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The following subjects are discussed or reviewed: (1) the analytical expression of 
an extensive property interesting in thermodynamics as quantity per mole of un
mixed components plus the product of two mole fractions multiplied by a power 
series in the difference between these mole fractions; (2) the related expressions for 
the two partial molal quantities and their difference; (S) the illustration of these 
methods applied to volume changes on mixing and to excess free energies; {4) the 
approximation of properties of polycomponent systems to those of the two-com
ponent systems comprising them; (5) the computation of analytical expressions for 
the excess free energy from measurements of vapor pressure and composition as 
functions of liquid composition, corrected or uncorrected for deviations of the 
vapor from perfect gas laws; {6) a "Gibbs-Duhem" test of consistency of vapor 
equilibrium measurements without differentiation, by plotting short segments of 
lines through corresponding potentials at x = 0 and 1, which should be tangent to 
the curve of molal free energy; (7) the computation of excess free energies from 
vapor pressures and liquid compositions, from liquid and vapor compositions, from 
the vapor pressure of one component, from azeotropic pressure and composition, 
from the solubility of a solid component, or from the composition of two saturated 
liquid phases; (S) the relation of the mole fraction expansion to the corresponding 
expression for the enthalpy of mixing in terms of volume fractions or other units, 
and to the Flory-Huggins expression for the excess entropy of mixing; (5) the possi
bility of expressing these two relations in terms of surface fractions rather than 
volume fractions; {10) the differences between the free energy, enthalpy, and en
tropy of mixing at constant pressure and the work content, energy, and entropy 
of mixing at constant total volume, and their effects upon the comparison of cal
culated and measured quantities; {11) the possibility of the cohesive energy density 
important in solutions being somewhat larger than the energy difference between 
the perfect gas and liquid states because of the intramolecular cohesive energy of 
the gas; {1$) the molal volumes, the product of molal volume and the square root of 
the cohesive energy density of an homologous series and of the isomeric octanes; 
(/S) the calculation of cohesive energy densities as proportional to the five-thirds 
power of the refraction; {14) the sorting or non-random distribution of molecules 
in solution; {15) partial accounting for sorting by use of the law of mass action for 
association of one component with one reactive group per molecule giving only 
dimers, with two reactive groups per molecule giving all linear polymers, with 
three or more reactive groups per molecule giving three-dimensional polymers, 
and for one-to-one combination. 

INTRODUCTION 

Most of our treatment of equilibrium is based upon the finding of Willard Gibbs 
(5) that, under certain simplifying conditions, the temperature, pressure, and 
chemical potential of each component are each constant throughout a system in 

1 Presented at the Symposium on Thermodynamics and Molecular Structure of Solutions, 
which was held under the auspices of the Division of Physical and Inorganic Chemistry at 
the 114th Meeting of the American Chemical Society, Portland, Oregon, September 13 and 
14, 1948. 
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equilibrium. In some cases some of the simplifying conditions have to be re
moved, but we know pretty well now how to handle these more complicated cases. 
As a consequence we usually take temperature and pressure as independent vari
ables. However, we seldom take the potentials. Instead, we usually use the 
number of units of each component and most often we choose as unit the mole. 
We reduce these to intensive quantities by dividing the number of moles of each 
component by the total number of moles in the phase, to give the composition as 
mole fractions of the components. It is then convenient to reduce the other 
extensive quantities to intensive ones in the same way. For the study of poly-
component systems, or for the determination of one kind of equilibrium from 
measurements of another kind, it is essential to have analytical expressions for 
these functions. I t is always useful to have at least an approximate analytical 
expression, so that the small deviations may be plotted on a large scale. 
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FIG. 1. Benzene-cyclohexane: volumes 

VOLUME OF MIXING 

We consider the volume first, because the relations are simple and the measure
ments are so direct that each step can be easily visualized. The phase consists of 
N] moles of component J, NK of component K, etc., and it has a volume V. 
Then the mole fraction xK is denned by the relation xK = NK/2JNJ, in which Sj 
means a sum over all the components. The volume per mole is denned by the 
relation, Vx = V/X3Nj and the partial molal volume of component K is defined 
by the relation 

VK = (dV/dNK)T,p,N = (dV,2jNj/dNJr.,.ir 

In the pure component K, F K = V/NK = 7 K , which we call the molal volume of 
component K. 

Figure 1 shows on the left Vx at 30CC. as a function of x\ for mixtures of ben
zene (component 1) and cyclohexane (component 2) (21). Although in this case 
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the change is only about 20 per cent, it is obvious that the accuracy of plotting 
can be increased by subtracting a straight line through the end points to give 
the volume of mixing per mole, V", denned by the relation 

Ff = Vx - X1V1 - Z2F2 

This is represented in the upper scale on the right. The scale of ordinates is 
50 times that of the plot of Vu, but a parabola will allow still more accurate plot
ting. The open circles in the upper left-hand section of figure 1 are 
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FIG. 2. Benzene-cyclohexane: free energies 

The deviations are still apparently smooth, so that it should pay to consider 
higher terms. Since the parabola accounts for most of the volume of mixing, 
it is convenient to keep this term and to expand in the form 

Vx = X\X% 2,Fi2(Z1 — Z2)' 

with v summed from 0 to n? F12 is the coefficient of the / h term (it is not Vn 
to the vth power). If we were trying to do the best job possible, we would use 
the method of least squares to determine the coefficients. Even then it is often 

1 This form was suggested by Guggenheim (6) for the excess free energy, and has since 
been used by many others. Redlich and Kister (15) have shown that with this form many 
polycomponent systems can be treated to a good approximation by adding the expressions 
for all the binary pairs composing them. A less elegant expression of this function was 
used by Scatchard and Hamer (18) to compare the development in mole fractions with that 
in volume fractions, and the latter expression was used for polycomponent mixtures by 
Scatchard, Wood, and Mochel (23). 

