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A liquid mixture of two kinds of molecules is treated as composed of quasi-micro-
crystalline regions of twelve or less molecules. Interactions within these regions 
are explicitly represented by a Boltzmann factor with specific energies for each 
kind of molecular pair. Interactions between molecules in different crystalline 
regions are represented by a Boltzmann factor involving an averaged energy term. 
The partition function of the mixture is obtained by summing over all configura
tions, weighting each term by the appropriate Boltzmann factors. In the case of 
approximately equal-sized molecules, explicit expressions are obtained for the 
properties of the solution, notably the consolute temperature, in terms of the 
coordination number and the interaction energies. For mixtures of molecules of 
widely different sizes, the corresponding equations are derived but explicit results 
have not yet been obtained. 

INTRODUCTION 

A number of treatments have been proposed for the problem of the inter
actions between molecules in the liquid state (4, 5), most of which can be shown 
to give the essential properties of such systems in a more or less quantitative 
manner. Generally, the most profitable approach has been that of consider
ing the liquid to be a distorted crystal, in which the long-range order has been 
replaced by smaller regions within which a lattice array of molecules is at least 
momentarily maintained, but between which no order is observed. 

To treat this ensemble of cells, it is necessary to approximate the configura-
tional potential energy integral in the partition function (3) in some appropriate 
manner. In this paper, an adaptation of the order-disorder theory originally 
due to Bethe (1) and later applied by Peierls (7) to the adsorption of gases on 
surfaces and by Cernuschi and Eyring (2; see also 6) to the theory of condensa
tion will be used. The theory is applied directly to a simple model of approx
imately equal-sized molecules, and the direction of extension to more realistic 
systems is indicated. 

THEORY 

It will be assumed (1) that the molecules of the liquid occupy positions of a 
lattice (although the lattice will not be constrained to maintain any but topo
logical identity) and each molecule will be supposed to have a number Z of 
nearest neighbors; {2) that when to a molecule of kind i a nearest neighbor of 
kind j is added to the lattice there is a resultant enhancement of the probability 

1 Presented at the Symposium on Thermodynamics and Molecular Structure of Solu
tions, which was held under the auspices of the Division of Physical and Inorganic Chem
istry at the 114th Meeting of the American Chemical Society, Portland, Oregon, Septem
ber 13 and 14, 1948. 
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of i being there owing to the attraction between the molecules; (S) that all inter
actions of a molecule in the first neighboring shell with any but the central mole
cule will be represented by an averaged energy. 

Consider then such a mixture of molecules (designated as kind 1 and kind 2), 
and let the ratio of the partition function for a molecule in the liquid to that in 
the gas be represented by f% and/2. In view of the greater deviation from ideal
ity for the liquid, the gas will for the time being be considered a perfect gas. 

Suppose a given lattice site is occupied by a molecule of kind 1; several pos
sible configurations may then arise (figure 1). 

FIG. 1. Representation of a mixture of molecules of kinds 1 and 2 as a plane lattice 

(1) If all the positions in the first shell are occupied by similar molecules, 
the partition function for this configuration will be given by the expression 

fi'fitiVu'fitiVii-fiZirin • • • • = / rCf i f i lu ) 2 (1) 

where the factor ft. corrects for all interactions of a shell molecule except the 
interaction with the central molecule, as assumed previously, and rm provides 
for this omitted interaction. 

(#) If all of the positions in the first shell except one are of Jcind 1 and the 
Zth is of kind 2, the partition function will be 

Z-fl-fitiVn-fitmi /2J21712 = Z-fr (fifan)*-1 • (fifau) (2) 



BINARY SOLUTIONS OF IMPERFECT LIQUIDS 49 

where the factor Z acknowledges that such a configuration may occur in Z ways. 
Continuing in this wise, it may readily be verified that the complete expression 
is the sum of the terms in the binomial expansion thus: 

/itfifnm + B*\u\z (3) 

The partition function, one sees, is the sum of the weighted terms for each con
figuration. Clearly the analogous result for the case in which the central site 
is occupied by a molecule of kind 2 will be 

' ^ [ / i t o u + /2?2??22]Z (4) 

The ratio of the two expressions (3 and 4) will be equal to the ratio of the prob
abilities of the central point being occupied by molecule 1 to that of its being 
occupied by molecule 2, that is, to the mole ratio 6/1—6: 

0 _ _ fi , [ / i f 1*711 + /2^2^712]^ /-v 

1 — 6 /2 [ / i f 1*712 + fzfrvu]2 

On the other hand, if one counts the configurations in this manner, the mole 
ratio 6/1—6 must also be given by the expression 

<£ _ / i f i [/if 1*711 + fohvvH 
/2 f 2 [/i f 17712 + /2 f 2 7722] 

(6) 

where attention is now focussed upon a molecule in the shell of neighbors. 
Here there are two configurations if the particular neighboring molecule is of 
kind 1, since the central molecule may be of either kind. In one case the par
tition function will be /if 1-/if 11711, while if the central molecule is of kind 2 one 
will have /if 1 -/if27«. The partition function for the case of the type 1 shell 
molecule will then be the sum of these expressions. A similar approach gives 
the result for the case of a molecule of kind 2 in a shell position, and the ratio 
of these two sums is then the mole ratio as indicated in equation 6. Since the 
distinction between a "central" position and a "neighboring" position is a purely 
formal one, the two partition function ratios clearly must be identical. 

