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I. INTRODUCTION 

Theoretical and practical interest in liquid diffusion has been maintained 
for over a century. Since the diffusion process is one of the aspects of liquid 
behavior which must be described by a satisfactory liquid-state theory, observed 
diffusion rates have been useful in both formulating and testing such theories. 
The practical utilization of rates of liquid diffusion has also increased recently, 
as more fundamental consideration is being given to various mass-transfer 
processes where liquid diffusion is one of the rate-controlling factors. 

This review is intended to be a convenient source of reference material for 
those engaged in research on liquid diffusion as well as a general source of in­
formation of diffusion phenomena for those engaged in the applied aspects of 
diffusional processes. 

II. DIFFUSION CONCEPTS 

A. BASIC MECHANISM OF DIFFUSION 

Because diffusivities are necessarily reported in terms of experimental ob­
servations on a somewhat arbitrary basis, it is worthwhile to review in some 
detail an elementary picture of the diffusion process and the development 
of the basic diffusion equations. In the usual sense, diffusion of mass refers to 
the dissipation of a concentration gradient by molecular transfer with no overall 
mass flow caused by external forces. To visualize the reasons for this observed 
motion, consider the behavior of a solute molecule in a given solution. The energy 
possessed by the molecules in the liquid state causes a solute molecule to collide 
constantly with solvent molecules and in more concentrated solutions also with 
other solute molecules. These collisions keep the solute molecule in a state of 
random motion, each individual collision moving it without regard for any con­
centration gradient that may be present. While it is possible to calculate the 
mean distance which a molecule would travel in a given time interval, there is 
no way of predicting its actual path. A plot of probable position with time would 
be a series of concentric circles about its initial position. 

This basic motion is reconciled with observed net transport when a concen­
tration gradient exists, by the following analysis. Consider two thin adjacent 
slices of solution, in which the concentration of A and of B is slightly greater 
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in the lower slice. The concentration gradient will be assumed unidirectional, 
so the lateral concentration in the slices will be uniform. Neglecting for the 
moment any effects which the difference in concentration might have on the 
frequency with which a molecule moves, it follows that the same fraction of A 
molecules originally in the lower slice will move to the upper as will move from 
the upper to the lower. Since there were more A molecules in the lower slice 
originally, a net transport of A molecules from the lower to the upper slice results. 
This observed net motion ordinarily represents only a small fraction of the total 
molecules which moved across the reference boundary between the slices, but in 
general it is this net transport which is of practical concern. 

In actual solutions the simplified argument presented above must be modified. 
If A and B are identical molecules in a binary solution, the rates of random 
motion across a fixed volume section are probably equal and opposite. In general 
the molecules are not identical and the random motion of one type of molecule 
is greater than that of the other. This results in a hydrostatic pressure building 
up in regions of the solution contributing least to the volume rate of transfer. 
This pressure gradient is relieved by a mass flow of A and B together which is 
superimposed on the statistical flow. 

The basic motion of the molecules is further complicated in non-ideal solutions 
by force fields which cause the motions to become not strictly random. If solute 
molecules could find themselves in a less favorable force environment in more 
dilute solution, for example, they might experience a real force toward the 
direction of high concentration and actually have a velocity component opposing 
the statistical flow. 

In view of the apparent statistical behavior inherent in the diffusion process, 
it should be possible to relate the unordered molecular motion to diffusion flow. 
The first successful attempt was made by Einstein (27) in his discussion of 
Brownian motion in the following manner. 

Considering the motion along the o;-direction only, plus and minus displace­
ments are probably equal and smaller displacements are more probable than 
large ones. It can be shown that the probability of a horizontal displacement 
having a value between x and x + dx is: 

P = ^ p exp (-x2/2Ai) dx (1) 

where A; is the mean of the squares of the average linear displacement. 
Az is simply related to a diffusion coefficient, Ds, defined as the number of 

molecules passing a unit cross-section in unit time when the concentration 
gradient is unity: 

D. = KAf)A (2) 
If diffusion now occurs across a plane in a horizontal tube with concentra­

tions Ci and C2 on each side of the plane, then in a time t only those particles 
closer than the mean displacement will pass through the plane. The number of 
particles passing through the plane will be 1(Aj)(C2 — Ci). From the above 
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definition of D, equation 1 becomes: 

P = yfe^t exP (-^/40.O d« (3) 

Practical utilization of this equation is restricted to the case where an amount of 
solute, S, is initially contained in a differential volume at x = 0 and t = 0. 
The concentration distribution of solute at time t is then given by the right-hand 
side of equation 3 when it is multiplied by S. Even then there is no general 
method of predicting the average linear displacement, so the coefficient D, must 
be determined by other means, usually experimentally. When one considers the 
more general case with an initial solute distribution, the difficulty of evaluating 
average displacements with changing solution environment becomes enormous. 

1. Fick's first law 

Although the statistical approach gives better physical insight into the nature 
of diffusion, the first successful mathematical formulation of diffusion rates is due 
to Fick (33), who deduced forces in the diffusion process analogous to those in 
heat flow. He observed that for a given temperature and pressure the rate of 
transfer appeared to be proportional only to the concentration gradient. He 
thereby established the simple relation, now well known as Fick's first law, which 
for unidirectional diffusion flow may be written: 

J = -D(dC/dx) (4) 

where J is the rate of material transfer per unit area and dC/dx is the concentra­
tion gradient. The diffusion coefficient, D, is presumed to be a constant for a given 
system, and the minus sign indicates that the flow is opposite in sense to the 
direction of the concentration gradient. 

Since diffusion of both components of a binary system requires that the flow 
of one be balanced by an opposite flow of the other, an equation can be written 
for each component. In general only one equation is used to describe diffusion 
in a binary system under a given set of conditions, implying that the diffusion 
coefficient is the same for each component. The diffusion coefficients, however, 
are identical only when the volumes of A and B do not change in the diffusion 
process. This can be shown as follows. Let the diffusion equation for each sub­
stance be written: 

JA = -DA(dCA/dx) (5) 

JB = -DB(dCB/dx) (6) 

and let VA and VB be equal to the constant volumes of the unit amounts used to 
define the concentrations of A and B. Where changes in volume with concentra­
tion can be neglected, VA and 7B will be the partial molar volumes. The volume 
transfer of A per unit time across a unit cross-section is then —D^V^dC^/dx), 
and that of B is — DBVB(dCB/dx). With a constant volume system there is no 
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net transfer of volume across a reference section, so: 

DAVA(dCJdx) + DBVB(dCB/dx) = 0 (7) 

The volume of A per unit overall volume of solution is VACA and that of B is 
FBCB- With only A and B present: 

7ACA = FBCB = 1 (8) 

Differentiating this expression results in the following: 

V ABC Jdx) + VB(dCJdx) = 0 (9) 

For equations 7 and 9 to be true, it follows that DA =s Z)B or else FA and/or 
FB = 0. If VA or VB cannot be considered constant, then DA need not equal 
DB. For the usual organic systems DA will generally be considered always equal 
to DB and the coefficient measured and discussed will be the one common to both 
substances, designated as the mutual diffusion coefficient, DAB. 

The basic diffusion law may be generalized in the case of diffusion in several 
directions by setting it down as 

J = - D grad C = - DVC (10) 

Ordinarily diffusion in one direction only is considered. Most practical applica­
tions of diffusivity values are for cases where this is essentially true, and ex­
perimental determinations of diffusivity values for other than unidirectional 
flow would be very difficult. 

Inspection of the basic diffusion law in equation 10 shows that the units of D 
must be in terms of L2C1. As long as the units used to express the quantity of 
material are the same in / and C, such units do not affect the numerical value of 
D. Ordinarily length is designated in centimeters and time in seconds, so D is 
expressed in terms of cm.s/sec, although some data are reported in units of 
cm.2/day and engineering literature often uses the units of ft.2/hr. 

2. Fick's second law 

For mathematical analysis of diffusion experiments it is convenient to trans­
form Fick's basic diffusion law into a form known as Fick's second law. By com­
bining the basic equation 10 with the requirement of a continuity of mass over a 
differential volume element of unit cross-section the following expression for 
Fick's second law is obtained: 

~ = DV2C (11) 

where D is considered to be independent of concentration. In the more general 
case where D is a function of C, the law is of the form: 

~ = div (D grad C) = V- (DVC) (12) 



392 P. A. JOHNSON AND A. L. BABB 

8. Hydrodynamic derivation of Fick's law 

It has since been shown that the basic diffusion law can be developed from 
theoretical hydrodynamics in the following manner (c/. Glasstone (40)) when 
osmotic pressure is considered the driving force for diffusion. In dilute solution 
the force on a single solute particle may be expressed as: 

/ = - (m/C) grad P (13) 

where C is the concentration, m is the mass of the particle, and P is the osmotic 
pressure. Since P = {CBT/mN), where N is Avogadro's number, equation 13 
may be written in the following form: 

/ = - (RT/N)[(gvad C)/C] (14) 

In steady motion where each particle may be assumed to have a constant velocity 
t>, this velocity ti = Bf, where B is a "mobility" factor dependent on the size and 
shape of the particle and the viscosity of the suspending medium. Substituting 
the above value for / : 

v= - (RT/N)(B)[(gnid C)/C] (15) 

Designating the flow as J: 

j = Cv = (R -T/N) (B) (grad C) = - D grad C (16) 

where D is set equal to (RT/N)(B). 
When the flow resistance (1/B) is set equal to that obtained from Stokes' law, 

&irqr, equation 16 becomes the familiar Stokes-Einstein equation. 

B. TYPES OF MTJTXTAL DIFFUSION COEFFICIENTS 

Although Babbitt (5) has recently discussed the development of various 
diffusion equations utilizing a basic hydrodynamic pressure gradient driving 
force, it is currently agreed by most investigators that the fundamental driving 
force in diffusion phenomena is one of chemical potential or activity derived 
from chemical potential. A number of authors appear to have introduced the 
chemical potential intuitively, but choosing the proper fluxes and forces for the 
diffusion phenomenon and applying thermodynamics of irreversible processes 
show that the driving force is chemical potential. Further evidence for the 
validity of using chemical potential is that the variation of the diffusion coefficient 
with molar composition is more linear in a number of cases when an activity 
gradient is used in place of the concentration gradient (26, 96). 

The presence of a concentration gradient term in Fick's law merely serves to 
define the numerical value of the diffusion coefficient and does not detract from 
the validity of practical applications. Troubles do arise, however, when reported 
experimental observations in terms of the Fick diffusion coefficient are related 
to other properties of the system because of the definition of the coefficient for a 
point condition only. 

Assuming for the moment constant volume conditions during an experiment 
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and neglecting self-diffusion, diffusion coefficients may still be classified broadly 
into: (1) differential coefficients, which represent conditions when diffusion occurs 
between two solutions of only differential concentration differences, and {2) 
integral coefficients, which satisfy the diffusion equation for the case where 
diffusion occurs between two solutions of significant concentration difference 
and in which ordinarily a significant change in concentration difference occurs 
during the diffusion process. Since most experimental diffusion measurements 
have been made where both a concentration difference and a change in concen­
tration difference were observed during the experiment, most reported coefficients 
are really integral in the strictest sense. I t is the differential coefficient, however, 
which has theoretical interest, since it is the one which should be most easily 
predicted from theories of the liquid state. Moreover, it is most useful in com­
paring data of different investigators, as a true differential coefficient leaves no 
uncertainty in the environmental description. 

It is not possible, in general, to measure differential diffusion coefficients 
rigorously; consequently their measurement is approached by making the con­
centration gradients small and assuming that the measured coefficient is a 
differential coefficient for the mean of the two starting concentrations used. 
This is usually a valid assumption and in many cases yields a value within the 
experimental error of the measurements, but it should be emphasized that except 
where the diffusivity-composition relation is linear, it is only a coincidence in 
most cases if the integral coefficient is the true differential coefficient for the 
average of the concentrations. 

The manner of determining the exact concentration value for which the integral 
coefficient is equal to that of the differential coefficient depends both on the 
variation of the differential coefficient with concentration and on the method of 
calculation used in conjunction with the experimental observations. Gordon 
(42) has described a method for relating the two types of coefficients when 
measurements are made with diaphragm cells, and Hammond and Stokes (51) 
have used such methods to convert measured integral coefficients into differ­
ential coefficients for the ethanol-water system. Stokes (110) has also discussed 
the problem of relating integral and differential coefficients when diffusion occurs 
from an initially sharp boundary between two columns of liquid and diffusion 
is not allowed to reach the ends of the cell. 

The usual methods of obtaining diffusion coefficients for systems of organic 
liquids are such that the coefficients for each component may be assumed equal. 
It is possible, however, to define other reference states for diffusion measure­
ments than the usual boundary across which no volume change occurs, and this 
concept has been discussed extensively by Hartley and Crank (52). In general, 
if a reference section is based on other than constant volume on a side, it may 
be necessary to use a modified scale of length in order that the form of the 
basic diffusion equation will not be changed. In particular, one might use a 
section which has a fixed total mass on each side or one with a fixed amount of 
one component. Although these notions do not find ready application in the 
study of ordinary liquid diffusion, they are useful in considering such special 
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cases as diffusion through membranes, absorption in sheets of material, and 
diffusion of one component through another restrained within a membrane 
permeable only to the diffusing substance. Other diffusion coefficients have been 
defined, particularly for gaseous systems. Relationships among several types of 
coefficients have been discussed recently by Opfell and Sage (92), but in liquid 
diffusion the Fick coefficient has been used almost exclusively. For these reasons 
these special reference planes and other defined coefficients will not be con­
sidered further here. 

C. SELF-DIFFUSION COEFFICIENTS 

Although the phenomenon was no doubt considered by many early investi­
gators, only recently has it become convenient to measure the self-diffusion 
coefficients of substances in the liquid state either as pure materials or as com­
ponents of mixtures. This coefficient is unlike those previously discussed in that 
its measurement does not require the existence of any overall chemical concen­
tration gradient, thus giving the nearest approach possible today to observing 
the magnitudes of actual molecular motion in a gross sense. The method involves 
observing the net translational motion of a given amount of a substance labelled 
with a known isotope of one of the constituent elements in an otherwise chemi­
cally uniform mixture. Ordinarily the technique is to use an isotope with a 
different mass than that normally present, or else to utilize a radioactive isotope 
whereby the progress of diffusion can be conveniently followed by appropriate 
radioactivity measurements. It is noted that the disturbing influences of con­
centration gradients and volume changes during an experiment have been 
eliminated with this type of measurement, with the result that the random 
motion of the molecules should be strictly that caused by the established uni­
form molecular environment. The behavior of the labelled compounds is no 
doubt slightly different from that of the natural isotope, since radioactive 
molecules have slightly different masses and emit small amounts of energy. 
It has generally been presumed that these differences are slight and that the 
resulting observations yield a value interpretable in terms of true random 
molecular motion. Some recent work of Longsworth (81) has indicated, however, 
a small but definite influence of concentration when deuterium oxide was used 
to measure the self-diffusion rates of water. 

The self-diffusion coefficient is calculated from experimental observations 
in the usual manner by observing the change in concentration gradient with 
time and distance of the tagged molecules in a given experimental environment. 
Since the overall concentration is uniform, the diffusion equations developed 
from the form of Fick's law shown in equation 12 may be safely used with an 
invariant value for D for given overall composition. While this calculation does 
not immediately give the number of molecules changing position in the solution, 
it is a measure of the extent of random motion of the tagged molecules in the 
given environment. 

At first glance this type of experiment might appear to yield a true differential 
diffusion coefficient, but it has been recently shown that significant differences 
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exist between mutual diffusion and self-diffusion coefficients for the same average 
solution composition (58, 104, 127). 

III . MATHEMATICAL SOLUTIONS OF BASIC DIFFUSION EQUATIONS 

In order to perform quantitative diffusion experiments and report the observa­
tions in terms of the classic diffusion coefficient, D, it is necessary to convert the 
basic diffusion laws into forms such that the terms other than D can be related 
to measurable quantities. Most of the useful solutions to the basic diffusion 
equations have been developed either by previous workers in the field of diffusion 
or by analogy to the related equations for heat flow. The solutions are available 
in a number of references, although particular mention may be made of the books 
by Barrer (7), Carslaw and Jaeger (15), and Jost (60). Since detailed develop­
ment of these solutions appears unnecessary here, this presentation will be 
confined to a brief summary of the most useful solutions of Fick's first and second 
laws for unidirectional diffusion, designated as the x-direction, followed by a 
brief discussion of the mathematical relations between differential and integral 
diffusion coefficients. 

A. SOLUTIONS OF FICK'S FIRST LAW 

Although restricted to rather few types of experimental methods, calculations 
by use of Fick's first law are simply made. If it is possible to measure the diffusion 
flux in a given system with a known concentration gradient for the given flux, 
the value for D is immediately calculable, for: 

D = -J/(dC/dz) (17) 

It is possible to integrate the above equation if D is assumed constant and the 
concentration is a linear function of distance. The most useful application is 
with diaphragm cells, where diffusion takes place across a diaphragm between 
two solutions of uniform concentrations C and C". For this case the follow­
ing equation can be derived: 

where C" and C" are uniform concentrations on each side of the diaphragm, / 
and i refer to the final and initial states respectively, V and V" are the volumes 
of solution on each side of the diaphragm, A is the effective path area for dif­
fusion across the diaphragm, and I is the effective path length across the dia­
phragm. 

The quantity /3 is often evaluated, where: 

/3 = [(1/70 + (1/V)U/D (19) 

Since A/l must be determined by calibration, the use of the same volumes during 
the calibration and the later experiments allows a constant value to be used for 
/3 for a given cell. Occasionally /3 changes with the age of the cell, owing to 
diaphragm wear. 
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B. SOLUTIONS OF FICK'S SECOND LAW WITH D A CONSTANT 

Although D is almost invariably concentration-dependent, many experimental 
methods can be utilized over sufficiently small concentration ranges that D can 
be considered constant. In addition, many methods will yield a value for D equal 
to the true differential coefficient for the mean of the concentrations used if D 
can be assumed a linear function of concentration over the range under study. 

The solutions of the equation 

(dC/dt) = D(d2C/dx2) (20) 

to be presented were originally developed by Fourier series analysis. Solutions 
will be given for a number of geometric possibilities useful in diffusion studies 
along with a brief mention of some of the common experimental techniques 
utilizing the given solutions. 

1. Infinite cylinder 

Boundary conditions: 
Uniform cylinder cross-section and infinite length: 

C = Co at a height of x < 0 at t = 0 

C = C" at a height of x > 0 at t = 0 

Concentration distribution at time t: 

C = Cl + (C'° ~ C"} [1 - erf (x/2VDt)] (21) 

where erf (x) is Gauss' error function (c/. 15). 
Concentration gradient distribution at time t: 

dC = C',-Ct (_x*/4Dt) (22) 
dx 2V*Dt 

If the refractive index is linearly related to concentration and n" and n' are the 
refractive indices for solutions of concentrations Co and Co, respectively, several 
useful equations relating the diffusion coefficient to refractive indices follow 
immediately. 

Refractive index gradient distribution at time t: 

(dn/dx) = [(TI' - n")/2y/^Dt] exp (-x'/iDt) (23) 

Maximum gradient of refractive index at time t, located at x = 0: 

(dn/dx) = (dn/dx)m*x = (n" - n')/2y/^Dt (24) 

Applications: These are probably the most used of all solutions to Fick's 
laws, as the boundary conditions are fulfilled practically by allowing diffusion 
to proceed for such a time that the concentrations at the ends of the cell remain 
unchanged, a situation often designated as free diffusion. Most experiments to­
day using optical techniques meet the above conditions and the calculations 
are based on either equation 23 or equation 24. 
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2. Semi-infinite cylinder 
Boundary conditions: 

Uniform cross-section with infinite length in positive ^-direction: 

C = C0 f or 0 < x < h at t = 0 

C = C" f or h < x < oo at t = O 

Concentration distribution at time t: 

'O ~ Co 
C = Co* + pi- L-(^D + - ( S T s ) ] (25> 

Applications: Although the semi-infinite length requirement can be met ex­
perimentally by simply insuring that diffusion does not reach the presumed in­
finite end of the cell, the method has no advantages over the infinite cylinder case 
and is rarely utilized. 

