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I . INTRODUCTION 

The problem of the removal of aerosol particles from gas streams has become 
of increasing importance from the standpoint of public health and the recovery 
of valuable products. For the removal of the large-size particles several devices, 
such as scrubbers and cyclones, can be used. When particles of the size of 1 
micron or smaller are to be removed, fibrous filters are often used. The efficiency 
of collection and the pressure drop are the most important practical considera
tions in the design of these fibrous filters. 

A filter that acts only as a sieve would give excessively high pressure drop and 
would have extremely high clogging rates. Practical fibrous filters have high 
porosity and the interfiber distances are large when compared with the size of 
the particles. Suspended particles may be removed from the gas stream by 

1 This paper reports work done under Contract DA18-108-CML-4789 with the Chemical 
Corps, U. S. Army, Washington 25, D. C. 

1 Present address: Yerkes Research Laboratory, E. I. duPont de Nemours and Co., Inc., 
Buffalo 7, New York. 
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direct interception, by Brownian diffusion, or by the forces of inertia, gravity, 
or electrical attraction. The present review will consider the case when neither 
the particles nor the filters are electrically charged. 

As all filters are composed of individual fibers, an understanding of the mecha
nisms by which the particles are collected on isolated cylinders and the flow 
pattern around them is of fundamental importance. Discussions will then be 
given to show the difference between the behavior of an isolated fiber and a fiber 
in the filter and the relationship between the collection efficiency of a filter and 
that of a single fiber. As a good filter should give low resistance to flow, the 
theoretical and experimental work on the pressure drop across a filter is also 
included in this review. 

II . NOTATION 

A = face area of a filter, 
Bf = fictitious film thickness, 
C = Cunningham's correction for slip flow, 

CD) CDe; CDa; CDai = drag coefficients; CD, for an isolated cylinder; CDe, effec
tive coefficient for a single fiber in the filter; CDa, for a 
fiber with average fiber size in a filter with fiber volume 
fraction a; CDai, same as CDa except for fiber with size dit 

r = Va 

L 2[2.00 - In 2VBJ ' 
CLa = drag force per unit length of fiber transverse to the flow 

within a filter divided by the quantity 871-ji, 

D = diffusion parameter = -A^-, or - ^ , reciprocal of the 
V0 d/ vs df 

Peclet number, 
DBM = diffusion coefficient, 

db = interfiber distance, or the distance between a fiber and 
a boundary, 

df = diameter of fiber, or cylinder, 
d/ = effective fiber diameter, as used by Davies, 

(df)*v. = arithmetic average fiber diameter, 
(df), = surface average fiber diameter, 

di = individual fiber diameter, 
dp = diameter of aerosol particle, 
F = drag force on unit length of fiber, or cylinder, 
G = settling parameter = ug/vo, 
g = local acceleration of gravity, 

(g. mass) (cm.) 
ge = conversion factor = 980 7—z r: ;r, 
s (g. force) (sec.2) 
k = Boltzmann constant, 

ho,h,- • • ;kn;k'; k" = various constants as defined in the text, 
L = thickness of filter, 
h = length of fiber with diameter dt in unit volume of filter, 
m = mass of aerosol particle, 
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N, N0 = number concentration of aerosol particles; No, concentra
tion upstream of the filter, 

iVRe = - ^ - or -I—, Reynolds number based on upstream ve-

locity for an isolated cylinder or based on average velocity 
for a filter, 

Ap = pressure drop across a filter, 
Q = volumetric flow rate per unit length of fiber, or cylinder, 
R = interception parameter = dp/d/, 
Tf = radius of a fiber or cylinder, 
So = specific surface of a fibrous material, 

Ux, uv = velocity components of aerosol particle in the x, y direc
tion, respectively, 

W8 = free settling velocity of a particle, 
v = average velocity of gas in a filter, defined as v,/e, 

Vo = upstream velocity of gas far removed from the effect of 
fiber or cylinder, 

v, = superficial velocity of gas in a filter, 
X j Xg j Xo = fluid layer thickness around a cylinder; x' at 8 = T/2 

from which particles are removed by diffusion and inter
ception; Xo, same as x' except particles removed by dif
fusion only; x„ effective thickness from which particles 
are removed either by diffusion or by diffusion and inter
ception, 

Z — mobility of aerosol particles, 
a = volume fraction of fibers in a filter, 
t — porosity of a filter = 1 — a, 

Vl Vo', Va', lid = collection efficiencies of a fiber or cylinder; 770, for an 
isolated fiber; rya, for a fiber with average fiber diameter 
in a filter with fiber volume fraction a; r\ai, same a s ^ except 
for a fiber with size rf,-, 

X = mean free path of gas molecules, 
Ii = coefficient of viscosity of gas, 

p, pp = densities; p, for gas; pv for particles, 
(jg = geometric standard deviation, 
\p = inertial parameter. 

III . FLOW PATTERN AROUND AN ISOLATED CYLINDER 

For the two-dimensional irrotational flow of a non-viscous, incompressible 
fluid perpendicular to an infinite cylinder, the velocity of the fluid can be ex
pressed in polar coordinates (18) by 

vr = V0(I - (r/A2)) cos B 
(X) 

Ve = -Vo(I + (r/Vr2)) sin 6 
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where rs is the cylinder radius and uo is the upstream fluid velocity in the direc
tion of 8 = 0; the origin of the coordinates is at the center of the cylinder. This 
potential flow velocity distribution is expected to hold at rather high values of 
the Reynolds number defined as 

N* 
_ d/Vop 

where d/ is the cylinder diameter, p is the gas density, and n is the coefficient 
of viscosity of the gas. 

At low Reynolds number the velocity field of the fluid around the cylinder 
depends primarily on the viscous forces, which are absent in ideal potential flow. 
Equations 1 are not expected to apply under conditions ordinarily encountered 
in filtration work. The solution of the force balance equations of a viscous fluid 
for flow around a cylinder has not been obtained, although some approximate 
solutions are available. Using the method of Oseen, which partially takes into 
account the inertial terms, Lamb (19) has obtained the velocity field around a 
stationary cylinder perpendicular to an incompressible viscous fluid: 

CL 1 - i \ - 2 In 

Ve 
L \ r / r! 

r/J 

r 

cos 0 

sin 6 (2) 

C1 ~ 
2[2.00 - In N-Re] 

Equations 2 can be expected to hold close to the surface of the cylinder pro
viding the Reynolds number is less than 1. For regions far from the cylinder, 
these equations are no longer valid. Lamb also obtained the total drag force 
per unit length of cylinder transverse to the flow as 

F = 8ITMCZ. (3) 

Davies (7) has recently reviewed Lamb's solution. After criticizing some of 
Lamb's simplifying assumptions, he obtained an expression for the velocity 
which he considers to be more accurate than those given by Lamb. Davies also 
obtained equation 3 for the drag force per unit length of the cylinder. The equa
tions for the velocity distribution of the fluid given by Davies are much more 
complicated than those given by Lamb. 

