING AND A. E. STEARN 

raised, the average chain length will become smaller as the equilibrium 
constant changes. The linear relation between In y and 1/T is not a 
sufficient condition for an unchanging molecular state in a liquid. Normal 
liquids composed of a single molecular species almost without exception 
give linear In rj versus 1/T plots. However, a liquid composed of an equi
librium mixture of several molecular species might also give a linear plot, 
since the equilibrium constant changes according to van't Hoff s equation, 
which is of the same form of temperature dependence as is the viscosity 
of a liquid. 

The hypothesis had been advanced by Warren and Burwell (66) that 
the increase in viscosity above 16O0C. is "probably due to the Sg ring 
breaking open and forming irregular chains which tangle with one another 
and give rise to the marked increase in viscosity". These results give a 
more concrete form to this idea of long chains and obviate the necessity of 
postulating the indefinite concept of tangling of chains, since any liquid 
composed of chains averaging 36 atoms in length or more, e.g., a hydro
carbon, will be a very viscous liquid. The fact that liquid sulfur is not a 
normal close-packed liquid is shown by the work of Gingrich (26), who 
found that the liquid had about two nearest neighbors at the normal 
covalent bond distance, whereas liquid sodium or mercury has about eight 
nearest neighbors. This fact indicates that the molecule in the liquid sulfur 
is either a chain or a ring. 

C. The viscosity of water and other associated liquids 

Liquids belonging to Group 11(6) of the above classification are ordinarily 
called abnormal or associated liquids. Among other anomalies these 
liquids, composed of molecules containing OH or NH groups, have much 
higher viscosities than would be expected from the size and structure of the 
molecules. For instance, water is much more viscous than hydrogen 
sulfide or methane; ethyl alcohol and ethylamine are much more viscous 
than propane; aniline and phenol are more viscous than toluene; etc. 
This abnormally large viscosity is due to the hydrogen-bond structure of 
these liquids. According to present concepts,3 for instance, each oxygen 
atom in the water molecule in ice is surrounded by four hydrogen atoms at 
approximately tetrahedral angles. Two of these four hydrogen atoms are 
bound to the central oxygen atom by primary valence forces and are a 
distance of 1.0 A. away. The other two are "hydrogen bonded" at a dis
tance of 1.8 A. Ice at low temperatures has its maximum coordination of 4, 
i.e., there are four hydrogen bonds binding the water molecule to its 
neighbors, two through the oxygen and one for each hydrogen atom in the 
water molecule. Water at the melting point at 1 atmosphere pressure is 
still coordinated to some extent, but the degree of coordination is probably 
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somewhat below the maximum value of 4. Further, the degree of coordi
nation10 will probably change with the temperature and pressure. Other 
liquids containing OH and NH groups are likewise thought to possess 
hydrogen-bonded structures to some extent. When viscous flow takes 
place in these liquids, not only must van der Waals' cohesion be overcome, 
but hydrogen bonds must be broken as well. Table 11 shows that In rj 
versus \/T is not a straight line for water but that B decreases rapidly as 
the temperature is raised and, further, that the ratio AEVBP/B increases 
with the temperature. Ewell and Eyring (16) have interpreted the rapid 
decrease of rj and B with rising temperature as due to a decrease in the 
number of hydrogen bonds that have to be broken for the flow process to 
take place. This conclusion is consistent with the observation (41, 65) 
that D2O is about 25 per cent more viscous than H2O. Since it requires 
more energy to break the deuterium bond than the hydrogen bond, and 

TABLE 11 

The energy of activation for viscous flow of water 

t 

'C. 

O 
50 

100 
150 

i 

millipoieea 

17.95 
5.49 
2.84 
1.84 

B 

kg.-cal. per mole 

5.06 
3.42 
2.80 
2.11 

A^vap 

kg.'cal. per mole 

10.18 
9.62 
8.98 
8.28 

A£T»p/B 

2.0 
2.8 
3.2 
3.9 

since this term occurs as as exponential in the viscosity formula, it is not 
surprising to find so great a difference. 

Similar considerations apply to other associated liquids. Since the 
maximum possible average coordination is equal to twice the number of 
OH or NH groups in the molecule, monohydric alcohols have a maximum 
coordination of 2, and the fact that ethyl alcohol and water have about 
the same viscosity indicates that ethyl alcohol probably possesses a large 
fraction of its maximum 2-codrdination. 

