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I. INTRODUCTION 

When a beam of light falls upon matter, the electric field associated with the 
light induces periodic oscillations of the electrons in the material. The material 
then serves as a secondary source of light and radiates light in the form of scat­
tered radiation with a wave length equal to that of the incident light.1 The 
intensity, polarization, angular distribution, and fine structure of the scattered 
radiation are determined by the size, shape, optical constants, and interactions 
of the molecules in the scattering material. Conversely, from a knowledge of 
the light-scattering properties of a given system, the chemist can, with the aid 
of the electromagnetic theory of radiation and the kinetic theory of matter, obtain 
a detailed molecular picture of that system. 

The use of light scattering to study molecular systems has the added advantage 
that the system under study is not affected by the measurement (except in the 
rare instances in which the incident light induces photochemical changes) and 
that changes in the system which take place rapidly can be easily followed. 

In this review no attempt will be made to discuss all the problems to which 
light scattering has been (or could be) applied, since such a discussion would 

1 In this paper we shall not consider the relatively small amount of light which is re-
emitted with an altered wave length when the molecules are raised to higher energy states 
by the incident light, i.e., the Raman effect (compare Section 111,5). 
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encompass nearly every branch of science. We shall, instead, confine ourselves 
to the physical principles of light scattering and to the chemical problems to 
which it has been applied and shall indicate some further possible uses for it in 
the field of chemistry. 

II . INDEPENDENT PARTICLES 

Independent particles are defined as particles located randomly in space, as 
are molecules in a perfect gas or solute molecules in an ideal solution. For a 
system of independent particles, the intensity of the light scattered is the sum of 
the contributions from each of the scattering particles of the system. Since the 
particles are randomly disposed, the light scattered by any one particle bears no 
fixed relationship to that for any other particle, i.e., there is incoherent scattering, 
and the total intensity of scattered light is the sum of the intensities from all the 
particles. If, however, the scattering elements lie close together in a regular 
array, as in a perfect crystal at zero absolute temperature, there is destructive 
interference between the scattered wavelets because of the fixed phase relation­
ships, i.e., there is coherent scattering, and the intensity of scattered light is 
zero. Because of the imperfect correlation which exists between the positions 
of molecules in a liquid, a liquid will scatter light with intensity intermediate 
between that for the same weight of a gas and that for a crystal. 

In the case of particles which possess a linear dimension comparable to or 
greater than the wave length of incident light, the scattering from different parts 
of the same particle must be considered. Because there are fixed phase rela­
tionships between the wavelets scattered from the scattering elements of the 
same particle, there is for large particles some destructive interference with a con­
sequent decrease in efficiency of scattering. Nevertheless, the intensity of light 
scattered by a system of large particles randomly disposed will be the sum of the 
contributions of the light scattered from each of the particles. 

A. SMALL PARTICLES 

1. Isotropic 'particles 

Lord Rayleigh in 1871 (172) laid the foundation of light scattering by his ap­
plication of electromagnetic theory to the problem of light scattering by molecules 
in a gas. He subsequently (173) used his results to account for the observed in­
tensity, color, and polarization of light from the sky. According to Rayleigh 
(172, 173) the oscillating electric field of the light incident upon a transparent 
optically isotropic particle whose radius is small compared with the wave length 
of the light induces an oscillating electric moment in the particle. The particle, 
acting as a linear electrical oscillator, does not radiate light in the direction of 
the vibrations. Along other directions, however, it radiates light and the scat­
tered light is perfectly plane polarized when viewed at right angles to the incident 
beam whether the incident light is polarized or unpolarized. The first detailed 
observations on the polarization of scattered light were made by Tyndall (208). 

The character of the scattered light from particles small compared with the wave 
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length of the incident light is given by the formula for the intensity of radiation 
from a Hertzian dipole antenna which is derived in most textbooks of theoretical 
physics (see, for example, Slater and Frank (190, Chapter 25)). I t is shown that 
the intensity of scattered light is proportional to the inverse fourth power of 
the wave length. Thus, when white light is made to fall on a system of such 
particles, the blue component of the white light is scattered much more than is 
the red; and the system has a blue color when viewed at right angles to the inci­
dent beam of light. When viewed in the direction of the transmitted beam, 
the system appears yellow in color since the blue component has been removed 
by scattering. 

The complete equation for the intensity of light scattered by v (per unit vol­
ume) independent small isotropic scatterers is derived in detail in treatises on 
electromagnetic theory (Born (19, Chapter 7, Section 81); Stratton (199, Chapter 
8, Section 8.5 and Chapter 9, Section 9.27)) and is given by 

l S7T V(X Z1 . 2 „ \ Z1V 
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i is the intensity of scattered light per unit volume of the scattering system, / 
is the intensity of the incident beam, r is the distance of the observer from the 
scattering system, B is the angle between the observer and the proceeding inci­
dent beam, X' is the wave length of the light falling on the particles (X' = X/no, 
where X is the wave length of light incident upon the system and «o is the index 
of refraction of the medium), and a is the polarizability or induced dipole moment 
per unit electrical field strength of the small isotropic particles. Equation 1 is 
for unpolarized incident light; the cos 6 term in the parentheses refers to the 
component of the scattered light whose electric vector lies in the plane defined 
by the incident and scattered beams (the plane of the page in figure 1) and the 
unity term in the parentheses refers to the component of the scattered light whose 
electric vector is perpendicular to this plane. Figure 1 shows the angular dis­
tribution of intensity and polarization of the light scattered from a small iso­
tropic scatterer. The scatterer is at the origin, and the length of the line drawn 
from the origin to a point on the curve is proportional to the intensity of scattered 
light. The dotted curve refers to the cos2 6 term, that is, to the component 
which is horizontally polarized, and the outer curve refers to the component which 
is vertically polarized. I t is seen from figure 1 that the light scattered at 90° 
is completely vertically plane polarized. The total intensity of scattered light 
is the sum of the horizontally and vertically polarized components given by equa­
tion 1. The spacial distribution of the intensity of the scattered light is given 
by the surface formed by rotating the curves in figure 1 about the vertical axis. 

When a beam of light traverses a light-scattering system, its intensity is' de­
creased by virtue of the energy withdrawn from the beam in the form of scattered 
radiation. The energy lost is given by the time average of Poynting's vector 
integrated over the surface of a sphere of radius r. For small isotropic scatterers 
the angular intensity distribution is symmetrical; i.e., the intensity of scattered 
light in the forward directions is equal to that in the backward directions, and 
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the fractional decrease in intensity of the incident light scattered in all directions 
can be calculated. The logarithm of the fractional decrease in transmitted in­
tensity, I, is given by the turbidity r (also called the attenuation or extinction 
coefficient due to scattering) where I = he"*1 and I is the path length in the 
scattering system. Such a calculation (Born (19, page 377); Stratton (199, 
page 436)) shows that for i perpendicular to the incident beam (6 = 90°) 

16 2 i 
(2) 

(3) 

and on combining with equation 1 we obtain for the turbidity: 

1287T1W 
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Since by equation 3 the turbidity for independent particles is proportional to the 
number of particles per unit volume, v, equation 3 is a statement of Beer's law 
where the attenuation in intensity of the incident light is due to scattering. 

• _ i :: 

FIG. 1. Angular scattering diagram for small isotropic particle (dipole scattering). 
See text for explanation. 

The polarizability of an isotropic molecule is proportional to the volume of 
the molecule; therefore from equations 1 and 3 the intensity of scattering is 
proportional to the number concentration, v, of the particles and the square of 
their volumes. Because of the strong dependence of the intensity of scattering 
on the volume of the particles, it is important in scattering measurements to 
eliminate large extraneous particles (usually dust) which scatter a considerable 
amount of light even though they are present in relatively small concentrations. 
The practically complete elimination of dust particles in gases for light-scattering 
studies was first achieved by Cabannes in 1915 (23). 

In order to relate equations 1 and 3 to experimental quantities, it is necessary 
to introduce the optical constants of the system. For a mixture of v isotropic 
particles (per unit volume) of polarizability a immersed in a medium of optical 
dielectric constant e0 (the optical dielectric constant of transparent material is 
equal to the square of its refractive index) the following relation holds 

e — eg Airva (4) 
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where e is the optical dielectric constant of the mixture. Equation 4, which is 
due to Maxwell (see Jeans (90a, Chapter 5)), is valid regardless of the shape of 
the isotropic particles and requires no assumptions concerning the electric field 
on the particles (the local field). Inserting equation 4 into equations 1 and 3, 
we obtain for the intensity ( per unit volume) and turbidity of the small isotropic 
particles (note that X = n0X') 

A* - eo)2 ( 1 + cog2 e) ( 5 ) i 
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and 
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Cabannes (24) has made quantitative measurements on the intensity of light 
scattered by argon. He was able to determine the number of gas molecules 
per unit volume, v, from equation 5 where eo = 1 (empty space). Since v = 
Nc/M, where N is Avogadro's number, c the weight concentration, and M the 
molecular weight, Cabannes obtained a value for Avogadro's number. 

Inserting Nc/M for v in equations 5 and 6 we obtain expressions relating the 
intensity of scattering (per unit volume) and the turbidity to the molecular 
weight of the scatterers, or 

and 

~~3xw"V~~3~/ (8) 

The specific dielectric increment, « — e0/c, may be expressed in terms of the 
specific index of refraction increment, n — no/c, where n and no are the indices of 
refraction of the mixture and medium, respectively, by 

e — e0 n —no dn2 _ (n — n 0 \ /„s 

For most substances the specific index of refraction increment is a constant in­
dependent of the concentration and depends on the index of refraction of the 
solute and of the medium. In the extreme case in which the index of refraction 
of the medium is equal to that of the solute, the refractive index increment is 
zero and no scattering will take place. The index of refraction of isotropic solute 
particles may be determined by adjusting the refractive index of the medium 
until no scattering occurs (Heller (84)). 

Putzeys and Brosteaux (154, 155) have determined the relative intensity of 
scattering from dilute solutions of a few proteins. They found that the intensi­
ties were proportional to the known molecular weights of these proteins, in agree­
ment with equation 7. By their studies, Putzeys and Brosteaux were the first 
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to establish the light-scattering method as a useful means of determining the 
molecular weights of large molecules in solution. Putzeys and Brosteaux (155) 
also determined the pH stability range of some proteins by measuring the rela­
tive intensity of scattering as a function of pH. In principle, they could have 
determined the absolute molecular weights from equation 8. In order to use 
this equation, however, it is necessary to know the volume of the scattering 
sample and the distance, r, very accurately. On the other hand, the absolute 
value of the turbidity can, for a sufficiently turbid sample, conveniently be 
measured in a colorimeter or spectrophotometer and only the thickness of the 
sample need be known (see below). 

From equation 8, using the approximation of equation 9, the molecular weight 
of the small isotropic colorless solute particles is related to the turbidity for very 
dilute solutions (the turbidity of the solvent is subtracted) by 

M = Z. (10) 

where 

„ 327T3no (n - n0V 

Equation 10 is essentially Rayleigh's equation (equation 3) and is the result ob­
tained from the more general expression due to Einstein (48) (see Debye (32, 
33, 34) and Section 111,2 of this paper), by extrapolating to infinite dilution. 
According to equation 10, the molecular weight of small isotropic particles can 
be determined from a knowledge of (1) the turbidity of a dilute solution of the 
material, (2) the concentration of the solution, and (S) the specific index of 
refraction increment. 