To compare the flow pattern around a cylinder based on potential flow and 
viscous flow, Davies (8) has drawn the streamlines of flow transverse to a cylinder 
at N-Re equal to 2000, 10, and 0.2, respectively. The streamlines spread outwards 
to pass around the cylinder much more suddenly at high values of Reynolds 
numbers than at low values. In fact, the effect of the obstacle is hardly apparent 
at two cylinder diameters upstream for Nne = 2000, but at 2VHe = 0.2 there is a 
3 per cent disturbance as far as 100 diameters ahead. Thus, with viscous flow, 
particles approaching in line with the cylinder begin to experience a slowing 
down and a gradual lateral displacement long before they are near, and are 
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much more apt to be displaced far enough sideways to miss it completely than 
at high speeds under equivalent circumstances. 

IV. COLLECTION EFFICIENCY OF AN ISOLATED SINGLE CYLINDER 

The collection efficiency of a single cylinder, TJ, is defined as the ratio of the 
cross-sectional area of the original stream from which the particles are removed 
to the projected area of the collector in the direction of the flow. In the following 
discussions the assumptions are made that all the particles which strike the col
lector adhere to its surface and the particles are too small to influence the flow 
pattern of the gas stream. 

A. Collection by inertial impaction 

Consider an aerosol stream moving in the ^-direction towards a circular cylin
der which is perpendicular to the direction of flow and effectively infinite in 
length. The motion of the aerosol particles approaching the cylinder will not be 
the same as that of the gas. The momentum of the particles makes them less 
subject to deviation from their course when the streamlines of flow spread side
ways past the cyhnder. Furthermore, the particles may be under the influence of 
external forces, electrical or gravitational. 

Application of the law of motion to the movement of the particles gives 

d(mu) _ p (u - "v) ... 
_ _ _ _ Fe _ _ (4) 

where m is the mass of the particle, u and v are the velocities of the particle and 
gas, respectively, Fe is the vector sum of all the external forces, and the mobility 
Z is defined in such a way that the frictional forces of the gas opposing the particle 
motion give a resultant force of — (it — ~v)/Z. For the ordinary case, the relative 
velocity between an aerosol particle and the gas is not too great, and Stokes' 
linear law of drag can be used. Then 

3iriidp 

where dp is the diameter of the particle and C is Cunningham's (Q) correction for 
particles having diameters of the order of the mean free path of the gas molecules, 
as the small particles have a tendency to slip between the gas molecules. In the 
absence of external forces, equation 4 takes the following form when Stokes' 
law is applicable: 

- ^ 1 - - = -(U-V) (6) 

where pp is the particle density. By converting all the variables into dimension-
less form, equation 6 can be expressed in rectangular coordinates as 

_, d x , dx 

H»- H - ( 7 ) 
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where 

, CppdpVo . ,. . , 2x - 2y 
y/ = o j = inertial parameter; x = -r- ; V = -r", 

loud/ d/ df 

f» = - : 0„ = - and t = —-
Vo V0 d/ 

In the steady state, the velocity field of the fluid is a function of x, y, and AR 6 

only. A solution of equations 7 with the boundary conditions will give the position 
of the particle at any time 1 when the initial position of the particle is given. 
I t is possible then to find the particle which, starting at infinity in the z-direction 
and at certain limiting distance from the axis of the cylinder, will just touch the 
surface of the cylinder. This limiting distance y is identical with the collection 
efficiency of the cylinder caused by inertial impaction and is a function of \f/ and 
A7

Re only. 
Physically, the inertial parameter \j/ represents the ratio of the force necessary 

to stop a particle travelling at a velocity v0 in a distance df/2 to the fluid resistance 
acting on the particle moving according to Stokes' law with a relative velocity v0. 

Because of the complex expressions for the fluid velocity, analytical solutions 
of the equations 7 to get the trajectory of a particle and thus the collection 
efficiency by inertia have not been obtained. Particle trajectories must be ob
tained by numerical stepwise solution of the equation. 

Albrecht (1), Langmuir and Blodgett (22), and Stairmand (28) have made 
step-by-step calculations of the trajectories of the particles, assuming potential 
flow. Sell (27) used his own experimental streamlines around a cylinder in calcula
tion. Landahl and Herrmann (20) used the flow field calculated by Thom (32) 
for A7R6 = 10 for their step-by-step calculations of the theoretical efficiencies. 
The results of these calculations are in disagreement. The amount of the dis
agreement depends mainly on the nature of the flow field assumed and the ac
curacy of the calculations. Davies (8) also performed the calculations based on 
his viscous flow equations for NRe = 0.2 (7). Figure 1 shows Davies' results cal
culated from his empirical equation (shown at R — 0). The efficiencies calculated 
by Davies are expected to be much lower than those given by others for po
tential flow. 

Landahl and Herrmann (20) also gave experimental data on the impaction of 
atomized heterogeneous liquid droplets on wires. Wong (38) has studied the 
inertial impaction of homogeneous aerosols on cylinders in the range of A7Re 
from 13 to 330. His data check fairly well with the theoretical curve based on 
potential flow. 

Langmuir and Blodgett (22) and Stairmand (28) have indicated that the crit
ical value of \p for inertial impaction on a cylinder is J-f $, i.e., for \p less than 
3̂ 6> there is no collection of particles on a cylinder due to the inertial effect. 
Albrecht (1) gave the critical value as 0.09. Davies (8) did not mention a critical 
\p in his calculation. On the basis of the equation for viscous flow, Langmuir (21) 
showed the critical \f/ to be 0.27. Whether or not a critical \p exists is an interesting 
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academic argument, but it is not of great practical importance since other mecha
nisms of collection usually enter at small values of \f/. 

B. Collection by direct interception 

A massless particle will have no inertia and its center will follow the fluid 
streamlines. If the particle has a finite diameter dp, it will touch the collector 
when its center approaches within a distance dp/2 of the collector surface. This 
effect is called direct interception. The maximum collection efficiency which can 
result from interception is 1 + (dp/df), or 1 + R. Using the potential flow equa
tion 1, Ranz (25) has shown that the collection efficiency due to interception 
will be 

VQ = (1 + R) - —L- (8) 

where R = dp/df = interception parameter. 
In general, the interception collection efficiency will be a function of R and 

A7Re- For viscous flow (21), equation 2 gives the tangential velocity at 8 = ir/2. 

VS-T/2 — CL "".S)+O-S" (9) 

The volumetric flow rate of the fluid Q passing the plane 8 = x/2 bounded by 
r = Vf and r = rt + dp/2 per unit length of the cylinder is 

n irf+d>12 , CLdf Q= ve dr = —--i-!" 2(1 + R) In (1 + R) - (1 + R) + l 

1 + Rj 
(10) 

If the particles are assumed to be massless so that they follow the fluid stream
lines, the ratio of Q to v0df/2, the volumetric flow rate which passes a plane repre
senting one half of the projected area of a unit length of the cyhnder, is the 
efficiency of interception. 

Vo = 2(1 + R) In (1 + R) - (1 + R) + (H) 
2[2.00 - In Â R6] L 1 + R-

Equation 11 was derived by Langmuir (21). Landahl and Herrman (20) have 
assumed arbitrarily that the efficiency of interception is equal to R. Rodebush 
(26) gave the same relation for the interception effect, but stated that it is ap
plicable only in the limited case in which the cylinder diameter approaches zero. 

