
THE CALCULATION OF THE THERMODYNAMIC PROPERTIES AND 
THE ASSOCIATION OF ELECTROLYTE SOLUTIONS1 , 2 '3 

GEORGE SCATCHARD AND LEO F. EPSTEIN4 

Research Laboratory of Physical Chemistry, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 

Received February 10, 1942 

A convenient system of representing thermodynamic data for salt solutions 
is described, in which: (1) the Debye K is taken proportional to the ionic strength 
per unit volume of solvent; (2) the Debye limiting law is expressed as an analytical 
function of the temperature; (3) the mean collision diameter a is taken inversely 
proportion to n at constant composition; (4) the function 

Z = 1 + /CO - -4 2 In (1 + Ka)ZUa)3 

1 + KO 
is presented in a table of Z vs. g = Ka/(1 + Ka); (5) the deviations from the Debye-
Hiickel approximation are treated as an apparent association, with the constant 
determined to agree with analytical methods for the term proportional to the ionic 
strength; (6) the calculation of association, either electrostatic or chemical, is 
made on the assumption that short-range forces are independent of the association; 
(7) deviations from these relations are expressed graphically, as deviations from a 
power series in the concentrations. 

The methods are illustrated for aqueous solutions of sodium chloride and of 
sulfuric acid. 

The Debye-Hiickel limiting law for the electrostatic interaction of ions de
pends upon the interaction of ions which are very far apart, and so may be 
related to the charge on the ions and the macroscopic properties of the solvent 
without any necessity for a detailed model of ion or of solvent. The rest of the 
Debye-Hiickel expression arises from the interactions of molecules which are 
close together and does depend largely upon the details of the models of the 
ions and the solvent. The models usually used do not correspond very closely 
to most of the solutions to which they are applied. The differences between 
the models and real solutions lead to deviations from the theoretical equations 
for simple models which begin with the first power of the concentration. We 
therefore propose that smoothing of the measured properties and calculation of 
other properties from them be carried out by the use of convenient functions 
which represent the limiting law exactly and change with the concentration 
approximately as the functions for simple models, but which do not pretend to 
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211 



2 1 2 GEOEGE SCATCHARD AND LEO F. EPSTEIN 

represent these properties exactly beyond the limiting law. Any errors due to 
these approximations will be grouped with the deviations which arise from the 
inadequacies of the simple models. This procedure is equivalent to choosing 
a model which differs from the simple one in a way which leads to only slight 
differences in behavior, although it differs in a way which cannot be pictured 
by a simple change in the model. 

This proposal must not be interpreted as a recommendation to abandon 
attempts to determine the properties of more complicated models. I t is our 
belief that further progress in the theory can come only through such attempts. 
One of the easiest ways to check such theories will be to compare the results of 
the theories with the experimental results smoothed by our methods. 

We express the function K in terms of moles per unit quantity of solvent 
rather than moles per unit volume of solution: 

K = (4TeWp0ZiNiZ]ZDoRTw0No)112 = (SireVpon/lOOODoRT)1'2 (1) 

in which e is the charge on the proton, N is Avogadro's number, R is the gas 
constant per mole, T is the absolute temperature, Ni is the number of moles 
of the iih species and z{ its valence, N0 is the number of moles of solvent of 
molecular weight W0, density p0, and dielectric constant D0, and p. is the ionic 
strength in moles per kilogram of solvent, 10002iN{fi/2woNo. This procedure 
has been followed in our laboratory for several years. It has been justified 
theoretically (25) in that it corresponds to the dielectric constant of the solution 
being proportional to the concentration of the solvent. To make K propor
tional to the concentration in moles per liter of solution, which is the assumption 
usually made, it is necessary to assume that the dielectric constant is inde
pendent of the electrolyte concentration. For most electrolytes the assumption 
which leads to weight molal concentrations is much more probable than the 
other one. A still more cogent argument is the pragmatic one that the thermo
dynamic functions may thus be expressed directly in terms of temperature, 
pressure, and quantities of the components. 