For a binary system there is no fundamental difference between this and other methods 
of expressing concentrations, such as that used by Benedict, Johnson, Solomon, and Rubin 
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convenient to work with deviation functions. Since we have already pinned 
down the function at the two ends and the middle, it is convenient to pin it down 
also at the one-quarter and three-quarters points and to determine two more 
constants by the relations: 

Fo.76 - F„.26 = 37w/16 

VOM + 7o.75 = 3F?2/8 + 37li/32 

Vo,76 is the molal volume when Xi = 0.75, and V0.26 the volume when X1 = 0.25, 

F I G 3. Ideal free energy of mixing 

The filled circles in the upper left-hand section of figure 1 are 

V" - Xix2[2.6 - 0.1(a* - X2) + 0.2(xi - X2)
2] 

The scale is 500 times that of Vx. Except for the last point the average devia
tion is less than 0.002 per cent. 

THE EXCESS FREE ENERGY 

The free energy of mixing per mole at 5O0C, Ff, for the same system (21) is 
shown in the left side of figure 2 as open circles. The half-filled circles are 
Fx + 1386XiX2. The parabola does not give a satisfactory correction near the 
ends. If there had been accurate measurements in more dilute solutions, the 
discrepancy would have been even more obvious. The reason is that the slope 
of F" is infinite at the ends, even for ideal solutions. Figure 3 shows the free 
energy of mixing for an ideal solution as curve 0. Curve 1 is corrected for the 
parabola and curve 2 for the fourth-degree term. All odd terms are zero, since 
the curve has axial symmetry. 

(1) for the excess free energy of mixing. If one constant is used, their 2A12 = F?2; for two 
constants 3An2 = Fn + Fi2 ,3Ai22 = Ff2 — Fu ; and for three constants 4Am2 = Ff2 + Fi2 + 
Fi2, 3Au22 = Fi2 — Fi2 , 4Ai222 = Fj2 — FJ2 + Fi2. 



EQUILIBRIUM IN NON-ELECTROLYTE MIXTURES 11 

So we define the excess free energy of mixing per mole, F%, as the free energy 
of mixing minus that of an ideal solution, or 

FE
X = F? - RT ZjXj In x,-

Fx for this system is plotted as filled circles on the left of figure 2. 
The open circles on the right are 

Fl - 283xix2 

on a 50 times larger scale, and the filled circles are 

Fx - zix2[283 + 17(X1 - X2) + 12(X1 + x2)
2] 

on a scale 100 times larger again. The agreement could be improved still more 
by a more careful choice of constants. 

POWER SERIES EXPANSION 

These two applications show the usefulness of the method and its limitations. 
I t can be applied to any function which is never infinite itself and has no infinite 
derivatives. I t fails for F f because of the infinite slope at zero concentration. 
I t will fail also for FE

X, Vx , or any similar functions of dilute electrolyte solutions. 
The Debye theory tells us that for such solutions Fx, Vx, H", etc. are proportional 
to the square root of the mole fraction of the ions when this mole fraction is very 
small. The theory also enables us to calculate an electrostatic term Fl, such 
that (Fl — Fx) may be treated as Fl for a non-electrolyte mixture. One of the 
important achievements of the Debye theory is to confirm the assumption which 
had been made empirically for many years, that for very dilute solutions of non-
electrolytes Fl is proportional to x. The method can be applied, of course, to 
the enthalpy and energy of mixing H" and E"', as to the volume, and to the ex
cess entropy and work content, Sl = <Sf + R2iXi In x, and Al =A" -RTXiXi 
In Xi, as to the excess free energy. 

If a tangent is drawn to a curve of a molal quantity against the mole fraction, 
the intercepts at Xi = 1 and at x2 = 1 are the corresponding partial molal quan
tities of components 1 and 2, respectively. Thus when Vx is plotted against x, 
the intercepts of the tangent are Vi and F2; for Vx the intercepts are V" = 
V1 - Vi and Vz = F2 - V2. For Fx the intercepts are HI = RT In O1 and 
/if = RT In a2, and for Fl they are /if = RT In 71 and /if = RT In 72, in which 
O1 and a2 are the activities of the components with the component liquids as the 
standard states, and 71 = ai/xi and 72 = a2/x2 are the corresponding activity 
coefficients. 

For the deviation curves it is necessary to add to the measured intercept the 
analytical expression corresponding to the equation used. 

If 
Gx = XiX2 2/?i2(xi — X2)* 

— x = — ~" = G2 — Gi = 2,G12[CxI - x2) "+1 — 2PXiX2(X1 — X2)"-1] 
3x2 3xi 

G1 = X2 "2,GIiI(Xi - X2)" + 2S-Xi(X1 - X2)
1^1J 

O2 = x\ 2>G\2[(xi - X2)' - 2XX2(X1 - X2)*"1] 
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in figure 4 are plotted the contributions of the first five terms to Gx, each expressed 
as Gl/G'u. Note that the maximum effect decreases as v becomes larger, and 
that the maxima spread away from the center. It is obvious that Gn = Gu (— 1)'. 
Figure 5 shows the corresponding values of G2 — G\. It is worthy of note 
that the term with v = 1 is the only one which is not zero at the midpoint. 
Figure 6 gives the corresponding curves for G2. Those for Gi are obtained by 
interchanging subscripts and multiplying by (— 1)'. Each term beyond the 
first changes sign and each beyond the second changes sign twice, once at the 
midpoint and once at a lower concentration. 

The excess free energy makes the best function for correlating vapor-liquid 
equilibrium data when both the equilibrium pressure and the vapor composition 

FIG. 4. Expansion of Gx 

have been determined. Each point represents two potential measurements 
weighted as they would be for a least squares treatment, by multiplying by the 
corresponding mole fraction. It is sometimes convenient to use the correspond
ing function uncorrected for deviations from the perfect gas laws and divided by 
2.3RT: 

Qx = xi log Pyi/PioXi + Xi log Pyz/Pu&i 

Figure 7 shows Qx for chloroform-ethanol mixtures at 450C. as open circles (20); 
Xi is the mole fraction of ethanol. The filled circles are Qx — 0.47OrEiZ2 and the 
open circles near the zero line are 

Qx - ziz2[0.470 + 0.219(Zi - X2)] at 45°C. 
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These last are replotted on a larger scale in figure 8, together with the correspond
ing functions 

Qx - xia:2[0.462 + 0.255(zi - X2)] at 350C. 
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Qx - x1x2[0.455 + 0.183(a:i - xt)] at 550C. 
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FIG. 7. Chloroform-ethanol: vapor pressures at 450C. 