Davies (8) calculated a curve for the efficiency of interception at A7R6 = 0.2. 
While he did not give an equation, efficiencies read from his curve for values of 
R between 0.75 and 1.5 are almost identical with those calculated from equation 
11 for iVRe = 0.2. For values of R less than 0.7, efficiencies given by Davies are 
higher than those calculated from equation 11. 

C. Collection by Brownian diffusion 

Particles of very small diameter show considerable Brownian movement and 
therefore do not move uniformly along the flow lines of the gas. This diffusion, 
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or migration of the particles from the flow line, tends to increase the number of 
particles collected by the cylinder. The effect will be most marked when the 
fluid velocity is low, since the particles remain longer in the neighborhood of the 
cylinder. 

Einstein (9) showed by statistical analysis that the mean-square displacement 
of a particle in a given direction is related to the apparent diffusion coefficient 
DBU in the following manner: 

x* = 2DBMt (12) 

where x2 is the mean-square displacement of the particle in the z-direction in 
time t. 

Einstein has also derived from Stokes' law an equation for the diffusion co
efficient. When Cunningham's correction for slip of small particles between gas 
molecules is applied, the diffusion coefficient is given by equation 13, 

DBu = -^r (13) 

where k is Boltzmann's constant and T is the absolute temperature. 
No work has been done on solving the partial differential equations for dif

fusion in the moving gas near a cylinder to calculate exactly the number of 
aerosol particles that reach the collector surface. Langmuir (21) has contributed 
the following approximate solution based on the "random walk" theory. Sta
tistically, the average absolute value of the displacement of a particle in time 
t along a certain direction is given by 

x = (^ DiMtJ (14) 

The aerosol particle that passes near a cylinder along the flow lines does not 
stay in contact with the fiber for a definite time. The time that it takes a particle 
to pass from a point at 6 = T/Q from the upstream fluid direction to a point 
at 6 = 5ir/Q through a point with distance XQ away from the collector surface at 
8 = 7r/2 may be taken as the "effective time" during which the diffusion occurs. 
The root-mean-square distance of the above movement from 8 = 7r/6 to 5ir/6 
may be taken as the "effective distance" of the layer from which the particles 
diffuse. This effective distance and time should be related by equation 14. Any 
uncertainty in the determination of the effective distance and time will produce 
an uncertainty in the numerical coefficients of equations 15 and 16. 

On the basis of equation 2 for viscous flow around a cylinder, Langmuir has 
calculated, for the first approximation of the effective distance and time, 

xe = 1.12Oz0 (15) 
i 2 

* = 0.139 ^ - (16) 
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Equation 17, obtained by substituting equations 15 and 16 into equation 14, 
can be solved for x0, the effective thickness of the fluid layer at 8 = ir/2 from 
which particles are removed by diffusion. 

-ii/s 
Xo 1 

J/ ~ 2 1.12 ^ " 
Cr1 d i " / . 

(17) 

If £o is much larger than is given by equation 17, a shorter time t and a greater 
distance x, should be obtained and thus, by equation 14, there would not be time 
enough for particles in the thicker layer bounded by this flow line to diffuse to 
the cylinder. Similarly, if X0 is too small, particles even from outside the selected 
layer will have had time to diffuse to the cylinder. Langmuir (21) states that the 
coefficient in equation 17 must be regarded as a rough approximation to the true 
value and is unlikely to be more than ± 2 0 per cent in error. 

Following the derivation of equation 11 for the collection efficiency by inter
ception, the Langmuir equation for the collection efficiency by diffusion is 

1 
»?0 = 2(2.00 - In N*e) X1+1=) K1+1") - O + T, .,+_i 

a/ J 

(18) 

Equation 18 indicates that the collection efficiency by diffusion is a function of 
NRe and Dsix/vcdf or D, the diffusion parameter. Figure 2 shows the collection 
efficiency calculated from equation 18 at jVRe = 1O-2 (shown at R = 0). 

Johnstone and Roberts (14) and Ranz (25) have proposed applying the analogy 
of heat and mass transfer to the problem of collection by diffusion. The following 
equation was suggested by Ranz (25) for the fictitious film thickness for the 
particle diffusion. 

^ = l+0M(p)m(dfIlP)115
 (19) 

Bf T \DBM/ \ M / 

where B1 = fictitious mass transfer film thickness and df/Bf = Nusselt number 
for mass transfer. 

The collection efficiency of a cylinder due to diffusion is 

Vo -(^)(H) 
Although no experimental data are available to verify equation 19, the cal
culated collection efficiencies check fairly well with those calculated from equation 
18 in the range of interest in nitration work. 

Stairmand (28) used the same approach taken by Langmuir to calculate the 
diffusion collection efficiency. He assumed that the particles diffuse to the col
lector surface in a quiescent fluid within a time equal to irdf/2vo, and derived 
the following equation for the efficiency: 

Vo = (8-^AW (2D 
V0 df ) 
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Davies (8) arbitrarily assumed that the collection efficiency by diffusion is 
the same as that by the inertial effect when D and ^ have the same value. His 
assumption, however, seems to lack justification. 

D. Collection by settling 

Large particles under the force of gravity will settle on the collector surface. 
For a horizontal cylinder transverse to the flow, Ranz (25) has shown that the 
collection efficiency will be equal to the ratio of the free settling velocity wg of 
the particle to the stream velocity i'0. It constitutes a "settling parameter" G. 

= U1 = Cd\ ppg 

18/Lll'o Vo = — = G (22) 

For a random cylinder transverse to the flow, the collection efficiency should be 
the efficiency calculated from equation 22 times the ratio of cross-sectional area 
projected in the vertical direction to that projected in the direction of the flow. 

E. Collection by inertia and interception 

The particles were considered as point masses in the calculation of collection 
efficiency due to inertial impaction. The finite size of the particles was only con
sidered in the calculation of the fluid resistance encountered by them. Actually, 
the particles will be caught by the collector when their trajectories are less than 
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FIG. 1. Collection efficiency of an isolated cylinder by inertia and interception at A1Re = 0.2 
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dp/2 away from the collector surface. This interception effect will change the 
boundary condition of the inertial impaction. The collection efficiency due to 
inertia and interception will be a function of 4*, R, and Ar

Re. 
Davies (8) has calculated the collection efficiency due to inertia and inter

ception at N-B,,, = 0.2. He gave the following equation to fit his results. 

V0 = 0.16[R + (0.50 + Q.8R)t - 0.1052ity2] (23) 

Figure 1 shows the collection efficiency calculated from equation 23. It is inter
esting to note that the collection efficiency due to the combined effects of inertia 
and interception is higher than the sum of the efficiencies due to inertia and 
interception alone. 

F. Collection by diffusion and interception 

To consider the combined effects of interception and diffusion, any particle 
will be caught if its center comes within a distance of dp/2 from the surface of 
the collector. The effective diffusion distance will be X0 — dp/2 instead of Xo 
when diffusion alone is being considered. Langmuir (21) used the following 
equations instead of equations 15 and 16 as the effective distance and time for 
the calculation of the efficiency due to diffusion and interception. 

xe = 1.120 {%' - d-i\ (24) 
2 

df t = 0.139 •£—. (25) 
CL X 

Substituting the above equations into equation 14, the following results: 

d, 2 d,\ d, U'14 CL d, ~ W 
where x' = effective fluid layer thickness at 6 = TT/2 around a cylinder from 

which all the aerosol particles are removed by the combined effects 
of diffusion and interception at certain D and NRe, and 

X0 = effective layer thickness at d = TT/2 around a cylinder from which 
all particles are removed by diffusion alone at the same D and A^e 
as above. 

