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I. INTRODUCTION 

The quantum theory has been revolutionized within the past 
three years by the development of a new quantum mechanics 
which is a far more comprehensive and satisfying theory than 
the original form developed by Bohr, Sommerfeld and others in 
1913 and subsequent years. This remarkable new mechanics 
cannot be regarded as the product of any one man, but instead 
must be considered the result of the reaction of mind on mind 
among European talent in theoretical physics. This new 
quantum dynamics has, in fact, been developed in a great 
diversity of mathematical forms, which present a rather confusing 
array to the student beginning the subject. However, it must be 
emphasized that these various formulations, though different in 
mathematical structure, are in harmony with each other, and 
yield substantially equivalent results when applied to physical 
or chemical problems. The three main mathematical forms are 
the following: (1) the matrix theory of Born, Heisenberg, and 
Jordan, (2) Schroedinger’s wave mechanics, (3) the so-called 
“transformation theory,” based on kinematical indeterminism, 
developed by Dirac and Jordan, and interpreted by Heisenberg. 
Of these three formulations, the third is the most comprehensive, 
and includes the other two as special cases. In  this paper I 
shall not endeavor to give the mathematical foundations of the 
quantum mechanics, as that would be too long a task. Instead 
I shall begin by explaining some of the philosophy and logic 
underlying the new theory and shall later survey some of its 
accomplishments. The philosophy may be summarized in the 
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statement that at atomic distances our concepts of space and 
time must be revamped. In fact Heisenberg’s epoch-making 
development of the matrix theory was spurred by Born’s re- 
peated emphasis to his colleagues a t  Gottingen that the reason 
the old quantum theory was then (1925) failing was that we 
were all too anxious to use the same concepts of space and time 
within the atom as in ordinary measurable large-scale events. 
Einstein and the relativists made us rescrutinize the space-time 
correlation a t  cosmic distances, and now the quantum theories 
bid us do this at the other extreme of size. Now, after all, the 
concepts of distance and time have a meaning only when we 
tell how they can be measured. This is very nicely emphasized 
in Bridgman’s recent book, “The Logic of Modern Physics.” 
At ordinary distances we determine lengths by means of measur- 
ing rods and time intervals by clocks. However, one cannot use 
a meter stick to measure the diameter of an atom, or an alarm 
clock to record when an electron is a t  the perihelion of its orbit. 
Consequently we must not be surprised if within the atom the 
correlation of space and time is something which cannot be 
visualized, and that models cannot be constructed with the same 
kind of mechanics as Henry Ford uses in designing an auto- 
mobile. After all, within the atom there may be no geometry in 
the ordinary sense. 

The goal of theoretical physics and chemistry must ever be to 
explain observable rather than unobservable phenomena. The 
presence in a theory of unobservable quantities or concepts, 
such as the “phase” or instantaneous position of the electron in 
its orbit in the old quantum theory, must be regarded as an 
element of weakness rather than strength in the theory. What 
the physicist observes about an atom is primarily its radiations, 
while the chemist measures its heats of combination, affinities, 
etc. We may say that we have a sound atomic theory when we 
have a set of a small number of mathematical postulates from 
which these observed things can be calculated correctly, even 
though it forces us to discard the usual space-time models. The 
new quantum mechanics is often characterized as a matrix theory. 
Why is this possible? Because what is measured about the 
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radiations of atoms may be tabulated in the form of a matrix. 
The term “matrix” may sound rather formidable to those not 
mathematically trained, but I think I can intimate some of the 
uses of matrices if I point out their rough similarity to something 
with which most readers are doubtless more familiar; namely, a 
baseball schedule. In a baseball schedule the entry in row 3 and 
column 2 gives the date when team 3 plays team 2 .  Kow a 
typical quantum theory matrix is an expression of the form 

A(11) 
A(21)ez“” ( ~ 1  A (22)  
~ ( 3 1 ) ~ 2 ~ ’ ~  ( w t  ~ ( 3 2 ) ~ 2 = ~ ”  (mi ~ ( 3 3 )  

A (1 2 )  e2“ <” (12) A (1 3 )  elT iv (I3 ) $ .  . . . . . . . . . . . .  
A(23)e2“iu @ 3 ) $ . .  . . . . . . . . . . .  

............. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Here the entry in row 3 and column 2, for instance, gives in- 
formation about a transition between a 3 and 2 quantum state, 
just as the analogous baseball entry does about the meetings 
between teams 3 and 2 .  Each entry or “element” in the above 
matrix contains two factors; viz., an amplitude factor such as 

. The frequency A ( 3 2 )  and a frequency factor such as e 
factor determines the frequency ~ ( 3 2 )  of the spectral line corre- 
sponding to the transition between the 3 and 2 quantum states. 
The amplitude factor determines whether such a line is intense, 
Le., whether the transition probability is large or small. The 
intensity is, of course, proportional to the square of the nmpli- 
tude; the exact formula for Einstein’s transition probability 
coefficient a, -., is a, = 6 4 ~ ~ e ~ v ( n m ) ~ I A ( n r n )  I2/3hc3. The 
diagonal elements, such as A(11), A(22), etc., give the properties 
which are associated with one stationary state rather than with 
the transitions between two states, and represent average values 
since the periodic exponential factors are absent. In the new 
quantum mechanics the Bohr frequency condition is still valid, 
so that we may still set hv(nrn) = W ,  - W,. The conservation 
of energy means that the energy W is a “diagonal matrix” in 
which the periodic, or off-diagonal elements are all zero. 

The above matrix scheme may be regarded as simply a method 
of recording laboratory observations regarding the intensity and 
frequency of spectral lines, for when we measure intensity we 
determine the amplitude A and when we measure the frequency 

Znzv(32) t 



470 J. H. VAN VLECK 

we determine V .  However, the crux of the theory is that the 
matrices can be calculated mathematically as well as measured 
experimentally, and wherever the difficulties of computation in 
the mathematics or of technique in the laboratory can be over- 
come there is excellent, in fact astounding, agreement between 
the theoretical and experimental matrices. 

I shall not enter upon the matrix algebra and calculus with 
which it is possible to calculate the intensity-frequency matrices 
from tfhe equations of motion, formulated of course in the matrix 
language. I shall simply mention that this matrix algebra is a 
non-commutative one, or in other words p x  # x p .  Instead it 
is assumed that we have the quantum condition p x  - x p  = 
h/27ri, where i denotes dy, and h is Planck’s constant, which 
thus enters as a measure of the “irrationality” of the theory, or 
peculiar non-commutativeness of the algebra. Here x is a 
coordinate of position, and p is its corresponding momentum. 
In the case of ordinary Cartesian coordinates, p is, of course, the 
product mv of mass and velocity. If we have such an extraor- 
dinary state of affairs as x p  = p x ,  then surely x and p cannot 
both be ordinary numerical quantities, for any ordinary numbers 
a and b of course possess the property that ab = ba. Instead 
p and x must be interpreted as matrices. From this Heisenberg 
and others conclude that when dealing with amounts of action 
comparable with Planck’s h, one cannot assign accurate numerical 
values simultaneously to a coordinate and i ts  corresponding momen- 
tum.  Thus within the atom i t  i s  meaningless to talk of a szmultane- 
ozis position and velocity of the electron. It is, of course, possible 
to attach a meaning to a simultaneous position and velocity of a 
large body, such as an automobile or even a dust particle, because 
in such we have an enormous number of quanta. Within the 
atom this is no longer the case. Experiments may be devised 
which will determine either x or p accurately, but not both x 
and p simultaneously. Instead if Ax be the error in specifying 
the position x, and Ap that in specifying the monentum p ,  then 
the product a x A p  of the two errors is always of the order of 
magnitude of Planck’s constant, so that 

AXAP - h (1) 
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This is the so-called Heisenberg indeterminism principle, and, like 
the second law of thermodynamics, is very useful in predicting 
what experiments are possible, and what are inherently im- 
possible. Thus high precision in position implies low precision 
in velocity, and vice versa, for the error Av is of the order h/mAx 
and therefore increases as we decrease Ax. We may illustrate 
this in a crude arithmetical way by considering the motion of an 
electron, If we specify that this electron is exactly a t  a given 
position, say the origin, a t  a given instant t = 0, then the error 
Ax is zero, and consequently the error Av is infinite; this 
means that the velocity is inherently undetermined and so can 
range anywhere from - to + a; so that a t  any subsequent 
instant of time, say one second, there is an overwhelming chance 
that the electron be an infinite distance away. Suppose, how- 
ever, that instead of aiming to specify accurately the positicn of 
the electron a t  t = 0, we merely say that then it is somewhere 
between x: = -+ and x = +3; then Ax = 1, and Av is of the 
order h/m; now h = 6.55 X lo+’, while for an electron rn = 
0.9 X 10-2’ hence the error Av in velocity is 6.55/0.9, or about 7 
centimeters a second. One could then not give accurately a 
numerical velocity, say 300 cm./sec., but one could say that the 
velocity lay somewhere between about 2963 and 3033 cm./sec., 
so that after 1 second the electron would be between about x = 

296 and x = 304. (This is only a very crude calculation; a 
more accurate study leads to a Gaussian error curve.) 