I t is convenient, for purposes of computation, to make the substitutions 

/ — /1//2 V = Viz/tin ,_.. 
X = /lfl//2?2 M = W»?22 

when equations 5 and 6 become, upon rearrangement 

\T7 + nx/ 
6
 = x (l+jA 

1-6 \1 + W (9) 

One may identify the function / with the ratio pi/pi/pa/p?, where pi is the 
partial pressure of component 1 and p° is the vapor pressure of the pure liquid 1. 
Since only for a perfect liquid mixture is the total pressure a linear function of 
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the composition, it is necessary to obtain a third relation which"will permit 
evaluation of the individual partial pressures, rather than their ratio alone. 
This desired relation is obtained from the Gibbs equation 

•(#),,-o-«(ar^),, (10) 

(where 6 represents the mole fraction of component 1, and MI the partial molar 
free energy of the same substance in the solution). Making use of the defini
tion of / and remembering that the gases are considered ideal, whence 

Mi = RT In ViIvX m = RT In p2/p°2 (11) 

one obtains the result that 

d l n ^ + ^ d / = 0 (12) 
Vi J 

Equation 12 may be integrated in the form 

§ = - ( - / » • 5->-S ( 1 3 > 
or, for computational purposes, expressed in terms of the variable x as 

1"2I = - / 
Vl Jo 

dx ( U ) 

MX2 + 2r\X + 1 J 
Integrating equation 14 one finds two solutions, depending on the relative values 
of the constants. For TJ2 > M 

la V± = vx + & ~ 2 ^ ~ "> in [^2 + 2vx + 1] -
Vl 2M 

( Z - 2 W - M ) " 2 J v + t f - ^ MX + , - ^ - M ) 1 / 2 1 n _ . 
2/x \ v - W- /*)»'* /xx + r, + W - M)1/2J K ' 

while in the case T\ < /x, 

i„ P2 ~ ^ ~~ 2 ) ^ — ^ ) i„ r ~2 j - o ~ _i_ n In ^ = ??x s In l/tx + 2rjx + 1) 

(Z — 2)JJ(M - i72)1/2 / . - i M^ + TJ _i rj \ . . 

+ ; \tan
 ( 7 ^ r i ~ t a n ( ^ r 2 J (16) 

The two forms (equations 15 and 16) of the integral express the fact that two 
possibilities may arise when two liquids are mixed at a given temperature. 
Equation 15 gives the result for In fily\ when there is no maximum in the 
pi-d relation. Equation 16 permits of such a maximum, and hence expresses 
the result for a two-phase region (see figure 2). 

To examine this point more closely, one may observe that the function 6, 
the mole fraction of component 1, has the derivative 

dd T)HX2 + 2nx + 1 
dx [tifix2 + 2T7MX + M]2 

(17) 
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so that 6 is a monotonic function of the variable x (fi and i? being intrinsically 
positive) while the derivative of / , 

d/ = /1 + nx\ 
dx \r) + p.x) 

Z ~ i r i _ ( 2 T - I ) C u - T , 2 ) ^ 
(1 + 7)X)(ri + pix)_ 

shows that / has a maximum and a minimum if 

the corresponding values of / being determined from equation 8 and 

L 1 ± V * " [(Z - 2)1 - Ztffj ^ _ _ ( £ - % - ^ 
2W 

Ideal Liquid 

SC HEMATIC 

0 MOLE FRACTION (9) ' 

FIG. 2. Vapor pressure-composition curve for a binary solution 

Now one may write, for x — x*, the expression 

(• + r b ) ( ' - + T^i) 

(18) 

(19) 

(20) 

^ ~ - 6(1-- 6) ( 2 1 ) 

Equation 21 gives the relation between the composition of the pairs of equilib
rium solutions and the temperature, since the rj, n may be expressed as Boltz-
mann factors of the form 

•n = e
( e i 2 - ' ! 2 ' / k r „ = e<«u-«s2)/*r 

Using equations 22 one obtains, setting 

« = K (*"• + e2=) ~ f12 

(22) 