The collection efficiency can be calculated by substituting x'/d/, obtained 
from equation 26, into equation 18 instead of x0/df. Efficiencies thus calculated 
at AT

Re = 10~2 have been plotted in figure 2. I t is also found that the efficiency 
due to the combined effects is higher than the sum of the efficiencies due to 
the individual effects alone. No experimental work on the collection efficiency 
of an isolated cylinder by diffusion and interception has been reported. Lang-
muir's approximate solution needs experimental verification. 

G. Overall collection efficiency 

The overall collection efficiency is difficult to calculate. Davies (8) made the 
arbitrary assumption that the overall efficiency could be found by (/) calculating 
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FIG. 2. Collection efficiency of an isolated cylinder by diffusion and interception at 
tfn. = 10-J. 

the inertia parameter \p, the diffusion parameter D, and the interception pa
rameter R, (2) taking the numerical sum of \p and D, and (S) reading the inertia 
and interception collection efficiency curve as shown in figure 1 at particular 
ip + D and R instead of at certain \j/ and R. 

For a differential volume of fluid not too far from an infinite cylinder (5), the 
following equation gives the material balance on the aerosol particles. 

^ f = - d i v (-DBM grad .V) - div 52V - div (3 - I)N (27) 
at 

where JV is the number concentration of particles. The term on the left represents 
the total rate of accumulation of particles, while the second, third, and fourth 
terms represent the rates of accumulation due to Brownian diffusion, flow, and 
relative velocity of particles (u — v), respectively, u is found from the solution 
of equation 4 or 6. I t has been stated that u should be a function of x, y, \p, 
and JVRe only. If only the steady state is considered, then equation 27 becomes 

Analytical solution of equation 28 is generally impossible. However, by converting 
it into a dimensionless form, we can find the parameters that determine the par
ticle concentration around a cylinder. 

Let 
2x _ ux 
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then equation 28 can be converted into 

= 0 (29) 

When there is no external force, solution of equation 29, including the intercep
tion effect as a boundary condition, shows that the number concentration of 
particles around a cylinder can be expressed as 

N = f(x, y, ,VBe, *, R, D) (30) 

The overall collection efficiency can be calculated from equation 30 and ex
pressed as 

Vo = flf, R, D, NRe] (31) 

In case external forces are present, then the collection efficiency should also 
be a function of another parameter as G defined in equation 22 for gravitational 
force. The above derivation defines the parameters which determine the overall 
efficiency of a cylinder. Equation 31 has not been solved numerically. Chen (5) 
has made the assumption that the overall efficiency is equal to the sum of the 
efficiencies arising from the combined effects of inertia and interception and the 
combined effects of diffusion and interception. This is considered to be reasonable, 
particularly when either \p or D is small. 

H. Discussion 

It has been shown by Tomotika and Aoi (35) that, even at Reynolds numbers 
as low as 0.05, eddies will be developed at the back of a cylinder. No attempt has 
been made to calculate the effect of these eddies on the overall collection 
efficiency. 

An apparent slipping of the gas along a surface has been shown experimentally 
and theoretically. The thickness of the layer in which slip occurs is approxi
mately equal to X, the free path of the gas molecules. Langmuir (21) has given 
equations by which this slipping effect is approximately taken into account. 
Tsien (35a) has given a complete treatment of the slip flow. 

V. FILTRATION OF AEROSOLS BY FIBROUS FILTERS 

The theoretical prediction of penetration of aerosol particles through a fibrous 
filter consists of three steps: 

1. Calculation of the collection efficiency of an isolated fiber at the same 
superficial velocity; 

2. Finding the difference between the collection efficiency of an isolated 
fiber and an individual fiber in the filter due to the neighboring fiber 
interference effect; and 

3. Finding the collection efficiency of a filter from the collection efficiency 
of the individual fibers. 

Steps 2 and 3 will be discussed in the following sections. All of the discussion 
is based on aerosols of uniform particle size. 

2DB1 

Vodt 

d'N 
dx2 dy2 

. dN 
dx dy 

dux duy 
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A. Relationship between the collection efficiency of fibrous filters and 
that of individual fibers 

The orientation of fibers in ordinary filters can be considered to lie between 
two extreme cases. For the first case, the fibers are far apart and dispersed 
uniformly, and the neighboring fibers are staggered with respect to each other. 
For the second case, the fibers are so close together that the filter acts like a 
group of capillaries. Ordinary mats and papers behave more like the first case. 

Considering a small volume element (dA-dL) of a fibrous filter of the first 
kind with all the fibers randomly distributed in the plane transverse to the 
flow (5), the collection efficiency of a single fiber of size d,- in this particular 
filter is ijaj. Assume the length of the fiber with diameter d,- in this filter to be 
U per unit volume of filter. Then the particles removed by all the fibers of 
different sizes in this small volume per unit time will be 

vN • dA • dL^riai di k 

where iV is the number concentration of the particles entering this small volume 
element, v is the average velocity of the gas stream in the filter, defined as v,/e, 
and e is the porosity of the filter. The change in particle concentration due to 
passage through this small element should also be —1\ dA • dAr. Then 

-dN/N = —T,ri«idil< 

or (32) 

—In AViVo = - Z Vai ddi 

where L is the thickness of the filter. When measuring the fiber size distribution 
under a microscope or electron microscope, the longer the fiber the oftener it is 
seen. Thus, it can be assumed that the distribution function of the length of each 
fiber size is the same as the distribution of fiber diameter. 

^ r = fidMdd (33) 

where ( Z Ii) = total length of fiber in unit volume of the filter and/(dj)d(d,-) = 
the distribution function of fiber size. Neglecting the end of the fiber, the total 
length of the fiber per unit volume of filter is related to the volume fraction of 
fiber a in the following way: 

Z j d ^ i = « (34) 

Substitute equation 33 into equation 34. Then 

T,h-~ (35) 
7r(d/)s

2 



FILTRATION OF AEROSOLS BY FIBROUS MEDIA 609 

where (df), is the surface average fiber diameter. Equation 36, obtained by 
substituting equation 35 into equation 32, has the following form: 

- I n N/N0 = - ? — ^ ^ 2 f Va diftdddidi) (36) 

Unless the analytical expression of r^ai as a function of fiber size can be found, 
equation 36 has no practical significance. If the collection efficiency is inde
pendent of the fiber size, or inversely proportional to the fiber size, equation 36 
becomes 

-In NfN0 =*v*1^-t {%£ (37) 

where r\a = collection efficiency of a single fiber in the filter calculated from the 
average fiber size. 

Equation 37 was used by the author (5) to relate the single-fiber efficiency 
to the penetration of a filter. Although it is rather arbitrary to use the arithmetic 
average fiber size, the proper average size is probably close to the arithmetic 
average unless the geometric standard deviation of fiber size distribution <rg is 
very large. 