Ethylene glycol has a maximum average coordination of 4, the same as 
water, and the fact that glycol is about twenty times as viscous as water 
or as alcohol indicates that the degree of coordination is much higher in 
glycol than in water or alcohol. This is probably due to the fact that the 
two OH groups are separated in glycol, giving less interference between 
the hydrogen bonds attached to the two groups. Similarly, glycerol has 
a maximum coordination of 6, so that as little as half of the maximum 

10 The degree of coordination is used here only in the sense of the average number 
of hydrogen bonds per molecule. 
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coordination will permit a three-dimensional network of hydrogen bonds, 
giving rise to the high viscosity of glycerol. Quantitative work along the 
lines suggested qualitatively in this section should throw light on the 
question of the contributions to the cohesive energy of liquids made by 
van der Waals, dipole, and hydrogen-bond forces. 

D. The viscosity of liquid metals 

Most metals give linear In i) versus l/T plots, just as normal covalent 
liquids do. The most striking fact regarding the metals is the large value 
of the A^vap/B ratio, which ranges from 8 to 25, as compared to 3 or 4 
for normal liquids. This low activation energy for flow is consistent with 
the conclusion that the unit involved in flow is much smaller than the 

TABLE 12 

The energy of activation for viscous flow in liquid metals 

UETAL 

Na 
K 
Ag 
Zn 
Cd 

Hg { 
Ga 

Sn I 
Pb 

MIDPOINT OF 
TEMPERATURE 

RAHOE 

'C. 

500 
480 

1400 
850 
750 
250 
600 
800 
600 

1000 
700 

A£yap 

kg.-cal. per mole 

23.4 
19.0 
60.7 
26.5 
22.5 
13.6 
12.3 
34.1 
15.3 
14.5 
42.6 

B 

kg.-cal. per mole 

1.45 
1.13 
4.82 
3.09 
1.65 
0.65 
0.55 
1.13 
1.44 
1.70 
2.80 

AxVvap 

~TT~ 

16.1 
16.7 
12.5 
8.6 

13.5 
20.8 
22.2 
30.3 
10.6 
8.6 

15.9 

A£y»p „ / r ion Y 
B \ r a tom/ 

2.5 
3.4 
3.8 
2.1 
4.0 
2.4 
2.5 
2.5 
4.1 
3.3 
5.0 

unit of vaporization. The unit of vaporization being the atom, the unit 
involved in flow is presumably the much smaller metal ion, i.e., the atom 
partially or completely stripped of its valence electron or electrons. 

On this assumption an approximate value for the energy of activation 
is given by 

R _ AJSvap v volume of ion 
n volume of atom 

where n has its usual value for normal liquids. 
Table 12 shows the experimental values of the quantity 

ABv 
B 

X 
volume of ion 

volume of atom 

(105) 

file:///ratom/
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using the ionic atomic radii given by Wyckoff (70) to determine the volumes 
of the ion and atom, respectively. When the temperature variation of the 
energy of vaporization was known, a value was taken arbitrarily in the 
middle of the range over which the viscosities were measured. For the 
polyvalent metals the following were assumed to be the flowing ions: 
Hg+, Sn++, Pb+ + . 

It is seen that the values of n given in column 6 cluster around the 
average value of about 3. While this result is interesting and suggestive, 
the situation is complicated by the nature of the bonding in metals. The 
theorem that the energy of forming a hole the size of a molecule equals the 
energy of vaporizing a molecule is only proved in the case where a bond 
between pairs is independent of the position of other atoms. It is by no 
means clear that such a theorem holds for a substance containing con
ducting electrons. 

As we have already seen, ordinary liquids at high pressures obey the 
inequality V(dE/d V) T < AEV^P . This same inequality holds for metals 
even at atmospheric pressure, so that B should perhaps be compared to 
V(BE/BV)T, rather than to &Eve.p . Because of the above inequality, 
such a comparison would reduce the value of n required to reproduce the 
temperature coefficient of viscosity. The data are, in general, not avail
able for such a comparison, but for mercury V(dE/dV)T/B equals 4.5. 
The qualitative concept of the metal ions moving short distances without 
their valence electrons is the counterpart of the theory of conducting 
electrons moving short distances without disturbing the ions. 

E. Mixture law for viscosity 

We give here the discussion of Powell, Roseveare, and Eyring (52). 
The viscosity of a mixture of liquids is not related to the viscosities of the 
pure components by any simple additive relation. Several equations have 
been tested in the search for an additive function for viscosity, among them 
being the following (c/. references 1, 4, 34, 35): 

Nm + N2^ (106) 

JV1^'2 + Nw\n (107) 

Nm" + N^ (108) 

JVi log ,O1 + N2 log <p2 (109) 

the weighting being done according to weight fraction, volume fraction, 
and mole fraction. There is also a wide variety of equations containing 
one or more adjustable constants. For example, an equation of the type 
of equation 108 has been used by petroleum engineers to estimate the 
viscosity of mixtures of lubricating oils: for high-viscosity paraffin base 

(p = 

1/2 _ 
<P = 

l o g <P 
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plus low-viscosity naphthene base, the exponent is 1/30; for the opposite 
case, the exponent is 1/3.1; for two oils of the same base, the exponent is 
1/6.5 (69). Such equations are convenient for interpolation purposes, 
but that they fit the experimental data is more a matter of arithmetical 
inevitability than of merit. Of the equations not containing an adjustable 
constant, equation 109 fits the experimental data rather better than the 
others. 