S. Semi-infinite cylinder with solute originally in a differential volume 

Boundary conditions: 
Uniform cross-section with infinite length in positive ^-direction: C = O 
over all x except that an amount S of material is contained at x = 0 at the 
time t = 0. 

Concentration distribution at time t: 

C = (S/VvDt) exp (-x2/4Dt) (26) 

Applications: Although the boundary conditions can never be met precisely, 
the use of radioactive isotopes increases analytical sensitivity to the point where 
the solute can be initially contained in approximately a differential volume. 

4. Finite cylinder 

Boundary conditions for the general case: 
Length I with uniform cross-section: 

C = C o a t O < a ; < / i a U = 0 

C = 0&th<x^latt = 0 

Concentration distribution at time t: 

A+ J^Bn exp (-I)^-Dt cos mrx 
T 

(27) 

where A and Bn are constants which must be evaluated for the special case under 
consideration. 

Boundary conditions for the case where the cylinder originally contains half 
solution and half solvent: 

Length I with uniform cross-section: 

C = C0 at 0 < x < 1/2 at t = 0 

C = 0 at 1/2 < x < I at t = 0 
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Concentration distribution at time t: 

c - ^ + ^ f ; i [ i - f-in 
.in 

n-KX cos - r exp (-1) nir Dt (-1) In-I)Ii (28) 

Applications: This equation was used with earlier measurements in which the 
average concentration in each half of the diffusion cell was determined at the end 
of an experiment. It is currently useful with radioactive tracer techniques where 
it is possible to measure the radioactivity from a thin segment of a diffusion cell. 

Boundary conditions for the case where the bottom fourth of the cell initially 
contains solution and the other portion contains solvent: 

Length I with uniform cross-section: 

C = Co for 0 < x < h at t = 0 
C = 0 for h < x ^ Z at t = 0 

h = \l 

Concentration distribution at time t: 

C = C', 
" l , 2 f l , /mr\ /mx\ 
_4 + ;£n s mUro sv-frx p (-1) K ) Dt (29) 

Applications: Calculations of the layer analysis techniques used by many 
early investigators were based on the above equation. Although the calculations 
are laborious, they were simplified by the tables of Stefan (108) and Kawalki 
(62) for certain of the functions in the above equation. 

Boundary conditions for a cylinder closed at one end with the concentra­
tion maintained zero at the open end: 

Length I with uniform cross-section: 

C = C0 for 0 < x ^ I at t = 0 

C = 0 f or x > U t all i 

Average concentration of material left in the cylinder at time t: 

8Co y 1 
T2 £o (2n + I)2 e x p [ - ( 2 n + l)VDt/4f\ (30) 

Applications: Capillary-cell experiments are ordinarily calculated by this 
equation. In the usual experiment only two or three terms need to be evaluated. 

C. SOLUTIONS OF FICK'S SECOND LAW WITH D A VARIABLE 

1. Boltzmann method 

Although more difficult mathematically it is possible to directly calculate 
values for the diffusion coefficient as a function of concentration over the range of 
concentrations in the diffusing zone. The classical solution of the equation: 

£-«00+'TO' 
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was presented by Boltzmann (8) for the case of an infinite cylinder, and this 
solution has been discussed in detail by many later authors. 

Boundary conditions: 
Infinite cylinder of uniform cross-section: 

C = Co for x < 0 at t = 0 

C = 0 f or x > 0 at t = 0 

Diffusion coefficient at concentration C at time t: 

»-Q)(£)/> <32> 
The equation is evaluated by plotting C as a function of x and determining 
dx/dC and the integral of x(dC) between the limits of C and Co from this plot. 

Applications: Although used by a number of earlier investigators to evaluate 
free diffusion experiments, this method has the disadvantage of requiring both 
integration and determination of slope by graphical methods which often in­
troduce serious errors. For this reason it is little used today. 

D. RELATIONSHIP BETWEEN DIFFERENTIAL AND INTEGRAL DIFFUSION COEFFICIENTS 

Although it is experimentally possible in general to measure only integral 
diffusion coefficients, it is desirable at times to convert the measured integral 
coefficients into differential coefficients. The latter are more useful in that they 
represent point conditions and can be immediately used to compare data among 
investigators, whereas integral coefficients obtained by different experimental 
methods can be compared only qualitatively. The two coefficients are related 
rather simply mathematically. The differential coefficient by definition is ex­
pressed as: 

D = -J/(dC/dx) (33) 

and the integral coefficient, D, is equal to: 

D = -J(x' - x")/{C - C") (34) 

For diffusion between concentrations C and C" it follows that: 

D = whnCDdC (35) 

This relationship is particularly useful in work with diaphragm cells, and the 
conversion of such coefficients has been discussed in considerable detail by 
Gordon (42). Cases of free diffusion have been discussed by Kraus (69) and by 
Stokes (110). An important conclusion in both the above cases is that when the 
differential diffusion coefficient can be considered a linear function of concentra­
tion over the range under study, the observed integral coefficient is equal in value 
to the true differential coefficient for the mean of the two initial concentrations. 
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IV. EXPERIMENTAL TECHNIQUES FOE MEASURING 

LIQUID-DIFFUSION COEFFICIENTS 

The great variety of experimental methods used to measure diffusion coef­
ficients is evidence that considerable ingenuity and effort have been spent in 
devising equipment in which the variables of concentration, distance, and time 
can be observed in such a manner during a diffusion process that the diffusion 
coefficient, D, can be calculated from one of the various mathematical forms of 
the basic diffusion equations. Many of the techniques once used have been sup­
planted by those which are capable of either greater accuracy or a combination of 
simplicity and considerable accuracy. The most precise techniques in use today 
appear to be those utilizing optical methods, particularly interferometry, for 
continuously analyzing the changes of concentration with distance and time in a 
cell. The method which perhaps best combines reasonable experimental simplicity 
with accuracy is the diaphragm-cell technique. The recent availability of isotopes 
has aroused interest in self-diffusion measurements, and the peculiar problems of 
this type of measurement have been best solved by a variety of special techniques. 

A number of the earlier experimental methods are described by Williams and 
Cady (136), and a general review of the experimental aspects of the diffusion 
field is included in the recent book by Jost (60). The review by Geddes (37) is 
particularly lucid and includes most of the recent advances in optical techniques. 
With the availability of the above summaries as well as others, little can be added 
unless it is in the form of details. For this reason only a brief summary of some 
major contributions to classical diffusion measurements will be included here, 
although several methods utilizing radioactive tracers will be discussed in some­
what more detail as they have not generally been reviewed previously. 

There have been a number of ways mentioned in the literature for classifying 
diffusion measurements, but in this discussion experiments will be divided into 
three broad classes. The first type includes those techniques where diffusion occurs 
in a quasi-stationary state and it is possible to measure the diffusion rate and 
concentration gradient. The second type includes all the techniques where a given 
initial concentration distribution at a starting time is known and the concentra­
tion distribution at the end of the experiment can be determined. The third type 
is similar to the second, except that the concentration distribution is determined 
continuously or at intervals throughout the experiment. For both of the latter 
two classifications, the diffusion coefficient can be calculated from solutions of 
Fick's second law in the form of equation 20 if D can be considered independent 
of concentration or from the law in the form of equation 31 if D is considered 
dependent on concentration. 

A. QUASI-STATIONARY DIFFUSION MEASUREMENTS 

The quasi-stationary method is simpler to calculate and in general requires 
less equipment. The principles of such a method can be readily illustrated in 
terms of an experiment utilizing two large vessels connected by a relatively small 
tube of length I and cross-section A. At the start of an experiment the large 
vessels are filled with solutions Co and Co' and after a suitable time there will be a 
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steady concentration gradient through the tube. In early work, after a steady 
state had been reached with concentrations C and C" in the two vessels at a time 
t = 0, diffusion was allowed to proceed until a time t when the concentrations 
were still substantially unchanged but an amount S of material had diffused. 
The diffusion flux is then simply J = Sf(At)(A). If D is not dependent on 
concentration, it can then be immediately calculated from Fick's first law, for 
dC/dx is equal to (C - C")/I. 

If D is dependent on concentration, the stationary concentration distribution 
will not be linear but will be some type of curve. Application of the previous 
equations will then yield an integral diffusion coefficient which can be converted 
into a differential coefficient by equation 35. If C can be measured as a function of 
x, D can easily be determined from the differential concentration differences, 
because the diffusion flux must be constant at any cross-section for a steady state. 
Since J is known and dC/dx can be determined from the slopes of the curve of 
concentration versus distance, D is immediately calculable. 

1. Constant flux methods 

Fick (33) formulated his basic diffusion laws on steady-state experiments using 
a simple apparatus consisting of a vertical tube open at both ends, placed with its 
upper end in a reservoir of solvent and its bottom end in a reservoir of solution. 
Clack (18) achieved a high degree of accuracy with the stationary diffusion 
technique by using a square tube which was set up in such a manner that the 
refractive index of the system could be measured over the entire length of the 
tube within which the steady-state gradient was established. With the relation 
between refractive index and concentration known, dC/dx could be computed for 
the entire column and thence the diffusion coefficient at any point. Although the 
method of Clack is capable of high precision, it has even more serious experi­
mental disadvantages than the relatively complex optical methods and is con­
sequently not used today. 

2. Diaphragm cells 

Since experimental techniques utilizing solutions of Fick's first law offer an 
easier approach to measuring diffusion coefficients, considerable work has been 
done to improve this type of measurement. The most successful has been the 
diaphragm-cell technique first introduced by Northrop and Anson (89). This is a 
simple experimental procedure in which diffusion takes place through a porous 
diaphragm connecting two cells in which the respective liquid concentrations are 
maintained uniform. Since the diaphragm has a greatly reduced cross-section, 
the lessened interfacial area between the two liquids eliminates some of the con­
vection errors which often arise during diffusion of liquids in large cells. The 
diaphragm exhibits an effective cross-section, A, and a path length, I, to the 
diffusing liquids which must be determined experimentally by studying a system 
whose diffusion behavior is known. The cell is calibrated and diffusion coefficients 
are calculated by use of equation 18, which assumes a linear concentration 
gradient across the diaphragm and an invariant value of D. 
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Since the above assumptions are not generally true, errors are introduced into 
the above equation, but these have been analyzed and found to be small in the 
usual case. Barnes (6) has shown that the influence of the non-linear concentra­
tion gradient is ordinarily negligible and in most cases is essentially corrected by 
the calibration. Gordon (42) in his excellent review of both the experimental and 
theoretical background of diaphragm-cell measurements has shown how the 
measured integral coefficient can be converted into a differential coefficient. In 
particular, if the variation of D may be assumed linear over the concentration 
range of interest and if equal volumes of solutions are used on both sides of the 
diaphragm, the measured integral coefficient is equal to the true differential 
coefficient for the mean concentration. 

Although the diaphragm-cell technique has been widely used for diffusion 
measurements, serious differences exist among data obtained by different in­
vestigators using this technique. Recent work on the ethanol-water system by 
Hammond and Stokes (51) and Smith and Storrow (106) disagree by as much as 
100 per cent, yet each pair of investigators considered his results accurate to 1 
and 3 per cent, respectively. One source of error no doubt lies in maintaining a 
constant cross-section for the calibration runs and the actual experimental runs, 
since entrapment of air or vapor could seriously alter the effective cross-section 
for diffusion. Another difficulty is the requirement that the logarithm of the ratio 
of concentration differences be used in equation 18 to calculate D. With small 
differences in initial concentration, extreme precision is required to reduce the 
error in D to a tolerable value because of the multiplying effects of the mathe­
matical treatment. 

Diaphragm cells have been used for several investigations of self-diffusion, 
using both non-radioactive and radioactive isotopes. The ability to withdraw 
samples for isotopic analysis is convenient, as in situ measurements of isotopic 
concentration by radioactivity or other means often pose difficult problems. 
The diaphragm-cell technique also has promise for work at higher temperatures, 
where difficulties with optical techniques increase significantly. 

B. UNSTEADY-STATE DIFFUSION MEASUREMENTS WITH ANALYSIS AT END OF 

EXPERIMENT ONLY 

The second classification of diffusion measurements comprises those methods in 
which the initial concentration distribution is known as well as the concentra­
tion distribution or an average concentration in parts of the diffusion system at 
some later time. Although mathematical solutions are theoretically possible for 
Fick's laws so long as the concentration distribution is a continuous function of 
distance and time, it was previously observed that for even simple boundary 
conditions the solutions become complex. For this reason almost all methods of 
this classification are based on a simple initial concentration distribution, 
usually that of a uniform Co in part of the cell and a uniform Co' in the other 
part. At the end of the experiment either the concentration distribution or the 
amount of material in various segments of the cell must be measured. Many of 
these techniques thus allow standard types of analysis to be made of samples 
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removed from the system, but this simplicity is usually achieved at some expense 
in accuracy. 

1. Capillary cells 

One of the simplest and oldest methods of this category involves diffusion from 
a capillary tube into a much larger volume of solvent or solution of different 
concentration. Capillaries of uniform diameter, sealed at the bottom, are filled 
with a solution of known concentration. Since the volume in the capillary is so 
small compared to that in the vessel, the concentration in the latter may safely 
be assumed to remain constant throughout the experiment. At the end of an 
experiment the diffusion coefficient can be determined if one can measure either 
the concentration gradient in the capillary or the total amount of material passing 
into or out of the capillary. Since the latter is usually easier to determine, it is 
ordinarily the variable measured. For diffusion times of several days the diffusion 
coefficient can be simply calculated by using two or three terms of equation 30. 

Although this method was used for some of the earliest diffusion measurements 
(c/. 46), the length of the experiments and the analytical difficulties, heightened 
because of the usual requirement of a rather small difference in initial concentra­
tion, caused the method to fall into disfavor. Some recent work by Haycock, 
Alder, and Hildebrand (53) in measuring the diffusion of iodine into carbon 
tetrachloride indicated that with modern microanalytical techniques good results 
can be obtained with this method. For ordinary diffusion measurements, however, 
it does not appear competitive with either the refined optical techniques or the 
diaphragm cell. 

For self-diffusion measurements, particularly with radioactive materials, the 
capillary-cell technique has the economic and experimental advantages of re­
quiring only small amounts of diffusing solution. These facts plus the basic 
simplicity of the method have caused its revival for measurements of self-
diffusion of radioactive ions (124, 125, 127, 128) and of compounds tagged with 
both radioactive and non-radioactive elements (126, 127, 129). With non-radio­
active isotopes, exacting density measurements or spectroscopic analyses are 
necessary, but with radioactive materials the isotopic concentration can be de­
termined by adapting many standard techniques for radiation measurement. 
For example, in the work of Johnson and Babb (58) and of Wang (127), relatively 
simple adaptations of Geiger-Mueller tubes were adequate to measure the radio­
activity of the small liquid samples. 

2. Segmented cells 

A method frequently used in earlier studies required that diffusion proceed in a 
cell of uniform cross-section of such a design that it was possible to determine the 
amount of material contained in various segments of the cell at the end of an 
experiment. The calculations for this method are rather laborious, but the tables 
of Stefan (108) and Kawalki (62), used in conjunction with equation 29, greatly 
facilitate the work. The general technique of layer analysis was used by the 
majority of early investigators in the field of liquid diffusion and was perfected by 
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Cohen and Bruins (19) to yield data with a precision of 1 per cent. The inability to 
eliminate boundary disturbances with this method, however, has caused it to be 
generally superseded by techniques of continuous analysis, particularly those 
based on optical principles. 

A modern adaptation of the method of segmented analysis was used by Saxton 
and Drickamer (102) to measure the self-diffusion of liquid sulfur. They used a 
cell of fritted glass initially pumped full of liquid sulfur with a known amount of 
liquid radioactive sulfur-35 in a thin layer on one end of the cell. Diffusion was 
allowed to proceed, and at the end of an experiment the cell was quenched and the 
sulfur solidified. Samples of the frit were then sanded off and the radioactivity in 
each of the various slices was measured. Since this experiment closely approx­
imated diffusion in a cylinder exposed to an instantaneous source of known inten­
sity at one end and diffusion was not allowed to reach the opposite end, the dif­
fusion coefficient could be simply calculated by equation 26. 

C. UNSTEADY-STATE DIFFUSION MEASUREMENTS WITH CONTINUOUS OR 

INTERMITTENT ANALYSIS 

In many respects the most desirable method of conducting a diffusion exper­
iment is to use a suitable means of physical analysis to determine the concentra­
tion distribution as a function of time at any desired cross-section of a diffusion 
cell. As previously mentioned, it is desirable from a mathematical point of view to 
establish a simple initial concentration distribution, usually a uniform Co and a 
Co separated by as sharp an interface as possible. Methods for observing con­
centration changes as diffusion proceeds are then limited only by the accuracy of 
the analytical method and the ease and ingenuity with which the analytical 
equipment can be used in conjunction with the diffusion cell. Although many 
methods of physical analysis will perform under these conditions, only a few have 
appeared to be sufficiently accurate for general use. These include measurements 
of density, of the absorption of light, of the total reflection of light, of radio­
activity, and of refractive index. Today refractive index measurements have 
almost replaced the other types except for radioactivity measurements in self-
diffusion studies. 

Since all other analytical methods except radioactivity and refractive index are 
now little used and are reviewed elsewhere, they will be dismissed here with only 
a reference to a typical investigation using each method. Continuous measure­
ments of density using calibrated floats in the diffusing solutions were performed 
by Gerlach (38). The absorption of light is discussed by Longsworth (77), and 
Zuber (138, 139) describes micromethods using both absorption and total re­
flection of light. A number of special techniques have also been used for diffusion 
measurements, but these generally appear to offer little utility for wide applica­
tions. These methods include measurements of electrical capacitance (120), 
surface tension (26), and the velocity of sound (61). 

1. Radioactivity measurements 

The availability of radioactive isotopes has made possible an additional 
technique of analysis for measuring diffusion rates of liquids, particularly for 
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studies of self-diffusion. Using isotopes emitting beta particles, Walker (122) 
determined the concentration gradient during the diffusion process by measuring 
the activity through a small slit in a shield surrounding the diffusion cell. This 
method is subject to the inaccuracy introduced by a finite slit width and is 
limited to use with pure beta emitters; however, the results of Walker on a phos­
phoric acid system agreed to within 4 per cent with other published data on this 
system. 

Although the conversion of a conventional diffusion technique for use with 
radioactive isotopes as shown above is of interest, the ability to measure very 
small concentrations of radioactive material accurately has allowed the utilization 
of experimental methods that are not feasible when used with ordinary analytical 
techniques. In particular, it is possible to both readily establish and determine 
concentrations of radioactive material in very thin segments of a diffusion cell. 
One technique based on this fact is the continuous measurement of the amount of 
material present in a thin layer at the end of a diffusion cell. This is possible if the 
penetration of the emitted particles is sufficiently small so that only the surface 
layer contributes to the observed radioactivity. This condition is satisfied by the 
beta particles emitted from sulfur-35 with an energy of 0.167 m.e.v. and those 
emitted from carbon-14 with an energy of 0.154 m.e.v. To simplify both ex­
perimental procedure and mathematical calculations, the diffusion cell used in 
this method is ordinarily made of two equal lengths of fritted steel or glass, one 
of which at the start contains a uniform concentration of radioactive material. 
The overall chemical concentration is the same in both parts of the cell and is 
presumed to remain so throughout the experiment. To determine the self-
diffusion coefficient it is then necessary only to determine, by any suitable means, 
the number of particles emitted from the thin surface layer of the solution in the 
cell. 

The method of calculating the diffusion coefficient from such measurements 
was initially presented by Timmerhaus and Drickamer (118). For a cell with the 
initial conditions indicated above, the concentration of radioactive material at 
time t is given by equation 28. With a fritted cell, the length must be determined 
by diffusion experiments with a system of known diffusion behavior, as the 
length will in general not be the actual geometric length. With a counting device 
to measure the rate of particle emission at I, radiation at any point x will be 
counted with an efficiency relative to the efficiency at I, dependent on the strength 
of the radiation. If the tracer element gives off only one kind of radiation, the 
efficiency F may be expressed as: 

F = exp - [ I - (z/A)] (36) 

where X is the path length of the radiated particle. If X is very small, the usual 
case with weak radiation, the intensity of radiation at point I may be expressed as 
follows: 

[1FCd* = ^ 
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At equilibrium in the cell when the overall concentration is Co/2, the intensity of 
counting may be designated as If. If observations are restricted to relatively 
long times after diffusion begins, the following relation holds: 

I = If- (2x) exp [ ( - l)(nT/lfDt] (38) 

A plot of In(J/ — 7) vs. t then gives a line of slope (-//t)(D), from which a value 
for D is readily obtained. Sometimes it is inconvenient to determine the intensity 
at equilibrium; if so, it is possible to calculate the diffusion coefficient by a 
graphical plot of (Tr2/f)(D) versus the quantity (Ih— It,)/(Its — /*,), with the 
additional parameter of given values of ti, U, U, and U. For given values of t 
and assumed values of D, the required values of the intensity of radiation ratio 
can be calculated to satisfy equation 38. Once this plot is available, knowledge of 
the actual radiation intensity ratio for a given set of times equal to those for 
which the plot was prepared will immediately give the desired diffusion coefficient 
if I is known from a calibration experiment. 