(23) 
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the result 

T = 2e 
+ i V 1 - , + ^ 

7 , v Z - 2/ \ Z - 2 
0(1 - 0) 

The temperature is maximum at 6 = 1/2, and its maximum value is 

(24) 

' consolute "~ y {*>&) 

h l n Z-Z-2 

It is interesting to note that if the coordination number Z were to change 
suddenly with temperature, i.e., to drop from 12 to 4 with a few degrees increase 
in temperature, it would be possible to be above the consolute temperature at 
low temperature (and low coordination) and to be below the mixing tempera
ture at high temperatures (and high coordination). Such a situation would 
give rise, albeit crudely, to the phenomenon of a lower consolute point. One 
may also readily see that under certain circumstances, the upper consolute 
temperature may be impossible of attainment, at least under conditions of 
normal pressures. In fact, unless 

J- melting ^- •* oonsolute < Tboiling ( 2 6 ) 

the liquid pairs will either be completely miscible or will be partially soluble 
over the whole range of temperatures of the liquid state. Now approximately, 
one may write 

TbOiIlHg = -^T ( 2 7 ) 

by Trouton's rule, and 

Aff, * 6(«iifl+ (1 - 0 ) « a ) (28) 

since the energy of about six bonds in the liquid state must be broken to vapor
ize a molecule (assuming twelve neighbors). Then 

Iboiiing « O.29(«u0 + (1 - e)e22) (29) 

Since 0 = 1/2 for the consolute composition we have for this composition: 

Tb.inn8 = 0.15(eu + e22) (30) 

Dividing through by equation 25 gives: 

Tb 2 IUa. = Q 1 5 6UJhJM k Jn Z ( 3 1 ) 

J- consolute C /J & 

• y 

and 0.15 ———- k In must be greater than unity for the consolute tem-
e Zi — 2 

perature to appear in the liquid region. If we write: 

Tmelting ~ C* Tboiling {&%) 
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whence 

Jmelting « 0.15k* (!IiJLiL2) in —?_ (33) 
Jtoonsolute \ 6 / Z — 2 

If we make the estimation a = 0.73 as in the case of water we obtain: 

Jmdting = O.llfc (e±+jA i n ^ _ (34) 
Jt consolute \ « / Z — 2 

Referring again to equation 25, it is apparent that since e (as denned by equa
tion 23) may be negative, there should exist systems for which no consolute 
temperature may be found, even in principle, above the absolute zero. That 
is, if the mean of the interactions between like pairs of molecules should fall 
below the interaction between unlike pairs, the two liquids should be miscible 
in all proportions at any temperature whatever, provided of course that such 
temperatures may be obtained without fusion or vaporization. In other cases, 
with sufficiently positive «, a consolute or critical mixing temperature should be 
realizable, perhaps under high pressures. 

To examine the applicability of equations 3, 9, and 14 to experimental data, 
it is convenient to plot the ratio of partial pressures against the ratio of mole 
fractions (or the mole ratio). From equations 8 and 9 one may note that 

/ l + vxY _ 
\r] + jxx) 1 

and the relation is linear for / plotted against 6/1 — 9 in the region of small 
x (hence small 6). The slope of this limiting straight line will then be r]~z. 

In addition, when/ = , — = 1, and 
1—6 i] + ixx 

1 - v 
x = 

hence 

/ - iA - — (36) 
1 — 6 /X — 7) 

at the point at which the curve crosses the ideal solution line, / = 6/1 — 6 
(figure 3). 

The form of such experimental curves may be seen in the model curves of 
figure 4, drawn for the set of constants, 

Z= 12 
«12 — «22 = — 84.0 cal./mole (37) 
«n — «22 = 209.6 cal./mole 

With this choice of constants, the consolute temperature, or critical solution 
temperature, will be about 4000K. 
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"* MOLE RATIO ("PQ-) 

FIG. 3. Plot of partial pressure ratio vs. mole ratio for determining constants of equation 

0.5 n 
400* K. 

6I2-^4= -0 .084 Kcal./mole 
e , re = 0 . 2 1 0 - • 

Z = !2 

2 T 
MOLE RATI0(-j^-) 

FIG. 4. Model curve 

Finally, one may readily test equations 24 and 25. Equation 24 may be 
arranged in the form, 

T 
= 2 

In Z/Z - 2 

• consolute 

(• + ZT^2) ( ' - + ^ 8 ) 
(38) 

In 
0(1 - 6) 
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which is a one-parameter family of curves for T/!Tconsoiute ha terms of 6. Fig
ure 5 gives this relation in graphical form for selected values of the coordina
tion number Z. From equation 29 it should be possible to determine Z, and 
from the relation 

e = fcToonsoiute h i (39) 