Another, and better illustration of the Heisenberg indeter- 
minism principle is furnished by an attempt to measure simultane- 
ously both the position and frequency of a packet or wave train 
of light energy. A prism will record a train of waves as being 
strictly monochromatic only if the train is infinitely long; the 
termination of the optical disturbance after a finite time interval 
will cause an interruption in periodicity and make the light in the 
prism appear diffuse. If the train contains n waves, it can be 
shown that the diffuseness in its spectrum will be of the order 
l /n ,  or in other words the fractional error A V / V  in determining 
the frequency is comparable with l/n. If, following the light 
quant theory, we assign a packet or “quant” of light a momentum 
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(Arrow indicates calcula- 
tion by quantum dy- 

p = hv/c, then Ap is of the order hvlcn. On the other hand the 
length of the wave train is nX, where X is the wave length, 
and consequently the position of the light is indefinite to an 
extent Ax = nX. As v = c/X, the product A z A p  of the two 
errors is of the order of Planck’s 12. 

Because of the ambiguity resulting from the Heisenberg 
indeterminism principle, the future of a dynamical system can 
never be predicted with certainty. Instead only the probability 
that an electron be in a given configuration can be determined, 
and the future is only statistically determined. This is in sharp 
contrast to the “causality principle” of classical dynamics, 
whereby the subsequent history of a dynamical system is deter- 

(Arrow indicates calcula- 
tion by classical dy- 

TABLE 1 

CLASSICAL D E T E R M I M S M  

Given initially x, y, z, vzl v u ,  

QUANTUM INDETERMINIEM 

mined if we know its initial coordinates and velocities. The 
uncertainty as to subsequent motion in quantum mechanics is 
however, perhaps not due so much to failure of the ordinary 
cause and effect relation as to the inevitably indeterminate 
character of the initial conditions, as by the Heisenberg indeter- 
minism principle one cannot give both the initial position and 
velocity accurately. This contrast between classical deter- 
minism and quantum indeterminism should interest the philos- 
opher as well as the chemist or physicist, and is indicated 
graphically in table 1. Thus quantum mechanics is essentially 
a means of calculating the probabilities of events. In a labora- 
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tory experiment one performs certain operations and observes 
certain consequences. The goal of a theory must ever be to 
explain “what goes out” in terms of “what is put in.” At first 
thought it may appear as if the purely statistical correlation 
between cause and eflect demanded by quantum mechanics is 
contradictory to the precision with which experiments can be 
performed. Experiments with large scale quantities, however, 
involve so many quanta that the Heisenberg indeterminism is 

FIG. 1 

obscured, and so there is only apparently a “sharp” correlation. 
On the other hand, our ordinary atomic or molecular experiments 
are in most cases fundamentally statistical in character, as what 
is measured is not particular values of the dynamical variables, 
but rather average values of certain functions of these variables, 
or else distributions telling how they are scattered over a wide 
range of values. Such statistical quantities have a meaning in 
and can be calculated with quantum mechanics, and so there is 
no contradiction of Heisenberg’s principle. This idea is il- 
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lustrated in the next paragraph by a discussion of Rutherford’s 
familiar experiment on the scattering of alpha particles by thin 
foils. 

According to the classical theory of Rutherford’s experiment, 
an alpha particle is deflected through a large angle in going 
through the gold foil if it happens to  pass close to one of the gold 
atoms, and so is subject to large forces to bend it out of its 
course. On the basis of classical mechanics and the inverse 
square law it can be shown that the angle of deflection + shown 
in figure 1 is connected with the closest distance of approach p 
which would result were the alpha particle to continue un- 
disturbed in a straight line, by means of the relation 

Now assuming that all distances of approach are equally probable, 
or, more precisely, that the probability of the alpha particle 
approaching between distances p and d p  is proportional to the 
area 2npdp of an angular ring of inner and outer radii p and 
p + d p  respectively, i t  is often shown that the number d N  of 
alpha particles scattered between angles + and cb + d +  is 

dN = ;T Nnt cosec2 $6 cot  $+d+ (““‘>” (3) 

where N is the number of alpha particles passing through the 
foil, t is the thickness of the latter, and 2 is the atomic number 
of the atoms of the foil. n is the number of gold atoms per unit 
volume of foil, while M and v are the mass and velocity of 
an alpha particle. Formula (3) which does not involve p gives 
the so-called “distribution in angle” of the scattered alpha 
particles, and that is what is observed experimentally by count- 
ing scintillations on a fluorescent screen set at  various angles of 
recoil. 

Let us now turn to the quantum interpretation of the Ruther- 
ford scattering. Let us assume the initial beam of alpha 
particles is perpendicular to the foil, and that these particles 
have a common velocity. Then v, = v, = 0, while v, equals v, 
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supposing for simplicity that the face of the foil is the x-y 
plane. What does this mean?-that we are specifying all the 
velocity components of the alpha particles, and consequently 
by the Heisenberg indeterminism principle we cannot specify 
simultaneously the position coordinates x, y, 2. Instead in a 
beam with definite velocity and direction the positions of the 
individual alpha particles within the beam must be regarded as 
entirely undetermined and it is hence meaningless to say whether 
an individual particle passes close to or far away from a scatter- 
ing center (gold nucleus) of the foil. However, we have seen 
that the quantum mechanics determines the future motion of a 
particle in a statistical way. In the present problem this means 
that one can compute from quantum principles the probability 
that an alpha particle will recoil a t  a given angle. The “distri- 
bution in angle” of the scattered beam is thus determined, even 
though the concept of closest distance of approach p to the 
scattering center loses its meaning. This is in accord with ex- 
periment, for what is observed in the scintillation-counting is 
the relative abundance of different angles of recoil 4 (cf. fig. l), 
whereas there is no way of really measuring the quantity p .  

The classical treatment of atomic problems introduces many 
concepts, such as the distance of approach p in the Rutherford 
experiment, which are not observed and hence not needed, where- 
as the quantum viewpoint usually divests the analysis of these 
superfluous quantities. This may be illustrated by the following 
rather foolish story. One time there was an Arabian chieftain 
who bequeathed to his oldest son one-half his camels, to his next 
oldest one-fourth of his camels, and to the third or youngest son 
one-sixth of them. There was great consternation in the tribe, 
because it was discovered at  his death that he left only eleven 
camels, and fractional numbers of camels such as 11/2, 11/4 
and 11/6 were of no particular value. The matter was finally 
referred to an old sage of the tribe, who said, “I have only one 
camel, but am growing old, and have little more use for camels. 
I will therefore contribute my camel to the total if this will 
facilitate the apportionment.” This simplified things tre- 
mendously, for the fractions 12/2, 12/4, 12/6 were all integers. 
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To the oldest son, for instance, the sage said, “Half of twelve 
camels is six. Take these six and be happy, for thou hast more 
than thy share.” Similarly the two other sons were apportioned 
3 and 2 camels, or more than their quota. But, behold, the 
beauty of the whole procedure is that 12/2 + 12/4 + 12/6 = 
6 + 3 + 2 = 11, so that the old sage received his camel back. 
Xow the classical treatment of atomic problems revels in super- 
fluous or non-observable variables which like the twelfth camel 
in this story are put into the analysis and then taken out again. 
The distance of approach, p ,  in the classical theory of the Ruther- 
ford scattering experiment is such an auxiliary camel, for although 
it is a variable put in the original equation (2), it is soon taken 
out of the analysis by assuming that all positions of approach 
are equally probable, and then integrating over all values of p 
from zero to infinity. This assumption is a statistical one which 
is not implied by the classical mechanics without supplementary 
hypotheses concerning probability, but is necessary to get the 
final distribution formula (3), which is what is actually verified 
in the laboratory. The quantum mechanics, on the other hand, 
has the advantage that it is fundamentally statistical in nature, 
and need not be supplemented by further assumptions concerning 
the probabilities of different values of quantities which cannot be 
observed. Instead the quantum treatment yields the final 
formula (3) without the intermediary of the microscopic, non- 
observable distance p .  

Twentieth century developments, especially relativity and 
quantum mechanics, have forced the physicist to  rescrutinize 
the real meaning of the variables entering in his equations and in 
so doing he has discovered that many customary concepts (e.g., 
absolute time, in cosmogony and instantaneous position of the 
electron in atomistics) which are as superfluous as the twelfth 
camel in the preceding story, and which have sprung up because 
one is too prone to visualize either cosmic or atomic space and 
time in terms of the same picture as for ordinary measurable dis- 
tances. I wonder whether the chemist has not also suffered 
from the same kind of prejudices and likewise introduced con- 
cepts which prove to  be hallucinations when put to close scrutiny. 
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The chemist has often thought that he has found strong evidence 
on the instantaneous positions of electrons, and first and last 
there has been considerable controversy as to whether the facts 
of organic chemistry can be explained as well by assuming that 
the electrons are moving, as the physicist would like, as by 
supposing that they are standing still. However, is it really 
necessary to suppose that the structural bonds of the organic 
chemists represent instantaneous positions of the electrons, or 
would it not do just as well to suppose that they represent average 
positions, for the mathematics indicates that it is the average 
rather than instantaneous positions of the electrons which deter- 
mine whether the nuclei are in equilibrium? Or going a step 
further from a picture, would it not perhaps do to suppose that 
these structural diagrams are simply a way of indicating diagram- 
matically some of the symmetry properties of the solutions of 
Schroedinger’s wave equation, to be discussed later? Recent 
work of London and Heitler seems to indicate that the sys- 
tematization of chemical compounds is closely related to the 
group theory of mathematicians. However, one must not neces- 
sarily infer from this that the group characteristics are the geo- 
metrical characteristics. There is, of course, much evidence for 
tetrahedral models of the carbon atom, but does this necessarily 
mean that the instantaneous positions of the electrons project 
out in four directions; could not this evidence mean that this 
symmetry is only true of average positions of the electrons, or 
even that there is some dynamical function, important for the 
mechanics of chemical combination, but without any immediate 
geometrical significance, which is symmetrical mathematically in 
the variables representing the coordinates of the four electrons? 

