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I. INTRODUCTION 

There are few domains of physical science in which so much experimental 
effort over nearly a century has yielded so little accurate data as the field of diffu­
sion in liquid systems. The numerical difficulties inherent in the computation 
of the diffusion coefficients from rate measurements, the elimination of turbulent 
flow, the very accurate control of temperature, and the analytical accuracy 
required are all contributing obstacles to the attainment of high accuracy. 

In general, the theory of diffusion in liquid systems is undeveloped. It is 
difficult and complicated and, owing to the scarcity of experimental results of 
fundamental nature, has not made great progress. However, electrolytes possess 
certain properties which have made possible the development of an exact theory 
for very dilute solutions. As the concentrations of strong electrolytes approach 
zero, the properties of the ions and in particular the mobilities approach addi-
tivity. This behavior was utilized by Nernst (71) to compute the limiting value 
of the diffusion coefficient from the knowledge of the ionic mobilities at infinite 
dilution. On the other hand, the diffusion coefficient varies with the electrolyte 
concentration. In dilute solutions, this variation may be theoretically computed 
because of the fortunate fact that the character of the force between ions is 
known. The theory of concentrated solutions is obscure because the short-range 
forces of interaction between the ions and the forces between the ions and the 
solvent are such that the net influences of all these factors cannot be predicted by 
Coulombic interaction alone. 

In recent years, the diffusion of molecules in liquid media has been the subject 
of numerous reviews both in journals and in books (13, 19, 30, 72, 107). The 
modern theory of diffusion of electrolytes and an analysis of the most accurate 
determinations of diffusion coefficients up to 1943 has been presented in a sys­
tematic but specialized form by Harned and Owen (41). More recently, at a 
colloquium under the auspices of the New York Academy of Sciences on "The 
Diffusion of Electrolytes and Macromolecules in Solution" (1), a number of 
specialists have considered many of the aspects of the subject. All of these 
contributions are devoted to restricted phases of the field and none includes the 
fundamental theory of irreversible processes. 

In this review, as indicated by the preceding table of contents, we shall strive 
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to coordinate into a logical and reasonably complete treatment the scattered 
contributions to the theory. Since diffusion comes under the same class of flow 
phenomena as electrical conductance and heat flow, we shall begin with the 
general theory of irreversible processes as a necessary foundation for the discus­
sion of electrolytic conductance and diffusion (77, 78). Then, after the intro­
duction of some necessary relations from the interionic attraction theory (17,18), 
we shall develop the present theory of the diffusion of electrolytes (79, 80) and 
finally derive the "dissipation function" for electrolytic conductance and dif­
fusion. This procedure will bring together for the first time the somewhat 
scattered literature of this subject and provide a phenomenological and theoreti­
cal background for the experimental part of the review. 

Of the many experimental methods, we shall describe in some detail only 
those which have led to good numerical results. Fortunately we shall be able to 
establish values for the differential diffusion coefficient of potassium chloride in 
dilute aqueous solution (39, 40) which can be used in establishing the theory at 
concentrations from 0.001 to 0.01 normal and also as a standard for the calibra­
tion of diaphragm cells. It is important to note that this makes possible a 
new field of investigation, since no previous measurements of differential diffusion 
coefficients of high accuracy have been reported below 0.05 normal concentration. 

We conclude with some general considerations concerning the extension 
of theory to systems of more than two components and with a summary of the 
present status of the quantitative aspect of the subject. 

II. FUNDAMENTAL THEORY AND DEFINITIONS1 

1. Fick'sfirst law 

Although diffusion in liquid solutions was observed by Parrot (81) as early 
as 1815, the first measurements of consequence were made by Graham (34, 35) 
and the first theoretical contribution by Adolph Fick (23) in 1855. If the 
quantity of solute which diffuses through unit area in unit time is J, hereafter 
denoted "the flow," then Fick's first law takes the form 

J = nv = -S)Vn = - 'DRVfi (1) 

where n is the number of molecules of diffusing component per cubic centimeter, 
v its velocity, 2) the diffusion coefficient of the solute, and /u its chemical potential. 
V is the operator "del", and consequently Vn and Vn are the gradients of the 
concentration and chemical potential, respectively. 

The flow is usually defined relative to a fixed plane of reference. This is 
sufficient for many applications, but is not valid for the general theory of the 
diffusion of electrolytes, since volume changes result from the mixing of the com­
ponents. This difficulty may be remedied by defining the flow of a component 
relative to a frame of reference moving with the solvent (80). A bulk velocity 
defined by 

v s SJiFi = -2,UiTiVi (2) 

1 As far as possible, the symbols used are those of Harned and Owen (41). 
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where V0, Vi, • • • are the partial volumes of the components, may be employed 
in the general treatment of this phenomenon. For the present, we shall con­
sider only the simpler case where the partial volume effect is omitted. 

The form of Fick's law as stated by the last expression on the right of equation 
1, which recognizes that the "force" causing diffusion is the gradient of the 
chemical potential of the diffusing substance, was first suggested by Hartley (42) 
and is a necessary basis for all our subsequent derivations.2 Obviously, 

9-(s)„* (3) 

If the diffusion is restricted to motion in the awiirection only, then Fick's first law 
assumes the familiar form: 

J - - 2 > £ W 

This fundamental law for the flow of matter has the same form as that of 
the flow of electricity (Ohm's law) or the flow of heat (Fourier's law). Here the 
gradient of the concentration is analogous to the electromotive force and to the 
gradient of the temperature. In the discussion of the theory of simultaneous 
irreversible processes, we shall make full use of this analogy and refer to the 
gradients of concentration, electrical potential, and temperature as "forces" 
in a generalized sense. 

We shall now introduce the relation which defines the activity coefficient 
(r = a In): 

M = M° + kT In fn (5) 

where k is the gas constant per molecule, n is the chemical potential of the dif­
fusing substance, n" is its chemical potential in a standard state, and n is the 
number of molecules per cubic centimeter. For a real solution, it follows from 
equations 3 and 5 that 

nffi = kT<DK \l+n d-^~\ (6) 

In the limit when n approaches zero and f unity 

3) = — 9Tl (7) 
n 

The units in which the above equations have been expressed were chosen 
because they are convenient for theoretical developments.8 To convert to 
more familiar units, we let 

n = Nn; nN = fi (8) 

s Nernst's derivations assumed that the "force" which causes migration is the gradient 
of the osmotic pressure. Later, Schreiner (87) substituted a function of the activity for 
osmotic pressure. 

* We draw attention to this rather confusing situation at this juncture so that the reader 
will have it in mind when more complicated derivations are involved. 
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where N is Avogadro's number and n is in mols per cubic centimeter. With 
these changes, equation 1 becomes 

J = riv = -9KV* = - ( | | ) v , u (9) 

where J is the flow in mols per cubic centimeter per second. Further, 

a = d± SR = iooo9ii Je (io) 
dn dc 

where c is the concentration in mols per liter. For an electrolyte dissociating 
into v ions, equation 5 becomes 

M = M° + vhT In f±n± (11) 
and 

where y± is the conventional mean activity coefficient defined on the molar 
scale (41). In these units the diffusion coefficient is related to 9K according to 
the equation: 

3) = AQOORT^ (l + cd-^A (13) 
C \ OC / 

2. Fick's second law 

By substituting the value of nv given by equation 1 in the equation of con­
tinuity 

| j + V . ( n v ) - 0 (14) 

where V- is recognized as the divergence, we obtain 

$} = V-S)Vn (15) 
at 

in general and for unidirectional flow 

S = ^-25? <16) 
dt dx dx 

This is the law for the differential diffusion coefficient as denned by equation 1. 
If 3) is independent of the concentration, then 

^ = S) *!? (17) 

the familiar expression for Fick's second law. 

S. Differential and integral diffusion coefficients 

In general 2) is a function of the concentration, so that it is necessary to 
distinguish between differential (S)) and integral (3),-) diffusion coefficients. 
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The integral coefficient is an average value over a concentration range and is 
given by the integral 

S),- = —— f ' 2) dn (18) 
Ui — n\ J m 

Of these two quantities, the differential diffusion coefficient is the one required 
by theory. Unfortunately, most measurements in the past yielded integral 
coefficients and true differential coefficients were rarely determined. Gordon (32) 
has aptly described the situation: "The resulting confusion has had some unfor­
tunate consequences, since the 'diffusion constant' is usually only a constant in 
the Pickwickian sense of the term. Thus, one finds the quantity determined 
in an experiment in which a solution, initially decinormal, is allowed to diffuse 
into water, referred to as the 'diffusion constant for 0.1 N.' The fact that it 
could, with equal justice, be spoken of as the value at infinite dilution is con­
veniently ignored." We shall have occasion later to discuss Gordon's contribu­
tion to the clarification of this situation. 

If measurements of sufficient accuracy can be obtained in the later stages of 
diffusion when {rh — nd becomes small, the value of S),- will approach closely the 
value of 2) (58). Later, we shall discuss conductance measurements which take 
full advantage of this fact. 

III . GENERAL THEORY OF IRREVERSIBLE PROCESSES (77, 78) 

A detailed presentation of the theory of diffusion of electrolytes requires an 
exposition of the fundamental principles which underlie the behavior of combined 
irreversible processes. As illustrations of phenomena in which two or more 
irreversible processes may proceed simultaneously, we cite thermoelectric phe­
nomena (Peltier effect), heat conduction in anisotropic media, and transport 
processes in electrolytic solutions. In the Peltier effect, the flow of electric 
current in a system of conductors of different metals will produce heat, and con­
versely, if the metallic junctions are maintained at different temperatures, elec­
tricity will flow. In anisotropic media, temperature gradients and the corre­
sponding "flows" of heat will be different along the three space coordinates 
required to express the phenomena. General equations for this problem will 
involve combined relations of the flows in three directions. In electrolytic 
diffusion where two or more ions are present, interactions between the individual 
transport of the ions occur. The general theory of the reciprocal relations in 
such combined processes has been developed by Onsager (77, 78). It forms an 
essential background for the theory of electrolytic conductance and diffusion. 
A general but abbreviated presentation of this theory will be sufficient for our 
immediate purpose. 

A. RECIPROCAL RELATIONS IN IRREVERSIBLE PROCESSES (THEORY OF ONSAGER) 

1. Introduction to phenomenological relations 

The earliest reciprocal relation of the coupled processes involved in thermo­
electric phenomena (Peltier effect) was recognized by Thomson (Lord Kelvin) 



DIFFUSION IN ELECTROLYTE SOLUTIONS 467 

(95). In the thermoelectric circuit let Ji be the electric current and J2 the heat 
flow. Let Xi equal the electromotive force which drives the electric current and 
X2 the "force" in corresponding units which causes the flow of heat and will be 
proportional to the gradient of the temperature. Then 

x 2 = - ± v : r (19) 

where T is the absolute temperature. If the flows of current and heat happen to 
be independent, then 

Xi = Ri Ji 

v _ r > ( 2 0 ) 

X2 — Rz J2 

where Ri and R2 are the electrical and thermal resistances, respectively. How­
ever, since the thermal and electrical processes may interact, it seemed probable 
to Thomson that the more complicated phenomenological equations 

Xi = jRuJi -+- .Ri2J2 
(21) 

X2 = i?2iji + .R22J2 

must be employed. He also thought it plausible that the assumption of the 
reciprocal relation 

•R2i
 = -Ri2 (22) 

was correct. This assumption has been generally accepted, since it has been con­
firmed by the best available measurements. 

Thermoelectric phenomena in electrolytes investigated by Eastman (21) 
are examples of a situation where three simultaneous processes are superimposed 
on thermodynamic equilibrium. Imagine two chemically identical reversible 
electrodes connected by a solution of a suitable electrolyte and let these be 
immersed in thermostats at two different temperatures. An electromotive force 
will be generated and electric current Ji will flow. Simultaneously, diffusion 
of matter and transfer of heat will occur. If J2 is the flow of matter and J3 

that of heat, the extension of the previous result for coupled processes will lead 
to the three phenomenological equations 

Ji = LnXi + Li2X2 + I/13X3 

J2 = L2iXi + L22X2 + L23X3 (23) 

J3 = L31X1 + L32X2 + L33X3 

and reciprocal relations of the type 

Li2 = Ln', Lu — L3I; L23 = Ls2 (24) 

may be expected to occur. 
Diffusion of s kinds of ions in a liquid medium is another phenomenon which 

may be expected to follow a similar pattern, provided interactions take place 
between ions of different kinds. In this case, equation 23 may be written in the 
general form 

J i = - E 9 R * V W (25) 
k-l 
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where V//*, the gradient of the chemical potential of each ion, is the analogue of 
the force Xj-, and 911« corresponds to Lik. Here again, we suspect that 

91U = 9K*< (26) 

All these considerations suggest that there may be a general class of reciprocal 
relations in irreversible processes which may be derived from fundamental con­
siderations of molecular mechanics. 

2. Reciprocal relations in chemical reactions 

Consideration of a triangular monomolecular chemical reaction in which three 
forms A, B, C of a substance exist simultaneously in the same phase yields 
analogous results. In this case, represented by the scheme 

A 

each of the forms may change into either of the others. According to the simple 
mass action law, the fraction of A molecules which changes into B in the short 
time At will be kBAAt, where kBA is the proportionality constant. The rates of 
change of the concentrations nA, nB, na will be given by 

j 

-rf = —(kBA + kCji)nA + kABnB + kAC fie 

j „ 

-TT = kBAnA — (kAB + kCB)nB + kBCn0 (27) 
at 

-J7- = kCAnA + kCBnB — (kAC + kBC)nc at 

If all the coefficients are ^0, then at equilibrium finite concentrations UA, nB, nc 

are assured and these are given by relations of the type 

-TT = —(kBA + kcA)nA + kABnB + kAcnc = 0 (28) 
dr 

and 
UA + nB + Hc = nj. + nB + nc = n (29) 

In addition to these restrictions, physical chemists have assumed that when 
equilibrium is reached each individual reaction must be balanced microscopically. 
Thus, every transition from A to B will occur as frequently as the reverse transi­
tion from B to A. If then the equilibrium concentrations nA, nB, and nc are 
known, three further relations 

kBAfi>A — kABnB 

kCBnB = kBcnc (30) 

KA cfi C = KCAH-A 
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are imposed. These correspond to the reciprocal relations in the phenomeno-
logical equation (equation 23) and lead to one relation between the velocity 
constants: 

k J.ck CB^BA = kA Bk Bck CA (31) 

Now this relation is not necessary to meet the thermodynamic requirement 
which will be satisfied when equilibrium is established by any set of positive 
values of the velocity constants. Indeed, other mechanisms can be postulated 
in which the detailed balancing of all the reactions does not occur. But these 
other mechanisms are not in accord with the idea that molecular mechanics and 
the dynamics of ordinary mechanics of conservative systems are fundamentally 
similar. With the exception of cases which involve Coriolis forces and external 
magnetic fields, the law of dynamic reversibility requires that if all the velocities 
of all the particles of a conservative dynamical system are reversed, the particles 
will retrace their former paths, thus reversing the previous succession of con­
figurations. Applied to molecular mechanics, the assumption of dynamic 
reversibility implies that, if we wait until equilibrium is established, then every 
type of motion has a probability equal to that of its reverse. This implies the 
assumption made above that when the molecule A changes a given number of 
times to molecule B, the reverse transition of B to A takes place just as often. 

