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I. INTRODUCTION 

In the last twenty years a thermodynamic theory of 
irreversible processes (TIP) has been vigorously devel
oped which, unlike its classical forebear, has been able 
to treat irreversible phenomena in a detailed way. The 
present macroscopic form of the theory (32, 45, 46, 61, 
63, 65, 112, 113, 114, 125, 126, 130, 132) was suggested 
primarily by the statistical mechanical investigations 
of Onsager (125, 126). However the necessary concepts, 
such as entropy production, linear laws, and symmetry 
of coefficients, are based wholly on experiment and 
were known long ago. For example, in the case of heat 
conduction in solids, the entropy production was known 
at least as early as 1887 (8), the linear laws as early as 
1811 (55, 56), and the symmetry of coefficients was 
suggested in 1851 (148) and first shown experimentally 
in 1893 (143, 144). If these notions had been generalized 
and applied to other phenomena, the theory might well 
have appeared outright in macroscopic form. By his
torical accident the interrelation of these notions was 
not recognized until statistical mechanics showed the 
way. In this review only the macroscopic theory will 
be considered, leaving aside all statistical considera
tions. 

This theory of irreversible processes has been very 
successful in treating many sorts of irreversible phe
nomena. In some cases, such as thermoelectricity and 
electrical transference in solutions, equations originally 
derived by admittedly incorrect means have been put 
on a rational basis. Despite the theory's success, some 
(5, 6) have considered that it was not adequately veri
fied by experiment. Most of the controversy has been 
concerned with the validity of the most important con
sequence of the formalism, the Onsager reciprocal rela
tions. The purpose of this review is to collect the pres
ently available experimental data for a variety of quite 
different irreversible phenomena and to show that this 
evidence does indeed verify the Onsager reciprocal rela
tions. Some of the data have been in the literature for 
years, and part of them were originally obtained to 
verify less general or incorrect theories. Thermoelec
tricity, electrokinetics, transference in electrolytic solu
tions, isothermal diffusion, heat conduction in aniso
tropic solids, and thermogalvanomagnetic effects will 
be the irreversible phenomena considered in detail. 
Chemical reactions and the thermomechanical effects 
will be discussed briefly. 

II. THERMODYNAMICAL PRELIMINARIES 

To facilitate the thermodynamic description of the 
various irreversible phenomena to be considered, the 
assumptions and the general formalism of the theory of 
irreversible processes will be discussed briefly. This ma
terial has been covered more comprehensively in a 
previous article (116; c/. 31, 68). 

A. ASSUMPTIONS 

1. Classical thermodynamics 

All the concepts of classical thermodynamics are 
assumed. 

2. Division into subsystems 

It is assumed that systems undergoing irreversible 
processes can be divided up into infinitesimal subsys
tems in which the usual thermodynamical variables 
such as T, P, V, E, S, etc., have meaning. For example, 
a heat-conducting rod can be divided up into a large 
number of thin slices, each of which has a definite tem
perature. Such an assumption is valid for most processes 
but would fail in turbulent systems. 

8. Local equilibrium 

It is assumed that each subsystem can be considered 
as if it were in local equilibrium, despite the gradients 
of the thermodynamic variables which give rise to the 
irreversibility. This assumption permits one to apply 
all the results of classical thermodynamics to a given 
subsystem. It will be valid if perturbations from equi
librium are not too large. 

B. SKETCH OF THE FORMALISM 

1. The entropy production 

By means of the above assumptions, the entropy 
production can be calculated. This notion is based on 
the Clausius inequality 

dS > Il (irrev.) (1) 

a theorem of classical thermodynamics (33a). S is the 
entropy, q is the heat transported across a boundary of 
the system, T is the temperature of the surroundings 
at the boundary, 8 refers to an inexact differential, and 
the summation is applied if there are boundaries of the 
system at different temperatures. Expression 1 can be 
turned into an equality (the entropy equation) in this 
manner (63a, 130, 132) 

dS = Z r + dSim (2) 

where dSint is called the "entropy created internally" 
during the irreversible process, and by equation 1 is 
always positive. By means of assumptions 2 and 3, 
these equations may be applied to any subsystem. The 
"entropy production" a is now defined to be the rate 
of change of Sint per unit volume, i.e., 

_1_ d<Sjm 

V dt (3) 

where t is the time and V is the volume. In any par
ticular case, dS i n t is calculated from the defining equa
tion 2 as follows: The quantity dS is computed for a 
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particular subsystem in the usual way by integrating 
Sq/T along some reversible path between the initial and 
final states associated with some time interval. Assump
tion 3 is used in this part of the calculation. Next the 
quantities Sq/T at each boundary of the subsystem for 
the actual irreversible process are calculated and 
summed. It is often convenient to compute 5q by a 
separate calculation of dE + Sw, where E is the energy 
and w is the irreversible work done by the system. Sub
stitution into equation 2 gives d*Sint. (Some simple ex
amples are given in reference 116.) 

The quantity Ta is known as the "dissipation" and 
was known to Bertrand (8) in 1887 for the case of heat 
conduction. Other early workers who calculated a or 
Ta were Rayleigh (135), Natanson (121), Duhem (39), 
Jaumann (87, 88), and Lohr (96, 97). More recent calcu
lations are summarized in De Groot's book (63), and 
many references are given there and by Denbigh (32). 

When Ta is calculated for any system, it is always 
found to be of the form 

Tc=Y JiXi (4) 

or its vector or tensor analogs. The Jt are flows of 
matter, heat, or electricity, and the Xt are generalized 
forces such as gradients of chemical potential, tempera
ture, or electrical potential. Take for example, a fluid 
of k constituents (some of which may be charged), 
which is situated in a gravitational field and in which 
gradients of concentration and temperature exist. Ta 
can be written in one-dimensional form for a given sub
system as (117): 

+ E(-if)[-(-+-S+'^)] » 
k 

Here A denotes the cross-section, x the length, nk the 
number of moles of k, Mt, the molecular weight, eu the 
electrical charge in faradays, Mfc_the chemical potential 
(the partial molal free energy Fk), g the acceleration 
due to gravity, and <t> the electrical potential. The 
parentheses are the flows J of heat and matter per unit 
cross-section, and the square brackets are the general
ized forces X. More familiar cases will be considered 
shortly. I t should be remarked again that this sort of 
calculation depends on assumptions 2 and 3 and would 
not be possible in systems with turbulence. 

2. The linear laws 

It was noticed experimentally long ago that in simple 
cases the forces and flows of Ta are linearly related to 
each other. Thus, for example, 

(a) Pure electrical conduction 

Ta- = / s (6a) 

/ = ( 1 / . S ) S Ohm's law (124) (6b) 

(b) Pure heat conduction 

=̂'* Hf) <7a> 
J, = - (K/T)^ Fourier's law (55, 56) (7b) 

where / is the current, S is the e.m.f., R is the resistance, 
Jt is the flow of heat, and K/T is the heat conductivity 
coefficient. Note that equation 6a, the Joule heat, is 
already familiar as a dissipation energy. 

In general if there is more than one irreversible proc
ess occurring, it is found experimentally that each flow 
Ji is not only linearly related to its conjugate force Xi 
but is also linearly related to all other forces found in 
the expression for Ta. If the general linear coefficient is 
denoted by Ly, the general form for J1- is 

Ji = £ L<ix>- (8) 

For example, in thermoelectricity the flow of current is 
caused by the temperature gradient as well as the usual 
electric potential gradient. The connection is clear from 
a microscopic viewpoint, because heat is conducted 
through metals in part by the transfer of energy from 
the hotter higher-energy electrons to the cooler lower-
energy ones. 

8. The Onsager reciprocal relations 

So far, no ideas have been presented above which 
were not used extensively before 1900. The only signifi
cant addition of this century to the theory of irreversible 
thermodynamics (63, 125, 126) is the following: Pro
vided the Ji and Xi are chosen from the expression for Ta 
and are independent, the phenomenological coefficients L^ 
of the linear laws satisfy the symmetry relation 

Li,- = La (9) 

for all i and j . In the presence of magnetic fields, equa
tion 9 takes the form 

Li1-(B) = L,-i(-B) (10) 

where B is the magnetic induction. 
As noted before, this kind of relation was found for 

heat conduction in anisotropic solids. However, the 
first general statement of this principle was given by 
Onsager (125, 126) in 1931, as a consequence of a 
statistical mechanical argument. I t is known as On-
sager's principle, and equation 9 states the Onsager 
reciprocal relations. The power of this simple relation 
will be seen in the following sections. 