We express the limiting-law ratios of the logarithm of the activity coefficient 
to the square root of the ionic strength directly as a power series of the tem
perature. Since the smoothing of the density and the dielectric constant are 
empirical, there is no theoretical argument for or against the expression of 
(po/T3Do)1/2 as a simple power series in t. There is a very great practical ad
vantage in a simple analytical expression for the quantity which is the basis of 
our calculations. Using T = 273.160C, N = 6.021 X 1023, € = 4.805 X 1O-10 

E.s.u., RT = 2.2711 X 1010 ergs (2), the density of water from the International 
Critical Tables, and the dielectric constants of Wyman and Ingalls (31), we 
obtain for water at 1 atm. pressure 

I n Yfc 

z\ VM 
1.1254 [1 + 0.15471(4/100) + 0.03569(i/100)2 + 0.02389(i/100)3] (2) 
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in which yk is the activity coefficient of the fcth species and t is the Centigrade 
temperature. We are also interested in 

1 ^ * = 3.472 x HT8 [1 + 0.101940/100) 

+ 0.04269(i/100)2 + 0.00976«/100)3] (3) 

and 

KIVV. = 0.3241 X 108[1 + 0.05217(*/100) 

= 0.00916(£/100)2 + 0.00888(i/100)3] (4) 

The maximum deviation of equations 2 and 3 from the value calculated from 
the density and Wyman's value of the dielectric constant at each temperature 
is 0.02 per cent, and the average of the absolute values of the deviations is 0.01 
per cent. For equation 4 the maximum deviation is less than 0.005 per cent. 
The equations are consistent to a maximum error of 0.014 per cent, but there 
is no need for using all three together. If more than equation 2 is used, the 
more convenient of equations 3 and 4 should be chosen. 

The relation of dielectric constant to pressure has not been measured accu
rately enough to warrant an equation for this relation. Probably the best 
approximation we can make at present is that, at constant temperature, the 
dielectric constant is proportional to the density. If this relation is exact, 
K/y/fi is independent of the pressure, and equations 2 or 3 may be made to 
apply at various pressures by multiplying the right-hand member of each by 
POP/Pm , in which poP is the density of water at the pressure p and poi is the density 
at 1 atm. pressure. Redlich's method of obtaining the coefficients of equa
tions 2 and 3 is discussed later. 

We assume that the collision diameter a varies with the temperature as 
DoT/po, so that the product Ka is independent of the temperature and the 
pressure. If the dielectric constant of the solvent is proportional to its density 
at constant temperature, this proposal assumes that a is independent of the 
pressure; this is strictly consistent with the assumptions made in the derivation 
of the Debye equations. However, there is a variation of a with the tempera
ture which is not consistent with these assumptions. The assumed decrease in 
size is only 5 per cent for water from 0° to 1000C. and real ions are neither 
spherical nor rigid, so that the effective collision diameters of real ions should 
decrease with the temperature. However, our justification is the pragmatic 
one that this proposal, together with the first, makes the electrostatic contribu
tion to the free energy a function of the temperature and pressure multiplied 
by a function of the quantities of the components. The practical advantage is 
very great. The contribution to any "total" thermodynamic function has the 
same form as the contribution to the total free energy; the contribution to any 
"partial" quantity of an electrolyte solute has the same form as the contribution 
to the partial free energy, or chemical potential, of that solute; and the contribu-
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tion to any partial quantity of the solvent has the same form as the contribution 
to the chemical potential of the solvent. If G' be taken as the symbol for the 
electrostatic contribution to any thermodynamic property, these assumptions 
make 

G'k = (g/a)z2
kx/(l + x) = (g/a)z\y (5) 

in which x = Ka = a's/ p., and y = x/(l + x), and g is denned by this equation. 
The appropriate value of g for each property may be determined from equation 
5 with equation 2 and the corresponding relation to the pressure, since all the 
thermodynamic functions may be determined from F expressed as a function 
of T, p, and the N/s. Then 

G' = (g/O)SiNAy ~ Z) (6) 

and 

Go = -Wa)HtNdZ/N0 (7) 

Z = [1 + x - 1/(1 + x) - 2 In (1 + x)]/x2 

= x/3 - 2x/± + Sxz/5 - 4x4/6 + . . . (8) 

= [1 - y - (1 - yf + 2(1 - y) In (1 - y)]/y* 

= y/3 - y2/Q - yz/15 - 2/4/30 (Q) 

We determine Z of equations 6 and 7 from a table of Z vs. y. For small 
values of x the logarithm cannot be determined accurately enough for the direct 
determination of Z, but Z may be determined from the power series of equation 8 
or that of equation 9. That of equation 9 has the advantage in dilute solu
tions that the convergence is much more rapid. The use of y as the independent 
variable has the much more important advantage that y approaches unity as x 
approaches infinity. A table of Z vs. y with a hundred entries is sufficient to 
give Z to 0.001 by linear interpolation up to y = 0.95. The curve of Z vs. y 
is shown in figure 1. In table 1 the value of y is the sum of the number at the 
head of the column and that at the left of the row, the upper entry in each 
square is the value of Z, and the lower (italicized) entry is the increment of Z 
for a change of 0.01 in y. 