In order to complete the analogy between the reciprocal relations (relations 24) 
and the phenomenological equations (equations 23), we must find the expressions 
analogous to J1, J2, J3 and X1, X2, X3. To this end we employ the thermody­
namic equation for the free energy at constant temperature and pressure of a 
single reaction in a perfect gas system, namely: 

FP,T = Fp,T + RT \nA In r + nB In ^ + nc In r C ] (32) 
L TIA nB UcJ 

According to the condition specified by equation 29, it follows that: 

SFP,T,n = RTUIn 7^) SnA + (in^j 8nB + (in ^) Sn0I (33) 

Let 

Xx = nA — nA, etc. (34) 

and write 8F in the form 

8F = -XA5xA - XB8XB - XcSxc (35) 
To obtain proportionality between the "forces" X^, Xfl, and Xc and the displace­
ments xA, xB, and Xc, it is necessary to impose the restriction that the system is 
nearly in equilibrium. Thus 

XA << nA etc. (36) 
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in which case 

X^ = -RT In T ~ - —xA 
UA KA 

XB ~ — "T- Xs (37) 

Xc ~ — T - Xc 
tic 

From equations 28 and 36, it follows that 

*A = "57 = ~(fcjM "*" k°*)xA+ k**x* + fc^oXc (38) 

or finally by application of equations 37: 

A. — n, _i_ i. \ "•* v ÂBwB v kAcn<7v 
XA ~ {KBA + Kd) ^ , A A - - ^ J T Aj, ^ - Xc 

* , - - ^ X . + ( ^ + W ^ , X B - ^ X c (39) 

If this be compared to equation 23, it is obvious that the analogy is complete, 
including all the reciprocal relations given by equations 24 and 30. Here 
XA, XB, XC and the coefficients of X^, XB, Xc correspond to J1, J2, Js and 
Lu, L12, • • • La • • • L33, respectively. 

This conclusion suggests forcibly that general reciprocal relations may be 
deduced upon the basis of the principle of microscopic reversibility. To this 
end it is necessary to develop the theory by a method which involves no special 
mechanism. The only way in which this result can be achieved is by considering 
the fluctuations in a system which is in a normal state of thermodynamic 
equilibrium. 

B. THE DERIVATION OF RECIPROCAL RELATIONS IN IRREVERSIBLE PROCESSES 

PROM THE GENERAL THEORY OP FLUCTUATIONS4 

1. Formulation of the problem 

By utilizing the fundamental equation of Boltzmann, relating entropy S 
and probability W 

S = k log W + constant (40) 

and by considering fluctuations in a set of variables ait a2, • • • an which measure 
displacements of matter, heat, and electricity, reciprocal relations in the simul-

* We have not included in this review Onsager's derivation of reciprocal relations for the 
conduction of heat in anisotropic (triclinic) crystals. 
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taneous transport of these quantities will be derived by means of the principle 
of microscopic reversibility as applied to these fluctuations. 

We shall first define the quantities which correspond to the "flow" J and the 
"force" X and the coefficients in the phenomenological equation (equation 23). 
We start with the fundamental thermodynamic equation 

8S = 1 (SE- SA) - » Sm (41) 

where E, A, and m are the energy, work content, and mass of substance, respec­
tively, and y. is the Gibbs chemical potential. The entropy will be determined 
by the heat displacements, ai, a2, a3, so that 

S = v(ai, Ct2, as) (42) 

Now, if there exists a uniform gradient of 1/T in the r-direction, a quantity of 
heat SQ = (SE — SA) will be transferred a distance Axr 

iS, SQ.^. SQ.te,tm. s^jm (43, 

and 

dxT dxr 

Similarly, if a is the displacement of matter 

^l = _ 3W?1) 
da dx 

(44) 

(45) 

and, if a is a displacement of electrical charge and X is the electrical field 
intensity: 

da = T ( 4 6 ) 

We note that the right members of these equations all correspond to the "forces" 
in equation 23 or equal Xi, XJ, X3, divided by T. 

Now, the flows of heat, matter, and electricity are proportional to the gradients 
of the corresponding potentials. Thus, 

J ~ - g r a d T = -VT (47) 

J ~ X (48) 

J V^ (49) 

for the transport of heat, electricity, and matter, respectively. In general, 
these relations are given by 

daP . dS . „ . 
-n- = a, ~ —- (50) 
at dar 
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where ar is the flow J except for a volume factor. When different transport 
processes (n in number) interfere with each other, the flow is a function of the 
different kinds of displacements (01, a2, • • • a„) and 

or= 0Tl~ + ••• +Om p- ( r - l , 2 , . . . n ) (51) 

and S = (T(CX1, Ct2, • • • a„). We shall proceed to show that general reciprocal 
relations 

Gn = G„ (52) 

can be deduced by application of the principle of microscopic reversibility. 

2. General theory oj fluctuations 

Statistical mechanics applied to molecules provides an explanation of thermo­
dynamic equilibrium as a statistical equilibrium of elementary processes among 
large numbers of molecules. The fundamental relation of Boltzmann 

S = k log W + constant (53) 

relating the entropy S with the thermodynamic probability W, is the most 
suitable as a basis for a theory of fluctuations from the state of equilibrium. 
W is the number of ways in which a given thermodynamic state may be realized 
and for a state of thermodynamic equilibrium is in general a very large number. 
Thus, a thermodynamic equilibrium state, specified by the energy and external 
variables (pressure, volume, etc.), is incompletely determined by molecular 
theory. 

The Boltzmann constant k is 1.380 X 10-16 ergs per degree, so the probability 
of a deviation involving a change in entropy AS, 

e**'" (54) 

is appreciable when AS and k are of the same order of magnitude. Fluctuations 
of this order have been observed in a few favorable cases, as with liquids near the 
critical point and the Brownian movement of particles in liquids. To compute 
W, a complete molecular theory of the system is required. If the molecules 
of the system obey the laws of classical mechanics, W equals a gross extension 
in phase-space. 

Consider a system of constant energy in which the external parameters 
(volume, pressure, etc.) and the number of atoms and molecules are fixed. If 
this system is isolated for a sufficient length of time to reach equilibrium, then 
we expect that it will have passed through all the states T^r2, • • • r ! consistent 
with the conditions of isolation. Over a long time period t the system will spend 
a time U in the state rr, and we may expect that U, h, • • • U will be proportional 
to the phase regions, Wu Wi, • • • Wi, respectively. Upon this assumption 
Wu Wt, • • • are defined as proportional to U/t, ti/t •••. Boltzmann's principle 
then may be stated in the form 

Sr — k log (tr/i) + constant (55) 

where Sr is the entropy of the state r r and t,/t is the probability of this state. 
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It is necessary to define the probability in terms of the measurable variables 
ah Ct2, • • • an. For this purpose, we introduce the distribution function 
/(ai, a2, • • • a„) and to meet the statistical requirements the probability of the 
state r ' will be equal to the integral of this function over the region 

Ci1V < ai < a{V + Aai 

a(r
B> < a . < aV + Aa, 

Equation 55 then becomes 

Sr = k log f(al[\ a(V, • • • a(?) + k log Aax, Aa2, - - - A a n + constant (56) 

The magnitudes Aa should be of the same order as the fluctuations, in which 
case the product, Aaj Aa2 • • • Aan, varies so little for a change of entropy 
S' — S" that the quantity k log [(AaJ • • • Aa'„)/(Aa'i • • • Aa'n')] is negligible in 
comparison to felog [f(a'i, a2, • • • a'n)/f(a", a2, • • • a")]. Consequently, equation 
56 may be written 

Sr - Jb log f(alV, a(
3°, • • • a1;5) + constant (57) 

Up to the present, an actual thermodynamic state is defined completely by 
the variables ah a2, • • • a„. Einstein (22) pointed out that the Boltzmann 
relation is valid for cases when this definition is not complete and may be applied 
to fluctuations from this equilibrium state. The probabilities of the different 
states will be of different magnitudes. Of these, a chosen thermodynamic state 
given by a set of variables, a:, a2, • • • a„, will occur much more frequently than 
all the other states. Thus, we adopt the convention that the greatest entropy 
occurs when the variables have the values ai, a2, • • • a'„ and this we denote by 

<n...n(a'i, Ct2, • •• a ,) (58) 

The corresponding thermodynamic state will be specified by 

Ti...n(a'i, a2, • • • a'„) (59) 

Then 

eri...„(ai, a2, • • • a'n) = k log/(a(, a2, • • • a'„) + constant (60) 

measures the probability for finding the variables ai, • • • a„ with the values 
ct\, • • • Otn. 

For a single variable ap, we may write 

<r,{aP) = klogfP(ap) + constant (61) 

where c{aP) is the greatest possible entropy when aP = av. Upon differentiation 
of this relation, we obtain 

Qa3, d a r 
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Further 

f f„(fitp) dap = 1 (63) 

Now let the entropy ap(ap) be a maximum when ap equals a°P and assume that 
(ap — ap)fP(ap) approaches zero for large values of | ap — a°P |. If this latter 
assumption is not true, the function must have an infinite number of maxima. 
With these premises, an important result is obtained by evaluating the average 

(a, — ctp) dffp/doip — I (otp — aP)(d<rP/dap)f(ap) dap 

= k I (otp — ap) {df {ap)/dap) dap 

= k[(ap — a°,)/p(a,)]-» — k I fP(ap) dap (64) 

upon integration by parts. The first term vanishes and since the whole integral 
is unity 

(ap — ap)d<rp/dap = — k (65) 

Similarly, it can be shown 

•k; p = q 
(aq - a°q)dffi...n/dap = \ " (66) 

{ 0; p^q 
These averages involving the fluctuations {ap — a°p) are important in the subse­
quent derivations. 

3. The regression of fluctuations 

From an empirical point of view, the initial thermodynamic state has been 
employed to predetermine the course of an irreversible process according to 
definite laws, such as those for the flows of heat, electricity, and matter. Since 
molecular theory cannot completely define a thermodynamic state, it cannot 
completely predetermine an irreversible process. Nevertheless, the predictions 
of irreversible process from empirical laws may be interpreted statistically and 
with practical certainty from averages of a large number of cases of processes 
starting from the same initial state of thermodynamic equilibrium. 

Now, consider the fluctuations of the variables of an isolated system over a 
long period of time. Whenever ax, a2, • • • an have the values ait ^*2, ' * ' an, 
we record their values T seconds later, and denote their averages by 

«i(r, a[, • • • a'n), • • • an(r, au • • • a'„) (67) 

Almost every time when ai = a{, • • • an = a'„, the system will be in the phe-
nomenological state 

F ( I • • • n) = T(a[, • • • a'n) (68) 
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and the average course of an irreversible process following this state, and de­
scribed by the averages 

«i(r, ri...„), • • • On(T, rj...„) (69) 

will be known from macroscopic experiments and may be regarded as properties 
of the state T^...n. The "normal" properties corresponding to a{, • • • a'n of 
the fluctuating quantities au • • • an are certainly those of the state r(...„. 
Whether these "normal" and average values are interchangeable must be deter­
mined from consideration of each case. If this interchange is assumed, the 
relation 

5i(r, a'u ••• «'„) = oti(T, IY..n), i = 1, • • • n (70) 

may be employed as a rule for predicting the average regression of fluctuations 
from the laws of irreversible processes. 

J1. The derivation of reciprocal relations from the theory of microscopic 
reversibility applied to fluctuations 

We define the function A ,< by the equation 

AiM s oy«)«<(< + r) = a J t t M r , a'j) (71) 

Thus, whenever a,- = a'h we record a,- r seconds later and denote it by cti(t + r)' 
A jM may also be defined by the time integral 

AH(T) S Um - ^ - , f aj(t)ai(t + T) dt (72) 
("->oo I — I Jf 

We shall now assume that the variables alt a2, • • • <xn represent deviations 
from the state of equilibrium in which their average values Sn, • • • an as well as 
their normal values «° vanish, or 

ai = o? = O, (t = l , - - - n ) (73) 

This will be consistent with the evaluation of the averages given by equations 
65 and 66, which depend upon the Boltzmann equation. 

Now, if a, and on are suitable "reversible" variables, the principle of micro­
scopic reversibility requires that 

A a = aj(t)oLi(t + T) = ai(i)aj(t + T) = Au (74) 

This means that the event a,- = a, followed T seconds by a<(2 + T) occurs just 
as frequently as the event on = a] followed T seconds later by a,(i + T). 

Now, consider the type of irreversible process starting from the state IY..„ 
which can be described by the linear differential equations 

-T7 = on = 2-, G* h ; U = 1, • • • n) (75) 

previously expressed by equation 51. Introducing relation 70 between average 
and normal values, we obtain 
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Hr, ct',) = S4(T1 rj) (76) 

in which T,' is the state of maximum entropy for a given value of aj, characterized 
by the relations 

«i = «J (77) 

6Vi.... 
dotr 

= 0; (r*j) (78) 

and consequently, 

dff-: 

da,-

For a short time integral, equation 75 leads to 

&i(&t, a'i) = 5j(0, a/) + atAt 

)OJ LdoyJ«/-«y 

r_l 0 0 , 

whence from equations 77, 78, and 79: 

S4(Ai, a'i) = «,(0, «J) + Qu^Q At 

Therefore, A44(At) (equation 71) may be written 

Aa(At) = at{t)ai{t + At) = 0Jo4(O, aj) + G 4 4 AJo 1 ^ 

(80) 

(81) 

(82) 

Since a,- is a small fluctuation from the equilibrium, it corresponds to (ap — a°p) 
in equation 65 and consequently a,da-,/da4 = — fc. Hence, 

An(At) = An(O) - kUGii (83) 

and, similarly, 

Aa(At) = A<;(0) - kAtGn (84) 

The condition of microscopic reversibility, A44 = A44, leads immediately to the 
general reciprocal relation 

Oa = Git (85) 

From this derivation, the importance of considering fluctuations from the thermo­
dynamic equilibrium state becomes clear. The use of the Boltzmann relation 
leads to the simple introduction of the constant k in the above relations. 