In any theory, certain axioms or principles are as
sumed. In a purely macroscopic theory, the validity of 
the axioms and their consequences can be compared 
directly with experiment. In this way the validity of 
classical thermodynamics was shown long ago. Simi
larly, Onsager's principle can be taken as an axiom 
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supplementary to classical thermodynamics, and its 
experimental validity investigated. This is a worthwhile 
task, even in view of the existing statistical mechanical 
derivations, because the conceptual foundations of equi
librium statistical mechanics alone are the subject of 
considerable controversy. Even more specialized and 
controversial hypotheses are required for the derivation 
of equation 9. 

The experimental evidence for the validity of On-
sager's reciprocal relations in a wide variety of different 
irreversible processes will now be exhibited. 

III. THERMOELECTRICITY 

A. DEFINITIONS AND DESCRIPTION OF THE EFFECTS 

Consider a thermocouple consisting of two metals A 
and B whose junctions in electrical contact are at T 
and T + dT, as shown in figure 1 (63b, 73). As a result 

HEAT 
RESERVOIR 

METAL A 
HEAT 

RESERVOIR 

FIG. 1. Schematic diagram of thermocouple. The terminals 
of a potentiometer (Seebeck effect) or battery (Peltier effect) are 
at Xo and XQ. 

of the temperature difference, heat and electricity will 
flow and potential and thermal gradients will be set up. 
There are a number of thermoelectric effects depending 
on the complexity and degree of anisotropy of the 
system. It is assumed that the above system is isotropic, 
and only the Seebeck and Peltier effects will be con
sidered. 

In the Seebeck effect an e.m.f. S is measured between 
the two junctions P and Q when no current is permitted 
to flow. Thus S is measured with a potentiometer, 
whose e.m.f. terminals at x<> and x't, are at the same tem
perature T0 to avoid thermoelectric e.m.f.'s inside the 
measuring system. This S can clearly be written 

= _ fx'° (&\ 
XQ 

/ d> \ 
\dxj, 

dx 

where <f> is the electrical potential. Its derivative 

d& _ _ & ± dx_ _ —d<t> 
dT ~ dx dT dT 

(H) 

(12) 

is called the thermoelectric power. 
In the Peltier effect, the two junctions are kept at 

the same temperature, but a current is passed through 
the wires. A quantity of heat Jq will be absorbed at one 
junction and a quantity —Jq at the other. This quan

tity of heat is found experimentally to be proportional 
to the electrical current J; hence the Peltier heat, LT, is 
defined as 

n = {J JI) dr-o (13) 

B. DERIVATION OF KELVIN'S RELATION 

The above system is easily analyzed by the theory 
of irreversible processes in a very direct way as follows. 
It can be shown quite easily (63b) that for the thermo
couple as a whole 

»-'•(-*© (-1) 
Hence the linear relations are 

'•-*»(-?§)+*»(-£) <>» 
'-*(-*©+*•(-£) <"> 

The conditions of the Seebeck experiment are / = 0, 
and thus by equation 16 

ds 
dT7 

(d±\ _ J™_ 
w A - o TLn (17) 

From the definition of the Peltier heat and equations 
15 and 16, one readily obtains: 

(18) 

Thus one has: 

According to 

H = (JJI) dr-o = 

LiJLn = U/T-

equation 9 L^ = 

11 dr 

L\i 
Z/22 

dS 
\T 

U 

(19) 

(20) 

Conversely, if n = TdS/dT, the Onsager reciprocal 
relation will be verified. Equation 20 is a well-known 
expression of thermoelectricity, derived by Kelvin in 
1854 (152) by an admittedly unjustifiable argument. 
Until the theory of irreversible processes, many imagin
ative but incorrect attempts were made to justify it 
(16a, 47, 48, 153). 

More elaborate derivations of Kelvin's relation con
sider the system to have two components, a fixed metal 
and moving electrons (21, 36, 37, 122a). Such deriva
tions are helpful in understanding the Thomson heat 
as well as being valuable in showing the clarification 
which can result from a wholly macroscopic treatment. 
The arguments have been extended to anisotropic 
media by Domenicali (36, 37), whose papers along with 
Nye's book (122a) are especially recommended. 

It can also be shown by means of the theory of irre
versible processes that an electrolytic cell whose elec
trodes are identical except for being at different tem-
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peratures and whose solution is of uniform composition 
behaves in the same way as a metallic thermocouple 
and will, if the Onsager reciprocal relations are valid, 
also obey equation 20 (2, 78, 120). 

C. E X P E R I M E N T A L EVIDENCE FOR T H E ONSAGER 

RECIPROCAL RELATION 

Not every experimental measurement is suitable for 
comparison, because it is well known that minor im
purities have an enormous effect on the thermoelectric 
properties of metals. Consequently a test of the validity 
of the Onsager reciprocal relations for metals will be 
significant only if dS/dT and II are determined on the 
same specimen. Owing to the difficulty of directly deter
mining II, not many such measurements exist. In table 
1 are the values of U/T and dS/dT measured on the 

TABLE 1 
Test of the Kelvin relation for metallic thermocouples 

TABLE 2 
Test of the Kelvin relation for electrolytic thermocouples 

Couple 

Cu-Ag 

Cu-Al 
Cu-Ni 

Cu-Pt 
Cu-Fe 

Cu-German si lver . . . . 
Cu-Niokeline 
Cu-(70%Sn,30%Pt) 
Cu-(70%Pd,30%Pt) 
Cu-Hg 

Cu-Bi1 

Cu-Bi| 
Cu-(Bi 45° from hex

agonal axis) 
Cu-Bi 
Cu-Bi (3.75% Sn). . 
Cu-Bi (6.36% Sn). . 
Cu-Bi (9.93% Sn). . 
Cu-Co nstantan 

Fe-Ni 
Fe-Hg 

Fe-Al 
Fe-German silver... 
Cd-Ni 
Cd-Pb 
Zn-Ni 
Zn-Sn 
Zn-Bi 
Bio—Bigo 
Bl4fi-Bigo 
Bi-Pb 

Tem
pera
ture 

0C. 

0 
18 
15.8 
0 

14 
22 
0 
0 

19 
0 
0 
0 
0 
0 

13.9 
56.2 
77.7 
99.7 

132.2 
184.4 
20 
20 

20 
20 
20 
20 
20 
15 
20 
30 
40 
16 
18.4 
56.5 
99.6 

131.6 
182.3 

0 
0 

17 
0 

17 
0 
0 

27 
27 
0 

n 
— T 

- 1 . 8 
0.1 
2.4 

18.6 
20.2 
20.5 
3.66 

-10 .16 
- 9 . 9 

-13 .22 
25.25 
18.90 
2.30 
1.06 

61.9 
73.6 
79.0 
84.9 
92.8 

107.6 
- 4 7 
- 7 1 

- 8 2 
- 6 5 . 9 

37.0 
39.8 
35.6 
35.3 
37.7 
40.5 
43.2 
33.1 
16.72 
16.17 
15.57 
14.89 
13.88 
11.0 
19.97 
22.1 
3.03 

22.1 
2.65 

25.4 
46.0 
33.0 

- 1 7 . 5 

ds* 
— dT" 

- 2 . 1 
0.2 
3.1 

20.0 
20.7 
22.3 
3.67 

-10 .15 
- 1 2 . 9 
-13 .24 

25.22 
18.88 
2.32 
1.01 

61.9 
73.5 
79.4 
85.4 
94.6 

108.0 
- 4 7 
- 6 6 

- 8 1 
- 6 7 . 2 

35.4 
42.7 
38.0 
35.7 
38.9 
41.8 
44.6 
31.2 
16.66 
16.14 
15.42 
14.81 
13.74 
11.5 
20.0 
22.6 
3.02 