For determinations at atmospheric pressure the counting rate at the end of the 
cell can be measured by placing the cell adjacent to a thin-walled Geiger-
Mueller tube. The most useful application of this technique, however, appears to 
be for measurements under high pressure where conventional methods for 
measuring radioactivity are not applicable. 

Drickamer and coworkers (21, 68) successfully adapted a scintillation counting 
technique to such a cell. The cell was placed inside a steel bomb and the cell 
halves brought together mechanically at the start of an experiment. A crystal of 
either sodium iodide or anthracene was placed adjacent to the end of the cell. 
These crystals when exposed to radiation have the property of emitting light, 
which in the above technique was conducted by means of a lucite or quartz rod 
to a photomultiplier tube. The energy output from the photomultiplier tube was 
fed into a counting circuit which essentially registered the number of light pulses 
emitted from the crystal and hence indicated the number of particles striking the 
crystal. 

2. Refractive index measurements 

There is now little doubt that for systems with a suitable difference in re­
fractive index between the two components, measuring the changes in this 
property as diffusion proceeds in a properly designed cell is currently the most 
reliable way to determine a liquid-diffusion coefficient. Although the optical 
techniques are quite important and require considerable experimental equipment 
and care in both obtaining and analyzing the required refractive index patterns, 
the material is well treated by Geddes (37) and others, so the comments here will 
be brief. 

With most optical techniques, the experimental diffusion cell is such that a 
uniform denser solution of concentration Co is placed beneath a uniform solution 
of concentration Co' at the start of an experiment with as sharp an interface be­
tween the two solutions as possible. Considerable credit for the success of modern 
methods must go to the improvements in mechanisms for obtaining this sharp 
boundary, as no method will yield precise results without clearly defined initial 
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conditions. The development of cells is also well summarized by Geddes (37), 
but mention should be made of the double-slit sharpening technique used by 
Caldwell and Babb (10). In this work two horizontal slits were built into the cell 
at the desired interface height from which solution could be withdrawn until the 
boundary was as sharp as possible. By withdrawing liquid from two slits a 
sharper interface could usually be attained fairly rapidly. 

Although Gouy (45) considered refractive index measurements for diffusion 
experiments and discussed the expected interference phenomena, Wiener (133) 
was the first to develop the equation for the curvature of a light beam passing 
through a diffusing solution and to perform experiments. He developed equation 
24 for the case where the refractive index is a linear function of concentration and 
with suitable optical equipment actually reproduced a photograph on a 45° axis 
of the refractive index gradient through a diffusing solution. Thovert (116, 117), 
in the course of his extensive work on diffusion, modified Wiener's technique so 
that a photograph of the concentration gradient was directly produced in rec­
tangular coordinates. Thovert also used the method whereby the point of max­
imum curvature of the refractive index gradient was determined from the inter­
ference bands. The diffusion coefficient was then calculated from equation 24. 
Lamm (72) modified this technique in his well-known scale method, in which the 
displacements of the marks on a uniformly graduated scale are photographed 
through a diffusing solution. This technique requires very accurate measure­
ments of the scale mark displacements and is extremely laborious to calculate. 

It may be mentioned that in most optical techniques, diffusion cells of such a 
size are used that diffusion does not reach the ends of the cell, so that the simpler 
mathematical solutions of Fick's laws as given in equations 21 through 24 may be 
used to calculate the diffusion coefficient. 

Although the interference phenomenon was discussed by Gouy (45) in 1880, 
a quantitative interpretation was not presented until 1947 by Kegeles and 
Gosting (63) in conjunction with an experimental test of the method by Longs-
worth (78). Coulson (20) and coworkers have also reported on the same method of 
observing diffusion. Interferometric methods have since been used by a number of 
investigators with a precision of 0.1 per cent for non-volatile liquids and better 
than 1 per cent for volatile liquids. 

Several methods of solving for the diffusion coefficient are possible with inter­
ferometric methods. The best-known method is to utilize the position of the 
integral fringes as described by Longsworth (79). Another method, suggested by 
Svensson (114), has been used successfully by Caldwell and Babb (10, 11); in this 
method the differential solution of Fick's law as shown in equation 24 is used 
directly. The required refractive index values are such that they may be ex­
pressed in terms of arbitrary fringe numbers directly from the interference 
photographs. 

V. MUTUAL DIFFUSION THEORIES 

Many methods for estimating diffusion coefficients for a given system have 
been proposed since Fick first developed his basic diffusion law. The treatment 
for diffusion in gases has been adequately developed on theoretical bases (c/. 17), 
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and diffusion coefficients in gases have been correlated exceptionally well by an 
empirical equation proposed by Gilliland (39) and based on the form suggested 
by several theories of gaseous diffusion. The phenomenon of solid diffusion is 
also fairly well understood and has been reviewed by several authors (c/. Barrer 
(7) and Jost (60)). In the case of liquids no completely satisfactory method has 
yet been proposed for estimating diffusion coefficients from either basic molecular 
data or other physical properties of a system. This is no doubt largely due to the 
lack of understanding of the liquid state which makes the basic premises of any 
proposed theory somewhat uncertain. 

A. LIQUID-STATE THEORY APPLIED TO DIFFUSION 

In recent years a number of authors have presented theories attempting to 
explain the liquid state, but usually these theories either lack accuracy in their 
basic assumptions or else are extremely complex. At present, rigorous theories 
have limited application, unless extensive simplifications and approximations 
are made. As a result the complex bases of the theories are invalidated. From a 
practical standpoint, more success often results from a simple "model" structure 
which is known to be inexact but which can be treated simpler mathematically. 
Although any detailed discussion of liquid-state theory is beyond the intent of 
this review, several concepts particularly significant with respect to diffusion 
will be mentioned briefly. For detailed discussions of liquid-state theory, the 
reader should refer to one of the many presentations of liquid-state theory, such 
as those by Born (9), Frenkel (35), Green (48), Jaffe (57), Kirkwood (66, 67), 
and Yang (137). 

Attempts to formulate mathematically the behavior of liquids have usually 
been based on a model of either a quasi-crystalline state or a condensed gas, 
but neither approach has yielded entirely satisfactory results. There is some 
evidence obtained by x-ray investigations that in liquids a tendency toward 
order exists about any given molecule on a microscopic basis. This order tends 
to decrease rapidly with distance from the reference molecule and the assump­
tion of an ordered lattice structure in liquids, similar to that in solids, is ap­
parently not justified even on a microscopic basis. Nevertheless, certain phe­
nomena of liquids can be treated rather successfully by assuming an ordered 
lattice, but the difficulties increase when considering kinetic phenomena because 
the deviations from an ordered structure are then of the most importance. 

In relating liquid structure to an ordered lattice, it is presumed that the 
holes which exist in the liquid structure introduce apparent disorder as do 
vacant sites in the analogous case of imperfect crystals. The holes are simply 
the result of molecules being absent from a given position in the structure, 
and the number of holes increases with temperature as the liquid becomes less 
dense. Molecular motion then occurs as molecules move into available holes 
from a given site in the lattice and create holes in the spaces they vacate. 

The treatment of liquids as condensed gases is based on the kinetic theory of 
fluids originated by Maxwell (84) and Boltzmann (8), highly developed by 
Chapman (16) and Enskog (28), and summarized in the treatise by Chapman 



LIQUID DIFFUSION OF NON-ELECTROLYTES 409 

and Cowling (17). The regularity of liquid structure shown by x-rays is explained 
on a kinetic basis by the existence of a radial distribution function. The mathe­
matical development of such a function is exceedingly complex but has been 
handled with considerable success by Kirkwood and coworkers (67). 

Several assumptions inherent in kinetic theory development make it of ques­
tionable value when applied to liquids. The first is that molecules experience 
only "binary encounters," an assumption which is certainly invalid, since the 
path followed by a molecule in a liquid is very complex and can only be described 
in a statistical sense. Another assumption in the theory is that which is required 
to determine the mean force exerted on a molecule with a definite position and 
velocity when it collides with other molecules. Boltzmann assumed that the 
probability was based on the position of the first molecule, but in non-uniform 
fluids this effect is influenced by local gradients of density, temperature, and 
macroscopic velocity. It is possible to apply correction terms to include these 
effects but when clusters of molecules bound by intermolecular forces exist, the 
mathematical difficulty becomes enormous. 

As discussed earlier, diffusion occurs because of the unordered thermal motion 
of the fluid molecules, causing them to move from point to point in the fluid. 
Statistically more will move from the region where a given type was originally in 
a higher concentration to the region where this species was originally in a lesser 
concentration, resulting in an observable net transport. Since the net diffusion 
then depends only on the thermal motion of the molecules, it is possible to relate 
the diffusion coefficient to the velocity distribution functions of the molecular 
types present in a liquid mixture (c/. Green (48)). Although diffusion can be ex­
plained solely on the basis of velocity distribution, the molecular structure of the 
fluid and the intermolecular forces influence this velocity distribution in such a 
manner that it cannot be evaluated for conditions existing during the diffusion 
process. The formulation of the distribution function for associated molecules or 
those with unsymmetrical force fields is particularly difficult. Because of these 
problems the history of diffusion theory contains many attempts to evaluate 
diffusivities based on simplified conditions or analogies to other processes. 

B. EARLY THEORIES OF DIFFUSION 

Historically, attempts to develop suitable expressions for the diffusion coef­
ficient have generally followed either a kinetic, a hydrodynamic, or a thermo­
dynamic approach to the problem. Initial kinetic approaches utilized the fact 
that in gaseous systems the average kinetic energy of a molecule is a function of 
the temperature only. Assuming that the rate of diffusion depends only on the 
translational velocity, the result is Graham's law, which states that the dif-
fusivity varies inversely as the square root of the molecular weight. While valid 
for gaseous diffusion and reasonably valid for gases diffusing into liquids, it is 
generally quite inadequate for liquid systems. 

The hydrodynamic approach had its start in 1858 when Wiedemann (132) 
observed that in the dilute solutions then studied D varied inversely as the 
viscosity of the solvent. Walden (121) combined this observation with Graham's 
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law to establish the relation that DrjM11* is a constant for a given solvent, where 
7j is the solvent viscosity and M the molecular weight of the solute. 

The classical hydrodynamic development of the diffusion coefficient was made 
independently by Sutherland (112) and Einstein (27), who showed that: 

D = RT/6irrirN (39) 

where r is the radius of the diffusing molecule. As shown earlier, this relation can 
be developed by considering the driving force for diffusion to be osmotic pressure 
and the frictional resistance to be 6x7?r as given by Stokes' law. 

Equation 39 has been shown to apply accurately for particles of colloidal size 
by a great number of investigators, but generally its accuracy decreases as the 
particle size decreases. This is not unexpected, as Stokes' law is based on the 
premise that the solvent is a continuum, a premise which can no longer be true 
when the solute particles approach those of the solvent in size. Ordinarily the 
viscosity considered is that of the solvent alone, and this would further restrict its 
use to dilute solutions. 

C. KINETIC THEORY OP ARNOLD 

The first successful approach based on kinetic theory was made by Arnold (4), 
who applied classical gaseous kinetic theory to diffusion in liquids after making 
certain corrections for the closer molecular spacing. By making the following 
assumptions: 

1. All collisions are binary, 
2. The collision rate is unaffected by the volume occupied by the molecules, 

and 
3. Intermolecular attractions are negligible, 

Arnold deduced the following equation: 

D - * V ( W ) + ( W (F2) (40) 

where B is a proportionality constant, Mi and M% are the molecular weights of 
the solute and solvent, *S2 is the square of the sum of the molecular diameters, and 
Vi is the molar volume of the solvent. It is noted that this equation is similar to 
that developed by Gilliland for gases. 

Since the above assumptions are invalid for liquid systems, a correction term 
F was introduced into the denominator to correct the expression in a semi-
empirical manner. The first two assumptions may be handled approximately by 
the constant B for any given system. The role of the intermolecular forces is 
complex, and Arnold related the F term to the viscosity of the fluid, which is in 
turn related to momentum transfer. The following bases were used for evaluat­
ing F: (1) in dilute systems F is essentially a function of the solvent properties; 
(2) F is directly proportional to the square root of the solvent viscosity; (3) 
when either the solvent or the solute is associated, additional correction factors 
designated as Ai and A2 for the solute and solvent must be introduced. This 
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results in the final equation for D: 

_ BV(IZM1) + (1/Af2) , , 
A1A^S* K ' 

It is noted that the expression for F includes T2, so the latter quantity does not 
appear in equation 41. 

Much of the data available at the time his theory was presented was studied by 
Arnold, and the correlation with the equation was reasonably good. The major 
difficulty is the fact that many liquids require a correction term for association 
which must be evaluated experimentally. In general this correction term is 
approximately a constant for a given substance, although its value differs be­
tween the roles of solvent and solute. Arnold pointed out that the method for 
correcting for association with A factors appeared to yield better results than 
when a multiplying factor for M and V was used, as required by the usual con­
cept of association for abnormal substances. 

On the basis of the limited amount of data then available over a range of 
temperature, Arnold proposed that the variation of D with temperature was 
linear. Later work by many authors has shown that in this respect Arnold was in 
error, as the temperature variation is clearly exponential. 

Recently Caldwell and Babb (10) showed that the Arnold equation predicted 
diffusion coefficients with an average deviation of 10 per cent for dilute concentra­
tions in three ideal systems. Although Arnold apparently did not intend the 
equation to be used in other than dilute solutions, Trevoy and Drickamer (119) 
used it to correlate data for some equimolal mixtures with considerable success. 
While the basic assumptions for Arnold's development are somewhat tenuous, 
it appears to be one of the best methods yet proposed for estimating diffusion 
coefficients in dilute solution, providing data are available for the components so 
that necessary association factors can be assigned. 

D. KINETIC THEORY OF EYRING 

A recent kinetic approach to the diffusion problem based on reaction-rate 
theory is due primarily to Eyring. The work was initially presented in a number 
of papers by Eyring and coworkers (32, 30, 31, 55, 64, 96, 100, 107) and sum­
marized by Glasstone, Laidler, and Eyring (41). The development is based on the 
hole theory concept of the liquid state, which describes diffusion as a process in 
which molecules move from a given position into an adjacent hole in the liquid 
structure. The holes in the liquids are similar to gas molecules in behavior, but the 
translational motion of the holes in a liquid is not as free as motion in a gas, so the 
partition function for holes is less than that for gases. If E is the bond strength 
between liquid molecules, the energy to vaporize a single molecule is E/2 if no 
hole is left in the liquid. This same amount of energy, E/2, is required to make 
a hole in the liquid of a size to accommodate a single molecule. 

Eyring and coworkers applied absolute rate theory to diffusion by assuming 
that the energy of activation for the diffusion process is that energy required to 
form the extra space in the liquid to allow the molecules to move. In diffusion and 
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also in viscous flow the passing of two molecules requires extra space, which is not 
necessarily the size of a molecule. The energy of activation for diffusion will then 
be some fraction of the energy of vaporization, AEatt = AEnv/n. 

The initial development was for the case where the standard free energy is the 
same in all equilibrium positions occupied by a molecule during the diffusion 
process, thereby restricting consideration to ideal solutions. Since the Eyring 
treatment has been widely applied, a brief derivation of the basic equations will 
be shown in the following paragraphs. 

Let X be the distance between equilibrium positions of a molecule diffusing in 
the z-direction from an initial concentration of C. The concentration at the next 
equilibrium stage will be C + X(dC/da;). The net flow in this process may be 
shown to be 

v = -N\\(dC/dx) (42) 

where K is the specific reaction rate for diffusion and N is Avogadro's number. 
Applying the basic form of the expression for rate of reaction, K may be 

expressed as: 

(kTF*) 
[KF) 

exp (-eo/kT) (43) 

where eo is the activation energy for diffusion per molecule at 00K. From the 
basic diffusion law it follows that 

D = X2K (44) 

and this may be combined with equation 43 to give 

J9 = ^ ~ ^ e x p (-e0/kT) (45) 

Assuming that the only degree of freedom is a translational one, the expression 
for D reduces to: 

X2 / kT V 2 

D = Vf (frm) e x p (-A^vapM2T) (46) 

where the assumption is made that AiJdHf = AEmv/n. X may be approximated 
by (F/2V)1/3, where V is the molar volume. The free volume, Vf, maybe estimated 
by one of several methods. Eyring and Hirschfelder (32) showed that it may be 
approximated by the equation 

V1/3 = (cRTVw)/(Nw'AEvap) (47) 

where c is a constant depending on the molecular arrangement, having a value 
of 2 for a cubical pattern. Kincaid and Eyring (64) also have suggested the 
relation: 

Vf = V1!\UgJUu<d (48) 

where U is the velocity of sound. 
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In utilizing the equations developed by Eyring in concentrated solutions, 
appropriate molar averages must be determined for the various properties. 

Although the above method yields results of the proper order of magnitude, 
a survey of some of the calculated values of diffusion coefficients compared to 
experimental values reveals its shortcomings. In one of the original papers by 
Stearn, Irish, and Eyring (107) the observed diffusion rates of approximately 
twenty substances in dilute aqueous solution were 1.3 to 3.5 times higher than 
the calculated values, the differences being least for sugars and highest for 
alcohols. Likewise, data for the diffusion of approximately forty organic sub­
stances into benzene and other solvents showed the ratio of observed to cal­
culated diffusion coefficients to be 0.19-0.77. An excellent test of the correlation 
can be made with self-diffusion data of pure substances, which can be treated 
as ideal solutions. Data of Graupner and Winter (47), when used to compare 
calculated with experimental values, showed that for benzene the calculated 
coefficient was about 30 per cent of the experimental, while for ethanol the 
calculated coefficient was three times greater and for water, ten times greater. 
Trevoy and Drickamer (119) calculated the diffusion coefficients for twelve 
equimolal mixtures of various hydrocarbons and benzene and hydrocarbons 
with hydrocarbons, most of which formed relatively ideal mixtures, and found 
the calculated value to be generally three to five times the experimental value. 
In the recent work of Caldwell and Babb (10) two ideal systems agreed within 
10 per cent between the calculated and experimental values; however, when the 
frequency and exponential factors of the Eyring equation were calculated 
individually, it was observed that the overall agreement was partly fortuitous. 
Sufficient data have now been correlated with the Eyring equation to show that 
at least with present knowledge of molecular parameters the method yields 
values only of the proper order of magnitude. One factor which may contribute 
to these shortcomings is that in dilute solutions the solute does not significantly 
alter the equilibrium length, X, or the free volume, and yet observation of self-
diffusion measurements clearly shows that in dilute solutions the characteristic 
self-diffusion rate of each component may be greatly different; hence more 
weight should probably be given to the solute properties. As pointed out by 
Kincaid, Eyring, and Stearn (65), there may also be changes in the freedom of 
rotation in the activated state as compared to the normal state; hence the ratio 
of partition functions based only on translational motion may not be justified. 

The Eyring equation does predict an exponential temperature effect on 
diffusion rates which has been verified by a significant amount of data. The 
results of Cohen and Bruins (19), Scheffer and Scheffer (103), Graupner and 
Winter (47), Partington, Hudson, and Bagnall (95), and Caldwell and Babb (10), 
as well as those of many other investigators, all show that the variation of 
diffusion with temperature is exponential in form. 

Some useful results with the equation for diffusivity are reached by combining 
it with the equation developed by Eyring (31) for viscosity. The following 
equation was developed by applying reaction-rate theory to viscosity: 

V = (XiA2A3)(ZcTA2KVi30) (49) 
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FIG. 1. Intermolecular distances used in the Eyring equation 

where Xi, X2, and X3 are the three distances between molecules as shown in figure 1. 
As shown, diffusion is in the dimension of X2, and it should be pointed out that 
X2 need not equal X, the equilibrium distance between molecules moving in that 
dimension. 