It should now be emphasized that these general reciprocal relations apply to 
systems whose macroscopic laws may be derived from initial thermodynamic 
conditions. Consequently, they are generally valid for laminar flow of liquids, 
conductance of heat, conductance of electricity, and the flow of matter in which 
no turbulence occurs. They are not valid for irreversible processes involving 
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Coriolis forces and the presence of external magnetic fields where it is known 
that the principle of dynamic reversibility no longer holds. 

6. The principle of the least dissipation of energy. The dissipation function 

It is now possible to define a dissipation function for irreversible processes 
which has a statistical significance similar to that of the entropy. Equation 75 
may be written 

dav..B(ai, a2) • • • an) A ,. _ , 9 v , 8 f n = 2-i PirOLr ; (i — L, I, • • • n) (8b J 
oat r=i 

where p;,- and (?,-, are related by the well-known equation 

2J Pir Grj = 2J GiT Pri = 5<; = \ (87) 
r-1 r-1 (0, (i * j) 

The coefficients p,-,- form the inverse matrix of (?,-,•. The symmetry conditions 
expressed by equation 85 become 

Pu = Pn\ («' = 1, 2, • • • n) (88) 

We now define the dissipation function by 

$(&, a) = § 2 PadtidLj (89) 

Utilizing the symmetry condition, p,3- = p,*, we find from equations 86 and 89 
that 

d<ri...n(«i, ••• Otn) _ d$(a, a) 
da> doci 

Further, we define S (a, a) by 

(90) 

S(a,&)^id-^&r (91) 
r -1 Oar 

for the rate of increase of entropy. 
If we adopt the convention that the velocities, on, on, • • • a„, are the only vari­

ables, we may obtain a variation principle in the form 

5[S(a, a) - $(«, a)] = 0 (92) 

for according to equation 90, 

8[S(a, &) - *(4, a)} = E (^-" - H ) Sat = 0 (93) 

This is a generalization of Lord Rayleigh's "principle of the least dissipation 
of energy." The dissipation function according to equations 86, 87, and 88 
equals one-half the rate of increase of entropy 

2*(A, a) = S(a, a) (94) 
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and 

$(<*, a) = - £ Piiotiaj = : S a , ' — (95) 
Z i,j ii i OUi 

Since according to thermodynamics S ^ 0, <J?(a, a) is positive, and therefore the 
variation given by equation 92 is the condition for a maximum. Thus, 

S(a, a) — $(a, a) = maximum (96) 

This quantity is similar to the entropy in reversible processes, and it is clear 
from the preceding discussion that it depends on the existence of reciprocal 
relations. 

6. Condensed summary and formulation 

We have noted that the quantities da/da as expressed by equations 44, 45, 
and 46 correspond to "the forces" Xi, X2, and X3 in the phenomenological equa­
tions with which we introduced the subject, and that a, corresponds to the "flows" 
Ji» J2> Js- If Pit be replaced by Rin then equation 86 for three processes may be 
written in the expanded form 

Xi = RnJi + #12 J2 + RaJs 

X2 = i?2i Ji + Ra J2 + Ria Ja (97) 

X3 = i?si Ji + Raiji + S33J3 

where Ru etc. are related to Ln etc. in equation 23 by the transformation 
equations 

» » J l , i = Jc 

m=l m-1 | 0 , i J± k 

and where the reciprocal relations 

R12 = -821; Rn = Rn) Ra = Rn (99) 

Ln = Ln) Ln = La.) L® = L^ (100) 

are valid. The dissipation function becomes 

2*CJ, J) » I S B« J* J* (101) 
1 i.k 

Although these symmetry conditions have not been tested experimentally, 
the preceding argument and experiments on thermoelectric phenomena, cells 
with liquid junction, etc. lend confidence to their fundamental correctness. 
If these reciprocal relations are valid for a given combination of processes, then 
the dissipation function may be expressed by equation 101 and the function 
&{a, a) — $(a, a) will be a maximum as required by equation 96. For the 
process of diffusion in a system of any number of components, the reciprocal 
relation 911«, = 911« (equation 26) may be assumed with confidence. In Section 
IV we shall derive a detailed formula for the dissipation function for combined 
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conductance and diffusion of a single electrolyte in dilute solution. Onsager and 
Fuoss (80) have treated the more general case of systems containing more than 
two components. These relations are indeed important, although no direct 
determination of the dissipation function has been made up to the present time. 

A general statistical theory of transport processes which goes further than the 
treatment of Onsager has been developed recently by Kirkwood (51a). A gen­
eralized treatment of Brownian motion is obtained in which relations between 
friction constants and intermolecular forces are deduced for the first time. Im­
portant progress in this direction is to be anticipated. Another contribution by 
Leaf (57a), who has succeeded in obtaining a general phenomenological theory 
of transport processes in liquids from the equations of thermodynamics and hydro­
dynamics, deserves serious consideration. Expressions for the flow of entropy 
and the flows of masses as well as reciprocal relations between the coefficients in 
these processes are derived. 

IV. THEORY OF ELECTROLYTIC DIFFUSION 

1. General considerations and force relations (80) 

The quantitative theory of electrolytes depends on two fundamental facts. 
(1) To a first approximation, the properties of electrolytic solutions are additive 
and to a great extent they are functions of the individual ions. On this fact 
depend the law of Kohlrausch, of the additivity of ionic conductances at infinite 
dilution, and the law of Nernst (71), which permits the computation of the 
diffusion coefficients of electrolytes at infinite dilution from electrical properties 
derived from other measurements. These behaviors and the fact that deviations 
from additivity in electrolytic solutions increase slowly with increasing concen­
tration of solute are advantages which electrolytic solutions possess and which 
are not characteristic of molecular solutions. 

[2) The deviations from additivity may be explained by the interactions 
between ions as charged particles and between ions and the solvent molecules. 
Fortunately, the law of attraction between charged particles is known, which 
makes possible a highly developed theory of the properties of ionic solutions 
of sufficient dilution so that solvent interaction is a higher order effect. In 
concentrated solutions, little progress has been achieved towards a detailed 
theory nor may we expect quantitative results until we know the structure of 
the solvent and the laws of the forces between all the constituents of the solution. 

A treatment of the motion of ions in homogeneous media and fields of forces 
sufficiently general to include a basis for a detailed theory of conductance and 
diffusion of electrolytes may be expressed in a simple form. For, suppose the 
forces ki, k2, • • • k, act on the ions, 1,2, • • • s, and that these are balanced by 
necessity by a compensating force ko acting on the molecules of the solvent. 
Then 

«oko + 2 > i k > = 0 (102) 
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This system of forces is produced by a combination of electrical fields, — Ve<& 
acting on each ion, where \p is the electrical potential, with the concentration 
gradients, Vn1, Vn2, • • • Vn,. The required condition of electrical neutrality is 

2 eiVrti = v l t i i « i = V(O) = 0 (103) 
V-I 1-1 

That these relations are consistent with thermodynamics is proved by the fol­
lowing reasoning. Equilibrium may be maintained with these electrical forces 
and gradients by superimposed forces of opposite signs and of different kinds, 
—ko, —ki, • • • —k3 designated by 

k, V/I,- = -VGu,- + eS (104) 

where m is the Gibbs chemical potential. Here we employ the quantity £,-, 
which Br0nsted (7) and Guggenheim (38) denoted the "electrochemical poten­
tial." In addition to these relations, thermodynamics imposes the Gibbs-
Duhem equation: 

E n( dm = 0 (105) 

From equations 102, 103, and 104 we obtain 
8 9 

n 0Vw + Z ^iVm + V 2 n,-e,-^ = 0 (106) 
i - i t - i 

whence by equation 105 

7 E v ^ = O (107) 
t'-l 

and consequently 

v i > , - e < = 0 (108) 
>-i 

the required condition of electrical neutrality. 

#. The limiting value, of the diffusion coefficient of a simple electrolyte. 
Extension of Nernst's equation 

We shall now consider the case of diffusion of a simple electrolyte dissociating 
into vi cations and V1 anions and omit all the effects of interactions between ions. 
In diffusion, the condition of the absence of electric current requires that the 
ions migrate with the same velocity: 

v = Vi = V8 (109) 

The flows are given by 

Ji = niVi; J2 = W2V8 (110) 

Further, the velocities are related to the forces and the electrochemical potentials 
according to 
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v = kiwi = k ^ = —• WiV^i = —W2V/Z2 (111) 

where «1 and W2 are the mobilities, or velocities in unit force fields. Now 

fii + M2 = Mi + «! + iKei + e2) = MI + M2 (112) 

since ei = — ej and their sum is zero. Therefore we write 

k = yjki + v2k2 = - V M (113) 

From these equations 

k2 = k i ^ = ki?-2 (114) 
OJ2 P l 

where p = 1/w denotes a coefficient of friction. From the last two relations 

ki ^ V" = 1 Vfi <1 1 5) 
VlW2 + ViOlJ. VlPl + V2P2 and 

v = ^ - V M (116) 

If the solution is ideal 

M = M° + (vi + "2) kT In n 

where M° represents the standard state of chemical potential and n is the number 
of mols of electrolyte per cubic centimeter. Then 

VM - (V1 + Vt)IcT — (117) 
n 

and 

j = nv - - ^ + v*)ui<*kTVn = -S)Vn 
Vl C02 + V2«l 

(118) 

Consequently, the diffusion coefficient is given by 

Vl W2 + V2Wl 

which is the famous limiting equation of Nernst (71) valid at infinite dilution 
of electrolyte. 

If we introduce the real value of M, then 

VM = (vi + vt)kT V In f±n (120) 

j = n v i ^ _ (Vl + Vi)kT (l+n 9J^h) Vn (121) 
ViW2 + V2Wi \ an / 

and 

g = fa+ »)«,«. fey Z 1 + najLj^\ (122) 
ViW2 + V2Wi \ an / 
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or according to equation 6 

3)=(n + v2) ^kT(l + n d - ^ ) (123) 
n \ on / 

Thus, if the variation of 2) with concentration depended entirely on the term 
in parenthesis representing the deviation from the ideal solution, 9ft/n would be 
constant. This is not the case, nor is it to be expected on theoretical grounds 
because the velocities of the ions in diffusion will be affected by various interac­
tions. 9U/n is seen to be a mobility term, or a velocity under unit potential 
gradient caused by a force k = — v>. We shall nowT undertake the theoretical 
evaluation of 9R/n. 

S. Elements of the interionic attraction theory of Debye required for the theory of 
diffusion 

In an ionic solution, the electrostatic forces tend to bring the ions of opposite 
sign together while the thermal force acts contrariwise. Combination of these 
two effects was shown by Debye (17, 18) to lead to the formation of ionic atmos­
pheres whereby each positive ion, by inducing a negative charge density in its 
neighborhood, will be surrounded by an "atmosphere" which contains on the 
average more negative and less positive ions than the bulk of the solution. 
Similarly, a negative ion will be surrounded by a positive atmosphere. 

When the system is undisturbed or at equilibrium, the potential <p](r) of 
the central ion, j , and its atmosphere at a distance r from it is given by 

$ ( r ) = Ae~" Ir (124) 

where A is an integration constant and K is denned by 

* - & & » * ( 1 2 5 ) 

This quantity has the dimensions of a reciprocal distance, and l//c is related to 
the potential of the ionic atmosphere ^,-°* in exactly the same way as the distance 
r from a charge e is related to the potential produced at this distance. Here 
e is the electronic charge, D the dielectric constant, z,- the valence of the ions 
surrounding the j ion, and k the gas constant per molecule. The summation 
is over all the kinds of ions in the solution. It is to be noted that z< carries the 
sign of the charge. We shall use the customary symbolism of vertical bars 
I Zi I when magnitude is represented. 

The constant A in equation 124 is found to be 

Ka 

(126) 
Dl + Ka 

where a is the parameter w7hich represents the mean distance of approach of 
ions positive or negative. By substituting this value of A in equation 124, we 
obtain 
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''"» = B ( i T * <127) 

This is one of the relations required for our subsequent derivations (41). 
We shall also use the Maxwell-Boltzmann equation for the number of ions 

of one kind in the neighborhood of another ion, namely: 

%-„,«-••!-~„,{l - # + £($)" - - ] (128) 
/ 0 . We observe that ^,e^ is the potential energy, the work required to bring an i 

iou of charge e,- from infinity to a distance r from the j ion in a field derivable 
from the potential ^°. 

For the computation of the activity coefficient term in an equation corre­
sponding to equation 123 we shall use the relation 

l0g y± = - _ W £ _ + B2c + D'c> - log R + Q-OOIf M1 - Mt]l 

where y± is the mean activity coefficient of electrolyte on the mol per liter scale, 
Sm is the Debye and Htickel constant, A' is the parameter containing the mean 
distance of approach of the ions, B and D' are empirical constants, and c is in 
mols per liter (41). The last term on the right is the relation required for con­
verting log y± to log / ± , where / ± is the "rational" activity coefficient. In this 
term d is the density of the solution, rf0 the density of the solvent, Mx the molecu­
lar weight of electrolyte, and M2 that of solvent (41). 

4- Preliminary theory of the action of forces which cause the migration of ions 

When the ions of a system in thermodynamic equilibrium are subjected to 
certain forces, the ion atmospheres are disturbed. If the perturbing force is 
removed, the displaced ions will return to their original state of distribution. 
This will require a finite time which is denoted the time of relaxation r and is 
expressed by 

" Tlhrr (130) 

where 
KkTl/p 

* 
Jl Ki:e\/pi 

1/P = —. (131) 

- i 

If we let pi = P2 = • • • pi, then 

' " AT
 (132) 

a simplified result which is sufficient for our purpose. Comparison with the 
derivations (Section IV, 2) will show that JcT/pi is really the diffusion coefficient 
of an ion. 
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The action of forces which cause the ions to move leads to two effects which 
are subject to quantitative treatment. The first of these is the "time of re­
laxation" effect, whereby the applied force causes the ion to move away from its 
atmosphere. This ion will attract the lagging atmosphere and cause the original 
spherical distribution of the ions in the atmosphere to assume an assymetry. 
The net effect will be the retardation of the motion of the ion. The time of 
relaxation effect has been treated in detail by Onsager (80). The second effect, 
that of electrophoresis, is due to the fact that the ion migrates in one direction 
while its atmosphere and the solvent move in the opposite direction. This 
counterwise motion has the effect of retarding the motion of the ion. 