22.0 
2.56 

25.1 
48.3 
27.7 

- 1 7 . 2 

n Ll2 

r d £ / d r L2I 

0.86 
0.5 
0.77 
0.930 
0.976 
0.919 
0.997 
1.000 
0.77 
0.998 

.001 

.001 

.991 

.05 

.00 

.00 
0.995 
0.994 
0.980 
0.996 
1.00 
1.08 

,01 
,98 
04 

.93 
,94 

03 
1.03 
1.03 
1.06 
1.004 
1.002 
1.010 
1.005 
1.011 
0.956 
0.998 
0.978 

1.02 

Refer
ence 

(82) 
(27) 
(27) 
(82) 
(7) 
(27) 
(10) 
(10) 
(60) 
(4) 
(10) 
(10) 
(10) 
(10) 
(150) 
(150) 
(150) 
(150) 
(150) 
(150) 
(12) 
(12) 

(12) 
(28) 
(28) 
(28) 
(28) 
(7) 
(159) 
(159) 
(159) 
(7) 
(128) 
(128) 
(128) 
(128) 
(128) 
(4) 
(4) 
(7) 
(4) 
(7) 
(4) 
(4) 
(50) 
(50) 
(4) 

Couple 

Cu-CuSO* 
_ /CuSO* . . . . 
0 MH 2 SO* 

/Hg 2Cb 
H e f - \KC1 

Electrolyte 
Concen
tration 

moles/liter 

2 
1 
0.01 
Satd. 
1 
0.01 
0.1 
0.316 
1.0 

Tem
pera
ture 

0C. 

25 

~25 

25 

25 
25 
25 
25 

n 

kcal./mole 

10.8 (17)* 

8.9 (14) 

7.1 (94) 

- 4 . 6 5 (93) 
- 2 . 9 3 (93) 
-2 .30(93) 
-1 .82(93) 

&TAs/dT 

kccA./mole 

10.9 (19)* 

8.9 (14) 

8.2 (92) 

- 4 . 4 7 (93) 
-2 .89(93) 
-2 .13(93) 
-1 .38(93) 

n 
z5Td&/dT 

0.99 

1.00 

0.87 

1.03 
1.02 
1.08 
1.32 

* References are given in parentheses. 

same specimen for a number of metallic thermocouples. 
Table 2 contains the limited data obtained since 1900 
for electrolytic thermocouples. 

The ratio Ln/Lu is remarkably close to unity in all 
but a few cases, leaving no doubt that the Onsager 
reciprocal relation is verified within the error of the 
experiments. 

IV. ELECTROKINETICS 

A. D E F I N I T I O N S AND DESCRIPTION OF T H E E F F E C T S 

Some of the various electrokinetic quantities (59, 
104a) will now be taken up. Consider a fluid system 
which may have several components (some of which 
may be charged), and suppose this system divided into 
two reservoirs separated by a porous diaphragm. The 
diaphragm may be a single capillary, a porous frit, or 
even pressed fibers such as compressed glass wool. Into 
each reservoir dips an electrode as shown in the sche
matic diagram of figure 2. 

If a fixed potential difference S is impressed across 
the electrodes, then it is found that as a consequence 
of the current flow 7, a fluid flow J through the dia
phragm D results until finally a steady state is reached. 
At this point the pressure difference AP = P2 — £Pi 
just balances the impressed S, and the flow J becomes 
zero. The observed AP depends on both the fluidfand 
the nature of the diaphragm but is proportional to^S. 
The forced flow of fluid through a diaphragm by an 

: R i • fi - • • • % . s 

J-
I-

* All values are in microvolts per degree. 
FIG. 2. Schematic diagram of apparatus to measure electro-

osmotic pressure. 
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PISTON 
I ' t 

El 
1—®-

' • ^ 

J 

a 
E2 • • * i 

* * 

FIG. 3. Schematic diagram of apparatus to measure streaming 
current. 

impressed e.m.f. is called electroosmosis. Thus for a 
given system and diaphragm, the electroosmotic pressure 
(EOP) can be defined as 

EOP = (AP/s)/_o (21) 

Now consider the converse experiment with the same 
fluid and diaphragm in which the electrodes are short 
circuited (i.e., S = 0) and the fluid forced through the 
diaphragm by a piston as shown in figure 3. If an am
meter A is placed between the electrodes, a current I 
is observed which is proportional to J bu t depends on 
the fluid and the diaphragm. A quant i ty called the 
streaming current (SC) can be defined as 

SC -(I/J) s_o (22) 

There are various other combinations of experimental 
conditions which lead to other defined quantities. Thus 
if the fluid is forced through the diaphragm with a pres
sure difference AF, and the S resulting is measured with 
a potentiometer (/ = 0), then the streaming potential 
(SP) can be defined as 

SP = (s/AP) w (23) 

Similarly, when an S forces the fluid through the dia
phragm along a horizontal tube so that AP = 0, both 
J and I can be measured, giving rise to the quantities 
electroosmosis (EO), 

EO = (///JiP-o (24) 

and 2nd electroosmosis 

2nd EO = {J/z) 4P-0 (25) 

AU of these quantities, as well as the resistance R, 
have been measured in the experiments t ha t will be 
used to test the Onsager reciprocal relations. 

B. DERIVATION OF S A X E N ' S AND RELATED EQUATIONS 

The general situation may be analyzed by the theory 
of irreversible processes (63c, 100, 101, 108, 109, 116, 
129, 132a). I t has been shown that the entropy produc
tion for this type of system is 

JV = JAP + / s (26) 

so that the linear laws are 
J = Ia1AP + L12S (27a) 
I = L21AP + L22E (27b) 

I t is easily seen that 

EOP = (AP/s).r_o = -IA1ZL11 (28) 

S O - ( / / J ) M = In / in (29) 

SP = (S/AP),_„ = -UdIm (30) 

EO = (J/I) w* = WIm (31) 

2nd EO = (J/&)IPJ> = Lit (32) 

R = (S/Z)AP_O = VL22 (33) 

I t is clear t h a t the assumption Lu = L21 entails 
various relations among the experimental quanti t ies; 
e.g., 

EOP = - S C (34) 
- E O = SP (35) 

-(2nd EO)R = SP (36) 

Conversely, the validity of these relations entails 
Ll2 = L2I. 

The first of these, equation 34, is known as Saxen's 
relation and was originally derived using microscopic 
models of the details of the electrokinetic process (139). 
The analysis assuming the Onsager reciprocal relations 
shows tha t this result, and the others as well, should be 
valid independently of any models. 

C. DATA AND VERIFICATION OF T H E ONSAGER 

RECIPROCAL RELATION 

It should be remarked that electrokinetic experiments 
have the same sort of difficulty as thermoelectric ones. 
Two ostensibly identical diaphragms may behave quite 
differently. Results even on the same diaphragm may 
change with time and are very sensitive to impurities, 
especially in dilute solutions. The data collected below 
have been determined on systems which used the same 
diaphragm for the different kinds of electrokinetic meas
urements. 

Table 3 (139) contains the experimental evidence for 
Saxen's relation, and table 4 (38) contains that for 
equation 35. These latter results are stated to have 
significant experimental error. 

TABLE 3 
Test of Saxen's relation (1S9) 

Clay Plugs; Aqueous Solution 

H % ZnSOt. 
%% ZnSO1. 

1% ZnSO*.. 

1% CuSO4., 

2% CuSO*., 
H % CdSO4 

1% CdSO4. 

- 1 * 

~sc~ 

0.356 
0.386 
0.377 
0.381 
0.350 
0.342 
0.392 
0.385 
0.378 
0.233 
0.633 
0.532 
0.116 

1* 

EOP 

0.352 
0.388 

.377 

.379 

.338 

.350 

.380 

387 
237 
609 
567 
115 

-EOP 

SC 

L12 

Ln 

1.01 
0.99 
1.00 
1.01 
1.04 
0.98 
1.03 
0.99 
0.95 
0.98 
1.04 
0.94 
1.01 

* 1/SC and 1/EOP are given in cm.«'Vg.i'a. 
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TABLE 4 
Teat of equation SS (38) 

Glass Slit: 
Concentration of Aqueous 

Solution 

equiv./liter 

10-* 
5 X 10"* 
10-» 

- E O X 1010 

CC/see e.s.u. 

