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It is the object of the present contribution to the Symposium to review the 
method of diffusion as a tool for investigating the properties of proteins in solu
tion. While the diffusion process has been known to the physical chemist for 
a long time, its importance for biochemical research was recognized only more 
recently. Modern developments in the field of protein chemistry, in particular, 
have contributed to a revival of the interest in diffusion measurements which, 
together with sedimentation and electrophoretic measurements, constitute the 
most revealing methods for determining the state of dispersion of protein solu
tions. It is the aim of the present review to demonstrate the usefulness of diffu
sion measurements for a study of proteins, and to consider the theoretical and 
practical limitations of the methods available at present. 

I. THEORY 

It would take us too far afield to discuss here in detail the theory of diffusion. 
Reference may be made to the earlier publications on this subject, excellently 
reviewed by Williams and Cady in this journal (56), and to the more recent 
kinetic treatment of the diffusion problem by Eyring and coworkers (6, 11). 
In the following, we shall merely review briefly the elementary principles of the 
diffusion process as it is most frequently met in actual experimentation. 

1 Presented at the Symposium on Physicochemical Methods in Protein Chemistry, which 
was held under the joint auspices of the Division of Physical and Inorganic Chemistry and 
the Division of Biological Chemistry at the 102nd Meeting of the American Chemical 
Society, Atlantic City, New Jersey, September 8-12, 1941. 
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We consider a system in which a solution of concentration Co is in contact with 
its solvent, as shown in the top section of figure 1. The boundary between 
solution and solvent is at the point x = 0, and positive values are assigned to x 
in the direction of increasing concentration. It will be assumed that no external 
force other than that of osmotic pressure is acting on the solute molecules and 
that the solute concentration is in the "ideal solution" range. Diffusion is 
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FIG. 1. Relation between concentration and distance of migration in a diffusion column. 
Top section: graphical illustration of the diffusion column. Center section: relation be
tween concentration and distance of migration. Bottom section: relation between con
centration gradient and distance of migration. The curves as drawn refer to diffusion 
times of 0.5, 1, and 4.5 hr., respectively. The whole diagram should be rotated counter
clockwise about an angle of 90° in order to conform with the proper space directions. 

confined to the vertical direction, while the force of gravity maintains the con
centration constant within the horizontal plane. Under these conditions, the 
rate of diffusion is, according to Fick, 

ds _ _ _ . dc 
dt dx (D 

where ds is the quantity of solute which in the time dt diffuses across a boundary 
of cross-sectional area A, under the influence of a concentration gradient dc/dx. 
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D is the diffusion constant, characteristic of the physical properties of the solute 
molecules in question. Its dimensions are square centimeters per second. 
Expressing mass in terms of concentrations, equation 1 may be reduced to the 
differential form 

% = D ft & 
Ot dx2 

The solution of this equation depends on the conditions imposed by the ex
perimental methods applied for determining the diffusion rate. 

For the conditions as stated above, the solution of equation 2 must fulfill the 
following boundary conditions: for t = 0, 

= 0, for x < 0 
c(x, 0) 

= Co, for x > 0 

where C0 is the initial solute concentration. Assuming that during the diffusion 
process no concentration changes occur at the extreme ends of the cell, integra
tion of equation 2 leads to the following relation between c, x, and t: 

where 

2 V Vr Jo 

2 = _ l _ 
V 4,DT 

e-y!dy) (3) 

Diffusion constants, D, can be calculated from either the c-t relation at constant 
x, or from the c-x relation at constant t. Both methods are used in actual 
experimentation. 

The relation between c and x, for various constant values of t, is shown in the 
center section of figure 1. I t will be noted that at the position of the original 
boundary between solution and solvent, x = 0, Cx is equal to Co/2 during the entire 
experiment and that the curves flatten out as t increases. The light-absorption 
method, discussed below, furnishes a relation of this type. If the differential, 
dc/dx, of the curves shown in the center section of figure 1 is plotted against x, 
a family of curves is obtained as shown in the bottom section of figure 1. In the 
ideal case, these curves have the shapes of Gaussian distribution curves and are 
identical with one another with respect to their areas. Curves of this type are 
obtained with the refractometric diffusion method. They follow the equation 

dc c - — 

dx 2\/irDt 

II . EXPERIMENTAL METHODS 

While a large number of methods have been designed from time to time to 
measure the diffusion rates in solution, we shall confine this discussion to those 
methods which have found general application to proteins. 
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A. THE POROUS-DISK METHOD 

The first method to be described is based on the diffusion across a porous 
diaphragm which separates solution from solvent. It was introduced by North
rop and Anson (36) and by McBain and Liu (22). The diffusion cell consists 
of a bell-shaped Pyrex-glass vessel, closed at the narrow top end by a stopcock 
and at the wide bottom end by a sealed-in sintered-glass disk, as shown in figure 2. 
The cell is filled with the solution the diffusion rate of which is to be measured, 
and is immersed in a vertical position in the solvent, just touching its surface. 
The whole apparatus is mounted in a constant-temperature bath. After pre
liminary manipulations, necessary for establishing a diffusion gradient within 
the pores of the diaphragm, diffusion is allowed to proceed from the solution into 
the solvent, density differences and slight convection currents tending to keep 
the concentration uniform within each compartment. That is to say, diffusion 

FIG. 2 FIG. 3 
FIG. 2. Diagram of the porous-disk diffusion cell (according to McBain and Liu (22)). 

x denotes the mean position of the boundary, C0 the initial solute concentration. 
FIG. 3. Cylindrical diffusion cell, according to Svedberg (48) and Tiselius and Gross (53) 

takes place only within the sintered-glass disk of thickness x, the concentration 
gradient dc/dx being constant within the pores, provided the diffusion rate is 
independent of solute concentration. Concentrations are determined after 
varying time intervals in aliquots of solution and solvent, and diffusion constants 
are calculated from the respective concentration changes by means of the equa
tion 

a-Bwfc"-ta[*-(1 + £)c']} (5) 

where A; is a constant, equal to the mean effective surface area of the disk, t 
the time of diffusion, c" the initial concentration of the solution, c' the concen
tration of the diffusate, and V" and V the volumes of the solution and diffusate, 
respectively (23). Di is the integral diffusion constant representing a mean 
value over a range of varying concentrations. It is identical with the true 
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diffusion constant D if the diffusion rate is independent of concentration. Other
wise, it can be related to it (23) by means of the equation 

D = D1+ C^1 (6) 

The constant k is determined by calibration with a solution of known diffusion 
constant, such as potassium chloride or sodium chloride. A thorough discussion 
of the method may be found in the papers by Mehl and Schmidt (23), Anson 
and Northrop (2), and McBain and Liu (22). The virtues of the porous-disk 
method are twofold. In the first place, it is simple experimentally and readily 
available. In the second place, it facilitates the determination of the diffusion 
constants of biologically active proteins, such as enzymes and viruses, in dilu
tions in which the concentration can hardly be measured by chemical methods 
but can be readily determined on the basis of biological activity. By com
paring the rate of diffusion of the activity with that of a protein of known diffu
sion constant, the size of the smallest, biologically active, molecular kinetic 
unit can be estimated (10). The shortcomings of the method lie in the fact 
that it furnishes only a mean value for the diffusion constants if the solutions 
are polydisperse, and that only with the utmost care can satisfactory reproduci
bility of the results be obtained. The rather wide limits in experimental error 
that can be found in some of the published data (46) clearly emphasize this 
point. The initial decrease in diffusion rate observed by several investigators 
may represent a source of uncertainty worthy of further investigation. The 
method has been applied by Northrop and Anson (36) to hemoglobin, by 
Northrop to pepsin (35), by Scherp to trypsin2 (45), by Kunitz and Northrop 
to chymotrypsinogen and chymotrypsin (14), by McBain, Dawson, and Barker 
to egg albumin (21), by Zeile (57) and by Stern (46) to catalase, and more 
recently by Hand to hemoglobin and catalase (10). A comparison of some of 
these results with those obtained by measurements of the absolute diffusion rate 
will be given in section III of this review. 

B. THE LIGHT-ABSORPTION METHOD 

The principle of this method is essentially the same as that employed in the 
earlier ultracentrifugal studies, and has been reviewed in detail by Svedberg 
and Pedersen (49). The method permits measurements of absolute diffusion 
rates and is based on the differences existing in the absorption spectra of solute 
and solvent. It may be described briefly as follows (53): 

A transparent diffusion cell in which a sharp boundary between solution and 
solvent has been established is placed in a constant-temperature bath, between 
a light source and a photographic camera. Monochromatic light of such a wave 
length is used as will be absorbed by the solute but not by the solvent. With 
proteins containing no chromophoric groups, the absorption maximum lies in 

2 Scherp's value for the diffusion constant of trypsin is lower than that found for hemo
globin. As, however, the molecular weight of trypsin appears to be lower than that of 
hemoglobin, Scherp's data are probably erroneous. 
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the ultraviolet region of about 270 m^ wave length. With others, such as 
hemoglobin or cytochrome, the absorption maximum is in the visible range of 
the spectrum. The cell is photographed at the beginning of the diffusion experi
ment and at certain time intervals thereafter, care being taken to keep the light 
intensity and exposure time constant. Under such conditions, the concentration 
distribution in the cell is imaged on the plate by a corresponding distribution of 
light intensity. The relation between concentration and degree of blackening 
of the photographic plate is obtained by filling the cell with known dilutions of 
the solution and taking exposures with the same light intensity and exposure 
time as were applied in the diffusion run proper. The reference plate and 
experimental plate are then measured with a microphotometer, yielding a rela
tion between c and x of the type pictured in the center section of figure 1. 