According to the theoretical physicist, one has no right to 
speak of the instantaneous position of the electron in its path 
within the atom, for if one knew where the electron were located 
each successive instant of time, one would know both the position 
and velocity of the electron, which we have seen is contrary to 
the Heisenberg indeterminism principle. It can, however, be 
shown that it is legitimate to introduce the concept of the 
average position of the electron; such averages are, in fact, given 
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by the diagonal elements of properly chosen Heisenberg matrices. 
I t  is these average positions, and not the instantaneous ones, 
which are revealed by experiments on the scattering of x-rays of 
the type which Professor Jauncey has so interestingly discussed 
in another paper of this symposium. Clearly the time of 
scattering of an x-ray quantum cannot be measured with any 
accuracy compared to the average time required for the electron 
to  move from one side of the atom to  the other. Chemists have 
often asked me this question, “Where are the electrons located in, 
say, the bond between two hydrogen atoms to  form a hydrogen 
molecule. Does each electron remain with its own nucleus, or 

FIG. 2. ATTRACTION 

are the two electrons shared 50-50 by both nuclei.” According 
to the quantum mechanics, the latter alternative comes the 
closer to  the true state of affairs, for in the hydrogen molecule the 
average electronic charge distribution is symmetrical with respect 
to the two nuclei, and the two electrons are continually ex- 
changing places, so that it is impossible to say which electron 
belongs with which nucleus. When the hydrogen atoms are 
too far apart to form a molecule, say at  a distance 3 x 10-7 
cm. comparable with the distances of approach between molecules 
in the kinetic theory of gases, the exchange of places is very 
infrequent, only about once in 1030 years on the average, whereas 
when the atoms are so closely knit together as to form a molecule, 
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the exchange transpires on the average about 1010 times per 
second! The statistical or average charge distribution in the 
hydrogen molecule can be calculated directly from the quantum 
postulates, and is shown in figure 2, taken from a paper by Lon- 
don. The contour lines in these figures represent the statistical 
charge density, Thus this density is large where the lines are 
close together, and small where they are far apart. The densest 
region is, of course, in general near the two nuclei. The mathe- 
matical analysis shows that there are two solutions of the 
Schroedinger wave equation corresponding to the interaction 
between two hydrogen atoms. I n  one of them, shown in figure 
3, the forces exerted on the nuclei are entirely of a repulsive 
nature. The meaning of this is that two hydrogen atoms may 
be brought into contact without necessarily forming a molecule. 

FIQ. 3. REPULSION 

In  the other solution, figure 2, there is attraction as well as re- 
pulsion, and this is what makes possible the formation of a 
stable molecule. It is seen from figure 2 that in this other solu- 
tion the negative electronic charge tends to  pile up between the 
two nuclei, and it is the attraction of this negative charge which 
tends to bring the nuclei together and offsets the purely repulsive 
forces which exist between two positive charges by themselves. 
I n  the solution shown in figure 2, the nuclei are in positions of 
equilibrium, whereas in figure 3 they will fly apart. 

The concept of a statistical or average charge density, such as 
is shown in figures 2 and 3, can perhaps be rendered more graphic 
by the following comparison. Supposing one were to photo- 
graph a swarm of fireflies at  night by means of an exceedingly 
sensitive camera. If one were to take an instantaneous photo- 
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graph or “snap-shot,” each firefly would appear as a bright point 
on the photographic plate. If we took snap-shots at frequent 
intervals we could then trace the motion of each of the flies. 
Suppose, however, that instead we were to  take a time exposure 
extending over a long period. Then the luminous points would 
be blurred out into a cloud of light upon the plate. The cloud 
would be brightest where the fireflies are most apt to congregate. 
Kow the information which it is possible to obtain about the 
motion of the electron within the atom in quantum mechanics is 
analogous to that given by the time exposure in the firefly 
illustration. The statistical charge density corresponds to  the 
density of the luminous cloud. Efforts have sometimes been 
made to interpret the electron in quantum mechanics as itself a 
sort of nebulous body spread over the entire atom, but that is no 
more correct than to  say that a firefly is a bright cloud extending 
over a large distance. In either case it is only the time average 
of position that has the cloud or fluid-like appearance. The 
essence of the Heisenberg indeterminism principle is that a 
“snap-shot” of the electronic motion is inherently impossible, for 
position cannot be instantaneously specified if the energy has a 
definite value corresponding to a stationary state of the atom. 
It appears almost paradoxical that although one can never say 
when an electron is in a given position within the atom, one can 
nevertheless talk of the fraction of the time that it is in this 
position, for clearly the places of large average charge density 
are those where the electron spends a large fraction of its time. 

11. THE WAVE VERSION 

The new quantum mechanics is often spoken of as a “wave 
mechanics.” Kow the concept of waves has certainly not 
appeared in any of the material which I have presented so far, 
and so one may be wondering where this quantum theory acquires 
an undulatory nature. In order to introduce the wave idea it 
is necessary to probe a little further into the mathematical 
formulation of the theory. In this there is involved a function 
+ (z, y, x )  which has the property that \+(z, y, x )  l 2  dzdydz measures 
the probability that the electron be in a small element of volume 
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dxdydx. Thus the square of the magnitude of this function 9 
may be regarded as proportional to the statistical charge density 
which we have already discussed a t  length. The places where 
the electron is likely to be located are those where $ is large, 
while those where $ is numerically small are seldom visited. 
The function $ is determined by solving the differential equation 

E$ b2$ b2$ Sr2m 
&2 + + + 7 (W - J7 $ = 0 (4) 

Here YM is the mass of the particle, V ( x ,  y, x )  is its potential 
energy in a field of force, and T.Y is its total energy, a constant 
quantity. This is the Schroedinger wave equation, which 
although only two years old, is one of the most celebrated equa- 
tions of mathematical physics. Its solution +(x, y, x )  which 
determines the statistical charge density, is called the “Schroed- 
inger wave function.” The term “wave” is used, because in 
many problems it is found that 9 exhibits wave-like recrudescences 
of maxima and minima. I shall not attempt to give the mathe- 
matics which Schroedinger used in getting this equation. Fol- 
lowing a cue given by suggestive work of de Broglie, he found 
that this equation could be obtained by assuming that the 
modifications which it is necessary to introduce into the equations 
of classical mechanics to get those of quantum mechanics are very 
similar to those which it is necessary to introduce in the theory 
of geometrical optics to get that of physical optics. Now 
geometrical optics does not reveal the undulatory nature of light, 
but can usefully be employed as long as the optical objects are 
large compared to the wave-length, and we do not probe into the 
interference and diffraction phenomena in which the wave effects 
appear. Thus x-rays have such short wave-lengths that most 
experiments on their propagation can be described by geo- 
metrical optics, as it is a sensitive and difficult experiment to 
show the diffraction of x-rays. Now Schroedinger held that 
ultimately mechanics, like optics, has a wave-like structure, and 
that the reason ordinary large-scale experiments can be de- 
scribed by classical mechanics is because all the objects are large 
compared to the wave-length. On the other hand, in atomic 
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phenomena the diameter of atoms is comparable with the 
quantum wave-length, and so it is necessary to use a new quantum 
mechanics which is the analog of physical rather than geo- 
metrical optics. This optical analog is exceedingly alluring, and 
it is dramatic to say that “Schroedinger has done for mechanics 
what Fresnel has for optics.” However, it must be mentioned 
that i t  is possible to derive the equation (4) from the matrix 
theory without any appeal to the optical analog or the wave 
idea. The correlation with the matrix theory is, in fact, perhaps 
the most rigorous way of deriving (4). At first it seems like a 
far cry from the wave viewpoint to the Heisenberg matrices 
which we introduced near the beginning of our discussion. 
However, i t  can be shown that all the matrix elements can be 
determined by evaluating certain integrals involving the wave 
function +, In particular, if x(nm) be the matrix elements of 
a coijrdinate of position x, it can be shown that 

where the integration extends throughout all space, while $,, 
and +m are respectively the wave functions belonging to the 
stationary states n and m. $* means the complex conjugate of +. 
One way of interpreting the wave function + is that it is simply a 
mathematical tool for calculating the matrix elements by means 
of equation ( 5 ) .  This formal mathematical interpretation of $, 
however, does not give + the physical significance which it de- 
serves. At the same time it must be mentioned that while 
Schroedinger has a t  various times expressed the hope that his wave 
mechanics would remove the “irrational” or discrete character- 
istics of our atomic dynamics and make it possible to construct 
an essentially classical model of the atom without the rather 
forced introduction of sudden quantum jumps, the consensus of 
opinion of theoretical physicists today seems to be that we cannot 
keep our classical pictures in dealing with small scale phenomena, 
and that instead the language of probabilities must be used with 
all the indeterminism involved in Heisenberg’s principle. 