An equation similar to equation 37 was also derived by Langmuir (21) and 
Davies (8), considering the filter to be made of uniform fibers, which is not 
a realistic assumption. 

- I n NfN0 =~r,a ^ - 6 ^ (38) 
T t d/ 

B. The neighboring fiber interference effect 

The collection efficiency of a single fiber in a filter is by no means the same 
as that of an isolated fiber at the same superficial velocity. Not only is the aver
age velocity of the gas stream in a filter higher than the superficial velocity, 
but of even more importance is the change in the flow pattern around a fiber due 
to the presence of neighboring fibers. The presence of neighboring fibers will 
increase the collection efficiency of a single fiber. This increase will be a function 
of the volume fraction of fiber in the filter, and possibly of iVRe. I t probably will 
be different for each collection mechanism. It may be expressed as 

Va = Vof(a, NRe) (39) 

where t]a = collection efficiency of a single fiber in a filter with fiber volume 
fraction a at the superficial velocity vs, and 

Tjo = collection efficiency of an isolated fiber at the superficial velocity 
v.. 

As the volume fraction of fiber in a filter increases, the neighboring fiber 
interference effect increases the efficiency due to interception slowly but con
tinuously. For the diffusion mechanism, the interference effect probably increases 
the efficiency to an asymptotic value. The squeeze of the streamlines around a 
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fiber will tend to increase the efficiency due to diffusion but the increase of 
average velocity in a filter will tend to decrease it. The presence of fibers up
stream will increase the curvature of streamlines around a fiber downstream and 
will increase the collection efficiency due to inertial impaction. 

Langmuir (21) assumed that the interference function in equation 39 can be 
found from pressure drop data. He considered diffusion and direct interception to 
be the only mechanisms of collection. The total drag force on an isolated cylinder 
transverse to the flow at low jVRe is 8iry.CL, as shown in equation 3. From the 
theory of drag resistance, the pressure drop per unit thickness of a filter will be 
equal to the drag force on all the fibers in a unit volume of the filter. The drag 
force on the fiber in a filter is different from 8TTHCL, but it may be expressed as 
8TrixCLa- Then the pressure drop across a filter wall be 

Ap = ^ (40) 

or 

°- - AiS <*" 
where Ap = pressure drop across a filter. 

Langmuir (21) made the assumption that the collection efficiency of an indi
vidual fiber in a filter can be calculated from equations 18 and 26 if CLa is used 
instead of CL-

Davies (8) assumed that the interference effect of a neighboring fiber is the 
same for different collection mechanisms. On the basis of Kovasznay's exact 
solution of viscous flow behind a two-dimensional grid (15), he calculated the 
collection efficiency due to interception of a single fiber with fiber fraction 
a to be 

r)a = /2(0.16 + 10.9a - 17a2) (42) 

Davies then made the assumption that the efficiency of collection of an individual 
fiber in a filter from all the collection mechanisms at N^e = 0.2 can be expressed 
by combining equation 23 with 42 as follows: 

(0.16 + 10.9a - 17<x2)[R + (0.5 + 0.8R)($ + D) - 0.1052#(^ + Z))2J (43) 

After comparing the experimental data with the value predicted by equations 
43 and 38, Davies concluded that, because of uneven fiber distribution and fiber 
aggregation, the diameter of the fiber used in equations 43 and 38 should be an 
effective one obtained from his empirical pressure-drop equation. 

A p = 7tW,a,8(1 + 5 2 a x , ) ( 4 4 ) 

as 

where d/ is the effective fiber diameter. Equation 44, obtained from experi
mental results, gives values of d/ in close agreement with average fiber sizes 
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FIG. 3. The effect of neighboring fiber interference on the collection efficiency of a single 
fiber in the filter. 

measured under the microscope for small values of a, but for larger values of a 
the effective size is usually greater than the measured average fiber size. Un
fortunately, Davies did not publish his experimental data and there is some doubt 
as to the accuracy of his equations for the calculation of penetration of particles 
through a filter. 

The author has attempted to find the interference effect experimentally (5). 
Penetration measurements were made on fiber mats of different porosity using 
homogeneous aerosols of a given particle size, fiber size, and superficial velocity. 
The individual fiber collection efficiencies t\a were calculated from the data by 
equation 37 and were plotted against a, as shown in figure 3. Although the 
experimental data scatter somewhat because of the non-uniformity of mats and 
the uncertainty of the particle size, the results indicate that the collection 
efficiency increases as the porosity decreases and can be correlated by the 
expression: 

r,a = Vo(l + Ka) (45) 

For the eleven series of runs, K has an average of 4.5 and there seems to be 
little variation in its value even when different collection mechanisms are 
dominant. Extrapolation of equation 45 to a higher than 0.10 may result in 
large errors. 

The interference effect given by equation 45 is much lower than that given 
by equation 42. Wong (38) has also found experimentally that equation 42 over
estimates the interference effect. I t will be shown later that Langmuir's theory 
also overestimates the interference effect. 

C. Experimental results on penetration of aerosols through a filter 

The experimental work reported in the literature on the filtration of aerosols 
is often difficult to interpret, because fiber size, porosity of the filter, size of 
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the particles, or the thickness of the filter are often not stated. Consequently, 
comparison between experimental results and the theoretical predictions usually 
cannot be made. 

Lewis and Smith (23) gave experimental results on the filtration of an aerosol 
of unknown diameter through fiber mats. An equation was also derived for the 
collection efficiency of a mat. Direct interception and diffusion were considered 
as the only collection mechanisms. They assumed an approach similar to that of 
Langmuir for the isolated cylinder but assumed potential flow. Their experimental 
results cannot be compared with their equation. 

Ramskill and Anderson (24) studied the filtration of homogeneous aerosols 
by different kinds of filter paper. The size of particles used was in general above 
0.26 micron in diameter. The principal mechanisms of collection were found to 
be diffusion at low velocities, interception at moderate velocities, and inertial 
impaction at high velocities. However, the inertial impaction was found to play 
an important role at lower particle diameter than calculated by Albrecht (1) 
and Langmuir (21). 

The filtration of homogeneous aerosols with particles as small as 0.04 micron 
through filter paper was studied by La Mer (17). Inertial impaction was also 
found to be important even for very small particles and the conclusion was 
drawn that the inertial effect overshadows the diffusion effect completely. The 
penetration of particles was found to increase monotonically with decreasing 
particle diameter when the velocity varies from 2.8 to 28 cm. per second. 

Blasewitz et al. (2) measured the efficiency of filtration of heterogeneous 
aerosols by glass fiber mats. For each fiber size studied, the penetration of 
particles was correlated empirically as a function of mat bulk density, super
ficial velocity, and mat thickness. 

D. G. Thomas (33) made penetration measurements on loose glass fiber mats, 
using a heterogeneous aerosol with average diameter of 0.4 micron. He used 
equation 38 to calculate the single-fiber collection efficiency and then attempted 
to compare this efficiency with theoretical isolated single-fiber efficiency. Some 
of his data at low velocity and small R compare favorably with the efficiency 
calculated from equation 18, considering diffusion as the only collection 
mechanism. 