In our early studies of electrolyte solutions we gave a the value zero for all 
electrolytes and so obtained from the theory only terms in the square root of 
the ionic strength multiplied by a constant or by integral powers of the concen
tration of any non-electrolyte solute (23, 24). This method is quite satisfactory 
for uni-univalent electrolytes at ionic strengths less than unity, and we were 
able to reproduce our measurements accurately with a five-term series of the form 

(F - F*)/RT = -EiNi[In (NiZw0N0) - 1 + AzWy] 

+ Eu(BiJ + CiWn)NiNjZw0N0 

+ Eijk(Diih + EiiWy)NiNjNk/(w0N0f (10) 
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More recently {26) we have taken a' equal to unity for all electrolytes. Guggen
heim (8) has suggested that with this value of a', one additional term propor
tional to TO is sufficient to represent the measurements up to an ionic strength 
of 0.1 M. We find very little advantage in using a' as unity rather than zero 
up to 1 M, and for higher concentrations there is a great advantage in choosing 
a' to fit the data. 

Guggenheim and Wiseman (8, 9) have also claimed that the term in log y 
proportional to TO "hardly varies with the temperature," which would require 
that the corresponding term in the heat of dilution be nearly zero. This is true 
for hydrochloric acid, as they point out, but it is not true in general. They 
criticize the freezing-point measurements of Scatchard and Prentiss (22) on 
aqueous potassium chloride solutions because the value they yield for the coeffi
cient of this term, which Guggenheim calls X, differs from that obtained from 
electromotive-force measurements at higher temperatures more than the value 
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FIG. 1. Debye function Z vs. y 

yielded by earlier freezing-point measurements. From the heat of dilution 
measurements of Lange and Leighton (18), we obtain for dX/dt 0.00156 at 
12.50C. and 0.00110 at 250C. The use of this quantity requires the use of the 
limiting law, which varies with the temperature like equation 2 rather than the 
approximate values of Guggenheim. This gives X = 0.077 at 2O0C. from the 
measurements of Giintelberg (11) and X = 0.099 at 250C. from the measure
ments of Shedlovsky and Maclnnes (28). At 0°C. the freezing-point measure
ments of Scatchard and Prentiss yielded 0.056, and earlier freezing-point 
measurements gave 0.083. The assumption that the value of dX/dt at 12.50C. 
is the average from 0° to 2O0C. and from 0° to 250C. gives X at O0C. from the 
electromotive-force measurements as 0.046 and 0.060. The agreement with 
the freezing-point measurements of Scatchard and Prentiss is excellent. 

To determine the proper size from measurements of the osmotic coefficient, 
we plot 

A</> = <f> + (A/a')Za, + b'm (H) 
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against m, choosing V so that A<j> is approximately zero for the most concen
trated solution. For a single electrolyte 2i7?iic5/2im,- = — z+z- , if z~ be taken 
as negative. The procedure is illustrated for the measurements of the freezing 
points of aqueous sodium chloride solutions (22) in figure 2, where A<j> is plotted 