If the flow process were strictly determined by the properties of one 
molecule flowing, equation 106 would be expected to hold. If it were 
determined by the properties of two molecules flowing past each other, 
equation 107 would be expected to hold. However, it is probable that the 
cheapest way for a hole to be made is for the flowing molecule to squeeze 
against its neighbors, which in turn squeeze against their neighbors, until 
the over-all result is the expansion of the entire liquid. Thus the average 
thermodynamic properties of the entire liquid may be involved when any 
individual molecule flows. 

As a simple approximation, equation 76 may be used for mixtures if for V 
is inserted the actual value of the average molal volume, and for AF* is 
inserted the weighted arithmetical mean of the values for the pure com
ponents. Thus 

« = Wh 6XP RT ( U 0 ) 

When Vi and V% are not too different, equation 110 reduces to equation 109. 
As a test of equation 110, AF* has been plotted against mole fraction for 

a number of pairs of liquids. Three types of curves are obtained: 
(a) Closely similar liquids, e.g., benzene and anisole, give a straight line. 
(b) Liquids which definitely form a compound, e.g., chloroform and ether, 
give a convex curve, (c) Liquids which are slightly dissimilar give a 
slightly concave curve; liquids which are markedly dissimilar, e.g., benzene 
and alcohol, give a markedly concave curve. 

I t has been pointed out (15) that the deviations from a linear fluidity 
law are roughly parabolic and are symmetric about the 50 mole per cent 
line. The same behavior is noted in the deviations of AF* from a linear 
law. AH**, on the contrary, always shows larger deviations, which are 
usually not symmetrical and may even change sign. These large devia
tions shown by AH* tend to be counterbalanced by entropy changes. 

It was early remarked that non-aqueous liquid pairs showing a minimum 
in the viscosity curve also showed a negative deviation from Raoult's law, 
and those showing a maximum in the viscosity curve showed a positive 
deviation from Raoult's law (72). In order to formulate this quantita
tively, the deviations of AF* from a linear law (calories at 50 mole per cent) 
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were plotted against the deviations from Raoult's law (calories at 50 mole 
per cent) for systems for which partial pressure data are available or can 
be estimated. The curve resembles closely that in figure 6, in that the 
points tend to fall along a line drawn through the origin with a slope of 
1/2.45. The mixture law of equation 110 is therefore to be modified to read 

* = M e x p ( - [(AT1AFf + N2AFl) mn an) 
where AFB is the excess free energy of mixing (55, 56). 

Benzene. Phenol 

Composition 
FIG. 16. Plots of various fluidity-composition equations for binary liquid mixtures 

applied to the system benzene-phenol, compared with observed fluidity values shown 
by circles. 

The application of this mixture law is illustrated in figure 16, where the 
experimental values for the fluidity of the system benzene-phenol are 
plotted, together with curves calculated according to several different mix
ture laws. 

F. Relation of fluidity to volume 

Batschinski (2) has shown that, for a large number of liquids, there is a 
linear relationship between volume and fluidity. The data of Bridgman 
at high pressures (6), which show that, for non-associated liquids, the 
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temperature coefficient of fluidity at constant volume is insignificant com
pared to the temperature coefficient at constant pressure, indicate also 
that the fluidity of normal liquids under ordinary conditions is nearly a 
function of volume alone. Such linearity indicates that the theory of 
fluidity is fundamentally linked to the theory of liquid volume, and has led 
Powell, Roseveare, and Eyring (52) to the idea of a number of holes in 
the liquid which shows a variation approximately proportional to the 
volume change. 

Cernuchi and Eyring (7) have considered liquids as being made up of a 
binary mixture of molecules and holes having the same volume as mole
cules. Kirkwood (39) pointed out that the theory of holes leads to results 
incompatible with critical data when the holes are the same size as the 
molecules. The temperature and pressure coefficients of viscosity indicate 
that the volume of a hole necessary for flow is a small fraction of the size 
of a molecule (25). 

Powell, Roseveare, and Eyring (52) assumed that a liquid is a solution 
of holes and molecules and that the size of the holes is a characteristic of 
the material. The fusion of n molecules of a substance is the dissolving 
of Un holes such that the entropy of solution is two units, or 

AS = 2 = -nk In ( — £ — J - n » k In (—?*—^ (112) 
\n + nhJ \n + nh/ 

since the observed entropy of fusion is about two entropy units for a large 
number of monatomic substances (30). For one mole of substance n — N 
and then, from equation 112, nh = 0.54JV. The solution of 0.54 mole of 
holes in 1 mole of a substance gives the required disorder entropy to change 
a solid into a liquid. 