The diffusion cell, as designed by Svedberg (48) and by Tiselius and Gross 
(53), is pictured in figure 3. I t consists of a U-shaped glass tube, with the two 
limbs separated from each other by a three-way stopcock. The left limb is 
partly filled with the solution and the right limb with the solvent; a sharp 
boundary is formed by opening the stopcock after temperature equilibration in 
the constant-temperature bath. The boundary is then moved up in the solution 
compartment by means of a proper compensating arrangement until it reaches 
the center of the photographic field. The beginning of the diffusion process is 
made to coincide with the time of formation of the boundary. 

Diffusion constants are calculated from the microphotometer registration 
curves by means of the equation 

where Xi and Z2 are distances from the boundary at the times h and U, respec
tively. The most convenient method of calculation consists in determining 
from two successive curves (ti and fe) the values of x which correspond to a given 
value of c, such as c/4 or 3c/4. In that case, l/4y2 is a constant. The method 
has been used by Tiselius and Gross (53) with protein concentrations as low as 0.2 
per cent. The light-absorption method has given way in recent years to the 
light-refraction method, which with both sedimentation and diffusion measure
ments permits a considerably higher degree of accuracy. 

C. OTHER METHODS 

Before considering in detail the refractometric-scale method, mention will be 
made at this place of a diffusion method which, however, is more of theoretical 
significance than of practical value. It is due to Svedberg (48) and is based on 
the measurement of the degree of boundary blurring occurring during sedimenta
tion in the ultracentrifuge. In sedimentation, the centrifugal force acting on 
the solute molecules is opposed by their diffusion. While, with such high centrif
ugal fields as are employed in sedimentation-velocity measurements, the rate 
of diffusion is small in comparison with that of sedimentation, nevertheless it 
becomes perceptible by a blurring of the originally sharp, sedimenting boundary. 
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The calculation of the diffusion constant is based on a comparison of the experi
mental sedimentation curves with those to be expected if no diffusion were to 
occur. Basic to this method is the assumption that the solutions under in
vestigation are strictly monodisperse. The method is, however, rather in
accurate, owing to the fact that (1) the extent of diffusion taking place during a 
sedimentation run is actually very small, (2) the temperature in the ultra-
centrifuge is rarely sufficiently constant, and (S) any small inhomogeneity of the 
solution will have a significant influence on the apparent diffusion constant 
calculated from the sedimentation diagrams. 

The method as applied to both the light-absorption and the light-refraction 
systems has been described in detail in Svedberg and Pedersen's monograph (49). 

Bourdillon (3) recently designed a simple, yet rather crude, method for 
estimating the diffusion constant of viruses. 

D. THE REFRACTOMETRIC-SCALE METHOD 

This method is based on Stefan's (16, loc. cit.) phenomenon of the curvature 
of light when passing through a medium of varying refractive index. The 
method was introduced by Wiener (55) and Thoevert (51, 52) and further 
developed by Lamm (15, 16). The basic principle is illustrated in figure 4 

FIG. 4. Light path in the refractometric-scale method (not drawn to scale), according 
to Lamm (15, 16). O-O' is the optic axis, x the direction of increasing refractive-index 
gradient, S the plane of the transparent scale, Ci and C2 the planes enclosing the diffusion 
cell, Li and L2 the principal planes of the camera lens, and P the plane of the photographic 
plate. Wi and Wi are the exit angles of the deviated and undeviated light pencils. For 
further explanations see text. 

which, for purposes of demonstration, has not been drawn to scale. O-O' is 
the optic axis, S the plane of a transparent scale, and Ci and C2 the vertical planes 
enclosing the diffusion cell; Li and L2 are the principal planes of a photographic 
lens, and P is the plane of a photographic plate. We shall first assume that the 
medium contained in the diffusion cell has a constant index of refraction. In 
this case, light emerging from the point xs on the scale will be deflected linearly 
between the planes Ci and C2 and will be imaged on the plate at Xi. If, however, 
there is a refractive-index gradient in the medium, increasing in extent in the 
downward direction, light emerging from xa will be deflected in a curved fashion 
and will be imaged at X2. The scale-line displacement, X\ — X2, is proportional 
to the differences between the exit angles of the undeviated and deviated light 
pencils (W2 and Wx), which in turn is proportional to the refractive-index 
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gradient, dn/dx, existing in a horizontal plane at a depth conjugate to about the 
position of the point X2:

3 

X1- X2 = Z = Gl(W2 - W1) = Gab ^ (8) 
dx 

Here G is the photographic magnification factor, I the optical distance P — L1, 
a the optical distance C1 — C2, and b the optical distance from the scale to the 
center of the cell4. By determining the scale-line displacement for every point 
on the scale, the refractive-index gradient distribution can be determined over 
the whole depth of the cell. This method yields, therefore, a relation between 
the refractive-index gradient and the distance from the boundary. Since, 
however, in general, the index of refraction of a protein solution is a linear 
function of its concentration, of the type 

U1 — n0 = kc (9) 

where U1 and n0 are the refractive indices of solution and solvent, respectively, 
one virtually obtains a relation between concentration gradient, dc/dx, and x 
as shown in the bottom part of figure 1. 

The diffusion assembly consists of a transparent diffusion cell placed in a 
constant-temperature bath, a transparent scale placed behind it, and a photo
graphic camera placed in front of it, the camera lens being focussed on the scale. 
The scale is illuminated uniformly from behind by a suitable light source. The 
image of the undistorted scale lines is obtained by photographing the scale when 
the cell is filled with a medium of constant refractive index, usually the solvent 
(reference scale). The image of the displaced scale lines is obtained by taking 
exposures of the diffusion column at suitable time intervals after the beginning 
of the diffusion process (experimental scale). The scale-line distances are 
then measured on the plate in a microcomparator for both the reference scale 
and the experimental scale, and the differences in reading (equal to the scale-
line displacements Z) are plotted as ordinates against the corresponding readings 
on the experimental scale as abscissae (equal to the positions of the displaced 
lines, z). 

The experimental details of the method have been described in full hy Lamm 
(16) and summarized in brief by Poison (42), Saum (44), and Neurath and 
Saum (33). In view of the general importance of Lamm's method and the 
present difficulties of obtaining access to some of the European journals, it may 
be appropriate to review here certain experimental details of a description of the 
apparatus which was built by the author several years ago and reconstructed 
since. 

3 It is actually conjugate to the position of the point Xi after the latter has been corrected 
for F (see equation 21). 

4 The optical distance is equal to the geometric distance divided by the refractive indices 
of the media traversed by the light. 
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1. Apparatus 

An illustration of the diffusion assembly is given in figure 5. I t is mounted 
on two horizontal I beams, bolted together in parallel position and resting on 
three concrete blocks. The light source (enclosed by a metal housing), light 
filters, and a simple condensing lens are mounted on an optic bench behind the 
constant-temperature bath. The light source is a Westinghouse high-intensity 
mercury lamp, H3, 85 watts. Monochromatic light of 546 m/x wave length is 
obtained by a combination of Corning glass filters No. 551 and No. 512 and a 
Wratten filter No. 74. 

F I G . 5. Diffusion assembty for the refractometric-scale method, as used in the author 's 
laboratory (for description see text) . 

A close-up view of the constant-temperature bath is shown in figure 6. The 
tank, 13 in. long in the direction of the optic axis, 16 in. wide, and 18 in. high, 
is made of brass and insulated by f-in. Celotex boards. Two circular glass 
windows, 4 | in. in diameter and \ in. thick, and optically flat to within 0.5 wave 
length, are mounted on the walls perpendicular to the optic axis while a third, 
smaller window is mounted on the wall facing the observer. This latter window 
serves merely for the observation of the cell during an experiment. The tank 
is cushioned against mechanical vibrations by several alternate layers of sponge 
rubber and Celotex and is isolated from the optical assembly, since the I beams 
of the latter pass through a channel in the supporting concrete block without 
any direct contact with the tank. 

A cross-piece, running parallel to the optic axis and mounted on the top edge 
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of the tank, holds the scale and the diffusion cell; the latter is attached to a 
movable rider which provides for variations in the cell-scale distance. This 
distance is measured on a graduated metal scale mounted on the cross-piece. 

The transparent scale is ruled on glass and protected by a cover glass, held 
in place by transparent Lucite cement. I t is 5 cm. in length and graduated 
in 0.02-cm. divisions5. 

A l /16th H. p., vertical-shaft motor stirrer is mounted separately on a floor 
flange. Splashing is avoided by a hollow metal cylinder surrounding the shaft 
and suspended vertically from the top cover of the tank. The cylinder is 3 in. 

FrG. 6. Close-up view of constant-temperature bath of the diffusion assembly. The ob 
jects to be seen inside the tank are, from left to right, the thermorcgulator, the stirrer with 
surrounding hollow cylinder, the cell, the scale, and the thermometer (for further descrip
tion see text) . 

in diameter and terminates about 3 in. above the stirrer blades. A mercury 
thermoregulator with stainless-steel housing, in conjunction with a thyratron 
vacuum-tube relay, keeps the temperature constant to within a few thousandths 
of 1°C. ' 

The camera lens, If in. in diameter, is a two-element projector lens of 24-in. 
focal length, corrected for spherical and chromatic aberration. It is focussed 
on the scale with a magnification of 1.1:1. A simple compur shutter provides 
for adjustment of the aperture (between f:50 and /:100) and exposure time. 
A slit in the back end of the camera and a movable plate-holder carriage allow 
a sei'ies of eight exposures to be taken on one plate. Eastman spectroscopic 

5 Scales of this type may be obtained from the Gaertner Scientific Corporation. 
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plates GV, sensitized for the green, proved to be best suited for sharp contrast 
and high light sensitivity. With an aperture of/:85, the exposure time is about 
1 to 2 sec. The optical distances involved in the present diffusion assembly are 
as follows: plate to camera lens, 140.0 cm.; lens to scale, 113.9 cm.; b, the optical 
distance between the center of the cell and the scale, is variable between the 
limits of 3 and 11 cm. 

