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The calculation of fugacities from P-V-T data necessarily involves a differentia­
tion with respect to the mole fraction. The fugacity rule of Lewis, which in effect 
would eliminate this differentiation, does not furnish a sufficient approximation. 
Algebraic representation of P-V-T data is desirable in view of the difficulty of nu­
merical or graphical differentiation. An equation of state containing two individ­
ual coefficients is proposed which furnishes satisfactory results above the critical 
temperature for any pressure. The dependence of the coefficients on the composi­
tion of the gas is discussed. Relations and methods for the calculation of 
fugacities are derived which make full use of whatever data may be available. 
Abbreviated methods for moderate pressure are discussed. 

The old problem of the equation of state has a practical aspect which has 
become increasingly important in recent times. The systematic description of 
gas reactions under high pressure requires information about the fugacities, 
derived sometimes from extensive data but frequently from nothing more than 
the critical pressure and temperature. 

For practical purposes a representation of the relation between pressure, vol­
ume, and temperature based on two or three individual coefficients is desirable, 
although a representation of this type satisfies the theorem of corresponding 
states and therefore cannot be accurate. Since the calculation of fugacities 
involves a differentiation with respect to the mole fraction, an algebraic repre­
sentation by means of an equation of state appears to be desirable. After this 
paper had been written, Joffe (12) showed that fugacities can be correctly de­
rived also from generalized charts. An algebraic method, however, if based on 
a suitable equation of state, appears to be more convenient. I t is free from the 
arbitrariness necessarily involved in the drawing of generalized charts. In 
addition, an approximate equation of state can be used for the precise repre­
sentation of experimental data with the aid of approxiate deviation functions. 

I. AN EQUATION OF STATE 

Several theoretical and practical considerations lead to the following equation 
of state. We omit a detailed discussion because the reasoning is circumstantial 
and by no means rigorous. The equation is therefore essentially empirical. 
Its justification rests mainly on the degree of approximation obtained by com­
paratively simple means. 

1 Presented at the Symposium on Thermodynamics and Molecular Structure of Solutions, 
which was held under the auspices of the Division of Physical and Inorganic Chemistry at 
the 114th Meeting of the American Chemical Society, Portland, Oregon, September 13 and 
14, 1948. 
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The proposed equation is represented by 

P = RT/(V - b) - a/T112V(V + b) (1) 

It will be used in the form : 

Z = 1/(1 -h) - (A*/B)h/(1 + h) (2) 
Z - PV/RT (3) 

A* = a/R1T** = 0.4278 Tf/PCT™ (4) 
B = b/RT = 0.0867 T./P.T (5) 
A = BP/Z = 6/1P (6) 

The relations between the coefficients a and b or A2 and B and the critical tem-

Fm. 1 FIG. 2 
FIG. 1. Compressibility factor of ethane (237.80C). Curve 1, van der Waals; curve 2, 

Dieterici; curve 3, Berthelot; curve 4, Wohl; curve 5, equation 2; A, experimental data (26). 
FIG. 2. Compressibility factor of ?i-butane. Experimental data (23): O, 137.8°C; A, 

237.8°C Curves: equation 2. 

perature Tc and pressure Pc follow from the critical conditions. The quantities 
A2 and B are expressed in atm. - 1 

The results obtained from equation 2 have been compared with experimental 
data for various gases in a wide pressure range. A few examples are shown in 
figures 1-3. The temperature, the pressure range, and the data for the maximum 
deviation are given in table 1 for all gases examined. A comparison with simi­
larly simple equations of state is shown in figure 1 for the arbitrarily chosen 
example of ethane. Considering the limitation imposed on any equation con­
taining but two or three individual coefficients by the failure of the correspond­
ence theorem, the approximation obtained by equation 2 is satisfactory. 