An application of equation 10 was the determination of the molecular weights 
of tomato bushy stunt virus and influenza virus by the use of a spectrophotometer 
(Oster (138)). It was necessary to determine the turbidity as a function of 
wave length so as to use the turbidity in that wave-length region where the 
inverse fourth power of the wave-length relationship of Rayleigh was obeyed. 
The particles were large enough to give intense scattering where Beer's law was 
obeyed, so that the solutions were ideal. In figure 2 are shown the results for 
very dilute solutions of tomato bushy stunt virus. The turbidity given in terms 
of the optical density, D (r = 2.303D), obeys Rayleigh's inverse fourth power 
law over the visible range, but at shorter wave lengths there is real light absorp­
tion due to the presence of ultraviolet-absorbing chemical groups. The molec­
ular weight calculated from the slopes of the curves, together with the index of 
refraction increments, gave values for the virus particles in agreement with those 
determined by other methods. The turbidity of the pure solvent is automati­
cally taken care of when the turbidity of the solvent is taken as the zero reading 
in a spectrophotometer. The light-scattering method gives the molecular 
weights of the dry protein, since the water of hydration of the protein has nearly 
the same index of refraction as the solvent water. Recently Bard well and 
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Sivertz (9) have determined the size of latex particles by the spectrophotometric 
method and obtained results in agreement with other methods. 

The equations given above and the cases to which they were applied are those 
of monodispersed systems. Frequently, for high-polymeric and colloidal solu­
tions, one does not deal with monodispersed systems. For a polydispersed 
system of Vj (per unit volume) small isotropic particles of volume Vj, equation 3 
for the turbidity is given by 

r = A^VJV) (11) 
i 

where A is a function of the wave length and the proportionality constant (a 
function of the index of refraction) between the polarizability and the volume 
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F I G . 2. Optical density as a function of inverse fourth power of the wave length for bushy 
s tunt virus in water (Oster (138)). 

of the particles (see equation 18). Equation 11 may be used to obtain an expres­
sion for the turbidity as a function of time for some kinetic processes. For a 
solution of high-polymeric molecules or colloidal particles in which polymeriza­
tion or coagulation is taking place, the system at any instant is polydispersed. If 
we know the number of j-mers, VJ, as a function of time we can calculate the 
change in light scattering with time for the polymerization or coagulation proc­
ess (Oster (139)). Since the volume of the j'-mers is j times the volume of the 
monomers, VQ, equation 11 becomes 

r = AvIT1J
1Vi (12) 

i 

The problem is now reduced to the mathematical one of evaluating the sum 
where vs is known for various polymerization and coagulation processes. Calcu­
lation shows (139) that (a) in linear condensation polymerization, the turbidity 
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(or intensity of scattering) increases linearly with time with a slope determined 
by the rate constant of the elementary step reaction, (b) in depolymerization of 
linear polymers, the turbidity decreases with time as the hyperbolic cotangent of 
the time, (c) in addition polymerization, the turbidity increases quadratically in 
time with a curvature determined by the rate constant of the elementary step 
reaction, (d) in coagulation of colloidal particles, the turbidity increases linearly 
in time with a slope proportional to the square of the weight concentration of 
the colloid. The last case was confirmed from experiments on the turbidity of 
coagulating systems during the period in the process when the coagulating 
particles scattered light according to Rayleigh's law. 

2. Anisotropic 'particles 

In the previous discussion we considered optically isotropic particles, that is, 
particles whose polarizability, a, is independent of direction in the particle. For 
small isotropic particles, the direction of the electric field associated with the 
incident light always coincides with the direction of the induced moment, and 
the scattered light is perfectly plane polarized in the direction 6 = 90°. For 
anisotropic particles, however, in which the polarizabilities along the various 
directions in the particle are not equal, in that there are different refractive indices 
along different directions, the direction of the incident electric field may not 
coincide with the direction of the induced moment. As a consequence, the light 
scattered at 90° will not be perfectly plane polarized perpendicular to the plane 
of the incident beam and the direction of the observation, and will exhibit a weak 
component in the horizontal direction. Rayleigh (177) calculated the depolariza­
tion, i.e., the ratio of the intensity of the horizontally polarized light to that of 
the vertically polarized light, in terms of the polarizabilities, on, «2, as, along 
the principal axes of the polarizability ellipsoid by resolving the induced dipole 
moments along these principal axes and integrating over all possible orientations 
of the particle. The expression for the depolarization, p„, of the light scattered 
at 90° from unpolarized incident light is given by 

_ 2(«1 + CLl. + «3 — CtlCt-j — «2 «3 — «!«3) /,ON 
Pu — 77 2 i 2 i 9\ i I i \J-^/ 

4 ( ^ i + «2 + OtS) T «1«2 T a2«3 + CH<X3 

For such small anisotropic molecules, the intensity of light scattered will be 
more than that for particles which are of the same volume but which are isotropic. 
According to Cabannes (25), the intensity of scattered light given by equations 
5 and 7 must be, for 9 = 90°, multiplied on the right-hand side by the factor 

1 + Pu ( M ) 

1 — iPu 
For directions other than 8 = 90° a more elaborate factor is required (Martin 
(122)). The turbidity also depends on the depolarization, and equations 6 and 8 
for the turbidity must be multiplied on the right-hand side by the factor: 

1±P (15) 
1 — tPu 
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The derivations of these formulae are quite involved, and for a detailed treatment 
the reader is advised to see any of the numerous treatments of the subject (for 
example, Born (19), Gans (68), Stuart (201), and Bhagavantam (13)). 

The depolarization of the scattered light may be determined visually by the 
Cornu method adapted by Cabannes (25). This method consists in dividing 
the scattered light into its horizontal and vertical polarized components with a 
double prism (Wollaston prism). The two components are then made to pass 
through an analyzer (nicol prism or polaroid); if the analyzer is rotated through 
the angle <j> which makes the brightness of the two components equal, the de­
polarization is given by tan2 <t> (see, for example, Woods (220, page 340)). For 
most systems the depolarization is small and the intensity of the horizontal com­
ponent is difficult to measure visually except by the Cornu method. With the 
recent development and general availability of extremely sensitive photoelectric 
cells, particularly the photomultiplier cell, the depolarization can be measured 
directly by measuring photoelectrically the intensity of the scattered light when 
it passes through the analyzer with plane of polarization in the vertical and 
horizontal positions. 

Cabannes (25) has discussed the conditions under which the depolarization 
can be accurately determined. They include the use of parallel light as the 
incident beam, the observations made exactly at 90° to the incident beam, and 
the elimination of dust which, as we shall see, can make a large contribution to 
the depolarization. Another precaution is the elimination of secondary scatter­
ing, whose contribution to the depolarization will be discussed later. 

The maximum depolarization which can be theoretically obtained for a par­
ticle small compared with the wave length of incident light is that of scattered 
light from an infinitely thin rod. Then a\ ^ 0 and ai = a.% = 0, so from equa­
tion 13 the depolarization is 0.5, and from equation 14 and 15, respectively, the 
intensity is 3.6 times and the turbidity 3.0 times that for isotropic particles of 
the same volume. For all the gases which have been measured, however, the 
depolarization is considerably less than one-half. Bhagavantum (13, pages 
54 and 55) has compiled a table of the depolarization of seventy-six common gases 
and vapors. The values range from 0 for argon to 0.125 for nitrous oxide, corre­
sponding to ai = «2 = «3 for the former and ai/a2 = ai/a% = 2.61 for the latter. 
The aromatic compounds show greater depolarization than do the corresponding 
aliphatic series, and the depolarization increases as one goes from ethane through 
ethylene to acetylene. If the molecules are highly optically active, the interpre­
tation of the depolarization is difficult (Gans (63)). The depolarization of 
scattered light from liquids is complicated by the fact that the particles are not 
independent and the problem will be treated in detail later. For the very dilute 
solutions of proteins studied by Putzeys and Brosteaux (154) the depolarization 
was observed to be negligibly small (see Section II,B,4). 

Under the influence of a strong electric field, most liquids and gases will exhibit 
a feeble birefringence. This phenomenon, called the Kerr effect after its dis­
coverer (94), has been shown by Langevin (112) to be due, for anisotropic non-
polar gases, to the partial alignment of the molecules with their axes of greatest 
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polarizability along the direction of the applied electric field. Langevin related 
the Kerr constant (the birefringence per unit field strength) to the polarizabilities 
of the molecules. Thus the depolarization can also be obtained from the Kerr 
effect (Raman and Krishnan (158)). The depolarization obtained from the 
scattered light and that calculated from the observed Kerr effect are in good 
agreement for non-polar anisotropic gas molecules, but for polar molecules the 
Kerr effect is largely due to the Debye orientation effect, and one must incor­
porate the theory of Born (18) for such molecules with assumptions concerning 
the angle which the permanent dipole makes with the axes of the polarizability 
ellipsoid (for review, see Stuart (201)). 

B. LARGE PARTICLES 

In the treatment given above we have considered the light scattered from small 
transparent particles as that of the radiation from an oscillating dipole. If, 
however, the particles possess a linear dimension greater than about one-tenth 
the wave length of the incident light, or if the particles are metallic, they cannot 
be considered optically small and the character of the light scattered is more 
complicated than that given by the dipole radiator theory of Rayleigh. For 
large particles the scattered light will be the superposition of the wavelets from 
various parts of the same particle. In the general case the phase and intensity 
of the wavelets will bear complicated relationships to each other. The solution 
of this problem is obtained by solving the boundary value problem of a piano 
wave incident upon a particle of arbitrary size, shape, orientation, and index of 
refraction. This general case has not been solved because of mathematical 
difficulties. For spheres, however, whether transparent or metallic, the problem 
has been solved by Mie (125), and important contributions have also been made 
by Debye (31) and by Rayleigh (175). Some attempts have been made to extend 
the Mie theory to other than spherical particles (see Gans (62) and Moglich 
(126)), but the problem is far from completely solved. 

When the index of refraction of the particle is nearly that of the medium, then 
as will be shown, the problem reduces to that of calculating the phase relation­
ships between the wavelets scattered from a fixed array of dipole oscillators 
making up the particle. The mathematical problem is then identical with that 
of the analogous x-ray-scattering case. Because of the mathematical simplicity 
of this problem, it is useful to separate this case from that of particles with 
arbitrarily high index of refraction. We shall also treat separately the special 
case of metallic particles, since metals have complex indices of refraction for the 
visible wave-length region of light. 

1. Large spheres 

Mie (125) (see also Debye (31) and Rayleigh (175)) obtained as a mathematical 
solution for the intensity of scattered light incident upon a sphere of arbitrary 
size and index of refraction a series expression in terms of spherical harmonics. 
The coefficients of the series are functions of the ratio, m, of the index of refrac­
tion of the particle and that of the medium and of the parameter x = 2TR/\', 
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where R is the radius of the sphere and X' is the wave length of the light in the 
medium. The series is the sum of the contributions to the scattering by the 
electric and magnetic multipoles of the oscillating electric charges. 

For particles with radii comparable or large compared to the wave length of 
incident light, i.e., x > 1, and with index of refraction ratio, m, differing some­
what from unity, say, for example, m > 1.3, the calculations of the Mie series 
are lengthy, and for details the reader is referred to the original papers of Mie 
(125), Debye (31), and Rayleigh (175) and to the reviews by Epstein (50), Strat-
ton (199, Chapter 9), and van der Hulst (211). The mathematical problem of the 
Mie theory is very similar to that of wave-mechanical collision processes in which 
the effective size of the particle is given in terms of the collision cross section and 
the wave length of the radiation is given in terms of the De Broglie wave length 
of the particles (see, for example, Mott and Massey (128, Chapter 2)). 