The cell 

In earlier studies the glass cell shown in figure 3 was employed. Its main 
disadvantage lies in the optical distortions produced by the lens effect of the 
cylindrical glass tube. 

Lamm (16) designed a stainless-steel cell with plane-parallel windows, which 
eliminates most of the shortcomings of the Svedberg cell. A drawing of this 
cell is shown in figure 7. The cell consists of a stainless-steel disk with a rec
tangular, vertical slot in the center. Two optically flat, circular glass windows 
are pressed against the faces of the disk by threaded metal rings. A diaphragm, 
sliding in the horizontal slot and operated from the outside by a screw arrange
ment, serves to divide the vertical slot into two compartments.6 The circular 
opening is filled with mercury through the right-hand side tube, in order to 
prevent leakage. The cell is filled with the solution to above the middle, 
with the diaphragm partly recessed. The lower half is then separated by ad
vancing the diaphragm; the solution remaining above is rinsed out with solvent; 
and the top half of the cell is filled with the solvent. The boundary is then 
formed by slowly withdrawing the diaphragm. It is, of course, imperative that 
after each step of the above procedure the cell be brought to temperature 
equilibrium in the constant-temperature bath in order to eliminate thermal 
convection and volume changes. 

Recently, the author (27) has described a diffusion cell7 which is somewhat 
similar to that previously introduced by Loughborough and Stamm (19). 
This cell operates on the principle of the Tiselius electrophoresis cell; however, 
unlike the conditions with the latter, the boundary is formed directly in the 
photographic field and thus does not have to be moved by special compensating 
arrangements. The advantage of this cell over the Lamm cell lies in the fact 
that solution and solvent surfaces are in direct contact as the boundary is 
formed, thus eliminating the displacement of the upper column of liquid occur
ring in the Lamm cell when the diaphragm is withdrawn. The latest model of 
the cell, a detailed description of which has already been published (27), is 
pictured in figure 8. 

The cell consists of two 17-shaped stainless-steel blocks which can be slid 

6 With the cell used in the author ' s laboratory, the stainless-steel diaphragm originally 
in use has been replaced by one made of polystyrene, in order to avoid scratching of the 
glass windows by the hard steel edges. Lubriseal has been found to be a very satisfactory 
sealing mater ial . 

7 The cell was designed in cooperation with Mr. H. S. Bush, Ins t rument Maker of the 
Depar tment of Chemistry of Cornell University, from whom it can be obtained. 
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horizontally past each other by a screw arrangement. Two optically flat, 
rectangular glass windows are pressed against the vertical faces by the top and 
bottom clamps. The lower compartment, when separated from the top one, is 
filled with the solution through the left-hand tube, while the upper compartment 
is filled with the solvent through the right-hand tube. After temperature 
equilibration, the sharp boundary is formed by bringing the two compartments 
into vertical alignment. The dimensions of the cell proper are as follows: 
1.7 cm. in the direction of the optic axis, 0.5 cm. wide, and 5 cm. high. 

F I G . 7 F I G . 8 

F I G . 7. Schematic drawing of the Lamm diffusion cell (taken from reference 16) 
F I G . 8. Photograph of the Neurath (27) diffusion cell (for description see text) 

Lamm (16) has described a rectangular glass cell with a sliding glass 
diaphragm; however, no details of construction have been given. 

Longsworth (18) and Rothen (43) have used the Tiselius electrophoresis ap
paratus for diffusion measurements. The diffusion curves were recorded 
by the schlieren-scanning method and the Philpot-Svensson (50) optical system, 
respectively. The results obtained in these studies will be referred to in section 
I I I of this review. 

The earliest measurements carried out with the aid of a cylindrical lens and 
an inclined slit are those of Thoevert (52). Tt appears that they have not 
received the recognition they deserve; they are, therefore, reproduced in figure 9. 
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In figure 10 diffusion curves, as obtained by Longsworth8 with the schlieren-
scanning method, are reproduced. 

2. Measurements 

In order to measure the true diffusion rate of a solute, it is necessary to eliminate 
the influence of any external force other than that of osmotic pressure produced 
by the solute molecules in question. For this reason, the concentration gradient 
has to be negligible for all other ions and molecules that may be present; and, 

F I G . 9 F I G . 10 

. F I G . 9. Refractive-index gradient curves for the diffusion of sodium chloride, as ob
tained by Thoevert (51) with the use of a cylindrical lens and an inclined slit. Reproduced 
from the original paper (52). 

F I G . 10. Refractive-index gradient curves for the diffusion of a 1.4 per cent egg albumin 
solution, as obtained by the Longsworth schlieren-scanning method. The left- and right-
hand pictures correspond, respectively, to the two boundaries in the Tiselius electrophore
sis cell. The time of diffusion was 151,400 sec. in the top photographs and 235,800 in the 
bottom photographs. Unpublished experiments by Dr. L. G. Longsworth. 

with solute molecules carrying electrical charges, such as the proteins, diffusion 
potentials have to be suppressed. Both requirements are met by carrying out 
the diffusion measurements in the presence of salts and by equilibrating the 
solution against the solvent, prior to the measurements, by dialysis through 
collodion or cellophane membranes. Salt concentrations of 0.1 ionic strength 
usually suffice to suppress diffusion potentials. 

The diffusion cell is filled with solution and solvent as described above, and 
the time of diffusion is measured from the beginning of formation of the 
boundary. The length of the diffusion run, the time of the first exposure, and 

8 The author is indebted to Dr. L. G. Longsworth for placing these photographs at his 
disposal. 
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the time intervals between successive exposures depend on the diffusion rate of 
the protein under investigation and on the magnitude of the refractive-index 
gradients in the diffusion column. 

Limitations on the over-all time of diffusion are imposed by both theoretical 
and practical considerations. The former have to do with the primary assump
tion involved in the derivation of equation 3, i.e., that the time of diffusion is 
short enough to avoid the occurrence of concentration changes at the extreme 
ends of the cell; the latter relates to the stability of the protein under investiga
tion and requires that no chemical or physical changes occur during the diffusion 
process. Both factors tend to place an upper limit on the duration of the 
experiment. 

The influence of the magnitude of the refractive-index gradient on the diffusion 
measurements can be best appreciated by considering certain approximations 
made in the application of the theory of the curvature of light to the present 
method (16). 

The magnitude of Z, the scale-line displacement, depends on G, the optical 
magnification, b, the optical distance from the scale to the center of the cell, 
and #, the angle of deviation of a light ray passing through the optically in-
homogeneous medium contained in the diffusion cell (equation 8). The approxi
mations involved in the derivation of this equation are as follows: (/) $ is suf
ficiently small to warrant the substitution of the arguments of the angles of 
inclination of the deviated light pencils with the optic axis for their tangents. 
Lamm has shown that for angles of 1.7°, this approximation introduces an error 
of 0.0003 radian. (2) n and dn/dx are constant in the region of the cell traversed 
by the light ray. This means, physically, that the vertical thickness of the light 
pencil is so small that the displacement Z is characteristic of a well-defined height 
in the diffusion column. Both conditions are more nearly fulfilled the longer 
the optical distance between camera lens and scale, the smaller the aperture of 
the lens, and the shorter the distance between cell and scale. A small aperture 
is also required on account of the lens action of the refractive-index gradient 
itself; however, a lower limit is placed on the aperture by the diffraction phenom
ena occurring when the aperture becomes too small. Values ranging between 
/ :50 and / :80 are satisfactory. As a rule, b and the aperture will be made 
smaller for higher refractive gradients and larger for smaller gradients. From 
an extensive study of the influence of these various factors, Lamm (16) arrived 
at the conclusion that the theoretical requirements are fulfilled as long as the 
scale lines appear on the photographic plate undistorted and in focus, and this 
working rule can conveniently be used as a guide for actual experimentation. 
While too large differences in initial concentration must, therefore, be avoided, 
disturbances may also occur when the solute concentration is too low. In the 
latter case, the density difference between solution and solvent may become too 
small to keep the concentration gradients constant within the horizontal planes. 
The extreme limits in initial differences in concentration between solution 
and solvent lie in the neighborhood of 1.5 and 0.2 per cent protein, respectively. 

After completion of the diffusion run the cell is filled with the solvent and 
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another exposure taken, yielding an image of the reference scale. The scale-line 
distances are then measured in a microcomparator, with an accuracy of ±1M-
The most convenient procedure consists in recording the comparator readings 
as determined from the same starting point on the microcomparator and setting 
the cross-hair on the same starting line on each scale image. The differences 
between the readings on the reference scale and experimental scale are then 
plotted as ordinates, against the respective comparator readings on the experi
mental scale as abscissae, thus yielding a curve which relates the scale-line dis
placements, Z, to the positions of the displaced lines, z. 