132 
11.2 
9.9 

KCl 

SP X 10'° 

e.i.u. cm.3/dyne 

95.0 
18.5 
8.0 

- E O 

SP 

1.4 
0.61 
1.23 

- E O X 1010 

cc./tec. e.i.u. 

77.9 
12.4 
4.8 

BaCIj 

SP X 1010 

e.e.u. cm.2/dyne 

62.2 
11.8 
5.3 

- E O 

SP 

1.25 
1.05 
0.91 

- E O X 101° 

cc./aec. e.s.u. 

70.9 
15.7 
7.0 

AlCl8 

SP X 1010 

«.s.u. cm.'/dyne 

80 
16.6 
8.1 

- E O 

SP 

0.88 
0.94 
0.87 

T SS 230C. 

Much of the data for verifying equation 36 have been 
reported in terms of the zeta potential f, a concept 
based on the microscopic models. The f potential is 
defined in terms of 2nd electroosmosis by 

— fEO = Dr* 

and in terms of streaming potential and R by 

1"8P = 
M S / A P ) / . , 

BDr* 

(37) 

(38) 

where r\ is the viscosity of the fluid and D its dielectric 
constant. The quantities r and I are the radius and 
length of a diaphragm consisting of a single capillary. 
If the diaphragm is a porous frit, l/r2 is replaced by 
the equivalent quantity •KK referring to the network of 
capillaries making up the frit, where K is the effective 
cell constant for conductivity and is the same for both 
£EO and f SP- If equation 32 is substituted into equa
tion 37 and if equations 30 and 33 are substituted into 
equation 38, one obtains: 

JEO = -La W/Dr*] 

to = - § j j ( I ) W/Dr*l = -L 2 1 [irjl/Dr*] 

Thus 

fEo/fsP = Lvillnx 

(39) 

(40) 

(41) 

The evidence that fEo/f SP = 1 is given in tables 5 
(18), 6 (136), and 7 (158). The data in table 5 actually 
were not obtained from the same diaphragm but from 
a protein-covered capillary (SP) and an electrophoresis 
cell covered with the same protein. The larger devia
tions from 1.00 in table 5 compared to those in tables 6 
and 7 may be due to this circumstance. 

In table 8 are calculated values of Li2 and L2x for 
quartz-acetone, based on 2nd electroosmosis, streaming 
potential, and R (102). 

Also included are Ly determined using sinusoidally 
varying voltage and pressure (29). This kind of experi
ment gives values of Ly which are frequency dependent. 
However, the values approach a constant value at suffi
ciently low frequency. In the table only these low-
frequency values are included. It is interesting to note 

TABLE 5 
Test of equation 86 (18) 

Protein-covered Pyrex; 
Aqueous Solution 

0.202% egg albumin 
0.174% gelatin 
0.166 % gelatin 
0.166% gelatin 
0.180% gelatin 
0.175% gelatin 
0.226 % gelatin 
0.207 % gelatin 
0.219% gelatin 

HCl 

molee/liter 

3.5 X 10-* 
5 X 10-* 
6.3 X 10-* 
7.0 X 10-* 
7.5 X 10-* 
7.5 X 10-* 
8.0 X 10-* 
6.5 X 10-* 
5 X 10-* 

fBo/fsp = Lia/£ai 

0.96 
0.95 
0.79 
1.19 
1.45 
0.82 
1.07 
1.14 
1.03 

T = 250C. 

that Lu/Ln = 1 within the experimental error even at 
higher frequencies. Above 200 cycles per second phase 
differences cause difficulty. 

Considering the well-known difficulty of carrying out 
these experiments, it is clear that Li2 = Ln within ex
perimental uncertainties. 

There are also some recent electroosmosis and stream
ing current data of Rutgers and de Smet (137) for iso-
amylammonium picrate in organic solvents, but they 
found that the EO was dependent on S, which implies 
that the linear laws (equation 27) are not adequate for 
this system. However at low values of S, the linear 
approximation will become better, and if £"EO at the 
lowest value of S is compared with f sc at concentra
tions of 1 ,uequiv./l. or larger, the ratio is close to 1. 

V. TRANSFERENCE IN ELECTROLYTIC SOLUTIONS 

The relation between certain electrochemical effects 
in an isothermal system consisting of a single binary 
electrolyte in a neutral solvent will now be considered: 
namely, Hittorf transference and electrochemical cells 
with transference.2 

2 This simple ca9e has been chosen for review because it is the 
only one for which the cell e.m.f. is independent of the way in 
which the liquid junction is formed. Systems with more than one 
electrolyte can be analyzed in the same way as this one (117), but 
the e.m.f. depends on the concentration distribution in the junc
tion, and thus in general will be a function of time. To the author's 
knowledge, no e.m.f. experiments have ever been carried out on 
these more complex systems to determine transference numbers. 



22 DONALD G. MILLEH 

A. THE TIP EQUATIONS 

Suppose the electrolyte CA ionizes into cations C and 
anions A as follows: 

CA = nC" + riA" (42) 

where n and r2 are the ionization stoichiometric coef
ficients for cations and anions and Z\ and za are the 
charges on the ions with due regard to sign. Let M12 

represent the chemical potential of the electrolyte as a 
whole. Then by definition 

M12 = ^tMl + »"2M2 (43) 

where ^i and m are the chemical parts of the chemical 
potential per mole of the ions; moreover, 

nz: + rs«2 = 0 (44) 

TABLE 6 
Test of equation 86 (186) 

Jena 16 I I I Capi l lary; 

H Equ iva len t s per Li ter 
of Aqueous Solution 

0 
1 

2 
5 

10 
20 
50 

100 
200 

0 
1 

2 
5 

10 
20 
50 

100 
200 

K C l ; 

fEO 

mv. 

149 
147 
146 
144 
141 
139 
133 
122 
118 

HC 

fEO 

mv. 

132 
122 
100 

73 
61 

Capil lary A, r = 
0.0243 cm. 

fsp 

mv. 

159 
165 
158 
155 
148 
145 
138 
129 
130 

3 ; Capil lar 

fsp 

mv. 

135 
124 
104 

77 
61 

fEO 

fsp 

0 .94 
0 .89 
0 .92 
0 . 9 3 
0 .9 5 
0 .89 
0 .96 
0 .9 5 
0 . 9 1 

y D 

fEO 

fsp 

0 .98 
0 .98 
0 .96 
0 . 9 5 
1.00 

K C l ; 

fEO 

mv. 

152 
144 
139 
139 
132 
130 
124 
116 
110 

KO 

fEO 

mv. 

153 
149 
153 
154 
153 
151 
146 
139 

Capil lary B , r = 
0.0152 cm. 

fsp 

mv. 

160 
155 
150 
144 
141 
136 
129 
123 
113 

H ; Capilla 

fsp 

mv. 

156 
156 
157 
165 
162 
153 
152 
139 

fEO 

fsp 

0 . 95 
0 . 9 3 
0 . 9 3 
0 .97 
0 . 9 4 
0 .96 
0 . 9 6 
0 . 9 4 
0 .97 

ry D 

fEO 

fsp 

0 .98 
0 .96 
0 .97 
0 . 9 3 
0 .94 
0 .99 
0 .96 
1.00 

K C l ; 

fEO 

mv. 

153 
147 
143 
139 
136 
136 
127 
119 
113 

Capil lary C, r = 
0.0109 cm. 

fsp 

mv. 

168 
153 
151 
148 
144 
138 
133 
126 
120 

fEO 

fsp 

0 .91 
0 .96 
0 .95 
0 .94 
0 .94 
0 .99 
0 .96 
0 .94 
0 .94 

C a C k ; Capi l lary D 

fEO 

mv. 

122 
115 
107 

99 
91 
81 
75 
69 

fsp 

mv. 

123 
117 
108 
101 
92 
82 
76 
69 

fEO 

fsp 

0 .99 
0 . 9 8 
0 .99 
0 . 9 8 
0 .99 
0 .99 
0 .99 
1.00 

K C l ; 

fEO 

mv. 

156 
149 
145 
142 
136 
135 
123 
116 
107 

Capil lary D, r = 
0.00516 cm. 

fsp 

WtD. 