In the case of very small spherical particles of finite index of refraction, i.e., 
for particles for which mx —-> 0, Mie's theory reduces to the Rayleigh problem. 
For somewhat larger particles of finite index of refraction, say m = 1.33 and 
x=l (e.g., water droplets in air with radii about one-sixth the wave length of 
the incident light), the Mie series expression can be expressed with sufficient 
accuracy as the sum of terms involving the contributions to the scattering by 
the electric dipole and quadripole moments and the magnetic dipole moment. 
The intensities of the vertical and horizontal polarized components, «\ and i%, 
respectively, are given in this case by 

X ^ 

8?rr2 
Z 2i 

•v / 2 I '2 

h \a,\ . , a?. n/i i i 
12 = 8 ^ ' "2 C 1 C P l 

(16) 

Equations 16 refer to unpolarized incident light of unit intensity, ai and O2 

are the electric dipole and quadripole contributions, pi is the magnetic dipole 
contribution, and they are given by 

2 , 5 2 •, 6 

n ! « - 1 x m — 1 x , t ,s 
m2 + 2 6 m2 + 3/2 15 

When the radius of the particle is small, only the electric dipole term, oi, is 
important, and equation 16 reduces to the Rayleigh expression (equation 1) for 
the total intensity, ii + i2, for unit intensity of unpolarized incident light: 
namely, to 

H + it = ^ 2 (7^A)2 (1 + cos2 B) (17) 
8TT2 r2 \m2 + 2 / 

where the polarizability, a, of the sphere is given by 

m2 - 1 A ' z Y m2 - 1 1 (VA* = 
2 \ 2 T T / m2 + 2 \ 2 7 r / m2 + 2 

fl3 (18) 

For larger particles than those to which equation 16 refers, the intensity will be 
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given by an expression involving the contributions to the scattering by higher 
multipoles. Equation 16 shows that the scattering is not symmetrical about 
6 = 90°, but that more light is scattered in the forward than in the backward 
directions. Furthermore, the light scattered at 90° is not perfectly plane po­
larized, although the particles are taken as being isotropic. 

Debye (31) has obtained asymptotic expressions for the terms in the series of 
the form of equation 16, and several authors have calculated the series numeri­
cally for various-size particles with various indices of refraction.2 For example, 
Shoulejkin (186) has calculated the Mie terms for spherical particles of index 
of refraction ratio TO = 1.33 (applicable to, for example, water droplets in air, 
or, with a minor transformation, air bubbles in water) for x equal to 1, 3, and 
infinity. Blumer (17) and Caspersson (27) have computed the Mie terms for 
several values of TO and x. Engelhard and Freiss (49), Paranjpe, Naik, and 
Vaidya (144), and Ruedy (181) have calculated the Mie terms for large values 
of x and have compared the calculated values of the angular dependence of 
scattering with those from artificial aerosols made by adiabatic expansions of 
vapors, as is done in a Wilson cloud chamber. The agreement of the observed 
results with those calculated constitutes a confirmation of the Mie theory. 

In figure 3 are illustrated angular scattering diagrams from Blumer's calcula­
tions (17) for spheres for which TO = 1.25 and x equals 0.8 and 4.0, respectively. 
For x — 4.0 the large area of forward scattering is not shown. As in figure 1, 
the dotted curves represent the intensity of the horizontal component of the 
scattered light and the smooth curves represent the intensity for the vertical 
polarized component. For both these cases more light is scattered in the for­
ward directions than in the backward directions, in contrast to Rayleigh scatter­
ing (figure 1) which is symmetrical about 90°. The larger particle has a com­
plicated scattering diagram which is typical of large particles, especially those 
with large index of refraction. The maxima and minima in the diagram increase 
in complexity as the size and index of refraction of the particle are increased 
and correspond to the increasing importance^of the higher multipoles with their 
associated higher spherical harmonics in the Mie series. The complicated scat­
tering diagram which is essentially the diffraction pattern of the large particles, 
reduces, in the limiting case of particles which are very large compared to the 
wave length of light, to the ordinary refraction and reflection diagram of geo­
metrical optics together with the superimposed diffraction. 

If white light is incident upon a monodispersed system of particles of large 
size and high index of refraction ratio, each color component of the white light 
will have its own complicated scattering pattern and the scattering system will 
exhibit vivid colors when viewed at various angles. Ruedy (181), for example, 
has examined the transmitted color and the colored rings about the transmitted 
beam of light in artificial fogs of water droplets. Keen and Porter (92) noted 
that sulfur sols exhibited changes in transmitted colors as the sols aged, that is, 

2 Added in proof: The most complete calculations to date are those carried out by A. 
Lowan and his associates. They are available from the U. S. Department of Commerce 
Office of Publications Board, Washington, D. C. 
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as the particles increased in size. Ray (171) (see also Raman and Ray (165)) 
found that sulfur sols exhibited a few orders of colors when viewed at various 
angles with respect to the incident beam. A detailed study of this phenomenon 
has recently been carried out by La Mer and his coworkers. La Mer and Barnes 
(107) made a special effort to obtain monodispersed sulfur sols and were able 
to see as high as nine orders of colors in angular scattering. I t is necessary to 
obtain nearly monodispersed systems, since a mixture of particles of various 
sizes will not give distinct color bands. Johnson and La Mer (91a) have shown 
that as the monodispersity is increased the color bands become more distinct, 
and propose that this effect may be used as a test of homogeneity of the size 
of the particles. They have measured the position and ratio of the intensities 
of the red to green colors of sulfur sols of known particle sizes and obtained good 
agreement with the Mie theory. I t should be remembered, however, that sulfur 
has a high index of refraction (w ^ 1.5 in water) and for particles of low refractive 
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FIG. 3. Angular scattering diagrams for spheres (from calculations by Blumer (17)) 

index of refraction, say, for example, protein material (m ~ 1.15 in water), 
in order to exhibit colors the particles must be so large that they can easily be 
seen in a light microscope. Nevertheless, for large-size protein-containing sub­
stances such as blood cells or bacteria, small changes in size due to drying can 
be easily followed by studying changes in the angular color pattern or diffraction 
pattern of suspensions of these particles (for review, see Ponder (152)). 

In order to calculate the turbidity or extinction coefficient for a scattering 
system, it is necessary to integrate the intensity of scattered light over all angles. 
Rayleigh scattering gives a symmetrical angular pattern and the integration is 
easy to perform. For larger particles, however, the angular distribution is 
given by the Mie series, and the integration is difficult to perform. Jobst (91) 
obtained an approximate value for the sum of the Mie series by utilizing the 
asymptotic expressions for the terms in the series obtained by Debye (31). 
While for small particles the extinction coefficient is proportional to the sixth 
power of the radius and inversely proportional to the fourth power of the wave 
length of incident light, Jobst finds, for particles comparable to the wave length 
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of light, that the extinction coefficient is proportional to the fourth power of 
the radius and inversely proportional to the square of the wave length. For 
very large particles, the extinction coefficient is proportional to the square of 
the radius and is independent of the wave length. Since the extinction coeffi­
cient or turbidity becomes less dependent on wave length as the particles are 
increased in size, a system of large particles will, when illuminated with white 
light, appear whitish when viewed at 90° instead of bluish as for Rayleigh 
scattering. An estimation of the size of particles can be made by determining 
spectrophotometrically the dependence of the turbidity on the inverse power 
of the wave length (see Heller, Elevens, and Oppenheimer (85), Heller and 
Vassy (86), and Doty (42)). 
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FIG. 4. Upper: extinction coefficient per cross-sectional area as a function of size of 
sphere. Lower: power of x/\ as a function of size of sphere (La Mer (106)). 

For the purposes of this discussion it is convenient to consider the scattering 
area coefficient, K, which is the extinction coefficient per cross-sectional area 
of the particle and which may be written quite generally as: 

K = Q ( ? ) ' (19) 

Q is a function of m, and y varies from 4 for a Rayleigh scatterer to 0 for a par­
ticle large compared to the wave length. For some intermediate particle sizes 
y can be negative as may be seen in figure 4, calculated by La Mer (106) from 
the Mie theory. Figure 4 and similar curves by Stratton and Houghton (198), 
by van der Hulst (211), and by Sinclair (187) show that the extinction coefficient 
per cross section increases in the Rayleigh region as xi and reaches a maximum 
of from about 3 to 5, depending on the value of m, while for large x it oscillates 
with diminishing amplitude about the value 2 as a; increases. That is, as the 
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geometrical optical region is approached, the extinction becomes equal to twice 
the cross-sectional area of the particle. This result, which follows from compu­
tations of the higher Mie terms for very large particles, appears to be twice as 
great as one would expect from geometrical optics, to which the Mie theory must 
reduce for very large particles. This apparent paradox has been explained in 
detail by van der Hulst (211, Chapter 5; see also Sinclair (187)), who showed 
that even in geometrical optics a sphere will extinguish twice the amount of light 
striking it. Half this amount of light is scattered in a narrow peak of only 
slightly deviating rays on the exit beam. If the incident plane wave comes from 
a distant source and if the observation is made at a sufficiently great distance 
from the particle, the extinction will be twice the cross-sectional area of the 
particle. In the usual experiments in geometrical optics, however, the particle 
may be of macroscopic dimensions and the light source and observer are not at 
sufficiently great distances to observe this phenomenon. An example of the 
large distances required is given in the transmission experiments of Sinclair (187) 
with lycopodium spores (radius equal to 15 microns). At an observation dis­
tance of 6 in. from the spores the extinction coefficient was found to be equal 
to the cross-sectional area and only at a distance of 18 feet or greater was the 
extinction coefficient equal to twice the cross-sectional area. The applications 
of the theory of turbidity of large spherical particles are very important to the 
problem of visibility in astronomy and meteorology and the reader is referred 
to the book of Middleton (124), which contains a few hundred references on 
this problem. 

As indicated earlier, the turbidity is less dependent on the size of the particle 
for very large particles than for small ones. For a given weight (or volume) of 
material which is monodispersed into particles of very small size so that Ray-
leigh's law is obeyed, the turbidity will increase as the third power of the radius, 
since the number of particles per unit volume of the system decreases inversely 
as the third power of the radius, while the scattering of each particle increases 
as the sixth power of the radius, and the turbidity is the product of these quan­
tities. When the particles are comparable in size to the wave length of incident 
light, the scattering per particle is proportional to the fourth power of the ra­
dius, and the scattering for a given weight of material will increase linearly with 
the radius. For still bigger particles the scattering is proportional to the square 
of the radius, so that the scattering of the system will actually decrease with 
increasing radius of the particles. Thus, maximum scattering will occur for a 
given weight of material when the particles are about equal in size to the wave 
length (i.e., when the particles have a diameter nearly equal to the resolving 
power of the light). In figure 5 are shown curves for the dependence of the 
extinction coefficient of a given weight of material on the particle diameter. The 
data are taken from the work of Caspersson (27), who calculated them from 
the Mie theory. Note that the particle size for which the maxima occur is 
independent of the refractive index ratio. The position does depend, however, 
on the index of refraction of the medium, which determines the resolving power. 
Paint manufacturers have learned by experience that the maximum spreading 



334 GERALD OSTER 

power of colorless material is achieved by grinding the material to a size corre­
sponding to the resolving power of the light. Clewell (29) (see also Barnett (10), 
Andreason (3), Bailey (7), and de Vore and Pfund (38)) has examined suspen­
sions of highly refracting substances and found the maximum in turbidity 
given in figure 5. The curves also show that for certain sizes (in figure 5, par­
ticles with a diameter of 380 m/*) the longer wave length will be scattered more 
than the shorter one, a result which is the reverse of that in Rayleigh scattering. 

2. Metallic particles 

The vivid colors exhibited by metal sols are due mainly to selective absorption 
of the light by the metals. For sufficiently large particles, however, scattering 
can also play a r61e in determining the color of the sol. The color phenomena 
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FIG. 5. Relative extinction coefficient as a function of diameter of spheres for constant 
weight concentration of scattering material (from calculations by Caspersson (27)). 

of metal sols are described in detail by Wo. Ostwald (143), by Svedberg (204, 
page 193 et seq.), and by Freundlich (57, Volume 2, page 26 et seq.), who also 
give extensive bibliographies. 