The next term in the expansion with v = 2 is very small. The curves are drawn 
to give an approximate fit for v = 3 at x = § and § as well as at \, §, and f. 
The curves at all temperatures are for the function 

0.078zi*2(zi - X2)I(Xy - Z2)
2 - 0.25] 

This term gives a considerable improvement in the fit at 35° and 450C, but not 
much improvement at 550C. 
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This analytical expression of the partial pressures is often called an integration 
of the Gibbs-Duhem equation. The Gibbs-Duhem equation is not sufficient 
because it also applies when the slope is infinite, as in the fiee energy of mixing. 
However, the measurements do give more than the excess fiee energy of mixing; 
they give the excess potential of each component. The ccnsistency of the 
results may be determined by a reversal of Gibbs's method of determining the 

3 5 ° C . Q", • Q,- [ 0 .462 * 0 .255 (X1-X1)Jx1X2 

5 5 C. Q", • 0,- [0 .455 + 0.183 (X1-Xj)]X1X2 

FIG. 8. Chloroform-ethanol: the curves represent 0.078ZiX2(Zi — xi)[(xi — X1)
2 — 0.251 

potentials as the intercept of the tangent to the curve of Gx vs. Xi with the or-
dinates Xi = 1 and x2 — 1. If the measured value of Gi at Xi = x is plotted at 
Xi = 1, the corresponding value of G2 at x2 = 1 and the straight line drawn 
through them, the intercept with the ordinate Xi = x is the corresponding value 
of Gx and the line is the tangent to the curve of Gx vs. xx at that point. For a 
difference function we substitute the corresponding differences in the potentials. 
In practice it is simpler to calculate Gx algebraically as XiGi + X2G2 and to draw 
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a short segment of the line through Gx and one of the end points. The segments 
of straight lines should be tangent to the smooth curve through all the points. 
These lines are drawn in figure 8. 

This method has the advantage over any other "test of the Gibbs-Duhem 
equation" which I know in that it involves no differentiation, but the measure
ments at each point are compared with the smooth curve through all the points. 
It shares the disadvantage of all such tests that we do not know how large an 
error in the measurements corresponds to a given deviation in slope. We can 
tell that the deviation of a single point from the smooth curve through the other 
points probably means an error in the pressure if the slope is correct but the posi
tion is in error, and probably an error in y if the position is correct and the slope 
in error. Deviations in both slope and position may indicate an error in x. 
A more exact comparison may be obtained by calculating P and y from the equa
tion and comparing each with the corresponding measured quantity. 

The scale of figure 8 is such that it should show the deviations of Qx from an 
extensive property. At 45°C. the correction may be represented quite accurately 
by Fx/2.3RT — Qx = — 0.01XiX2, but the tangent does not give the correspond
ing values of the potentials. It would be hard to say, however, that the cor
rected points are more consistent than the uncorrected ones. 

If only the liquid and vapor compositions have been determined, the coeffi
cients can be determined from the equation 

1 AFB P 
log «u = log W*:2/2 = 2 l F r ^ + log £ 

= A - 2,QuKx1 - x2)'
+1 - 2^ix2(X1 - X2)-

1J 

Redlich and Kister (15) have discussed the determination of the parameters of 
this equation. If we pin down the curve at \, %, and f, with the values y\, j/2,2/a: 

A = 2(j/x + ys - i&/2)/3 

Qli = 2/i - y% 

Qn = 4(2i/2 - y, - y,)/3 

If only total pressures have been measured, the vapor pressures of the com
ponents and of one mixture are sufficient to give one constant. If the mixture 
is equimolal 

log Po.5 - log (P10 + P»)/2 + Q?2/4 

Further approximations must be made by trial and error. If the vapor pressures 
of the two components are approximately equal, two more constants can be ob
tained readily from the measurements at x = \ and f in addition to the meas
urements used above. 

If only one component is volatile, all the parameters contain the square of the 
mole fraction of the other component as a factor. There is therefore a great 
advantage in using measurements in solutions as dilute as possible. A plot of 



EQUILIBRIUM IN NON-ELECTROLYTE MIXTURES 17 

log PyJPiXi minus an analytical function vs. x\ will indicate the next function to 
choose. 

The azeotropic pressure and composition are sufficient to determine two con
stants if the vapor pressures of the components at the same temperature are 
known.f[They may be determined from the equations 

log PV-Pio = (1 - xA)2[Q°u + Q«(3 - 4xA)] 

log PJP20 = x\{Q\2 + QuCi- ~ *XA)] 

in which PA is the azeotropic pressure and xA the mole fraction of component 1 
in the azeotrope. The solubility of one solid component in the other will give 
one constant if the difference in potential of the solid and liquid is known from 
thermal measurements or from other solubility measurements. If the system 
is only partially miscible, the compositions of the two phases in equilibrium deter
mine two constants (18). 

When the deviations are large and positive it is always well to check that the 
equation does not demand separation into two liquid phases when there is none. 
This can be shown by the plot F*, which shows an inflection if there is separation 
into two phases. Usually it is shown more clearly by plotting n" or n", which 
show a maximum and minimum if there are two liquid phases and a horizontal 
inflection at the critical mixing point. 