TABLE 1* 
Values of the Debye function, Z 

V 

0.0 

0 

0.00000 
332 

0.01 'o. 00332 
328 

0.02 n.00660 
325 

0.03 ;0.00985 
i 321 

0.04 0.01306 
I 318 

0.05 

0.06 

0.01624 
314 

0.01938 
311 

0.10 

0.03160 
296 

0.03456 
292 

0.03748 
288 

0.04036 
284 

0.04320 
mi 

0.04601 
276 

0.04877 
272 

0.07 ;0.022490.05149 
3071 268 

0.08 ;0.025560.05417 
j 304\ 264 

0.09 1O.02860 
SOO 

0.10 jo.03160 

0.05681 
260 

0.05941 

0.20 

0.05941 
255 

0.06196 
251 

0.06447 
246 

0.06693 
242 

0.06935 
237 

0.07172 
233 

0.30 0.40 

0.08287 0.10129 
209 152 

0.08496 
203 

0.08699 
197 

0.08896 
193 

0.09089 
187 

0.10281 
147 

0.10428 

141 

0.10569 
134 

0.10703 
128 

0.09276J0.10831 
182i 122 

0.50 

0.11371 
86 

0.11457 
80 

0.11537 
72 

0.11609 
64 

0.11673 
56 

0.11729 
48 

0.07405 0.09458 0.1095310.11777 
228] 176] 115\ 40 

0.07633 
223 

0.09634 0.110680.11817 
171- 108\ 31 

0.07856 0.09805 
218] 165 

0.08074; 0.09970 
213\ 159 

0.60 

0.11885 
5 

0.11890 
-4 

0.11886 
-14 

0.11872 
-23 

0.70 0.80 

0.11487 0.09882 
-100 -244 

0.11387 
-112 

0.11275 
-125 

0.11150 
-138 

0.11849 0.11012 
- 3 4 -152 

0.11815 

-44 

0.11771 
-54 

0.11717 
-66 

0.11176.0.11848,0.11651 
10V 23] -77 

0.10860 
-165 

0.10695 
-180 

0.09638 
-281 

0.09377 
-280 

0.09097 
-299 

0.08798 
-320 

0.08478 
-341 

0.08137 
-363 

0.10515J0.07774 
-195] -387 

0.10320 
-211 

0.11277 0.11871 JO. 11575 0.10109 
94\ 14] -88\ -227 

0.08287 0.101290.1137110.11885 0.11487.0.09882 

y io.00000! 0.10 0.20 0.30 [ 0.40 ! 0.50 | 0.60 ! 0.70 

0.07387 
-412 

0.06975 
-438 

0.06537 

0.80 

0.90 

0.06537 
-467 

0.06070 
-498 

0.05572 
-531 

0.05041 
-567 

0.04474 
-607 

0.03867 
-651 

0.03216 
-701 

0.02515 
-759 

0.01756 
-830 

0.00926 
-926 

0.00000 

0.90 

y 

0.0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

y 

* y is the sum of the number at the top or bottom of the column and that at the side of 
the row. Z is the main entry. 

The change in Z for a change of 0.01 in y is the lower (italicized) entry. 

for a' equal to 1.0, 1.3, and 1.55, with V equal to 0.0378, 0.0160, and 0.0029. 
The three curves correspond to the same values of <f>. The experimental points 
are shown only above 0.05 M, as those at lower concentrations cluster so closely 
that they confuse the picture. For a' equal to unity, the curve shows a high 
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maximum. As a' decreases, the maximum becomes lower and shifts to smaller 
concentrations, and an inflection, which is outside the range of these measure
ments for a' = 1, also shifts to lower concentrations. We try to choose the 
smallest value of a' which will give neither maximum nor inflection in dilute 
solutions. Our choice from these measurements is the lower curve with 
a' = 1.55. I t is often possible to choose a' so that A# may be represented by a 
quadratic in m, but we have had little success with attempts to reduce it to a 
linear term as in the Hilckel equation. In the present case the smallest de
viations from the Hiickel equation would occur with a' about 1.3, which 
corresponds to the middle curve. Since any change in a' will increase the 
deviations in either dilute or concentrated solutions, both of which are already 
considerably greater than the scatter of the measurements, no choice of a' will 
represent these measurements within their apparent accuracy. 

O 008 
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FIG. 2. Deviation function for osmotic coefficient of sodium chloride for various sizes 
FIG. 3. Deviation function for osmotic coefficient of sodium chloride 

We illustrate our method of handling the measurements with various prop
erties of aqueous solutions of sodium chloride. In figure 3, the osmotic coeffi
cient is represented by equation 11 with a' = 1.55 and 6' = 0.06. This value 
of b' is chosen to make A<j> approximately zero for saturated sodium chloride 
solutions at 25°C. The experimental values are the freezing-point measure
ments of Scatchard and Prentiss (22), the smoothed curve of Scatchard, Hamer, 
and Wood (26) at 250C, and the boiling-point measurements of Smith (29) 
and of Smith and Hirtle (30) at higher temperatures. I t is obvious that A<j> 
must pass through a maximum between 25° and 6O0C. 

Figure 4 shows the activity coefficients of sodium chloride from the electro
motive-force measurements of Harned and Nims (13), expressed as 

A log 7 = log 7 + 0.4343 [(A/1.5S)yiM - 0.12m] (12) 
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This is the type of equation which we would use to determine the size of a' 
from measurements which yielded the activity of the electrolyte, but in this 
case we have used the value of a' already determined, and the 0.12m is obtained 
from the 0.06m for the osmotic coefficient. 