6. The time-oj^-relaxation effect 

Under the influence of a force k,- an ion will migrate with a velocity 

v,- = fe (133) 
Pi 

When a force is applied, the ion will move away from its atmosphere and will be 
ahead of its lagging atmosphere by a distance 

V1T = 7^- (134) 
Pi 

The ratio of this distance to 1/K (the radius of the atmosphere), or rkju/pj' 
will be a measure of the asymmetry of the atmosphere. The directed force 
Ak3- due to this effect will be given roughly by multiplying this quantity by the 
Coulombic force between the ion and its atmosphere, e^^/D, whence 

^ = zTr^=-im (135) 

after eliminating T by means of equation 132. This result differs from Onsager's 
final result by a numerical factor which can only be computed by an elaborate 
method. Its derivation, however, shows the essential characteristics of the 
theory. 

It is sufficient for our purpose of calculating the dissipation function for simul­
taneous diffusion and electrical conductance of ions to omit the complicated 
calculation of the effect of a superimposed electrical field and simply state the 
required results of the theory. If X is the z-compcnent of the external electrical 
field, then AX, the field caused by the asymmetry of the ionic atmospheres for 
an electrolyte dissociating into two ions, is given by 

AX = AX1 = AX2 = 3 ^ ^ - ^ = ) X (136) 

where 

* njeiwi + n2e2«2 /1Q_,, 
q* = - , — j — 2 T 7 — - — : (137) 

(Hi ei + ^e2)(Wi + wj) 
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The forces ki and k2 are equal to Xei and Xe2, respectively, so that X may be 
expressed by 

X = " 2 ^ ~ " l k l (138) 
«2^2 — eiWl 

Upon elimination of X and rearranging we readily obtain 

A Y - A Y -
 eie2K (1 — ^/o*)n2e2 , . ,-. n q Q N 

AXl = AX2 = ^pr-= , 2 (W2l£2 ~ " 1 ^ 1 ) ( 1 < 3 9 ) 
6UkL mewi + n2e2wi 

the relation we shall use later to compute the dissipation function. 
From this equation a very important conclusion in relation to the theory of 

diffusion is apparent. In the process of diffusion of a simple electrolyte, both 
kinds of ions travel with the same velocity and in the same direction. Thus 

V1 = wiki = u>2k2 = V2 (140) 

whence by equation 139 the time-of-relaxation effect vanishes and the ionic 
atmospheres retain their original spherical symmetry. In conductance, not 
only do the ionic velocities differ but positive and negative ions move in opposite 
directions, which leads to an additive contribution to the current. 

6. Electrophoresis 

For conductance, where the force k3 is proportional to the charge on an ion, 

ko = 0; k3 = e3X; j = 1, 2, • • • s (141) 

the effect of electrophoresis is easily computed. The ionic atmosphere will 
possess a charge, — e3, and will be subjected to the force — e,X, which will cause 
the atmosphere and the solvent containing it to migrate in a direction opposite 
to the motion of the ion. Therefore the ion moves in a counter-current of sol­
vent which has the net effect of retarding its velocity. As pointed out by Debye 
(18), the velocity of the counter-current may be computed by assuming that the 
entire charge, —e3, is at a distance 1/K from the central ion and distributed 
over a sphere of radius 1/K. Further, it is assumed that Stokes law applies 
to the motion of this sphere and therefore the velocity of the electrophoretic 
effect is given by 

Av< = - I r " - I T - " <142> 
07T77 OTTTJ 

where 77 is the viscosity of the medium. 
The velocity of the ion during electrical current flow under a field X may be 

expressed in the following manner. If the ion possessed no atmosphere, its 
velocity in a field X would be Xe3W3; but owing to its lagging atmosphere it 
is subjected to an additional force in the opposite direction, -W3Ak,-, and the 
electrophoretic effect Av3. Therefore, the net velocity becomes 

V3 = O)3Xe3 - W3Ak3 - ^ (143) 
07TT? 
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When an electrolyte diffuses into a solvent, both ions travel with the same 
velocity, a phenomenon required by electrical neutrality. In this case, electro­
phoresis occurs because as the ions move in one direction, they take positions 
previously occupied by the water molecules which in a system at constant volume 
must move in the opposite direction. The calculation of the electrophoretic 
effect will require therefore an estimate of the volume force acting on the water 
molecules. 

According to equation 102 

noko + J^riiki = 0 (144) 

the forces acting on the ions must be balanced by a compensating force acting 
on the water molecules. For simplicity, we shall let the subscript <r represent 
summation. Then 

n0ko + ft<rk„ = 0 (145) 

Now, the presence of a j ion influences the average concentration of the ions in 
a given volume element dV at a distance r from it. The volume force becomes 
n,vk, dV and the net force on the volume element will be 

(n,-X + noko)dF = (w,v - n , ) M F (146) 

In spherical coordinates, the force acting on a spherical shell at the distance, 
r, from the j ion will be 

7dr = 4wr"(n„ - n„)k,dr (147) 

and is distributed over the shell of radius r. This force will cause the points 
within the sphere to move with a velocity, v, given by Stokes law: 

v = X (148) 
Qirrir 

Now (tin — n,-) may be obtained from the Boltzmann equation (equation 128) 
and 4>) may be eliminated from this expression by means of equation 127. 
Substituting this result in equation 147, the force acting on the spherical shell is 
found to be 

7dr = 4* /1 - ^ ~ , — + 5 ( S 7T^^) — \ n ' k ' d r <149) 

\ DkT (1 + KO) r 2\DkT (1 + /ca)/ r2 J 

or more simply 

7dr = M-Mre-" + 42e
_2*r) dr (150) 

Upon substituting in Stokes equation 

dV'- = W = 3v\-Aie +-T-)dr ( 1 5 1 ) 
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is obtained and upon integration from a to oo, the total velocity Av,- is found to 
be 

Av,- = I 7 ( ~ ^ - ° + AtEi(2*a)\ (152) 

where Ei(2i<a) is the well-known exponential integral function 

/
°° dt x2 

e~* - = -0.5772 -Inx + x - ^ + --- (153) 
Introducing A\ and As, the final result is 

Av> = " T ni%e°n°l° ^ + <T ( n £ r T T ^ r Y » ^ , ^ ( 2 « . ) (154) 3T? DkTV(I + «a) 3JJ yDfcr (1 + xa)/ 

At low concentrations when na is negligible, and when the force, k,- = Xe,-, 
is proportional to the charge, 

A V ^ - 3 - , - D & T - ( 1 5 5 ) 

From the equation which defines K, we find that 

2-, w<e< = — — (156) 
i-i 4?r 

whence 

AV,= - I ^ (157) 
o wrj 

which is the simple result for the electrophoretic effect previously obtained for 
the case of conductance. 

I t is well to note that in the derivation of equation 154, the Debye and Hiickel 
calculation of the Coulombic force effect and their second approximation to 
include the effect of the mean distance of approach of the ions were employed. 
Consequently, this estimate of the electrophoretic effect can only be expected to 
approach validity at low concentrations of electrolytes. Deviations due to 
ion-solvent and other short-range ionic interactions may be expected at higher 
concentrations and at the present time there exists no means of computing their 
magnitudes. 

7. Extension of the theory of the diffusion of a simple electrolyte to include 
electrophoresis 

Now the effect of electrophoresis is to alter the forces, kj and k2, acting upon 
the ions of an electrolyte by decreasing the velocities. Thus 

k,- = p,(v - Av,); j = 1,2 (158) 

which when introduced in equation 113 gives 

- VM = k = viPl(v - Av1) + ^p2(V - Av2) (159) 
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For the electrophoretic terms, equation 154 yields 

Av,- = v - — (riieipi + njejpa) 
3»? * i r i ' '"' DkTK(I + KO) 

+ r (me!ft + TWeIp2) ( W ^ , ) 4>(«a) I (160) 
3r> 

where 

*(**) = e2"°2?t(2»ca)/(l + no,)2 (161) 

Upon substituting the values of AVi and Av2 in equation 159 and using the 
relations ntfi = - ^ e 2 and vid = v2e2, we obtain for the gradient of the chem­
ical potential: 

-Vn = V vipi + ViPi + (pi — ps)2 

Vl + Vi 67TTj(I + /CO) 

/Va Pi + vi Pi V KV(Ka) "I ,, fi0 v 
" V Vl + Vi ) 48^J (162) 

Vn is the force per molecule of solute when the concentration is expressed in 
molecules per cubic centimeter. The electrophoretic effect is seen to depend 
on the changes in frictional forces caused by the action of the Coulomb forces. 
The third term on the right is the first-order electrolytic effect which depends 
on the factor pi — 2pip% + pi, whose terms correspond to cation-cation, cation-
anion, and anion-anion effects, respectively. The last term of this equation is 
of the order n log n. 

If this equation be solved for v and multiplied by n, and higher order terms 
be discarded as negligible, we obtain the flow, J. Thus 

J = OT= -<m.Vn - - ( 7 ^ " 2 + AfJI lV (163) 
VlW 2 + Vi Wi / 

where 

Af)Tl= - ( Ul~Ui Y (-?£-) 
VlW 2 + P2Wl/ V l + Vi/ 

KU 

6^ (1 + Ka) 

, /Viwi + f2wA 1 * (t>(ica) (1Q4.) 
\vidii + P2W1/ (ci + ViY 48ir2»j 

It is now necessary to convert this equation into a form convenient for prac­
tical computations. To this end, we recall that 

n = 2VTT = iVc/1000 (165) 

where n and c are the concentrations in mols per cubic centimeter and mols per 
liter, respectively. Further 

p.N = /I (166) 
and consequently 

j = n v = -9RV/I = - (^j V1X (167) 

file:///vidii
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Now, the equivalent conductance of an ion, X1, is equal to the current at a po­
tential gradient of one volt per centimeter produced by 1 gram-equivalent. 
Thus 

X, = 96,500 Ui = 96,500 | et | «< (168) 

If Hi is expressed in volts per centimeter and «,• in electrostatic units, then 

w< = Ui/\ Zi |« = 300 Gi/\ Zi \e (169) 

= 3Q0X< (170) 
96,500 I Zi I c (UU) 

Using this^relation to eliminate W1 and «2 from equation 164, and taking into 
consideration the relations given by equations 165 and 166, we find that 

\°x° 
9Tl = 1.0748 X 10_ao , i .„ + A91T + <dK" (171)5 

where the superscript signifies limiting equivalent conductance and A0 = X? + X2. 
The number of cations and anions into which an electrolyte dissociates are 
vi and V2, respectively, and | Z11 and | z21 are the magnitudes of their valences. 
Making use of the relations vi\ Z1 [ = e2| Z21, vi = | Z11, and vi — | Z21, A9R' 
and A9R" are given by 

AW = - (I * i *°t ~ 1 * I ^ ) ' 3.1322 X IQ-19 c V f n 7 9 . 
I ziz, I {vi + )̂A"* 7,0(DD* (l + «o) K'} 

A S W „ _ / 4 X? + s! XgV 9.304 X IQ-13 , , . 
AdK ~ \ A* ) Vo(DT)> C < A M ( 1 7 3 ) 

The coefficient of diffusion in terms of these quantities is expressed by 

and, since 

we find that 

g) = 9 R ^ = G)1t^ = 10009K ^ (174) 
on on oc 

cfc = (Vi + Vi)RT(l+cd-^) (175) 

2) = (n + ^)IOOORT ( ^ ) ( l + c ̂ ) (176) 

Here, the activity coefficient is mean activity divided by the molar concentration. 
For an electrolyte dissociating into two ions 

2) = 16.629 X 1010 T ^ ( l + c ̂ ^ ) (177) 

6 The numerical values in this and the following equations have been computed from the 
fundamental constants given by R. T. Birge (Rev. Modern Phys. 13, 233 (1941). 
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and equations 171, 172, and 173 reduce to a convenient form 

(W] io50 = ^ 0 7 4 8 (*±&\ _ 0-4404 /Xj - X2Y w 
\c) z V A 0 / &vo \ A0 J i + Ka 

+ ©'jwWrfW) (178) 
where d is the mean distance of approach of the ions in Angstrom units. Another 
useful form for 1-1 type electrolytes is 

(W) 10- - 1.0748 (^) - ^148 AJ-xSy _ V L 7 . 
Vc / V A° / ,0(DD1 V A" / 1 + A V c 

, 9 .304 X 107 ..., / - . / 1 7 n . + , 0 ( ^ » C+{AVc) (179) 

Here 

Ka = AVf = A V c (180) 

A .35.559 .1C1, 
A - & JpW* (81) 

For convenience in utilizing these equations, values of <£(K<Z) and (ica)V(«a) 
as a function of *a are recorded in table 1. 

The first term on the right of equation 179 is a constant and never greater 
than A /4. Since (Xi — X2) is small for many salts, the second term is fre­
quently negligible. As a glance at table 1 will show, c4>(A'\/c), which equals 
(1/A') (KO) <K«a), is nearly constant at high concentrations and is never greater 
than 0.1. As a result, the variation of the diffusion coefficient is governed to 
a greater extent by the factor [1 + c(d In y±/dc)] than by (?Sl/c). 

This term may be evaluated for 1-1 electrolytes from equation 129 

log ^ - ~ W c _ + 2Bc + D>c> - log \d + °mifMl ~ Mi)] (182) 
1 + A'y/c L «0 J 

in which case 

( l + c **±V±) = i _ 1-15MS(Z)Vc + 4 m B c + 4mD,c> _ ^(d) ( 1 8 3 ) 

where 
(1+AVc)2 

Hd) " d + 0.00Ic(IUf1 - M2)
 ( 1 8 4 ) 

Values of parameters of this equation for a number of important 1-1 electrolytes 
at 250C. are given by Harned and Owen (41). 