155 
152 
147 
145 
141 
137 
127 
119 
107 

fEO 

fsp 

0 .99 
0 .98 
0 .99 
0 . 9 8 
0 .96 
0 .99 
0 .97 
0 .97 
1.00 

A1(N0 3 ) 3 ; Capil lary D 

fEO 

mv. 

130 
120 

60 

- 4 2 
- 4 4 

fsp 

mv. 

132 
121 

64 

- 3 8 
- 4 6 

fEO 

fsp 

0 . 9 8 
0 .99 
0 .94 

1.11 
0 .96 

Values for hydrochloric acid, potassium hydroxide, calcium chloride, and aluminum nitrate were read from the graphs given in reference 136. T = 22.5°C. 

TABLE 7 
Test of equation 86 {158) 

H Equ iva len t s 
per Li ter of 

Aqueous Solution 

0 
2 
5 

10 
20 
50 

100 
200 
300 

K N O 3 

fEO 

mv. 

145 
141.9 
136 .8 

119.2 
111 .8 

18°C. 

Pyrex Capil lary 

fsp 

mv. 

133 
130 
125 .5 

119 
110 .5 

160C. 

fEO 

f8P 

0 . 9 2 
0 . 9 2 
0 .92 

1.00 
1.01 

K O H ; 

fEO 

mv. 

150 
155 .8 
153 
147.9 
142.2 
136.0 

190C. 

Pyrex Capil lary 

fsp 

mv. 

151 
154 
154 
147 
142 
136 .5 

190C. 

fEO 

fsp 

0 .99 
0 .99 
0 .99 
1.01 
1.00 
1.00 

Ba(NOs 

fEO 

mv. 

139 .8 
111 
101 
9 3 . 5 
8 5 . 5 
7 5 . 3 
6 7 . 7 
6 0 . 5 

190C. 

2; Pyrex Capil lary 

fsp 

mv. 

138 
115 
101.5 
94 
8 6 . 3 
7 5 . 2 
6 7 . 5 
6 0 . 2 

20 0 C. 

fEO 

fsp 

1.01 
1.04 
1.00 
0 .99 
0 .99 
1.00 
1.00 
1.00 

Ca(NOs 

fEO 

mv. 

6 8 . 0 
5 9 . 0 
5 2 . 3 
45 .7 
3 7 . 5 
31 .6 
2 5 . 5 

19°C. 

2; Pyrex Capil lary 

fsp 

mv. 

6 8 . 5 
5 6 . 5 
52 .1 
4 5 . 8 
38 .1 
31 .7 
2 5 . 5 

190C. 

fEO 

fsp 

0 .99 
0 .99 
1.00 
1.00 
0 .98 
1.00 
1.00 

K N O , 

fEO 

mv. 

76 
81 
86 
9 2 . 5 
95 
97 
98 

230C. 

; Pyrex Powder 

fsp 

mv. 

80 
84 
89 
95 

9 7 . 5 
99 

100 

190C. 

fEO 

fsp 

0 .9 5 
0 .97 
0 .97 
0 .97 
0 .97 
0 .98 
0 .98 

Values of fsp for barium nitrate (capillary), lanthanum nitrate (capillary), and potassium nitrate (powder) were from a graph based on data on Wijga's tables IV, 
V, and XXV, respectively. 

Values of JEO for potassium nitrate (powder) were obtained from a graph of data in tables XIX and XX. Note that the greatest deviations in the values of J are 
for systems whose temperatures for the measurement of EO and SP differed the most. 
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TABLE 8 
Test of equation 9 

System 

Quartz powder 
plug-acetone.. 

Glass frit-water: 
A 
B 
C 
D 

Glass capillary-

Ll 2 

c.g.s. -e.a.u. 

0.028 

0.066 
0.060 
0.053 
0.072 

0.00050 

Lu 

0.029 ± 0 . 0 0 2 

0.074 
0.056 
0.058 
0.073 

0.00045 

1/12 

L31 

0.96 ± 0 . 0 8 

0.89 
1.07 
0.91 
0.99 

1.11 

Pressure 
Fre

quency 

cycles /sec. 

0 

20 
20 
20 
20 

40 

Refer
ence 

(102) 

(29) 
(29) 
(29) 
(29) 

(29) 

Cooke's Lu and Lorenz's c<j correspond to our Lji. 
Lorenz's experiments were at 3O0C. 
The maximum estimated error in each of Cooke's Li/ is 6 per cent, or 9 per 

cent overall. 

For such a system (63d), 

Tc = JiXi + JiXi + J>Xi 

*--[£+••£] 
(45) 

(46) 

where the subscript 3 refers to the solvent (za = 0), <j> 
is the electrical potential, and 1S is the faraday. It was 
mentioned earlier that for the Onsager reciprocal rela
tions to be valid, the /,• or Xi or both must be inde
pendent. This is not the case here, since the Gibbs-
Duhem equation relates the chemical potentials. Thus 

nndmi + «3dp3 = 0 = nwirid/ju + r2dp2) + nsd/ia 

= nid/xi + n2dji2 + nsdjuj (47) 

where n,- is the number of moles. However, by equations 
46 and 44, this result is equivalent to 

WiXi + 712X2 + naXt = 0 (48) 

Therefore, by eliminating X3, equation 45 is obtained 
in the independent form: 

^=(^-¥)Xl + (/2-¥)Z2 (49) 

= J[Xi + J[Xi 

The flows Ji can be looked on as motion relative to the 
solvent, whereas Ji are flows relative to the apparatus. 
The linear laws written in terms of J' and Xi are now 
suitable for testing the Onsager reciprocal relations. 
They are 

J'i = LnX1 + L12X2 (50) 

/ J = L21X1 + L22X2 (51) 

B. HITTORF TRANSFERENCE (104b) 

Suppose a current / is passed through the system, 
with the solution at uniform composition throughout. 
The Hittorf transference number, t), can be defined as 

the fraction of the current carried by the ith ion relative 
to the solvent.3 

The current (in faradays) is 

hence 

t) = 

I = ZiJ'i + Z2J2 = Z1J1 + ZJi 

ZiJ\ 
Z1J

1I + ZiJ1 

At uniform composition, however, 

(uniform composition) 

= 0 
d/tj _ dm dm 
dx dm dx 

where m is the molality; hence 

Xi = — 2iS -^ (uniform composition) 
QX 

Thus by equations 50, 51, and 55, 

' i 

(52) 

(53) 

(54) 

(55) 

(56) 
z\Lii + Z1Zi[Ln + La) +ZlL23 

and similarly for t\. 

C. ELECTROCHEMICAL CELLS WITH TRANSFERENCE 

(32a, 117, 157) 

Now consider an electrochemical cell which has two 
identical electrodes and a single electrolyte but which 
may have a varying composition, e.g., 

Pb I PbCl2(mi) i PbCl2(W2) I Pb 

where m, is the molality. In such a system diffusion will 
occur, and owing to the different mobilities of the ions 
a charge separation will be induced. After a very short 
time, much less than a microsecond, however, the 
powerful coulombic effects speed up the slow ions and 
slow down the fast ones so that no electric current 
flows through the solution. Thus 

/ = 0 = Z1J', + zj'i (57) 

a relation expressing the condition of electroneutrality. 
From this expression, the liquid-junction (diffusion) 

potential is calculated by substituting equations 50 and 
51 in equation 57, applying equation 46, and finally 
solving for JFd .̂ The result is 

_j . _ (ziLn + Z2L2QdMi + (ziLn + ZiLa)dni ,.„> 
* d 0 _ ZlL11 + zMLn + Ui) + ZlL0

 K ' 

Now define the cell or e.m.f. transference number t\ of 
ion 1 to be 

ZiLn +'Z2L2] n = 
Zi z\Ln + ZiZ2(Li2 + Ln) + z |La 

(59) 

3 A rigorous general definition of the Hittorf transference 
number valid for nonelectrolytes as well as ions and based on the 
actual experiment is given in reference 117. The analysis in 
detail, using the flows Jit yields (equation 17 (117)) our equation 
53 based on the definitions above. 
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and analogously for ion 2. Then the diffusion potential 
becomes 

- 5d0 = ^ d« + - dM2 (60) 
Z\ Z% 

Note that these transference numbers need not be the 
same as the corresponding Hittorf number; they will be 
identical only if Li2 = L2i. 