By assuming that X and K are the same for the processes of diffusion and 
viscous flow, the following equation can be derived for D: 

D = XifcT/X2X3i? (50) 

This is a particularly useful relation and has been used by several investigators 
to develop semiempirical relations for estimating diffusivities. I t is observed 
that the linear relation between D, T, and r\ is similar in form to that proposed 
empirically by earlier investigators and even now assigning values for the 
intermolecular distances for other than a pure liquid requires rather arbitrary 
assumptions. 

By assuming that the liquid structure is made of spherical molecules, with 
radius r, that are packed to touch, equation 50 may be written as: 

D = RT/a2rr)N (51) 

where a is a factor that is dependent on the size of the solute and solvent mole­
cules. In self-diffusion of simple molecules a should be unity, as the distances 
Xi, X2, and X3 should all be equal. At the other extreme, with the diffusion of 
large molecules in a solvent of small molecules, it may be assumed that the 
rate-determining step in the motion of the large molecules is the diffusion of the 
small molecules around the oncoming large molecules. In this case a in equation 
51 becomes 3ir and r is the radius of the large molecule, resulting in the familiar 
Stokes-Einstein equation. For other than self-diffusion of a pure liquid and 
the diffusion of large molecules, the value for a becomes unpredictable. With 
molecules of intermediate size it is also difficult to assign an appropriate value 
for r. 
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If the assumption of an equal rate constant for viscosity and diffusion is not 
correct, then equation 51 must be modified to: 

D = (Xi^rAiWGtTtaAdiM) (52) 

where the ratio ((CvUcAdnf) must be determined for the system under study. 
The differences between the phenomena of diffusion and viscous flow have 
been recently discussed by Li and Chang (76) from the standpoint that Eyring's 
basic equation for viscosity should include a factor for relative velocity. The 
previous equations developed by Eyring are restricted to ideal solutions, but 
by considering the changes in free energy with concentration, the values for 
the diffusion coefficient were corrected for solution non-ideality. For the case 
where the diffusion process is considered to be the passing of two molecules the 
following expression was derived: 

D1 = Di(I + 3 In yi/N2 d In N1) (53) 

where D,- is the ideal coefficient. When the unit process is considered to be the 
motion of a single molecule, the following equation was derived: 

D1 = Di(I + d I n W d In N1) (54) 

Rate theory does not indicate which mechanism is preferable, but the develop­
ment of expressions for diffusivity by thermodynamics indicates that the latter 
is more probable. 

A convenient way of treating this correction is to multiply both sides of equa­
tion 54 by the viscosity, 17, of the system, thus: 

AiJ = JDiIj(I + d In Yi/3 In N1) (55) 

If D,- is replaced by the expression for the ideal diffusivity: 

D1Ii = (XWX2X3)(I + d In Yi/d In N1) (56) 

The activity correction may be calculated from partial vapor pressure data, 
assuming that the behavior of the gas phase is ideal, generally a valid assumption 
at low pressures. 

Powell, Roseveare, and Eyring (96) corrected the observed data of Lemonde 
(75) for the systems chloroform-acetone, chloroform-ether, and n-propyl 
alcohol-water and found that the Dr) product became more nearly linear after 
the application of the correction. Unfortunately not all systems are significantly 
linearized by such a correction. Kincaid, Eyring, and Stern (65) discussed the 
methanol-water and ethanol-water systems and Caldwell and Babb (11) the 
methanol-benzene system. No final explanation has been given why there is no 
significant tendency toward linearity for systems of the above types, but Eyring 
and coworkers ascribed some of the difference to rotational terms which were 
neglected in the partition function ratio in the basic development of his theory. 

E. RANDOM MOTION DEVELOPMENT OF THE DIFFUSION COEFFICIENT 

Although the diffusion coefficient was previously developed from considera­
tion of random molecular motion by an elementary treatment, Ogston (91) 
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FIG. 2. Molecular displacements in the diffusion process 

has recently discussed the problem for non-ideal solutions in the following 
torn manner. §-\ 

With reference to figure 2, consider the displacements taking place between 
laminae at x' and x" across a plane within a very short interval of time. AU 
particles moving to the right from between x' and (x' + dx') will arrive between 
x" and (x" + dx") and vice versa. The flux is then: 

dJx> = Cx< dx'Xx'+ — C^dx"Xa*_ (57) 

where Xx'+ and xx»_ are the frequencies of motion from the positions and direc­
tions shown. From the principle of microscopic reversibility, xx>+ and xx»_ 
each contain a factor typical of the point of origin and a factor typical of the 
transition; hence 

X5/+ = 4,{x')4>"{x', x") 

x^_ = 4>{x")4>"{x', x") 

The flux may then be expressed as follows: 

(58) 

(59) 

dJx 

It may be shown that: 

dx" - dx' 

The flux then becomes: 

-<t>'{x',x") i-(CAx4>{x))5x' 
dx 

8'x>(ddx'/dx) = dx'(ddx./dx) 

dJx -4>{x')4>{x ', x")5x. [ 1 j - d in 3' a In 4>{x)~\ dC , , , , 

(60) 

(61) 

(62) 

Integration between the limits of zero and a value of x equal to (—5') gives the 
total flux. The equation is simplified by referring the quantities to the position 
x — 0. The total flux thus obtained is: 

J = -^»(0)^(0, OK2 [ 4- d in 3' d In <p(x)' 
+ B In G + d In C 

dC 
dx 

(63) 
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If the 0(0)0'(0, 0) is represented as ko/2, the total flux becomes: 

Since a; is a function of C, the above equation may be written as: 

1 + dhig ' , d In <j>(x) 1 dC_ , ^ 
d In x d In x J 6a; 

, _ — 5p fcp 

Practically, the term in parentheses can rarely be evaluated, but it serves some­
what the same purpose as the activity correction in other expressions for the 
diffusion coefficient. 

F. HYDEODYNAMIC AND THERMODYNAMIC DEVELOPMENTS OF 

DIFFUSION COEFFICIENTS 

Although the classical efforts to utilize thermodynamics to evaluate diffusion 
coefficients have usually combined thermodynamic and hydrodynamic principles, 
efforts have recently been made to develop an expression for the diffusion co­
efficient by use of the thermodynamics of irreversible processes. This will be 
discussed after illustrating the usual hydrodynamic approach. 

1. Hydrodynamic development 

The following derivation is adapted from that initially presented by Hartley 
and Crank (52). Let a concentration CA of component A in a binary solution 
be maintained in equilibrium by applying a force FA per mole of A in the direc­
tion of increasing x. This force is purely hypothetical but is useful in applying 
hydrodynamic principles. In an ideal solution: 

FA = RT(d In CJdx) (66) 

If there were no concentration gradient present, FA would produce a real average 
velocity vA of the A molecules in the direction of increasing x where 

VA = (FA/N)(l/aAV) (67) 

and aAr\ is a resistance to flow dependent on the composition and viscosity of the 
solution. The above flow will cause a rate of transfer S'A moles per second across 
unit cross-section of area where: 

S'A = (F Af N)(If* Ar,)CA (68) 

If the concentration gradient assumed above is present but with no corre­
sponding force, the gradient will produce a transfer by diffusion equal in magni­
tude to that deduced above but opposite in algebraic sign, SA = - S A - From 
the basic diffusion law: 

SA = -DA(dCJdx) (69) 
and thence: 

DA = (RTfN)(I/^) (70) 
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In any real solution further complications arise. The force used in the above 
development must be based on activity; hence, 

FA = (RT)(d In NAyA/dx) = grad p (71) 

The velocity of the molecules will affect the randomness of the molecular motion, 
but this is taken care of empirically by the resistance terms designated <r, which 
will be a function of the solution composition. The displacement of one molecular 
species by another must also be considered, as this will introduce mass flow in 
the general case. When the partial volumes are constant, the following equation 
results for DA: 

DA = (RT/NaAV)(d In NAyJd In GA) (72) 

Consideration of some basic relations between volume and concentration allows 
the above equation to be rewritten as: 

DA = (RT/NaAV)(NA/VBCA)(1 + d In yA/d In NA) (73) 

An equation similar to that for DA can be written for DB: 

DB = (RT/NcBr,)(NB/VACB)(l + d In 7BA> In NB) (74) 

Hartley and Crank (52) have further shown that under constant volume con­
ditions a mutual diffusion coefficient can be defined by 

DAB = VACA(DB - DA) + DA (75) 

where VA and 7 B are assumed to be independent of composition. This relation, 
when combined with the Gibbs-Duhem equation, yields an expression for the 
mutual diffusion coefficient for a non-ideal binary solution in the form: 

DAB = ^ [1 + d In yA/d In NA] * » + ^ l (76) 
_aAr) 0-B77J 

The resistance factors a- are functions of composition, although in systems 
where the Di) product, corrected for solution activity, is a linear function of 
molar composition, given values for <rA and o-B will completely define the be­
havior of the diffusion coefficient isotherm. 

2. Thermodynamics of irreversible processes development 

A formalized approach to evaluating diffusion coefficients has been made by 
use of the thermodynamics of irreversible processes (c/. 23 and 24). The general 
equations for such a process in a mixture of two components are: 

Jx = LuXi + Li2^2 (77) 

Ji = LnXi + L22X2 (78) 

where Ji and J2 are the mass flow rates of components 1 and 2, Ln, L22, Li2, 
and L2I are phenomenological coefficients, and Xi and X2 are the driving forces 
for the process. Analysis of the problem reveals that for the case of interdiffusion 
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of two components there are no cross-effects, so that the following is true: 

J1 = - J 2 = L11(X1 - X2) = -L12(X1 - X2) (79) 

For the case with no external forces and no pressure gradient the force difference 
is as follows: 

(I1 - X2) = -d 

or 

when the Gibbs-Duhem equation is applied. 
Comparing this with the usual diffusion equation: 

J = - D grad N1 (82) 

it is observed that the diffusion coefficient D12 is defined as: 

D12 = -(L12ZN2)OiX1ZdN1) (83) 

Representing the chemical potential in the usual manner in terms of activities 
results in the following equation: 

D12 = - (L13RTZN1N2Xd In Nm/d In N1) (84) 

Although phenomenological theory gives no indication of the form of L12, 
consideration of experimental diffusion results shows that it must be a function 
of concentration. Otherwise, equation 84 would yield results incompatible with 
experiment or would be indeterminate for the case of dilute solutions. 

G. CORRELATION OF DIFFUSION COEFFICIENTS WITH MOLECULAR FREE LENGTHS 

A different hydrodynamic approach to estimating diffusion coefficients was 
proposed by Jacobsen and Laurent (56), who have related various physical 
properties of liquids to the molecular property of free length or free fluidity 
length, the latter being defined for use with properties dependent on molecular 
motion tangential to the molecular surface, such as viscosity and diffusion. The 
free fluidity length, L^, the minimum distance between intermolecular surfaces, 
is defined as: 

L, = 2(VT - VJZY (85) 

where VT is the molar volume at T0K., Y = (SQTNVVI0). Via is defined by 

4» = (1/,) = h(Ws - Vl'!) 

and fci is a constant for a given substance. An empirical equation was developed 
relating fluidity and free length: 

0 + c = kL+Mw (86) 

Mi M2 

3N1 
grad N1 (80) 



420 P. A. JOHNSON AND A. L. BABB 

where c = 15.8 c.g.s. units, k = 6.85 X 1O- c.g.s. units, and M is the molecular 
weight. Tests of the above equation on eighty-one non-associated liquids showed 
it to hold within 5 per cent; for twenty liquid mixtures the fluidity was a linear 
function of L4M

112 with an average deviation of only 2.4 per cent. 
Jacobsen and Laurent indicated that the diffusion coefficient was a linear 

function of the free fluidity length in different diffusion media. Since it has been 
demonstrated that the diffusion coefficient is related to the viscosity in dilute 
solutions, and linearly so for non-associated liquids, such a result is not un­
expected. The notion of free fluidity lengths is not likely therefore to add to our 
present understanding, for, if the viscosity is a linear function of the free fluidity 
length, the diffusion coefficient also must be for dilute solutions, but undoubtedly 
no such simple relationship exists for concentrated solutions. 

H. ENGINEERING CORRELATIONS OF DIFFUSION COEFFICIENTS 

Several authors have suggested engineering correlations to estimate diffusion 
coefficients in dilute solution. These have been primarily based on the general 
form of the Eyring equation, but the empirical factors introduced have re­
sulted in several useful and reasonably accurate methods for estimating diffusion 
coefficients in dilute solution. 

1. Wilke correlation 

Wilke (134) proposed setting the quantity (TfDi)) equal to a factor desig­
nated as F, a constant for a given solvent-solute system. This follows immediately 
from equation 50, which can be written as: 

F = (T/Dv) = (X1XsA1A;) (87) 

The assumption is that the distance parameters do not vary significantly over 
moderate temperature ranges. 

Data (primarily those of Thovert) for approximately 150 solutes in dilute 
solutions of water, methanol, and benzene were plotted by Wilke in the form 
of (TfDr)) versus the molar volume of the solute. For a given solvent the data 
fall on a smooth curve with an average deviation of 10 per cent but with some 
deviations up to 20 to 30 per cent. At low molal volumes, values of (TfDt)) 
for methanol are 82 per cent of those for water, while for benzene they are 70 
per cent of those for water. Both curves merge into that of water at high molal 
volumes and apparently approach the value predicted by Stokes' law at very 
high molal volumes. The method can be extended to include curves of other 
solvent "factors," so the notion can be used for any system in dilute solution. 
This is a simple and rapid method for obtaining values for diffusion coefficients 
in dilute solution, and is particularly useful for those solvents where sufficient 
data are available to evaluate the solvent "factor" accurately. 

In a recent paper Wilke and Chang (135) present a general correlation for 
diffusion in dilute solutions: 

D = 7AX 10-8 {xMv2T (88) 
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where V is the molal volume, M is the molecular weight, T is the absolute tem­
perature, i) is the viscosity, and x is an association parameter to define the 
effective molecular weight of the solvent with respect to the diffusion process. 
This correlation was obtained from data for 285 points among 251 solute-solvent 
systems and is claimed to predict the experimental values with an average 
deviation of 10 per cent. 

2. Othmer correlation 

Othmer and Thakar (94) have also developed a correlation based on the 
general form of Eyring's equation: 

D = K exp (Eg/BT) (89) 

Differentiating the above yields 

d In D = (Ei/RT2) dT (90) 

Recalling that the Clausius-Clapeyron equation is 

d In P = (L/RT2) dT (91) 

where L is the latent heat of vaporization, it follows that 

(d In D/d In P) = (Ed/L) (92) 

If Ed/L is assumed to be constant, the following equation is true: 

In D = (Ei/L) In P + C (93) 

Observation of experimental data showed that there was a discontinuity 
in the plots with water as a solvent at approximately 3O0C, so a plot was used 
with viscosity as a correlating factor: 

In Z) = - (Ei/Ev) In r, + C (94) 

For a number of systems logarithmic plots of diffusion coefficient versus 
viscosity showed straight-line relations with slopes of —1.07 to —1.15. Assuming 
an average slope the following equation was developed empirically for diffusion 
into water, where Vm is the molecular volume of the diffusing substance: 

(Dw X 105) = ( 1 4 . 0 A W ) (95) 

Assuming that diffusion coefficients in other solvents are related to the inverse 
viscosities of the given solvents, the following empirical equation was developed: 

A X 105 = 14.0Ai 1 " 1 * ' ' 1 "^V (96) 

The above equation has not been tested extensively, but it appears to be less 
promising than the previous correlation with molar volume proposed by Wilke. 

I. COMPARISON OF VARIOUS THEORIES OF MUTUAL DIFFUSION 

In summarizing the work done toward evaluating diffusion coefficients the­
oretically, it is apparent that the problem is not yet resolved, but it is of interest 
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that considerable similarity in the expressions for the diffusion coefficient are 
reached by several different approaches, as summarized below: 

Eyring theory when com- / . \ /pm\ 
bined with expression D = ( j - M (j± J(I + 3 In yi/d In Ni) (97) 
for viscosity \ t t/ \ V/ 

Thermodynamic D = (^-+ ^ Y ^ J(I + d In yi/d In Ni) (98) 

Stokes-Einstein D = (1/6 Vr)(RTfNn) (99) 

Thermodynamics of irre- = _ ( w ^ } {RT) (1 + Q k /d ^ m) {m) 
versible processes 

The above equations have a number of points in common. The non-ideality 
of solutions is corrected in all cases by the term (1 + d In Yi/d In Ni) except for 
the Stokes-Einstein equation, which is intended for use in dilute solutions. 
Eyring (107) has proposed a correction term for this equation involving the 
above correction factor, but it has been rarely applied. The other common 
term is the factor BT/N, with most expressions also explicitly including the 
viscosity. This leaves the other variable or variables such that the effects of 
molecular size, shape, and intermolecular forces may be included. The net 
dimension of such a term is one of reciprocal length, although it is not likely 
that a simple molecular length parameter is sufficient to adequately represent 
actual conditions. 

On the basis of the above equations one might propose the following: 

D = U)(RTfNr1)(I + a ln7i/<3 InNi) (101) 

Unfortunately \p is certainly dependent on molecular size and shape and other 
variables such that no way is yet known to evaluate such a quantity from basic 
molecular data. 

The relatively simple forms of the above equations do not directly compare 
with those developed from absolute rate theory and the random-walk treatment. 
These two equations are repeated below: 

(^-[-^K' + ^,) CUB) Absolute rate n _ 
theory 

Random ^ _ fd?kQ\ L 3 In $' d In 4>(Nj)\ 
/ I SlnAff 3 In Ni ) 

Both of the latter equations require a knowledge of the mean average displace­
ment of a molecule in a given environment, a difficult quantity to evaluate. 
The terms correcting for the solution non-ideality are also somewhat different 
from those in the previous equations, and the exact relationship between the 
variation of activity coefficient and mean displacement length is not well under­
stood. 

Although several basic theories lead to similar expressions for the diffusion 
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coefficient, the fact that the end results are not all equal indicates that the 
exact solution has not yet been attained. It is rather unlikely that a simple 
equation of the general form of equation 101 will explain diffusion experiments 
except on a semiempirical basis; however, accurate evaluation of the more in­
volved kinetic treatments does not appear feasible at this time. 

VI. SELF-DIFFUSION THEORIES 

The self-diffusion coeficient is unlike a mutual diffusion coefficient in that its 
measurement does not require the existence of an overall chemical concentra­
tion gradient. The measurement of self-diffusion rates gives the nearest avail­
able approach to the observation of the magnitudes of actual molecular motion in 
a gross sense. Although it appears that measurement of self-diffusion rates might 
yield true differential diffusion coefficients, recent experimental evidence in­
dicates that significant differences may exist between mutual and self-diffusion 
coefficients for the same average solution composition. The following review of 
recent theoretical contributions pertaining to this problem will also point out 
why the two types of coefficients should only rarely be equal and why their re­
lationship is in fact probably quite complex. 

A. THEORETICAL RELATIONSHIPS BETWEEN MUTUAL DIFFUSION AND 
SELF-DIFFUSION 

The viewpoint that self-diffusion coefficients should have the same value as 
mutual diffusion coefficients corrected for solution activity has been recently 
presented by Prager (97). Prager considered that the driving force for diffusion 
is the gradient of chemical potential but that even in non-ideal solutions this 
gradient becomes effectively equal to the gradient of isotopic concentration when 
self-diffusion of one component is occurring. By considering that the difference 
in the effective gradient would alter the random motion of the molecules, he 
derived the following equation: 

(A2/A2) = (A2/A1) = (1 + d In 71/d InJVO (104) 

where Di2 is the differential diffusion coefficient and Ai and D32 are the self-
diffusion coefficients of the respective components. 