According to Mie (125), the color of metal sols may be deduced from his 
theory when the index of refraction of the metal, n', is given in complex form 

n = n ik (20) 

where n is the ordinary index of refraction and 47rfc/\ is the absorption coefficient 
of the metal. For all metals in the visible region of the spectrum, n and k are 
nearly equal and are of the order of unity. Both quantities vary considerably 
with the wave length in a manner characteristic for each metal (see, for example, 
Mott and Jones (129, Chapter 3, sections 7 and 8). At long wave lengths (infra­
red wave lengths or greater) n and k are equal and are large compared to unity. 
For such long wave lengths there is considerable reflection of the incident light 
in the backward directions. 
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Steubing (196) examined the transmission and the 90° scattering of gold sols 
in some detail. He found that sols of small particle size (radius about 25 m û) 
strongly absorbed green light and thus appeared red on transmission and showed 
very little scattering. For larger particles, the absorption band is broader and 
shifts toward the red and there is considerable right-angle scattering. Such sols 
appear blue on transmission. Mie (125) showed that the phenomena reported 
by Steubing are explainable in a quantitative fashion by his theory. 

For each metallic sol the absorption coefficient and index of refraction of the 
metal as a function of wave length must be known in order to explain the color 
of the sol. Further complications are introduced if the metallic particles are 
not spherical (see Gans (61)) or homogeneous in size. The polarization of scat­
tered light from metallic spheres is similar to that expected for transparent 
spheres. 

The theory of the light scattering from metallic particles has been used in the 
study of the transmission of light through interstellar space. Recent work indi­
cates that much of the matter in interstellar space is in the form of particles 
comparable in size to the wave length of light. From an analysis of the absorp­
tion coefficient, estimates can be made of the distribution of these particles in 
interstellar space (the work up to 1940 has been summarized by Schoenberg 
and Lambrecht (185)). 

8. Particles with relative index of refraction near unity 

Particles which are comparable in size to the wave length of incident light 
and which possess a high relative index of refraction exhibit a complicated 
scattering pattern. This pattern, given by the Mie series, is determined not 
only by the interferences between the wavelets scattered by the volume elements 
of the same particle, but also by the distortions in phases and electric field asso­
ciated with the incident and outgoing light brought about by the electromagnetic 
interactions of the field and the polarizable scattering elements. As indicated 
above, even for such a simple shape as a sphere, the solution of the problem is 
quite complicated. For particles with relative index of refraction m near unity, 
however, the distortion effect on the primary and scattered waves is small; and, 
to a first approximation, only the relative phases of the wavelets from the 
scattering elements, treated as dipole oscillators, need be considered. The rela­
tive phase relationships of the wavelets from various parts of the same particle 
are determined by the relative positions of the scattering elements, that is, 
by the shape of the particle, and therefore the problem is identical mathe­
matically with the analogous problem in x-ray and electron scattering by 
molecules. 

The treatment of the scattering of large particles as that of an assembly of 
independent dipole oscillators will be valid if the condition 2x(m — 1) < < 1 is 
satisfied. Thus for particles, such as bacteria in water, which have a low relative 
refractive index but are large compared with the wave length of light, this simpli­
fied picture will not apply. In general, however, chemists are interested in 
particles which are too small to be seen in the light microscope. For protein 
molecules and most high polymers in solution the relative index of refraction is 
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less than 1.2; and since these particles possess a linear dimension equal to or 
less than the wave length of light, the simplified treatment is applicable. In 
cases where the index of refraction of the particle is quite high, the relative index 
of refraction can be reduced by dissolving some highly refractive substance into 
the suspending medium. 

For a particle with a dimension equal to the wave length of light or greater 
than it and having a relative index of refraction nearly unity, each volume ele­
ment of the particle will scatter light according to the Rayleigh relation given 
by equation 1. The wavelets will interfere, because the phase relationships 
between the wavelets coming from the various volume elements of the same 
particle are fixed. There will be more light scattered in the forward directions 
than in the backward directions, since wavelets from particles along the incident 
beam will be approximately in phase, but in the backward direction they will 
generally be out of phase with some destructive interference and a consequent 
loss in intensity. The radiation envelope will be smooth, as for the particle in 
figure 3A, and the larger the particle the greater will be the forward scattering. 
The 1 + cos 6 factor of Rayleigh scattering of unpolarized incident light is 
symmetrical about 90° to the incident beam and can be omitted from the dis­
cussion, since we shall consider observations made at angles symmetrical about 
this direction. As P. Debye (32) and P. P. Debye (36) have pointed out, in­
tensity measurements made at two equal angles on either side of 90° define the 
shape of the radiation envelope and allow for a determination of the size of the 
scattering particle. The ratio of the intensity of light scattered in some forward 
angle (0 < 90°) to that scattered at its supplementary angle, 180° — 6, is called 
the dissymmetry of the scattering system. We shall now consider the depend­
ence of dissymmetry on the size of the particle for three types of particles fre­
quently encountered in high-polymer chemistry,—namely, for spheres, random 
coils, and rods. 

Just as for x-ray and electron scattering, the intensity of light scattered from 
an assembly of light-scattering elements making up the particle is proportional to 

where X' is the wave length of light in the medium and r,-,- is the distance between 
the elements i and j . This formula may be expressed in integral form in terms 
of the vector distance separating two volume elements and the density of pairs 
of such elements. This latter function—the radial density—is determined by 
the arrangement of the scattering elements, that is, by the shape of the large 
particle. Equation 21 and its integral representation are derived in detail in 
most treatments of x-ray and electron scattering by molecules (see, for example, 
Compton and Allison (30, Chapter 3) and Pirenne (149, Chapter 7)). 

For spherical particles the scattering elements are spherically symmetrically 
distributed. The radial density function is a constant for such an arrangement 
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of scattering centers. The integral representation of equation 21 for a sphere 
of diameter L leads to the following expression for the angular dependence of 
the scattered light intensity when normalized (intensity is unity for 0 = 0) 

"12 

where 

(sin z — z cos z) 

2irL . 6 
—T sin -
X' 2 

(22) 

This formula was first derived by Rayleigh (176) (see also Gans (65)) and is 
identical with that obtained by Landshoff (108) for light scattering from spherical 

180° 

Pio. 6. Relative intensity of scattering as a function of angle for spheres of low relative 
index of refraction (P. P. Debye (37)). 

aggregates of small particles. The same expression was obtained by Debye 
and Menke (35) in their study of the x-ray diffraction of liquid mercury. For 
x-ray scattering by liquids this term has importance only for angles extremely 
close to the main beam and is, therefore, neglected in most x-ray studies. This 
small angle scattering of x-rays is important, however, in the case of finely 
divided powders; and for carbon black the size of the clusters of the tiny particles 
can be determined by equation 22 from the angular distribution of the radiation 
scattered at small angles (Biscoe and Warren (16)). The Mie theory reduces 
to the same result as equation 22 for spherical particles which have sufficiently 
small relative index of refraction and size (van der Hulst (211, Chapter 4). In 
figure 6 is illustrated (P. P. Debye (37)) the expression of equation 22 as a func­
tion of angle for spheres of various sizes. Incidentally, equation 22 is expressible 
by the Bessel function of the 3/2 order, /3/2(2), and is equal to 

2? i/M 
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Tables for this Bessel function are available.3 As can be seen from the curves, 
the intensity of scattering is greater in the forward directions than in the back­
ward directions. The curves show that for these particles the radiation envelopes 
are smooth and that only for the comparatively large sphere L = X' at an angle 
close to the main beam is there any deviation from a simple behavior. In figure 7 
is illustrated the ratio of the intensities of the scattered light for observations 
made at 45° on either side of 90° to the incident beam. The dissymmetry rises 
very rapidly with increase in particle diameter. 

The dissymmetry for spheres may be illustrated by the results obtained for 
influenza virus by the reviewer. Measurements were made at 45° and 135° 
in a light-scattering photometer developed by Speiser and Brice (193).4 The 
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FIG. 7. Dissymmetry as a function of L/X' for spheres, coils, and rods of low relative index 

of refraction. 

apparatus consists essentially of a mercury lamp with monochromatic filters, 
a lens for projecting a narrow beam through the center of the scattering cell, 
a sensitive phototube mounted on an arm capable of rotation about a vertical 
axis, and a removable polarizer and analyzer for determining depolarization. 
If a rectangular cell is used, it is necessary to correct the angles for refraction at 
the solution-glass-air interfaces (Debye (36); see also Stein and Doty (194)). 
Such a correction may be eliminated by using a cell whose faces are normal to 
the outgoing scattered beam. A spherical cell with radius large compared to the 

3 Tables of Spherical Bessel Functions, Vol. I. Columbia University Press, Xew York 
(1947). 

4 The author is indebted to Dr. B. A. Brice of the Eastern Regional Research Laboratory, 
U. S. Department of Agriculture, Philadelphia, Pennsylvania, for the use of this apparatus. 
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cross-sectional area of the scattered beam has been found satisfactory by the 
reviewer. By introducing a mirror which can be rotated in a rectangular cell 
P. P. Debye (36, 37) insures that the scattered light is always normal to the face 
of the cell so that no correction need be made in the angles. The results for the 
scattering of blue light from a solution of a highly purified sample of influenza 
virus (PR8 strain) in 1 N phosphate buffer at pH 7 are shown in figure 8. On 
extrapolating to infinite dilution the dissymmetry is found to be equal to 2.6. 
This dissymmetry corresponds in figure 7 to a ratio of diameter to wave length 
of 0.39; and since the blue light was obtained with a filter having a maxi­
mum transmission at 436 m/x, the diameter of the particles is calculated to be 
(0.39)(436)/1.33 or 128 rm*. This value is 28 per cent higher than that obtained 
from spectrophotometric measurements of the turbidity (Oster (138)). The 
discrepancy in values obtained by the two methods may be due to the fact that, 
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F m . 8. Dissymmetry (X = 436 HIM) of aqueous solutions of the PR8 strain of influenza virus. 

since the blue filter allows some light of wave lengths shorter than 436 m/i to 
be transmitted and since the dissymmetry for spheres of this size range rises rapidly 
with a slight decrease in wave length, the observed dissymmetry is higher than 
that which might be obtained if purely monochromatic light had been employed. 
Because of the high sensitivity of dissymmetry to particle size the dissymmetry 
method may be conveniently employed to study the swelling of spheres. Mole­
cules which clump together to give spheres of these sizes show large dissymmetry; 
and Doty, Wagner, and Singer (45) have studied the association of polyvinyl 
chloride in dioxane by this method (see also Landshoff (108)). 

For randomly coiled polymers the radial density function is given by the 
Gaussian distribution employed by Kuhn (104); namely, by 

L is the root mean square distance between the ends of the polymer and is given 
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in terms of the number of links in the polymer chain, s; each link is of length I 
and can rotate freely, making an angle <j> with its nearest neighbors. The mean 
square distance between the ends is given by Kuhn as: 

L' = s? ! + <*»* (24) 
1 — cos 4> 

When the links are not able to rotate freely with respect to one another, more 
elaborate expressions in terms of the energy of the hindered rotation barrier 
may be used (Bresler and Frenkel (21), Sadron (182), and Taylor (204a)). When 
the radial density function of equation 23 is substituted into the integral repre­
sentation of equation 21, the intensity when normalized (intensity is unity 
for 0 = 0) becomes, 

\ [e" - (1 - t)) (25) 

where 

This formula, first obtained by Debye (32), is derived in detail in the paper by 
Zimm, Stein, and Doty (225). In figure 7 the dissymmetry for 6 equal to 45° 
and 135° is given as a function of the ratio of L to the wave length of light in 
the medium. The degree of coiling of a polymer chain can conveniently be 
determined by studying the deviations of the dissymmetry from that given by 
equation 25. Thus, P. P. Debye (37) found that latex particles gave a higher 
dissymmetry than that expected for randomly coiled chains. The particles are 
tightly coiled and give a dissymmetry calculated for spheres. Stein and Doty 
(194), on the other hand, found that cellulose acetate molecules with a molecular 
weight below 80,000 exhibited in acetone less dissymmetry than that calculated 
for a random coil and gave values closer to that expected for a rigid rod (see 
below). The cellulose acetate molecules of higher molecular weights show dis­
symmetry corresponding to a more kinked condition. It is seen that the dis­
symmetry method provides a means for studying changes in the shape of high-
polymeric molecules in solution. Such changes can be brought about by varia­
tions of the type of solvent or variation of the temperature and can be followed 
as a function of time. The dissymmetry studies of Doty, Affens, and Zimm (43) 
on polystyrene show that these molecules are in the randomly coiled state in 
solution. In their measurements, the authors of these latter two papers obtained 
accurate results with an extraordinarily simple dissymmetry apparatus developed 
by them. Light scattered at two equal angles on either side of 90° was reflected 
from mirrors into a comparator photometer and the two light beams were 
equalized visually. 