3. Methods of calculation 

(a) 3>Ionodisperse systems 

The curves obtained in the manner described above are, except for a constant 
factor depending on the photographic enlargement and the optical cell-scale 
distance, of the same form as eciuation 4. The calculations of the diffusion 

F I G . 11. Ideal scale-line displacement distr ibution curve (in normal coordinates). Z 
is the scale-line displacement, 2 the position of the displaced lines, //,„ the maximum ordi
nate , M half the distance between the inflection points, and II and x coordinates for points 
on the curve. 

constant are based on the assumption that in the ideal case the curves have the 
properties of Gaussian distribution curves. We shall consider first the ease 
of monodisperse solutions and ideal diffusion behavior. The following symbols 
will be used in the following equations which are most commonly used for 
calculating diffusion constants. Their meaning is also illustrated in figure 11. 

Hn, = maximum ordinate, 
fi = half the distance between the inflection points, 

Xi = abscissa of the point i, 
Hj = ordinate of the point i, 
A = area under the curve, 
a = standard deviation, 
t = time of diffusion, and 

D = diffusion constant. 
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(1) Maximum ordinate method. The maximum ordinate divided by y/e. 
gives the ordinate of the inflection points, H11. The diffusion constant is 

D = £., where H11 =
 1^L (10) 

M V e 

(2) Method of successive analysis. Here the diffusion curve is divided into a 
series of vertical and horizontal chords, and the diffusion constant is calculated 
from a pair of successive values of X1 and Hi. 

D = ^ - J 1 (11) 
At In ^ 1 

In practice, the diffusion curve is divided on either side of the bisecting ordinate 
into about three to four ordinate* equally spaced from one another, and the 
diffusion constants are calculated as described. For a monodisperse solution, 
the D values should agree with one another to within 2 per cent or better. 

(3) Maximum ordinate-area method. If, in equation 4, x is taken as zero, 
then 

P) =Hm ax/x=o 

(ni — no)2 

47Ti (Hn)
 2 

_ Wi — no 

2\/lrDt 

A2 

4vt(Hmy 

and (12) 

D 

The area ,4. is determined by graphical integration. 
(4) Statistical method. This method, developed by Pearson (39) and applied 

to the present problem by Lamm (16), consists in treating the experimental 
curves as ideal displacement distribution curves. According to statistics, the 
standard deviation, <r, is equal to 

* = V2 (13) 
where nl is the second moment of the curve about the centroidal ordinate-

The diffusion constant D is related to <r 03* 

D = £ (14) 

In practice, the base line of the diffusion curve is divided into evenly spaced 
units of the breadth unity, numbered outward from an arbitrarily chosen origin 
near the center of the base line. If S; is the respective number on the base line 
and Si the corresponding ordinate, then the zero moment of the curve about the 
arbitrarily chosen central ordinate is 

Ho m) = N (is) 
9 The centroidal ordinate is that ordinate about which the first moment is equal to zero. 
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and is equal to area in the S units that were chosen, /ui, the first moment about 
this ordinate, is 

and the second moment, ^ , is 

Mi jjr- (16) 

w = —Tf— U 7 ; 
N 

The position of the true centroidal ordinate is 

Xo = So — in (18) 

and the true second moment, m, is 

1*2 = M2 — ( J " I ) 2 (19) 

The second moment calculated in this manner has yet to be converted into 
absolute units by the relation 

\ii ~ ^2 w (20) 

where w is the distance between successive vertical chords, Si, in centimeters. 
In the interest of greater accuracy it is advisable to chose «, the class breadth, 
not too large, and as a rule, 20 to 30 divisions of s on either side of the center 
of the base line will be most satisfactory. 

The diffusion constant calculated by any one of the methods given has 
to be corrected for photographic magnification and optical distances between 
camera, cell, and scale. If G is the photographic enlargement factor, I the optical 
distances from the lens to the scale, and b the optical distance from the center 
of the cell to the scale, the correction factor by which the calculated D values 
have to be multiplied is 

-W (21) 

The extent to which the experimental diffusion curves deviate from an ideal 
displacement distribution curve can be studied by transforming the coordinates 
s and S into normal coordinates, £ and yp, in which case the time of diffusion 
disappears as parameter. 

The relations between s, S, f, and \p are 

and 

S = ( S - M i ) - (22) 

* = -S \ (23) 
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where a is the calculated standard deviation, as discussed previously. The 
curve obtained in this manner is, for the ideal case, identical with the normal 
form of the ideal distribution curve, the values of which can be found in mathe-

3 2 1 0 1 2 3 
SOLVENT SOLUTION 

FIG. 12. Comparison of an ideal Gaussian distribution curve with the diffusion curve as 
obtained from measurements on a 0.8 per cent solution of urea-denatured serum albumin in 
8Af urea (31). The open circles refer to the experimental points, plotted in normal coordi
nates. The full circles indicate the position of the ideal distribution curve. 

" « " • 1 1 1 1 i i » " " 
3 2 1 0 1 2 3 

SOLVENT SOLUTION 

FIG. 13. Comparison of an ideal Gaussian distribution curve with the diffusion curve as 
obtained from measurements on a 0.8 per cent serum albumin solution at pH 7.6, denatured 
by heating for 30 min. at 70°C. Polydispersity is most clearly indicated by the difference 
in maximum ordinates of the ideal curve (full circles) and the experimental curve (open 
circles). Unpublished experiments by Neurath, Cooper, and Erickson. 

matical tables. The "fit" of these two curves is a measure of the homogeneity 
of the solute under investigation, and is illustrated for a monodisperse solution 
in figure 12 and for a polydisperse solution in figure 13. 

While, in the preceding cases, the diffusion constant has been calculated from 
a single curve, it is, of course, also possible to obtain values of D from a com-
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parison of the properties of the curves obtained after consecutive time intervals. 
I t will be noted that in the equations given, the diffusion constant is related to 
any two of the variables Hi, Xt, and A, t being a constant. By introducing 
t as a variable, another set of equations can be formulated if any one of the 
above-mentioned variables is chosen as constant. This method has been used 
recently in studies of the diffusion of the rabbit papilloma virus protein (32), 
with the particular object of differentiating between lack of monodispersity, 
on one hand, and restriction of free diffusion, on the other, as the origin of the 

— ^ 1 1 0 , , 

FIG. 14. Relation between time of diffusion and maximum ordinate, Hm (left), and half the 
distance between the inflection points, M (right) of diffusion curves, as obtained from meas
urements on the rabbit papilloma virus protein (32). For further explanation see text 
and equations 24 and 25. 

observed variations in apparent diffusion constant with protein concentration. 
From equation 10, for instance, it follows that 

-4=, = VD (24) 

and 

# = = J j L , where K = - ^ (25) 
Vt VD 2 V T 

The results obtained from a plot of these equations are shown in figure 14. 
While in the most dilute solutions the curves are linear in both plots, diffusion 
anomalies occurring in protein concentrations of 0.3 and 0.5 per cent are evi
denced both by the variations in the slope and by the non-linear shape of the 
curves. 

(b) Polydisperse systems 

While, with monodisperse solutions, calculations by any one of the methods 
just given yields a value for the true diffusion constant of the solute in question, 
average values are obtained if the solutions are polydisperse. 
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An estimate of the diffusion constant of the fastest moving component can be 
obtained with the aid of equation 11, provided its diffusion rate, relative to that 
of the other components, is sufficiently fast to establish a concentration gradient 
of its own, at higher values oi x. In that case a set of equations of the form 
given in equation 11 can be set up, and Aim., the limiting value of the diffusion 
constant, extrapolated from x —> oo, Hi —> 0. A more detailed discussion of the 
limitations of this method will be given in section D4 (page 378). 

The problem of the resolution of a compound diffusion curve of a polydisperse 
system into its component curves has received attention recently by Dr. L. W. 
Nordheim and the author. Assuming a solution to be composed of two compo
nents of different diffusion constants, the individual constants and the concentra
tions of the two components may be calculated as follows: 

The diffusion equation is as stated previously, 

dn = n L - ^ e - ^ 7 

Substituting for 2Dt — <r2 and for nx — n0 = kc, 

p=^e~£ (27) 
dx oV2ir 

For a solution10 containing i components with concentrations c and standard 
deviations <r, the general diffusion equation is (16) 

g(x) = / ^U e~*dc (28) 

and for i = 2 

C i V 2ir (T2V 2-K 

Calculation of higher moments and integration with respect to x yields the 
following set of equations: 

(30) 

f" 1 
/ xg(x) dx = vi = T=O\ H %=o\ = - 7 = (ci<7i + C2(T2) (31) J* ffiV2ir (T2\/2TT V2TT 

f x2g{x) dx = V* = - ^ = J U\ + - ^ = AACI = \ (C1CT2 + C2 at) (32) 
J0 (TlV27T V * (72V2TT V ^ * 

f _4 I C 2 0 4 2 x°g(x) dx = vs= - ^ i = V 1 + —^=2«rJ = - = = (drf + c2cr2
3) (33) 

(TiV 27T C 2 V 2T V 2 i r 
10 Here it is assumed tha t dra/dc is constant not only for the whole solution but also for 

the individual components. If the specific refractive-index increments of the components 
are different, refractive indices have to be used in the calculations in place of concentra
tions. For proteins of closely related properties such as those derived from a mixture by 
fractional precipitation, the refractive-index increments may be considered to be the same. 
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Here v0 is equal to one-half the area under the curve, and vx, v2, and v3 to the 
first three moments calculated for either one of the halves of the curve, with 
the centroidal ordinate as origin. 