It should be emphasized that the classical derivation 
of the diffusion potential, due essentially to Helmholtz 
(75), is not correct, because this system is irreversible 
owing to diffusion. Classical methods can be used only 
if the states are in equilibrium. 

Since the quantities <j>, /n, and /̂ 2 are not experi
mentally accessible, it is necessary to consider the whole 
cell including the electrodes. Of the two ways to include 
the electrodes, the most familiar is the one given in 
most chemical thermodynamics or electrochemistry 
texts and is based on passing a faraday through the 
cell. A better way (33b, 64, 138) is based on the equi
librium between electrons, electrode, and solution which 
exists during a potentiometric measurement. The re
sults are of course the same, and for a concentration 
cell whose electrodes are reversible to the anion are 

, 8 = _ ^ _ x d M 1 2 (61) 

where S is the potential difference measured at the po
tentiometer terminals, and a and /3 represent the anode 
and cathode, respectively. For electrodes reversible to 
the cation, replace the subscript 1 in t\, rh and z\ by 
subscript 2. 

Since the chemical potential in terms of the activity 
a is 

Mi2 = Mi°2 +&T In Oj2 (62) 

where $ is the gas constant, equation 61 can be written: 

•P- = - / - ^ d In oi2 (63) 
RT Ja mi 

Thus if a series of measurements of £ is done at 
various concentrations and if the activity (Xi2 is already 
known by other means, if is obtained from the experi
mental quantities using the derivative of equation 63; 
namely, 

Sometimes In an is obtained from e.m.f. measurements 
on cells without transference, for which the differential 
e.m.f. dS* is 

dS* = - ^ r - d l n a i a (65) 

Consequently t{ is often obtained from the equation 

n=jh (66) 

D. THE ONSAGER RECIPROCAL RELATION AND ITS 

EXPERIMENTAL VERIFICATION 

If, as is ordinarily assumed, the Hittorf and cell 
transference numbers are the same, then from equa
tions 56 and 59 

t\ Zl-Ln + Z2L12 _ ZlZm + Z2-̂ 21 _ t\ 

Clearly the equality of t\ and t{ entails the Onsager 
reciprocal relation 

Ln = L21 (68) 

for electrochemical systems with transference. 
In table 9 are collected the t[ and t\ for a number of 

salts which were investigated at a number of concen
trations. In table 10 are some for which a fewer number 
of comparisons were possible. In cases where no Hittorf 
measurements are available, the equivalent moving 
boundary results are given. I t should be noted that the 
measurements of t\ are more difficult, since they involve 
the differentiation of two sets of experimental data, 
magnifying the errors of each set. 

In table 11 are some less accurate transference data, 
denoted by t{, determined from gravitational and cen
trifugal cells. The equations were not derived above, 
but the argument is essentially the same as for the case 
of the concentration cell (117). The definition of t\ is 
exactly the same as that of t\ involving exactly the same 
numerical values of L <,• (apart from a negligible pres
sure dependency). The data on chlorides were obtained 
with gravitational cells for which the 8 is only a few 
microvolts per meter. Considering the difficulty of such 
measurements, the agreement is remarkably good. The 
centrifugal cell measurements on the iodides were done 
with modern techniques, but potassium iodide is the 
only case where a Hittorf or moving boundary meas
urement exists at the same T and concentration. 

The references are preceded by E, H, M, and G for 
cell, Hittorf, moving boundary, and gravity-centrifugal 
measurements, respectively. If the temperature of 
measurement is other than 25°C, it is noted in 0C. in 
parentheses after the value of J1. The quantities c and 
m are concentrations in moles per liter and moles per 
kilogram of solvent, respectively. 

The agreement between the two types of transference 
numbers is very good and within the errors of experi
ment. However, by equation 67 if ZiZ2Li2 is small com
pared to ~Zj ZiZjLi1-, a small error in t[ — t\ will result 
in a large per cent error in Li2 — L2i. Electrolyte theory 
(127) does in fact predict that Li2 will be relatively 
small, being zero at infinite dilution and increasing as 
the concentration (and the ionic interaction) increases. 
Some (unpublished) rough calculations from experi
mental data indicate that the per cent error in (Li2 — 
Ln)ZLu is very roughly 1OA(Ji — tl)/mU3 for strong 
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TABLE 9 

Test of equation 67 (concentration cells) 

Salt 

HCl* 
180C 

HCl 
250C 

LiCl 
250C 

BaCk 
25°C 

KI 
250C 

H2SO«t 
2O0C 

CdS04t 

CdBret 

3 
J 
3 
i 
3 
t\ 

t\ (18°) 

t\ (18°) 

0.005 

0.831 
0.832 

0.824 
0.824 

0.335 
0.330 

0.443 
0.440 

0.01 

0.832 
0.833 

0.825 
0.825 

0.333 
0.329 

0.440 
0.438 

0.497 
0.488 

0.397 
0.385 

0.434 
0.434 

Concentration in c or m 

0.02 

0.834 
0.833 

0.827 
0.827 

0.331 
0.327 

0.436 
0.433 

0.497 
0.488 

0.390 
0.379 

0.434 
0.434 

0,05 

0.836 
0.834 

0.830 
0.829 

0.326 
0.323 

0.427 
0.425 

0.495 
0.488 

0.825 
0.822 

0.375 
0.366 

0.425 
0.431 

0.1 

0.838 
0.835 

0.830 
0,831 

0.320 
0.319 

0.418 
0.416 

0.494 
0.488 

0.825 
0.822 

0.358 
0.352 

0.408 
0.411 

0.2 

0.313 
0.312 

0.405 
0.403 

0.824 
0.820 

0.338 
0.330 

0.371 
0.370 

0.5 

0.843 
0.840 

0.307 
0.301 

0.381 
0.379 

0.488 
0.489 

0.820 
0.816 

0.291 
0.293 

1.0 

0.845 
0.844 

0.281 
0.287 

0.353 
0.353 

0.813 
0.812 

0.244 
0.254 

E (71) 
H (81) 

E (71) 
M (98) 

E f89) 
H (89) 

E (90) 
H (90) 

E (58) 
M (99) 

E (70) 
H (81) 

E (15) 
H (84) 

E (103) 
H (83) 

* Agreement also at 10°, 30°, and 5O0C. 11\ at 2O0C. from interpolation of Hamer'a values (70) at other temperatures. 
t Some values determined by interpolation from graphs of reported data. 

TABLE 10 

Test of equation 67 (concentration cells) 

Salt 

Znl2* 

ZnCU 

t° 

0.330 
0,270 

-0 .150 
-0 ,088 
-0 .260 

<J 

0.325 
0.273 

-0 .157 
- 0 . 0 8 
-0 .241 

C 

0.325 
1.277 
4.73 
2,64 
4.035 

Reference 

E (149) 
H (76) 

E (72) 
H (77) 

* Values of l{ obtained from interpolation from graph of data of Stokes and 
Levien (149). 

1-1 electrolytes, where A is the equivalent conductance, 
and is r/i smaller for 2-1 electrolytes. Thus for 1-1 salts, 
a 0.001 difference in t\ — t{ is approximately an error 
of 10, 4, 2, and 1 per cent at 0.001, 0.01, 0.1, and 1.0 
molal, respectively, and is four times as large for acids. 
On this rough basis, it may be concluded that the 
Onsager reciprocal relations are verified to within about 
10 per cent for hydrochloric acid (250C), lithium chlo
ride, barium chloride, and cadmium bromide (table 9), 
zinc chloride and zinc iodide (table 10), and potassium 
iodide (table 11). 

Thus an adequate verification for the Onsager re
ciprocal relations has been found for most of the cases 
in tables 9 and 10 (and for potassium iodide in table 11). 
In the remaining ones, the experimental errors are too 
large to give a satisfactory test. Moreover, for a test of 
the Onsager reciprocal relation to be significant to 1 
per cent in dilute solutions, both types of transference 
numbers must be known to 1 to 5 parts in 10,000. As 
yet, this accuracy has not been achieved in any e.m.f. 
measurements. 