A thin stiff rod of low relative refractive index may be regarded as a linear 
array of dipole scatterers. The normalized intensity for a thin rod of length L 
is given by '£'"J 
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i f 8EJ? dw _ ("EiY (26) 
z Jo w \ z / 

where 

2TL . 6 

This formula was derived independently by Neugebauer (134) and by Debye (32). 
A detailed derivation is also given in the paper by Zimm, Stein, and Doty (225). 
The definite integral (w is a variable over which the integration is taken) in 
equation 26, called Si (2z) in the mathematical literature, is given as a function 
of 2s in certain tables of special functions.6 Oster, Doty, and Zimm (142) give 
values for the dissymmetry as a function of angle for various rod length to wave 
length ratios. In figure 7 the dissymmetry at d equal to 45° and 135° is given 
as a function of the ratio of the length of the rod to the wave length in the 
medium. The dissymmetry for rods is less than for spheres or coils of comparable 
size. For particle lengths of the size of the wave length or greater, the dis­
symmetry increases relatively slowly with increase in particle length. To study 
particles of such great lengths, the intensities at angles closer to the main beam 
of light should be measured. However, if angles too close to the main beam 
are chosen, there is a danger of picking up stray scattered light. In figure 9 
is shown the angular distribution of scattered light as measured in the apparatus 
of Speiser and Brice (193) for two dilute solutions of tobacco mosaic virus 
particles. Figure 9A shows the relative intensity of light (X = 546 imi) scattered 
at angles from 45° to 135° in 5° intervals for a sample which had been rendered 
nearly biologically inactive by having been subjected to very strong sound irra­
diation for 64 min. This sample has been shown (Oster (140)) by direct exami­
nation in the electron microscope to consist of rod-like particles of one-half the 
length of normal biologically active virus or shorter. The angular scattering 
of the normal particles is given in figure 9B. From figure 9 the dissymmetry 
at 45° and 135° is 1.20 and 2.06 for the shorter and longer particles, respectively. 
From figure 7 the average length of the particles is calculated to be 103 m^ 
and 275 m/t- The type of average for a system of many particle lengths which 
the dissymmetry determines depends on the length of the particles for, as seen 
in figure 7, particles of very great length do not show a dissymmetry much greater 
than shorter particles which are still great in length. In the intermediate regions, 
however, for L/\' from about 0.3 to 0.6, the dissymmetry increases approxi­
mately linearly with the length of the particles, so that the dissymmetry for a 
polydispersed sample of rods of lengths lying in this range will be determined 
by the mean length of the particles. I t should be emphasized that the particle-
length region where the dissymmetry is approximately linear with the length 
of the particles depends on the scattering angles which one chooses. As seen in 
figure 9A, the angular light scattering for the shorter particles is nearly sym-

6 See, for example, The British Association for the Advancement of Science, Mathematical 
Tables, Vol. I , London (1931). 
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metrical with a minimum near 90°. For unpolarized incident light the curve for 
a single dipole scatterer is given by 1 + cos2 6, and figure 9A is this curve with 
a slight forward dissymmetry superimposed on it. The virus particles of normal 
size, however, show a strong forward scattering. The particle length calculated 
for the dissymmetry at 45° and 135° is in good agreement with that found by 

FIG. 9. Angular scattering (X = 546 HIM) for solutions (protein concentration of 0.01 g./lOO 
ml. buffered at pH 7.0) of (A) tobacco mosaic virus which had been subjected to sonic ir­
radiation for 64 min. and (B) normal freshly purified tobacco mosaic virus. 

Oster, Doty, and Zimm (142), who studied the dissymmetry of a similar sample 
at two different angles in the visual photometer described earlier. These authors 
determined the particle length by viscosity and electron microscope studies and 
obtained close agreement with that determined by the dissymmetry method 
with the same sample. The reviewer (141) has been able to determine by the 
dissymmetry method the particle length of long rods of tobacco mosaic virus 
particles which have been made to aggregate end-to-end and which exceed 1 
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micron in length. This method should prove of value for studying the end-to-
end aggregation of other fibres, particularly those encountered so frequently 
in biology. The dissymmetry method is perhaps superior to stream birefringence 
and viscosity methods for determining the lengths of elongated particles, since 
it determines the length of the particles as they exist in solution under equi­
librium conditions. The latter two methods, however, involve subjection of 
the particles to a shear gradient in order to make them flow; and this process 
can in some cases distort the normal shape of the particles (Kuhn (105), Frenkel 
(55)). Doty (42) has integrated numerically the angular scattering curves for 
rods of several lengths. From these results he is able to determine the particle 
length of rods from the dependence of the turbidity on wave length as determined 
in a spectrophotometer. This method is similar to that described for spheres 
in the previous section. 

From figure 7 it appears that the dissymmetry for rods or coils approaches 
limiting values as L/X' increases. If the dissymmetry is determined at two 
angles symmetrical about 90°, then it may be shown from equation 26 that for 
rods the dissymmetry approaches cot 6/2 for large values of L/X' (note that 
Si (2z) —> T / 2 and (sin z/z) —> 0 for large z). Similarly it may be shown that for 
coils the dissymmetry approaches cot2 0/2 and for spheres the dissymmetry 
oscillates about cot4 6/2 for large values of L/X'. Since the dissymmetries for 
rods, coils, and spheres approach quite different values, the general shape of the 
particle can be determined from the limiting value of the dissymmetry.6 Stein 
(195) has suggested that the limiting value of the dissymmetry could be deter­
mined by measuring the dissymmetry for continuously decreasing wave lengths 
(and therefore increasing values of L/X'), using a variable monochrometer as 
a light source. 

The molecular weight of spheres of known density can be found from the dis­
symmetry, since this method determines the diameter of the particles. For 
coils and rods, however, only the length of the long dimension is determined, so 
that another measurement must be made in order to find the molecular weight 
of the particles. Because of the destructive interference among the wavelets 
scattered from particles comparable in size to the wave length of light, the 
turbidity will be less, per unit volume of scattering material, for such large 
particles than for very small particles. In making molecular weight determina­
tions of such large particles the turbidity must be corrected by a factor greater 
than unity to account for this decrease in scattering. If the turbidity is deter­
mined in the transverse direction, it must be multiplied by the reciprocal of 
relative intensity given by equations 22, 25, or 26, depending on the shape of 
the particle, for 6 = 90° and L/X' determined by the dissymmetry measurement. 
This corrected value for the turbidity, for sufficiently dilute solutions, gives from 
equation 10 the molecular weight of the particles. By applying this correction, 
determined graphically from the dissymmetry measurements, to their measure-

6 Added in proof: These ideas have recently been utilized by W. K. Jordan and G. Oster 
(Science 108, 188 (1948)) in their light-scattering studies of changes in shape of the very 
long fibrillar muscle protein, actomyosin. 



344 GERALD OSTER 

ments of the turbidity of solutions of tobacco mosaic virus, Oster, Doty, and 
Zimm (142) obtained a molecular weight for these particles which agreed closely 
with that obtained from other methods. 

The dissymmetry of a system of particles is very sensitive to particle inter­
actions. Thus Oster, Doty, and Zimm (142) found that the dissymmetry of 
scattering from very dilute solutions of tobacco mosaic virus in water decreased 
markedly with increase in virus concentration. In buffer at pH 7.0, however, 
the dissymmetry was found to be independent of concentration in this low con­
centration region. The reviewer has investigated this system further (141) 
and has found that for much higher virus concentrations the dissymmetry of 
solutions of the virus in the buffer at pH 7.0 also decreased with increasing virus 
concentration, but that the solutions of the virus in water show a much steeper 
decrease and beyond a certain concentration show an increase in dissymmetry 
with concentration. The concentration for the minimum in dissymmetry is 
correlated with a maximum in turbidity and with the formation of the liquid 
crystalline state (see reference 141 for details). Zimm (223) has developed 
an approximate theory which attempts to correlate the concentration depend­
ence of the dissymmetry with certain thermodynamic quantities which express 
the extent of the deviation of the solution from ideality. This problem will be 
discussed later in this review when non-independent particle systems are con­
sidered. There can be, however, a decrease in dissymmetry with concentration 
which is not due to particle interactions. The reviewer (141) has studied the 
dissymmetry of solutions of tobacco mosaic virus as a function of virus concen­
tration for two wave lengths. When extrapolated to infinite dilution the curve 
for the shorter wave length (X = 436 m/x) gives a higher dissymmetry than that 
for the longer wave length (X = 546 mn) and both correspond from figure 7 to 
that for a rod 275 m/j in length. For concentrations above 0.03 per cent, how­
ever, there is a reversal in relative values of the dissymmetries. The dissym­
metry measured with the blue light now becomes less than that for the green 
light, and the difference between the dissymmetries for the two colors becomes 
more pronounced as the concentration of the virus is increased. This anomalous 
behavior may be due to several causes which depend on the geometrical arrange­
ment, size, and convergence of the incident beam of light and on the turbidity 
of the sample. This problem will be considered in detail in the discussion of 
anomalous depolarization given below. In general, it is difficult to correct for 
these effects; and for most systems the dissymmetry is easily interpretable 
only when it is extrapolated to infinite dilution, as is done for influenza virus 
in figure 8. 

4- Depolarization by large particles 

The character of the polarization of the light scattered by a system of particles 
is determined by the size and the optical anisotropy of the particles. As dis­
cussed earlier, small isotropic particles exhibit complete vertically polarized 
scattered light at 90°, while small anisotropic particles show some depolarization 
in this direction. Spherical particles which are comparable in size to the wave 
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P. = 

»-Hh 

Hh, + Hv 
Pu~ vh + vv-" Vu 

length of light also exhibit depolarization, although these particles may not be 
anisotropic. Thus, depolarization studies enable one to determine the size 
range and anisotropy of the scattering particles. 

The intensities of the horizontal and vertical components of the light scattered 
at 90° are usually denoted by H and V, respectively. The subscripts u, h, 
and v denote unpolarized, horizontally polarized, and vertically polarized inci­
dent light, respectively. In terms of the quantities V„, Hv, Vh, and Hh, the 
depolarizations are given by 

I^ (27a) 

Vh (27b) 

(27c) 

Some authors define ph as the reciprocal of that given in expression 27b—namely, 
by Hh/Vh—and this is occasionally a source of confusion. The components 
for four types of scattering particles—small isotropic, small anisotropic, large 
isotropic spheres, and large anisotropic non-spherical particles—will now be 
considered. 