If the volume of a hole be taken as 1/h of the volume of a molecule, 
and vs and vt are the respective molecular volumes of the solid and liquid 
at the freezing point, then we have 

r HZi." = 0.54 (113) 
v. 

For a number of substances AV/V for fusion is approximately 0.1, making 
r about 5 or 6. Most metals have a value of r between 20 and 25. The 
result that a new equilibrium position has a volume about one-sixth that 
of the non-metal molecule and about one twenty-third the metal molecules 
is exactly the result found by Frisch, Kincaid, and Eyring (25) from the 
effect of pressure on viscosity. Thus this model relates quantitatively 
two otherwise apparently phenomena, i.e., melting and viscous flow. The 
experimental value of the volume of the solid in equation 113 has signifi
cance only if the short-range order of structure of the liquid is the same 



THEORY OF ABSOLUTE REACTION RATES 353 

as that of the solid. Water has a negative value of AV/V on melting, 
owing to a change in coordination number on melting. 

For substances to which equation 113 may be applied, Powell, Rose-
veare, and Eyring find that, at the melting point, their fluidity behavior is 
better described by the partition function for the solid state for the extra 
degree of freedom possessed by the normal molecule, than by the liquid 
partition function, obtained from the gas function modified by the intro
duction of free volume.11 

For temperature ranges extending not too far above the normal boiling 
points, they would write, in place of equation 96, 

, - ^ ^ ' e x p ( - A 2 W ) (114) 

In equation 114, Z is a numerical constant related to the coordination 
number; AE' is the energy of activation at constant volume12 (in place of 
that at constant pressure in equation 96); @, the Debye characteristic 
temperature, while not often known, can be estimated by the relation (40) 

e - A \M?*Y im 

where A is a numerical constant, Tm is the melting temperature, and M 
is the molecular weight. 

For many liquids the energy of activation for constant volume is very 
small, and when this is the case, there will be a temperature range in which 
the variation of the exponential term will compensate the 1/T factor, and 
there will result the frequently observed linear relation between tp and F i . 

When AE' is large, as in the case of the higher alcohols, this is no longer 
the case. In figure 17 is shown a plot of fluidity against volume for iso-
propyl alcohol for which AE' is large. Data of Bridgman at intermediate 
pressures permit the estimation of the heat of activation at constant 
volume, yielding a value of 3900 calories. The result of plotting <pT exp 
(3900/ T) against volume should be a straight line, which is shown to be 
the case in figure 17. 

As another test of equation 114, log <p is plotted against 1/T in figure 18 
for benzene. A number of such graphs may be found in the paper of 
Sheppard and Houck (58). The resulting curved line for benzene in 

11 Actually a combination of solid and gas partition functions is being investigated. 
This should approximate the function for the solid at the melting point for normal 
substances, and should approach the function for the gas at the critical temperature. 

12 The energy of activation at constant pressure may be thought of as principally 
that energy required to form the hold necessary for flow, while that at constant 
volume is merely the (usually) small energy required to activate the molecule for 
flow into a hole already present. 
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figure 18 is to be compared with the straight line which results from plotting 
log [<pT/(Vi — V1)] against l/T. In the case of many substances the data 
available are in a temperature range where both plots are straight lines. 

FIG. 17. Plots of volume versus fluidity (small circles) and <pT exp (1950/5T) (large 
circles) for isopropyl alcohol. 

FIG. 18. Comparison of linearity of plots of l/T against log 4> (broken line) and 
against log<£ T/(V — V,) (solid line) for benzene. The temperature range involved 
is from about 280° to 460°A. 

The linear relation between <p and Vi found for substances with small 
values of AE' holds not only for volume change due to temperature varia-
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tion but also for that due to pressure variation through fairly wide pressure 
ranges. So long as the pressure has very little effect on the liquid structure 
other than to squeeze out holes, the linear relation holds. For very high 
pressures, fluidity decreases less rapidly with increased pressure than the 
linear law predicts. Figure 19 shows plots of fluidity against volume at 
constant temperature for pressures up to 12,000 kg. per cm.2 for ether and 
for ethyl alcohol. 