At high pressures the volume of all gases approaches a limiting value (13) 
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which is practically independent of the temperature and close to 0.26T^ (V0 = 
critical volume). In equation 1 this limiting volume is represented by the coeffi­
cient b. The equation has been constructed to satisfy the condition 

b = 0.26FC (7) 

in order to furnish good approximation at high pressure. 
For low pressures Berthelot's equation is known to furnish a very good ap­

proximation. The second virial coefficient derived from equation 2 

/3 = b - a/RT1* = 0.0867(BZVP„)[1 - 4.93(Vr)1-5] (8) 

agrees quite well with the value derived from Berthelot's equation 

/3 = 0.0703(RTe/P.)[l - Q(TC/T)2] (9) 

500 
PRESSURE , ATMS. 

FIG. 3. Compressibility factor of hydrogen and carbon dioxide. Experimental data: 
hydrogen (17), O, O0C; (2), D, 399.30C. Carbon dioxide (25), V, 33.8°C; A, 237.80C. 
Curves: equation 2. 

for the critical and higher temperatures. Below the critical temperature, the 
deviations of both equations from experimental data increase with decreasing 
temperature. Here Berthelot's equation furnishes a better approximation for 
low pressures. 

Sometimes it is useful to know the limiting tangents in a diagram of Z against 
P. If we transform equation 2 into 

Z = 1 + BP - A2P(Z - BP)IZ(Z + BP) 

we find that the tangents are represented by 

1 + (B - A2)P = 1 + /SP/RT for P = 0 
1 + BP for P = oo 

(10) 

(H) 
(12) 

Although equations 2 and 6 represent Z only implicitly as a function of P, 
numerical calculations are not laborious: Calculate B and A2/B according to 
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TABLE 1 
Maximum deviations 

SUBSTANCE 

Hydrogen 

Nitrogen 

Oxygen 

Carbon dioxide 

Methane 

Ethane 

Ethylene 
Propane 
Sl.; 

JSP! 
n-Butane 

Isobutane 

Methane-ethane 
Methane-isobutane 
Methane-carbon dioxide. 

MOLE 
F A C T I O N 
UETHANE 

TEMPER-
ATUSE 

0.4006 
0.4681 
0.4055 

50 
137.8 
37.8 

PRES­
SURE 

RANGE 

'C. 
0 

150 
399.3 

0 
399.3 

0 
199.5 
37.8 

237.8 
37.8 

237.8 
37.8 

237.8 
150 
104.4 
100 I 
275 i 
137.8 j 
237.8 ! 
137.8 
237.8 

2542 
2970 
400 

1000 
1000 
1000 
900 
680 
680 
680 
680 
680 
680 

3000 
204 
181 
303 
680 
680 
340 
340 

60 
340 
680 

REFERENCE 

(17) 
(17) 
(2) 
(2) 
(2) 
(U) 
(H) 
(25) 
(25) 
(22) 
(22) 
(26) 
(26) 
(15, 18) 
(27) 
(5) 
(5) 
(23) 
(23) 
(19) 
(19) 

(16) 
(21) 
(25) 

MAXIMUM DEVIAT 

At 
pressure 

atm. 

2542 
2970 
300 

1000 
1000 
1000 
900 
680.5 
680.5 
680.5 
680.5 
61.24 

680.5 
2473 

40.84 
45 

130 
680.5 
680.5 
34.02 

340.2 

60 
170.1 
51.0 

Z 
(ob­

served) 

2.706 
2.267 
1.089 
2.064 
1.511 
1.736 
1.413 
1.116 
0.916 
1.447 
1.330 
0.248 
1.405 
3.653 
0.525 
0.245 
0.808 
2.060 
1.858 
0.216 
1.117 

0.759 
0.690 
0.641 

Z 
(calcu­
lated) 

3.067 
2.564 
1.098 
1.977 
1.416 
1.664 
1.362 
1.168 
0.878 
1.415 
1.289 
0.202 
1.353 
3.584 
0.584 
0.430* 
0.787 
2.187 
1.913 
0.269 
1.094 

0.780 
0.714 
0.613 

* The value of Z changes rapidly in the vicinity of the critical point, 
value Z = 0.430 corresponds to a pressure of 43 atm. 