Optically isotropic particles which are small enough to show Rayleigh scat­
tering give a scattering diagram exhibited by a dipole oscillator. This diagram 
(figure 1) shows that if the incident light is horizontally polarized, the intensity 
of light scattered at 90° is zero. If the incident light is vertically polarized, 
all the light scattered at 90° is vertically polarized. This condition is' ex­
pressed by 

Vv ^ 0 H, = Vh = Hh = 0 Pv = 0 Ph = 1 pu = 0 (28) 

Small anisotropic particles, however, exhibit depolarization at 90° when the 
incident light is either vertically polarized or is unpolarized. For these particles, 
the plane of polarization of the incident light may not lie in the direction of the 
induced moment and, as can be shown (see Gans (68)), give rise to the following 
values for the components: 

Vv T* Hv = Vh = H„ ,* 0 p, * 0 Ph = 1 Pu i* 0 (29) 

Large isotropic spherical particles should, according to Mie (125), exhibit de­
polarization at 90°. As the particle size is increased the terms corresponding 
to the higher electric and magnetic multipoles increase in importance (see equa­
tion 16), with a resultant increase in pu. Blumer (17) has calculated the depo­
larization, pu, for spheres of various sizes and indices of refraction, and the theory 
has been confirmed by the light-scattering studies of Pokrowski (151) and Lange 
(111) with colloidal solutions and of van dem Borne (210) with aerosols. The 
components of the light scattered at 90° for large spherical isotropic particles 
are given by 

Vv ^ 0 Hv = V11 = 0 Hh ^ 0 p, = 0 Ph = 0 Pu r* 0 (30) 
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The depolarization of light scattered from large anisotropic particles has been 
calculated by Gans (62). The components for such particles are the superposi­
tion of those for the small anisotropic and for the large isotropic particles, or 

Vv ^ O Hv = Vh T* O fl.^O Pv * O Ph ^ O pu ?* O (31) 

In all four cases the relation Hv = Vh holds. This is a statement of the reci­
procity theorem of optics due to Rayleigh (174) and was found by experiment 
to be valid for light-scattering systems by Krishnan (97). Perrin (146) has 
examined the theorem in great detail for light-scattering systems and concludes 
that the relation is valid for a system of a large number of particles which have 
no preferred orientation in space. The reciprocity theorem together with equa­
tion 27c gives the important relation due to Krishnan (97): 

I + -1 

Pu = ^ (32) 
1 + -

Pv 

Thus if two of the depolarizations are known, the third may be calculated. This 
is particularly important in the determination of ph, which is often difficult to 
measure directly. The Krishnan relation (equation 32) has been confirmed by 
several investigators with various scattering systems (Krishnan (100), Mueller 
(132), Boutaric and Breton (20), Hoover, Putnam, and Wittenberg (88), Sub-
baramaija (202), Ramaiah (156), Gehman and Field (70)). 

As seen in equations 28, 29, 30, and 31, a system of isotropic particles irrespec­
tive of size gives pv = 0 and if the particles are anisotropic, then 0 < p» < 1. 
For random coils containing anisotropic segments the net anisotropy of the coils 
is decreased as the number of segments is increased (Neugebauer (134), Strauss 
(200), and Kuhn (103)). For small particles irrespective of anisotropy and 
shape Ph = 1, but when the particles are comparable in size to the wave length 
of light and are isotropic ph < 1. In the special case of thin rods which are 
comparable in length to the wave length of light and whose index of refraction 
along the long axis differs from that perpendicular to it, Gans (69) (compare 
Vrkljan and Katalinis (216)) calculates that ph > 1 (see, however, the recent 
review by Doty (41)). 

The depolarizations can be conveniently determined by the Cornu method 
described earlier. Another method, due to Krishnan (98), employs two WoI-
laston prisms. The first divides the incident beam of light into its horizontal 
and vertical polarized components. The second prism placed at right angles 
to the scattering cell divides the two scattered beams into the four polarized 
components Vv, Hv, Vh, and Hh, which may be photographed and compared 
in intensity (for a detailed discussion of errors of measurement, see Volkmann 
(215)). Raman (157) has proposed the use of the Babinet compensator (for a 
general description see, for example, Woods (220, page 356)) to determine the 
state of polarization of liquids. This method is particularly useful for the deter­
mination of Ph when p„ is small and has been employed by Balakrishnan (8). It 
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has been the reviewer's experience, however, that the direct measurement of the 
polarization components can successfully be made with two polaroids or nicols 
acting as polarizer and analyzer and with a photomultiplier to determine the 
intensity. 

There are two troublesome factors in depolarization measurements which 
reduce, somewhat, the usefulness of the method. These are the errors due to 
secondary or multiple scattering and those due to the convergence of the incident 
light beam. If light scattered from one particle is rescattered, this secondary 
scattering can result in large values of pu and p„ and small values of p* irrespec­
tive of the size, shape, or anisotropy of the particles. This problem has been 
investigated in detail by several workers, including Tichanowsky (205), Rousset 
(180), and Strauss (200). Tichanowsky (205) applied his theory to light scatter­
ing from the sky, which gives a depolarization apparently due to secondary 
scattering. According to Rousset (180), as a result of secondary scattering the 
value of Ph will depend on the shape of the illuminated volume of the scattering 
system and will be greater the closer the shape of the volume approaches a cube. 
The theory has been fully confirmed by Rousset (180) and by Mookerjee (127) 
in their depolarization studies of liquid mixtures at the critical mixing tem­
perature. Mookerjee (127) has criticized Krishnan for his failure to take 
secondary scattering into account in his studies of liquids and liquid mixtures 
(Krishnan (97)). The problem of scattering from liquids and solutions will be 
considered in detail later in this review. Krishnan has also been criticized by 
Parthasarathy (145) (see, however, Krishnan (102)) for not correcting his 
depolarization values for convergence. Because of the finite size of the light 
source it is impossible to achieve perfectly parallel light in the incident beam. 
According to Gans (67), the convergence of the incident beam increases pK and pv 

by a term which is proportional to the square of the angle of convergence. ph is 
decreased by a term proportional to the square of the convergence angle and 
inversely proportional to p„, and therefore when there is convergence PH is less 
than unity although the scattering particles may be of small size. According 
to Rao (169) (see Bhagavantum (13, Chapter 4)), no convergence correction is 
necessary if the scattered light comes from a point at the focus of the con­
verging incident beam. In the theory of Strauss (200) the depolarization, p„, 
for a dilute solution of spheres increases approximately linearly with the turbidity 
of the sample. The constant of proportionality increases as the size of the inci­
dent beam is increased. These results are in agreement with those obtained by 
Lonti (118). In figure 10 are shown Lonti's depolarization measurements at 
two different wave lengths for solutions of the hemocyanin of Helix pomatia. 
The turbidity and therefore the depolarization is greater for the shorter wave 
length. The depolarization, as does the turbidity, increases with increasing con­
centration (figure 10A). Figure 10B shows that the depolarization increases 
nearly linearly with the diameter of the incident beam. For this system, at 
least, in order to obtain the true depolarization it is necessary to extrapolate 
to infinite dilution and to small beam diameter. An indication of secondary 
scattering is usually given when the depolarization of a system is strongly de-
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pendent on concentration and wave length. For less turbid systems than that 
studied by Lonti, secondary scattering may be less important. The necessity 
of working with extremely dilute solutions in making depolarization measure­
ments of colloidal solutions is clearly shown in the work of Hoover, Putnam, 
and Wittenberg (88) with bentonite and ferric oxide sols (see also Singh (189)). 

In nearly all cases of high-polymeric molecules in solution p„ is found to be 
small (natural rubber, Gehman and Field (70); synthetic rubbers, Tsvetkoff 
and Frisman (207); cellulose acetate, polyvinyl chloride, and polystyrene, Doty 
and Kaufman (44); myosin, Lotmar (120); and tobacco mosaic virus, Doty (42) 
and Oster (141)). This indicates that the molecules are nearly isotropic in 
solution. It is difficult to evaluate results obtained for ph, since in most cases 
not enough measurements were taken in the low concentration range to allow 

Gm./lOOml Cm. 
FIG. 10. Depolarization of light scattered at 90° from solutions of hemoeyanin (Helix 

pomatia): (A) depolarization as a function of protein concentration; (B) depolarization as a 
function of incident beam diameter (Lonti (118)). 

an extrapolation to infinite dilution (see, however, Gehman and Field (70), 
Lotmar (120), Doty (42), and Oster (141)). In his studies of ionic solutions, 
Hogrebe (87) found that the depolarization pu (and therefore ,oc, since ph ~ 1) 
when extrapolated to infinite dilution was considerable for unsymnietrical ions. 
Even symmetrical ions showed a slight depolarization, which Hogrebe attributes 
to the formation of anisotropic scattering units due to the interaction of the ions 
and the surrounding water molecules. 

The depolarization of scattered light from large colloidal particles oriented 
by flowing in a tube has been examined by Diesselhorst and Freundlich (39). 
By making observations of the scattered polarized light perpendicular to and 
in the direction of flow, they were able to distinguish between spherical, disc­
shaped, and rod-shaped colloidal particles (see Freundlich (57, Volume 2, 
page 81)). In some ways this resembles the method of flow birefringence (for 
review, see Edsall (47)). Depolarization studies have also been made on col-
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loidal particles which are oriented with an electric or magnetic field (see, for 
example, Krishnan (101), Errera, Overbeck, and Sack (51), Mueller (132), 
Lauffer (113), and Subrahmanya, Doss, and Rao (203)). The theory and 
experimental results of the electrooptical properties of colloids have been dis­
cussed in detail by Heller (83) and by Mueller and Sackmann (133). 

III. NON-INDEPENDENT PARTICLES 

In the treatment for independent particles given above the particles were 
considered to be in random positions with respect to one another. For liquids 
and non-ideal solutions, however, the thermal movements of the constituent 
members of the scattering system are not independent, and it cannot be expected 
that the total intensity of scattered light will be the mere summation of the 
intensities from the individual particles. Some destructive interference will 
occur and result in a decrease in intensity of scattered light from that expected 
for the same weight of independent particles. In principle, the phase relation­
ships between the wavelets scattered by the various elements of a condensed 
system can be computed; however, the mathematical difficulties are circum­
vented by considering the problem as one in fluctuations. The elementary 
ideas of the theory of fluctuations have been given by Landau and Lifshitz (109, 
Chapter 6), Tolman (206, Section 114), and Slater (191, Chapter 7). More 
complete treatments are given by Fiirth (58) and especially by Leontovich (115, 
Chapter 3). I t was clearly shown by Gibbs (71; see especially Chapters 7, 
8, and 15) that thermodynamic quantities which are usually measured represent 
time averages over a large number of molecules. If, however, we consider a 
small volume in a system, the thermodynamic state of the system described by 
some thermodynamic quantity x may differ at any instant from the average 
value x. The time average of this deviation, x — x, may be zero, but if the 
volume is chosen small enough so as to include only a small number of molecules, 
the time average of the square of the deviations, or fluctuation, may differ con­
siderably from zero. Also, according to Gibbs, the average value of any quantity 
in a small volume is the same whether the averaging is taken over a long period 
of time in the one volume element or whether the instantaneous value for a great 
number of such volume elements is averaged. 

Smoluchowski (192) used the concept of thermodynamic fluctuations to ex­
plain the great intensity of scattering observed for liquids near their critical 
temperatures. According to Smoluchowski, the molecules in a liquid are not 
distributed uniformly, but rather in any small volume of the liquid the number 
of particles varies from instant to instant as a consequence of their thermal 
motions. This local fluctuation in density of particles will give local inhomo-
geneities in the index of refraction and will scatter light. In the case of liquids, 
the fluctuations in density are increased as the compressibility is increased and 
at the critical temperature the light scattering should theoretically be infinite. 
Smoluchowski's theory was further extended by Einstein (48) for liquid mixtures 
to include inhomogeneities in the refractive index due to fluctuations in con­
centration. 

The elementary principles of the theory of fluctuations will now be briefly 
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reviewed, since much of the light-scattering phenomena to be discussed can be 
explained in terms of this theory. 