Kow phenomena described by means of differential equations 
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in general exhibit a continuous rather than discrete character, 
for all of nineteenth century mathematical physics, with its con- 
tinuous media, etc., was constructed primarily on differential 
equations. Consequently one may at first wonder how quantum 
discreteness can come out of formulation of atomic dynamics by 
means of differential equations. The answer is that we must 
admit only solutions of (4) which are of what I may dub of a 
“civilized character,” and such solutions in many instances form 
a discrete succession even though in general a differential equa- 
tion admits a continuous infinitude of solutions. By a “civilized 
solution” I mean one in which the wave function t+b is continuous, 
single-valued, and finite throughout all space. Most solutions 
do not possess this property. Very often, for instance, t+b in- 
creases without limit as we go out to infinity, and such a solution 
is worthless, as it would mean that the statistical charge density 
is greatest at infinity, and that the electron is infinitely far away 
most of the time. Instead it can be shown that there will be a 
civilized solution only if certain particular values be assigned to 
the constant IT appearing in equation (4). Such values are 
called “Eigenwerte” or “characteristic values” by mathema- 
ticians, and the corresponding solutions fi are the “Eigenfunk- 
tionen” or “characteristic functions.” Schroedinger’s papers 
bear the title “Quantisierung als Eigenwertproblem.” These 
“Eigenwerte” are the values of the W’s to be used in the Bohr 
frequency condition hv = W1 - Wz,  and thus the quantized values 
of the energy are those whzch make Schroedinger’s wave equation 
have a civilized solution. Sometimes these allowed values of W 
form a continuous rather than discrete succession, and the 
quantum mechanics is thus able to explain very elegantly, 
directly from the fundamental postulates, the existence of both 
continuous and line spectra. When, for instance, the electron 
is completely liberated from a hydrogen atom, it can be shown 
that the “Eigenwerte” are continuous, and this means that 
when a free electron is captured by a hydrogen nucleus a con- 
tinuous spectrum is emitted, whereas a line spectrum is emitted 
when there is a transition of a bound electron between two 
stationary states. This is in accord with the fact that beyond 
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the “convergence frequency” of spectral series, corresponding to 
ionization of an atom, a continuous spectrum is observed ex- 
perimentally. 

How the requirement of a civilized solution + quantizes the 
energy may be illustrated by considering a particularly simplified 
dynamical system; via., a dipole of moment of inertia I con- 
strained to rotate in a plane. If cp denote the angle through 
which the dipole rotates, it can be shown that here the wave 
equation reduces to 

a=$ 8x11 - a$+% W $ = O  

This is a differential equation of the same type form as that of 
simple harmonic motion, and has the solution 

I) = A cos [(82 I W / I L ~ ) ~  (p - e] 

where A and e are constants of integration. Now to be “civil- 
ized,” the function + must be single-valued, and this means 
that + must revert to its original value when we go once around 
a circle and return to the starting point. Hence we must have 
+(p + 2 ~ )  = +(p). Kow a function of the formf(p) = A cos 
(kp - e) possesses the property that f (p  + 2 ~ )  = f(p) only if 3c 
is an integer n, as the cosine reverts to its original value when 
its argument increases by an integral multiple of 2n. Hence, as 
in our problem k = (8n21W/h2)’, we must have W = n2h2/8n21, 
where n is an integer. This is nothing other than the familiar 
so-called Deslandres formula for the energy of a rotating dipole 
in the quantum theory,-a formula which is constantly being 
used for describing rotational energy levels in molecular spectra. 
It should be mentioned that as we have derived the formula, 
the quantum number n is a whole integer, whereas to secure 
accord with experiment it is necessary for n to be a “half quantum 
number.” However, when the rotating dipole is treated as a 
three- rather than two-dimensional problem, as of course it must 
be, the formula with half quantum numbers comes correctly out 
of the new mechanics, whereas it did not in the old quantum 
theory. 



NEW QUANTUM MECHANICS 485 

The mathematics which is used in solving Schroedinger’s equa- 
tion shows a rather striking similarity to that used in solving 
many problems in what I may term “nineteenth century mathe- 
matical physics”-problems in elasticity, vibrations of ropes and 
membranes, and the like. In  fact many of the equations have 
already been solved before advent of the quantum theory by 
workers in elasticity, etc., and a very nice resum6 of such classical 
“Eigenwertprobleme” is given in Courant and Hilbert’s “Meth- 
oden der Mathematischen Physik,” a book which is constantly 
being quoted in papers on the new quantum theory. For this 
reason, the wave formulation of the new mechanics is apt to 
appeal most strongly to mathematical physicists who have been 
trained primarily along the line of classical nineteenth century 
mathematical physics, whereas the matrix formulation appeals 
more strongly to those who have been trained in the mathematics 
of the old quantum theory, especially the correspondence principle. 
In  classical vibration problems the solutions of the differential 
equations must fulfill certain so-called “boundary conditions”- 
the displacement, for instance, must vanish a t  the ends of a 
rope if it is fastened at  either end. The differential equation for 
a uniform rope is 

where 2, is a constant. 
y(x, t )  = ~ ( z )  cos ( 2 n d  - E ) ,  then 

If now we assume a periodic solution 

d’U/dx‘ = - W ~ ~ V - ’ U  

The solution of this equation is 

u = A cos ( ~ K V X / V )  + B sin ( 2 r v x / v )  

Let 1 be the length of the rope. Since the rope is fastened at  
either end, the displacement y must vanish at  z = 0 and also 
a t  z = 1. The first of these two conditions shows immediately 
that A equals zero, as the cosine does not vanish a t  x = 0. 
The vanishing of y a t  x = I shows that sin ( 2 ~ v Z / v )  = 0 and 
hence 2nvZ/v = nn, where n is an integer. Thus the possible 
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vibration frequencies of the rope are v = nv/2Z (n = 1, 2 , .  . . .), 
and form a definite discrete succession (fundamental, first har- 
monic, second harmonic, etc.). These are the “normal modes of 
vibration,” and the general motion is the superposition of all of 
them. The important thing to be noted in this classical rope 
problem is that the boundary condition that the displacement 
vanish a t  the two ends restricts the vibration frequencies to 
certain particular values. Now in much the same way in quan- 
tum mechanics the energy and hence the spectroscopic fre- 
quencies given by the Bohr frequency condition are restricted to 
certain particular values by the requirement that $ be a civilized 
function throughout all space. The latter requirement can be 
regarded as a boundary condition, for mathematicians show that 
at singular points of a differential equation, where the general 
solution ceases to be analytic, the requirement that $ be merely 
finite, without specifying its numerical value, is as much of a 
restriction as can be imposed at these points, and so can be 
regarded as a boundary condition at such points. Thus it is in a 
sense the boundary conditions which limit the number of ap- 
propriate solutions of Schroedinger’s equation and restrict the 
energy to certain particular quantized values. Hence quantiza- 
tion is formally similar to a classical boundary value problem. 
It is tempting to say that the characteristic or Schroedinger wave 
functions represent the normal modes of vibration of the atom, 
just as do the various harmonics in the rope problem, but this is 
a bit misleading, as the spectroscopic frequencies are proportional 
to the difference of two energy values, and so always involve a 
pair rather than just one stationary state or wave function. 

A particularly simple case of the Schroedinger wave equation 
is that which corresponds to an electron moving in a straight 
line, say the x-axis, in the absence of any external field of force. 
If we set the potential energy V equal to zero, and assume that 
$ is a function only of 2, the wave equation (4) reduces to 
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The solution of this is 

$ = A cos [ ( 8 t m W / h 2 ) ’ 2  - s] 

or if we set W = i rnv2 ,  we can write this as $ = A cos [2xmvz/h 
- E ] .  Xow the expression for a standing2 wave of wave-length 

X is A cos [2xx/X - E ] .  Hence the solution of the wave equation 
can be regarded as a plane wave of wave-length 

A = h/mv (6) 

That an electron beam has a wave-length of the value (6) is 
shown very nicely in the already celebrated recent experiments of 
Davisson and Germer. They show that when an electron beam 
is scattered by reflection from a single crystal of nickel, the spatial 
distribution of the scattered electrons is the same as that of the 
scattered x-rays in Laue’s or Bragg’s experiments on the scatter- 
ing or reflection of x-rays from a crystal, provided the wave- 
length of the x-rays is assumed to have the value given by (6). 
Thus the electron scattering resembles optical scattering for a 
wave-length = h/mu. In general the quantum mathematics 
of scattering of an electron beam by impact with atoms is very 
similar to a classical diffraction problem in optics. Hence there 
is a good deal of talk at  present about “waves of matter,” and it 
is even said that the electron is a wave. This, however, is not 
quite right. It is much better to say that instead we have waves 
of probability which govern the motion of the electron, for we 
have seen that the Schroedinger wave function determines a 
statistical charge density, and the directions in which the 
scattered or diffracted wave has a large amplitude are those in 
which the electron is likely to be scattered. The diffracted 
wave, like a ripple, extends out in all directions, whereas an 

2 T h e  Schroedinger waves appear here to  be of the standing rather than 
moving type, because we have not used a rather more general form of his equation 
which allows for explicit appearance of the time, and in which \L is a function 
of 2, y, z, t ,  rather than just 2, y, z .  The dependence on the time in a conserva- 
tive system proves to be of through a purely exponential “time factor,’’ e2rizWt/h 
and makes the waves moving rather than stationary. The absolute value of 
the time factor is unity, and so does not affect the value of the statistical charge 
density. 
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individual electron can, of course, recoil in only one direction. 
The wave amplitudes simply determine the angles in which it is 
likely to go. 