This same result may be obtained by using a thermodynamic approach. 
Let a concentration CA of component A in a binary solution be maintained in 
equilibrium with a force FA per mole of A in the direction of increasing x. In 
general this force may be expressed as 

^A = ( W & 0 (105) 

but in an ideal solution it is 

FA = RT(d In CJdx) (106) 

and for any solution in terms of activity coefficients: 

FA = RT[d In (yACA)/dx] (107) 
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If there were no concentration gradient present, FA would produce a real average 
velocity vA of the A molecules in the direction of increasing x, where 

vA = (FJN)(Ja) (108) 

and o- is a resistance to flow dependent on solution composition. The resulting 
rate of transfer J l moles per second across unit section of area is: 

Jl = (FJN)(IZCr)Cj1. (109) 

If the concentration gradient assumed is present but with no corresponding 
force, the gradient will produce a transfer by diffusion equal in magnitude to 
the above but opposite in algebraic sign: 

JA= -J'A (HO) 

From the basic diffusion law: 

JK = -DA(BC Jdx) (111) 

In the case of an ideal solution: 

Dt = (RTZN)(Ja) (112) 

while for a non-ideal solution: 

DA= (RT/N)(I/a)[d hi IACAZQCA](CA) (113) 

When considering the relation between self-diffusion and differential diffusion 
the resisting force a- from a purely hydrodynamic viewpoint might be considered 
the same, if the composition of the solution is essentially identical for the two 
cases. The actual driving force expressed in terms of concentration, however, is 
different. With tagged molecules in a solution of uniform composition, the solu­
tion behaves ideally insofar as diffusion is concerned, but with the presence of a 
concentration gradient the effect of non-ideality must be considered. Recognizing 
that CA may be expressed in terms of NA and equating the two resisting forces 
which are presumed equal result in the relation: 

(DJDt) = (1 + d In yA/d In NA) (114) 

This equation is identical with equation 104 developed by Prager. 
Lamm (71) developed a relationship between the two types of diffusion co­

efficients based on the more likely concept that there is a different mechanism 
acting between the interchange of A molecules compared with the exchange of 
A and B molecules in a binary solution of A and B. The development has a 
hydrodynamic basis, with the notion of one force acting between the tagged 
molecules and the chemically identical non-tagged molecules and another force 
acting between the tagged molecules and the chemically dissimilar molecules. 
Using the development shown in an earlier paper by Lamm (70), the mutual 
diffusion coefficient between molecules 1 and 2 in binary solution may be ex­
pressed as: 

n _ RT rwz I" alnTi"1 . -. As - ^ ^r+T2 L
1 + araj (115) 
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where «1 and th are the molar concentrations per cubic centimeter of components 
1 and 2 and 0i2 is the frictional resistance per cubic centimeter between com­
ponents 1 and 2. This is of the same general form as reached by several theories 
of mutual diffusion mentioned in Section V. 

By considering diffusion in a system of three components—1, tagged A; 1', 
untagged A; 2, untagged B—an equation was developed by Lamm (71) for the 
self-diffusion of tagged A (assumed equal to that for untagged A) in the form: 

Du = 
RT 

Ln1 n{_\ In1 + n[J 

(116) 

where the notation is the same as before except that <j>n is the frictional co­
efficient for the interaction of tagged and untagged molecules of type A. 

For this same case the mutual diffusion coefficient is: 

A 
RT 

f 1 1" 
012 I ' + 

LJ1I + ni n2. 

0 + ̂ i) < 1 W 

The two coefficients are then related as follows: 

A2 

A i 

011 
nx + rii _ 

+ 01! 
1 1" - + -' 

Wl Wi 

012 
1 1 
i ' + _ 

_ttl + U1 Th. 

( d In T 2 \ 

I1 + jdrj (118) 

A comparison of the above equation with equation 104, developed by Prager, 
shows that they are similar in form except that Lamm has introduced an addi­
tional coefficient for the case of self-diffusion. Since it appears that self-diffusion 
can occur by two types of molecular interchange, the latter equation might be 
expected to conform more closely to experimental observations. 

Several other conclusions can be deduced from the general equations proposed 
by Lamm. Since the frictional forces are positive quantities, it follows that: 

D, 
N2(I + d In y2/d In N2) 

> A i (119) 

for any solution composition. In infinitely dilute solutions, however, the mutual 
diffusion and self-diffusion coefficients should be equal, since the tagged molecules 
of a given species would rarely be adjacent to the untagged molecules of the 
same species and the frictional resistance to motion would be almost entirely 
determined by the interaction of tagged molecules with chemically dissimilar 
molecules. This interaction is the same phenomenon occurring in mutual diffu­
sion. 

By presuming that the addition of component 2 does not alter the specific 
frictional properties of component 1, thus allowing the frictional factors to be 
evaluated on a volume basis, Lamm (71) developed the following equation 
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relating mutual diffusion and self-diffusion: 

* ! ^ S £ » ( ! + ! £ £ ) (120) 
-Dn -DJi Dn \ d In Nj 

where Vl is the molar volume of pure 1 and Du is the self-diffusion coefficient 
of pure 1. It is emphasized that Lamm indicated that the above should only be 
approximately true and that the specific frictional properties of a component 
may be a function of concentration. 

It appears that the principal factor to be considered in qualitatively sum­
marizing the relation between mutual and self-diffusion in a binary solution of 
A and B is that self-diffusion is a measure of both the motion of type A mole­
cules with respect to each other and the interchange of A and B molecules. 
Unless the rates of molecular motion of A and B are equal or other compensating 
influences are at work, it is not unexpected that the two measured diffusion rates 
would be unequal. 

B. COMPARISON OP THEORY WITH EXPERIMENT 

The earliest clear experimental evidence of differences between self-diffusion 
and mutual diffusion is probably due to Johnson (59), who studied self-diffusion 
in a gold-silver alloy of approximately equimolal composition. Johnson found 
that the mutual diffusion coefficient was significantly larger than that of either 
self-diffusion coefficient. This behavior was explained by Darken (22) and 
Seitz (105) on the basis that the behavior of the mixed crystals under study 
would need to be corrected for their non-ideality. In this case the agreement 
between the measurements compared on the activity corrected basis was about 
15 per cent, a reasonable agreement for measurements of diffusion in a solid. 
This work led to the development by Prager (97) of the relations between 
mutual diffusion and self-diffusion coefficients. 

In the earlier work on the self-diffusion of electrolytes many of the investigators 
(c/. 1, 3, 131) apparently considered that the observed self-diffusion coefficient 
was equal in value to the true mutual diffusion coefficient. When significant 
differences continued to result, particularly in more concentrated solutions, 
more consideration was given to possible fundamental differences between the 
two coefficients. For example, Neilson, Adamson, and Cobble (88), in studies of 
ionic self-diffusion in aqueous sodium chloride and sodium sulfate solutions, 
ascribed the difference between the two coefficients to a volume effect, as mutual 
diffusion includes the contribution of the diffusion rate of the solvent as well as 
the solute. Adamson (2) has recently discussed in more detail some of the general 
problems of both measuring and relating the various types of diffusion coefficients, 
particularly for electrolytic solutions. 

Experimental data showing relations between mutual diffusion and self-
diffusion were presented by Wang (127) in his work with glycine. He observed 
that with very dilute solutions, his values for self-diffusion agreed closely with 
the accepted values for mutual diffusion, but that as the concentration increased, 
his values were consistently higher. He discussed the activity concept briefly 
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and corrected the mutual diffusion coefficients by dividing them by the expres­
sion (1 + 3 lnYi/3 In 2Vi). When this was done it was found that the corrected 
mutual coefficients were always greater than those for self-diffusion. This differ­
ence was discussed in terms of the possible interaction of dipolar ions on the 
equilibrium properties of the solution, but no quantitative calculations were 
made as a rigorous solution was not thought possible at this time. 

Johnson and Babb (58) measured the self-diffusion rates of benzene, methyl 
alcohol, and ethyl alcohol tagged with carbon-14 in five binary liquid systems 
at 250C. by a simple capillary-cell technique. For the relatively ideal systems, 
benzene-carbon tetrachloride and ethyl alcohol-methyl alcohol, the self-diffusion 
coefficient varied approximately linearly with molar composition, but the 
values for mutual diffusion and self-diffusion for the same liquid composition 
disagreed by as much as 15 per cent. For the non-ideal systems, benzene-
methyl alcohol and benzene-ethyl alcohol, the two coefficients disagreed by a 
factor of 2 or more over much of the composition range. It was observed, how­
ever, that when the component being measured was in dilute concentration, the 
two coefficients in all systems studied agreed within 5-10 per cent and within 2 
per cent for the ideal systems. In addition, the relation developed by Prager was 
found to be without experimental justification, as the mutual diffusion co­
efficients corrected for solution activity were as much as threefold greater than 
the corresponding self-diffusion coefficients. The more general relation between 
mutual diffusion and self-diffusion proposed by Lamm was shown to be ap­
proximately true for ideal systems if the forces were assumed to vary linearly 
with solution composition. The behavior of the non-ideal systems could be 
rationalized with this theory if the forces were considered to vary with solution 
composition. 

Similar conclusions were reached for the system methyl alcohol-water at 
270C. by Sehmel and Babb (104), who obtained values of the self-diffusion 
coefficients of methyl alcohol using a capillary-cell technique. 

VII. TABULATION OF MUTUAL DIFFUSION COEFFICIENTS FOE BINAEY LIQUID 

SYSTEMS OF NON-ELECTROLYTES 

Included in the following tables are experimental mutual diffusion coefficients 
for binary liquid systems of non-electrolytes. The object was to include all 
available data for binary systems where both components are non-electrolytes 
and liquids at the temperature of study. In table 1 are presented diffusion 
coefficients for some of the more common liquid systems of practical or theo­
retical interest where data are available over a fairly wide range of compositions. 
In table 2 systems for which limited experimental data are available have been 
listed, together with the pertinent literature references. 

The criteria for including data for substances that did not conform to being 
both a non-electrolyte and liquid at the temperature of the study were often 
based on either reporting all the data obtained in a certain investigation or 
including results of a study where the data aid in confirming concepts useful to a 
study of diffusion. While an attempt has been made to include all available data 
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TABLE 1 
Diffusion coefficients of binary liquid non-electrolyte systems 

Components 

A 

Acetic acid 

Acetone 

Acetylene tetrabro-
mide 

Benzene 

B 

Benzene 

Ethyl alcohol 
Methyl alcohol 
Water 

Chloroform 

Methyl alcohol 
Nitrobenzene 

Water 

Acetylene tetrachloride 

Carbon tetrachloride (see 
also paragraphs No. 7, 8, 
1«, and 30) 

Chloroform 

Composition 
ofAf 

1 WPC 
1 N 
1 N 
1 WPC 
1 N 
1 WPC 

0.5 VPC 
99.5 VPC 
2 VPC 

20 VPC 
40 VPC 
60 VPC 
80 VPC 
98 VPC 
20 G/DL 
10 G/DL 
10 G/DL 
0.5 VPC 
0.5 VPC 

20 VPC 
40 VPC 

0.068 M/L 
0.068 M/L 
0.068 M/L 
0.068 M/L 
0.066 M/L 
0.064 M/L 

2.154 MPC 
25.02 MPC 
50.51 MPC 
74.98 MPC 
98.15 MPC 
2.154 MPC 

25.02 MPC 
50.51 MPC 
74.98 MPC 
98.15 MPC 
2.154 MPC 

25.02 MPC 
50.51 MPC 
74.98 MPC 
98.15 MPC 

0.5 VPC 
2 VPC 

20 VPC 
40 VPC 
60 VPC 
80 VPC 
98 VPC 

Type 
of Co-

effi-
cientt 

D 
I 
I 
D 
I 
D 

D 
D 
D 
D 
D 
D 
D 
D 
I 
I 
I 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 

Tem­
pera­
ture 

0C. 

15 
15 
15.3 
15 
14 
15 

15 
15 
17 
17 
17 
17 
17 
17 
18.8 
16 
17.8 
15 
17 
17 
17 

0.44 
7.70 

15.01 
24.98 
35.61 
51.10 

10.00 
10. OO 
10.00 
10.00 
10.00 
25.20 
25.26 
25.26 
25.34 
25.26 
40.0 
40.0 
40.0 
40.0 
40.0 

15 
15 
15 
15 
15 
15 
15 

Diffu­
sion 

Coeffi­
cient 

DX10» 

cm.V 
sec. 

1.92 
1.73 
0.64 
1.54 
0.90 
0.88 

2.36 
3.92 
2.42 
2.87 
3.20 
3.51 
3.71 
3.91 
2.57 
0.86 
0.91 
1.22 
1.25 
1.00 
0.88 

0.351 
0.419 
0.497 
0.611 
0.741 
0.954 

1.085 
1.093 
1.230 
1.344 
1.466 
1.419 
1.519 
1.651 
1.759 
1.912 
1.775 
1.970 
2.077 
2.284 
2.432 

2.51 
2.51 
2.48 
2.48 
2.46 
2.45 
2.39 

Experi­
mental 

Pre­
cision 

per cent 

5» 
5 
5 
5* 
5 
5* 

2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
5 
5 
5 
2-4 
2-4 
2-4 
2-4 

2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 

Experi­
mental 
Meth­

od} 

47* 
30 
30 
47« 
30 
47« 

23 
23 
23 
23 
23 
23 
23 
23 
5 
5 
5 
23 
23 
23 
23 

3 
3 
3 
3 
3 
3 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

23 
23 
23 
23 
23 
23 
23 

t See Section VII for an explanation of the abbreviations. 
t The numbers refer to the numbered paragraphs in Section IX. 
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Components 

A 

Isobutyl alcohol 

n-Butyl alcohol 

Chlorobenzene 

Ether 

Ethyl alcohol 

B 

Water (see also paragraph 
No. 6) 

Water ( see also paragraphs 
No. 6 and 47) 

Bromobenzene 

Chloroform 

Benzene 

Composition 
of At 

0.5 VPC 
99.5 VPC 
1.0 VPC 
8.8 VPC 

02.5 VPC 
98 VPC 

0.5 VPC 
0.0501 M/L 
0.1000 M/L 
0.2199 M/L 
0.3000 M/L 
0.5002 M/L 
0.7004 M/L 
0.0502 M/L 
0.1006 M/L 
0.1424 M/L 
0.3006 M/L 
0.5001 M/L 
0.7001 M/L 

3.32 MPC 
26.42 MPC 
51.22 MPC 
76.17 MPC 
96.52 MPC 
3.32 MPC 

26.42 MPC 
51.22 MPC 
76.17 MPC 
96.52 MPC 
3.32 MPC 

26.42 MPC 
51.22 MPC 
76.17 MPC 
96.52 MPC 

0.5 VPC 
17.8 VPC 
34 VPC 
58 VPC 
76 VPC 
80.5 VPC 
94.5 VPC 
99.5 VPC 

0.5 VPC 
1 VPC 
2 VPC 
2.5 VPC 

16 VPC 
32 VPC 
50 VPC 
70 VPC 
98 VPC 
99.5 VPC 
0.916 MPC 
3.270 MPC 

35.370 MPC 
99.522 MPC 

Type 
of Co-

effi-
cientf 

D 
D 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

Tem­
pera­
ture 

°C. 

25 
25 
25 
25 
25 
25 

10.01 
10.01 
10.01 
10.01 
10.01 
26.78 
26.78 
26.78 
26.78 
26.78 
39.97 
39.97 
39.97 
39.97 
39.97 

15 
15 
15 
15 
15 
15 
15 
15 

15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
27 
27 
27 
27 

Diffu­
sion 

Coeffi­
cient 

DX 10s 

cm.'/ 
sec. 

0.77 
0.30 
0.85 
0.71 
0.22 
0.31 

0.77 
0.4348 
0.4243 
0.4040 
0.3927 
0.3657 
0.3435 
0.9557 
0.9390 
0.9248 
0.8758 
0.8147 
0.7555 

1.007 
1.069 
1.146 
1.226 
1.291 
1.342 
1.380 
1.506 
1.596 
1.708 
1.584 
1.691 
1.806 
1.902 
1.996 

2.07 
2.44 
3.10 
4.44 
4.72 
4.74 
4.59 
4.40 

2.25 
2.13 
1.67 
1.63 
0.82 
0.72 
0.92 
1.19 
1.65 
1.67 
2.910 
2.080 
0.920 
1.994 

Experi­
mental 

Pre­
cision 

per cent 

2-4 
2-4 
2-4 
2-4 
2-4 
2-4 

2-4 

3 
2 
2 

2 ^ 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 

2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
1 
1 
1 
1 

Experi­
mental 
Meth­

od} 

23 
23 
23 
23 
23 
23 

23 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

23 
23 
23 
23 
23 
23 
23 
23 

23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
2 
2 
2 
2 
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TABLE 1—Continued 

Components 

A 

Ethyl alcohol— 
Continued 

B 

Chloroform 

Toluene 

Water (see also paragraphs 
No. 7, 8, and_47) ^11, 

Composition 
ofAf 

0.5 VPC 
2 VPC 

20 VPC 
40 VPC 
60 VPC 
80 VPC 
98 VPC 
0.5 VPC 
1 VPC 
3 VPC 

10 VPC 
20 VPC 
40 VPC 
60 VPC 
99,5 VPC 
80 VPC 
1 VPC 

21 VPC 
40 VPC 
62.5 VPC 
75 VPC 
92.5 VPC 
99 VPC 
0.5 VPC 

99.5 VPC 
1 VPC 

29 VPC 
59 VPC 
89 VPC 
99 VPC 
5 MPC 

10 MPC 
27.5 MPC 
50 MPC 
70 MPC 
90 MPC 
95 MPC 
0 G/DL 
5 G/DL 

10 G/DL 
15 G/DL 
20 G/DL 
25 G/DL 
30 G/DL 
35 G/DL 
40 G/DL 
45 G/DL 
50 G/DL 
55 G/DL 
60 G/DL 
65 G/DL 
70 G/DL 
75 G/DL 
78.51 G/DL 

Type 
of Co­

effi­
cient! 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

in
 I 

0C. 

15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
10 
10 
10 
10 
10 
10 
10 
15 
15 
18 
18 
18 
18 
18 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 

Diffu­
sion 

Coeffi­
cient 

D X 10 

cm.'/ 
sec. 

2.20 
1.96 
0.98 
0.98 
1.29 
1.62 
1.63 
3.00 
2.58 
1.32 
0.90 
0.72 
0.70 
0.86 
1.60 
1.27 
0.84 
0.57 
0.31 
0.21 
0.30 
0.60 
0.85 
1.00 
1.02 
1.09 
0.62 
0.32 
0.82 
1.10 
1.13 
0.90 
0.41 
0.90 
1.40 
2.0 
2.20 
1.240 
1.079 
0.935 
0.807 
0.894 
0.595 
0.508 
0.426 
0.377 
0.362 
0.372 
0.407 
0.467 
0.551 
0.760 
0.9Sl 
1.132 

Experi­
mental 

Pre­
cision 

per cent 

2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
3* 
3* 
3* 
3* 
3* 
3* 
3» 
1* 
1« 
1» 
i * 

i * 

I* 
I* 
1« 
1* 
1* 
j * 

1* 
1* 
i * 

i « 

i * 

1* 

Experi­
mental 
Meth­

od I 

23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
42* 
42* 
42* 
42* 
42* 
42* 
42* 
14* 
14* 
14* 
14* 
14* 
14* 
14* 
14* 
14* 
14* 
14* 
14* 
14* 
14* 
14« 
14* 
14* 
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TABLE !—Continued 

Components 

A 

Hexane 

Methyl alcohol 

Isopropyl alcohol 

B 

Benzene 

Benzene (see also paragraph 
No. 45) 

Water (see also paragraphs 
No. 7, 8, and 47) 

Water 

Composition 
ofAt 

2 VPC 
18 VPC 
34 VPC 
50 VPC 
66 VPC 
98 VPC 
2 VPC 

50 VPC 
0.5 VPC 

99.5 VPC 

2 VPC 
12.5 VPC 
20 VPC 
35 VPC 
50 VPC 
70 VPC 
85 VPC 
98 VPC 
0.5 VPC 

99.5 VPC 
0.477 MPC 
1.572 MPC 
0.477 MPC 
1.572 MPC 

11.432 MPC 
25.484 MPC 
50.321 MPC 
75.167 MPC 
99.821 MPC 
0.5 VPC 
0.6 VPC 

12 VPC 
22 VPC 
46 VPC 
64 VPC 
84 VPC 
92.5 VPC 
99.5 VPC 

0.5 VPC 
99.5 VPC 
1 VPC 

14.5 VPC 
35.5 VPC 
53 VPC 
64.5 VPC 
75 VPC 
88 VPC 
96 VPC 

Type 
of Co-

effi-
cientt 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

Tem­
per­
ature 

0C. 