Observing that ctt>{A'\/c) and its derivative with respect to c approach zero 
as c approaches zero, the limiting equation 

S - S b - S(D)Vc (185) 
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is obtained where 

% = 17.872 X 10' U0/ 
and 

S(D) = 
3.754 X 10" m + 

3.683 X 10" 
Dif-i Vo ( ^ ) * 

(185) 

(187) 

The result obtained for S)0, the diffusion coefficient at infinite dilution, is of 
course the same as that obtained by Nernst and derived previously. 

TABLE 1 
Values of the functions 4>(Ka) and (Ka)2Ip(Ka) for use in equations 178 and 179 (41) 

ita 

0.000 
0.010 
0.025 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

*(««) 

OO 

3.3550 
2.4695 
1.8273 
1.2342 
0.9245 
0.7277 
0.5907 
0.4899 
0.4130 
0.3527 
0.3044 
0.2651 

(««)«*(«») 

0 
0.00034 
0.00154 
0.00457 
0.01234 
0.02080 
0.02911 
0.03692 
0.04409 
0.05059 
0.05643 
0.06164 
0.06628 

KU 

0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.5 
3.0 

*(««) 

0.2651 
0.2054 
0.16304 
0.13194 
0.10844 
0.09033 
0.06477 
0.04813 
0.03676 
0.02876 
0.02292 
0.01391 
0.00908 

Cw)VUo) 

0.06628 
0.07344 
0.07989 
0.08444 
0.08784 
0.09033 
0.09327 
0.09433 
0.09411 
0.09318 
0.09168 
0.08694 
0.08172 

8. The dissipation function of a simple electrolyte for diffusion and conductance 

In order to compute the dissipation function for the combined processes of 
electrical conductance and diffusion, we employ the electrochemical potential, 
fit, and the force, k„- obtained from its gradient. Thus 

M, = Mi + «i^ 

k,- = - VM,- = - VM,- + e.-V^ = - VM< + e,-X 

The equation relating the forces k,- to the flows J* is 

k< = Z Rah 5 (t" = 1, 2) 

which corresponds to equation 97 and where 

Rik = Rki 

The dissipation function (equation 101) is given by 

2F(j, j ) = i ; #,-*j,-j* = 2 * ( j , j ) 

(188) 

(189) 

(190) 

(191) 

(192) 
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and as a result of the above relations 

dF 
Xj- = -g r ad £< = -Vh = k< (193) 
OJi 

For a simple electrolyte (s = 2), 

ki = flnJi + RisJi 

k2 = i?2i Ji + R22J2 (194) 

2F = i?n Ji + 2.Ri2JiJ2 + B22J2 

from which the operation given by equation 193 is seen to be valid. 
In order to compute the dissipation function we first gather the detailed 

expression for the force k,. In the limit as the concentration approaches zero 

k; = P;Vj = v,-/«,- = JjZn3-Uj (195) 

At finite concentrations, owing to the time-of-relaxation effect and electro­
phoresis, Akj, 

k, = P1-Vj — e,AX, — PjAVj (196) 

Upon introducing the detailed expression for AX^ from equation 139 and 
Avj given by equation 154 we obtain: 

k/ " PiV> ~ 6i {wkT ' (niejM2 + n2elMi)j ^ 2 " " 1 ^ 

+ 2 »«*»*-. - 1 ( n i y f J n,k,&•(«.) (197) 
3TIDKTK(I + m) Sv \DkT(l + /ca)/ 

Now 

and 

n2e2(w2k2 — coiki) = n2e2«2k2 — n^i^iki 

= (e2j2 + eiJ0 (198) 

niki = Jipi/ T^k2 = J2P2 (199) 
2xa 

+ (Ka)=Ji-I-^Ei(Ka) (200) 
(1 + KO)1 

wi = - ; OJ2 = - (201) 
Pl P2 

Utilizing these relations, we obtain for a 1-1 electrolyte 

k = ki + k2 = JiPiZn1 + J2p2/n2 

_ ^ P ^ ( I ~ V ? ) (ei + es)(eiJ1 + ^ w 
3D/cT (riiejpi + ^eIp2) 

+ BvDkT^l + Ka) 0 ^ 1 + » * > < * » * + e 2 < ^ 

<^(;ca) / . j 1 _ „2\/„2 

37,(DkT)' 
(pid + P2e2)(eipiji + e2p2J2) (202) 
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The dissipation function takes the form 

2F = RnJi -f 2RuJiJz + Rw J2 

= ^Mf1 + (P2M)Ji - | g - ; Kf1T^TK feJi + *h? 
6DKI {riieipi + W2C2P2) 

+ altera + Ka)K k p l J l + emJa]2 _ 3$m>[elpiJl + 6^Ja]8 (203) 

The correctness of this expression may be proved by differentiation with respect 
to Ji and J2 according to equation 193 and comparing the result with the pre­
ceding expression for k. 

The first two terms of this equation represent the dissipation function when 
the effects of Coulombic forces are neglected. The second is the time-of-
relaxation effect which, as previously shown, vanishes in the case of diffusion alone 
when both ions migrate with the same velocity. The last two terms represent 
the electrophoretic effect. 

For diffusion 

v = Vi = V2 = J1Zn1 = J2/rh (204) 

and 

ow-[„ a. « -L. 2 e ' " i (PI —Ps)" 0(«a)(ei »i)*(pi et - P2C2)
8"! jt , „ -> 

We note that for an electrolyte dissociating into two ions, the electrophoretic 
terms will vanish if the frictional coefficients of the ions are identical. 

V. EXPERIMENTAL METHODS FOR THE MEASUREMENT OF 

DIFFUSION COEFFICIENTS6 

A. BOUNDARY CONDITIONS AND ADAPTATIONS OF FICK'S LAWS FOR 

THE MEASUREMENT OF DIFFUSION COEFFICIENTS 

The experimental methods for measuring diffusion coefficients may be ar­
ranged under three classes, which depend on whether or not a steady state is 
reached or whether the entire solution is maintained in a closed system. The 
application of Fick's laws then depends on the experimentally imposed boundary 
conditions. 

1. Free diffusion 

Free diffusion refers to diffusion from an initially sharp boundary between 
two solutions at different concentrations, or between solution and solvent, in a 
vertical apparatus in which the composition of the liquid media at the top and 
bottom remain constant. In order to adapt equations 16 or 17 for practical 

6 For this part of the review, the author is particularly indebted to Dr. Lewis G. Longs-
worth of the Rockefeller Institute for Medical Research, whose paper (61) on the theory of 
measurement of diffusion coefficients has been used as a basis for this discussion and who has 
kindly permitted the reproduction of some of the figures employed in describing the optical 
methods. 
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calculations, use is made of the fact, first observed by Boltzmann (5), that the 
variables x and t always occur in the ratio x^/t. Consequently, since x = 0 
when t = 0, we may let y = x/i* and introduce this new variable in the differen­
tial equations. Thus, equation 16 becomes 

» d » d a d » 
2 dy dy dy 

and 

.ffl = 6I rUdn = -— f xdn 
dn Ja 2 2t dn Jo 

1 dx f dn , ._-_. 
= 2td-nLXdlcdx (207) 

This equation has been employed as a basis for computing 2) by the float method 
(29). Also, since dn/dx is usually very nearly proportional to the refractive-
index gradient, it is the basic relation for the development of the optical methods 
of evaluating 3). If 2> is assumed to be independent of y, equation 206 becomes: 

Upon integration and resubstitution of x and t, 

where 7 is a constant of integration. Now 

L ^ dx = Ti1 - no (210) 
i dx 

which is the total area under the curve of dn/dx versus x. Therefore the con­
centration difference of the two ends of the diffusion column is given by 

ni~n« = BLe ** 

-Bi e d* 
= 1 VrfM (211) 

and 

I = ^ ® (212) 
Wi — no 

Upon eliminating I from equation 209 we obtain Wiener's equation (105) 

dn (m - no) 2/4U 

dx ~ 2V*& e (213) 
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from which 

These equations, which give the distribution of solute as a function of height, x, 
find their principal application in the use of optical methods for the determina­
tion of diffusion coefficients of macromolecules. Although it was recognized 
that the gradient of the refractive index could be used to measure a concen­
tration gradient (33), the first optical system used quantitatively for this purpose 
was constructed by Wiener (105). Important technical advances were made 
some years later by Thovert (96, 97) and others (45, 83, 104), who used optical 
methods for measuring diffusion coefficients. The three modern methods, the 
absorption, the "schlieren", and the scale, have been developed to a high 
degree of precision at the Chemical Institute of Upsala by Svedberg (93), 
Tiselius (98), and Lamm (37, 52-56). The investigations of Longsworth 
(60-66), who is responsible for the "schlieren scanning" method, are the last 
word in precision technique by optical methods of this nature. 

These experimental procedures have found their principal application in de­
termining diffusion coefficients of macromolecules and in electrophoretic analy­
sis. With the exception of Clack's researches (9, 10), very few accurate dif­
fusion coefficients of electrolytes have been determined by optical means. On 
the other hand, these procedures can be carried out in a short time as compared 
with that usually required for the study of the slow process of diffusion and for 
this reason may prove important in future studies. 

In addition to the optical methods, the microindicator method (25-28, 84, 
99, 108) and the float method of Gerlach (29, 106) have been employed for the 
determination of diffusion coefficients from systems undergoing free diffusion. 
These have not yielded nor do they promise to yield as accurate results as other 
methods and will not be mentioned further. 

2. Steady-state diffusion 

The diffusion upwards in a vertical column from a reservoir at the bottom con­
taining a solution at one concentration into a reservoir at the top containing 
solution at another lower concentration, or into pure solvent, ultimately attains 
a steady state in which, at each height in the column, the flow J is constant. 
With such a column Clack (9, 10), with an accurate series of measurements of 
some salt solutions in water, was able to determine both the flow J and the 
concentration gradient dn/dx. From these, he was able to compute the dif­
ferential diffusion coefficient by Fick's first law: 

3) = - J(dn/dxy1 (215) 

These results are among the very few direct determinations of differential dif­
fusion coefficients and their accuracy at concentrations of 0.05 N and higher 
are estimated to be within 1.5 per cent. These results constitute one of the 
few important contributions to our knowledge of electrolytic diffusion but were 
not obtained at sufficiently low concentrations to afford an accurate test of 
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theory. Clack (9) also used a gravitational method in a system in a steady state 
of diffusion to determine integral diffusion coefficients. 

The diaphragm method of McBain (67, 68, 101) and Northrup (74), which 
permits a solute on one side of a sintered-glass membrane to diffuse into water 
or a more dilute solution on the other side of the membrane, approaches the 
steady condition if the solutions employed are sufficiently large. Under this 
condition, the diaphragm method can be treated as a steady-state problem, since 
the concentrations on the two sides of the membrane will not alter appreciably. 
This method has been shown by McBain (67) and Dawson (16), and particu­
larly by Hartley and Runnicles (43) and Gordon (31, 32), to yield accurate 
relative results. 

S. Restricted diffusion 

When diffusion from an initially sharp boundary takes place in a solution 
which completely fills a vessel and is permitted to proceed for a sufficient length 
of time, the concentrations at all heights in the apparatus will change continu­
ally. In a vertical column of height a, the flow J will be zero when x = 0 and 
x = o, since the solute is confined within the vessel. In this case, the differen­
tial equation 

with boundary conditions 

dn _ 
dt ~ 

P = O 
dx 

n = f(x) 

n T£ » 

dt* 

\x = ( 
for 

[X = ( 

for t = O 

for t = oo 

(216) 

(217) 

may be satisfied by a solution arranged in a Fourier series. Thus 

n = no + 2-i Ame cos (218) 

where 

no = - I"f(x) dx; Am = - ['fix) cos — dx (218a) 
a Jo o Jo a 

Obviously, n = n0 when t = « , in agreement with the condition that no solute 
can enter or leave the system. As an example of restricted diffusion, we cite 
the layer analysis method, used by many investigators from the very beginning 
of the study of diffusion and culminating in the precise study of the diffusion of 
potassium chloride in water by Cohen and Bruins (12). Among these inves­
tigations we mention particularly the extensive series of results of Oholm (75, 
76). Unfortunately, determinations like those of Cohen and Bruins yield 
integral diffusion coefficients and, as pointed out by Gordon (32), it is difficult 
to compare such results with the integral values obtained by the diaphragm-cell 
method. 
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Electromotive-force measurements (82, 85, 89, 103) and conductance meas­
urements (44, 50, 73) have also been applied to measure diffusion coefficients in 
vessels in which restricted diffusion occurred. We shall describe in some detail 
a method which involves the measurement of electrical resistance at the top 
and bottom cf a carefully designed vertical cell. By such a technique (39, 40), 
the diffusion coefficient of potassium chloride in water from 0.001 N to 0.01 N 
has been determined with an accuracy of the order of 0.1 per cent. These re­
sults serve for the first time to prove the validity of the limiting equation of 
Xernst (71) and to test the theory of Onsager and Fuoss (80). 

IS. F R E E DIFFUSION. A GENERAL SURVEY OF OPTICAL SYSTEMS USED FOR 

DETERMINATION OF DIFFUSION COEFFICIENTS ' 

A general idea of how a concentration gradient in a solution deflects light from 
the normal path is clearly illustrated by figure 1. A horizontal slit to the left 

FIG. 1. Diagram illustrating the interference phenomena accompanying the deflection of 
light by gradients of refractive index in a freely moving boundary (Longsworth). 

of lens L is focussed by this lens in the plane P. If the cell G contains a homo­
geneous liquid or solution, the wave front may be represented by the circular 
arc ab and the image of the slit will be focussed at .T0. Now suppose that free 
diffusion takes place at a sharp boundary between solution at the bottom and 
solvent at the height h0. After a period of time, concentration gradients of 
magnitudes indicated by the intensity of the shading will be present and the 
new wave front will have the form ahob'. Since the refractive index of the more 
concentrated solution is the greater, the velocity of light will be less in the lower 
portion and h"b' will be retarded relative to ah'. However, the light passing 
through these regions will still converge at x0. On the other hand, the light 
which passes through the portion h'h0h" will converge at X1, as indicated by the 
lines drawn normal to the wave front, and if the diffusion is not affected by tur­
bulence or other disturbing factors will form a series of light and dark bands, 

7 See reference 1, which contains a review of optical methods. 
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which depend on the phase relations of the light. These bands increase in width 
from XQ to xm, at which level a diffuse band appears corresponding to the normal 
of the inflection point of the wave front. 