The Davisson-Germer experiments and the theory of quantum 
mechanics show that the motion of matter has undulatory as 
well as corpuscular aspects. Conversely the Compton effect 
shows that in some respects radiation exhibits a corpuscular 
nature rather than the exclusively undulatory nature presupposed 
in the wave theory of light. Thus matter and radiation both 
exhibit at the same time the traits of corpuscles and of waves. 
It has often appeared as if there were a flat contradiction be- 
tween the corpuscular and wave viewpoints, especially in the 
case of radiation. However, the statistical interpretation of 
motions demanded by quantum mechanics a t  last removes this 
dilemma, and to a large extent the motions of particles, either of 
matter or of radiation, can be regarded as guided by waves of 
probability. This situation is reminiscent of the old theory of 
Bohr, Kramers, and Slater, but with the difference that the laws 
of conservation of energy and momentum now hold accurately, 
a possibility later suggested by Slater himself. The work of 
Dirac, in particular, is very important in showing how the 
properties of the electromagnetic field can be derived from 
quantum mechanics and statistics. 

If the motion of matter is attended by wave-like maxima and 
minima, it seems a t  first a little surprising that this fact was not 
unearthed experimentally before the recent experiments of 
Davisson and Germer, whereas the wave nature of light has been 
known for over a century. Why should not, for instance, the 
quantum wave length h/mv appear in the classical experiments of 
Rutherford on the scattering of alpha particles? The explanation 
is that since the wave-length is inversely proportional to the 
mass, it is about 8000 times smaller in the scattering of alpha 
particles than in that of electrons. Hence in Rutherford’s ex- 
periment the wave maxima and minima lie too close together to 
have been detected, and so it is possible to describe the experiment 
by a mechanics analogous to geometrical optics, in other words 
classical mechanics. Because of the short wave length the 
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classical result has had the good fortune to agree with the 
quantum one, and so could explain Rutherford’s experimental 
results, whereas in the Davisson-Germer experiment this agree- 
ment disappears and the classical theory breaks down. 

111. WHAT THE QUANTUM MECHANICS HAS ACCOMPLISHED FOR 
THE PHYSICIST 

I shall now turn abruptly from this rather sketchy discussion 
of some of the underlying ideas of the new quantum theory to a 
recital of some of the things which it has accomplished in the way 
of applications. As this new dynamics has been developed 
primarily by physicists rather than chemists, most of the applica- 
tions are naturally to physical rather than chemical problems. 
Considering that the new quantum mechanics is only celebrating 
its third birthday, the success which it has had in “clearing up” 
problems that baffled the old quantum theory is little short of 
miraculous. One reason for this triumph is, of course, the large 
number of physicists that have been engaged in working over 
well-known material with the aid of the new theory. Ten of the 
items which the new quantum mechanics has to its credit are the 
following: 

Al- 
though the old quantum theory had many inadequacies, it did 
nevertheless furnish a clue to the interpretation of an enormous 
mass of material, especially spectroscopic. The old theory was 
noted, perhaps more than for any one thing, for quantitative 
explanation of the spectra of hydrogen and ionized helium. 
Exactly the same numerical formulas, notably the Balmer formula 
for spectral series, Sommerfeld’s fine-structure formula and the 
Epstein-Schwarzschild expression for the Stark effect, are ob- 
tained with the new theory as with the old. In non-hydrogenic 
atoms the presence of a large number of electrons usually makes 
it impossible to calculate quantitatively the position of spectral 
lines. But we all know that in the old quantum theory the 
concepts of stationary states, and of the Bohr frequency condi- 
tion with its attendant Ritz combination principle, were ex- 
ceedingly fruitful in explaining qualitatively the facts of non- 

‘ 

I .  Everything that the old quantum theory did correctly. 
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hydrogenic spectra, and in unravelling a maze of spectroscopic 
data which it would have been hopeless to correlate otherwise. 
All this can be done equally well with the new mechanics. 
Although we cannot attach as much reality and vividness to 
electron orbits in stationary states as previously, nevertheless 
the new theory has the vital feature of a discrete succession of 
energy levels, with spectroscopic frequencies proportional to their 
differences. Thus we can still keep our beloved energy level 
diagrams, selection principles, and the like. In  particular, the 
fundamental relation Ve = hv correlating critical potentials V 
with spectroscopic frequencies Y still remains valid. 

2. Fine details of the hydrogen and ionized helium spectrum not 
ezplained previously. Although the old quantum theory gave in 
the main a very successful explanation of the hydrogen spectrum, 
it became increasingly obvious that in certain minor respects the 
old Bohr theory was in pretty flat contradiction with experiment. 
Among these may be mentioned the observation of a so-called 
“Paschen-Back” effect, or merging of the fine-structure in an 
extremely intense magnetic field, and the detection of certain fine- 
structure components which violated the selection principle. 
Also in some cases, especially in the Stark effect, the old theory 
gave more rather than fewer lines than were necessary to explain 
the experimental results, and to get rid of superfluous components 
it was necessary to rule out rather arbitrarily certain states on 
the ground that in them the electron would collide with the 
nucleus. All these difficulties disappear with the advent of the 
new quantum mechanics. 

3. The spectrum of neutral helium. Although the old quantum 
theory dealt with ionized helium pretty successfully except for 
the items (2), the neutral helium atom, on the other hand, was a 
hopeless stumbling block to  it, Dozens of models were proposed 
for the arrangement of the electron orbits in neutral helium, 
but none agreed with the observed critical potentials and optical 
frequencies, All this is now changed, for Heisenberg has calcu- 
lated the term values of the excited states of helium with the new 
mechanics, while Rater, Kellner, and Sugiura have all inde- 
pendently computed the energy of the normal state. The agree- 
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ment which they find with experiment is gratifying when it is 
considered that the calculations can only be made approximately 
because in neutral helium we have all the mathematical difficulties 
of the celebrated three-body problem. 
4. A theory of intensities a s  well as frequencies. The old 

quantum theory was one-sided. It gave a perfectly definite 
scheme for calculating the frequencies of spectral lines, but it 
furnished no means of determining quantitatively their intensities, 
although actually the two things must be connected. In  the old 
theory we could guage qualitatively the intensity of spectral 
lines by appealing to the correspondence principle, but this 
borrowing of the results of classical theory lacked adequate 
logic, and never gave unambiguous numerical results except in 
the particular case that it showed certain lines should be of zero 
intensity, or in other words that certain transitions should not 
occur. These exclusions of certain transitions gave selection 
principles of great usefulness, and the crude theory was adequate 
to predict zero intensities even though in general it might be in 
error by several hundred per cent, because fortunately any per- 
centage of zero is still zero. The new mechanics not only gives 
the selection principles without artificial appeal to the corre- 
spondence principle, but also permits a “refined” or accurate 
calculation of the brightness of lines whose intensities are dif- 
ferent from zero. I n  the mathematics of the matrix theory the 
intensities and frequencies are beautifully woven together. We 
have, in fact, mentioned near the beginning of the paper how the 
Heisenberg matrices contain both amplitude and frequency 
factors. 

It is found experimentally 
that ip a magnetic field H the “Zeeman” displacements of 
spectral lines are usually equal to fractional multiples of the 
normal Lorentz unit H e / 4 ~ m c ,  rather than to this unit itself. 
This is the phenomenon of the “anomalous Zeeman effect.” Any 
ordinary theory would give only the normal effect, and the old 
quantum theory could explain the anomalous effect only in 
semiempirical fashion and with the aid of many contortions. 
In  the new theory, of course, the anomalous effect comes out 

5. T h e  anomalous Zeeman eflect. 



492 J. H. VAN VLECK 

naturally. If I had been giving this paper just two or three 
months ago I would have said that the new quantum mechanics 
could explain the anomalous Zeeman effect only with the aid of 
the sp in  electron. By the term spin electron is meant the idea 
that the electron behaves like a spinning top, and so has an 
internal or rotational degree of freedom besides its three trans- 
lational degrees of freedom. Such a fourth degree of freedom 
and hence fourth quantum number appears definitely to be 
demanded by the Smith-Stoner-Pauli classification of the periodic 
table. The suggestion that the electron have a magnetic 
moment due to internal motion is by no means a new one, and 
has been made by Parson, Compton, Kennard, and others but its 
incorporation in the spectroscopic work of quantum theory is due 
primarily to Uhlenbeck and Goudsmit. For a long time it 
appeared as though the internal spin was a hypothesis entirely 
supplementary to the quantum mechanics. However, within the 
past month or two, brilliant work by Dirac has shown that the 
requirement that the Schroedinger wave equation be orthogonal 
and compatible with relativity (which apparently demands 
several simultaneous wave equations) is alone sufficient to yield 
the dynamical terms ordinarily attributed to electronic spins. 
Thus in a certain sense the spin electron is the child of the new 
quantum mechanics rather than a supplementary assumption, 
but it is a bit doubtful if it would ever have been discovered if 
approached originally from the abstract mathematical rather 
than empirical spectroscopic viewpoint. The inclusion of the 
spinning motion of the electron is very vital in the theory of any 
magnetic effect, such as the Zeeman effect, or magnetic suscepti- 
bilities (item 7 below), as the internal motion gives the electron 
a magnetic moment even when its center of gravity is a t  rest. 
The spin is even necessary in interpreting the hydrogen fine- 
structure with the new mechanics. I t  also underlies the so- 
called “gyromagnetic anomaly;’’ viz., that the experiments of 
Barnett, de Haas and others on rotation by magnetization, or 
the converse, reveal a ratio of magnetic moment to angular 
momentum of twice the classical value. This is intimately con- 
nected with the fact that the ratio of the internal magnetic 
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moment to internal angular momentum of the electron is - e l m ,  
or twice the value for ordinary orbital motions. This factor 
two is what makes all the anomalies in the Zeeman effect, gyro- 
magnetic effect, etc. 