Figure 5 shows the heat of dilution of sodium chloride from the measurements 
of Gulbransen and Robinson (10) and of Lipsett, Johnson, and Maas (19), 
expressed as 

A(H/m) = (H - H*)/m - (2RT/l.55)(dA/dT)(y1M - Z,M) + 140m (13) 

If the value of a' were not chosen the same as for the measurements of the 
freezing points, we would use an equation of the type of equation 13 to deter
mine an appropriate value. The term proportional to m is again chosen to give 
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FlG. 4. Deviation function for logarithm of activity coefficient of sodium chloride 
FIG. 5. Deviation function for molal heat of dilution of sodium chloride 

a very small deviation for the most concentrated solution at 25°C. The de
crease in A(H/m) with increasing temperature corresponds to the behavior of 
A<j> and of A log y, for A(H/m) must be zero when the other two pass through 
maxima. 

Figure 6 shows the apparent molal volumes of aqueous sodium chloride solu
tions at 25°C. from the measurements of Baxter and Wallace (1), of Geffcken 
(5), and of Geffcken, Beckmann, and Kruis (6), expressed as 

A^2 = Sv2 - (2RTpA/1.5S)(yi.u - ZIM) - 0.6m 

= $„2 - 1.665(2/1.58 - Zi.66) - 0.6m (14) 

in which /3 is the compressibility. The term 0.6m is again chosen to make the 
deviation approximately zero for the most concentrated solution. The coeffi
cient of the first term corresponds to the assumption that the dielectric constant 
is proportional to the concentration of water at constant temperature. This 
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leads to a limiting law 7.5 per cent smaller than that determined by Redlich (23) 
from the apparent volumes of sodium and potassium chlorides and bromides. 
Dr. Redlich and the authors agree that the available volume measurements are 
not quite sufficient to furnish an unquestionable decision between the two, and 
we are not proposing a revision of his value. For our present purpose, how
ever, we consider a value given by an approximate assumption preferable to 
one obtained from the volume measurements themselves. 

In the case of the apparent molal volumes, the form we have chosen for the 
electrostatic term is not helpful, for the deviation from the limiting law is 
smaller than that from our expression, and it may be represented more closely 
by a term linear in m. 

170 

1675 

2 4 
(Tl 

F I G . 6. Deviat ion function for apparent molal volume of sodium chloride 

AS„; = $„2 - ^RTPA V m - 0.1m = Sy, - 1.72 V m - 0.1m (15) 

The corresponding function for Redlich's treatment is 

AS," = $,, - 1.86Vm (16) 

Up to m = 0.4, it is a horizontal line at 16.61, which is 0.02 cc. per mole smaller 
than the intercept of our curves. 

If there is association of a considerable fraction of the ions, the deviations 
corresponding to figures 2 to 6 will be large and the curves will be complex. I t 
is possible to obtain a much more accurate interpolation by taking the associa
tion into account. Before discussing the treatment of association, we note that 
it is not possible to distinguish experimentally between chemical association and 
that part of the electrostatic interaction which is neglected in the Debye-
Hiickel approximation, and which is called "electrostatic association" by 
Bjerrum and the "higher term correction" by La Mer and Gronwall, except 
in the case that the effect is so large that it leads to an unreasonably small 
distance a when calculated as an electrostatic effect. We believe that the calcu
lation by the law of mass action affords the most satisfactory treatment of the 
higher term effect. Why is the analytical method of La Mer and Gronwall 
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(7,17) not entirely satisfactory? Their result is given as the first terms in an 
infinite power series in ( — ZiZii/DkT), and partially as the first terms in infinite 
power series in Ka. The computation of any further terms would require con
siderable labor. Moreover, the result would be uncertain because the condi
tions of integrability are violated and the value calculated for the work of 
charging the ions reversibly depends upon the method of adding the charge 
(15, 20). The conditions of integrability are satisfied for terms in the electrical 
potential containing the first power of (—ZiZit/DkT), which is the Debye-
Htickel approximation. They are also satisfied for terms containing the first 
power of (KV), and it is this fact which we utilize. The uncertainty introduced 
by the violation of these conditions apparently becomes more serious as the 
exponents of (—z&it/DkT) and of («V) increase. 

The method of Bjerrum (3), on the other hand, suffers from the arbitrary 
choice of the distance (—ZiZii/2DkT) in the calculation of the association con
stant. Bjerrum's expression of the equilibrium constant of the reaction. 

A + B = AB 

which need not be limited to the case in which the valence of the product AB 
is zero, is 

*AB = ~To^vfi¥) QAB (17) 

QAB = J2 ¥ dt (18) r 
' 2 

2 bAB= -zAzBe2/DkTaAB (19) 

This equation is used only if &AB is more positive than 2. If bAB is more nega
tive than 2, 2£AB is assumed to be zero. 