Wong (38) made a study of filtration by fiber mats using homogeneous aerosols 
at high velocities where inertial impaction is the controlling mechanism. His 
results indicate that the Davies theory of inertial impaction overestimates the 
efficiency. He found that varying the fiber volume fraction from 0.045 to 0.098 
had no effect on the collection efficiency of a single fiber i\a. Equation 45 indi
cates that the efficiency should increase 20 per cent, while the Davies equation 
42 indicates that it will increase 73 per cent. 

D. J. Thomas (34) has made some penetration measurements on both loose 
mats and dense papers, using heterogeneous methylene blue aerosols with a 
mass median diameter of 0.5 micron. He did not try to correlate his results. 

The author has made penetration measurements of homogeneous aerosols 
through " B " glass fiber mats ((d/)av. = 2.5, (df)s = 3.0 microns) for particle 
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sizes between 0.15 and 0.72 micron with velocities ranging from 0.87 to 47.0 
cm. per second (5). The porosities of the mats varied from 92 to 98 per cent. 
The results were correlated by using equations 37 and 45, with K equal to 4.5 
to calculate the collection efficiency of an equivalent isolated fiber. The calcu
lated isolated fiber efficiencies are plotted in figures 4 and 5 as a function of 
particle size and velocity, respectively. Figure 4 shows that, as the particle 
size decreases, the efficiency decreases at high velocities, remains essentially 
constant at medium velocities, and decreases at first but then increases at low 
velocities. Figure 5 indicates that, for velocities above 4 cm. per second, the 
efficiency always decreases as the particle size becomes smaller. However, for 
velocities below 4 cm. per second, there is a size of minimum collection efficiency 
at each velocity. 

io 

8 

6 

O1
 4 

O 

0.1 0.15 0.2 03 0.4 0.5 0.6 Q8 1.0 
dp,MICRONS 

F I G . 4. Collection efficiency of an isolated 2.5-micron fiber calculated from particle 
penetrat ion through fiber mats . 

Qualitatively, the results obtained by the author, and those of Ramskill 
and Anderson (24), agree with the theory. Inertial impaction is important at 
high velocities, while diffusion is important at low velocities. The experimental 
results and the data in the literature were also compared with the theory, that is, 
the isolated single-fiber collection efficiencies calculated from experimental data 
by equations 37 and 45 were compared with the sum of the theoretical isolated 
fiber efficiencies from inertia and interception and due to diffusion and intercep
tion. As the theoretical efficiency of an isolated fiber from inertia and interception 
at low iVRe is not available, it was taken as the sum of the efficiencies by inter
ception at the particular Reynolds number and by inertial impaction at 
Nne = 0.2. Table 1 shows some of the calculations. The theory overestimates the 
efficiency at large values of \p and underestimates it at large values of D. The 
theory and experimental results agree well as to the velocity at which the col
lection efficiency remains essentially constant, and the velocity at which it first 

T 1 1 1 I — T 

J I I I I 1 I I L 
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FIG. 5. Collection efficiency of an isolated 2.5-micron fiber calculated from particle 
penetration through fiber mats. 

decreases and then increases as the particle size decreases. The discrepancies 
between the theory and experiment could be due either to the inaccuracy of the 
theoretical isolated fiber efficiency or to the experimental data or to the theory of 
collection efficiency of a filter. More theoretical and experimental work is needed 
before better comparisons can be made. 

D. Particle size for maximum penetration 

Theoretically, the efficiency of collection by diffusion decreases and that by 
inertial impaction increases as the velocity and particle size increase. Thus, 
it appears that there should be a particle size with maximum penetrating power 
for a given fiber size and at a given velocity. Limited experimental results of 
two studies (17, 24) have indicated that no such particle size of maximum 
penetration exists. In both cases, rather dense paper was used and the lowest 
velocity studied was 2.7 cm. per second. The author found no maximum pene
tration particle size for velocities above 4 cm. per second when using fiber mats 
with average fiber size of 2.5 microns. For velocities below 4 cm. per second, 
there does appear to be a maximum penetration size. Theoretical calculations by 
the author also indicate that, for the particle size range studied, a maximum 
penetration size exists only when the velocity is below 5 cm. per second. 

I t would be easier to find a particle size of maximum penetration by using 
a mat made of large fibers instead of small fibers, as the maximum penetration 
size should exist at higher velocities for mats of large fibers. As the inertial im
paction persists to lower velocities for a dense paper, it is necessary to go to 
very low velocities to find a maximum penetration particle size when a paper is 
used instead of a loose mat. 

V I . P R E S S U R E DROP ACROSS FIBROUS F ILTERS 

A. Channel theory 
Two different approaches have been followed in the study of the pressure 

drop across fibrous media. It is customary to consider porous beds as a system of 
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TABLE 1 

Comparison of experimental collection efficiency of single fibers in filter with theory 

»• * TJ J 1 0 j 1 0 
j (Theory) (Experiment) 

1. Chen's da ta (5): (d/)av . = 2 . 5 M; (d/). = 3.0/J 

(a) dp = 0.52 /j.; R = 0.21 

cm,/sec. 