VI. ISOTHERMAL DIFFUSION 

Diffusion is a phenomenon well described by the 
theory of irreversible processes. Owing to the Gibbs-
Duhem equation and the experimental condition of no 
volume flow described below, it turns out that in binary 
systems there can be only one diffusion coefficient, and 
thus no Onsager reciprocal relations (63e). The simplest 
nontrivial case with an Onsager reciprocal relation is 
ternary diffusion; fortunately, suitable data presently 
exist for ten such systems. Systems with more com
ponents are much more complex; furthermore no ade
quate diffusion data exist. 

A. THE T I P DESCRIPTION OF DIFFUSION (119) 

It can be shown (63d) that the entropy production is 

r--*(-£)+'•(-£)+'•(-£) 
TABLE 11 

Test of equation 67 (gravitational cells) 

(69) 

Salt 

NaI 

KI 

RbI 

CsI 

HCl 
LiCl 
NaCl 
KCl 
BaCIa 

*t 

0.383 

0.487 

0.506 

0.496 

0.85 
0.23 
0.34 
0.50 
0.36 

0.375 (180C.) 

0.489 

0.497 (180C.) 

0.497 (180C.) 

0.835 
0.245 
0.365 
0.486 
0.379 

Concentra
tion 

in c or m 
References 

G(105), M(34) 

G(107), M(99) 

G(134), M(34) 

G(134), M(34) 

G(35), H(81) 
G(35), H(89) 
G(35), H(81) 
G(35), H(106) 
G(35), H(90) 
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where the subscripts 1, 2, and 3 refer to solute 1, solute 
2, and the solvent, respectively, J,- refers to the flow, 
and dm/dx refers to the chemical potential gradient. 
However, the experiments are carried out in such a 
way that no volume flow occurs; i.e., 

J1V, + J2Vi + J1V, = 0 (70) 

where Vi is the partial molal volume. Moreover the 
forces of equation 69 are related by the Gibbs-Duhem 
equation 

ci(dm/dx) + to(d(ia/dx) + Ci(dm/dx) = 0 (71) 

where c< is the concentration in moles per liter. Since it 
was noted previously that the Onsager reciprocal rela
tions are valid only for independent flows and forces, 
these two secondary conditions can be used to get rid 
of the dependent solvent terms in TV. By simple substi
tution one obtains 

where 

Tc = J1Y1 +J2Y2 

Y<- _£[aw+aL]2to 

(72) 

(73) 

and 8ij is the Kronecker delta. The linear relations are 

Vi = L11Y1 + L12Y2 

J2 = L21Y1 + L22Y2 (74) 

and because the «7,- as well as the Yt are independent, 
the Onsager reciprocal relation 

L12 — L21 (75) 

should now be valid. 

B. COMPARISON WITH FICK S LAW DESCRIPTION 

Ordinarily, diffusion is described by Fick's law. Gen
eralized to ternary systems, Fick's law involves con
centration gradients and has the form (3) 

J1 = 

J2 = 

- Ai dx - D12 dx 

A l ax Dii ax 

(76) 

where Dn are the diffusion coefficients in liters per centi
meter-second and Ci are concentrations in moles per 
liter. The Du are principal or main coefficients. The 
Dn are the interaction or cross coefficients and are 
somewhat smaller in numerical value than the Du. 
Equation 76 is convenient for experiment because con
centration gradients are easy to measure. However, Di2 

does not equal Dn in general. 
All the experimental data have been reported in 

terms of Di1. Therefore, in order to test the Onsager 
reciprocal relation, it is necessary to get the Ly in 
terms of the Dy. This is done by expanding dm/dx into 

d/u 
dx 

J = V 6JH ^i 
' L* dCj dx 

(77) 

substituting equation 77 into the Yi of equation 75, and 
comparing the corresponding coefficients of dct/dx in 
equations 74 and 76. From the four resulting expres
sions for Di3 one solves for the L,y and obtains 

L11'= 

L21 — 

dDu - bD12 

ad — be 

dD2i — bD22 

ad — be 

L12 — 

L22 — 

aPl2 — CP11 

ad — be 

CiP22 — cD21 

ad — be 

(78) 

where 

LA CiVJ dci "*" C3F3 a c j 

Fq1V2 fa/ ,C2V2XdJt2-I 
Lc3F3 Sc1

 T \ T C1Vi) dd J 

(79) 

and c and d are the same respectively as a and b except 
that d/dci is replaced by d/dd. Nowhere in the above 
argument have the Onsager reciprocal relations been 
assumed. From equations 78, the necessary and suffi
cient condition for the Onsager reciprocal relation to 
be valid is 

aP12 + bAu = cDn + dP21 

ad — be ^ 0 
(80) 

To get the Ln or to verify the Onsager reciprocal rela
tion, one must know c,-, Vit D^, and dm/dc,-. These 
quantities are readily available for the ten ternary dif
fusion systems except for the thermodynamic quantity 
dm/dCj. Unfortunately no thermodynamic data are 
available in the proper concentration ranges for nine 
of the systems, and as a result, the activity coefficients 
and their derivatives with concentration had to be esti
mated (44, 118, 119). 

C. THE TEST OF THE ONSAGER RECIPROCAL RELATION 

The following systems were investigated at the con
centrations indicated: 

I. LiCl(0.25)-KCl(0.2)-H2O (43, 57) 
II. LiCl(0.25)-NaCl(0.2)-H2O (43, 57) 

III . NaCl(0.25)-KCl(0.25)-H2O (123) 
IV. NaCl(0.5)-KCl(0.25)-H2O (123) 
V. NaCl(0.25)-KCl(0.5)-H2O (123) 

VI. NaCI(0.5)-KCl(0.5)-H2O (123) 
VII. NaCl(1.5)-KCl(1.5)-H20 (42) 

VIII. Rafnnose(0.015)-KCl(0.5)-H2O 
IX. Raffinose(0.015)-KCl(0.1)-H2O 
X. Rafnnose(0.015)-urea(0.5)-H2O 

(40) 
(40) 
(41) 

I t can be shown (119) that these are ternary diffusion 
systems even though there are four diffusing species in 
systems I to IX. System VII is the only one for which 
thermodynamic data exist. 
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TABLE 12 
Test of equation 80 

I II 

3.73 
3.80 
0.07 
0.17 
1.03 

3.50 
3.71 
0.21 
0.20 
1.14 

III 

3.12 
3.24 
0.12 
0.12 
1.05 

IV 

2.19 
2.22 
0.03 
0.08 
1.02 

V 

2.25 
2.30 
0.05 
0.07 
1.04 

VI 

1.76 
1.80 
0.04 
0.05 
1.03 

VII* 

1.10 
1.14 
0.04 
0.06 
1.06 

VIII 

1.55 
1.16 
0.39 
0.21 
0.42 

IX 

1.53 
1.53 
0 
0.27 
1.00 

X 

0.41 
0.32 
0.09 
0.10 
0.58 

* These values have been calculated from Dunlop's data (42). 

In table 12 are given the right- and lefthand sides of 
equation 80, the difference between them, and the 
probable error of the calculation based on the assumed 
errors in D»,- and the activity coefficient estimates. Also 
included is the quantity L12/L21. Similar results for 
systems III to VI were given by Dunlop and Gosting 
(44). 

The agreement is within the probable error for all 
cases except VIII and is remarkably good considering 
the experimental difficulties of determining Dy and the 
errors inherent in estimating thermodynamic quantities. 
(Private correspondence has revealed that the errors in 
Dij for case VIII were underestimated in the calcula
tions.) 

VII. CONDUCTION OF HEAT AND ELECTRICITY IN 

ANISOTROPIC SOLIDS 

The discussion will be confined to heat conductivity. 
This case will be considered in some detail, both be
cause it is interesting and because adequate descrip
tions of the experiments are relatively inaccessible. The 
equations and interpretation for electrical conductivity 
are the same, but no suitable electrical experiments have 
been carried out on crystals. 