EFFECT OF DIFFERENCES OF VOLUME OR SURFACE 

Expansion in power series of the mole fraction is not always the most eco
nomical expression of these functions. Eighteen years ago I showed (17) that 
for simple binary non-electrolyte mixtures, the excess free energy per unit volume 
should be expressed approximately by a constant times the product of the volume 
fractions of the components, that the constants should be calculable from the 
energies of evaporation of the components, and that the excess free energy of 
polycomponent solutions can be calculated with no new parameters. We have 
also shown in several papers that introduction of a second term is more effective 
with this expression than with mole fractions, although mixtures of a non-polar 
compound with an alcohol seem to be represented more simply by the mole 
fraction form. The simple one-parameter equation has since been much used 
by Hildebrand and his collaborators with solutions of small molecules and by 
many high-polymer chemists for the enthalpy of mixing. Professor Hildebrand 
discusses it more fully in this symposium (10). For a two-component system, 
if p = VJV1, 

T7E a V\XiViXi 213V2XiX2 1 
r x = — 

ViXi+V2X2 p + 1 1_pj=l(sBi_xd 

P+ 1 

-C-^-D'«»-^ ^ - ( ' - 1 - • ) (xi-xd' 
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So 

2/3 V 2 
F12 = 

1 VP + 1/ 
The corresponding expressions for the chemical potentials are 

1 V Fi Xi + F2X2/ 
* oTr / v 2 »2 \2 4 /3FlJO 2 X 2 / 1 

Mi - - *+"V'^-: «*-•>, 
VFiX1 + F2X2/ 

s a v I • 1^1 \ 4/3F2Xi / 1 

" + ' V : - ^ <*-->, 
The series FJ2 converges for any finite value of p, and it converges rapidly if p 
is near unity, say between \ and 3. The mole fraction form is not a useful one 
for high polymers because of the slowness of convergence and because it fails to 
show simply that the enthalpy of mixing of a given mass of polymer is nearly 
independent of its molecular weight. 

These relations hold equally well if p be defined differently, provided the prod
uct /3F2 be defined to correspond. The equation of Langmuir (13) is equivalent 
to defining p as (Vi/Vi)v%, and that used by van Laar (25) is equivalent to defining 
P as bi/bi, the ratio of van der Waals 6's for the two components, which is almost 
the same as taking F2 /Fi . In the "van Laar equation" often used by chemical 
engineers, however, both p and /3F2 are determined empirically, usually as /3F8 

and (iVt/p. 
In my first treatment I assumed that simple non-polar solutions are regular, 

that is, that the entropy of mixing is the same as for an ideal solution. Almost 
everyone treating solutions was making this assumption, and the attempts to 
prove it were often more amusing than convincing. I accepted Hildebrand's 
justification (8) that solutions are regular when "orienting and chemical effects 
are absent and the distributions and orientations are random." 

Since then the high-polymer chemists have shown that volume differences lead 
to an excess entropy of mixing. Starting with a quasi-crystal lattice model in 
which each solvent molecule and each polymer unit occupies one unit cell, Hug-
gins (11) and Flory (3) arrived independently at expressions which may be 
written as 

S* = - R SyXy In Fy/'Vx 

This question has been treated more elegantly by Guggenheim (7). Although 
the original derivations apply to linear polymers which cannot coil back on 
themselves, Huggins suggests that the equation should apply to any mixture. 
Hildebrand (9) has recently reached the same conclusion, without using a quasi-
crystal lattice, but with the assumptions that there is an entropy term propor
tional to the "free volume," and that the "free volume" per mole of a liquid is 
proportional to its total volume. This second assumption does not seem very 
probable to me. 
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For a binary mixture, the Flory-Huggins expression may be written: 

- ^ = X2 In p - In [1 + (P - Dx2] 

The corresponding values for the partial molal entropies are 

Sf , 1 , (P - l)x 
- £ = !n i , r ^ - + B 1 + (p - I)* ^ 1 + (p - l)x 

_S[ = , P _ (P - D(I - x) 
R m 1 + (p - I)* 1 + (p - Dx 

In comparing other analytical expressions with the power series expansion, 
we may use two methods, both of which seem to me dangerous, however, when 
applied to curves from experimental measurements. The first is to determine 
the coefficients of the power series from the value of the other function and its 
derivatives at x = 0.5 by the relation 

12 2 ^ ! \ d x ' 7 o . 5 

taking Gj2 as 4( - r r j The second is to utilize the extrapolation of Gf to 

(Gf)2 at X2 = 1 and of G2 to (GT)1 at X1 = 1 to give: 

[(Gf)2 + (Gf),]/2 = 2GJ2 even 

[(Gf)2 - (Gf)J/2 = SGJ2 odd 

Carlson and Coburn (2) use these two equations to determine two parameters 
from the extrapolation of experimental measurements. In the Margules equa
tion their parameters are Fj2 and F12; in the "van Laar equation" they are 
/3F2 and /3F1 = /3F2/p. 

It is possible to determine any number of parameters from the derivatives at 
the midpoint and to check by extrapolation of the partial quantities to determine 
the residuals such as SG12 even — Gj2 or 2G12 even — Gj2 — G12 and 2G12 odd — G'u. 

Figure 9 shows F ^ f J , , Fu/Fl2, ( 2 F 1 2 M - Fn)IFl2 and (2F12eVen - ^ F j 2 -
Fi2)/Fl2 for the volume fraction expression given above, with Fu and Fj2 deter
mined from the derivatives at the midpoint. The dotted lines are 112 /F°12 and 
F'u/Fau with Fi2 and Fi2 determined from the values of Fj2 and Ff at x = \ and 
f. The value of Fj2 does not depend upon p. 

Figure 10 shows the first four curves for the Flory-Huggins entropy. The 
value of Fj2 does depend upon p, and is given as the broken curve with ordinates 
at the right. The Flory-Huggins entropy is more symmetrical than the volume 
fraction expression for the same value of p. It corresponds roughly to the latter 
at p2'3. 

The Flory-Huggins treatment gives too large an effect in many cases. Zimm 
(28) has assumed that high-polymer molecules are so much bigger than those of 
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the solvent that the solvent may be treated as a continuous medium, and has 
made calculations for dilute solutions which are equivalent to the calculation of 
van der Waals' b for spherical molecules and for long cylinders. His results for 
long cylinders are larger than the simple Flory-Huggins result. The quantity 
(T/RTC — V)/c, with T the osmotic pressure, is V2 — Fi/2 for ideal solutions. 
Zimm obtains Wi/d for cylinders with length, I, greater than ten times the diam
eter, d. By the Flory-Huggins assumptions this is Fl /Fi , which is twice their 
value for this term. For large spheres, however, Zimm obtains 4F2, which is 
much smaller than the Flory-Huggins value. 