In order to bring about a change in a given system of some thermodynamic 
quantity from its average value x to some value x, a certain amount of free 
energy must be expended. The probability of such a change is proportional to 

-^HT (33) 

where A is the Helmholtz free energy and AA = A{x) — A(x). k is Boltzmann's 
constant, and T is the absolute temperature. Boltzmann's definition of entropy 
is a special case of equation 33 in which the energy and volume are kept constant. 
The temperature is assumed constant throughout the fluctuation process. Ac­
cording to equation 33, the probability of a deviation in x decreases rapidly the 
greater the deviation. If only small deviations about the average value are 
considered, the free energy difference AA may be expanded in a Taylor series 
in the deviation Ax — x — x, or 

( - ) i \dx /x=x 
But ( — J is zero, since the free energy of a closed system of constant tem­

perature is a minimum at equilibrium. For small deviations, terms higher than 

the squared term are small, so the free energy difference is given by 

2 V dx* /*»* A A ^ i r - 4 (Ax)2 (35) 

Insertion of this value into equation 33 gives a Gaussian distribution whose 
second moment or average value (averaged over Aa;) of the square of the devia­
tion is 

( ^ ) 2 = / J A (36) 

It can further be shown that the average value of the product of deviations of 
independent quantities is zero, that is: 

AxiAxj = 0 (37) 

1. Pure liquids 

Following Smoluchowski (192) (see also Einstein (48)) we shall consider light 
scattered from an element of volume 8V of the liquid which is small compared 
with the wave length of the incident light, yet which is sufficiently large to 
include a great number of molecules (the exact dimensions of the volume element 
are unimportant for the discussion). The fluctuation in the number of particles 
in the volume element will result in a fluctuation in the optical dielectric constant. 
Any particular volume element may be likened to a small particle with optical 
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dielectric constant different from that of the surrounding homogeneous medium 
in which it is immersed. From equation 4 it is seen that the effective square 
of the polarizability for the volume 8 V is given by 

^¥i &)2 (38) 
lD7T «o 

The inhomogeneities in density of particles are randomly distributed throughout 
the total volume of the liquid, so that the total intensity of scattering is the 
sum of the contributions from each of the volume elements. The intensity 
per unit volume of scattering material is then obtained by inserting the expres­
sion for the square of the polarizability, equation 38, into equation 1 and dividing 
by the sum of the volume elements, or 

i 
h 2X4T-* 

(Ae)2SF(I + cos2 d) (39) 

and the turbidity is 

r = g-4 [At)HV (40) 

The optical dielectric constant e is a function of the density <r and the tem­
perature, i.e. 

*-(£), ̂  +(Ir)/1, (41) 

For liquids ( p ^ ) is about 10~5 (Levin (117)) and therefore the second term 

/de\ 
on the right of equation 41 is negligible compared with the first term, since \T~) 

is of the order of unity. The fluctuation in the optical dielectric constant is 
then given by 

(AlJ"2 = ( ^ ) " (Mf* (42) 

With the use of well-known thermodynamic relations the fluctuation in density 
for the volume element bV may be shown from equation 36 (x = a) to be 

JM- - ^ ' («) 

where /3 is the isothermal compressibility. From equation 39 the intensity 
per unit volume and the turbidity are given by 

K-2^("I)>W1 + C0S'9) <*» 
and by 
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It is necessary to relate the optical dielectric constant to the density in order 
to give a value for o-(de/9a) in terms of conveniently observable quantities. The 
optical dielectric constant of a liquid is conventionally related to the density by 
the Clausius-Mossotti equation. This equation is derived by considering the 
electric field in a small region of the liquid as that given by the Lorentz local 
field (Lorentz (119, page 303)), which is a mathematical device and is subject to 
criticism on physical grounds (for a critique of Lorentz's theory, see Van Vleck 
(212)). A more physically plausible treatment of the local field is given by 
Onsager (135), according to whom the field in a small region of the liquid is that 
given by the field in a real cavity imbedded in a medium of homogeneous di­
electric constant. According to Onsager 

(* ~ 1 ^ + » = AV (46) 
9e 

where K is a constant for a given liquid. The reviewer has found (unpublished 
calculations) that equation 46 holds better for liquids and liquid mixtures than 
does the Clausius-Mossitti equation (for recent data on the variation of index 
of refraction of liquids and liquid mixtures with density, see Rosen (179)). 
Equation 46 gives: 

Since e is usually less than 2 for most liquids, the second factor in parentheses 
on the right may, to a close approximation, be taken as unity. The intensity 
per unit volume and the turbidity then become 

T0 = S^{e~ D 1 W l + cos2*) (48) 

r = ^ 4 (« - ifm (49) 

A similar result was obtained by Ramanathan (167), using a different and some­
what questionable physical argument. 

Equations 48 and 49 must be further modified to correct for the depolarization 
of the scattered light. According to Ramanathan (166,167) equations 48 and 49 
must be multiplied by the Cabannes factors equations 14 and 15, respectively, 
to account for the fluctuations in orientation. The depolarization pu used is 
that observed for the liquid. 

The early work of Keesom (93) on ethylene and the later work of Ramanathan 
(166), Venkateswaran (214), Martin and Lehrman (123), Krishnan (96), Raman 
and Ramanathan (161), Cabannes (25, part 1), Peyrot (147), and Rao (170) 
on several other liquids shows general agreement with equation 48. Rao (170) 
has studied a few liquids over a wide range of temperatures. He found that 
equation 48 with its appropriate depolarization factor held very closely up to 
temperatures a few degrees below the critical temperature. Use of the Clausius-
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Mossotti equation relating the optical dielectric constant and the density gave, 
however, values of the intensity which were greater than those observed. 

In general, the depolarization for liquids is five or more times greater than 
that exhibited by the molecules in the gaseous state. The depolarization for 
normal alcohols increases with increasing length and greater anisotropy of the 
carbon chain, but for fatty acids there are alternations in the depolarization with 
increasing carbon chain length which resemble the marked alternation in melting 
points and dissociation constants exhibited by these compounds. More recent 
data on the depolarization by liquids have been compiled by Cabannes and 
Rousset (26) (see Peyrot (148), who also discusses error of measurement). The 
larger values of the depolarization of the molecules in the liquid state are attrib­
uted by Raman and Krishnan (159, 160) to the polarizability induced by the 
surrounding medium. If the inner field is treated as homogeneous and of the 
Lorentz type, the calculated depolarization for liquids is too high. Raman and 
Krishnan (159, 160) therefore treat the molecules and their immediate surround­
ing fluid as polarizable ellipsoids and calculate depolarizations for some long-
chain hydrocarbons which are in fair agreement with observed values. They 
also apply these concepts to the Kerr effect for non-polar liquids. Mueller (131) 
has criticized the treatment of Raman and Krishnan for its failure to consider 
the possibility of hindered rotation between molecules in the condensed state. 
The theory of Mueller has, however, certain drawbacks, since it is based on the 
Lorentz inner field and on the cybotactic theory of liquids. According to the 
cybotactic theory due to Stewart (197) there are, at any instant in the liquid, 
groups of as many as a hundred molecules which are in a relatively ordered array 
and which are rapidly exchanging members with the continuous region between 
them. Although it is possible that for liquids consisting of long-chain molecules 
(and particularly those investigated by Stewart which contain OH and COOH 
groups) there exist such groups (see Frenkel (56, Chapter 5, Section 10) for the 
conditions of stability of cybotactic groups), more recent x-ray data of ordinary 
liquids (Warren (218), Ginrich (72)) indicate that in most liquids only local order 
exists and extends over mainly the first shell of nearest neighbors (for a critical 
discussion see Prins (153), and especially Bernal (H)). In view of the criticisms 
discussed earlier by Mookerjee (127) and by Parthasarathy (145) of the depo­
larization results of R. S. Krishnan, it cannot be claimed at the present time 
that the depolarization studies prove the existence of cybotactic groups. In 
the case of liquid crystals, however, Chatelain (28) (see also Zwetkov (227)) 
in his light-scattering studies has shown the presence of molecular groupings 
comparable in size to the wave length of the incident light. The theory7 of 
dielectrics of Onsager (135) has been extended by Kirkwood (95) to include the 
case of hindered rotation of the molecules, so that the means are at hand to 
develop a complete theory of depolarization of non-polar and polar liquids. The 
theory would also be suitable to explain the Kerr effect for these liquids. In 
the case of highly elongated molecules it would be necessary to modify the 
Onsager local field. 
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2. Non-ideal solutions 

The extension by Einstein (48) of Smoluchowski's theory (192) to include 
liquid mixtures is suitable for any solution as long as the particles are small 
compared to the wave length of the incident light. If they are not, a correction 
factor for the dissymmetry of the scattering must be applied. According to 
Einstein (48) fluctuations in the concentration in an element of volume dV will 
be large; and since, in general, the optical dielectric constants of the solute and 
the solvent differ, the resultant fluctuation in the optical dielectric constant will 
cause light to be scattered. The fluctuation in concentration may be deter­
mined from equation 36 (see Gibbs (71, Chapter 15)). The fluctuation in 
dielectric constant is related to the fluctuation in concentration of the solute 
(for convenience the concentration of the solute c is given in grams per milliliter 
of solution) by 

(A^ = ( | J (Ac)* (50) 

where 

Now 

7-xi, kT (Ac)2 = 

XdC2Ji, 

[itKr = *° Tc (M) 

where m, is the Gibbs chemical potential of the solvent and 0̂ is the number of 
solvent molecules per milliliter of solution. For the volume element 8V, the 
variation in number of solvent molecules with the variation in the concentration 
of the solute is given closely by 

dv0_ _N8V 

Tc~ Wc (52) 

where N is Avogadro's number and F0 is the partial molal volume of the solvent. 
Insertion of equation 50 with equations 51 and 52 into equation 40 gives for the 
turbidity (at this point the average solute concentration will be written as c) 

_ 8TT8 RTV0C /deY . 
T ~^(_ W)W (53) 

where R is the gas constant. If the system exhibits depolarization, equation 53 
must be multiplied by the Cabannes factor (equation 15). 

Equation 53 gives the light scattering in terms of the thermodynamic proper­
ties of the solvent. The osmotic pressure P of a solution is related to the chemi­
cal potential of the solvent by PFo = -N^o and gives for equation 53: 

8jr3 RTc 

( ' 
(s)' (M) 
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Equation 54 is in the form given by Raman and Ramanathan (161) and by 
Debye (33, 34). For dilute solutions, the osmotic pressure may be written in 
terms of the molecular weight M of the solute and of the solute concentration by 

P = ^RT + Bc2 (55) 

where B is a measure of the deviation from ideality. In the limit of c —> 0 we 
obtain for ideal solutions, after the contribution of the scattering of the solvent 
has been subtracted (the contribution from density fluctuations of the solute 
is negligible), 

H(°) = 1 where H = ^ - ( ^ Y (56) 

which is identical with equation 10. For dilute solutions the turbidity may be 
written in the form 

H\-Ti + m <57) 

A plot of H(C/T) versus c gives a straight line whose intercept is the reciprocal of 
the molecular weight of the solvent and whose slope is determined by B. Doty, 
Zimm, and Mark (46) have determined the molecular weights of fractions of 
polystyrene and cellulose acetate by this method and obtain results which are 
in agreement with direct osmotic-pressure measurements of these samples. 
Similar studies have been made by P. P. Debye (37) of polymers which had been 
subject to milling. In their work on cellulose acetate, Stein and Doty (194) 
corrected the molecular weights obtained by extrapolation with the dissym­
metry factor. A similar procedure was adopted by Oster, Doty, and Zimm (142), 
who obtained a molecular weight for tobacco mosaic virus in agreement with 
that obtained by other methods. 