We choose the value of KAB so as to fit precisely the analytical expression for 
the term proportional to the ionic strength. This is the logical extension of the 
method we use for the Debye-Huckel approximation, and it avoids the diffi
culties of the violation of the conditions of integrability and of the arbitrary 
distance. To evaluate the constant we use the expression of Kirkwood5 for the 
term in the logarithm of the activity coefficient proportional to the ionic strength. 

K» = - m ( w ) 8 **> - <*" + B » M (20) 

B* = f'" W - 1 - t - t2/2 - f/6) dt 
Jo v 

= {b%Ei(bik) - In bfl, - C0 - ebik[2 + bjk + b%] 

+ [2 + 3blk + 3b% + llb%/6]}/6bjk (21) 
5 Private communication from J. G. Kirkwood. We are very grateful to Professor Kirk

wood for calculating these terms from the general expression given by him (16) and for 
computing the B's in table 2. It should be noted, however, that our use of them to calculate 
the association constant is not the same as his method of calculating that constant. 
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Co = 0.5772 (Euler's constant). Some values of Bjk and of Q3* are given in 
table 2. 

The constant of equation 20 is finite and positive for all values of &AB. For 
small values it is proportional to 6AB. For larger values it is slightly smaller 
than the Bjerrum constant. For symmetrical electrolytes, the ratio of our 
constant to that of Bjerrum is the sum of the third and fifth columns of table 2 
divided by the second column. For unsymmetrical electrolytes, which are dis
cussed later, our constant is increased, but only by an amount which is small 
relative to the difference from Bjerrum's constant. Our constant should be 
slightly smaller than his to yield the same values of log y, for our method gives 
a more negative value for the Debye-Huckel term, since we use the size a and 
Bjerrum uses ab/2. The relative difference between the two constants is very 
small except in the range of small values of 6AB where the Bjerrum treatment is 
unsatisfactory. 

TABLE 2 

Some values of Qn and of Bjk 

bjk 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
12 
15 

Qi* 

0.000 
0.325 
0.550 
0.755 
1.041 
1.417 
1.996 
2.950 
4.547 

13.51 
101.8 

Bjk 

0.046 
0.105 
0.181 
0.285 
0.414 
0.645 
0.979 
1.525 
2.450 
4.023 

12.84 
101.2 

—bjk 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
12 
15 

-Bjk 

0.037 
0.069 
0.097 
0.120 
0.141 
0.159 
0.176 
0.192 
0.206 
0.219 
0.242 
0.272 

If a is independent of the temperature, bAB changes with the temperature as 
1/D0T; but if a' is independent of the temperature, 6AB changes as (1/D0T

1)1'2. 
A change in aAB leads to the same relative change in K for small values of f>AB 

and to a more rapid relative change for larger values of bAB. In addition, K is 
proportional to (1/DaT)3 from the part outside the integral, so that most of the 
variation with temperature is independent of the behavior of 6AB. We there
fore keep a' independent of the temperature, as in the Debye-Htickel ap
proximation. 

The treatment of electrolytes of unsymmetrical valence type is complicated 
by the fact that the Debye-Huckel term is not the only one which depends upon 
the action at large distances, but there is a second term which results from the 
fact that the ionic strength effective for a cation depends more upon the anions 
than upon the cations, and vice versa. Formally it arises from the third term 
in the expansion of the Boltzmann exponential, and it is zero if all the ions have 
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valences z or -z. By the Giintelberg-MuUer charging process it leads to the 
following term in In 7: 

6\DkT/ SiTHZi (1 + KO)Z Jt+iKa t* 

The Debye charging process leads to a somewhat smaller result, which differs 
from equation 22 by a power series in K beginning with /c and In K times another 
power series in K beginning with K. The contribution to the osmotic coefficient 
which corresponds to equation 22 contains two similar power series. If we 
expand and retain only terms in K In K and in /c2 beyond the Debye-Hiickel 
approximation, we obtain by the Kirkwood method and the Debye charging 
process 

2 2 4.3 2 
1 — _ C Zk K _ 6 zk * v 3 
11174 ~ WhTT+Ja 6VMTZ^?* ' 

In ZKa - C0 - ~ + &Bik 

2 2 
« Zk 

2DkT 1 + Ka 
4 3 2 

(Zk K 

Q(DkTy viniZ\ 
Z^i TIi %i In 3/ca - C0 - -^ + 3(B« + Ba) 