I 5 IO 

? 
FIG. 9. Volume-symmetrical deviations 

It is probable that the Flory-Huggins model represents mixtures of straight-
chain hydrocarbons to a fair approximation, but most mixtures of small mole
cules cannot be pictured as fitting into a simple lattice. Nor can the size of one 
kind of molecules be neglected relative to that of another. In treating energy 
the lattice theory treats the number of contacts between the central molecule and 
those surrounding it. This should be represented approximately by the surface 
of the central molecule. It is not at all certain that the effective surface of a 
molecule is independent of the nature of the molecules around it, but it will be 
an improvement to make this assumption and take p as the ratio of surfaces 
instead of always the ratio of volumes. For long-chain molecules the surface is 
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practically proportional to the volume, so p will still be the ratio of molal volumes. 
For molecules of different sizes but the same shape, the surface ratio is the two-
thirds power of the volume ratio, corresponding to the formula proposed by 
Langmuir (13). To justify the use of a smaller p with the Flory-Huggins 
theory, we may assume that the "free volume" of a molecule is proportional to 
its surface, and follow Hildebrand (8) in the rest of his derivation. 

This problem is of prime importance to the high-polymer and colloid chemist. 
Its relation to the association of small molecules is discussed later. With small 
molecules the place where I have found it most important is in the study of the 
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effect of changing solvent on the rate of reaction, where the rate depends upon the 
ratio of the activity coefficients of the reactants to that of the critical complex. 

The Flory-Huggins contribution is 

7 A + F B - " fin **&) = In VA VB 

VcVx 
+ 1 

Vn 
Vx 

If the volume of the critical complex is the sum of the volumes of the com
ponents, this becomes — In Vx + const., which means that the rates should be 
compared in volume concentrations rather than in mole fractions. I have long 
insisted that the reverse is true, and experimental results have supported my 



22 GEORGE SCATCHARD 

thesis (22). If the volumes should be replaced by surfaces, the surface of the 
critical complex should be expected to be less than that of the reactants. If the 
difference is just the mean surface of a solvent molecule, the change with surface 
of solvent molecules is zero. I t is possible that this relation is satisfied well 
enough so that the mole fraction expression holds approximately. I t does 
seem a very complicated justification of a simple relation, and I am not happy 
about it. 

EFFECTS OF VOLUME CHANGE ON MIXING 

If distinction is to be made between the enthalpy and the minus temperature 
entropy product, it is important to consider the effect on these properties of the 
change of volume on mixing (19). This effect nearly cancels out in the free 
energy. The change in state considered in the foregoing theories, as in prac
tically all other theories, is not the same as that treated experimentally, and it is 
important to consider the difference. 

We shall limit ourselves to an isothermal change in state, T = To throughout. 
We shall let NA be the number of moles of component A initially at a pressure 
PAO, with molal volume energy, entropy, enthalpy, work content, and free 
energy VAo, EA0, SAo, HAo, A A 0 , and FA0. The general isothermal change in 
state is 

NAA(PA0, To) + NBB{Pm To) + » NAA(P, To) + NBB{P, T0) + • • • 
unmixed mixed 

In the initial state 

F0 = NAVA0 + NBVm + • • • • , 

E0 = NAEAo + NBEB0 + • • • • , etc. 

In the final state 

V = V0 + VM 

E = E0 + EM, etc. 

There are two special cases which are so important that we shall give them 
special subscripts. In both the initial pressures are all the same: 

PAH = BBo • • • • — Po 

In the constant-pressure case 

P = pA 0 V = V0 + Fp E = Eo = #? ,e tc . 

In the constant total volume case 

V = V0 or F f = 0 E = E0 + Ef, etc. 

Most measurements with liquids are at constant pressure. Although in meas
urements of vapor-liquid equilibrium, PA0 is the vapor pressure of pure com
ponent A, PBO is that of pure component B, and P is the vapor pressure of the 
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mixture, the correction to constant pressure is easily made and is usually much 
smaller than the correction due to deviations from the gas laws. 

All theoretical calculations are at constant total volume. The lattice treat
ment assumes tacitly that the initial pressures are such that a unit of each com
ponent occupies the same volume, which may require that PAo is very different 
from P330. More general theories will permit that they are the same, or, 

P AO = PBO — • • • — Po 

In this case we can calculate some very interesting relations from thermody
namics alone. 

\ In (1 + VM/Vo) since dp = - J 

- j ° In (1 + V/V0) 

yM 

Fl - A* = Fu
v - AV

M = ^ [in (1 + VM/Vo) - V/V^ 
P 

= -(7o/2/3) [(V"/V0)
2 + 

P-Po = 

F? - Af 

FM
P - F ^ 

A E r i W 

= (P - P0)Fo = 

rv*+vM _ dv 
Jy0 /3 

A M Vo n „ i 

si - s; = s? - s? = £+rM ( J ^ dt. 

- C [&). + d-T -d(l//3) , V0 + VM' dv 

= ya (S0),+ m^TT[ln (1 + vM/n ~ yM/n 

HM
V - sf = VMT (^y + j(i + 1^i)[in (i + vM/Vo) -yM/n 

T (^J0) = T °£ = "Internal pressure" 
\dl /v Po 

/d\nV\ / a InFoX a /-dlnF\ 

_ /-d InF0X 
^° ~ \-T»-)r 

The terms in [In (1 + VM/V0 - VM/V0] are usually negligibly small, and 
there is no other term for F% — Ay. The terms in (dP0/3 T)v in the entropy and 
enthalpy are far from negligible. For non-polar mixtures I have calculated 
(19) that Fp = PoFs

p, so that 

H% - E? = Ta0Fl 
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For most organic liquids, ao is about 1O-3, so Ta0 varies from 0.25 to 0.5 at the 
temperatures which interest us most. 