G. The flow of large molecules 

For the viscous flow of hydrocarbons, Ewell and Eyring (16) have found 
that the heat of activation is usually very close to one-fourth the heat of 

T 
e 

1 

Fluidity —» 

FIG. 19. Showing the relation of fluidity to volume at high pressures. Curve A 
is for ether at 750C, curve B for ether at 3O0C. Curve C is for ethyl alcohol at 750C, 
and curve D for ethyl alcohol at 300C Abscissae are arbitrary. The break from 
linearity seems to occur at pressures between 2000 and 3000 atmospheres. The fourth 
point from the right in each curve is for 2000 atmospheres. 

vaporization of a molecule the size of the unit of flow. Kauzmann and 
Eyring (33), on plotting AH1 of viscous flow for normal hydrocarbons 
against chain length, found that, for chains above about twelve atoms in 
length, there is a significant and increasing deviation from the relationship 

AHX = (l/4)A#vap 

for the molecule. This is taken to mean that chains longer than about 
twelve atoms do not move as a unit, but move in segments. Furthermore, 
there is an indication that, as the chain length increases beyond about fifty 
atoms, AHX is independent of the total chain length, showing that, for 
molecules of this length, the size of the segments which move is independent 
of the length of the molecule. From the limiting values of AH* thus 
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found, it is estimated that the segments involved in the flow of long 
hydrocarbon molecules are, on the average, twenty atoms in length. 

An analogous treatment of results recently reported by Flory (23) for 
the behavior of polymers reveals that segments averaging about thirty 
atoms in length are involved. In rubber the segments are about forty 
atoms long, while in plastic sulfur they are about twenty atoms long. 

Although the temperature variation of the viscosities of long-chain 
polymers is determined solely by the nature and size of the segments of 
which they are composed, there is definite evidence that a further factor, 
depending on chain length but not on temperature, operates to make long 
chains more viscous than short chains. Thus, in connection with the 
viscosities of the normal paraffins, long chains are definitely less fluid than 
would be expected from the recent extension of the hole theory of liquids. 
Flory's work indicates that the viscosities of long-chain molecules are pro
portional to exp(a\/Z), where Z is the chain length of the entire molecule 
and a is a temperature-independent constant. 

This behavior is readily understood when it is realized that, although 
the segments in a large molecule are moving about just as rapidly as those 
in a small molecule, the movements of the segments of the large molecule 
must be coordinated to a far greater extent than those of a smaller mole
cule, in order for the molecule to move forward a given distance. 

According to Kauzmann and Eyring (33), the exponential form found 
by Flory follows if we say that, on each jump by a segment, there is a chance 
of failure of aZV2/n, where n is the number of segments in the molecule. 

aZ112 

The chance of success in a single jump by one segment is then 1 , 
n 

and the chance of successful jumps by n segments is 

"i - aH~\ 
n 

But the fluidity is proportional to the fraction of successful jumps, so that 

L n 

Since 

( l _ £ ) = e X p(- : r ) 

when n » x, we have 

r, = 1/«, = K' exp(aVZ) (117) 

(116) 
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VIII. DIFFUSION PROCESSES IN LIQUIDS 

Although the viscosity of liquids has been extensively studied, data for 
diffusion in liquids are very meager. Thus the measurements of Orr and 
Butler (48) are the only ones available for testing the applicability of equa
tion 66 for self-diffusion. Taking their values for the diffusion of heavy 
into light water at O0C. and 45°C. and utilizing the data for the viscosity 
of ordinary water at the same temperatures, Eyring (19) has employed 
equation 66 to obtain values of the ratio Xi/X2X3 of the dimensions of the 
diffusing molecule. This result may be combined with the product 
X1X2X3(= V/N) to yield a value of X1 equal to 1.44 A. at O0C. and 1.47 A. 
at 450C. At these same temperatures (X2X3)

1'2 equals 4.54 and 4.50 A., 
respectively. This result is seen to be in accord with the principle that 
reactions will proceed by all possible mechanisms and therefore chiefly by 
the fastest ones when it is recalled that Xi is the dimension of the flowing 
molecule perpendicular to the plane of shear. It appears probable that 
in diffusion, as in viscous flow, the fastest process will be one in which the 
plane of the water molecule tends to ,coincide with the plane of flow, i.e., 
that Xi will be the thin dimension of the molecule. In the calculation, the 
viscosity of water has been used, whereas a value intermediate between 
that of H2O and that of pure D2O should have been used. This, however, 
would be a small correction, having no effect on the general conclusion. 
That the Stokes-Einstein diffusion equation is not applicable to this case 
is seen by the unreasonably small value of 1.46 A. ((V/N)m = 3.1 A.) 
that it yields for the diameter of the diffusing molecule when the data at 
450C. are applied in equation 39. The dimensions of the water molecule, 
as determined from Fischer-Hirschfelder models, are 2.3 X 4.0 X 3.0 A., 
thus being in rough agreement with the dimensions derived from diffusion. 
There is no reason for expecting the Stokes-Einstein equation to be appli
cable here, since it is derived with the condition that the diffusing particle 
be so large in comparison to the solvent molecules that the solvent may be 
considered to be continuous. 