5 
5 
5 
5 
5 
5 

11 
11 
15 
15 

11 
11 
11 
11 
11 
11 
11 
11 
15 
15 
11.00 
11.00 
27.06 
27.06 
27.06 
27.06 
27.06 
27.06 
27.06 
15 
15 
15 
15 
15 
15 
15 
15 
15 

15 
15 
16 
16 
16 
16 
16 
16 
16 
16 

Diffu­
sion 

Coeffi­
cient 

D X 10s 

cm.1/ 
sec. 

1.78 
1.78 
1.90 
2.20 
2.54 
3.20 
1.89 
2.36 
2.15 
3.70 

1.89 
0.65 
0.61 
0.70 
0.93 
1.56 
1.87 
2.22 
2.50 
2.40 
2.875 
2.233 
3.839 
3.345 
1.327 
0.949 
0.901 
1.533 
2.762 
1.26 
1.26 
1.11 
0.99 
0.77 
0.85 
1.22 
1.46 
1.75 

0.87 
0.38 
0.89 
0.63 
0.280 
0.155 
0.174 
0.204 
0.275 
0.37 

Experi­
mental 

Pre­
cision 

per cent 

2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 

2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 

2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 

2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 

Experi­
mental 
Meth-
odt 

23 
23 
23 
23 
23 
23 
23 
23 
23 
23 

23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
2 
2 
2 
2 
2 
2 
2 
2 
2 
23 
23 
23 
23 
23 
23 
23 
23 
23 

23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
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TABLE I—Concluded 

Components 

A 

n-Fropyl alcohol 

Toluene 

Water 

E 

Water (see also paragraphs 
No. 8 and 47) 

Chloiobenzene 

n-Butyl alcohol 

Composition 
ofAf 

1.2 VPC 
6 VPC 

12 VPC 
23.5 VPC 
46 VPC 
59 VPC 
79 VPC 
89 VPC 
98 VPC 
0.5 VPC 

99.5 VPC 

1.337 MPC 
25.01 MPC 
49.92 MPC 
74.92 MPC 
98.62 MPC 
1.337 MPC 

25.01 MPC 
49.92 MPC 
74.92 MPC 
98.62 MPC 
1.337 MPC 

25.01 MPC 
49.92 MPC 
74.92 MPC 
98.62 MPC 

52.4 MPC 
48.5 MPC 
45.4 MPC 
42.1 MPC 
38.9 MPC 
35.8 MPC 
32.9 MPC 
30.0 MPC 
27.2 MPC 
24.7 MPC 
22.2 MPC 
19.8 MPC 
17.5 MPC 
15.3 MPC 
13.1 MPC 

Type 
of Co-

effi-
cientj 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

Tem­
pera­
ture 

"C. 

11 
11 
11 
11 
11 
11 
11 
11 
11 
15 
15 

10.00 
10.00 
10.00 
10.00 
10.00 
26.96 
26.96 
26.96 
26.96 
26.96 
40.01 
40.01 
40.01 
40.01 
40.01 

30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

Diffu­
sion 

Coeffi­
cient 

D X 10s 

cm.y 
sec. 

0.77 
0.66 
0.55 
0.33 
0.11 
0.08 
0.15 
0.28 
0.47 
0.87 
0.61 

1.346 
1.404 
1.556 
1.652 
1.759 
1.756 
1.852 
1.985 
2.128 
2.264 
2.113 
2.277 
2.435 
2.586 
2.714 

0.267 
0.391 
0.437 
0.465 
0.520 
0.560 
0.667 
0.718 
0.782 
0.845 
0.920 
1.02 
1.12 
1.20 
1.24 

Experi­
mental 
Preci­
sion 

per cent 

2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 
2-4 

U 
U 
U 
U 
U 
U 
U 
U 
U 
U 
U 
U 
U 
U 
U 

Experi­
mental 
Meth-

odf 

23 
23 
23 
23 
23 
23 
23 
23 
23 
23 
23 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 

that meet the requirements set forth above, the reader is reminded that for some 
systems that are electrolytes, or where the solute is a solid, all data are not 
necessarily included in this tabulation. 

The following outline explains in detail the material included in the tables. 
Components: The names in the tables are arranged alphabetically in order of 

the component designated A and thereafter alphabetically for the other com­
ponent when data exist for more than one system with A. For data on dilute 
solutions, component A is ordinarily the solute, but where data are available 
over a wide concentration range this restriction does not apply. It is therefore 
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TABLE 2 
Systems for which limited diffusion data are available 

Components 

A 

Acetal 

Acetamide 

Acetanilide 
Acetic acid 
Acetone 
Acetonitrile 

Acetotoluidine 
Acetyldiphenylamine 
Acetylpheny !hydra­

zine 
Aconitine 
a-Alanine 

/3-Alanine 
Alloxan 
Allyl alcohol 

Allyl bromide 
Allyl iodide 
o-Aminobenzoic acid 
m-Aminobenzoio acid 
p-Aminobenzoic acid 
Amyl acetate 
Isoamyl alcohol 

Isoamyl bromide 
n-Amyl bromide 
Isoamyl iodide 
n-Amyl iodide 
Aniline 

Aniline hydrochloride 

Anisole 
Antipyrine 

Azobenzene 
Benzene 

a-Benzene hexaohlo-
ride 

Benzoic acid 
Benzaldehyde 

B 

Ethyl alcohol 
Methyl alcohol 
Ethyl alcohol (96%) 
Methyl alcohol 
Water 
Methyl alcohol 
Acetonitrile 
Ethyl benzoate 
Water 
Methyl alcohol 
Methyl alcohol 
Methyl alcohol 
Methyl alcohol 

Ethyl alcohol 
Water 

Water 
Water 
Ethyl alcohol 
Methyl alcohol 
Water 
Methyl alcohol 
Methyl alcohol 
Water 
Water 
Water 
Methyl alcohol 
Ethyl alcohol 
Methyl alcohol 
Water 
Benzene 
Ethyl ether 
Benzene 
Methyl alcohol 
Benzene 
Acetonitrile 
Benzene 
Ethyl alcohol 
Methyl alcohol 
Water 
Methyl alcohol 
Water 
Methyl alcohol 
Methyl alcohol 
Water 
Ethyl alcohol (96%) 
Bromobenzene 
Decane 
2,4-Dimethylpen-

tane 
n-Dodecane 
Octadecane 
Heptane 
Benzene 

Methyl alcohol 
Benzene 

Experi­
mental 

Methodt 

32 
47 
32 
47 
33,47 
47 
30 
5 
47 
47 
47 
47 
47 

32 
26,25,13, 

24 
24,25 
33 
32 
47 
47 
47 
47 
26 
26 
26 
47 
32 
47 
47 
47 
16 
16 
47 
16 
30 
30 
30 
47 
47 
47 
47 
47 
47 
47 
32 
16 
48 
48 

48 
48 
48 
16 

47 
47 

Components 

A 

Benzaldehyde 
Benzotrichloride 

Benzylamine (see 
Monobenzylamine) 

Biphenyl (see also Di-
phenyl) 

Bromal 
Bromoacetic acid 
Bromoaniline 

9-Bromoanthracene 
Bromobenzene 

Bromobenzene 

Bromocyclo hexane 

p-Bromodiphenyl 
Bromoethyl ether 
Bromoform 

ot-Bro mo naphthalene 

Bromonitrobenzene 

9-Bromophenan-
threne 

Bromophenetole 

B 

Methyl alcohol 
Benzene 
Ethyl acetate 
Ethyl benzoate 
Toluene 

Benzene 

Methyl alcohol 
Methyl alcohol 
Benzene 
Methyl alcohol 
Benzene 
Benzene 
Cyclohexane 
Cyclohexene 
p-Cymene 
Decalin 
Dioxane 
Ethylbenzene 
Ethyl ether 
Hexane 
Mesitylene 
Methyl alcohol 
Tetralin 
Toluene 
m-Xylene 
Benzene 
Cyclohexane 
Cyclohexene 
Benzene 
Ethyl ether 
Acetone 
Isoamyl alcohol 
Benzene 
Ethyl alcohol 
Ethyl ether 
Methyl alcohol 
7i-Propyl alcohol 
Chloroform 
Benzene 
Cyclohexane 
Decalin 
Dibenzyl ether 
Dioxane 
Ethyl alcohol (96%) 
Hexane 
Methyl alcohol 
a-Methylnaphtha-

lene 
Tetralin 
Toluene 
Benzene 
Methyl alcohol 
Benzene 

Phenetole 

Experi­
mental 

Methodt 

47 
16 
5 
5 
16 

39 

47 
47 
47 
47 
16 
16,47 
16 
16 
16 
16 
16 
16 
16 
16 
16 
47 
16 
16 
16 
16 
16 
16 
16 
16 
34 
34 
34, 47 
34 
34 
34,47 
34 
16 
16, 47 
16 
16 
16 
16 
32 
16 
47 
16 

16 
16 
47 
47 
16 

16 

J The numbers refer to the numbered paragraphs in Section IX. 
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TABLE 2—Continued 

Components 

A 

Bromophenol 

Bromopropionic acid 
o-Bromotoluene 
m-Bromotoluene 
p-Bromotoluene 
Brucine 
sec-Butyl alcohol 
tert-Butyl alcohol 
n-Butyl bromide 
n-Butyl iodide 
Camphor 
Carbon tetrabromide 

Carbon tetrachloride 

Carminic acid 
Cetyl alcohol 
Chloral 
Chloral hydrate 

Chloroacetal 
Chloroacetic acid (see 

Monochloroacetic 
acid) 

Chloroaniline 

Chlorobenzene 

Chlorobenzoic acid 
Chlorobromoethylene 
Chloroform 

Chlorohydrin (see 
Monochlorohydrin) 

a-Chloronaphthalene 

Chloronitrobenzene 

Chlorophenol 

Cumaldehyde 
Dextrose 
Dibenzylamine 
p-Dibromobenzene 

Dibromonaphthalene 

Dichloroacetal 
Dichloroacetic acid 
Dichloro benzene 

o-Dichlorobenzene 
m-Dichloro benzene 
p-Dichlorobenzene 
1, l'-Dichlorohydrin 

Dichloronaphthalene 

Dicyandiamide 

B 

Benzene 
Methyl alcohol 
Methyl alcohol 
Toluene 
Toluene 
Toluene 
Ethyl alcohol 
Water 
Water 
Benzene 
Benzene 
Ethyl alcohol (96%) 
Benzene 
Carbon tetrachloride 
Methyl alcohol 
Nitrobenzene 
Ethyl alcohol (96%) 
Ethyl alcohol (96%) 
Ethyl alcohol (96%) 
Methyl alcohol 
Water 
Methyl alcohol 

Benzene 
Methyl alcohol 
Benzene 
Methyl alcohol 
Methyl alcohol 
Methyl alcohol 
Benzene 
Ethyl alcohol 
Methyl alcohol 

Benzene 
Methyl alcohol 
Benzene 
Methyl alcohol 
Benzene 
Methyl alcohol 
Methyl alcohol 
Water 
Methyl alcohol 
Benzene 
Methyl alcohol 
Benzene 
Methyl alcohol 
Methyl alcohol 
Methyl alcohol 
Benzene 
Methyl alcohol 
Benzene 
Benzene 
Benzene 
Methyl alcohol 
Water 
Benzene 
Methyl alcohol 
Water 

Experi­
mental 

Method} 

47 
47 
47 
16 
16 
16 
32 
6 
6 
16 
16 
32 
16 
16 
47 
31,8 
32 
32 
32 
47 
47 
47 

47 
47 
47 
47 
47 
47 
47,23 
23,32 
47,23 

47 
47 
47 
47 
47 
47 
47 
26 
47 
47 
47 
47 
47 
47 
47 
47 
47 
16 
16 
16 
47 
47 
47 
47 
33 

Components 

A 

Diethyl sulfate 
2,3-Diiodopentane 
2,4-Dimethylpen-

tane 
m-Dinitrobenzene 

Dinitronaphthalene 
2,4-Dinitrophenol 
Diphenyl 
Ether 

Ethyl acetate 

Ethy !amine sulfate 
Ethyl benzoate 

Ethyl bromide 
Ethylbromobenzoio 

acid 
Ethyl iodide 

Ethyl nitrate 
Ethyl trichloroace-

tate 
Ethylene bromide 

Ethylene chloride 

Ethylene iodide 

Formic acid 

Furfuryl alcohol 
Galactose 
Glucose 
Glycerol 

Glycine 

Heptane 

n-Heptyl bromide 
Hexachlorobenzene 

n-Hexyl bromide 
Hydrogen peroxide 

B 

Methyl alcohol 
Methyl alcohol 
Dodecane 

Methyl alcohol 
Benzene 
Methyl alcohol 
Methyl alcohol 
Methyl alcohol 
Benzene 
Methyl alcohol 
Water 
Benzotrichloride 
Ethyl benzoate 
Methyl alcohol 
Nitrobenzene 
Methyl alcohol 
Acetone 
Benzotrichloride 
Ethyl acetate 
Methyl alcohol 
Nitrobenzene 
Methyl alcohol 
Ethylbenzoic acid 

Benzene 
Methyl alcohol 
Methyl alcohol 
Methyl alcohol 

Benzene 
Ethylene chloride 
Methyl alcohol 
Benzene 
Mesitylene 
Methyl alcohol 
Benzene 
Methyl alcohol 
Benzene 
Methyl alcohol 
Water 
Methyl alcohol 
Water 
Water 
Isoamyl alcohol 
Ethyl alcohol (96%) 
Methyl alcohol 
n-Propyl alcohol 
Water 
Water 

Dodecane 
Hexadecane 
Octadecane 
Tetradecane 
Heptane 
Benzene 
Methyl alcohol 
Hexane 
Acetone 
Ethyl alcohol 

Experi­
mental 

Method* 

47 
47 
48 

47 
47 
47 
47 
45 
47,23 
47,23 
23,1 
S 
5 
5,47 
5 
47 
5 
5 
5 
5 
5 
47 
16 

16 
47 
47 
47 

47 
16 
47 
16,47 
16 
47 
47 
47 
47 
47 
47 
47 
24 
47,24 
34 
32 
47 
32 
47, 33, 21 
28,26,24, 

25 
48 
48 
48 
48 
16 
16 
47 
16 
43 
43 
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TABLE 2—Continued 

Components 

A 

Hydrogen peroxide— 
continued 

Hydroquinol 

Hydroquinone 

o-Hydroxybenzyl al­
cohol 

Iodine 

Iodobenzene 

Iodoform 

Iodopropionic acid 
Lactic acid 
Lactose 
Levuiose 
Mannitol 
Methyl alcohol 
Methyl iodide 

Methyl salicylate 

Methylene iodide 

iV-Methylglycine 
Monoacetin 
Monobenzylamine 
Monochloroacetio 

acid 

Monochlorohydrin 

Naphthalene 

Naphthol 

B 

Ethyl ether 
Methyl alcohol 
Water 
Ethyl alcohol (96%) 
Water 
Methyl alcohol 
Water 
Ethyl alcohol 

Water 
Acetic acid 
Acetylene tetrabro-

mide 
Isoamyl acetate 
Anisole 
Benzene 
Bromobenzene 
Carbon disulfide 
Carbon tetrachloride 
Chloroform 
Dioxane 
Ether 
Ethyl acetate 
Ethyl alcohol 
Ethylene dibromide 
Heptane 
Hexane 
Mesitylene 
Methyl alcohol 
Phenetole 
Toluene 
m-Xylene 
Benzene 
Ethyl alcohol 
Methyl alcohol 
Toluene 
Benzene 
Methyl alcohol 
Methyl alcohol 
Methyl alcohol 
Water 
Water 
Water 
Nitrobenzene 
Benzene 
Toluene 
Benzene 
Methyl alcohol 
Methyl alcohol 
Methylene chloride 
Water 
Ethyl alcohol 
Methyl alcohol 
Benzene 

Methyl alcohol 
Methyl alcohol 
Water 
Benzene 
Methyl alcohol 
Methyl alcohol 

Experi­
mental 

Methodt 

43 
43 
43 
32 
33 
47 
47, 1 
32 

33 
29 
29 

29 
29 
29, 12, 44 
29 
29, 12 
29, 44, 15 
12,29 
44 
12 
29 
12 
29 
20,44 
44 
44 
29 
29 
29, 44 
44, 29 
16,47 
32 
47 
16 
16,47 
47 
47 
47 
47 
24 
47, 40, 33 
8 
16 
16 
47 
47 
47 
47 
25 
32 
47 
47 

47 
47 
47 
16 
47 
47 

Components 

A 

Nitroaniline 
Nitrobenzene 

Nitrobenzoic acid 
m-Nitrobenzaldehyde 
a-Nitronaphthalene 

Nitromethane 

Nitrophenol 
n-Octyl bromide 

Oxalic acid 

Pararos aniline 
Pentaerythritol 
Phenanthrene 
Phenetole 
Phenol 

Phenolphthalein 
Phenyl acetate 
Phthalic acid 

Propionic acid 
n-Propyl alcohol 
n-Propyl bromide 
n-Propyl iodide 
Propylene glycol 
Pyridine 

Pyrogallol 

Quinoline 
Quinone 

Raffinose 
Raffinose'SHiO 
Resorcinol 

Salicylaldehyde 

Salicylic acid 
Salol 
Stearic acid 
Sucrose 
Tartario acid 

B 

Methyl alcohol 
Acetone 
Benzene 
Carbon tetrachloride 
Ethyl acetate 
Ethyl ether 
Ethyl benzoate 
Methyl alcohol 

Methyl alcohol 
Methyl alcohol 
Benzene 
Methyl alcohol 
Ethyl benzoate 
Methyl alcohol 
Nitrobenzene 
Methyl alcohol 
Benzene 
Octane 
Methyl alcohol 
Water 
Methyl alcohol 
Water 
Benzene 
Methyl alcohol 
Benzene 
Carbon disulfide 
Chloroform 
Ethyl alcohol 
Ethyl ether 
Methyl alcohol 
Water 
Methyl alcohol 
Methyl alcohol 
Benzene 
Methyl alcohol 
Methyl alcohol 
Benzene 
Benzene 
Benzene 
Methyl alcohol 
Ethyl alcohol 
Methyl alcohol 
Water 
Methyl alcohol 
Water 
Methyl alcohol 
Benzene 
Methyl alcohol 
Water 
Water 
Ethyl alcohol (96%) 
Water 
Benzene 
Methyl alcohol 
Methyl alcohol 
Methyl alcohol 
Ethyl alcohol 
Water 
Methyl alcohol 
Water 

Experi­
mental 

Methodt 

47 
5 
47 
8 
5 
16 
5 
47, 5, 8, 

31 
47 
47 
47 
47 
5 
5 
5 
47 
16 
16 
47 
47 
47 
33 
16 
47 
47 
47 
47 
47 
47 
47 
1, 47 
47 
47 
47 
47 
47 
47,23 
16 
16 
47 
32 
45,47 
47 
47 
47 
45,47 
47 
47 
47,25 
24 
32 
47, 33, 32 
47 
47 
47 
47 
32 
10 
47 
47 
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TABLE 2—Concluded 

Components 

A 

Tetrabro mo methane 
1,2,4,5-Tetrachloro-

benzene 
Tetraethyllead 
Tetraphenyllead 
Tetrachlorobenzene 
Tetraphenoltin 
Thymol 
Thymoquinone 
Toluene 
Tribromoacetic acid 
Tribromobenzene 
Tribromophenol 
Trichloroacetic acid 
1,2,4-Trichloroben-

zene 

B 

Toluene 
Benzene 

Benzene 
Benzene 
Methyl alcohol 
Benzene 
Methyl alcohol 
Benzene 
Ethyl alcohol 
Methyl alcohol 
Methyl alcohol 
Methyl alcohol 
Methyl alcohol 
Benzene 

Experi­
mental 

Method} 

16 
16 

16 
16 
47 
16 
47 
47 
23 
47 
47 
47 
47 
16 

Components 

A 

Trichlorohydrin 

2,4,6-Trichlorophenol 
2,4,6-Trinitrophenol 

Triphenylmethane 
Urea 

Urethan 

Uric acid 
Vanillin 

B 

Benzene 
Methyl alcohol 
Methyl alcohol 
Benzene 
Methyl alcohol 
Water 
Methyl alcohol 
Methyl alcohol 
Water 

Methyl alcohol 
Water 
Methyl alcohol 
Methyl alcohol 

Experi­
mental 

Method* 

47 
47 
47 
47 
47 
47 
45 
47 
47, I1 33, 

9,26 
47 
47 
47 
47 

advisable when searching for data on the system C-D to look for the system 
under both C and D in the column for component A. 