Setting 

a = - 2K0 (34) 
VQ 

\/2?r 
VQ 

Vi (35) 

c = - 2vi (36) 
VQ 

d = ^ V3 (37) 
2?0 

we obtain 

1 be — ad 
2 ac — 62 

A / l /6c — arf\ bd — c2 /o c \ 
y 4 \a7^~b*) ~ ^ ^ (38) 

where cri and a-2 are the standard deviations of the two components, related to 
their respective diffusion constants by equation 14. Substitution of ax and o-2 

into equations 31 and 32 yields the relative and absolute concentrations of the 
two components11. 

The method as presented here is strictly applicable only if the experimental 
diffusion curves are truly symmetrical and if the solutions under investigation 
are known to be composed of only two components. If there are more than 
two, this method yields only mean values which, however, are probably closer 
approximations than those obtained from a single standard deviation. The 
method should prove particularly useful when applied to protein solutions for 
which the presence of two components has been established by sedimentation 
analysis, since it facilitates the determination of the respective diffusion con
stants without previous separation and isolation of the individual components. 
A discussion of the limitations of the method will be given in section D4 (page 378). 

The problem of the diffusion of polydisperse systems has also been considered 
recently by Gralgn (9). His calculations are directed primarily toward an 
evaluation of the average diffusion constant. The type of average has been 
shown by him to depend on the method of calculation employed. Thus with 
equation 12 the average diffusion constant D0 is 

Dt-Sm = (-~~\ (39) 

11 Equation 33 may also be replaced by the relation 

<7i (72 

where Hn, is the maximum ordinate. This method may be more convenient in that it 
eliminates the calculation of the third moments. 
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and with equation 14 

Dl = ^R* (40) 

where i is the number of diffusing components, c their respective concentration! 
and D the respective diffusion constant. The ratio of these two average diffusion 
constants 

Di'"- (ZS? ( ' 

is considered to be a measure of the degree of polydispersity. Assuming a 
logarithmic distribution function, Gral^n calculates the distribution of diffusion 
constants in relation to the relative concentrations of the diffusing components. 

4. Resolving power and accuracy 

We have stated in the preceding discussion that, for a monodisperse solution, 
the diffusion constants calculated with the aid of the various equations should 
agree with one another to within 2 per cent or better. The question arises, 
however, whether such a close agreement is necessarily an indication of mono-
dispersity or whether it may not merely simulate monodisperse behavior of an 
actually polydisperse system. This problem has, as far as we are aware, not 
been considered previously. Its importance for determinations of the state of 
dispersion of a protein solution and the determination of the molecular weights 
of proteins is obvious and can hardly be overemphasized. 

The following discussion is limited to a comparison of a monodisperse solution, 
on one hand, with one composed of two diffusing entities, on the other. If in 
equation 29 one of the two right-hand members is small enough to be neglected 
in comparison with the other, the equation can be reduced to the logarithmic 
form given in equation 11. This is possible if (1) a% = 0, in which case one is 
dealing with a monodisperse solution; (2) o-2 « m ; or (S) c2 « c\ . Case (2) 
implies that, as mentioned, at a given distance, x, the observed refractive-index 
gradient is due only to the first component and is zero for the second component. 
Case (S) implies merely that the concentration of the second component is 
altogether too small to give rise to a measurable refractive-index gradient. If, 
therefore, a = <r2, or C2 = 0, values of D calculated with equation 11 should 
be constant over the whole region of the diffusion curves and the solution may be 
said to be monodisperse. If D is found to increase with increasing values of x, 
the limiting value of the diffusion constant of the fastest moving component 
can be determined by extrapolation to x —* oo, provided condition (2) is known 
to be fulfilled. Otherwise, equation 11 is invalid and the method of "successive 
analysis" is not applicable. 

The most readily detectable difference between the observed diffusion curves 
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and normal Gaussian distribution curves exists with respect to their maximum 
ordinates. If, in equation 29, x is taken as zero, this equation reduces to 

(P) „ * « _ * + » (42) 
\dcr./i=0 (7lV27r <T2V27T 

where H]^ is the maximum ordinate, and m and <r2 are the standard deviations 
of the two components present in concentrations C\ and c2. a, it will be re
called, is proportional to the square root of the diffusion constant. 

For a monodisperse substance we have 

H- = WT, (43) 

Setting 

c = Ci + C2 

the maximum ordinate of a diffusion curve of a monodisperse solution can be 
compared with that of a curve produced by the simultaneous diffusion of two 

components. The quantity ( -^ — 1 JlOO gives the percentage change in the 

maximum ordinate of the diffusion curve of a mondisperse solution. In table 
1 values are given for this quantity, calculated for various ratios of D2/Di in 
relation to assumed values of c2/ci. <r has been assumed to be equal to <n, i.e., 
we compare the maximum ordinate of the diffusion curve of a monodisperse 
solution of the faster diffusing component with that of a solution containing 
both components in varying relative concentrations. 

I t may be seen from table 1 that the maximum ordinate of the compound 
diffusion curve is always higher than that of the diffusion curve of component 1. 
The percentage increase is smaller the more closely the two diffusion constants 
approach each other and, for a given value of D2/Di, the lower the relative con
centration of the second component. The accuracy with which the maximum 
ordinate can be determined experimentally is about 1 per cent (about ± 2/i 
for a maximum scale-line displacement of 300 n). Hence, it is practically im
possible to detect with this method of calculation the presence of about 20 per 
cent of material having a diffusion constant 10 to 20 per cent lower than that of 
the major component; the resolving power increases, however, with increasing 
differences in the two diffusion constants, and with ratios of D2/D1 approaching 
a value of 0.5, the resolution becomes sufficiently distinct to detect the presence 
of the second component12 in a concentration as low as about 5 per cent of that 
of the total protein. 

12 We have stated in a recent paper (30) that the diffusion measurements on serum al
bumin denatured by urea, or by guanidine hydrochloride, indicate the solutions to be mono
disperse. The ratios of the diffusion constants of native and denatured protein are, in 
these cases, about 0.5, and the agreement between the observed and calculated maximum 
ordinates is within the limits of the experimental error (see figure 12). This conclusion is 
in accord with the present ideas. 
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The situation becomes somewhat different if the compound diffusion curve is 
compared with that of a single substance, the diffusion constant of which lies 

TABLE 1 
Comparison of the maximum ordinate of a compound diffusion curve of a mixture of two 

components of diffusion constants Di and D2 with the maximum ordinate of the 
diffusion curve of a single component of diffusion constant Di 

Ci and Cj are the relative concentrations of components 1 and 2, D2JDi is the ratio of 
/•ff1,2 \ 

their diffusion constants, and ( rrj- •*•) *• 100 is the percentage change in the 

maximum ordinate, Hm, of the diffusion curve of a monodisperse solution of 
component 1 

Cl 

1 
0.9 
0.75 
0.50 
0.25 
0.10 
0 

Ci 

0 
0.1 
0.25 
0.50 
0.75 
0.90 
1.0 

0.9 

0 
0.5 
1.3 
2.5 
4.0 
4.8 
5.2 

r ,1 Dl 
PEE CENT CHANGE IN Hm FOK Tr 

0.79 

0 
0.6 
3.3 
7.0 

10.0 
11.2 
13.7 

0.70 

0 
2 
4.9 
9.7 

14.8 
17.8 
19.8 

0.50 

O" 
4.1 

10.4 
20.8 
31.2 
37.5 
41.6 

= 

0.25 

0 
10 
25 
50 
75 
90 

100 

0.10 

0 
126 
142 
166 
191 
206 
216 

TABLE 2 
Comparison of the maximum ordinate of a compound diffusion curve of a mixture of two 

components of diffusion constants Z)1 and D% with the maximum ordinate of a diffusion 

curve for a single component of diffusion constant Do, where \/Do = s -

Ci and ci are the relative concentrations of components 1 and 2; D1 and D2 are their diffusion 

constants; ( 7™ 1J X 100 is the percentage change in the maximum ordinate, Hm, 

of the diffusion curve of a monodisperse solution of a component with diffusion 
constant Do and concentration Co = Ci + Ci 

Cl 

1 
0.90 
0.75 
0.50 
0.25 
0.10 
0 

CJ 

0 
0.10 
0.25 
0.50 
0.75 
0.90 
1.0 

(S-1H0 

Per cent 

-14.7 
-11.2 
- 5 . 9 
+3.0 

+11.9 
+17.2 
+20.8 

between those of the two components. Such a comparison is made in table 2 
for the case in which the diffusion constant of the single substance, y/Do, is 

equal to x—- . The change in maximum ordinate is again expressed 



DIFFUSION MEASUREMENTS ON PROTEINS 381 

in terms of percentage of that of the diffusion curve for the single substance, 

f -J^- — 1 JlOO. Here, it will be noted, the maximum ordinate of the compound 

curve is lower than that of the single curve for values of C2 below 0.5 and higher 
for values above 0.5. The region near C2 = 0.5 is of interest because the per 
cent deviation approaches zero, implying that it is impossible to decide, on the 
basis of the maximum ordinate alone, whether one is dealing with a mixture of 
two components or with a single component, the diffusion constant of which is 
about half-way between that of the two components. 

Such an apparent uncertainty can be partly dispelled if, from the history of 
the experiment, predictions can be made regarding the values of the diffusion 
constants to be expected. However, the calculations given in tables 1 and 2 
refer to particular cases, and it can be readily seen that equation 29 permits 
of an infinite number of solutions depending on the choice of the values for 
Ci, C2, ci, a n d (T2. 