INTRAMOLECULAR COHESIVE ENERGY 

I found eighteen years ago (17) that the cohesive energy density of a mixture 
of simple non-polar liquids, defined as the difference, EfV0, between the energy 
per unit volume in the liquid state, Ey'V0, and the energy of the same material 
in the perfect gas state at the same temperature, EJ V0, should be a quadratic 
function of the volume fractions of the components, and that the coefficient of 

2 4 6 8 
9 

FIG. 11. Normal aliphatic compounds: volume 

each term is the product of the square roots of the cohesive energy densities of 
the two components involved in that term. 

EfV0 = (E1 - Ea)/V, = VfkNiVitfkVMUfi/Vl 

= SiNfVioVaii 2„NkV»Va^/Vl = ( S y ^ ^ V ^ / V o ) * 

aik = V % akk O'H = Ej/Vj0 

Last year3 I made the suggestion that long flexible molecules should have an 
intramolecular cohesive energy in the perfect gas state, so that the energy avail
able for interaction is larger than the difference between the liquid and the per
fect gas. 

8 This section was presented at the 111th Meeting of the American Chemical Society in 
Atlantic City, April 17,1947, but has not been previously published. 
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To study this effect let us first consider the different parts of a single molecule 
as components. Then members of a homologous series correspond to mixtures 
of different composition. Testing first the additivity of volumes, figure 11 shows 
the volumes of several normal aliphatic compounds plotted against v, the number 
of atoms other than hydrogen. The lines are all drawn with slopes of 16 mi. 
per carbon atom, which appears to be the volume occupied at 2O0C. by a CH2 
group in straight chains. This volume is also almost independent of the tem-

FIG. 12. Normal aliphatic compounds: (upper) refraction-volume; (lower) cohesive 
energy-vol ume. 

perature, and the thermal expansion is almost entirely in the intercepts, which 
differ for different series. The top curve represents hydrocarbons and iodides, 
the second the ethers, the third alcohols and the fourth phenyl derivatives. 

The lower part of figure 12 shows (FoE/2.3)1'2 for these same substances. This 
should be a linear function of v if the cohesive energy density is a quadratic 
function and aik = s/ajjan, for 

VoE = Vl(EfVo) = MN ,VpV^i)' 
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The lines all have the slope of 60 units per carbon atom. The series are again 
characterized by the intercepts. The top curve represents the iodides, the sec
ond the hydrocarbons, the third the ethers, and the fourth the phenyl deriva
tives. The alcohols lie near the iodides and could be fitted by a straight line with 
slope slightly greater than that of the others. The slope would be increased if 
the interaction of the end groups, methyl and hydroxyl, with methylene groups 
is slightly greater than the geometric mean of the interaction of end groups with 
end groups and methylenes with methylenes. 

The upper part of figure 12 shows the cohesive energy densities calculated 
from the refraction, (n2 — l)/(n- + 2), for the sodium D line. The dispersion 
or London energy of two molecules depends upon the polarizabilities and is usu
ally calculated as depending upon some other function of the mobility of the 
electrons. We shall assume that this part is also a function of the polarizability, 
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and that the cohesive energy density is proportional to some power of the re
fraction. Empirically I found the five-thirds power, and chose a coefficient to 
fit an average for the non-polar substances in this figure. The lines are taken 
directly from the lower figure. 

We notice first that the alcohols have dropped from the top curve to the bot
tom. This is not surprising, since a large part of their cohesion comes from the 
exposed dipoles or hydrogen bonds. We notice next that every series indicates 
a slope slightly greater than that of the lines. This difference may be due to 
errors in our assumptions, but it cannot be corrected by a reasonable change of 
the exponent of the polarizations. If we assume that it is real, the difference 
indicates that the energy of evaporation gives too small a value for the cohesive 
energy of molecules long and flexible enough to show intramolecular cohesion in 
the perfect gas state. 

Figure 13 shows the volume and the square root of the volume cohesive energy 
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product calculated by the two methods for the isomeric octanes. The formulas 
of the isomers are given at the bottom, going from n-octane through 2-, 3-, and 
4-methylheptanes, etc., to 2,2,3,3-tetramethylbutane. Except for this last 
substance the measurements are from Dr. Rossini's laboratory in the United 
States Bureau of Standards (27). Each function is represented by the differ
ence from n-octane divided by the difference of n-nonane from n-octane. 

The circles represent the volumes. I find little regularity except that a branch 
on the 2 carbon tends to increase the volume, and other branches tend to de
crease it, particularly two branches on adjacent carbons. One might expect 
more regularity in these volumes. They are measured at atmospheric pressure, 
but an increase of only 0.01 per cent gives the volume under no external field with 
negligible differences between isomers. 

The root energy-volume products calculated from refractions follow the vol
umes to a certain extent, but show a smaller deviation. The measured root 
energy-volume products show a very different behavior. The differences are 
greater and also more regular. The broken line in the figure drops an equal 
amount for each branch in the chain regardless of its position. I t represents the 
experimental points to a fair approximation. 

The evidence is clear that there is more intramolecular cohesive energy in the 
perfect gas state for branched chains, although it is not proven that this energy 
is available for intermolecular cohesion in the liquid. If it is available, the re
fractions should give a better measure of the behavior of solutions than the cohe
sive energies themselves. At the worst, the refractions should serve as an 
approximate measure of the cohesive energy density when direct measurements 
are impossible because of high melting point or decomposition on vaporization. 
For such substances the refraction, and if necessary the volume, may be measured 
in solution. 