Both in x-rays and in visible spectral regions there are certain 
doublet lines whose origin was previously shrouded in mystery. 
The doublet intervals obeyed numerically Sommerfeld’s relativity 
formula, but nevertheless the doubling could not be due to 
relativity corrections. They are now interpreted as “spin 
doublets” due to two different orientations of the spin axis 
relative to the rest of the atom. 

To secure agree- 
ment with experiment in the old quantum theory it was necessary 
to give certain quantum numbers half integral values 1/2, 
3/2, .  . . . rather than the integral values 0, 1, 2. Such R pro- 
cedure was most disconcerting, as the rigorous old theory de- 
manded only whole integers. The new mechanics, however, very 
obligingly gives unambiguously half quantum numbers where 
they are needed and whole quanta where the latter are required. 

7 .  Improvement in the theory of dielectrzc constants and magnetic 
susceptibilities. The preceding items have been primarily 
spectroscopic in nature, and often deal with excited rather than 
normal states. The chemist is apt to conceive of the physicist as 
some one who is so entranced in spectral lines that he closes his 
eyes to other phenomena. However, it must be mentioned that 
a theory of spectral lines is also one of critical potentials. Also 
in the theory of dielectric constants and magnetic susceptibilities 
we have another quite different field in which we can test the 
quantum mechanics, and which involves only the normal, in 
distinction from excited, states of molecules. In this field the 
new quantum theory is far more successful than the old one. 
One reason for this is that the new mechanics gives results in 
much closer accord with the classical theory than did the old 
quantum theory. In the latter there was a conflict with classical 
theory even a t  high temperatures, and Pauling even showed 
that an innocent little magnetic field of 100 Gauss or so would 
have a prodigious effect on the dielectric constant, quite contrary 

I 

6. Halj  quantum numbers n o  longer a bugaboo. 
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Classical, 1912 
Whole quanta, 1921 
Half quanta, 1925 
New mechanics, 1926 
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1.034 X 10-18 e.8.u. 
0.492 X 10-’8 
0.322 X 10-18 
1.034 X 10-la 

to experiment. In  the new mechanics or in the pure classical 
theory this prodigious effect disappears. The new theory 
restores the factor 1/3 very generally in the Langevin-Debye 
formula. Because of the changes in the constant in this formula 
with the gradual development of quantum theory, there have 
been corresponding alterations in the electrical moments deduced 
from experimental data on dielectric constants. The electrical 
moment of the HCI molecule, for instance, has had quite a 
history, as indicated in table 2. The first column gives the value 
of the constant C in the Langevin-Debye formula: 

(E - l ) / h  = NLY + (NCp2/3kT) 

Thus fortunately the electrical moment of the HCI molecule 
reverts to its classical 1912 value. The quantum theory of 

TABLE 2 

CORRESPONDINQ VALUB OB 
ELECTRICAL MOMEST p OF YALUE OF CONSTANT c FORM AND YEAB OF THEORY 

HCl MOLECULE 

4 
1.54 
4.57 + 

susceptibilities, however, does more than merely agree with 
classical theory regarding the factor 1/3. Since magnetic 
moments are quantized, it permits the calculation of the absolute 
value of the magnetic susceptibilities whenever the spectroscopic 
term values are known. The only common paramagnetic gases 
are NO and 02, and the numerical magnitudes of their calculated 
susceptibilities agree with experiment to within 1.5 per cent. 

All the preceding results can usually be obtained with the 
ordinary matrix or wave formulations of the quantum mechanics. 
The remaining three items, however, mostly require the use of 
the more general “transformation theory” of Dirac and Jordan, 
or its equivalent. 

8. Dispersion and the emission and absorption of radiation. 
Dispersion was particularly bothersome in the old quantum 
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theory, which could never explain why the resonance frequencies 
in dispersion were experimentally the spectroscopic frequencies 
given by the Bohr frequency condition rather than the altogether 
different frequencies of motion in the orbits constituting the 
stationary states. The new mechanics, however, yields the 
Kramers dispersion formula, previously derived semi-empirically 
from the correspondence principle. In the new theory the 
dielectric constant equals the extrapolation of the square of the 
index of refraction to infinite wave lengths, as it should, whereas 
the validity of this relation was doubtful if the Kramers formula 
was forced into the old theory. As the result of masterful treat- 
ment by Dirac, a mechanism has a t  last to a certain extent been 
found for the previously so mysterious quantum jumps between 
stationary states. Dirac finds it is possible to treat radiation as a 
dynamical system obeying the Einstein-Bose statistics, and 
starting from such a postulate he is able to derive Einstein’s 
values for the “A” and “B” transition probability coefficients. 
Dirac’s work brings out nicely the parallelism between matter 
and radiation, and their corpuscular and wave aspects, which are 
complementary rather than contradictory. 

The old quantum theory 
furnished no real mechanics governing electron impact phe- 
nomena although a rather blind conservation of energy argument 
furnished the fundamental relation Ve = hv between critical 
potentials and frequencies. The theory of collision phenomena 
has been developed with the new mechanics by Born and others. 
As already mentioned, there is a good deal of similarity to a 
diffraction problem in optics, and the square of the amplitude of 
the diffracted wave measures the probability that an electron 
will be scattered a t  a given angle. The requirement that the 
solutions be “civilized” yields nicely the proper discrete values 
for the critical potentials. In the case of collisions with hydrogen 
atoms, Born is able to compute numerically the excitation and 
ionization efficiencies, the angular distribution of scattered 
electrons, etc. The wave-like maxima and minima in the latter 
are confirmed at least qualitatively in the experiments of Dymond 
on the scattering of electrons in helium. A closely allied question 

9. Collisions of electrons with atoms. 
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is the polarization of radiation excited by electron impact, and 
the theory of this has been developed by Oppenheimer. A most 
peculiar phenomenon is the so-called “Ramsauer effect,” whereby 
slow-speed electrons are able to  go right through inert gas atoms 
with very little scattering. The theory of this has a t  last made 
its debut. We have already mentioned the theory of the 
Davisson-Germer effect and the scattering of alpha particles, 
both of which properly come under the present item (9). 

10. N e w  light on statistical mechanics. Because of the fact 
that the new mechanics is to such a large extent fundamentally 
statistical in nature, the supplementary assumptions which it is 
necessary to make to get the fundamental distribution formulas 
of statistical mechanics are much less violent than in the classical 
theory. The quantum statistics, of course, merge into those of 
classical theory at  high temperatures, but differ from the latter 
a t  low temperatures. The proper quantum statistics to be used 
in treating radiation are those of the so-called Einstein-Bose 
type, as this furnishes the Einstein radiation law. On the other 
hand in dealing with matter it appears necessary to use the 
Fermi statistics, founded on the Pauli exclusion principle to be 
discussed later. A particularly significant application is that to 
electron conduction in solids. If there are about as many con- 
duction electrons as atoms, as seem to be demanded by the 
optical properties of metals, the classical theory of equipartition 
would demand that the conduction electrons make an appre- 
ciable contribution to the specific heat. The latter would, in 
fact, be 9 rather than 6 calories per gram atom, contrary to Dulong 
and Petit’s law. In the new quantum statistics, on the other 
hand, we can suppose that there are as many conduction electrons 
as atoms without contradicting specific heat data. The reason 
is that the conduction electrons in solids are relatively close 
together as compared to molecules in gases, and furthermore the 
electronic mass is very small in comparison to that of molecules. 
This means that even a t  ordinary temperatures the “electron 
gas” in the solid shows a characteristic quantum “gas de- 
generation,” whereby the specific heat sinks to zero. In a real 
molecular gas, on the other hand, the degeneration effects would 



NEW QUANTUM MECHAKICS 497 

be important only very near the absolute zero, and even then 
only a t  extremely high pressures. Thus the conduction electrons 
test an aspect of the statistics which it would be difficult to  
verify otherwise. Pauli shows that the degeneration effects make 
the magnetism of solid alkalis very small, in agreement with 
experiment, even though the internal spin makes each electron 
a tiny magnet and so would give strong paramagnetism with 
classical theory. Extending Pauli’s ideas, Sommerfeld and 
others have shown that the formulas of thermionic emission, the 
Wiedemann-Franz ratio, Hall effect, and other properties of 
conduction electrons are obtainable with the new Fermi statistics. 
The new vista into electron conduction is, in fact, one of the most 
pleasing recent developments in quantum mechanics. 