In figure 2 a photograph of such a system of bands taken by Longsworth (61) 
is reproduced. He suggested that a quantitative theory of the distribution of 
these bands for the case of ideal free diffusion would be of considerable value for 
the application of optical methods.8 

FIG. 2. Photograph at the schlieren diaphragm (Longsworth) 

1. The "schlieren" method for the observation of boundaries and bands 

The adaptation of Toepler's schlieren (shadow) method by Tiselius (98) for 
the observation of boundaries formed during the electrophoresis of macro-
molecules inaugurated an important development in the modern optical tech­
nique of measuring concentration gradients. By this method, a graph of a 
gradient of the refraction index dn/dx versus the vertical distance x in the cell 
may be constructed.9 The method of Tiselius has been greatly improved in 
accuracy and ease of manipulation by Longsworth (60-66), who devised the 

8 In a private communication, Dr . Longsworth has informed me that as a result of this 
suggestion, Dr. Gerson Kegeles at the University of Wisconsin has developed a theory of 
this phenomenon by means of which the diffusion coefficient for ideal diffusion may be com­
puted from the spacing of the bands. 

9 In this section n has been used to denote refractive index, in conformity with common 
usage. 
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"schlieren scanning" method by which a photograph of the plot of dn/dx against 
x can be obtained directly.10 

A simple diagram of the optical system is shown in figure 3. An image of a 
horizontal slit is brought to focus in the plane at P by the lens D. At P an 
opaque diaphragm with a sharp horizontal upper edge is placed. This can be 
moved vertically. We note that the schlieren diaphragm is at the same posi­
tion as the plane P in figure 1, so that the photograph (figure 2) was taken at 
this position. The objective lens O serves to focus the image of the cell E upon 
the photographic plate G. 

If gradients of the refractive index are present in the cell, the light through 
these will be deflected downward as shown in figure 1. If the diaphragm is 
placed so as to intercept these deflected pencils, dark horizontal bands appear 
at the photographic plate. These shadows are known as the schlieren bands, 
which with electrophoretic boundaries can be made sharp by suitable lenses and 
a sufficiently narrow slit S. The displacement of the diaphragm from the posi­
tion of the undeviated to the deviated image is proportional to the gradients of 
the refractive index in the cell conjugate to the edges of the bands. 

FIG. 3. Schematic diagram of the optical system employed in the schlieren method 
(Longs worth). 

The facility with which the schlieren method can be applied has been greatly 
increased by Longsworth. A vertical slit is placed at the photographic plate 
and the latter is moved horizontally past the slit. Simultaneously, the schlieren 
diagram is moved vertically until the position of the undeviated slit image is 
reached. By this method a transparent area caused by the interception of the 
deviated pencils of light appears on the plate. The contour line of this area is a 
graph of the gradient dn/dx against the vertical position x. 

The theory of the deflection of light by an inhomogeneous liquid system shows 
that if 8 is the displacement of the schlieren diaphragm 

5 = ab dn/dx (219) 

where a is thickness of the liquid in the cell and b is the optical distances in­
dicated in figure 3. Lamm's (54) recent contribution to this subject contains 
detailed considerations of the optics of the scale and schlieren methods with 
particular emphasis upon the scale method. The theory of ray deflection is 
developed exhaustively. 

10 Special attention is suggested to the article by Longsworth (64), which is a masterpiece 
of description of this experimental method. 
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Now the integral which equals the area under the plot derived from the 
schlieren scanning photographs is 

J Sdx= J abpdx = abAn (220) 

This equation has proved of importance in the study of electrophoresis, where a 
substance is concentrated in a thin layer. For this case, the increment in re­
fractive index, An, is nearly proportional to the concentration of substance. 
Consequently the schlieren scanning method can be used conveniently to esti­
mate the total concentration of the substance and the distribution of concen­
tration through the boundary. 

2. The scale method of Lamm (54) 

The optical system of the scale method consists of a lens by means of which 
a scale is focussed on a plane photographic plate. A vertical cell with parallel 
sides is placed between the scale and the lens at a distance b from the scale. 
The scale is first photographed through a distance a of a homogeneous solvent 
or solution. I t is photographed again later through the inhomogeneous media 
produced by the diffusing substances or electrophoretic boundary. The re­
fractive-index gradients cause deviations in the images of the lines of the scale 
on the photographic plate which can be determined by comparison with the nor­
mal scale-line positions. For this purpose a comparator is used. In this 
optical system the deviated line is somewhat out of focus, but this condition can 
be remedied to a large extent by employing a lens with a long focal length. 

Lamm (54) has made a very careful and exhaustive theoretical and experi­
mental investigation of the scale method, and his dissertation should be read by 
all those seriously interested in the subject. Geometric optics shows that the 
displacement of a line from its normal position on the photographic plate is 
given by the equation 

Z = Gab dn/dx (221) 

where a and b are the distances mentioned above and G is a magnification factor 
(photographic enlargement). 

The photographic deviation Z and scale reading z are arbitrary but depend 
on the refractive-index gradient dn/dx, which we shall denote by X, and the 
z-dimension in the cell. The projection factor is dx/dz or F, which when in­
troduced in equation 22 yields 

dn = JL Z dz (222) 
Gab 

and the integral 

n - n a = JL-\" Zdz (223) 
Gab Jz. 

In order to determine the diffusion coefficient from these measurements of 
free diffusion, we resort to equation 213, which was derived by Wiener (105). 
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Thus 

where $ is the area under the (A', .r) graph. This relation is recognized to have 
the form of the error or probability law, and its general validity in the case 
of pure free diffusion is well illustrated by the diagram of Wiener's optical sys­
tem in figure 4. The illuminated slit at an angle of 45° is focussed upon a 
screen (G) by a lens of large focal length. If the solution in the cell (C) is 
homogeneous, the image cf the slit is the straight dashed line. If a diffusion 
gradient is produced from an criginallv sharp boundary at h0 between a solution 
at the bottom and solvent at the top, the light rays are bent downward and the 
image upon G has the characteristic form of the error function, ab'c. Somewhat 
later Thovert, by interposing a cylindrical lens between the cell and a photograph, 

F I G . 4. The optical system of Wiener (Longsworth) 

obtained a horizontal image. One of his photographs of an experiment in 
which 0.85 N sodium chloride is diffusing into water is shown in figure 5. The 
three curves correspond to different times during the diffusion process. 

The actual experimental observations in the scale method are deviations of 
the scale lines on the photograph, Z, and the distances cf the scale lines, z, from 
some arbitrary origin. Since these results depend on equation 224, which has 
the form of a Gauss distribution function, they may be computed by the methods 
of mathematical statistics.11 To this end, the experimental values of the or-
dinates Z are plotted against the abscissae z. The z-axis is then divided into a 
large number of equal parts of length w, and the scale values corresponding to 
each of these divisions are obtained from the ordinates of the graph. From 
an arbitrary origin (s = 0) the divisions are numbered 1, 2, etc. to the right and 
— 1, —2, etc. to the left of this arbitrary origin. 

The ideal frequency curve S = f(s) of Charlier (11) 

11 K. Pearson (Trans. Roy. Soc. (London) A185, 71 (1894)). For a simple textbook t rea t ­
ment see B. H. Camp, The Mathematical Part of Elementary Statistics, Hea th and Company, 
New York (1934). 



502 HERBERT S. HARNED 

S = 
N. w -(s-/3)2<o2/2<r2 

crV2w 
(225) 

is suitable for this computation. In this relation, S is the frequency of a given 
statistical element, N is the total number of statistical elements, s is the class 
number, a> is the class breadth, a is the standard deviation, and /3 is the distance 
of the arbitrary origin from the centroid. 

F I G . 5. Photograph obtained by Thovert of 0.85 N sodium chloride diffusing into water 
(Longsworth). 

This equation becomes analogous to equation 213 

X = ^ = 
dx ~ 2-V/TT3)* 

_«8/4©( (226) 

upon substituting 

x = (s - 0)co • (227) 

3> = iVco = area (228) 

cr2 = 2<3)t (228) 

The quantities N, /3, and a/co are determined from the theory by the relations 

N = XS (230) 

and 

p XS 

Ku>) XS \XSj 

(231) 

(232) 

The latter equation is derived from consideration of the area and the second 
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moment. The maximum value of the frequency Sm occurs when (S — 0)u is 
zero, whence 

JVw (2(SOw 
Sm = TV^ = W^ (233) 

These later equations yield 

JiS J J 2* 
S-[*g-(>gf\£ (234) 

and 

(SS)2 w2 9 = xs (235) 

which have been frequently employed for the evaluation of the diffusion coeffi­
cient. Since the calculations are made from the Z, z graph, the projection 
constants of the apparatus must be employed for determining w and JV. In 
order to obtain the mean position of the boundary or to change the origin to the 
centroid, /Sw is added to the s readings. 

Further, in order to compare the frequency curve with the corresponding 
normal ideal Gauss curve, let 

and 

whence 

% = ^ ~ A " (236) 
2<r 

S = ^- & (237) 
JVw 

e-2*2 (238) 
" Vz* 

The numbers 5 and 2 are arbitrary and are chosen for convenience in drawing the 
graph. 

The free diffusion of a pure solute into a solvent has been shown in many 
instances to conform to the theory. Consequently, agreement with theory has 
been interpreted as proving that the solute is a homogeneous substance and that 
deviations from the ideal curve indicate that the diffusing substance is a mixture. 
The principal application of this latter reasoning has found the basis for numer­
ous studios of diffusion of polydisperse systems containing macromolecules (3,4). 

That the real diffusion graph conforms to the ideal normal Gauss distribution 
is illustrated by figure 6. These are plots of Lamm's results for the diffusion of 
0.1 JV potassium chloride into water at 2O0C. The bottom curve is the plot of 
the photographic displacements Z versus the distances z on the arbitrary scale 
with origin corresponding to the maximum of the graph. The top curve shows 
the same results in normal coordinates, S and £. The agreement between the 
experimental and theoretical results is good. 
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Lamm (54) computed the diffusion coefficient for this case by a number of 
methods involving the mathematical properties of these curves and obtained 
values of 1.44 to 1.47 cm.2 per day or 1.67 to 1.70 X 1O-6 cm.2 per second. This 
agrees closely with the result, 1.448 cm.2 per day, obtained by Cohen and Bruins 
(12) by the layer analysis method. However, this agreement must be taken 
cautiously, since it is difficult to interpret exactly results obtained by the layer 
analysis method (see Section V, D, 1). 

16 20 

FIG. 6. Z,« and E,£ plots employed for the calculation of the diffusion coefficient by the 
scale method. 

C. STEADY-STATE DIFFUSION 

1. The measurement of the differential diffusion coefficient according to Clack 
(9, 10) 

The experiments of Clack which led to the determination of the differential 
diffusion coefficients of potassium and sodium chlorides and potassium nitrate 
from 0.05 N to high concentrations are one of the most important contributions 
to this field. Clack's apparatus is represented in figure 7. A salt from a 
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saturated solution is allowed to diffuse upward into water in the cell C until a 
steady state of diffusion is reached. The refractive index and its gradient are 
measured by an optical system consisting of a horizontal slit S focussed by the 
lenses Li and L2 upon an ocular E. A screen B with a compound slit Y is inter­
posed between the lens Li and the cell. This screen can be moved vertically 
along the column. Clack found that the interference pattern formed by the 
double slit in the ocular yielded a sharply defined central band. The displace­
ment of the pencil of rays produced by the refractive-index gradient in the cell 
from its normal position can be measured by moving the ocular in a vertical 
direction. 

FIG. 7. The optical system used by Clack for the determination of differential diffusion 
coefficients (Longsworth). 

As in the previous optical methods, this displacement 5 is given by the equa­
tion 

8 = ab dn/dx (239) 

where a is the distance through which the light passes in the liquid, b is the dis­
tance from C to E, and x is position in the cell at the height of the slit Y. Know­
ing these dimensions and 5, dn/dx at any height z may be determined, and if n 
is known as a function of the concentration c, both c and dc/dx may be evaluated 
at the position x. 

In order to evaluate the differential diffusion coefficient by this method, it is 
necessary to determine the solute flow J, and also to make a correction for the 
solvent counterfiow. With this in mind, we write Fick's first law 

S = - JMdc/dx)'1 (240) 

where <j> is the frame-of-reference factor. In Clack's final experiments, the lower 
reservoir of the cell contained solid salt in equilibrium with its saturated solu­
tion. When the steady state is attained, the flow Jx is a constant and the 
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lower reservoir loses Ji grams of salt and gains J0 grams of water per unit cross 
section in unit time. The quantities Ji and J0 can be computed from the weight 
of salt dissolved, the density of the salt, and the concentration and density of 
the saturated solution. 

We have pointed out that the flow has usually been defined relative to a fixed 
plane of reference and have indicated by equation 2, which defines a bulk 
velocity, how the flow can be defined relative to a frame of reference moving with 
the solvent. I t is clear that in dilute solutions when extremely small volume 
changes are involved there will be no appreciable difference between results ob­
tained upon these two frames of reference. On the other hand, in Clack's cell 
the concentration of salt through the column varies from that of the saturated 
solution to zero, so that the results obtained at a reference fixed with respect to 
the apparatus must be corrected for solvent counterflow and volume changes. 
Clack derived expressions for this correction. 

2. The diaphragm-cell method 

The use of sintered-glass diaphragm cells for measuring diffusion coefficients 
has been shown by McBain (67) and especially by Gordon (14, 32) and Hartley 
and Runnicles (43) to be convenient and accurate. Since the diffusion process 
is slow, measurements in vessels without diaphragms are most sensitive to any 
factors which, like local gradients of temperatures or initial stirring, may cause 
convection. In the diaphragm cell, the diffusion is confined to the pores of a 
sintered-glass or an alundum diaphragm, so that errors caused by agitation by 
thermal or mechanical means are reduced to a minimum. 

The apparatus used by McBain and Liu (68) and Gordon (14, 32) consisted 
of a bell-shaped vessel with a stopcock at the top and a flat diaphragm of sin­
tered glass at the bottom. This (inner) vessel is filled with the more concen­
trated solution and is suspended in such a way that the diaphragm just touches 
the surface of a weaker (outer) solution. The diaphragm must be adjusted 
horizontally and must be in contact with the outer solution over its entire sur­
face. The whole apparatus is placed in an air thermostat. In this form of 
apparatus only density stirring can take place. 