SORTING OF MOLECULES 

Of course the distribution of the molecules in a solution will not be random 
if there is a change of energy when contact between two A molecules and that 
between two B molecules is replaced by two contacts between A and B molecules. 
The effect of this deviation on the thermodynamic properties has been calculated 
by Rushbrooke (16), by Kirkwood (12), and by Guggenheim (7) for spheres of 
equal volume with z nearest neighbors. Kirkwood's expression is 

Efx = B12X1X2 - (2B\2/zRT)x\x\ 

with Bi2 independent of the temperature: 

Sh = ~ (B\2/zR)x\x\ 

If there were no other cause for deviation from the simple theory, we would have: 

Fxp = B12X1X2[I - (B12/zRT)X1X2] 

1 — (x\ — X2)
2 

In terms of the expansions used above we may say, since X1X2 = — , 

E°vl2 = Bi2(I - B12/2zRT), E'v'12 = B\2/2zRT, Sl12 = -B°12/4zRT, S'v'12 = 
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Bn/izRT, F°pI2 = B12(I - B12/4zRT), J^12 = B\2/±zRT. The deviation is 
always negative. If Bn is positive and z is 8, the deviation is small until there 
is separation into two liquid phases when 

L̂2 (i - J^L) = 2 
RT \ 2zRT) 

This treatment is based on the assumption that the energy of interaction is 
independent of the orientation. The theory of polar molecules would be ad
vanced greatly if we had a similar treatment in which the interactions vary from 
spot to spot on the molecules. In the meantime we must be satisfied with treat
ments in terms of combination or association which do not distinguish between 
energy and enthalpy. By combination we mean interaction between unlike 
molecules which can be expressed by the law of mass action; by association we 
mean similar interaction between like molecules. Three types of association are 
important. In the first there is only one spot of special reactivity in each mole
cule, so the association is limited to dimers. We shall call this "acid-type asso
ciation." In the second type, which we shall call "alcohol-type association," 
two active spots on each molecule permit the formation of linear chains of any 
length. In the third type, which we shall call "water-type association," four 
active spots on each molecule permit the formation of three-dimensional poly
mers. I t is convenient to discuss the general case in which the number of reac
tive spots in each molecule is two or more. We shall discuss only the simplest 
type of combination, in which each molecule has but one spot which can react 
with a spot in a molecule of the other species. 

We shall not make the assumption that chemical action is the only cause for 
deviations from the ideal solution laws. It has been known for many years (26) 
that no combination of reactions which obey the law of mass action can lead to 
separation into two liquid phases. We shall follow Redlich and Kister (14) in 
assuming that the non-chemical deviations do not depend upon the complexity 
of the molecules. It follows that the equilibrium constants do not depend upon 
the composition of the system. 

We shall use the subscript A for the component which associates and B for the 
other; nA and nB are the numbers of formula weights of the components; xA and 
xB are the stoichiometric mole fractions, xA = nA/(nA + nB); vg is the number of 
moles of the species g; and £„ and £B are the "true" mole fractions, £a = va/(nB + 
X1Vg). The parts of the chemical potentials due to association, or combination, 
are 

AIRT = In 7 A / 0 A = In fc/^i 

&/RT = In 7B//3B = In fe/afe = In fe/(l - xA) 

in which 7A and 7B are the stoichiometric activity coefficients, /3A and /3B are those 
parts which are independent of the amount of chemical action, and fi is the value 
of £i when xA = 1. The free energy per mole of components due to chemical 
action is 

FIfRT = XA In yx>& + (1 - xA) In &/(l - xA) 
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It is convenient to work with one mole of total species, and very convenient to 
take £1 as the independent variable.4 Then it is necessary to determine £1 as a 
function of K, and xK and £B as functions of K and &. We shall also use Qx = 
Fx/2.3RT, etc. and common logarithms. 

ACID-TYPE ASSOCIATION 

In the acid-type association there are but three species, B and the monomers 
and dimers_of A, and 

& = -KS2I 

nA = & + 2fe = fc(l + 2Kfc) 

nB = & = 1 - fc(l + Kh) 

xK = J1(I + 2KiO/{1 + Kf1) 

& = ( V l + 4K ~ l)/2K 

So 

QS = Â log. , fr+*SgL—- + (i - xA) log (i + Kf1) 
(1 + 2Kl 1 ) (Vl + 4K - 1) 

The expression for^A is a quadratic and it is possible to solve for & and to 
express Qx explicitlyjn xA, but the expression is probably too complicated for 
general use. 

Since 

(QDB = - log f 
and 

(OB)A = log (2 - f) 

it is easy to obtain the results 

2QAB e™ = h log (2/{? - 1) = (1 - $ / 2 . 3 + • • • 

and 

When a;A 

So 

SQABodd = -I log {?(2 - f) = (1 - $ 7 2 . 3 + 

QH = 2 log 

Si = V l + 3K - 1)/3K 

£ a + eg - vr+"3g)8 

27 X ( 2 V T + l X + I ) ( V F = R ^ - 1) 

EXTENDED ASSOCIATION 

For the alcohol type Redlich and Kister (14) follow previous workers in assum
ing that the association constant, K, for the reaction 

A -f- An—i = An 

4 This is equivalent to taking temperature, pressure, and the potential (or activity) of 
component 1 as independent variables and closer to Gibbs than our usual procedures. 
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does not depend upon the order of the association. They obtain results which 
may be summed as 

Ql = log [(I - K&* + Kg](I + K) 

Ql - log [(I - £&)» + Kf1]Z[I ~ Kf) 

QiB = 4 Iog T 1 + (VT+K - I)H = 4 2(ViJKj- D 
L K J KVl + K 

S Q A B even = b g (1 + K) 

2QABodd = 0 

The symmetry of their results depends upon the expression of the equilibria 
in terms of mole fractions. The association polymers must give deviations due 
to different sizes of the different polymers. If we assume that the potentials 
are given by the Flory-Huggins expressions, the constants should be expressed 
in terms of volume fractions or concentrations (4). 

We follow, in so far as we need to go, Stockmayer's method (24) of treating 
branched polymers. We consider a system of N monomer units of component 
A, existing as M molecules, and N3 molecules of component B which does not 
associate. We let / be the number of reactive spots on each unit, and a be the 
fraction of those spots which have reacted. From the assumption that there 
are no rings, M = N(I — ctf/2), and all of component A is in a single molecule 

when af/2 = 1 — —. From the assumption that every reactive group has the 

same probability of reacting, the number of monomer and dimer units, wii and 
M2 are given by 

mi/N = (1 - a)f 

rm/N = fa(l - a)2/_2/2 

Stockmayer finds that his expression for the number of a large polymer becomes 
invalid when af/2 = f/2(J — 1), but there seems to be no reason why those parts 
which we have taken should not hold to the limit af/2 = 1. 