IV. WHAT THE QUANTUM MECHAKICS PROMISES TO DO FOR THE 

CHEMIST 

Before passing to the chemical applications we must first, de- 
scribe one aspect of the quantum mechanics which seems to be 
of particular importance for chemistry. This is the so-called 
Paul i  exclusion principle, which states that no two electrons can 
have simultaneously all f our  quantum numbers the same. The 
reason that there are four quantum numbers per electron is that 
the electron seems to be a spinning body having a fourth or 
internal degree of freedom in addition to the three translational 
degrees of freedom. Just what we take as the four quantum 
numbers depends somewhat on the type of quantization, which 
itself varies with the relative magnitude of the various atomic 
forces. The simplest thing is to suppose that the magnetic field 
is so powerful that i t  completely overpowers the inter-electronic 
forces, so that the orbital and spin angular momentum vectors of 
each electron are quantized separately relative to the axis of the 
field. Actually no ordinary magnetic field is powerful enough 
to do this, but our supposition nevertheless involves no loss of 
generality because the exclusion principle is a purely formal rule 
for eliminating certain combinations of quantum numbers, and 
in any field strength the states will be excluded which pass 
gradually (“adiabatically”) over into states not allowed in ex- 
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tremely strong fields. In a strong field the four quantum num- 
bers of each electron are the principal quantum number, n, the 
azimuthal quantum number, k ,  and the two “magnetic” or 
“equatorial” quantum numbers, mk and m,, quantizing the 
components of orbital and spin angular momentum in the 
direction of the applied field. The range of values for the 
quantum numbers k ,  mk, m, are 

k = 0, . ” ‘ . . )  n - 1  
m k = - k ,  - ( k - l ) ,  ......, 0, . . . . . . ,  k - 1 , k  

m, = - a, + 4. 
(7)  

It is to be noted that the azimuthal quantum number is usually 
numbered one unit lower in the new than in the old quantum 
theory, as formerly we had k = 1, 2, .  . . ., n. We now have 
IC = 0, 1, 2 ,  3 for optical s, p ,  d ,  f terms respectively instead of 
1, 2, 3, 4. (This is purely a formal differenceinnotation and to 
emphasize the distinction the notation 7 instead of k is some- 
times used in the new theory). The range of values for mk 
is - k to +k because mk being a component of k ,  cannot exceed k 
in absolute magnitude. The quantum number m, has onlv the 
two values -3 and +$, because according to the hypothesis of 
Uhlenbeck and Goudsmit, the internal spin of the electron is 
associated with a half quantum of angular momentum. Now for 
given k ,  equation ( 7 )  shows that mk has 2k + 1 possible values, 
while m, has just two possibilities. There are thus 2(2k + 1) 
different pairs of values for mk and m,. Hence one way of 
stating the exclusion principle is that in any  atom there are at 
most R(Rk -+ 1 )  electrons having the same values of n and k .  

Pauli advanced his exclusion principle on more or less empirical 
grounds before advent of the new mechanics, but the latter has 
placed this principle on a better and more general basis, as it 
amounts to  using only solutions of Schroedinger’s wave equation 
which are of a certain peculiar type of symmetry (viz., the so- 
called antisymmetric solutions which cbange sign when electrons 
are interchanged). We will not try to enter into the details of 
the mathematical description of what this type of symmetry is. 
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n ..................... 
k .................... 

m, . . . . . . . . . . . . . . . . . . .  
m.k . . . . . . . . . . . . . . . . . . .  

The only point that need be emphasized is that because of Pauli’s 
principle we must not only limit ourselves to “civilized” solutions 
of Schroedinger’s equation, but also in particular only those which 
are of the ‘(antisymmetric variety.” 

Pauli’s principle should appeal particularly to chemists, be- 
cause it yields immediately the well-known interpretation of the 
Mendeleeff periodic table proposed by Smith and Stoner. These 
two men showed independently that by making certain apparently 
rather arbitrary assumptions about the assignment of quantum 
numbers to electrons of the various groups, one could account 
very nicely for the structure of the periodic table of the elements 
-why, for instance, there are 2 elements in the first period, 8 
in each of the two next, 18 in the fourth and fifth, but 32 in the 
sixth. Also within the period many of the chemical properties 

TABLE 3 

1 K - ~ H E ~  (n = 1) I L-SHELL (n = 2) 

1 1 2 2 2 2 2 2 2 2  
0 0 0 0 1 1 1 1 1 1  
0 0 0 0 - 1 - 1  0 0 1 1  

- 4  ++ -3 +? -3 $3 -3 $3 - 4  +3 

of the elements, the existence of sub-periods, rare earths, etc., 
come out nicely. Now Pauli’s principle gives automatically 
the Smith-Stoner assignment of quantum numbers. We will 
illustrate this, for simplicity, only for the first two periods, Le., 
for the K and L shells. In the K shell the principal quantum 
number n has the value 1, and hence by (7) the azimuthal 
number k can only have the value zero. On the other hand in 
the L shell the principal quantum number n equals 2, and by (7) 
there are the two possibilities k = 0 and k = 1. The various 
possibilities for the four electronic quantum numbers are then 
by (7) those indicated in table 3. The essence of Pauli’s 
principle is that no two columns can have four identical entries. 
As each column corresponds to a different electron, there are 
indeed two electrons in the K-shell and eight in the L. 

The quantum mechanics should go further than furnish a 
model of the periodic table. It should tell us what atoms can 
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combine and what do not. There is no essential difference 
between the mathematical procedure in the quantum mechanics 
of calculating a heat of dissociation and of calculating a spectro- 
scopic frequency or critical potential. This fact does not seem 
quite as universally recognized as it should be. In either case 
what is required is a knowledge of the magnitude of the various 
allowed energy levels. The only distinction is that chemical 
problems involve more than one nucleus, and this considerably 
increases the labor of calculation. For the latter reason it may 
well be a long time before the quantum mechanics achieves as 
many quantitative results for the chemist as for the physicist, 
but from a standpoint of pure logic there seems to be no apparent 
reason why the quantum postulates as they now stand should 
not be adequate to explain the phenomena of chemical reactions. 
A dynamics which works for the physicist must also work 
for the chemist and vice versa. It seems scarcely conceivable 
that a theory which has been so successful in explaining atomic 
energy levels should fail in the closely related realm of molecular 
energies. The  mathematical problem of a chemical reaction seems 
to be this: to investigate whether there are stable solutions of the 
Schroedinger wave equation corresponding to the interaction between 
two (or more) atoms, using only the wave functzons which have 
the type of symmetry compatible with Pauli’s exclusion principle. 

A beginning in this program of investigating chemical reactions 
by means of quantum mechanics and Pauli’s exclusion principle 
has been made within the past few months in important papers 
by London and by Heitler. Although this work is very new, 
it is already yielding one of the best and most promising theories 
of valency. The general trend of the work seems to be that 
because of the critical examination of symmetry properties re- 
quired by the Pauli exclusion principle, the theory of the classifica- 
tion of valences in complicated organic compounds, etc., must be 
closely related to the group theory of the mathematicians. Some 
of the specific results which have already been obtained in the 
papers of London and Heitler are the following: 

1. Two hydrogen atoms can combine to form a hydrogen molecule. 
2. TWO helium atoms cannot combine, unless excited, without 
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violating Pauli’s exclusion principle. This, of course, agrees with the 
monatomic property of helium gas. Spectroscopists, to be sure, have 
observed the spectra due to helium molecules, but such molecules are 
transient, unstable creatures in which the electrons are in excited rather 
than normal states. 

3. Inert gases cannot exhibit valences. 
4. Halides may have the valences 1, 3, 5 ,  7 except that the valence 

of fluorine may only have the value 1. 
5.  S, Se, T may have valences 0, 2, 4, 6 but oxygen only the values 

0, 2. 
6 .  P, As, Sb, Bi may have 1, 3, 5 but N only 1, 3. 
7 .  C, Si, Ge, etc., may have 0, 2, 4. 