The problem becomes definite upon application of the statistical method of 
analysis. We have seen that the four equations (30 to 33) contain four unknowns 
and, therefore, are capable of one solution only. As a test for monodispersity, 
the following relations, which follow directly from these equations, may be 
applied: 

v0 V1 ^ W 2 Q (44) 

and 

von ^ 2^1V2 (45) 

The right-hand members of these equations should be equal to the left-hand 
members for a monodisperse solution, and smaller for a two-component solution. 
Moreover, the absolute values of the moments will be different for a mono
disperse solution, on one hand, and for a polydisperse solution, on the other. 
An illustration of these relations is given in table 3. The symbols have the same 
meaning as in the corresponding equations. Column A refers to a 1:1 mixture 
of materials the diffusion constants of which are assumed to be 7 X 10~7 and 
5 X 10-7, column B to a 1:1 mixture, diffusion constants 7 X 1O-7 and 3.5 
X 10 -7, and column C to a single substance, diffusion constant 7 X 1O-7. In 
the first case, the per cent difference is 0.8 for equation 44, and 1.5 for equation 
45; in the second case, the corresponding differences are 3.5 per cent and 5.6 
per cent. While the former values are probably too small to be detected experi
mentally, the latter are outside the limits of the experimental error. The 
differences between the absolute values calculated for the three cases are very 
marked and may be used as a guide when other evidence is available to indicate 
an expected value for D or c. 

In summarizing this discussion, it may be stated that application of diffusion 
measurements to the determination of the state of dispersion of a protein solution 
is limited by two factors, one of theoretical, the other of practical nature. The 



382 HANS NEUEATH 

former has to do with the insensitivity of Gaussian distribution curves to small 
variations in the standard deviation; the latter is related to the accuracy with 
which the curves can be obtained experimentally, even when the greatest care is 
exercised. There is, however, little doubt that the application of the above 
relations to experimental data should place diffusion measurements on a much 
more reliable basis than they appear to be at present. 

TABLE 3 
Comparison of statistical properties of diffusion curves of monodisperse and 

polydisperse solutions 
Di, Dt = diffusion constants of components 1 and 2; Ci, Cj = relative concentrations of 

both components; t = time of diffusion in seconds; vo, vi, vt, »> = moments of diffusion 
curves (for their meaning see t ex t ) ; Ai = difference between values listed in rows 10 and 
11, expressed in per cent of value listed in row 10; An = difference between values listed 
in rows 13 and 14, expressed in per cent of value listed in row 13 

(1). 
(2). 
(3). 
(4). 
(5). 
(6). 
(7). 
(8). 
(9). 
(10) 

(H) 

(12) 
(13) 
(14) 
(15) 

PEOPEMIES 

Cl 

D1 X 107 

D1 X 10' 
t in seconds 

Cl 

Ca = 1 — 

Vl 

Vl 

vovi 

VaVs 

1v\v% 
An 

7 
5 

3,400 
0 
0 
0 

5 
5 
5 

0.1280 
0.0519 
0.0270 
0.0260 

0.0258 

0.8 
0.0135 
0.0133 
1.5 

7 
3.5 

86,400 
0.5 
0.5 
0.5 
0.1184 
0.0454 
0.0228 
0.0227 

0.0220 

3.5 
0.0114 
0.0107 
5.6 

86,400 
1.0 
0 
0.5 
0.1387 
0.0605 
0.0337 
0.0302 

0.0302 

0 
0.0168 
0.0168 
0 

III. RESULTS 

The diffusion constants of a large number of proteins have been measured in 
recent years. The impetus to these determinations came largely from sedimenta
tion-velocity measurements, which require a knowledge of the diffusion constants 
for the determination of molecular weights. Measurements with the light-
absorption and the light-refraction methods have been carried out most ex
tensively in Svedberg's laboratory, where these methods were originated, in 
the laboratory of J. W. Williams, and in that of the present author. Before 
considering these results it may be of interest to compare the values of diffusion 
constants as obtained for certain proteins by the various experimental methods 
previously discussed. This is done in table 4. 

The results obtained with the porous-disk method are more susceptible to 
experimental error than those obtained from measurements of the absolute 
diffusion rate, for the reasons already given. The discrepancies to be noted in 
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table 4 are probably due to a large extent, to differences in the preparation of the 
materials employed by the various investigators. I t would be of interest 
to see how well the results would agree if one and the same material were to be 
used for comparative measurements. 

Sufficient material has accumulated to make it possible to estimate the preci
sion of the refractometric-scale method. Lamm's (16) measurements on 
potassium chloride and pentaerythritol, analyzed by means of the methods of 
calculation considered previously (section D3), reveal a standard deviation from 

TABLE 4 
Comparison of the diffusion constants of certain proteins as determined by various 

methods of measurement 
DH 2 0 = diffusion constant calculated for 25°C. in water 

PROTEIN T 

°C. 

8 
20 
25 

5 
0 

20 
20 

25 
20 
20 
0 

UETHOD 

Porous disk 
Scale 
Scale 

Porous disk 
Porous disk 
Light absorption 
Scale 

Porous disk 
Light absorption 
Scale 
Schlieren scanning 

n2S° 
%sO 

cm.2 per second 
XiO7 

8.9* 
10.3f 
10.0,9.21 

6.9* 
8.0 
7.2 
7.9 

11.1§ 
8.7 
8.7 
8.71T 

RErEEENCE 

(35) 
(42) 
(29) 

(36) 
(10) 
(S3) 
(42) 

(21) 
(53) 
(42) 
(18) 

* Corrected for erroneous value of the diffusion constant of 0.1 N hydrochloric acid origi
nally used in the calibration of the cell (2). 

t Unfractionated crystalline preparation used by the investigator. 
% The two values refer to two crystalline fractions differing from one another in solu

bility. 
§ This value may be in error, since the measurements were carried out in the absence of 

salts. 
It Extrapolated to infinite dilution according to Poison's data (42). 

the mean not exceeding 1 per cent. With monodisperse protein preparations 
such as egg albumin (42), excelsin (42), serum albumin (29), serum pseudo-
globulin (29), and others, the standard deviation from the mean lies close to 2 
to 3 per cent. 

In the following, we shall examine the factors which have been found to 
influence the diffusion rate of proteins and which, unfortunately, have not 
always received the attention they deserve. The most important of these 
factors are the time of diffusion, the temperature, the solvent viscosity, and the 
solute concentration. 



384 HANS NEURATH 

A. TIME OF DIFFUSION 

While the majority of measurements that have been published do not reveal 
any significant drift of the apparent diffusion constant with time, there has 
been noted in several instances a gradual decrease of the diffusion rate, ap
proaching asymptotically a constant value after longer time intervals. 

This effect has been observed with both the porous-disk method (10, 57) and 
the refractometric-scale method. Of the monodisperse proteins studied by 
Poison (42), about one-fourth revealed a downward drift of D with time, whereas 
the remainder did not. Of the experiments carried out in the author's labora
tory, about one-half exhibited this effect. With secalin, studied by Andrews 
(1), D decreased to as much as one-fourth of the initial value. Longs-
worth's recent measurements on egg albumin13 show a downward drift at pH 
4.64 but not at pH 11.81. The origin of this effect is rather obscure and its 
elucidation must await further detailed measurements on monodisperse solutions; 
it also remains to be seen whether in experiments where this effect is observed 
the mean value or the limiting value should be taken as the best approximation 
to the true diffusion constant. 

B. TEMPERATURE 

The influence of temperature on the diffusion constant is given by the equation 

£* = £ - (46) 
where Dx and Dv are the diffusion constants at the absolute temperatures Tx 

and Ty , respectively, and t\x and 173, the corresponding viscosities of the solvent. 
The equation has been verified experimentally by Tiselius and Gross for phyco-
erythrin (53) (measured at 20° and 3O0C.) and by Poison for egg albumin (42) 
(measured at 15°, 20°, and 25.10C). Longsworth's measurements on egg 
albumin (18), carried out at O0C, likewise agree with Poison's data when cor
rected for the temperature by means of equation 46. 

c. VISCOSITY 

While this factor will be considered more fully in the following paragraph, it 
may be said here that, by and large, the viscosity correction 

Dx = Dv^ (47) 
Vx 

holds, for values of Vv/v* not exceeding 1.1. Here Dx and Dy are the diffusion 
constants measured at a constant temperature in solvents of viscosities i\z and 
•qy, respectively. Diffusion constants are usually referred to water as a solvent, 
in which case i)x is the water viscosity at a given temperature (20° or 25°C.) and 
i)y that of the solvent into which diffusion takes place. 

Poison's measurements on egg albumin (42), in ammonium sulfate solutions, 
13 The author is indebted to Dr. L. G. Longsworth for placing these data at his disposal. 
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varying in relative viscosity (with respect to water) between 1.090 and 1.437, 
indicate, however, a slight increase in the apparent diffusion constant when 
corrected for the solvent viscosity by means of equation 47; recent measurements 
on serum albumin in solutions of sucrose, as well as in solutions of urea and 
guanidine hydrochloride (30) (17/17 0 varying between 1.15 and 1.30), cast some 
doubt on the strict validity of equation 47. In these instances, the relative 
viscosity influential in retarding the diffusion rate appears to be about 10 per 
cent higher than that actually measured. This problem is being further in
vestigated in the author's laboratory. 

D. THE INFLUENCE OF CONCENTRATION ON THE DIFFUSION RATE 

We have mentioned at the outset that the validity of the diffusion equation 3 
requires the independent motion of the diffusing entities; under these conditions 
the diffusion rate is independent of the solute concentration. While on a molar 
basis, protein solutions of 1 to 5 per cent concentration are still in the "infinite 
dilution" range, yet the diffusion rate is not independent of concentration. This 
non-ideal behavior is reflected also by sedimentation and viscosity and is fre
quently met with in solutions of high-molecular-weight compounds. 