46.9 
11.7 
5.21 
1.65 
0.87 

0.199 
4.96 X IO-2 

2.22 X 10-2 

7.00 X 10-3 
3.70 X 10-3 

5.10 X 10"5 

2.06 X 10-* 
4.60 X 10-" 
1.46 X 10-3 
2.76 X 10-3 

3.58 X 10-2 
2.18 
2.12 
2.51 
3.05 

2.45 X 10"» 
3.12 
4.08 
5.60 
6.55 

(b) d„ = 0.30 n; R = 0.12 

46.9 
11.7 
5.21 
1.65 
0.87 

7.88 X 10-2 
1.97 X 10-2 
8.80 X 10-s 
2.78 X 10-3 
1.47 X IO-3 

1.06 X 10~* 
4.28 X 10-" 
9.55 X 10-* 
3.03 X 10-3 
5.73 X 10-3 

1.59 X 10-2 
1.38 
1.65 
2.18 
2.86 

1.82 X 10-2 
2.75 
3.95 
5.95 
7.35 

(c) dp = 0 . 1 5 M; R = 0.06 

46.9 
11.7 
5.21 
1.65 
0.87 

2.80 X IO-2 

6.98 X IO"3 

3.12 X IO-3 

9.88 X IO"* 
5.20 X 10-* 

3.02 X 10"* 
1.22 X IO"3 

2.72 X IO-3 

8.62 X IO"3 

1.63 X IO"2 

0.96 X IO-2 

' 1.22 
[ 1 . 8 8 

2.85 
i 4.04 

1.25 X IO-5 

2.35 
3.80 
7.80 
8.45 

2. Ramskill and Anderson's da ta (24) 

(a) df = 2.0 M; d„ = 0.30 M; a = 0.098; L = 0.0735 cm.; R = 0.15 

8.4 
20.0 
36.0 
70.0 

126 

1.78 X IO'2 

4.24 X IO"2 

7.61 X IO"2 

1.49 X IO"1 

2.67 X IO-1 

7.44 X 10"* 
3.33 X 10-* 
1.85 X 10"* 
9.48 X IO-6 

5.27 X IO-5 

1.8 X IO"2 

1.6 
1.8 
3.6 
3.7 

4.80 X IO"2 

4.23 
4.12 
4.40 
5.36 

(b) df = 3.0 n; dp = 0.30 M; a = 0.17; L = 0.077 cm.; R = 0.10 

5.6 
20 
80 

125 
215 

7.9 X IO-3 

2.82 X IO"2 

1.13 X IO"1 

1.76 X IO"1 

3.03 X IO"1 

7.55 X 10-* 
2.10 X 10"* 
5.23 X IO-6 

3.36 X IO"5 

1.96 X IO-6 

1.2 X IO -2 

0.98 
2.3 
2.3 
2.9 

0.84 X IO"2 

0.63 
0.60 
0.73 
1.28 

3. D a t a of Thomas (33): (d/).v . = 10.6 A ; (dt), = 11.3 M; dp = 0 . 4 0 M; a = 0.032; L = 0.274 
cm.; R = 0.038 

1.22 
3.04 
9.1 

21.2 
91.0 

1.00 X IO"3 

2.58 X IO"3 

7.42 X IO"3 

1.73 X IO"2 

7.42 X IO'2 

6.65 X 10-* 
2.65 X 10"* 
8.90 X IO-5 

3.82 X 10-> 
8.90 X 10-« 

7.3 X IO"3 

4.4 
3.2 
4.2 
6.4 

8.16 X IO"' 
5.13 
2.94 
1.98 
1.25 
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interconnected channels and the pressure drop for viscous flow through them is 
based on D'Arcy's equation 

Ap = k0vsfxL (46) 

where Jc0 is a constant. A theoretical treatment by Kozeny (16), who introduced 
the concept of the hydraulic radius, and a subsequent modification of Kozeny's 
equation by Carman (4) enable the constant in equation 46 to be related to the 
physical constants of the bed by the so-called Kozeny-Carman equation 

= fcit>./ifl,a(l - e)2L ( 4 7 ) 

where fci = constant and S0 = specific surface of the packing material. 
The Kozeny-Carman equation, either in the above form or in some modified 

form to introduce shape and orientation factors, has been applied to fibrous 
media by Wiggins, Campbell, and Maass (37), Fowler and Hertel (12), Sullivan 
and Hertel (30), and Sullivan (29). 

A review of this approach to the problem has been given by Sullivan and Hertel 
(31), who express the equation for the pressure drop across a fibrous bed as 

= hw.LSo'Q. - e)2 

K5 e
3 

where fc2 = a shape factor, which has the same value for all geometrically similar 
channels, and 

k3 — an orientation factor, which has the value of 1 and 0.5 for flow 
parallel to the fibers and for flow perpendicular to the fibers, re
spectively. 

fc2 has been found not to be a constant, as it increases with increase in porosity. 
Equation 48 is not expected to hold for filters with porosity higher than 0.88. 

Langmuir (21) gave an expression for the pressure drop across a fiber mat. 
He derived first an expression for the resistance of evenly spaced cylindrical fibers 
with their axes parallel to the direction of flow and then introduced a numerical 
factor B to take into account the actual geometry of the filters, i.e., fibers not 
uniformly distributed, crossing one another at all angles, and lying mainly parallel 
to the surface of the filter and perpendicular to the direction of flow. His equation 
is 

= 162W»,L (4Q) 

where B = a numerical factor of the order of unity whose value depends on the 
geometry of the filter and 4> = a function of a defined by the expression 

1 i i n a 3 

- = - l n a + 2 * - - - -
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Davies (8) has shown by the method of dimensional analysis that, if D'Arcy's 
law holds, then 

Ap = '—fM (50) 

From measurements on a large number of different fibrous materials he found 
that 

f(a) = 64a"( l + 56a3) (51) 

with only a small deviation of the data, considering the range of materials and 
porosities covered. 

B. Drag theory 

Brinkman (3) has shown that the pressure-drop equation based on the channel 
theory is not applicable for highly porous media. Since the porosities of ordinary 
filters are above 75 per cent, the application of channel theory is thus in doubt. 
Iberall (13) has followed another approach in which the pressure drop across a 
unit thickness of filter is the total drag force on the fibers in a unit volume of 
the filter. He assumed an equipartition of the fibers in the three perpendicular 
directions. From Emersleben's paper (10) on the viscous drag of a fluid on a 
special array of cylinders, Iberall estimated the drag force on a circular fiber 
surrounded by similar fibers all oriented along the direction of flow and with 
moderate separations to be: 

F = 47TAIt) (52) 

For the drag force on the fibers with axes perpendicular to the direction of flow, 
he used equation 3 from Lamb. 

By simple addition of the three pressure drops necessary to overcome the 
drag of the three sets of fibers, the following equation was obtained. 

A P = ~W~ ~ ^ 2 - In N*. ( 5 3 ) 

Analysis of experimental data for glass fibers showed, however, that the results 
were best fitted by the equation: 

= 9.4M0.L 1 - 6 2.4 - In 2\TH. 
V d/ e 2.0 - In JV"Re

 K°^ 

The interference effect between neighboring fibers was not considered by Iberall. 
On the basis of the drag theory, Wong (38) used an effective drag coefficient 
CDe in his derivation to account for the effects of non-perpendicular fibers, fiber 
interference, end of fibers, and non-uniform fiber distributions. His equation is 

2 CDepvs aL ,--•. 
Ap = -z (55) 

•K CLf 

The effective drag coefficient CDe was found to be higher than that calculated 
from Lamb's equation for isolated cylinders, particularly at low JVR6-
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The drag force on a unit length of fiber with diameter di transverse to the 
flow in a filter with fiber volume fraction a can be defined as 

Fi = c™pf d (56) 
2 g= 

u • * * nor. (g- mass) (cm.) 
where g„ = conversion factor = 980 -^—. ^f—jf, 

(g. force) (sec.2) 
Fi = drag force per unit length of fiber with diameter di, and 

CDai = drag coefficient for fiber diameter d, in filter with fiber volume 
fraction a. 

Following the derivation of the collection efficiency of a filter, given above as 
equation 37, the author has derived (5) the following equation by summing up all 
the drag forces on the fibers in a unit volume of filter as the pressure drop across 
unit thickness of filter. 

Ap = - ^ g ^ - 2 f CDai djidiMdi) (57) 

When the drag coefficient is inversely proportional to the Reynolds number, the 
following equation can be obtained from equation 57: 

Ap = ? V cDa
 {%£ (58) 

TT g c (d / ) s
2 

where CDa = drag coefficient of a fiber of average size (d/)av. in a filter with 
fiber volume fraction a. 

The drag coefficient of a fiber in the filter would not be the same as that of 
an isolated fiber, as assumed by Iberall. White (36) has shown that the drag 
coefficient of a cylinder moving in a tank does not obey the equation of Lamb 
given below for an isolated cylinder calculated from equation 3. 

CD = NRe(2.00 - In N^) ( 5 9 ) 

Instead he found that the drag coefficient is inversely proportional to JVR6 and 
could be correlated by the following equation: 

^ T • ^ B . = , *' (60) 
2 In k db/df 

where di = the distance between the cylinder and the boundary. At low 2VRe, 
the value given by equation 60 is much higher than that predicted by equation 
59. At high iVRe, the value given by equation 60 approaches that given by Lamb's 
equation, since the effect of the outer boundary diminishes. 