Equation 65 may be rewritten in the form (61) 

If we assume that the degree of freedom corresponding to flow is a trans-
lational one, and that the partition functions for other degrees of freedom 
are the same for the initial and activated states, then equation 118 may 
be transformed to 

= M 2 W ^-*EnJnRT) (120) 
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where V/ is the free volume. For diffusion processes, just as for viscous flow, 
a hole must be provided to diffuse into. The energy necessary will involve 
some fraction of the energy of vaporization so that, in equation 120, we 
write AEYap/n for AHJ. Although diffusion is a rate process and should 
thus show an exponential variation with temperature, the data have nor
mally been represented as a linear function of temperature. However, the 
precision measurements of Cohen and Bruins (8) on the diffusion of tetra-
bromoethane in tetrachloroethane extending over the temperature range 
0° to 510C. could not be fitted with a linear interpolation formula, and 
these authors employed a quadratic formula to represent their measure
ments. Taylor (63), using the results of Cohen and Bruins, plotted log D 
against 1/T and obtained an excellent linear plot, from which an activation 
energy of diffusion equal to 3500 calories was obtained. This value lies 

TABLE 13 
Diffusion of letrabromoethane in tetrachloroethane 

TEMPERATURE 

°A. 

273.4 
280.7 
288 
298 
308.6 
324.1 

\' X 10" 

3.124 
3.140 
3.155 
3.174 
3.195 
3.230 

vj' X 10« 

6.45 
6.69 
6.92 
7.25 
7.59 
8.13 

Aibyap 

kg.-cal. per 
mole 

9.852 
9.784 
9.719 
9.624 
9.525 
9.383 

DXW 
(OBSERVED) 

0.351 
0.419 
0.497 
0.611 
0.741 
0.954 

D X W 
(CALCULATED) 

0.64 
0.77 
0.92 
1.14 
1.42 
1.89 

Oobid./^oslcd. 

0.55 
0.54 
0.54 
0.54 
0.52 
0.51 

between that for viscous flow in tetrachloroethane, 3000 calories, and that 
for viscous flow in tetrabromoethane, 3750 calories.13 

Steam and Eyring (61) have used the results of Cohen and Bruins as a 
test of equation 120, employing average values for the quantities occurring 
in equation 120, based on a liquid mixture containing 7.83 mole per cent 
of tetrabromoethane studied by Cohen and Bruins. For X and vj'3 they 
took the weighted arithmetical mean, and for A^vap the weighted geometric 
mean. Their results are given in table 13. The constancy of the ratio 
Absd./Dcaicd. shows that the calculated values of D reproduce the experi
mental temperature coefficient very closely. In agreement with Taylor 
(63) they took n = 3. (The value n = 2.65 would have reproduced the 
experimental results almost exactly.) 

The data of Scheffer and Scheffer (57) on the diffusion of mannitol in 

13 Value estimated from the boiling point, using the same Trouton's constant and 
value of AEnp/B as for tetrachloroethane. 
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aqueous solutions in the temperature range 0° to 70°C. give activation 
energies varying slightly with temperature. The variations are of the same 
nature already noted for the viscous flow of water, probably owing to the 
hydrogen-bonded structure of the solution. However, when log D is 
plotted against 1/T, the only point far off from the straight line giving an 
average slope is that for O0C. The average slope gave AEact = 4047 
calories, and this, with the average value of A2?vap for water between 0° 
and 7O0C, gives a value of n = 2.4. In table 14 are given the results of 
Stearn and Eyring, using equation 120 to calculate D. They took A2Jvap 
for water as 9700 calories and n equal to 2.4. The constancy of the ratio 
A>b8d./-D0aicd. is again noted. 

Although data for the temperature variation of diffusion are scanty 
except for measurements at two temperatures rather close together, never
theless, on the basis of these data, Oholm (47) pointed out that substances 
showing a high value for the diffusion coefficient always showed a small 

TABLE 14 

Diffusion of mannitol in aqueous solutions 

T E M P E R A T U R E 

273.0 
296.2 
305.9 
316.4 
325.3 
335.0 
343.2 

Dobsd. X 10' 

0.26 
0.61 
0.75 
0.97 
1.14 
1.35 
1.56 

Dcakd. X 10s 

0.26 
0.43 
0.52 
0.63 
0.74 
0.89 
1.05 

•Dob»d./£>calcd. 