Composition: The composition of the mixture is always given in terms of 
component A. To avoid discrepancies in converting composition data, these are 
given in the units used by the original investigators. The abbreviations used are 
as follows: 

G/DL = grams/100 cc. of solution 
MPC = mole per cent 
M/L = moles/liter 

N = normality 
VPC = volume per cent 

WPC = weight per cent 

When the coefficient is designated as differential, the listed composition is that 
for which the coefficient applies. When the coefficient is listed as integral, the 
composition is that of the solute (A) at the beginning of the experiment diffusing 
into pure solvent (B). When no composition is listed, integral diffusion is being 
measured between the two pure components. The solution composition for 
which a given integral diffusion coefficient represents a differential coefficient is 
generally not known, as the value may depend on the type of diffusion equip­
ment, the length of the experiment, and the method of calculation. 

Type of coefficient: The type of coefficient is abbreviated as follows: D = 
differential; I = integral. 

Experimental precision: The value given is the average percentage precision 
listed by the author or else determined from observations of reported duplicate 
data for given experimental points. Where no data were at hand to estimate 
the precision, U is entered. In many cases where several investigators have 
worked on the same system, it is apparent that the true value lies outside the 
range of reported accuracy of some of the investigations. Where this is observed, 



LIQUID DIFFUSION OF NON-ELECTROLYTES 437 

TABLE 3 
S elf-diffusion coefficients of pure liquids 

Liquid 

tert-Butyl alcohol 

Tracer Element 

Deuterium 

Carbon-14 

Deuterium 

Deuterium 

Sulfur-35 

Deuterium 

Carbon-14 

Deuterium 

Tempera­
ture 

°C. 

15 
25 
35 
45 
25 

25 
35 
45 

35 
45 
55 

0 
0 
0 
0 
0 
0 
0 
0 
0 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
40 
40 
40 
40 
40 
40 
40 
40 

15 
25 
35 
45 

15 
25 
35 
25 

15 
22.5 
30 

Pressure 

atm. 

200 
800 

1500 
2000 
2500 
3500 
5000 
7000 

10000 
200 
800 

1000 
1500 
2000 
2500 
3500 
5000 
6500 
7500 
9100 
200 

1000 
2000 
2900 
3500 
5000 
7000 

10000 

Diffusion 
Coefficient 
D X 10« 

cm.2/sec. 

1.88 
2.15 
2.40 
2.67 
2.18 

0.504 
0.649 
0.822 

0.497 
0.744 
1.070 

2.44 
2.18 
2.46 
1.80 
1.70 
1.50 
1.25 
0.75 
0.164 
3.29 
3.49 
3.49 
3.00 
2.40 
2.78 
2.36 
2.07 
1.57 
1.45 
0.70 
4.67 
4.20 
4.05 
3.52 
5.60 
3.58 
2.76 
1.72 

0.80 
1.05 
1.31 
1.70 

0.768 
1.01 
1.30 
1.02 

3.60 
3.80 
3.95 

Experi­
mental 

Precision 

5 
5 
5 
6 
5 

1 
1 
1 

1 
1 
1 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 

1 
1 
1 
5 

20 
20 
20 

Experi­
mental 

Methodt 

36 
36 
36 

36 
36 
36 

19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 

11 
11 
11 
11 

36 
36 
36 
17 

11 
11 
11 

t The numbers refer to the numbered paragraphs in Section IX. 
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TABLE 3—Continued 

Liquid 

Methyl alcohol. 

Isopropyl alcohol. 

n-Propyl alcohol. 

Carbon tetrachloride. 

Water., 

Tracer Element 

Deuterium 

Carbon-14 

Deuterium 

Deuterium 

Chlorine-36 

Deuterium 

Tempera­
ture 

°C. 

15 
25 
35 
25 

15 
25 
35 
45 

15 
25 
35 
45 

25 
25 
35 
37.5 
45 
60 

15 
25 
35 
45 

15 
25 
35 
45 

0 
5.2 

16.1 
25 
35 
45 
55 

5.2 
17.5 
25 
35 
45 
55 

17.5 

20 

1 
25 

Pressure 

200 

200 

200 

Diffusion 
Coefficient 
D X 10s 

cm.ysec. 
1.93 
2.27 
2.65 
2.36 

0.474 
0.649 
0.867 
1.145 

0.504 
0.646 
0.814 
1.017 

1.41 
1.08 
1.75 
1.49 
1.99 
1.80 

1.90 
2.43 
2.98 

1.62 
2.04 
2.73 
3.34 

1.00 
1.23 
1.65 
2.14 
2.76 
3.45 
4.12 

1.29 
1.77 
2.12 
2.76 
3.52 
4.39 

1.1 
2.5 

1.77 

2.05 

1.128 
2.261 

1.46 

Experi­
mental 

Precision 

1 
1 
1 
5 

1 
1 
1 
1 

1 
1 
1 
1 

4 
4 
4 
4 
4 
4 

-1* 
1* 
1* 
1* 

5* 
5« 
5* 
5* 

2* 
2* 
2* 
2* 
2* 
2» 
2* 

2* 
2* 
2* 
2* 
2« 
2* 

5* 
5« 

1* 

U 

1* 
1* 

4* 

Experi­
mental 

Methodt 

36 
36 
38 
17 

36 
36 
36 
36 

36 
36 
36 
36 

52 
52 
52 
52 
52 
52 

36* 
36* 
36* 
36* 

11* 
11* 
11* 
11* 

49* 
49* 
49* 
49* 
49* 
49* 
49* 

49* 
49* 
49* 
49* 
49* 
49* 

46* 
46* 

38* 

22 

26* 
26* 

35* 
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TABLE 3—Concluded 

Liquid Tracer Element 

Deuterium 

Tritium 

Oxygen-18 

Tempera­
ture 

°C. 

14.2 
25 
35 
45 
10 
18 
25 
45 
55 

0 
0 
0 
0 
0 
0 
0 
0 

25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
50 
50 
50 
50 
50 
50 
50 
60 
50 

5 
15 
25 
35 
45 

25 
45 

1.1 
4.9 

10 
25 
35 
45 
55 

Pressure 

aim. 

136 
252 
600 
900 

1240 
2040 
35G0 
5000 

1 
245 

1300 
2050 
2500 
3000 
3000 
3975 
5000 
7000 
7000 
9175 
235 
735 

1300 
2100 
2500 
3500 
4450 
7000 

10050 

Diffusion 
Coefficient 
D X 10« 

cmt/sec. 

1.94 
2.64 
3.88 
4.75 
1.57 
2.05 
2.34 
3.87 
4.95 

1.65 
2.37 
1.06 
1.84 
1.45 
1.08 
0.787 
0.584 
2.64 
2.90 
3.24 
3.06 
3.04 
2.62 
2.36 
1.71 
1.15 
0.753 
0.843 
0.515 
5.15 
4.17 
3.48 
2.33 
1.88 
1.82 
2.07 

2.25 
1.38 

1.39 
1.83 
2.44 
3.04 
3.83 

2.09 
3.20 

1.44 

1.55 
1.90 
2.66 
3.49 
4.38 
5.45 

Experi­
mental 

Precision 

4* 
4* 
4* 
4« 
4* 
4* 
4» 
4* 
4* 

5* 
5* 
5* 
5* 
5* 
6« 
5* 
5* 
5* 
5« 
5* 
5* 
5 ' 
5* 
6* 
5* 
5* 
5* 
5* 
5* 
5* 
5* 
5* 
5* 
6* 
5* 
5* 
5* 
5* 

4* 
4* 
4« 
4* 
4* 

5* 
6* 

6* 
6* 
6« 
6* 
6* 
6* 
6* 

Experi­
mental 

Method! 

35* 
35* 
35* 
35* 
51* 
51* 
51» 
51* 
51* 

4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4» 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 
4* 

51* 
51* 
51* 
51* 
51* 

11* 
11* 

51* 
51* 
51* 
51* 
51* 
51* 
51* 
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TABLE 4 
Self-diffusion coefficients for components of binary liquid mixtures 

Components 

A 

Benzene 

Carbon disulfide (Additional 
data for higher pressures 
are available in the refer­
ence for each of the sys­
tems withj carbon disul­
fide) 

Ethanol 

B 

Carbon tetra­
chloride 

Ethanol 

Methanol 

Isobutyl al­
cohol 

1-Butanol 

Chloro-
benzene 

2,4-Dime-
thylpentane 

Heptane 

Methylcyclo-
hexane 

Octane 
Toluene 

Benzene 

Methanol 

Tracer 
Element 

Carbon-14 

Carbon-14 

Carbon-14 

Sulfur-35 

Sulfur-35 

Sulfur-35 

Sulfur-35 

Sulfur-35 

Sulfur-35 

Sulfur-35 
Sulfur-35 

Carbon-14 

Carbon-14 

Composition 
ofAt 

98.6 MPC 
88.6 MPC 
79.9 MPC 
64.4 MPC 
54.2 MPC 
47.9 MPC 
22.0 MPC 
6.7 MPC 
3.9 MPC 

25.8 MPC 
41.5 MPC 
67.4 MPC 
91.2 MPC 
96.9 MPC 
99.5 MPC 
3.0 MPC 

21.3 MPC 
32.2 MPC 
57.0 MPC 
82.7 MPC 
91.7 MPC 
98.1 MPC 

50 MPC 
50 MPC 
50 MPC 
50 MPC 
20 MPC 
50 MPC 
50 MPC 
50 MPC 
50 MPC 
50 MPC 
50 MPC 
50 MPC 
50 MPC 
50 MPC 
50 MPC 
50 MPC 
50 MPC 
50 MPC 

0.7 MPC 
1.9 MPC 
5.4 MPC 
7.7 MPC 

12.7 MPC 
20.8 MPC 
32.0 MPC 
60.5 MPC 
81.4 MPC 
4.6 MPC 

11.0 MPC 

Tem­
pera­
ture 

°C. 

25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 

20 
40 
20 
40 
40 
20 
40 
20 
40 
0 

20 
40 
0 

20 
40 
20 
20 
40 

25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 

Pres­
sure 

atm. 

200 
200 
200 
210 
200 
218 
200 
200 
200 
100 
150 
100 
50 
50 

200 
200 

1 
200 

Diffu­
sion 

Coeffi­
cient 

D X 10' 

cmf/sec. 

2.20 
2.03 
1.99 
1.87 
1.75 
1.73 
1.58 
1.47 
1.85 
2.07 
2.21 
2.29 
2.22 
2.24 
2.13 
2.44 
2.42 
2.37 
2.48 
2.37 
2.24 
2.17 

2.10 
2.95 
3.06 
4.29 
3.52 
2.60 
4.63 
3.15 
4.46 
2.00 
2.88 
4.36 
2.37 
2.65 
3.00 
2.82 
1.93 
4.03 

3.07 
2.91 
2.47 
2.25 
1.91 
1.72 
1.67 
1.40 
1.21 
1.91 
1.87 

Experi­
mental 
Preci­
sion 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
6 
5 
5 
5 
5 
5 

Experi­
mental 
Meth­

od! 

17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 

t See Section VII for an explanation of the abbreviations. 
% The numbers refer to the numbered paragraphs in Section IX. 
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TABLE 4— Concluded 

Components 

A 

Glycine 

Methanol 

B 

Water 

Benzene 

Ethanol 

Water 

Tracer 
Element 

Carbon-14 

Carbon-14 

Carbon-14 

Carbon-14 

Composition 
of At 

22.1 MPC 
46.9 MPC 
72.3 MPC 

0.01 M/L 
0.10 M/L 
0.25 M/L 
0.50 M/L 
1.00 M/L 
1.50 M/L 
2.00 M/L 

0.7 MPC 
3.7 MPC 
8.1 MPC 

22.8 MPC 
41.6 MPC 
68.5 MPC 
86.2 MPC 
6.2 MPC 

14.3 MPC 
30.5 MPC 
57.1 MPC 
78.6 MPC 
1.49 MPC 
5.34 MPC 

16.8 MPC 
26.7 MPC 
40.3 MPC 
46.2 MPC 
63.3 MPC 
84.6 MPC 

100.0 MPC 

Tem­
pera­
ture 

0C. 

25 
25 
25 

25 
25 
25 
25 
25 
25 
25 

25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
27 
27 
27 
27 
27 
27 
27 
27 
27 

Pres­
sure 

atm. 

Diffu­
sion 

Coeffi­
cient 

D X 105 

cm.^/sec. 

1.68 
1.46 
1.13 

1.06 
1.05 
1.03 
0.990 
0.929 
0.871 
0.830 

4.16 
3.30 
2.77 
2.17 
2.02 
2.02 
2.16 
1.16 
1.30 
1.42 
1.75 
2.04 
1.56 
1.40 
1.28 
1.11 
1.13 
1.25 
1.52 
1.95 
2.35 

Experi­
mental 
Preci­
sion 

5 
5 
5 

2 
2 
2 
2 
2 
2 
2 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

Experi­
mental 
j Meth­

od* 

17 
17 
17 

50 
50 
50 
50 
50 
50 
50 

17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
41 
41 
41 
41 
41 
41 
41 
41 
41 

it is pointed out in the discussion of the experimental method. Likewise other 
considerations may warrant doubting the reported precision of a particular 
investigation; where this occurs, it is also mentioned in the discussion of the 
experimental method. 

Experimental method: The numbers refer to the paragraph numbers used in 
listing the experimental methods in Section LX. Where certain of the tabulated 
data warrant amplification, this is done in the discussion of experimental methods 
in Section IX and the fact is noted by an asterisk on the paragraph number. 
To further indicate which specific item is discussed, another asterisk will ordi­
narily appear in the column of the item of interest. For example, many of the 
estimated precisions are discussed further, and this is so noted by asterisks on 
the reported percentage precision figures in the table. 

VIII. TABULATION OF SELF-DIFFUSION COEFFICIENTS FOR PURE LIQUIDS AND 

BINARY LIQUID MIXTURES 

All available experimental self-diffusion coefficients for single liquids and 
components of binary liquid mixtures of non-electrolytes are included in tables 
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3 and 4. The items tabulated are similar to those in Section VII, except that the 
tracer element used in each investigation is indicated in a separate column. 
In table 4 the compound whose self-diffusion rates were determined is designated 
as component A. 

IX. SUMMARY OF EXPERIMENTAL METHODS 

A brief review of the experimental methods used by each investigator whose 
work is summarized in Sections VII and VIII is given below. Also included are 
further comments on some investigations where warranted and, in particular, 
those items marked with an asterisk in Section VII and VIII are discussed in 
greater detail. The numbers in the columns of tables 1, 2, 3, and 4 which are 
headed "Experimental method" refer to the following numbered paragraphs. 

1. Calvet et al. (13, 14, 36) measured the diffusion rates of five substances into 
water by an interferometric technique. For several of the systems the diffusion 
rate in dilute solution was shown to be a linear function of (dc/dx)2 / (d2c/dx2) 
and by use of this relation, diffusion coefficients were extrapolated to infinite 
dilution. No estimate of the precision of the data was given. 

2. The differential diffusion coefficients of three ideal organic liquid systems 
(10) and the systems methanol-benzene (11) and ethanol-benzene (12) were 
measured by Caldwell and Babb in a single-channel diffusion cell with a Mach-
Zehnder interferometer technique. The data are generally consistent to within 1 
per cent. 

3. The diffusion rates of 0.068 M acetylene tetrabromide into acetylene 
tetrachloride were measured by Cohen and Bruins (19) from 0° to 5O0C, using 
a method suitable for layer analysis. The diffusion cell was made of six glass 
plates, the middle four having three 2-cm. holes in them so that, when properly 
aligned, they formed three diffusion cells. The solution was placed in the second 
plate and the solvent in the next three plates to allow calculations to be made 
from Kawalki's tables. At the start of an experiment the plates were slid to­
gether to form the cells; at the end they were slid apart, and the contents were 
drained and analyzed with an interferometer. The results were consistent to 
within 1 per cent. 

4. Self-diffusion coefficients of water were measured by Drickamer et al. (21) 
at temperatures of 0° to 50°C. and pressures up to 10,000 atm., using tritium 
as a tracer element. Measurements were made by allowing diffusion to proceed 
between two glass frits, one of which at the start contained water with a portion 
of tritiated water. The frits were brought together mechanically at the start of 
an experiment and the progress of diffusion was observed by measuring the 
radioactivity at the end of one of the frits. The effective cell length was deter­
mined by calibrating at 250C. and atmospheric pressure, using the self-diffusion 
coefficient of water determined by Orr and Butler (93). The cell length was 
corrected for changes in the density of the water at higher pressures. The average 
precision of the data was 5 per cent, with a maximum deviation of 10 per cent. 
I t is noted that serious disagreement exists among various investigations of the 
self-diffusion coefficients of water. 
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5. Integral diffusion coefficients were determined by Dummer (25) for a 
number of dilute solutions of binary organic liquid systems by use of a two-
layer analysis method in a cell consisting of two glass cylinders each 4 cm. high 
and 1 cm. in diameter which were filled with the solution and the solvent, re­
spectively. The cylinders were brought together at the start of an experiment 
and separated mechanically at the completion. The average composition in each 
of the two halves of the cell after diffusion was determined by refractive index 
measurements. Temperature control varied, but the average precision of the 
results appeared to be within 5 per cent. Data on the viscosity of the solvents 
are included in the paper. 

6. Integral diffusion coefficients were measured by Dunning and Washburn 
(26) at 250C. for various butyl alcohols in dilute aqueous solution by observing 
the rate of change of surface tension with time in a manometric capillarimeter 
0.025 cm. in diameter with a liquid height of 0.05 cm. The capillarimeter was 
initially filled with water to a given level and placed in a large reservoir of dilute 
solution. As diffusion proceeded the changes in pressure needed to keep the liquid 
level constant allowed the surface tension and hence the concentration to be 
observed at the meniscus. By assuming a linear concentration gradient the 
diffusion coefficient was calculated by integration of Fick's second law. Data on 
the density, surface tension, and viscosity of the solutions are also included. 
The consistency of the results was not given. 

7. Diffusion coefficients were measured by Franke (34) at 2O0C. for a number 
of binary systems of water, aliphatic alcohols, and other organic liquids by the 
Lamm method in a square glass vessel 1 cm. on a side and 15 cm. high. The 
diffusion coefficients were calculated by the Boltzmann method assuming that D 
is a function of concentration. Data for refractive index vs. concentration are 
given. The precision of the measurements is not given, but plots of data com­
paring the results with those of Gerlach and Munter show disagreement with 
the latter investigators by as much as 50 per cent. Likewise, comparison with 
the measurements of Caldwell and Babb shows that for the benzene-carbon 
tetrachloride system the data of Franke may be in error by as much as 30 per 
cent. 

8. Diffusion coefficients were measured by Gerlach (38) at 200C. for a number 
of binary systems of water, aliphatic alcohols, and other organic liquids in 
cylinders 70 cm. high and 6 cm. in diameter by observing the density distribution 
with calibrated floats placed in both layers of liquid at the start of an experi­
ment. Differential diffusion coefficients were calculated by Boltzmann's method, 
assuming that D is a function of concentration. Density-composition data are 
given. The precision of the data was not given, but excellent agreement exists 
where the results overlap those of Munter. The data of Franke, however, disagree 
by as much as 50 per cent, and the data of Caldwell and Babb on the benzene-
carbon tetrachloride system differ by as much as 50 per cent. 

9. Differential diffusion coefficients of urea in water were measured by Gosting 
and Akeley (43) at 25°C. by the Gouy interferometric technique used with a 
modified Tiselius diffusion cell. Results are consistent to within 0.1 per cent. 
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10. Differential diffusion coefficients of sucrose in water were measured by 
Gosting and Morris (44) at 1° and 250C. by the Gouy interferometric technique 
used with a modified Tiselius diffusion cell. Results are generally consistent to 
within 0.1 per cent. 