Chemists will immediately recognize that these predicted 
possible valences are in the main in excellent accord with experi- 
ment. Oxygen, for instance, is found to be pronouncedly only 
divalent, whereas S, Se, etc., have sometimes higher valences. 
Thus only OClz is observed, whereas on the other hand one finds 
compounds such as SC14, SFs, SeC14, SeFe, etc. Similarly it is 
well known that C1 and I can exhibit higher valences than the 
unit valence characteristic of F. Some of the valences listed 
above are not realized experimentally. A notable example is 
that the valence of nitrogen is never unity, even though according 
to item 6 the values 1 and 3 are both possible. However, this 
state of affairs is not a serious difficulty, for I have attempted to 
list the valences which are possible from the standpoint of ele- 
mentary symmetry-- considerations3 rather than those which 

3 Note added in proof .  It is perhaps a bit misleading to state that  all of Lon- 
don’s results follow unambiguously from symmetry considerations. In  order 
for his definition of valence to be a useful one, it is necessary to suppose a bit 
empirically that  the stable state of a molecule is in most cases one in which the 
electron spins have zero resultant. The fact that  most molecules are diamagnetic 
shows that this supposition is usually true, but the paramagnetism of the oxygen 
molecule despite an even number of electrons shows that  i t  does not have universal 
validity. Caiculations with normal hydrogen and helium support London’s 
supposition, but the writer is informed by Prof. Kemble that  computations show 
that  in excited states of the hydrogen molecule there is sometimes greater stabil- 
i ty  with the electron spins uncompensated than with them mutually compen- 
sated. Hence London’s assumption concerning the predominance of closed spin 
configurations might well have more justification of a purely theoretical rather 
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actually exist. I have been very careful to say in every case 
“may have” according to the theory, rather than “should have.” 
The different valences correspond to different apportionments of 
various values of the quantum numbers k ,  mk among the elec- 
trons, and the relative prevalence of the different valences depends 
upon the relative prevalence of the states corresponding to 
different values of the quantum numbers k ,  mk but given n. 
Some of these states may have such high energies that they are 
occupied only very infrequently, and so the corresponding 
valences may not exist. In other words the preceding inventory 
indicates only how valency is restricted by the Pauli exclusion 
principle, and energy considerations may give further limitations. 
Definite predictions in this respect should be possible if there 
were available complete spectroscopic evidence on the atomic 
stationary states corresponding to all assignments of quantum 
numbers. London’s work, in fact, seems to show that there is a 
very intimate connection between valences and the spectro- 
scopists’ classification of spectral terms. Thus he finds that 
valences 1, 3, 5 in the nitrogen group are associated respectively 
with doublet, quartet, and sextet structures in the spectroscopists’ 
“multiplets.” The spectroscopists find experimentally that the 
normal state of the nitrogen atom is a quartet rather than doublet 
spectral term, and this is in agreement with the fact that the 
normal valence of N is 3. Complete absence of univalence in 
nitrogen must mean that the lowest doublet terms have con- 
siderably greater energy than the lowest quartet terms. Simi- 
larly the spectroscopists’ observation that the normal spectral 
term of the 0 atom is of the triplet rather than singlet type means 
that normally oxygen is divalent rather than non-valent. This, 
of course, accords with the fact oxygen gas is diatomic rather 
than monatomic. Apparently the spectroscopists classifications 
into multiplets is going to be useful in correlating the relative 
prevalence of different possible valences. 

than semkmpirical nature. It may be noted that  Pauling shows (Proc. Nat. 
Acad. Sei. 14, 359, 1928) that in simple cases London’s theory gives results similar 
to  those of Lewis’s shared electron pair. 
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I t  must also be mentioned that sometimes valences are ob- 
served which are not allowed according to the above scheme. 
Thus nitrogen is sometimes observed to be quintavalent. Such 
exceptions London explains on the ground that his theory is only 
one of what he calls “homopolar valences,” in which the molecule 
dissociates into neutral atoms rather than into ions. The 
valence 5 for nitrogen he claims belongs to the “polar” catagory 
in which the molecule breaks up into ions, in which case the sym- 
metry arguments may lead to quite different results. It must be 
mentioned that London’s use of the terms “homopolar” and 
“polar” may prove a bit confusing, as it has nothing whatsoever 
to do with the presence of an electric moment, but rather refers 
to the mode of dissociation. As mentioned in Dr. Darrow’s 
paper in this symposium, recent experimental work shows that 
molecules are much more apt than has been previously supposed 
to dissociate into neutral atoms rather than ions. Thus optical 
dissociation of HBr furnishes H and Br rather than H+ and BF.  
Hence London would presumably classify the formation of HBr 
as a homopolar bond despite the electric polarity of the HBr 
molecule. He is forced to admit that there is no hard and fast 
distinction between the two terms homopolar and polar as he 
uses them, since some molecules may dissociate in either of two 
ways. According to London a valence is of his polar type only 
if the electron affinity of one atom is greater than the ionization 
potential of the other. 

A point which is particularly to be emphasized is that according 
to London the reason certain valences or bonds do not occur 
(e.g., compounds involving inert gases) is not that such bonds 
lead to molecules which are energetically unstable, but that the 
bonds, when stable, correspond to solutions of the Schroedinger 
wave equation which are of a type of symmetry contrary to 
Pauli’s exclusion principle. Thus considerations of symmetry 
(group theory) are often quite as vital as those of energetics. 
The failure of a chemist to find a compound does not necessarily 
mean that the corresponding molecule is energetically unstable, 
but may mean rather that it would demand electronic groupings 
contrary to the exclusion principle. As an example consider the 
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question of whether two normal helium atoms can combine to 
form a helium molecule. Here the mathematical analysis of 
Heitler and London shows that there are energetically stable 
solutions of the wave equation corresponding to the interaction 
of two helium atoms, as well as also energetically unstable ones. 
In the stable solutions the statistical charge distribution is roughly 
of the general type shown in figure 2, whereas in the unstable 
ones it is more of the type illustrated in figure 3. Hence helium 
gas might be diatomic, were it not for the fact that the stable 
solutions are all contrary to Pauli’s exclusion principle, leaving 
only some of the unstable solutions corresponding to repulsion of 
the atoms rather than chemical affinity. On the other hand in the 
case of the hydrogen molecule the stable solution satisfies Pauli’s 
principle. 

In the application of the exclusion principle to chemical reac- 
tions, the existence of an electron spin is of vital consequence. 
Without the internal spin, for instance, it would be impossible to 
construct a stable molecule of the hydrogen molecule without 
violating Pauli’s principle. Incidently, in the hydrogen mole- 
cule, the spin axes of the two electrons set themselves antiparallel, 
so that their magnetic moments compensate each other and make 
hydrogen gas diamagnetic. Thus indirectly the internal spin of 
the electron and its attendant magnetic moment is of considerable 
importance in chemistry. However, one must be very careful 
not to form the impression that the magnetic forces due to the 
internal spins are of any magnitude appreciable enough to affect 
the energy of a chemical bond in the slightest degree. Instead 
the magnetic forces are entirely negligible in comparison to the 
electrostatic ones. In the hydrogen molecule, for instance, the 
magnetic forces are less than 0.1 per cent of the electrostatic. 
Hence chemical bonds are fundamentally electrical in nature. 
In this respect the modern Uhlenbeck-Goudsmit spin electron is 
to be contrasted with the old Parson magneton which pictured 
the electrons as magnets exerting strong magnetic forces on each 
other. Instead the internal spin and magnetic moment are im- 
portant only indirectly in altering the symmetry ’so that solutions 
are compatible with Pauli’s principle which would not be other- 
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wise. In other words with an extra degree of freedom and 
quantum number there are more different ways in which electrons 
can be arranged without making all quantum numbers the same. 
It must be confessed that Pauli’s dogmatic exclusion principle 
implying a restriction to  antisymmetric wave functions appears 
decidedly artificial, but is nevertheless the best that can be done 
in reducing observed spectroscopic and chemical phenomena to a 
minimum number of postulates, and any ultimate comprehensive 
theory of matter must presumably include the exclusion principle 
as one of its consequences. 

The London and Heitler theory of valences is primarily based 
on symmetry properties of the wave functions and does not aim 
to say anything about the stability or heats of reaction of the 
various compounds, as this would require a detailed dynamical 
investigation. There is, however, one chemical reaction in 
which it has already proved possible to  carry through a real 
mathematical analysis of the dynamical problem on the basis of 
quantum mechanics. This reaction is the combination of two 
hydrogen atoms to form a hydrogen molecule. Here only four 
bodies are involved (two electrons and two protons) so that the 
equations may really be integrated by rather laborious methods 
of successive approximations. This has been done indepedently 
by Condon, Sugiura, and Wang. The calculated value of the 
heat of dissociation is 87,000 calories per molecule, whereas the 
experimental value is 100,100 (spectroscopic) or 97,000 (calori- 
metric), At first sight this may appear like mediocre agreement, 
but it must be remembered that the mathematics can be handled 
only by successive approximations, and a heat of dissociation 
is a differential effect, vix., the difference in energy between a 
hydrogen molecule and that of two free hydrogen atoms. These 
two quantities are nearly equal, so that it is necessary to calculate 
the energy of the hydrogen molecule very accurately to  get the 
heat of dissociation a t  all. It is perhaps more expressive of 
what the calculations have achieved to state the results in terms 
of the number of volts of energy required to completely disrupt 
the hydrogen molecule into four separate bodies; namely, two 
free electrons and two free protons. The calculated value is 30.9 
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volts and the experimental one is 31.5. The difference of less 
than a volt is within the error of the calculation. We have here 
an example of the computation of a chemical affinity by un- 
ambiguous methods directly from the quantum postulates, 
without any undetermined constants or other arbitrary features. 
Is it too optimistic to  hazard the opinion that this is perhaps the 
beginnings of a science of “mathematical chemistry” in which 
chemical heats of reaction are calculated by quantum mechanics 
just as are the spectroscopic frequencies of the physicist? Of 
course the mathematics will be laborious and involved, and the 
results always successive approximations. The theoretical com- 
puter of molecular energy levels must have a technique com- 
parable with that of a mathematical astronomer. The quantum 
mechanics is still very young, and surely it will ultimately be 
applied further than the hydrogen molecule. 
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