The experimental 

TABLE 2 
Auxiliary functions 

h 

0.02 
0.04 
0.06 
0.08 
0.1 
0.15 
0.2 
0.25 

1/(1 - h) 

1.0204 
1.0417 
1.0638 
1.0870 
1.1111 
1.1765 
1.2500 
1.3333 

A/(l + h) 

0.01961 
0.03846 
0.05660 
0.07407 
0.09091 
0.13043 
0.16667 
0.20000 

h 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1/(1 - h) 

1.4286 
1.6667 
2.0000 
2.5000 
3.3333 
5.0000 

10.0000 

A/(l + A) 

0.23077 
0.28571 
0.33333 
0.37500 
0.41176 
0.44444 
0.47369 
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equations 4 and 5, estimate the required range of the auxiliary variable h from 
equation 6, calculate Z according to equation 2 with the aid of table 2 for a suit­
able set of values of h, and calculate P — hZ/B for the values of h chosen in the 
preceding step. Graphical interpolation furnishes Z for any value of P. 

Equation 2 can be advantageously used for the presentation of experimental 
data and for subsequent thermodynamic calculations. The deviation function 

W = ZM- ZS (13) 

(ZE = experimental value of Z; Z8 = value calculated from the equation of state) 
is restricted to a small range and varies only slowly with P. It can be easily 
interpolated and represented graphically or by means of a short table. Thermo­
dynamic calculations can be carried out algebraically in Zs so that graphical or 
numerical differentiations and integrations are required only for the small devia­
tion W. The advantage is considerable, especially in differentiations. 

It is convenient to call the quotient of the fugacity and the pressure "fugacity 
coefficient."2 The relationship between fugacity, volume, and pressure (c/. 9) 
together with equation 2 furnishes for the fugacity coefficient <p the equation: 

In „ = f (Z- l )dPIP = Z - 1 - In (Z - BP) - (A'/B) In (1 + BP/Z) (U) 

I I . GASEOUS MIXTURES 

It will be expected that equation 2 holds about equally well for gaseous mix­
tures. The question is only in which way the coefficients A and B of the mixture 
depend on the corresponding coefficients Aj and B,- and the mole fractions y,-
of the components. 

Since the coefficient b has been introduced as the limiting volume, it is quite 
obvious that it depends linearly on the mole fractions. Therefore, 

b = T,Vibr, B = Z y,Bi (15) 
i i 

This relation deviates from the original theory of van der Waals and from the 
general theory of the second virial coefficient (8). But the theory is valid only 
for moderate pressures where the influence of b is small. The linear relation 15 
follows from our interpretation of 6 for high pressures, where the influence of b 
is decisive. This relation is well supported by experimental data (20). 

The situation is different for the attraction coefficient a. Molecular theory 
leads to the result that the second virial coefficient is a function of second degree 
of the mole fractions. This result is also experimentally well established (8). 
Since the coefficient a is important at moderate pressures, a reasonable approxi­
mation can be achieved only by assuming a similar relationship for a: namely, 

a = atyl + a2y\ + • • • + 2any\yz + • • • (16) 
2 Prigogine and Defay (24) recently introducted this term by means of a slightly different 

definition which appears to be less convenient. 
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The coefficients ou . . . . of the cross terms can be related to the properties of the 
pure components by the usual though somewhat arbitrary assumption that 

cm = ((X1(Z2)
1'2 (17) 

Equations 4, 16, and 17 furnish 

A = ^ViAj (18) 
i 

Equations 15 and 18 are in accord with the conclusions of several authors, 
especially Gillespie (9a, 14) and Beattie (4), and are for moderate pressures well 
supported by their discussions of experimental data. 