Mouquin and Cathcart (69) have described a glass cell containing a sintered-
glass diaphragm at the middle, which was stirred by rotating end over end. 
Hartley and Runnicles (43) obtained stirring by rotation of their cell about its 
axis at an angle inclined to the vertical. The upper solution was stirred by a 
glass sphere resting on the diaphragm, and the lower solution by a lighter glass 
sphere which pressed against the bottom surface of the diaphragm. The con­
centration in the inner compartment of the apparatus was measured by con­
ductance. 

The obvious disadvantage of the diaphragm-cell method consists in the fact 
that each cell possesses a cell constant which must be evaluated by employing 
a solution containing a solute with a known diffusion coefficient. Up to very 
recently, no determination of a diffusion coefficient of an electrolyte could be 
relied on to within a few per cent, so that no really satisfactory cell-constant 
calibration could be made. 
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On the other hand, by careful experimentation resulting from critical analysis 
of the sources of error, it has been shown that diaphragm-cell measurements are 
capable of high accuracy and reproducibility. The theory of the method, 
originally developed by Northrup and Anson (74) and McBain and Liu (68), is 
very simple. The diaphragm is assumed to be made up of a large number of 
parallel pores of a length I and of an effective cross-sectional area, A. The solu­
tions on both sides of the diaphragm are assumed to have uniform composition 
and the transfer of matter from the inner to the outer solution occurs only by the 
process of diffusion. The membrane must be such that any stream-lined flow 
is prohibited. If c' and c" change slowly, the solute distribution throughout the 
diaphragm will approach that of a steady-state process. The concentration 
gradient across the diaphragm if 2) is independent of the concentration will be 
(c' — c") and will be constant throughout the diaphragm. If the quantity, 
dq, of solute diffuses in the time dt, then 

dq = ®A ( c , _ c„) dt ( 2 4 1 ) 
L 

which is the differential form of equation for the diaphragm cell. The concen­
trations c', c" and the quantity dq/dt may be measured, but A/l is not known and 
must be determined from the known diffusion coefficient of some solute. North­
rup and Anson used this differential form of equation. There are obvious prac­
tical advantages of extending the measurements over longer time intervals and 
most of these measurements have employed the result obtained by integration. 
The change in the quantity of solute in one compartment in a time dt must equal 
the amount which has diffused in or out of this compartment. If V and V" 
are the volumes of the inner and outer solutions, respectively, then 

V'dc' + (3)A/l)(c' - c")dt = 0 
(242) 

V'dc" + (2U/0(c" - c') dt = 0 

where dc' and dc" are the concentration changes. Upon subtracting the second 
of these equations from the first and writing Ac for (c' — c"), we obtain: 

^ ? + /32) dt = 0 (243) 
Ac 

where the cell factor constant 0 is given by 

/3 = ~(j-, + ^ ) (243a) 

Assuming that 2) is not a function of c, and that the cell remained constant dur­
ing an experiment, equation 243 can be integrated from the initial concentra­
tions Co, c" to the final concentration c'f, cf to yield 

In ^l $3)t (244) 
Aco 

the equation most frequently used in determining the diffusion coefficient by this 
method. 
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An analytical and critical survey of the diaphragm-cell technique has been 
made by Gordon (32). In addition to the discussion of the sources of errors 
and their elimination, he has shown that the density-stirred method yields results 
which agree with those obtained by mechanical stirring. He also shows that the 
diaphragm-cell method may be safely treated as a steady-state process. We 
shall reserve for a later section the discussion of the selection of a standard dif­
fusion coefficient required for the calibration of the cell. 

Gordon (32) has made an important contribution in showing how the differen­
tial diffusion coefficient can be evaluated from diaphragm-cell measurements. 
Let us assume that 2) is a function of the concentration so that 

9/0» = 1 + /(c) (245) 

where S)0 is the value of 2) at infinite dilution. If this is the case, then the 
derivation of equation 244 is incorrect. Now for convenience, an integral 
diffusion coefficient 2),- may be defined by equation 244, since AC/, AC0, and /3 
are known. By the following procedure, one may find the concentration c< at 
which 2)< equals the differential diffusion coefficient 2). For a steady-state 
process at a given time, the flow 3)dc/dx is constant from the top (x = 0) to the 
bottom (x = I) of the membrane, for if this were not the case the transport of 
matter would be unequal at different areas on the diaphragm. At this instant, 
let the inner and outer concentrations be c' and c" and define an "effective" 
diffusion coefficient 2)' by 

- 2)'(c' - c")/l = 3)dc/dx (246) 

If this equation be multiplied by da; and integrated from x = 0 to x = I 

2)'/2)o = 1 + 1 f /(c) dc (247) 
AC Jc" 

where Ac = (c' — c"). Since 2)' changes as the diffusion proceeds, equation 
243 becomes 

0 ^ + /32)' dt - 0 (248) 
Ac 

and if F(c', c") be defined by 

2)0/2)' = 1 + F(c', e") (249) 

its integration can be effected by means of the equation 

In ^l + [*" F(-c'> c"> d(Ac) = -06t (250) 
Aco J Ac0 Ac 

but since by definition 

I n ^ s -f$%t (251) 
Ac0 

2)./2)0 = 1 + Q %t\ £ V F{°'^") d(Ac) (252) 



DIFFUSION IN ELECTROLYTE SOLUTIONS 509 

Recalling that c< is the concentration at which 2)i = 2), the second term on the 
right of this equation must equal /(c<), because of the original assumption ex­
pressed by equation 245. 

If 2) is known as a function of c, 2)' can be readily calculated by graphical or 
analytical integration from the known values of c' and c" by equation 247. 
Then equation 252 can be used to evaluate 2)j, since for every value of (c' — c"), 
F(c', c") can be computed. The more important reverse calculation of 2) from 
3>i requires a short series of approximations. If, as is usually the case, the inner 
and outer solution volumes are the same, 2) is identified with 2)< at the mean of 
the initial concentrations of the inner and outer solution. These values of 2) 
may be represented by the empirical equation 

2)/2)0 = 1 - AVc + Bc (263) 

where A and B are empirical constants. Then by means of equations 244, 247, 
and 252 a second series of values of 2)< is computed. The next step is to sub­
stitute these values of 2)< in equation 253 and to calculate the corresponding 
values of c<. The second approximation consists in adjusting the constants A 
and B with these values of c so that they are identified with the observed integral 
values 2),-. We shall have occasion to reconsider this method of calculation 
when actual diffusion coefficients by the conductance and diaphragm-cell methods 
are compared. 

D. RESTRICTED DIFFUSION 

1. The layer analysis method 

The method of layer analysis in which a solute diffuses upward in a closed 
vertical cell and, after a known time, equal portions of the solution at suitable 
heights are analyzed is in the category of restricted diffusion. The early meas­
urements of Scheffer (86) and Arrhenius (2), the extended results of "Oholm 
(75, 76), and the precision study of Cohen and Bruins (12) were made by the 
method of layer analysis. The best technique was effected in cells in which a 
shearing mechanism was employed, first to form an initial sharp boundary and 
secondly for removing the layers for analysis (8, 20, 36, 47, 75, 76, 88, 92, 102). 
The most precise measurements of this kind were made by Cohen and Bruins, 
who allowed 0.1 N potassium chloride at 2O0C. to diffuse from the lower com­
partment in an accurately machined apparatus divided into four compartments. 
After 36 hr. the four compartments were separated by a shearing mechanism 
and the solutions analyzed by a liquid interferometer. 

On the assumption that the diffusion coefficient is not a function of the con­
centration, its determination may be obtained from the solution of the differen­
tial equation of Kck's second law for restricted diffusion given by equation 218. 
If a is the height of each of the four compartments and U0 the initial concen­
tration of the solute in the lowest compartment, then when t = 0, 

n = n from x = 0 to x = a; n = 0 for x = a to x = 4a 
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and at all times 

^ = O for * = 0 and x = 4a (254) 
dx 

With these conditions, equation 218 becomes 

„ = £ + 2Jl ± A Sin ™ cos 7 ^ e-<- ' ' '»«/«* (255) 

At a time tf, the quantity of solute in each of the four equal layers may be ob­
tained by the integrals 

/.pa 

Qp = A ndx (256) 
J(P-Do 

where A is the cross-sectional area of the cell. 
This method has been thoroughly investigated by Stefan (91) and Kawalki 

(51), who constructed tables which were regarded by the earlier investigators 
as suitable for the computation of 3). These give the percentage of the total 
quantity of solute in each of the layers as a function of 3), t, and a: namely, 
2)</(Aa/2)2. Thus, by matching the experimental results with those in the 
tables, a value of 9) may be obtained. 

As shown by Cohen and Bruins (12), this experiment may be carried out 
with great precision but unfortunately, the values of S) are not differential 
diffusion coefficients nor are they the same as integral diffusion coefficients 
corresponding to a concentration of one-fourth the initial concentration. Fur­
ther, Gordon (31, 32) showed that the 3) of Cohen and Bruins was not the same 
as the integral coefficient obtained from diaphragm-cell measurements. Hartley 
and Runnicles (43) examined the matter in greater detail and came to the con­
clusion that the coefficient of Cohen and Bruins, obtained by diffusing 0.1 N 
potassium chloride into three-fourths the volume of water, was approximately 
the integral coefficient which would be obtained in a diaphragm cell if 0.06 N 
potassium chloride were allowed to diffuse into pure water. Both Gordon, and 
Hartley and Runnicles, are of the opinion that the result of Cohen and Bruins 
is high, owing to mixing when the apparatus is separated into layers. 

2. A conductance method for the differential diffusion coefficient 

The possibility of utilizing conductance measurements for determining the 
diffusion coefficient of electrolytes has naturally occurred to many investigators, 
but only very recently has it been carefully developed. Niemoller (73), over 
fifty years ago, measured the change in conductance through a capillary tube 
containing a solution of a diffusing electrolyte. Haskell (44) employed a dif­
fusing column 50 cm. in length and 5 cm. wide and recorded the conductance at 
various heights. Lamm (57) has recently developed a method and described a 
cell for the determination of the differential diffusion coefficient by this method. 
Lamm develops the theory of an apparatus in which free diffusion occurs. 
This method is more complicated than the method based upon restricted dif­
fusion employed by Harned and French (39). The latter demonstrated that 
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their apparatus was capable of yielding differential diffusion coefficients of 
potassium chloride at concentrations between 0.002 and 0.005 Af with an accu­
racy of the order of 0.9 per cent. As a result of their experience, they stated that 
with a new design of cell and with some technical improvements this accuracy 
could be greatly increased. This has proved to be the case (40) and there seems 
to be little doubt that this method is well calculated to solve experimentally the 
fifty-year-old problem of diffusion coefficients of electrolytes in very dilute solu­
tions. 

The most important feature of the method consists in designing a cell in such 
a way that mathematical complications are reduced to a minimum and the in­
terpretation of the measurements is simple and direct. The simplest possible 
form of cell is a rectangular parallelepiped of height a, completely filled with 
liquid in which an electrolyte is allowed to diffuse upward. This process belongs 

" " • * " 

..J 

X= OrS 

H' 

*iEl_U 
I a 
x 

FIG. 8. Vertical cross-section of conductance cell showing quantities involved in the 
theoretical derivations. 

to the category of restricted diffusion. The calculations are greatly simplified 
by measuring the difference of conductance between two electrodes near the 
bottom and two electrodes near the top of the cell, their exact position to be 
determined by theory. For this idea, we are indebted to Professor Lars On-
sager. 

The schematic cross section of such a cell is shown in figure 8, in which the 
electrodes are at a distance, £, from the top and bottom. Solute in the solution 
from the bottom part of the cell diffuses upwards into the top part, so that as 
time elapses the concentrations at the top and bottom of the cell approach each 
other. We shall assume that this difference in concentration is small enough 
so that 2) may be regarded as constant. Then, according to Fick's second law 

Wt ~ dtf ' 
^ = 0 

OX 
for x = a 

x=0 
(275) 

where c is the concentration in mols per liter. These conditions are satisfied 
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by the solution (equation 218) in the form 

= Z Ame~mi*w cos ™ ? + C0 (258) c 

where the Fourier coefficients are such as to satisfy the initial conditions of con­
centration. The difference in concentration at the bottom c(£) and the top 
c(a — £) is 

c(«) ~ c(o - «) = 2Aie-*'»"al cos ^ + 2A,e- 9 ' , c , / a l cos ^ 1 

a a 

+ 246e-26 ' ,SD , /o ,coa—^ + --- (259) 
o 

We note immediately the great advantage in measuring the difference in con­
centrations at the bottom and top electrodes, since all even terms of the series 
vanish and, owing to the character of the experimental term, the series con­
verges very rapidly. Now, if the electrodes are placed at a distance (f from the 
top and bottom equal to one-sixth the total depth of the cell (£ = a/6), then 

c(f) - c(a - {) = 2A ie-' ,3>, /o* cos -* + 2A^ixlmat cos —* + • • • (260) 
a a 

and only the first term of the series has significance after sufficient time has 
elapsed. Since £ and a are constant, 

2£7\. . 

hi (c(£) — c(a — £)) — ;—h constant = + constant (261) 
a2 T 

where T = a2/V3), 1/r becomes the slope of the plot of 

In (c(£) — c(a — £)) versus t 

and 

S) = - . - (262) 

As a result of this design of cell, the equation of the diffusion process becomes one 
of the first order, so that if the concentration difference at the bottom and top 
be measured accurately, 2) may be evaluated by the simple measurement of the 
depth of the cell. 

For many electrolytes over the narrow ranges of concentration involved in 
this experiment the difference in concentrations, c(£) — c(a — f), is proportional 
to the difference in conductance, KB — KT, so that 

In [KB - KT] = - t/r + constant (263) 

When this is the case, the calculation of 2) is considerably simplified. 
It is apparent that this method is most direct and has the greatest theoretical 

simplicity. Only the measurements of the resistances at the top and bottom of 
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the cell at suitable times and the depth of the cell are required. It has the ad­
vantage of great accuracy in dilute solutions. Its only disadvantage is the length 
of time required to obtain suitable results. 

The procedure of measuring concentrations at the top and bottom of an ap­
paratus during restricted diffusion might be made the basis of an optical method. 
Two parallel beams of light could be passed through the cell at suitable positions 
at the top and bottom. By a proper arrangement of an optical sytem, the 
interference phenomena produced could be used to measure the difference in 
concentrations at the bottom and top as the diffusion proceeds. Such a method 
might prove to possess some advantages over other optical methods. 