The influence of concentration on the diffusion rate may be studied by either 
one of the following methods: (1) the initial concentration difference is varied 
by increasing the concentration of the solution and keeping that of the solvent 
at zero; {2) the initial concentration difference is kept constant, but the absolute 
concentration of both solution and "solvent" is increased. The first method is 
limited in scope by the optical disturbances occurring with high refractive-index 
gradients, as discussed in section D2 (page 22). It can be used up to protein 
concentrations of about 1.5 per cent. 

Where a concentration dependency of the diffusion constant, within the limits 
of about 0.2 and 1.5 per cent, is observed, the true diffusion constant can be 
determined by extrapolation to zero concentration. This is analogous to the 
procedure used in other physical measurements, such as those of osmotic pressure 
or sedimentation rate. Of course, this method is restricted in applicability if, 
for instance, particle dissociation occurs in very dilute solutions, as has been 
observed with hemoglobin (40). A protein the diffusion rate of which is fairly 
independent of the concentration up to about 1.4 per cent is egg albumin, as 
can be seen from table 5. With the tobacco mosaic virus protein (33), on the 
other hand, the diffusion constant is concentration dependent in concentrations 
as low as 0.2 per cent. This is evidenced by the variations in the calculated 
values of the diffusion constant, and also by the shape of the individual diffusion 
curves. They are skewed, as shown in figure 15, and the position of the maxi
mum ordinate shifts with time toward regions of lower concentration. These 
phenomena have been related to a restriction of the diffusion rate in the regions 
of relatively high concentration, owing to interparticle attraction, and to a cor
responding acceleration in regions of relatively lower protein concentration (33). 

In the second method for studying the influence of concentration on the diffu
sion rate, the absolute solute concentrations are varied in both solute and 
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"solvent," while their relative concentrations remain constant. Thus, the 
diffusion of a 1 against a 0 per cent solution, of a 2 against a 1 per cent solution, 
or of a 6 against a 5 per cent solution should proceed with equal rate if the diffu
sion constant is concentration independent. Such measurements have been 
carried out by Poison (42) on six different proteins, varying in molecular weight 
between 17,000 and 750,000, and in concentrations ranging from 1 to 9 per cent. 

TABLE 5 
Diffusion constant of egg albumin in relation to protein concentration (Poison {!$)) 

PROTEIN CONCENTRATION 

per cent 

1.4 
0.91 
0.88 
0.83 
0.7 

„20° 

X 10i 

7.64 
7.71 
7.76 
7.73 
7.71 

SOLISC/VT SOLUT/OH 

FIG. 15. Comparison of an ideal Gaussian distribution curve with the diffusion curve as 
obtained from measurements on a 1 per cent solution of tobacco mosaic virus protein. The 
open circles indicate the position of the ideal curve; the solid line refers to the experimental 
curve plotted in normal coordinates (33). 

In evaluating his results, Poison assumes that the frictional resistance effective 
in retarding the diffusion rate is only that of the buffer solution in which the 
proteins were dispersed, whereas the protein molecules contained in the "solvent" 
do not contribute to the friction. Thus, in systems in which, for instance, a 
buffered solution containing 6 per cent of protein diffuses against a buffered 
5 per cent solution of the same protein, the viscosity correction is assumed to be 
^buffer/̂ H2O > i-e'> the same as that employed in cases where the protein diffuses into 
the buffer itself. On this basis, Poison arrived at the conclusion that with some 
proteins, such as hemocyanin Homarus, the diffusion constant increases very 
slightly with increasing protein concentration, and that with amandin it remains 
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constant, whereas with serum globulin, egg albumin, lactoglobulin, and erythro-
cruorin Lampetra it decreases as the concentration is increased. Poison's data 
are tabulated in column 3 of table 6 and are compared with the respective values 
of Dx, the limiting value of the diffusion constant obtained by extrapolation 
to zero concentration14 (column 7 of table 6). 

If, however, one applies the full correction for the viscosity of the solution 

^x per cent protein \ 

TO2O / ' 
into which diffusion takes place 

• ( * 
values are obtained as given 

TABLE 6 
Diffusion in concentrated solutions 

U) 

Egg albumin (42)* 

Lactoglobulin (42) 

Serum albumin (5) 

Sucrose (42) 

Sucrose in 4 per cent serum al 
bumin (5) 

Amandin (42) 

Hemocyanin Homarus (42) 

Hemoglobin Lampetra (42) 

(2) (3) 

CONCENTRATION 

Solu
tion 

3 
6 
9 
5.5 
5 
6.7 
5 

10 

1 

4.5 
8.66 
3.4 
6.8 
1.66 
3.33 

Solvent 

2 
5 
8 
5 
4 
5.7 
4.5 
9 

0 

4 
8 
2.5 
5.9 
1.08 
2.71 

W 

X 10' 

7.43 
6.94 
6.11 
6.46 
5.54 
5.20 

42.8 
39.9 

41.4 

3.55 
3.57 
2.80 
2.83 

10.17 
9.34 

(5) 

l / i o 

SOLVENT 

1.089 
1.240 
1.48f 
1.246 
1.213 
1.348f 
1.116* 
1.280J 

1.213 

1.23 
1.64 
1.13 
1.36 
1.05§ 
1.13§ 

x io' 

(8) (9) 

(CALCD.) 

2 45.6 0.907; 45.7 

0.958 
0.884J 
0.787| 
0.885| 
0.907! 
0.8501 

0.939! 
0.8751 

7.74 
77 
78 
26 
11 
15 
1 

45.6 

0.98 
0.98 
1.00 
1.02 
0.955^ 
1.02 

3.95 
5.00 
2.98 
3.36 

10.4 
9.95 

* The numbers given in parentheses refer to the observer as listed in the bibliography. 
t Extrapolated values. J Interpolated value. § Calculated from the dissymmetry constant 
with the aid of the Perrin and Simha equations (29). 

in column 6 of table 6. I t will be noted that, according to these calculations, 
the apparent diffusion constant increases with increasing protein concentra-

14 While Poison believes that the concentration dependency of a protein is directly 
related to its molecular volume (the larger the volume, the smaller the interparticle distance. 
and the greater the concentration dependency), it appears to us that such a viewpoint neg
lects many other factors which are known to influence the interaction between molecules of 
colloidal dimensions. Thus, for instance, the shape of the molecules and the nature of their 
surface undoubtedly play an important role. This can be seen from a comparison of the 
diffusion behavior of the tobacco mosaic virus protein (33), on one hand, and of the rabbit 
papilloma virus protein on the other (32). Both have molecular weights of comparable 
magnitude, but the concentration dependency of the diffusion constant of the rod-shaped 
tobacco mosaic virus protein molecules is considerably greater than that of the more nearly 
symmetrically shaped molecules of the rabbit papilloma virus protein. 
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tion. Such could only be the case if the molecules either dissociate into 
smaller units, or become more nearly spherical in shape. The fact, however, that 
a simple substance like sucrose follows the same trend, together with the known 
stability of some of these proteins, discredits such a hypothesis and calls for a 
closer examination of the problem. In its broadest form, it can be stated as fol
lows: What is the frictional resistance encountered by a molecule when it diffuses 
through a medium containing molecules of its own kind or molecules of com
parable size? We have seen in the preceding discussion that the solvent can, 
by and large, be considered as continuum as long as the solvent molecules are 
small in comparison with those of the solute; in that case, the simple viscosity 
correction as given in equation 47 is applicable. The data given in table 6 
demonstrate that, in the present case, the calculated values for the diffusion 
constant are too high if the full viscosity correction is applied, and too low, if 
the contribution of the large molecules to the frictional resistance is neglected. 

i.O 

0.7 

0 0.1 0.2 0,3 0.4 a 5 

—(7/v0—* 

FIG. 16. Diffusion in concentrated solutions. A plot of DfDx against the specific vis

cosity of the "solvent" L - - 1 J, according to equation 48. O, egg albumin; D, lactoglo-

bulin; • , serum albumin, A, sucrose; <>, sucrose in serum albumin. Compare also table 6. 

A thorough discussion of the problem would greatly exceed the scope of this 
review; however, it may be of interest to present here an empirical relation 
which, in the course of a preliminary investigation, Dr. G. R. Cooper and the 
author have found to be applicable to the diffusion of protein into protein, of 
sucrose into sucrose, and of sucrose into protein (5). In all these cases, the 
diffusing molecules are either of comparable size or smaller than those contained 
in the medium into which diffusion occurs. The experimental data employed 
were those of Poison (42), as well as unpublished measurements carried out in 
this laboratory on the diffusion of concentrated serum albumin solutions, and 
on the diffusion of 1 per cent sucrose dispersed in a 4 per cent serum albumin 
solution and diffusing into the 4 per cent albumin solution. 

A linear relation was obtained when D/D x was plotted against 

where D is the measured diffusion constant, Dx its limiting value for infinite 

dilution, and ( - - 1) the specific viscosity of the medium into which diffusion 
\Vo / 

took place. The data are plotted in figure 16. In this plot, only those mono-

( < - , 
Vw 
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disperse proteins have been considered for which the observed diffusion constant 
decreases with increasing concentration. Poison's data for serum globulin 
were omitted on account of the polydisperse nature of the preparation employed 
by him. The straight line drawn through the points in figure 16 follows the 
equation 

£ - l - * ( l - l ) (48) 
Dx V)O / 

where k turned out to be 0.446. In column 9 of table 6, there are given values of 
DfDx , calculated by means of equation 48. Comparison with the Dx values 
given in column 7 of this table indicates a very satisfactory agreement between 
these two sets of data. The physical meaning of equation 48 is as yet obscure. 