11. Self-diffusion coefficients were measured by Graupner and Winter (47) 
over a temperature range of 15° to 450C. for water, benzene, bromoethane, and 
ethanol by use of deuterium or oxygen-18 as a tracer element. Measurements 
were made in Northrop-McBain type cells of 4 and 11 cc. capacity calibrated 
with 0.1 N potassium chloride diffusing into water, using a value for D at 250C. 
of 1.838 X 1O-5 cm.2/sec. Analyses were made by burning the compounds to 
water and measuring the densities with a pycnometer. Duplicate measurements 
agreed within 5 per cent except for variations of up to 20 per cent for bromo­
ethane. It is noted that values for self-diffusion coefficients for water disagree 
seriously among different investigators. 

12. Integral diffusion coefficients of iodine in various organic solvents were 
measured by Groh and Kelp (49) at 5° to 2O0C. by the method of four-layer 
analysis adapted to calculation from Stefan's tables. Diffusion was conducted 
in glass cylinders 3 cm. in diameter and 10-12 cm. high. At the conclusion of an 
experiment the liquid was divided into four layers and the iodine concentration 
in each determined by titration with sodium thiosulfate. Data for 1O0C. obtained 
by assuming the Drj/T product constant and that for infinite dilution obtained 
by graphical extrapolation are also included in the paper, along with some data 
for diffusion into mixed pairs of solvents. Temperature control at times varied 
up to 0.4°C, although results appeared consistent to within less than 5 per cent. 

13. Differential diffusion coefficients of DL-a-alanine in water at 250C. were 
measured by Gutter and Kegeles (50) over a concentration range of 0.25 to 
13 weight per cent. Measurements were made with a single-lens convergent-light 
Gouy interferometric system used with a Tiselius diffusion cell. Values for the 
diffusion coefficient were consistent to within 0.1 per cent. Some results with 
D-a-alanine and L-a-alanine indicated no difference in diffusion rate from that of 
DL-a-alanine. 

14. Integral diffusion coefficients were measured by Hammond and Stokes 
(51) at 250C. for ethanol-water in stirred Northrop-McBain type diaphragm 
cells calibrated with 0.1 N or 0.5 N potassium chloride, using values previously 
given by Stokes. The integral coefficients were converted into differential co­
efficients by assuming that the differential coefficient was a function of the con­
centration and that the integral coefficient D was related to the differential 
coefficient D by the following expression: 

D'w^WmQDdw 

where W'm is the mean of the initial and final concentration on one side of the 
diaphragm and Wm the mean of the other side. Although the precision of these 
data was stated to be 0.5 per cent, they disagree with those of Smith and Storrow 
by up to 100 per cent in the ranges of high alcohol content. 
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15. Integral diffusion coefficients of a solution of 10 mg./cc. of iodine in carbon 
tetrachloride diffusing into pure carbon tetrachloride were measured by Haycock, 
Alder, and Hildebrand (53), using a capillary-cell technique at temperatures from 
10° to 5O0C. and pressures up to 200 atm. The capillaries used were 6 to 7 cm. 
long and held approximately 0.25 cc. diffusing into reservoirs of pure carbon 
tetrachloride of either 430 cc. or 1 liter capacity. Diffusion was allowed to pro­
ceed for approximately three days, and the final iodine content in the capillaries 
was determined by a standard microanalytical technique. The maximum devi­
ation of experimental observations from the reported mean was 5 per cent. 

16. Integral diffusion coefficients of many organic liquids in binary solution 
were measured by Herzog, Ilig, and Kudar (54) at approximately 70C. by a 
method suitable for calculation from Stefan's tables. The diffusion was con­
ducted in a cell so constructed that the liquids could be displaced with a column 
of mercury. At the end of an experiment eight liquid layers of equal height were 
withdrawn for analysis and the diffusion coefficients calculated from Stefan's 
tables. From more complete data listed for a few systems the general precision 
appears to be within 5 per cent. Data for the viscosity of the solvents are given 
in the paper. 

17. Self-diffusion coefficients of benzene, methanol, and ethanol were measured 
in binary solutions with each other and the benzene as well as in binary solutions 
with carbon tetrachloride and chloroform by Johnson and Babb (58). A capillary-
cell technique was used with capillaries having an internal diameter of 1.5 mm. 
and a length of 6 cm. The radioactivity of the liquid samples was determined in 
small counting cells with a thin mica bottom placed adjacent to a thin-window 
Geiger-Mueller tube. The results were consistent to within 5 per cent. 

18. Differential diffusion coefficients of the methanol-water system were 
measured by Kannuna (61) at 19.30C. by relating measurements of the speed of 
sound at various heights along the diffusion cell to changes of concentration with 
position and time. The speed of sound was determined by passing light through 
the cell at various heights and measuring its deflection by use of an ultrasonic 
field. The diffusion coefficient was calculated by the Boltzmann method, assuming 
D to be a function of concentration. Some individual duplicate experiments dis­
agreed from the average values by as much as 20 per cent. 

19. The self-diffusion rates of carbon disulfide were measured by Koeller and 
Drickamer (68, p. 267) at temperatures of 0° to 4O0C. and pressures up to 
10,000 atm., using sulfur-35 as a tracer element. The technique and precision 
were the same as listed previously in paragraph No. 4. 

20. Self-diffusion coefficients of carbon disulfide were measured by Koeller and 
Drickamer (68, p. 575) for mixtures, primarily at 50 mole per cent, of carbon 
disulfide and various organic liquids at temperatures of 0° to 400C. and pressures 
up to 10,000 atm., utilizing carbon disulfide tagged with radioactive sulfur-35 
as a tracer element. The technique and precision were the same as described 
previously in paragraph No. 4. 

21. The differential diffusion coefficient of glycerol in water at a concentra­
tion of 97.20 weight per cent glycerol was measured at 2O0C. by Lamm and 
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Sjostedt (74), using the Lamm scale method. The maximum deviation of the 
average value reported for D was 0.18 X 10-7 cm.2/sec. at long diffusion times. 

22. The self-diffusion coefficient of water was measured at 20°C. by Lamm 
(73), using the Lamm scale method with deuterium as a tracer. The precision of 
the observations was not given. 

23. Differential diffusion coefficients were measured by Lemonde (75) for a 
number of binary organic liquid systems at temperatures of 5° to 18°C. for both 
dilute and concentrated solutions. The rate of diffusion was measured by ob­
serving the maximum displacement of a light ray passing through the diffusing 
system. Plots of viscosity, diffusion coefficient, and the diffusion coefficient-
viscosity product vs. composition are given. Data are consistent to within 2-4 per 
cent and agree well with later data for the systems ethanol-benzene and meth-
anol-benzene (11, 12). 

24. The differential diffusion coefficients of thirteen amino acids, four pep­
tides, and five sugars were measured in dilute aqueous solution at 1°C. by Longs-
worth (79), using a Rayleigh interferometric technique in a modified Tiselius 
diffusion cell. The precision of the results was within 0.1 per cent. Only part of the 
data is tabulated in Section VII. 

25. The differential diffusion coefficients of twenty amino acids, nine peptides, 
and three sugars were measured in dilute aqueous solution at 25°C. by Longs-
worth (80), using a Rayleigh interferometric technique in a modified Tiselius 
diffusion cell. The precision of the results was within 0.1 per cent. Only a portion 
of the data is included in Section VII. 

26. The differential diffusion coefficients of a number of substances were 
measured in dilute aqueous solution from 1° to 37°C. by Longsworth (81), using 
an interferometric optical technique in conjunction with a modified Tiselius 
diffusion cell. The data are consistent to within 1 per cent. Of particular interest 
was the observation that the diffusion coefficient of deuterium oxide in water was 
concentration-dependent, the diffusion rate decreasing by approximately 4 per 
cent as the amount of deuterium oxide was increased from zero to 0.15 mole 
fraction. 

27. Differential diffusion coefficients of n-butyl alcohol in water were measured 
by Lyons and Sandquist (82) at 1° and 250C. by the Gouy interferometric tech­
nique in a modified Tiselius diffusion cell. The results are consistent to better 
than 1 per cent. Densities and viscosities are also included in the paper. 

28. Differential diffusion coefficients of glycine in water were measured by 
Lyons and Thomas (83) at 1° and 250C. by the Gouy interferometric technique in 
a modified Tiselius diffusion cell. The results are consistent to within 0.1 per cent. 
Density and viscosity data were also determined at I0C. 

29. The diffusion rates of approximately 0.1 JV solutions of iodine in various 
solvents were measured by Miller (85) at temperatures from 8° to 190C. by layer­
ing a definite volume of solution beneath three times that volume of pure solvent. 
Four equal layers of solution were removed at the end of an experiment and 
analyzed by titration with sodium thiosulfate. The diffusion coefficients were 
calculated by use of Kawalki's tables slightly modified to eliminate some of the 
convection error. The agreement of the results was generally within 2 per cent. 
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30. Integral diffusion coefficients of 1.0 N acetic acid and aniline in various 
organic liquids were measured by Muchin and Faermann (86), using a method 
suitable to layer analysis. At the end of an experiment the liquid was divided into 
four layers and the results calculated by use of Kawalki's tables. Analysis of 
acetic acid was by titration with barium hydroxide and of aniline by refractive 
index measurements. Temperature control was sometimes only to 0.50C, but 
the results appear generally consistent to within 5 per cent. 

31. Differential diffusion coefficients were measured by Munter (87) at 2O0C. 
for binary pairs of several common organic liquids by the Lamm scale method in 
a glass cell 30 cm. long and 1 cm. in diameter. The diffusion coefficients were 
calculated by the Boltzmann method, assuming D to be a function of concentra­
tion. Density-concentration and refractive index-concentration data are given. 
Results are plotted along with those of Gerlach; where data overlap the agree­
ment is excellent. The data, however, disagree with those of Franke by up to 50 
per cent, and with the data of Caldwell and Babb for the benzene-carbon tetra­
chloride system by as much as 15 per cent. 

32. Integral diffusion coefficients of a number of organic substances were 
measured in ethyl alcohol and 96 per cent ethyl alcohol (aqueous) by Oeholm 
(90, No. 24) in a cell designed so that the liquid could be separated into equal 
layers at the end of an experiment. The liquid layers were analyzed by refractive 
index measurements and the diffusion coefficients were calculated by use of 
Kawalki's tables. In general the precision of the measurements was within 5 
per cent. 

33. Integral diffusion coefficients for a number of high-molecular-weight 
organic compounds were measured in water at 10° and 2O0C. by Oeholm (90, 
No. 23), using a cell suitable for layer analysis and calculation from Kawalki's 
tables. Not included in Section VII are data for some of the listed compounds at 
100C. and for a number of compounds of very high molecular weight and some 
colloids at both 10° and 2O0C. The precision of results was generally within 5 per 
cent. 

34. Integral diffusion coefficients of glycerol and bromoform were measured in 
a number of organic liquids by Oeholm (90, No. 26), using a cell suitable for layer 
analysis and calculation from Kawalki's tables. The data obtained were near 
2O0C. and were reduced to 20°C. by assuming that the Drj/T product was a 
constant. Viscosity data are given in the original paper as well as some additional 
diffusion data. The precision of the results was generally within 5 per cent. 

35. Measurements of the self-diffusion coefficients of water between 0° and 
450C. were made by Orr and Butler (93), using unstirred glass diaphragm 
cells of the Northrop-McBain type of approximately 24 cc. volume. Cells were 
calibrated with 0.1 N potassium chloride at 2O0C, using a value for D of 1.68 
X 10 - s cm.2/sec. Analyses were by measurements of the density by means of a 
pycnometer. The results were consistent to within 4 per cent, but it is observed 
that serious diagreement exists among investigators for the self-diffusion coef­
ficients of water. 

36. S elf-diffusion coefficients for water and a number of aliphatic alcohols were 
measured by Partington, Hudson, and Bagnall (95) in a magnetically stirred 
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Northrop-McBain type glass diaphragm cell over a range of 15° to 550C. The 
hydrogen atom in the hydroxyl group was replaced with deuterium and analyses 
were made by combustion to water, followed by density measurements in a 
micro-float apparatus. The reported overall accuracy of the results was 0.5 per 
cent, but it is observed that serious diagreement on the self-diffusion coefficients 
of water exists among various investigators. 

37. Differential diffusion coefficients of water in re-butyl alcohol at 300C. were 
measured by Randall, Longtin, and Weber (98), using a modified Thovert 
method. Optical measurements of the refractive index gradient were made to 
determine the concentration gradient in a vertical cell with water in the bottom 
and the n-butyl alcohol on top. The alcohol was added at a uniform rate of 
2 cc./min. and sufficient water was added to the bottom to keep the water-
alcohol boundary at the same height. When a steady state was reached after 
approximately one week the diffusion current of water was determined by an 
interferometric analysis of the alcohol overflow. Knowledge of the diffusion 
flux, the concentration gradient, and the concentration at any point enabled the 
diffusion coefficient to be calculated. The precision of the observations was not 
given. 

38. The self-diffusion coefficient of water was measured by Roegener-Leipzig 
(99) at 17.5°C. by use of deuterium as a tracer element and an interferometric 
technique to measure changes in refractive index as diffusion proceeded. The 
average value of D tabulated was within 1 per cent of all experimental data re­
ported, but it is observed that there is considerable disagreement among investi­
gators for the self-diffusion coefficients of water. 

39. Differential diffusion coefficients of diphenyl in benzene were measured by 
Sandquist and Lyons (101) at 25° and 350C. and at a concentration of 3 A7' by 
the Gouy interferometric technique in a modified Tiselius type diffusion cell. The. 
results were consistent to within 1 per cent. 

40. Integral diffusion coefficients of mannitol in dilute aqueous solution were 
measured by Scheffer and Scheffer (103), using a layer analysis technique. 
Results were consistent to within 2-4 per cent. 

41. Self-diffusion coefficients of methanol in methanol-water solutions were 
measured by Sehmel and Babb (104), using the capillary-cell technique described 
in paragraph No. 17. 

42. Diffusion coefficients of the ethanol-water system were measured by 
Smith and Storrow (106) over a range of 25° to 72.50C. in a magnetically stirred 
glass diaphragm cell of the McBain-Northrop type of approximately 20 cc. 
capacity. The cells were calibrated by use of various concentrations of potassium 
chloride at 250C, using the data of Harned and Nuttall as reference values. The 
analyses were by specific gravity measurements supplemented by other chemical 
or physical methods. The diffusion coefficients listed in Section VII were obtained 
from a published graph of diffusion coefficient vs. concentration and may be 
slightly in error because of errors in reading the graph. The precision was stated to 
be within 3 per cent, but disagreement up to 100 per cent exists with data of 
Stokes and Hammond. 

43. Integral diffusion rates of 0.1 N hydrogen peroxide in water and several 
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organic liquids were measured by Stern (109) from 0° to 30°C. in a simple 
Anson-type diaphragm cell of 75 cc. capacity calibrated with 0.1 N potassium 
chloride diffusing into pure water, using a value for D of 1.448 cm.2/day at 200C. 
Analyses were by iodometric titration. The hydrogen peroxide used in the tests 
with water was stabilized with 0.1 per cent acetanilide; additional data for 
diffusion into water with other stabilizing agents added are given in the paper. 
More detailed data given for some of the experiments indicated a general pre­
cision within 5 per cent. 

44. The integral diffusion coefficients for dilute solutions of iodine diffusing into 
various organic solvents were measured by Stokes, Dunlop, and Hall (111) at 
25°C. in stirred Northrop-McBain type diaphragm cells calibrated with potas­
sium chloride solution. Iodine was analyzed by titration with sodium thiosulfate 
or sodium arsenite. The diffusion coefficients were extrapolated and reported 
also for infinite dilution. The precision of the results was stated to be within 1 per 
cent. 

45. The integral diffusion coefficients for a number of organic compounds in 
methyl alcohol were measured by Svedberg and Svedberg (113) at 150C. by a 
method in which the solution could be withdrawn in four layers at the end of an 
experiment. The average concentration in each layer was measured by refractive 
index determinations and the diffusion coefficient calculated by use of appro­
priate tables. Where indicated by an asterisk concentrations of solute are given 
in terms of grams per 100 cc. of solvent in the tabulation of Section VII. Ad­
ditional data for some of the systems indicated a general precision of approxi­
mately 5 per cent. 

46. The diffusion rate of heavy water (3 mole per cent) into water was 
measured by Temkin (115) by allowing diffusion to proceed from a micro-
pycnometer (0.1 mm. inside diameter) into a larger vessel of water and observing 
the difference in equilibrium hydrostatic pressure for the solution and the heavy 
water. The changes in pressure were used to calculate the diffusion coefficient 
after the method was calibrated with potassium chloride. The results were self-
consistent within 5 per cent, but it is noted that serious disagreement exists 
among investigators for the self-diffusion coefficients of water. 

47. The diffusion rates of many organic substances were determined in dilute 
solution (less than 2 weight per cent) of water, methyl alcohol, and benzene by 
Thovert (116). The changes in concentration with distance and time in a glass 
diffusion cell were determined by observing the maximum displacement of a 
beam of light passing through the cell. The data were calculated assuming that 
D is a constant and generally represent a differential coefficient at a concentra­
tion of approximately 0.5 to 1 weight per cent solute. Although obtained at 
temperatures from 6° to 250C, the data are usually extrapolated and tabulated 
at 150C. by assuming the Dy/T product constant for each system. Considerable 
additional data for the diffusion of phenol into various solvents and mixtures of 
solvents from 10° to 250C. are given in the paper. The general precision was stated 
to be within 2 to 3 per cent, but in many cases the error may have been 5 to 10 
per cent. 

48. Differential diffusion coefficients were measured by Trevoy and Drickamer 
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(119) at temperatures of 15° to 550C. for 50 mole per cent mixtures in binary 
systems of paraffin hydrocarbons, and paraffin hydrocarbons and benzene, in 
horizontal, unstirred diaphragm cells. The cells had a capacity of approximately 
23 cc. and were calibrated by diffusing 0.1 N hydrochloric acid into pure water, 
using a value of 2.90 X 10 -5 as the integral diffusion coefficient at 250C. Concen­
trations were determined with a Zeiss water interferometer. Precision was usually 
within 4 per cent. 

49. Self-diffusion measurements were made by Wang (123) on water in the 
range of 0° to 550C, using deuterium as a tracer in both capillary and diaphragm 
cells. The capillaries used were 0.5 mm. in diameter and 4 cm. long. The dia­
phragm cells were unstirred Northrop-McBain type glass cells holding approx-
imately50 cc. and were calibrated using a valueof 1.77 X 10~6 cm.2/sec. at 17.50C. 
as the self-diffusion coefficient of water. Analyses were by density measurements 
with a gradient tube for the capillary-cell technique and a pycnometer for the 
diaphragm-cell technique. Reported accuracies were 1 per cent for the capillary-
cell technique and 2 per cent for the diaphragm-cell technique, but later data by 
the same author disagree by as much as 20 per cent. 

50. The self-diffusion coefficients of glycine tagged with carbon-14 were 
measured by Wang (127) in dilute aqueous solution at 25°C. by a capillary-cell 
technique. Radioactivity measurements were made with a gas-filled Geiger-
Mueller tube. The results were generally consistent to within 2 per cent. 

51. The self-diffusion of water was measured by Wang, Robinson, and Edel-
man (129), using a capillary-cell technique in which deuterium, tritium, and 
oxygen-18 were used as tracers. The capillaries had a cross-section of approx­
imately 0.2 mm.2 and were 2 to 5 cm. long. The deuterium samples were analyzed 
by mass spectrometry and the tritium by measuring the radioactivity of tritiated 
methane formed with the tritiated water. The oxygen-18 was analyzed by 
equilibrating the water with carbon dioxide and analyzing the equilibrated gas 
by mass spectrometry. The data with oxygen-18 were presented in an earlier 
paper by Wang (126), but an error was present in the calculations which was 
eliminated in the present paper. The precision was generally 4 per cent with 
deuterium and tritium and 6 per cent with oxygen-18. It is noted that consider­
able disagreement exists among values of self-diffusion coefficients of water as 
reported by various investigators. 

52. The self-diffusion rates of carbon tetrachloride tagged with chlorine-36 
were measured by Watts, Alder, and Hildebrand (130) from 25° to 5O0C. and 1 
to 200 atm. pressure with a stated precision of 4 per cent. The technique used 
with the capillary diffusion cell is described in paragraph No. 15. 

The authors wish to express their indebtedness to Dr. J. R. Hall for his helpful 
comments and assistance with the manuscript. 
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