The second virial coefficient 

/3 = RT(B - A') = RTpV]Bf - &y,Aj)*\ (19) 

is a linear function of the mole fractions only in the exceptional case that all 
coefficients Aj are equal. In first approximation for low pressures we have 

Z = I + ^P/RT (20) 

Since the attraction coefficient A2 is in general far more important here than B, 
we arrive at the conclusion that the deviations from the perfect law cannot even 
in first approximation be represented by a linear function of the mole fractions. 
In general, the volume of a gaseous mixture ceases to be additive as soon as the 
gas ceases to be perfect or, a gaseous mixture is a perfect solution only as long as 
it is a perfect gas. In other words, no legitimate pressure range exists for the 
application of the rule of Amagat (1). Since the fugacity rule of Lewis and Ran­
dall is thermodynamically connected with Amagat's rule, this fugacity rule, too, 
does not furnish a correct first approximation. This conclusion does not depend 
on the assumption of a particular equation of state. I t is in accord with experi­
mental data (c/. 10). 

The difference in the dependence of B and A2 on the composition and the dif­
ference in the influence of these coefficients on Z in different pressure ranges 
accounts for a fact which at first is very surprising: volume-composition curves 
approach straight lines at high pressure but in general deviate widely from 
straight lines at moderate pressures. 

III . THE FUGACITY COEFFICIENT 

The replacement of the fugacity by the fugacity coefficient is especially useful 
in calculations pertaining to solutions. We define the fugacity coefficient <pr 

of the component r of a solution by means of 

Vr = fr/VrP (21) 

where fr denotes the fugacity of the component r. 
For gaseous mixtures the fugacity coefficient is given, therefore, by the relation 

In <pr = [F (2 r - l)dP/P (22) 
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where the partial molal compressibility factor Zr is to be derived from Z accord­
ing to 

Zr = Z + dZ/dyr - £ VidZ/dyj (23) 
i 

The summation is to be extended over all components. The partial differentia­
tion is to be carried out, of course, at constant values of all mole fractions except 
that one with respect to which Z is differentiated.3 

The derivation of the fugacity coefficients from equations 2, 6, 15, 18, 22, and 
23 is possible but tedious. Much more convenient is a calculation in which the 
order of the differentiation with respect to the mole fraction (equation 23) and 
the integration with respect to the pressure (equation 22) is reversed. We 
define the molal quantity U by 

U = Sy1 log <Pi (24) 

According to equations 22 and 23, and 2 and 6, we find 

2.303 U = [ (Z - l )dP/P 

= Z - 1 - In (Z - BP) - (A2/B) In (1 + BP/Z) (25) 

log <pr= U + dU/dyr - E VidU/dyi (26) 
;' 

The dependence of Z on A and B is given by equations 2 and 6, and that of A 
and B on the mole fractions by equations 15 and 18. The calculation leads with­
out difficulty to 

log Vr = 0.4343(Z - l)Br/B - log (Z - BP) 

- ^ [2^ ~ § ] log (1 + BP/Z) (27) 

Properly arranged, the computation of fugacity coefficients according to equa­
tion 27 does not require an undue amount of time. For each temperature and 
composition of the gaseous mixture the fugacity coefficients of all components and 
for all desired pressures are calculated in one set. The required steps are: 

I. Aj and B1- for all components (equations 4 and 5) 
II. A and B for the mixture (equations 15 and 18) 

III. Z for the mixture as a function of P (equations 2 and 6) 
IV. log <pr (equation 27) 

Sometimes a sufficient approximation, at least for first information, is ob­
tained by calculating the case in which one of the components is present in large 
excess, ys = 1. In this case the quantities A, B, and Z assume the values 

' Equation 23 applies to any molal quantity Z and the corresponding partial molal quan­
tities 2r. It is derived from the usual definition of partial molal quantities by replacing 
mole numbers by mole fractions. The derivation of equation 23 is not based on an assump­
tion that the j/,'s are independent. I t is therefore not necessary, though of course it is 
permissible, to eliminate one of the y,-'s in Z before applying equation 23. 
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A8, B,, and Z3 of the pure solvent gas, so that the calculation is considerably 
shorter. 

TABLE 3 
Hydrogen-nitrogen 

TEMPERA­
TURE 

O0C. 