- T 7 ^ 2 - ^ - , Si nallBi, - (Bu + 5 t t ) /2] (23)« 

The Giintelberg-Muller charging process gives a result which differs only by 
the omission of the term 1/12 in the first square bracket. Although it arises 
from the K In K term in the electrical potential, the difference is proportional 
to K2. We prefer the Debye charging process, but the difference from the 
Giintelberg-MuUer process is extremely small. This difference is probably an 
approximate measure of how much the activity coefficient is affected by the 
violation of the conditions of integrability in this term. The last term of the 
second form of equation 23 corresponds to the association constant of equation 
20, and we treat more concentrated solutions by assuming association and deter
mining the activity coefficients of the ions from the first two terms of this 
equation with the n/s and K determined from the concentrations of the unasso-
ciated ions. For symmetrical valence types nAzA = — nBz^ , so the second 
term vanishes in the summation. 

For unsymmetrical valence types we also take into account higher types of 
association, although they lead to no effect proportional to the concentration. 
As an example, for the series of reactions 

A + + B - " - = A B " 

A + + A B - " = A2B -

A + + A2B - = A3B 
6 If Bjk of equation 21 is expanded in an infinite power series in &,& and the result is 

substituted in equation 23, the equation becomes equivalent to that obtained by Gronwall, 
La Mer, and Sandved (7). Kirkwood's expression in a closed form gives a great advantage 
over the power series, which converges very slowly. 
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we calculate a constant for each, using the value of a determined to fit the first. 
We ignore the very small values of the constant for the association of two anions 
or two cations, such as 

B - " + AB~~ = AB^ 

and compensate by replacing (Bu + Bkk) in the second term by 2Bik when i 
and k are both positive or both negative. If i = /c, the third term vanishes 
automatically. 

In salt mixtures we determine K for each electrolyte from an appropriate 
value of a as though that electrolyte were present alone, but use an average 
value, the same for all the ions, in the first two terms of equation 23. If aAA 

be taken equal to aAB in the calculation of ifAB, the association constant of A 
and B, but if it be taken equal to aAB' in the calculation of i£AB ', this may 
lead to different sizes of the ion A. In the second term the value of BAA corre
sponding to aAB should be used in the coefficient of nB, and the value of BAA 

corresponding to aAB', should be used in the coefficient of nB<. In the coeffi
cient of nA>, (5A A -f £ A ' A ' ) / 2 should be replaced by BAA', which should be 
calculated from average values of (aAA + aA>A>)/2 weighted according to the 
contribution of the terms containing these sizes to the chemical potentials. 

We calculate the effect of association, either electrostatic or chemical, by 
assuming that the non-electrostatic interactions do not affect the association, or 
conversely, that the association does not affect the short-range interactions. 
One of us (27) has noted that the success of treating reaction kinetics by simple 
electrostatic theory depends upon the validity of this assumption in many cases. 
It is probable that many of the failures of the simple theory may be attributed 
to the failure of this assumption. We have practically no method of measuring 
the magnitude of these effects, and the assumption that they are zero does lead 
to great simplification. We thus divide the deviations into two parts: the 
electrostatic part which is calculated from the concentrations of the species 
assumed present, and the non-electrostatic part which is calculated from the 
stoichiometric concentrations of the component ions regardless of any reaction 
which may have occurred. 

We define the apparent constant i£AB by the relations 

Ki _ (AB) _ „ 7 A 7 B / 0 4N 
KAB ~ (AKB) - * A B - ^ m 

If the logarithm of the activity of each ion is divided into an electrostatic part 
In yke, given by the first line of the second form of equation 23 in terms of the 
species, and a non-electrostatic part given by a series of integral powers of the 
concentrations as 

In yk = In yke + 22^m 1 - + 3S<y5*,-̂ ,-?»,- + • • • (25) 

we may state our last assumption as 

&AB = /3*A + &B> ^AiAB = hiA + ^kiB, e t c . (26) 
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which leads to 

In KAB = In KAB + In yAe + In yBe - In KABe 

= ^ B V g + A» W , A + ,B)Simi23 
1+a'Vi" 

X In 3a' V* - Co - -^ + Wu 

I (ZA + ^ B ) -BAB1AB — 2A-BAA — Z B 5 B B (27) 
3ZAZB(ZA + ZB) 

The second term of equation 27 vanishes if SJTO1-Z? = 0 or if zA -+• zB = 0, except 
for very small terms involving the differences in B's for pairs of ions of the same 
kind. These terms may well be ignored. Then the second term vanishes if 
the solution is electrically symmetrical or if the product AB has zero valence. 