We use the equilibrium expression for the formation of the dimer 

m2 fa 
ml ~ 2N(I - a)2 

But by the Flory-Huggins expression 

m\ - NT&» lf P = VB/Vl 
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To find k2 we go to the limit a = a0 when iVB = 0 

/ a0 
&2 = 

2 (1 - «o)2 

Â  XK a{\ - an)2 

N + PNB 1 + (p - 1)% (1 - a)2ao 

It is convenient to use a0 as the measure of the tendency to associate and to use 
a as the working variable. With the Flory-Huggins expression for the activity 
coefficients, we obtain 

Ql = log ( i — 5 Y - log [(I + zB(p - D ] + 2 ^ 3 

Ql = logp - log [1 + xB(p - I)] + - L 

1 - aof/2 -

1 - Xxaf/2 

1 + XB(P - D J 

1 - xAaf/2 

1 + X B ( P - D J 

K p = I, XA 
«(1 «o, ,)2 

arj(1. — a)2 

^ N i " ) ' + ̂ ' oto) 

* - i h x * a 

® - 4 § 
, 1 — ao.b I 1 / -, 
log + 77; C«o.5 — «oJ 

1 — a0 4.0 

S Q I B even = - | l o g ( l - O 0 ) 

S Q A B odd = Q log (1 - «o) + 2"o ^O 

If we assume the mole fraction form, on the other hand 

K g ^ + A - B ) = ! ^ - ^ mi 2 (1 — a0) 

For / = 2, K = «o 

1 — CK0 

QIB = 4 log 2(1 - V l ^ T . ) 

SQABeven = — log (1 — O0) 

2QABodd = O 

To show these relations graphically figure 14 gives QAB2//, — SQAB odd 2 / / 
and (2Q 

A B i 
QAB)2/ / plotted against a0 for the Flory-Huggins expression 

of extended association with p = 1. The broken lines show the corresponding 
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FIG. 14. Extended association 

functions for the mole fraction expression for / = 2. In this case each Qaid is 
zero. 

Figure 15 shows the Q°LB, - SQodd, and (2Qeven — QlB) as functions of a0 

for the acid type of association in terms of mole fractions. The difference from 
figure 14 is not very great. 

In figure 14 the curves for each value of / stop just before a0 = 2//. Since 
Qo2// is approximately proportional to <x0, the value of Q0 is about the same for 
all values of / at the same value of aif/2, that is, for an equal number of linkages 
per unit or an equal degree of association. The higher terms become relatively 
less important as / increases. 

I t is most interesting to note that the disappearance of the odd terms for the 
alcohol-type association depends upon the use of the mole fraction form, as well 
as upon the nature of the association. The quantitative values given in figures 
14 and 15 are probably inaccurate because of the errors in the Flory-Huggins 
equations, but there must be enough truth in their picture to show that this type 
of association should not lead to symmetrical expressions. It must be remem
bered, moreover, that both treatments depend on the assumption that there is no 
ring formation. The probability of this assumption decreases as / increases, 
but it must be in error even for / = 2. 
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FIG. 15. Acid-type association 

ONE-TO-ONE COMBINATION 

If we have the reaction 

Ic - Xfifo = 1 - Ii - IB = 

A + B = C 

Kj1(I ~ IO 
1 + Kf1 

IB = 1 - I i 
1 + ^ I i 

nA = Ii + Io = 
Ii(l + K) 
1 + K|i 

"B = IB + Ic = 1 - Ii 

I1(I + K) 
XA 1 + 2K^1. - Kg 

nc . 1 + KiI-Kf1... , . 1 + 2Kh - KiI 
Qx = XA log 1 + K +(1-XA) log ( 1 + g f c ) 1 

( O D B = - log (1 + K) 

(QB)A = - log (1 + K) 

S Q I B evm = - l o g (1 + K) = - 2 log (1 + at.,)(l - ao.i) 
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in which a0.6 is the fraction of groups reacted when x = 0.5. In the case of one-
to-one combination, the deviations must obviously be symmetrical, so each 
Qodd is zero. When xK — \, 

& = & = ( v r + i - \)IK 
So 

Q°AB = 4 log 2 ( V l I l - I)/K = 4 log (1 - O9.,) 

-2 

-4 

6 

0.2 0.4 0.6 0.8 

OC o.s 

FIG. 16. One-to-one combination 

Figure 16 shows QAB and - (2QABeven - QIB) as a function of a0.&. The 
scale of the ordinates is ten times as large as in figures 14 and 15. Since the 
higher terms have the opposite sign to Qo, the curve is more pointed than the 
parabola of a symmetrical solution. 

If each type of molecule has a single reactive group, we should expect dimers 
of each component and the one-to-one compound. If either has more than 
one group, more complicated behavior may be expected. The free energies 
illustrated in figures 7 and 8 may be approximated by assuming the formation 
of two complexes (C2H5OH)2 and CHCl3(C2H6OH)3, and doubtless could be 
approximated by linear chains of alcohol molecules branched, but with weaker 
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links, at chloroform molecules. It is probable that the behavior of any com
pletely miscible solutions can be expressed by chemical reactions obeying the 
law of mass action. However, it is certain that no partial miscibility can be ex
plained in this way. Moreover, the assumption that the equilibrium constants 
are independent of the medium is a most improbable one, for the reactive groups 
such as hydroxyl must also interact with non-polar groups, and differently with 
different groups. Finally, all the other causes of deviations from ideal laws dis
cussed earlier must also operate in systems in which there are chemical reactions. 
The best advice which comes from years of study of liquid mixtures is to use any 
model in so far as it helps, but not to believe that any moderately simple model 
corresponds very closely to any real mixture. 
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