It will be recalled that (— — 1 J, the specific viscosity of a solution, is propor-
V?o / 

tional to its volume concentration; hence, the equation may also be written as 

£- = 1 - ft'* (49) 

where <j> is the ratio of the volume of the dispersed phase to that of the dispersion 
medium16. 

While no theoretical explanation will be offered at this time, nevertheless it 
is remarkable that this equation is equally valid for the high-molecular-weight 
proteins as well as for the low-molecular-weight sucrose. This fact suggests the 
equation to be of universal application. When Poison's measurements on 
hemocyanin Homarus and amandin are evaluated with our equation, one finds 
an increase of the apparent diffusion constant with increasing protein concentra
tion. This might be due either to a splitting of the molecules, or to a decrease 
in molecular asymmetry without concomitant changes in size. The former 
interpretation appears to be more likely; Pedersen has found protein-protein 
interaction to cause, with certain proteins, dissociation into smaller units (40), 
and the hemocyanins in general, and amandin in particular, are known to be 
susceptible to dissociation. Moreover, the dissymmetry constants of both 
proteins in the native state are relatively low and could not decrease to the 
extent required by the increase in diffusion constant if the effects were ascribed 
entirely to changes in molecular shape. 

With Lampetra hemoglobin, the observed decrease in diffusion constant is 
larger than that predicted by equation 48, suggesting, on the basis of the present 
considerations, an increase either in molecular asymmetry, or in molecular size, 
or both. 

The empirical equation 48 may conceivably find application also to sedimenta
tion-velocity measurements. Here, too, the sedimenting molecules are moving 
through a medium containing molecules of their own kind and should thus be 
affected by their frictional resistance. While in very dilute solutions this effect 
can be neglected, it should become significant in more concentrated solutions. 

15 For solutions of spherical particles, k should be 1/2.5 = 0.4. The close agreement 
between tha t value, and the value of 0.446 obtained here, is probably fortuitous. 
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The absolute values for the diffusion constants of proteins vary between about 
1 X 10~6 and 1 X 1O-7. With the large virus proteins, considerably lower values 
have been found, about 3 X 1O-8 for tobacco mosaic virus protein and 6.4 X 10~8 

for the rabbit papilloma virus protein, for instance. In table 7 are summarized 

TABLE 7 
Observed diffusion constants and calculated molecular weights and dissymmetry constants of 

certain proteins* 

Ribonuclease 
Pepsin B 

A 
Oxytocic pressure hormone 
Horse globin 
Horse serum albumin (McMeekin)... 
Horse hemoglobin (recombined) 
Diphtheria toxin 
Horse serum albumin (Hewitt) 
Digested antitoxin (diphtheria) 
Myogen 
Catalase 
Secalin 
Horse pseudoglobulin GI 

GII 
Antitoxin (diphtheria) 
Horse serum albumin denatured 

by 8 M urea 
by 8 M guanidine hydrochloride... 

Horse pseudoglobulin GII denatured 
by 5.6 M guanidine hydrochloride. 
by 8 M urea 

Myogen denatured by 6 M urea 
Tomato bushy stunt virus 
Calf thymus nucleohistone 
Rabbit papilloma virus 
Tobacco mosaic virus 

TfcO X 10' 

•6t 
.0 
.2 
5 
5 
4 
2 
1 
0 
7 
5 
2 

1 
7 

0 
0 
7 
2 
2 
59 
3§ 

M 

12,700 

30,000 
37,000 
69,000| 
69,000 
70,000 
73,000t 
98,000 
150,000 

174,0001 
170,000| 
150,000 

78,00Ot 
81,00Ot 

75,00Ot 
170,000t 
72,000 

10,000,000 
2,300,000 
47,000,000 
60,000,000§ 

f/fo 

1.04 

1.18 
1.47 
1.21 
1.23 
1.22 
1.25 
1.14 
1.26 

1.42 
1.39 
1.4 

1.86 
2.03 

1.95 
1.95 
3.2 
1.27 
2.5 
1.49 
2.5§ 

HEFEEENCE 

(43) 
(29) 
(29) 
(54) 
(8) 
(29) 
(8) 
(41) 
(29) 
(41) 
(7) 
(47) 
(D 
(29) 
(29) 
(38) 

(30) 
(30) 

(31) 
(31) 
(7) 
(28) 
(4) 
(32) 
(33) 

* Including only those data that have been reported since the publication of Svedberg 
and Pedersen's monograph (49). For previous work see Table 48 of the monograph. 

t Determined with the Tiselius electrophoresis apparatus. 
t Calculated from diffusion and viscosity data. 
§ This value is tentative, in view of the nature of the preparation employed in diffusion 

measurements, and in view of the observed diffusion anomalies. 

the results of the most important diffusion measurements that have been re
ported since the publication of Svedberg and Pedersen's monograph (49). 
Unless otherwise indicated, the refractometric-scale method was used for these 
measurements. There are given also in this table values for the molecular 
weights and dissymmetry constants of the proteins in question. 
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IV. APPLICATIONS 

The information that can be obtained from diffusion measurements on proteins 
is threefold. In the first place, the size of the protein molecules may be obtained 
directly from diffusion data if the molecules are known to be spherical in shape; 
if they are non-spherical, diffusion measurements have to be supplemented by 
some other physical or chemical method which furnishes a measure of a second 
parameter of the dimensions of the molecules. In the second place, it is possible 
to determine from changes in the diffusion rate any changes in the size or shape 
of the molecules which may have occurred as a result of chemical or physical 
reactions. Lastly, diffusion measurements yield an estimate of the degree of 
homogeneity of a protein solution. 

The relation between diffusion constant and molecular dimensions has been 
reviewed on various recent occasions (20, 25, 26, 29, 37) and need not be con
sidered here in any detail. The relation between diffusion constant and fric-
tional coefficient is, generally, 

D=j- (50) 

and for spherical molecules, 

where 

D0 = ^ (51) 

/o = QvI]Nr 

N is the Avogadro number, r\ is the viscosity of the solvent, and r is the molecular 
radius. For spherical molecules, the diffusion constant is, therefore, related to 
the molecular weight by 

RT (ZMV\1IZ . . 
U~ Q^N \TM) {bZ) 

If the molecules are non-spherical, we have the relation 

_ M(I - Vp) _ RT 
f - ^ (53) 

and 

M - W=Vt) (54) 

This equation is usually employed for molecular-weight determinations from 
combined diffusion and sedimentation-rate measurements. Here s is the 
sedimentation constant, V the partial specific volume of the solute, and p the 
density of the solvent. Molecular weights can also be determined from diffusion 
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measurements combined with any method which yields a value for f/fo, the 
dissymmetry constant. The corresponding relation is 

M = KWV(JT (55) 

where 

162TrV^2 

The dissymmetry constant is related to the apparent molecular shape, as 
expressed by the ratio of a major to a minor axis of a prolate or oblate ellipsoid 
of revolution, by the Perrin equation; hence, any method that relates to the 
apparent molecular shape can be used, in conjunction with diffusion measure
ments, for molecular-weight determinations. I t has already been pointed out 
(29) that values obtained in this manner are essentially independent of the 
degree of hydration. 

Combined diffusion and viscosity measurements have been carried out in 
this laboratory on a large number of native and denatured proteins, and the 
agreement between the values obtained in this manner and those obtained by 
other methods, such as those of osmotic pressure or combined diffusion and 
sedimentation, is rather satisfactory (29, 30, 31). Measurements of the dielec
tric dispersion or double refraction of flow (37) can also be used for an estimation 
of the molecular shape and, in combination with diffusion data, of the molecular 
weight. 

If the molecular weight of a protein is known, diffusion measurements lend 
themselves to an estimation of the dissymmetry constant, and hence of the 
apparent molecular shape. This term has been used by us to denote the shape 
that is calculated if the influence of hydration is neglected (25). It should be 
emphasized here that it was never inferred that the influence of hydration is of a 
negligibly small order of magnitude; rather, these calculations were made merely 
to show what kind of result is obtained if the dissymmetry factor is interpreted 
solely in terms of molecular asymmetry. The estimate of about 33 per cent 
hydration made in more recent calculations (29) appears to represent a good 
approximation. The relation between hydration and molecular asymmetry 
has been considered by Kraemer (12, 13) and others (29, 37) and need not be 
discussed here. It is only in the case of spherical shape that the degree of 
hydration can be estimated from diffusion data, in which case (12, 13) 

where D is the observed diffusion constant, Do that calculated for a spherical 
anhydrous molecule, Va the partial specific volume of the anhydrous protein, 
Vi that of the solvent, and r the amount of solvent combined with 1 g. of an
hydrous protein. This equation assumes the density of the adsorbed solvent 
to be the same as that of the liquid in bulk. 
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This approach to the general problem of the relation between diffusion con
stant and molecular dimensions contains a number of theoretical approximations 
and uncertainties which call for further attention. The brief discussion has 
been given merely to illustrate the importance of diffusion measurements for 
an estimation of the dimensions of protein molecules. 

Many of the ideas expressed in this paper have evolved as a result of dis
cussions with Dr. L. W. Nordheim of the Department of Physics, Duke Uni
versity, and with Dr. G. R. Cooper and Mr. John O. Erickson of this Depart
ment. The author is also indebted to the Rockefeller Foundation and to the 
Lederle Laboratories, Inc., for financial support which has made the work 
carried out in this laboratory possible. 
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