VI. EXPERIMENTAL RESULTS 

/ . The differential diffusion coefficient of potassium chloride in dilute aqueous 
solution 

The conductance method described in the last section has provided the most 
accurate values of diffusion coefficients in dilute solutions. The second column 
of table 2 contains values of S) X 106 of potassium chloride in water recently 
determined by Harned and Nuttall (40). These results were obtained by an 
apparatus which differed somewhat from the one used by Harned and French 
(39) in their earlier measurements by this conductance method. This and other 
improvements in technique have reduced the error of the determination from 
±0.9 per cent to the order of ±0.1 per cent. 

Each of these determinations depends on three measurements,—differ­
ences in conductance between the bottom and top of the cell taken at suitable 
intervals over a period of 6 days, the times when these conductances were 
recorded, and the depth of the cell. Values of the diffusion coefficients were 
calculated from the first to second, second to third, etc. days from the slopes 
derived from 24-hr. differences in conductance. These values were constant 
to within narrow limits and, as shown by Harned and Nuttall, showed no trend 
over a period of 6 days. The results in the table represent the mean of all these 
individual determinations. 

The fifth column contains values of S) computed by equation 176. All the 
factors involved are considered. In this concentration range, the calculation 
9U/c for potassium chloride is comparatively simple. Since the equivalent 
conductances of the ions involved are so nearly equal, the second term on the 
right of equation 178 is negligible. The calculation of the activity term is also 
simple at low concentrations, since the term ip(d) in equation 184 may be neg­
lected. Upon introducing the values: X? = 73.48, X2 = 76.34 from the data of 
Shedlovsky (90), and Longsworth and Maclnnes (65), T10 = 8.949 X 10~3 

and D0 = 78.54, equation 179 becomes 
(Pm 

— X 1020 =40.254 + 18.96c*(A V c ) (264) 

from which the values of 9R/c in column three were obtained. The activity 
coefficient term in column four was computed by equation 183 upon substitution 
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of the parameters given by Harned and Owen (41): namely, §if) = 0.5065' 
A' = 1.249, and B = 0.0202. The term containing D' is negligible in solutions 
as dilute as those under consideration. 

The agreement of the observed values with the theoretical ones is remarkable. 
This is illustrated most clearly by the results in the last column of the tables, 
in which the calculated values of S)0 — 3) have been added to the experimental 
results. If the theory is valid, the resulting values of S)0 should be constant 
and equal the limiting value computed from conductance data. The mean 
value of these results is 1.997, a figure which confirms the limiting value of 
1.996. In fact, as pointed out by Gordon (32), these are the first objective re­
sults of sufficient accuracy to confirm the limiting equation of Nernst for the 
differential diffusion coefficient at infinite dilution. 

TABLE 2 
The observed and calculated values of the differential diffusion coefficient of 

potassium chloride at SS" C. 

C 

0.00000 
0.00125 
0.00194 
0.00325 
0.00585 
0.00704 
0.00980 

S)XlO' 
(OBSEEVED) 

1.961 
1.954 
1.943 
1.931 
1.924 
1.918 

yft-x IOM 

C 

40.253 
40.301 
40.317 
40.346 
40.395 
40.413 
40.449 

l + <3-£* 

1.000 
0.981 
0.977 
0.971 
0.963 
0.960 
0.955 

S) X io« 
(THEOSETICAl) 

1.9958 
1.9605 
1.953 

. 1.943 
1.929 
1.925 
1.916 

2), x io« 

1.996 
1.997 
1.996 
1.997 
1.995 
1.999 

The magnitudes of the electrophoretic contribution and the activity coefficient 
terms are illustrated by figure 9. The lowest plot represents the limiting law 
as calculated by equations 185, 186, and 187, which upon substitution of the . 
experimental values indicated reduces to 

2> X 106 = 1.9958 - 1.170Vc (265) 

The dotted curve was computed by equation 177 by employing the limiting 
value of IJR/c and neglecting its change with concentration. This leads to the 
numerical equation 

2) X 106 = 1.9958 ( l + c ̂ p ) (266) 

The graph at the top is the plot of the results of the complete theoretical com­
putation given in the fifth column of table 2. The circles are the observed 
values from the second column of this table. 

There is little doubt from the agreement between the theoretical and ob­
served results that, in these dilute solutions, the term in equation 264 containing 
$(A's/c) is required. Indeed, this is the first experimental confirmation of the 
Onsager and Fuoss theory. 
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2. Comparison with diaphragm-cell measurements 
The only other measurements at low concentrations which can be compared 

with these results have been obtained by the diaphragm-cell method. In his 
recent contribution, Gordon (32) gives the results of his computation of the 
differential diffusion from the integral values by the method outlined in Section 
V, C. The experimental data of Hartley and Runnicles (43), McBain and Daw­
son (67), and Gordon were used. The selection of a standard for the calibration 
of the diaphragm cells depended on the semi-empirical equation of Gordon, 
which represented Clack's data at the higher concentrations and which extfa-

2.00 

I.1S 

V 

t.lo 

1.8S 

O C / / a Ol 

FIG. 9. The diffusion coefficient of potassium chloride in dilute aqueous solution at 260C. 
O, conductance method; X, diaphragm-cell method. A, limiting equation 265; B, equa­
tion 266; C, complete theoretical computation. 

polated to the Nernst limiting value. The results at low concentrations fall 
closely to the dotted line in figure 9. 

These results have now been revised by Gordon upon the basis of the new 
measurements given in table 2. This is much more satisfactory, since the 
calibration depends on objective evidence only. The data in this table are' 
represented accurately by the empirical equation 253, which with numerical 
values becomes 

3 X 105 = 1.996 - 1.065 \/c + 2.75c (267) 
11 The subject matter and calculations of this section have been derived from a private 

communication from Professor A. R. Gordon of the University of Toronto. 
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On this basis and the method of computation described in Section V1C, the re­
sults in table 3 were obtained. The values of 3), are differential diffusion coeffi­
cients at the concentration c,-, since c,- is the concentration at which 2) and 2),-
are equal. These results are plotted as crosses in figure 9. The value at 
0.00468 represented by the circle and cross was used for calibration. The 
other results agree within 0.004 with those obtained by the conductance method. 
This agreement is probably within the experimental error, and nothing further 
need be said until further data are available in dilute and moderately dilute 
solution. 

TABLE 3 
The diffusion coefficient from diaphragm-cell measurements 

Co = 0; V = V; Ac//Aco = 0.5 

«.' 

0.10 
0.05 
0.025 
0.02 
0.01 
0.005 
0.0025 

io« 2). 
(OBSERVED) 

1.838 
1.871 
1.904 
1.914 
(1.936)* 
1.954 
1.968 

Ci 

0.044 
0.0225 
0.0115 
0.0093 
0.00468 
0.00235f 
0.00118f 

* Calibration of the diaphragm cell was based on this concentration, 
t From the data of Hartley and Runnicles. 

3. Comparison of experimental and theoretical results at high 
concentrations 

The characteristics of the diffusion coefficient in concentrated solutions in 
relation to the theory are illustrated in figure 10, where S) X 106 for potassium 
chloride in water at 250C. is plotted against c1'2. Here the curves shown in 
figure 9 are extended to high concentrations. Curve A represents values com­
puted by the limiting equation (265), curve B those given by equation 266, 
and curve C those obtained by a complete calculation of (£5R/C). In con­
centrated solutions, the term containing the function f (d) in equation 183 con­
tributes as large an amount as the ffil/c) term.13 The circles represent the 
conductance results shown in figure 9 and the crosses results computed by 
Gordon (32). 

The existence of the minimum in this plot which corresponds closely to the 
minimum in the activity-coefficient function confirms the premise that the 
gradient of the thermodynamic potential is one of the important factors in 
concentrated solutions. This is confirmed by the data for other electrolytes. 
However, in the case of potassium chloride as well as all other electrolytes so 

u This is also true for sodium chloride in aqueous solution at 18.5°C, as shown by Harned 
and Owen (41). 
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far examined, the experimental results above 0.01 AT lie considerably below those 
resulting from theory. This is not surprising for, as pointed out in Section 
IV,6, the obscure ion-solvent interactions and any other short-range repulsive 
force interactions between the ions are not yet subject to quantitative treatment 
and were omitted in the development of the theory. 

Onsager and Fuoss suggested that the change in_viscosity caused by the elec­
trolyte would have an appreciable effect on the 9ll/c term in the more con­
centrated solutions and that as a first approximation should be inversely pro-

FiG. 10. The diffusion coefficient of potassium chloride at 250C. O, conductance; X 
diaphragm cell. A, limiting equation 265; B, equation 266; C, complete theoretical com 
putation. 

portional to the macroscopic viscosity. Harned and Owen (41) have shown 
that for sodium chloride solutions at 18.50C. multiplication of Uil/c by 770/»? 
causes the theoretical curve to approach the experimental at moderate con­
centration but overcorrects in solutions of higher concentrations. Deviations 
from the theory and the viscosity factor have been examined in considerable 
detail by Van Rysselberghe (100). 

The empirical equation of Gordon (31) is 

3) = 2000i?r [ 1.074 X 10-20 ^ Zr- 7^] (1 + m d-^A (268) 
L A0 n i F i * 7 _ l \ 9m / 
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in which both the viscosity and the partial molal volume of the solvent are 
introduced in the mobility term. This reduces to the Nernst equation at the 
limit but leads to a result in dilute solutions lower than that obtained by the 
theoretical equation (equation 176). For sodium and potassium chlorides and 
for potassium nitrate in water, this equation fits the results of Clack (9, 10) 
from 0.05 to 2 N with considerable accuracy. This is interesting, since at 
180C. Tjo/v is less than unity for sodium chloride and greater than unity for potas­
sium chloride and nitrate solutions. For higher valence type electrolytes it 
does not represent the results as accurately. 

VII. GENERAL CONSIDERATIONS, CRITICAL OBSERVATIONS, AND SUMMARY 

The preceding discussion has incorporated the fundamental theoretical deriva­
tions upon which criticism and further developments may be expected. The 
theory of reciprocal relations in irreversible processes has provided certain 
symmetry conditions which are fundamental to the specialized theories of con­
ductance of electricity, heat, or matter in solutions. In his most recent paper, 
Onsager (79) has made a notable contribution to the theory of diffusion in sys­
tems of more than two components. For a system of this kind Fick's law may 
be generalized to 

Ji= - 2kDikVck (269) 

which defines a set of diffusion coefficients. Interrelations between members of 
this set are deduced, the equations for the dissipation function are stated, and 
relations between the diffusion coefficients and thermodynamic properties for a 
system of more than two components are discussed. For diffusion in electrolytic 
solutions of three or more components, Onsager (79) has introduced some new 
substitutions and expressed the part of the dissipation function due to the re­
laxation effect in a form which is simpler than that formerly obtained by On­
sager and Fuoss (80), which required the solution of secular equations. Since 
there are no experimental data for multiple-component diffusion, these considera­
tions go beyond the scope of this review. 

Our descriptions of the methods of measurement have been limited to those 
which at present seem to be most promising. So far we have found that the 
Nernst limiting law has been verified by only one series of results on potassium 
chloride in water obtained by the conductance method. These results are also 
the only ones which indicate that part of the mobility term resulting from elec­
trophoresis is required in interpreting the data in dilute solutions. We note 
that in this calculation the term in equation 179 which contains (X1 — X2) is 
negligible, and consequently no evidence from any source is available to prove 
that this term is significant. 

The only other results of comparable accuracy with these conductance meas­
urements have been derived from diaphragm cells which have the disadvantage 
of being relative. I t is interesting that for hydrochloric acid the limiting value 
of the diffusion coefficient as estimated by James and Gordon (49) from dia­
phragm-cell measurements differs by 6 per cent from the value computed by the 
Nernst equation. 
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Departures from the theoretical equation for potassium chloride occur in the 
neighborhood of 0.01 N and wide departures are found in concentrated solutions 
—where terms in powers of the concentration higher than c1/2 become important. 
All measurements in both dilute and concentrated solutions confirm the impor­
tance of the activity coefficient term in the theoretical equations. In view of 
our lack of knowledge of concentrated solutions (e.g., ion-solvent etc. interac­
tions), these deviations from the theory are inevitable. Indeed, much more 
data on electrolytes will be required to prove or disprove the general validity of 
the theory at very low concentrations. Further advances will depend on 
whether a quantitative statistical theory of such interactions can be developed. 

Hermans (46) criticizes the theory of Onsager and Fuoss (80) on the grounds 
that it is illogical to employ a term of higher power than unity in the Boltzmann 
equation (128), while neglecting such a term in the Debye and Huckel theory 
(127). He allows no terms greater than a first power of c1/2. This leads to the 
elimination of the term containing <j>(A'\/c) in equation 179. In media of high 
dielectric constant, however, the effect of dropping the higher terms of the Debye 
and Huckel theory is small as compared to the #(A'\/c) term, so that the Onsager 
and Fuoss procedure is justified. The diffusion coefficient of potassium chloride 
indicates definitely that this term is required, but it would be a mistake to rely 
solely on one series of measurements as final proof of a matter of this kind. 

In addition to the data of Clack (9, 10) and Davies (15) in concentrated solu­
tions, mention should be made of the work of James and Gordon (49) and HoI-
lingshead and Gordon (48), who determined the differential diffusion coefficients 
of hydrochloric and sulfuric acids as a function of temperature. They find that 
the activation energy is a function of the concentration for hydrochloric acid 
above 0.2M but is not a function of the concentration for sulfuric acid from 
0 to 1 M. 

This review began with the statement that there are few fields of physical 
science which, for the effort made, have yielded so few experimental results of 
accuracy sufficient to test any part of the theory. This includes the limiting 
equation of Nernst, the validity of which has never been questioned but which 
with the exception of one series of results shown in figure 9 has never received 
experimental confirmation. By the use of the conductance method and the 
diaphragm-cell method in dilute solutions, it seems probable that many of the 
problems in very dilute solution may be solved. In more concentrated solu­
tions optical methods may be easier and preferable. At present, there seems 
to be little chance of the development of a quantitative theory of concentrated 
solutions, but perhaps the nature of the deviations from theory in dilute solutions 
may prove a help to future advance. 
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