As shown by Zimm and Doty (224), the molecular weight obtained by the 
light-scattering method is the weight-average molecular weight, because, as may 
be seen directly from Rayleigh's equation, the intensity of scattering is propor­
tional to the number of scatterers and to the square of their volumes or molecular 
weights. According to Zimm and Doty (224) the curvature of the H{C/T) versus 
c curve is determined by the higher moments of the molecular weights of the 
sample. In principle, the spread of the molecular weight distribution could be 
determined from the curvature. In practice, however, this is not feasible be­
cause of the relatively poor ability of the light-scattering method to resolve differ­
ent sizes (Waser, Badger, and Schomaker (219)). The slope of the linear portion 
of the curve determines the value of B, which can be related to the size and shape 
of the solute molecules and to their interactions with each other and with the 
solvent. In general, the greater the solubility and the more the particles deviate 
from spherical shape, the greater the slope. If the molecular weight of the 
polymer is the same in different solvents, the curves should converge at zero 
concentration of the polymer. Ewart, Roe, Debye, and McCartney (52) have 
found, however, that this is not the case for polystyrene in various mixtures of 
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benzene and methanol (see figure 11). These workers attribute the lack of con­
vergence at infinite dilution to selective absorption of benzene by the poly­
styrene and not to any changes in the molecular weight of polystyrene in the 
various solvent mixtures. The alcohol serves as a precipitant, and the turbidity 
is increased considerably by its presence in small quantities well below the con­
centration necessary for two-phase separation. Ewart, Roe, Debye, and Mc­
Cartney have shown that the magnitude of the selective absorption can be 
determined by turbidity measurements. In the case of a solvent-precipitant 
pair, such as butanone and 2-propanol, which have nearly equal refractive indices, 
or in the case of a pure liquid solvent or a solvent mixture in which no selective 
absorption by the solute occurs, the H(c/r) versus c curves converge at infinite 
dilution. For further discussion of applications to high-polymeric systems see 
the recent review by^Mark (121a). 
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FIG. 11. Reciprocal specific turbidity as a function of concentration of polystyrene in 
benzene-methanol mixtures (Debye (34); Ewart, Roe, Debye, and McCartney (52)). 

S. Liquids at the critical temperature 

When a liquid is brought to its critical temperature or when a liquid mixture 
is brought to its critical temperature of mixing, it assumes a milky opalescence 
on illumination with white light. The theories of Smoluchowski (192) and of 
Einstein (48) properly explain the large scattering exhibited by such systems 
near the critical temperature but predict too high an intensity of scattering for 
systems very close to or at the critical temperature. Furthermore, several au­
thors have found that in addition to there being less scattering than is to be expected 
from equation 48, the scattering is proportional to 1/X2 rather than to 1/X4 

(Zernicke (221), Andant (2), and Bhattacharya (14)). Ornstein and Zernicke 
(136) attribute the discrepancy with the Smoluchowski-Einstein theory to failure 
to consider the influence of deviations of density or concentration in one volume 
element on those in another volume element. According to Ornstein and Zer­
nicke (137) the mean value of the product of the deviations in one volume element 
and those in another is not zero as in equation 37, but is proportional to the 
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radial distribution of the molecules about any one molecule (compare Zimm 
(222)). In place of equation 48, Ornstein and Zernicke obtain for the intensity 
of/scattering per unit volume 

i ir\e - I)2 IcT(I + COS2 0) 
I0 ~ 2X4r2 1 . /2irg . 6 

Y-I — - s in -
, /2vg . 6 Y 

/S + Vx sm2J 
(58) 

where g is a measure of the size of the sphere of influence of the intermolecular 
.forces. At temperatures below the critical temperature the second term in the 
denominator is negligible compared to 1/jS and equation 58 reduces to equation 
48. Very close to or at the critical temperature, however, the compressibility, 
/3, is very great, and the second term in the denominator predominates; and there­
fore the intensity becomes proportional to 1/X2. The quantity g can be obtained 
from experiment and has been given in terms of the radial distribution function 
by Omstein and Zernicke (137). Some objections to the more explicit definition 
of g have been raised by Placzek (150) and by Rocard (178); however, equation 
58 reproduces the general features of the scattering at the critical temperature. 
Mueller (131) has extended the theory to take into account non-independent 
fluctuations in the orientation of anisotropic molecules. 

Rousset (180) has examined several liquid mixtures at the critical mixing 
temperature. He has observed the dissymmetry in scattering which is pre­
dicted by equation 58 when the second term in the denominator predominates. 

The light-scattering method is also useful for studying phase changes besides 
those which occur at the critical temperature. I t could be used, for example, 
to detect possible premelting at temperatures just below the melting point of a 
solid (Ubbelohde (209); for theory, see Frenkel (56, chapter 7, Section 3)) and 
to determine the kinetics of phase changes. The light-scattering method has 
been used by Donnan and Krishnamurti (40) to study sol-gel transformations. 
They found that for agar solutions the intensity and depolarization of scattered 
light increase markedly when the sol is transformed into a gel on cooling. These 
authors attribute this change in scattering to the formation of micelles in the gel. 
Tobacco mosaic^virus gels, however, show less scattering than that of the sols 
because the gel is an ordered structure (Bernal and Fankuchen (12), Oster (141)). 

4- Interfaces 

It was early recognized by Smoluchowski (192) that there should be increased 
scattering by the surface of a liquid as the critical temperature is approached, 
because of the increased density fluctuations. Mandelstam (121) soon after 
developed a theory of the scattering of surfaces which is the two-dimensional 
analog of the volume scattering of Ornstein and Zernicke (136, 137). According 
to Mandelstam, at temperatures below the critical temperature the intensity of 
scattering from a surface, i„ per unit area of surface is given by 

». 4kT(e - I)2 

Io yWr2 f (59) 
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where/is a function of the angles of incidence and of observation and depends on 
the degree of polarization of the incident beam and y is the interfacial tension. 
As the surface tension is decreased, the density fluctuations at the surface increase 
and the intensity of scattering increases. The theory has been extended by 
Gans (64) to include liquid metal surfaces and the general theory has been modi­
fied slightly by Gans (66) and by Andronov and Leontovich (4). Detailed 
investigations by Raman and Ramdas on the intensity of light scattered from 
surfaces of metallic liquids (162), of transparent liquids (163), and of liquid 
carbon dioxide near the critical temperature (164) show good agreement with 
Mandelstam's theory. The scattered light which is usually observed close to 
the beam reflected from the surface does not, however, show exact agreement in 
angular distribution predicted by the theory (Ramdas (168); see also Jagan-
nathan (89) and Hariharan (82)). 

Raman and Ramdas (164) found that the intensity of scattering increased 
when surface-active agents were applied to water. The light-scattering method 
affords a convenient method for studying surface films especially as regards their 
continuity (see Zocher and Stiebel (226) and Adams (I)) and could also be used 
to study the orientation of molecules at surfaces. Schaeffer (183) has studied 
the light-scattering properties of monolayers on metallic surfaces. Since in 
equation 59 y refers to the interfacial tension, the light-scattering method pro­
vides a simple way to determine the interfacial tension. 

5. Fine structure of the Rayleigh line 

Fine structure was first observed by Gross (75) in an examination, under high 
resolution, of light scattered at 90° by liquids. In general, one observes with a 
spectroscope or interferometer that the scattered light consists of three lines: an 
undisplaced center line and two lines on either side with wave lengths slightly 
different from that of the incident light. Usually these lines can be distinguished 
from the Raman scattering of the liquid. The displaced lines can be attributed 
to the Doppler shift of the scattered radiation which is reflected from the system 
of Debye sound waves excited by thermal energy (Brillouin (22), Leontovich 
and Mandelstam (116); see also Frenkel (56, Chapter 4, Section 8)).7 According 
to Landau and Placzek (110), the undisplaced line, which in general is brighter, 
is due to entropy fluctuations which vary relatively slowly with time. The ratio 
of the intensity of the center undisplaced line, Ic, to the intensities of the dis­
placed doublets, 2Id, is given by Landau and Placzek (110) as 

where Cv and Cv are the specific heats at constant pressure and volume, respec­
tively. A complete derivation of this formula is given by Gross (78). The 

' Added in proof: A. B. Bhatia and K. S. Krishnan (Proo. Roy. Soo. (London) A192, 
181 (1948)) have shown that the intensity of the displaced lines is given by the same ex­
pression derived by I. Waller (Uppsala Univ. Arssk. (1925)) for x-ray scattering from sub­
stances when thermal vibrations are taken into account. 
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ratio of the intensities of the central line to that of the doublets is given by the 
ratio of the contributions to the fluctuations in the optical dielectric constant 
due to fluctuations in entropy and those due to fluctuations in pressure associated 
with ordinary sound waves, or 

ir = ¥^d— (6i) 
41 d 

\dpjs (Ap)2 

With the aid of equation 36 and some well-known thermodynamic relations, 
equation 61 leads to the Landau and Placzek formula, equation 60. Gross (76) 
and Birus (15) (see also Meyer and Ramm (123a) and Ramm (168a)) found that 
this formula held for a few liquids. For some substances, for example water 
and quartz, Cp c^ Cv, so the center line is very feeble. However, for a number 
of other liquids, e.g., benzene, the center line has a greater intensity than that 
given by the Landau and Placzek formula (Gross (76), Venkateswaren (213)). 
The very intense center line can, in several cases, be attributed to orientation 
fluctuations by anisotropic molecules and is highly depolarized (Gross (77), 
Venkateswaran (213)). The intensity of the center line is increased with increas­
ing viscosity, that is, with increasing rotational relaxation time of the aniso­
tropic molecules (see Leontovich (114)). However, it has been found by Gross 
and Siromyatnikov (81) and by Bai (6) that for very viscous liquids which do 
not contain anisotropic molecules, the center line is of greater intensity than that 
predicted by the Landau and Placzek formula and is not depolarized. This 
result is as yet not completely explained, but even in the absence of a complete 
theory it is clear that the ratio of intensities of the center line to that of the 
doublets is a measure of the amount of thermal energy apportioned between the 
pressure and the entropy fluctuations. A study of the Rayleigh scattering lines 
for certain solids gives some information about molecular rotation in solids 
(Gross and Raskin (79)). 

According to Ginsburg (74), the widths of the lines must be considered when 
their intensities are determined. He has related the width of the central line to 
the heat conductivity and the width of the doublets to the absorption of sound 
in the liquid. Recent work by Gross and Raskin (79), by Fabelinsky (53), and 
by Vuks (217) on the detailed structure of the Rayleigh lines indicates confirma­
tion of Ginsburg's theory. 

In view of the extraordinary physical properties of helium II, especially its 
ability to propagate two types of sound waves, it might be expected that this 
substance would show unusual fine structure of the Rayleigh scattering (for dis­
cussion, see Ginsburg (73) and Argawala and Chowdri (5)), but no experimental 
results on the fine structure have as yet been reported. Jakovlev (90) has found 
that the intensity of scattering by helium II below 2° A. is that given by equation 
48. As Ginsburg (73) has pointed out, the observed intensity is that expected 
from Landau's theory of helium II and is less by a factor of ten thousand than 
that for a condensed Bose-Einstein gas calculated by Fusov, Belinsky, and 

file:///dpjs
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Galanin (59) (see also Singh (188), Setoff (184), and Galanin (60)). Incidentally, 
Fusov, Belinsky, and Galanin (59) have also calculated the light scattering from 
a Fermi-Dirac gas and derive results which explain the incoherent part of the 
scattering of x-rays by metals (see also the interesting treatment by Frenkel (54, 
Chapter 6, Section 35) of electrical conductivity as a problem in fluctuation scat­
tering). In their theoretical treatment of the fluctuations they use the Bose-
Einstein and Fermi-Dirac distributions instead of the Maxwell-Boltzmann 
distribution given by equation 33. 
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