1.0 
1.4 
1.4 
1.5 
1.5 
1.5 
1.5 

temperature coefficient. This generalization is exemplified in the data in 
table 16, where values of the temperature coefficient a, defined by D2/Di = 
1 + a(Ti — Ti), are to be compared with those of D. Such a relation is 
to be expected on a reaction rate theory of diffusion. If a series of reac
tions do not have greatly varying entropies of activation, then the slowest 
ones, as well as those with the largest temperature coefficients, will be those 
having the largest energy of activation. The generalization of Oholm on 
the diffusion process is analogous to the observation of Kohlrausch on ionic 
mobilities. These ions with the greatest ionic mobility have the smallest 
temperature coefficients of mobility. This is also the reason that the 
transport numbers of ions tend to approach 0.5 as the temperature is 
raised. The more slowly moving ions with transport numbers less than 
0.5 at a given temperature will have greater temperature coefficients of 
mobility than the rapidly moving ones with transport numbers greater 
than 0.5. 
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A further test of equation 120 is given in tables 15andl6,taken largely from 
Stearn, Irish, and Eyring (61). The results are grouped into three classes: 
aqueous diffusion, diffusion of different solutes in the same non-aqueous 
solvent, and diffusion of the same solute in different non-aqueous solvents. 
In table 16, values of Drj are given in 'order to test the validity of the 
Stokes-Einstein relation (equation 69), according to which Dr\ should be 
constant at constant temperature. The variation in Dt] is much less than 
in D, but, applying equation 69 to values of Dq, variation from two- to 

TABLE 15 
Diffusion data for different solutes in the same solvent 

•Dobsd. X 10' •Dcalcd. X 10s Dobsd./Dcalcd. D / ' J W s y ' 

Diffusion in aqueous solutions at 18-2O0C. 

Methyl alcohol 
Ethyl alcohol 
n-Propyl alcohol 
n-Butyl alcohol 
n-Amyl alcohol 
Allyl alcohol... 

555 
504 
488 
468 
495 
477 

Diffusion in benzene solutions at 7.5°C. 

Methyl iodide 
Ethyl iodide 
n-Propyl bromide 
n-Propyl iodide 
n-Butyl bromide 
n-Butyl iodide 
n-Amyl bromide 
n-Amyl iodide 
Octyl bromide 
Ethylene dichloride 
Carbon tetrachloride 
Phenyl bromide 
Phenyl iodide 

964 
903 
908 
908 
948 
875 
836 
846 
770 
896 
818 
808 
768 

three-fold in the radius of the diffusing molecule is noted. The constancy 
of Dri, if equation 68 be applied, depends, however, on the equality of AF1 

for viscous flow and for diffusion and on the equality of X, and \D , the dis
tances between successive minima for the viscous flow process and the 

diffusion process, respectively. One might expect the quantity D -^-3 to 
Al 

be more nearly constant. I t is impossible at present to evaluate 
X2A3 
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satisfactorily, but as a crude test we may, for similar molecules, identify 
this quantity with (V/N)113, where V is the molecular volume and N is 
Avogadro's number. In table 15, values of D(V/N)lli are given (rj is 

TABLE 16 
Diffusion data for one solute in a number of solvents 

Ai?yap n flobsd. 
X 10» 

Coaled. 
X 10» 

Cobsd./ 
•Dcalcd. 

Ct 

Diffusion of bromobenzene in various solvents at 7.5°C. 

Ether 
Benzene 
Toluene 
Cyolohexane. 
Hexane 
m-Xyl ene — 
m-Cymene... 

6.16 
7.69 
8.5 
7.59 
7.0 
9.77 

10.3 

4 
3 
4 
3 
4 
4 
4 

3.50 
1.41 
1.59 
1.16 
2.59 
1.52 
1.18 

16.5 
3.1 
7.4 
3.3 

13.3 
4.9 
4.1 

0.21 
0.45 
0.22 
0.35 
0.20 
0.31 
0.29 

Diffusion of bromoform in various solvents at 2O0C. 

Acetone 
Ether 
Benzene 
Methyl alcohol. 
Ethyl alcohol... 
Propyl alcohol.. 
Amyl alcohol... 

7.27 
6.1 
7.45 
8.44 
9.97 
9.99 

10.6 

4 
4 
3 
3 
3 
3 
3 

2.69 
3.39 
1.69 
1.93 
0.97 
0.77 
0.52 

11.9 
17.3 
3.7 
2.6 
1.3 
1.2 
0.94 

0.23 
0.20 
0.45 
0.74 
0.74 
0.64 
0.55 

0.018 
0.017 
0.024 
0.022 
0.028 
0.030 
0.034 

Diffusion of iodine in various solvents at 20°C. 