Computation by these equations is greatly simplified by the simple device 
of choosing as independent variable the ionic strength rather than the stoichio
metric concentration. If we denote by asterisks the stoichiometric concentra
tions and activity coefficients, and attribute the unstarred coefficients to the 
species 

In 7* = In yk + In (OT4/OT*) (28) 

and the mean activity coefficient of the electrolyte is determined as 

(2yv, ln 7*)/(2>,) (29) 

in which the summation is carried only over the simple ions. The osmotic 
coefficient is 

4>* = S.-WiUl - A/a')ziZa< 

- ~ -Liiruz) X [In 3 S ' V M + 1 - ft - A + 3(S« + Bu)] 

-f- (SJ-OT*) + (Sj*TO*OT*fe)/(S,-m*) + 2(S,WOT*OT*m*bjki)/{^km*OT*) (30) 

in which OT,- is zero except for the component ions or neutral molecules. The 
simplest case is that of symmetrical electrolytes with but a single type of asso
ciation. Fixing the value of the ionic strength fixes the value of KAB by equa
tion 27 if KAB is known, and it also fixes the concentration of each species of 
ions, so the concentration of the associated molecules is easily determined from 
equation 24. Any value of the stoichiometric concentration can be approxi
mated as closely as desired in a very short time. 

For unsymmetrical electrolytes it is necessary to choose trial values of as 
many concentrations as there are associations to be calculated and to find by 
trial and error the concentrations of the other species. For a single association 
this is not very difficult, and even for more complicated systems it will usually 
be possible to select species with concentrations so small that a large relative 
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change will have very little effect on the concentrations of the other species. 
The complications are increased because the value of K A B . e tc depends upon 
the lack of symmetry of the solution as well as upon the ionic strength. This 
difficulty is not so serious as it appears. Although the number of equations to 
be satisfied is doubled, the work necessary to satisfy them is not increased 
so much. 

The calculations including association may be illustrated with sulfuric acid. 
The constant determined by Hamer (12) from measurements in sodium bisulfate-
sodium sulfate mixtures is 82 and corresponds to an a of less than 0.7 by equa
tion 20. We may therefore assume that the association is not entirely electro
static, choose 1.5 as a reasonable value of a', and ignore the association to 
H2SO4. We choose as variable the ionic strength, n, and the sulfate-ion con
centration, which we will call x. The hydrogen-ion concentration is M — x, 
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FIG. 7 F IG. 8 
FIG. 7. Logarithm of activity coefficient of sulfuric acid minus term proportional to 

concentration 
FIG. 8. Osmotic coefficient of sulfuric acid minus term proportional to concentration 

the hydrosulfate ion concentration is M — 3x, the stoichiometric acid concen
tration is fi — 2x, and 

^HSO4- = (M - 3x)/x(ix - z) (31) 

The second equation to be satisfied is 

log KH8O4- + 1-9124 - 2 . 0 3 6 V M Z ( I + 1-5VM) 

- 16.48 (log 4 . 5 V M ~ 0.7887)2 (32) 

For each value of M, x is varied until equations 31 and 32 yield the same value 
of i^Hsor- Then the activity coefficient and osmotic coefficient are ob
tained as 

log 7* = [21ogG* — x) + log x — log4]/3 — logGu — 2x) 

- 1.018 V M / ( 1 + 1-5 V M ) - 5.493 [log 4.5 V M ~ 0.7887] x (33) 

** o /Q i x - 2.303 [1.018 Z1., + 8.240(log 4.5 V M - 0.3544)] x2
 ( . 

+ =2/3 + 30^2S) ( 3 4 ) 
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The full curve in figure 7 represents equation 33. The broken line, with filled 
circles to show its course where the two curves overlap, represents the measure
ments of Harned and Hamer (14) minus 0.1m. TJp to 2 M the agreement is 
well within the thickness of the lines. The scale of this figure is, of course, 
much smaller than those in the preceding figures. The full line in figure 8 is the 
osmotic coefficient calculated from equation 23. The broken line is the smoothed 
0 of Scatchard, Hamer, and Wood (26) minus 0.11513m, and the circles repre
sent 0 minus 0.11513m from the vapor-pressure measurements of Collins (4) 
for solutions more concentrated than 4 M. The differences between the calcu
lated and measured values are apparent at lower concentrations than in the 
preceding figure, but they are small in dilute solutions. In spite of the complica
tions due to the unsymmetrical solution effect represented in equation 22 and 
to the apparent association, the method works very well up to high concentra
tions. This application to sulfuric acid includes all the proposals that we have 
made in this paper. 
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