The author (5) has assumed that the neighboring fibers act like a boundary 
around a given fiber, and the ratio of interfiber distance to the fiber diameter 
will determine the drag coefficient for a fiber in a filter, particularly at a low 
Reynolds number. Assuming that a filter has the same interfiber distance in all 
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three directions and the fibers in each layer form a screen, the following equation 
gives the ratio of the interfiber distance to the fiber diameter for this particular 
model: 

db/dj = - 1 (61) 

where db = interfiber distance. For ordinary filters, the ratio of interfiber distance 
to the fiber diameter will probably be inversely proportional to the square root 
of a. Following equation 60, the drag coefficient of a fiber in filters of different 
porosity should be correlated by the following equation: 

CDa 

T A^He = 
h 

In k t a 

Ap 

CD<X 

h 
T lrTfc^r" T^It (d>)7 

(62) 

(63) 

From equations 58 and 62, —- • JVKe calculated from the data on one filter 

should be independent of Reynolds number. Values from different filters should 
be correlated by equation 62. For filters containing fibers with different orienta
tions, and made by different techniques, the constants Zc4 and kb in equation 62 
may be different. 

C. Experimental results 

Considerable experimental work (2, 5, 11, 24, 33, 38) has been reported on 
the pressure drop across filter mats. In most cases, however, the results only 
show the proportionality to the superficial velocity and thickness of the filter, 
and empirical exponential function of porosity. 

The author (5) has correlated by equations 58 and 62 all the pressure-drop 
Q 

data that have been reported. The group -^- • NRe is plotted against NRe in 

figures 6 and 7, which also shows equation 59 for an isolated cylinder. The drag 
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F I G . 6. Drag coefficients of a single fiber in fibrous media (5) (glass fiber mats with (<£/),, 
= 0.94 micron) . 
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FIG. 7. Drag coefficients of a single fiber in fibrous media 

coefficient of a single fiber in the filter is usually higher than that predicted by 
C 

equation 59. -^-NRe calculated from data for one filter is independent of 2VRe 

and is a function of a only. Thus, the flow around a fiber in a filter differs con
siderably from the flow around an isolated cylinder. 

The experimental results are well correlated by equation 62, as shown in 
figure 8. They definitely indicate that neighboring fibers act as boundaries 
around a fiber. Most of the data in figure 8 can be fitted with fc4 and fc5 equal 
to 6.1 and 0.64, respectively. The scattering of the data might be caused by 
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FIG. 8. Effect of fiber interference on the drag coefficients of a single fiber in the fibrous 
media. 
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TABLE 2 
Critical a below which there is no neighboring fiber interference effect 

Niu a (Critical) 

10~4 

10-3 

10~2 

7.8 X 10"6 

7.1 X 10-s 

6.8 X 10-" 

A T R . 

10-1 

0.5 
1 

a (Critical) 

6.3 X 10-3 

3.0 X 10"2 

5.9 X 10-» 

inaccuracy of measurements of pressure drop and fiber size and different tech
niques of making the filters. 

At each VVR6 there is an a at which the drag coefficient given by equation 62 
is the same as that given by equation 59 for an isolated cylinder. Below this 
critical value, the effect of neighboring fiber boundaries diminishes, and equation 
59 should be used for the calculation of the drag coefficient of the fiber in the 
filter. If h and k& are equal to 6.1 and 0.64, respectively, table 2 gives the values 
of critical a at different ./VR6 below which equation 59 should be used. 

Table 2 agrees with Wong's results (38) very well. He found that for filters 
with a between 0.04 and 0.08, the drag coefficient is linear with iVRe up to a 
value of 0.6. For Nne values greater than 0.6, the experimental curve exhibits a 
curvature more or less similar to that of equation 59. 

By comparing equations 45 and 62, it can be seen that the interference effects 
increase the pressure drop much more than they increase the collection efficiency. 
It would be rather difficult to correlate collection efficiency directly with the 
pressure drop as was done by Langmuir (21). 

If all the pressure-drop equations given in the literature are rearranged into a 
form comparable with equations 58 and 62, the drag coefficients of a single 
fiber in the filter with fiber volume fraction a are expressed as follows: 

Kozeny-Carman, equation 48: —^ -JVR8 = 47T1-^7- (64) 
2 K3 (1 — a)2 

Davies, equation 51: ^-NRe = 16TT(1 - a)a0 6(l + 56a3) (65) 

Davies, equation 44: ^-NRe = 17.5TT(1 - a)a°'5(l + 52a1'5) (66) 

Iberall, equation 52: % • NRe = % • \ ~ ) n 1 ^ (67) 
Z 6 Z — 111 JVRe 

Iberall, equation 53: ^ J V 8 , = 2.4TT ^ ~ ) n ^ R e (68) 
Z AXj in iVRe 

Langmuir, equation 49: -^-JV-Re = 47rS(l — «)</> (69) 

Iberall's equations obviously cannot fit the data, since they do not take into 
account the neighboring fiber interference effects. 
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TABLE 3 

Values of —— -N-Re as calculated from different equations 

0.001 
0.005 
0.01 
0.05 
0.10 
0.15 
0.25 

Kozeny-Carman 
Equation 64 

0.075 
0.374 
0.760 
4.16 
9.20 

15.6 
33.5 

Davies 
Equation 65 

1.58 
3.53 
4.95 

10.6 
15.1 
19.6 
35.4 

Davies 
Equation 66 

1.73 
3.86 
5.42 

12.0 
18.2 
26.2 
54.4 

Langmuir 
Equation 69 

2.32 
3.30 
4.00 
7.46 

11.4 
15.6 
26.6 

Chen 
Equation 62 

2.03 
2.77 
3.29 
5.80 
8.67 

12.2 
25.2 

Table 3 gives values of the —^-NRe at different values of a, as predicted from 

the above equations and equation 62. In the calculations fc2/fc3 was taken as 
6.0, as found by Sullivan and Hertel for glass fibers perpendicular to the flow. 
The coefficient B in Langmuir's equation was taken as 1. The constants /c4 and 
fa in equation 62 were taken as 6.1 and 0.64, respectively. 

The values given by Langmuir's equation agree fairly well with those calcu
lated from equation 62. 

VII. THE FILTRATION CRITERION 

The criterion for judging a filter is expressed by 

-InNfN0 _ 2Va(df)*v. rjo(d/).,.(l + 4.5a) lnfecT9'5) ,7rVl 
y _ _ _ _ . _ {I VJ 

Ap CDa-NRe-IXVs KiIXV1 

The higher the value of y, the better the filter. 
The following conclusions can be drawn from equation 70: 
(1) For the same df, dp, and vs: The lower the value of a, the higher the value 

of 7. 
(2) For the same dp, i\, and a: At low velocities, diffusion is important, and 

the larger the fiber size, the higher the value of y. At high velocities, inertia is 
important, and y remains essentially constant. At medium velocities, intercep
tion is important, and the smaller the fiber size, the higher the value of 7. 

(S) For the same df, dp, and a: The value of 7 decreases at first, remains fairly 
constant, and then increases as the velocity increases. 

(4) For the same df, v„ and a: At high velocities, the value of 7 increases with 
increasing dP. At medium velocities, the value of 7 remains essentially constant. 
At low velocities, the value of 7 increases with decreasing dp. 
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