0 MOLE FRACTION (9) I 
FIG. 5. Temperature (in terms of eonsolute temperature) as a function of solubility 

for various values of the coordination number Z. 

one may then obtain the value of e, the difference between the mean of the in
teraction energies between like molecules and the interaction energy for unlike 
molecules. I t should be noted, of course, that expression 25 relates the tem
perature not strictly to the solubility, but to the value of 9 corresponding to 
the maximum of the vapor pressure-composition curve. Clearly, the actual 
composition at the saturation point will be somewhat less than the d of equation 
29 on one branch of the curve and somewhat greater on the other. In general, 
however, there will be some curve of this description, and the principles involved 
will be the same. 
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Consider now the case of a mixture of two kinds of molecules, of which one 
sort occupies two lattice positions while the other occupies but one (figure 6). 
The double molecules will be designated by the subscript 2, the single particles 
by 1. To obtain the partition function for a molecule in the field of its nearest 
neighbors one writes the sum of all possible combinations; if the central mole
cule is of kind 2, there will be a contribution /2 to the partition function in the 
absence of neighbors. If all of the Z - I nearest lattice points contain type 
1 particles, the contribution is 

(Afi«Hi)*-l-/» (40) 

FIG. 6. Representation of a mixture of single (1) and double (2) molecules as a plane lattice 

Continuing in this fashion, the total sum will be found to be 

ftVXvta + /ifujis]2-1 (41) 
Similarly, if the central point is occupied by a molecule of kind 1, the corre
sponding expression will be 

/i[/*frm + /iTn?u]* (42) 
In the same way, if one considers a molecule of kind 2 in the first shell, its par
tition function will be 

te* [/*&»» + /irnjuF-"" (43) 
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while that for a molecule of kind 1 will be 

Ui[HiVn + /ifif11] (44) 

Now the ratio of expression 27 to 28, as of expression 29 to 30, must be the ratio 
of the probabilities of finding an arbitrary molecule to be of kind 1 or kind 2, 
hence the mole ratio: 

& _ /2 [/2 f 2 1722 + / i f IfMJ _ /2 f 2 [/2 f 2 7/22 + / i f 1*712] ,,g\ 

1 — 6 / l [ A f 2 »712 + / i f l f l l ] Z / l f l [/2 f 2 V12 + / l f 1 V ll] 

Equations 31 may be written in the form 

/2 (/2f2)2 

/1 ( / i f i ) ' 
('+-Ar 
(-+-SO' 

(46) 

A , / i f iV*"" ' 1 

L(/ifi)zJ ' - - v ^ ; 

Mi};) 
Since in this case the expressions are not homogeneous in /if 1 and /*f *, the simple 
expressions analogous to expressions 6 and 7 are not possible, and a second 
implicit variable (/2f2)z_1/(/ifi)z appears. However there is still a third equa
tion, the Gibbs equation, which has again the form 

IJ-«p{-/""W}-B£? (48) 
Pl V J - » / 1 / J 

and in principle it should be possible to calculate the equilibrium curves of 
partial pressure vs. composition. In practice, the expressions have been found 
too unwieldy for numerical computation as yet. One may note that for large 
values of coordination number, Z, 

,. . , reduces approximately to V -̂2 

( / i f i ) 2 y / i f i 

or in terms of the previous notation to x . 
A number of difficulties arise in the manipulation of the equations for any 

case except the simple one of molecules of equal size. In principle, however, it 
should be possible to treat almost any kind of mixture of arbitrary molecules to 
the point of setting up the equations. In particular, it is noteworthy that 
special kinds of interactions such as forces between dipoles may readily be in
cluded, as it is only necessary to identify such special forces with one of the 
Tm, the energy for which will be determined by the nature of the case. 

Further, it is possible, and may in some cases be essential, to consider the 
various «,-,• not as energies (heats) but rather as (Helmholtz) free energies: thus 
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if the in are considered to be linear functions of the temperature, one may 
write for e, 

e = \ (en + *22) - e12 = E - TS (49) 

where the terms E and TS represent the temperature-independent (energy) 
and temperature-dependent (entropy) parts, respectively. The counterpart 
to equation 25 will then be 

*- consolute == y \^W 

S + kin ^ - s 

for the consolute temperature. It is apparent that if the term *S in the denomin
ator were to be larger than the coordination number term, the consolute tem
perature would be sensibly independent of the coordination. 

Finally, one may remember the empirical fact that the use of volume fractions 
in place of mole fractions in many cases removes the anomalies found in some 
of the properties of liquids which arise from the unequal size of the molecules. 
It is tempting to suppose that the variation in the consequences of equations 
46, 47, and 48 from those of equations 8, 9, and 13 which arise from just such a 
source may be reproduced by using the simpler theory with the mole fraction 
terms replaced by volume fractions. 
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