2000C. 

MOLE FRACTION H j 

Pressure (atm.) 
Fugacity of components (calcu­

lated) 
Same (Bolshakov) 
<pi/<Pi (calculated) 
<Pi/<p\ (Bolshakov) 
<PI/<P°2 (calculated) 
(pi/(P2 (Bolshakov) 

600 11000 

689 
737 

1.27 
1.20 
1 
1 

Fugacity of components (calcu­
lated) 

Same (Bolshakov) 
<P\/<P\ (calculated) 
ip\l>p\ (Bolshakov) 
tpi/vl (calculated) 
<PI/<P\ (Bolshakov) 

1636 
1811 

1. 
1. 
1 
1 

758 
831 

1.08 
1.03 
1 
1 

1569 
1806 

1.09 
1.04 
1 
1 

600 

1.09 
1.07 
1.03 
1.04 

1.03 
1.02 
1.01 
1.00 

1000 600 11000 

927 
899 

1 
1 
1.28 
1.23 

783 
769 

.04 1 
,02 1 

2159 
1992 

1 
1 
1.32 
1.27 

1565 
1513 

1 
1 

1.01 
I.OO! 

1.08| 
1.04I 

1.11 
1.04 

200 400 
PRESSURE , ATMS. 

- 0 . 2 

- 0 . 4 

DZ 

- 0 . 6 

-0 .6 

- Y 

: 

• 

Ns? 

V 

I 

S N ? 

O 

I 

9 ^ 

O 

1 1 

9/yV 

1 1—— 

MOLE FRACTION OF METHANE 

FIG. 4 FIG. 5 
FIG. 4. Compressibility factor of methane-carbon dioxide (mole fraction of methane = 

0.4055). Experimental data (25): O, 37.8°C. Full line: equations 2, 15, 18. Brokenline: 
Berthelot's equation. 

FIG. 5. Methane-ethane (5O0C). Deviation function DZ (cf. equation 35). Experimen­
tal data (16): 9 , 13.61 atm.; O, 40.83 atm.; 6 , 68.04 atm. Curves: equation 36. 

A test of equations 14 and 27 is shown in table 3. The fugacities of hydrogen 
and nitrogen and the activity coefficients <pi/<p\ and <pi/<p\ of their mixtures have 



THERMODYNAMICS OF SOLUTIONS. V 241 

been computed from experimental data by Bolshakov (7). His results for 2000C. 
cannot be quite accurate, since they are not in complete accord with the Duhem-
Margules equation. For other gases, especially hydrocarbons, smaller devia­
tions may be expected according to the results reported in table 1. 

Since equation 27 is strictly derived from the assumed equation of state and 
equations 15 and 18, its validity depends only on the validity of these relations. 
Figure 4 is presented as an example for Z. The maximum deviations for three 
mixtures are given in table 1. 

Experimental P-V-T data for the pure components, if available, can be used 
for improving the results obtained by means of equation 27. As in equation 13, 
we represent the difference between the experimental and calculated values of 
Zj for the component j by the function W,. If no data for the mixtures are 
available the best assumption for the deviation function W of the mixture is 

W = yiWf (28) 

The improved value of In <pr is then obtained by adding 

[ Wr AP/P (29) 

to the value obtained by means of equation 27. 
If data are available also for mixtures, equation 28 can be replaced by a better 

interpolation function. The calculation of the additional term in In <pr according 
to equations 25 and 26 will not present any difficulty. 

IV. APPROXIMATIONS FOR MODERATE PRESSURE 

In the pressure range which is sufficiently well represented by the second virial 
coefficient (equations 19 and 20), equations 22 and 23 furnish 

In Vr = [Br - Al + (Ar - AY]P (30) 

This relation is useful in the calculation of the correction for the imperfection 
of the vapor in liquid-vapor equilibria. The equilibrium between a liquid (mole 
fraction x„ molal volume V'r and activity coefficient yr of the component r) and 
its vapor is determined by the condition 

In krXr-Yr + VrP/RT = In Vr^rP (31) 

The proportionality factor fcr is eliminated by means of the condition for the 
equilibrium of the pure component under the vapor pressure pr. 