Methylene bromide... 
Benzene 
Carbon tetrachloride. 
Toluene 
Chloroform 
Ethyl acetate 
Heptane 
Carbon disulfide 
m-Xylene 
Isoamyl acetate 
Bromobenzene 
Carbon tetrabromide. 
Methyl alcohol 
Phenetole 
Anisole 

8.25 
7.45 
8.0 
7.99 
7.08 
7.78 
7.59 
6.60 
8.80 
9.00 
8.80 

11.2 
8.44 

8.8 

3.5 
3 
3 
4 
4 
4 
4 
4 
4 
4 
3 

0.83 
1.93 
1.37 
1.96 
2.12 
2.15 
2.77 
3.12 
1.68 
1.24 
1.20 

.18 
1.81 
0.97 
1.13 

3.82 
2.79 
2.39 
9.26 

10.1 
9.8 

11.4 
12.4 
7.2 
6.7 
1.7 

0.22 
0.50 
0.59 
0.21 
0.21 
0.22 
0.24 
0.25 
0.23 
0.19 
0.71 

0.020 
0.018 
0.019 
0.016 
0.013 
0.014 
0.016 
0.012 
0.017 
0.021 
0.017 
0.041 
0.018 
0.023 
0.024 

nearly constant for the dilute solutions in the same solvent). I t is seen 
that these values are somewhat more constant than are those of D (or Drj) 
for the series of alcohols diffusing in water and for the series of halogen-
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substituted products diffusing in benzene. In calculating the values of D 
given in table 16, Steam and Eyring use values of n found by Ewell and 
Eyring (16) to give the correct temperature variation of viscosity for the 
particular solvent. Those employed are shown in table 16. 

I t will be noted that the ratio A>bsd./-Dcaicd. is greater than 1 for aqueous 
solutions and less than 1 for non-aqueous solutions. Steam and Eyring 
found this very generally true. They explain the variation of this ratio 
from unity as due at least partly to a factor in equation 120 which has not 
been considered. For the case of a liquid with structure, such as water, 
rotation in the normal state will be hindered more strongly than in the 
activated state. (Cf. Kincaid and Eyring (37)). 

Thus in cancelling out all but one term in the partition functions corre
sponding to the two states, this factor is overlooked. This would lead to a 
calculated value too low. For liquids without such pronounced structure 
rotation may, on the other hand, be less hindered in the normal state, and 
neglect of this factor would then lead to results which are too high. 

A. Diffusion in concentrated solutions 

The results of Steam, Irish, and Eyring (61) and of Powell, Roseveare, and 
Eyring (52) show three kinds of behavior, two of which are adequately 
described by equation 75. These classes of systems are: 

(a) Liquid mixtures which form nearly perfect solutions, e.g., benzene-
carbon tetrachloride. For this case (d In o/d In JV) will be constant and Di] 
should be linear with composition, owing to change of X1/X2X3 with compo
sition (c/. equation 66). This class is exemplified by curves A of figure 20. 

(b) Liquid mixtures which do not form perfect solutions but which are 
such that AF* for viscous flow is the same as AF* for diffusion. For 
such cases Drj will not, in general, be linear with composition but 
Drj/(d In ai/d In JVi) should be. This class is exemplified by curves B and C 
of figure 20, in which the changes of Dy and of Dt)/(d In ai/d In JV1) with 
composition are shown, respectively, for the systems chloroform-acetone 
and chloroform-ether. 

(c) Liquid mixtures with well-defined structure such that AF* for viscous 
flow may not cancel AF* for diffusion. The behavior of two such systems, 
water-methyl alcohol and water-ethyl alcohol, is shown in curves D and E 
of figure 20. This behavior is typical of four such systems investigated, 
all four showing a maximum in the value of Drj/(d In ai/d In JVi). 

B. Relation of diffusion to volume 

A further test of the idea that, for diffusion as well as for viscous flow, 
the energy of activation at constant pressure is in many cases predomi
nantly the energy necessary to provide a hole to diffuse into would be 
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furnished by the relation between diffusion coefficient and volume. The 
only available data satisfactory for investigation are those of Cohen and 
Bruins (8). The same reasoning which explains the linear relationship 

Composition Composition 
FIG. 20. Plots of composition in mole fraction versus Di) (circles) and versus 

Dn 

7\ 7T~i—TT (crosses) for the complete composition range of several liquid pairs. 
a In Oi/a In ./Vi 
Curves A are for benzene-carbon tetrachloride, curves B for chloroform-acetone, 
curves C for chloroform-ether, curves D for water-methyl alcohol, and curves E for 
water-ethyl alcohol. The ordinate scale for curves E is half that for the other curves. 

FIG. 21. Plots of volume versus D, D/T, and D/T3li, respectively, for the diffusion 
of tetrabromoethane in tetrachloroethane. The abscissa scales are arbitrary. 

between fluidity and volume for certain values of temperature and activa
tion energy leads to a prediction of a linear relationship between volume 
and either D/T3'2 or D/T, depending on whether the partition function for 
the extra degree of freedom is taken as in equation 119 or that for the solid 
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(&/T) is used. Stearn (60) has used (figure 21) the data of Cohen and 
Bruins to plot volume against D, D/T, and D/Tw. While the plot of D 
versus V shows distinct curvature, both the other curves give straight lines. 
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