In kr + V'rpl/BT = In v\v\ (32) 

The equilibrium condition, therefore, is 

In {XryrVr/VrP) = ( ^ r ~ A% - VT/RT){P ~ Pr) + ( A r - AfP (33) 

For binary solutions, the last term becomes (.A1 — A2Y(I — yr)
2P- A relation 

of this type has been previously proposed by Scatchard and Raymond (28). 
The fugacity rule of Lewis leads to omission of the last term. But this term 
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has in principle the same order of magnitude as the preceding one. However, 
it is small if the values of the critical constants of the components do not differ 
appreciably. 

In equation 30 the term (B, — A2
r)P represents the logarithm of the fugacity 

coefficient of the pure gas, while (Ar — A)2P indicates its dependence on the 
composition. Thus if Z, for the pure gas is known, we obtain a better approxi­
mation by means of the relation 

In vr = f (Zr - l)dP/P + (Ar - Af P (34) 

in which the equation of state is used only for determining the dependence on the 
composition. 

Another approximation furnishes appreciably better results. We discuss only 
binary systems, although the method can be extended to the general case with­
out difficulty. We define 

DZ = Z - V1Z1 - y2Z2 (35) 

where Zx and Z2 denote the values of Z1 and Z2 of the pure components at the 
pressures y\P and y2P, respectively. By means of equations 2 and 6 we can 
develop the quantity DZ in terms of powers of P. The first-order term is 

DZ = V1V2P(B1 + B2- 2A1A2) (36) 

This approximation holds quite well up to pressures of about 50 atm. (see figure 
5). From equation 36 we derive the corresponding approximation for the 
fugacity coefficient: 

In V1 = f1 (Z1 - 1) dP/P + V2(Zx - Z2) + VlP(B1 + B2- 2A1A2) (37) 

This quite convenient approximation has an important practical advantage. 
Sometimes we want to know the fugacity coefficient of a substance in a gaseous 
mixture below its critical temperature under a total pressure which is higher 
than its vapor pressure. A relation such as equation 34 cannot be used in this 
case, because Zr cannot be measured up to the total pressure P. But equation 37 
requires the knowledge of the compressibility factor of the pure gas only up to 
its partial pressure and therefore is always applicable. 

v. CONCLUSION 

A variety of problems arise in the calculation of fugacities of gaseous mixtures 
for two reasons: First, the available experimental data are widely different. 
Sometimes only the critical temperature and pressure are known, sometimes 
P-V-T data for some or all of the components, sometimes a complete set of data 
for the mixtures. In each case, full use should be made of the data. Second, 
short methods are desirable for moderate pressures. It is believed that the 
relations discussed in the preceding sections cover the whole range and that the 
methods proposed do not require an unreasonable amount of time. 
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Whenever a complete set of data is not available, some assumptions must be 
introduced which can be only imperfect approximations. 

The methods proposed contain only two assumptions: the equation of state 
(equation 1) and the dependence of the coefficients A and B on the composition 
(equations 15 and 18). 

The equation of state furnishes a second virial coefficient which is in good 
accord with experimental data at the critical temperature and above. Simi­
larly, the ratio between the limiting volume at high pressure and the critical 
volume is equal to the average of experimental data which vary within fairly 
close limits. The equation of state is therefore in accord with general experi­
mental experience to the extent to be expected of an equation containing only 
two coefficients. 

The assumed dependence of the coefficients A and B on the composition of the 
gaseous mixture takes into account the relative importance of these coefficients 
at low and high pressures, the theoretical interpretation of these coefficients, and 
experimental tests of this interpretation. 

The degree of approximation obtained by the two assumptions, as ascertained 
in a number of test examples, is believed to be satisfactory in view of the fact that 
no experimental data are used except the critical pressure and temperature. 
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