A. T H E CLASSICAL EQUATIONS 

The traditional macroscopic theory of heat conduc
tion in crystals is more than 100 years old and is based 
on a simple generalization of Fourier's law for an iso
tropic substance (55, 56). Fourier's law is 

Ji = - k dT 
dXi 

(81) 

where 7,- is the component of heat flow along the co
ordinate axis Xi, and k is the thermal conductivity. I t 
seems intuitively clear that in an anisotropic substance 
contributions to the component Ji, say, will be made 
not only from the temperature gradient dT/dXi, but 
from the gradients dT/dx2 and dT/dx^ as well. Thus 
classically (13, 25, 145, 148, 156) one writes 

dT_ 
dXi ' '"* dx2 

Ji Ti, dT ^u — \ «» ~ + *" + h 

dT_ 
' dXi 'dx3j 

110"8 kT has been factored out. 

The array of nine numbers 

[kit] = 

k\\ &i2 h\% 

K21 K22 &28 

&31 * &32 &33 

(83) 

is called the thermal conductivity tensor and is a 
second-rank tensor. 

The actual numbers which go into this array depend 
on how the (orthogonal) axes Xi, Xt, x% are chosen with 
respect to the natural axes of the crystal. This tensor, 
however, represents a physical property of the crystal; 
hence values of the conductivity in a given direction do 
not depend on the coordinate axes to which this direc
tion or the tensor are referred. 

For those not too familiar with the concept of a ten
sor, it can be regarded as a generalization of the con
cepts of scalar and vector (122b). A scalar (0th rank 
tensor) does not depend on direction and has no sub
scripts on its single component. A vector (first-rank 
tensor) is determined by or is related to one direction 
and its components have one subscript. A second-rank 
tensor, such as [hi,], is connected with two directions 
and has two subscripts. For example, [fc«] is connected 
with the directions of the vectors 

and 

J = (/„ J1, J3) 

. _ /dT dT dT\ 
grad T - te 6V ex-J 

Higher-rank tensors appear as extensions of the above 
ideas. A tensor is rigorously defined by transformation 
relations such as equations 89, 90, and 91 given below. 

Our interest is in the symmetry of the thermal con
ductivity tensor, i.e., whether A;,-,- = k^. There is 
nothing a priori which requires a tensor to be sym
metric, although many second-rank ones, such as the 
magnetic or electric susceptibility tensors, are sym
metric. However, the electrical conductivity in a mag
netic field (Hall effect) and the heat conductivity in a 
magnetic field (Righi-Leduc effect) are represented by 
nonsymmetric second-rank tensors (see Section 
VIII1C). 
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B. THE T I P EQUATIONS 

It can be shown quite straightforwardly (63f) that 

*-!'•(-*£) w 
and therefore the linear laws are 

Jt ~ ~ L T dxi (85) 

Comparing equation 85 with equation 82, one obtains 

Lu = Tk{, (86) 

Thus the Onsager reciprocal relations will be experi
mentally verified if experiment shows [fey] to be sym
metric. 

It is interesting to note that equation 85 is a conse
quence of the assumptions of the theory of irreversible 
processes. Since it is of the same form as the generalized 
form of Fourier's law (equation 82), equation 85 can be 
regarded as a derivation of Fourier's law from more 
basic thermodynamic principles. 

I t may well be asked at this point, does the TIP 
hypothesis of linear equations actually yield a proper 
representation of conduction phenomena? For example, 
if equation 85 is really valid and if the temperature 
gradients (dT/dXi) are changed in sign, then all the Jt 

should change sign but the value of the conductivity 
should remain the same. If this were not observed, the 
form of equation 85 could not be valid, and perhaps a 
representation with terms in d2T/dXidXj or [6TfBx1)* 
would be necessary. This question (i.e., whether the 
thermal conductivity tensor is "centrosymmetric") was 
tested experimentally on an appropriate crystal (tour
maline, point symmetry Csv); when the sign of the 
gradients was changed the flows were reversed and the 
conductivity was found to be the same (86, 147, 151). 
An appropriate crystal is one whose point symmetry 
does not already have a center of symmetry.4 

C. PROPERTIES OF THE THERMAL CONDUCTIVITY TENSOR 

As noted earlier, the numerical values of the entries 
in [fey] depend on the choice of axes. If the axes coincide 
with the crystal axes, insofar as this is possible, the 
tensor may take simpler forms. To obtain a better back
ground for the discussion of the experiments, a very 
simple procedure for working out these forms is sum
marized below (160). 

Consider a set of orthogonal axes xh X2, xs. If one 
wishes to change to a new set of orthogonal axes x[, x'2, 

* There are twenty-one such point symmetries out of the 
thirty-two total. Of these there are fourteen (including C8.) for 
which a third-rank term in the direction of one of the conventional 
coordinate axes changes sign when the temperature gradient in 
that direction changes sign, and would thus cause different heat 
conductivities in the forward and reverse directions. 

Xs with the same origin, then the new axes in terms of 
the old are given by 

f'i = JT 0W (87) 

where ay is the cosine of the angle between the new 
axis x'i and the old axis Xj] i.e., its direction cosine. The 
ay can for convenience be put into an array of nine 
components (not a tensor): 

(88) 

The transformation of the components of the tensor 
upon the transformation of axes is directly related to 
these direction cosines an. Thus the components of a 
first-rank tensor (vector) 

On 

<hi 

031 

O12 

(hi 

0|2 

Ou 

Ou 

033 

transform as 

P = (.Pu P2, Pa) 

»J = 2^ °«P' 

of a second-rank tensor such as [fey] as 

kii = s 1 QilCljmklm 
i.m 

and of a third-rank tensor Ty* as 

Til, = y aildlmCOcnTlmn 

l,m,n 

(89) 

(90) 

(91) 

and so on. 
Consider, for example, a crystal which has only a 

fourfold axis of symmetry (Ci), and let the X3 axis be 
the crystallographic principal axis. The [fey], as far as 
is known at this point, has the general form of expres
sion 83. Suppose now the axes are rotated one-fourth 
of the way around the x3 axis. The table of direction 
cosines 88 for this transformation can be seen to be 

O 

1 

O 

- 1 O 

O O 

O 1 

The new fc^ is by simple calculation from equation 90 
found to be 

/ C 1 2 — • " ft2l (92) 

But a rotation of the axes by 90° really has not changed 
anything, since the crystal has a fourfold axis; its prop
erties must be unchanged by a symmetry operation. 
The new components must therefore be the same as the 
old; hence k[2 = feu. By equation 92 

k[2 = ha = — h\ (93) 
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In a similar way 

"*22 = ™n ~ hi 

and 
kit = kn = ku = kK = 0 

(94) 

(95) 

Of course, a system with a fourfold axis automatically 
has a twofold axis, but the calculations reproduce equa
tion 95. For this example no other symmetry operations 
remain. Thus a consideration of the symmetry proper
ties of the crystal has reduced the form of the general 
tensor expression 83 to this much simpler form 

ku ku 0 

— fcl2 fell 0 

0 0 h, 

The more symmetrical the crystal, the greater is this 
simplification. In the example it is seen that considera
tions of geometrical symmetry alone have resulted in 

fcis = k%\ fes = ku (97) 

quite independently of any possible existence of the 
Onsager reciprocal relations. 

It turns out that all the orthorhombic (C 2v, D2, D2h), 
all the cubic (T, Td, Th, O, Oh), and certain trigonal 
(Dz, Civ, Da), hexagonal (Z)6, Ctn Dih, D6^), 
tetragonal (D4, C4 „ 

Dih, Dth), and 
Did, Dih) crystal classes satisfy 

ku = ku (98) 

for all i and j by geometrical symmetry considerations 
alone. Therefore a test of the Onsager reciprocal rela
tions must come from consideration of the remaining 
classes; namely, the triclinic (Ci, C1), monoclinic (C2, 
C„ C2H)1 and these of the trigonal (Cs, Cu), tetragonal 
(CA, Si, dh), and hexagonal (Ce, Cu,, Ceh) classes. 

The simplest nontrivial cases are those of the above 
trigonal, tetragonal, and hexagonal systems, all of which 
have exactly the same form of tensor; namely, expres
sion 96. Henceforth only crystals with this type of tensor 
will be considered. Clearly, it can be symmetric only if 
ku = 0. Thus if experiment shows that Jc12 does equal 
zero, it has been shown that the Onsager reciprocal 
relations are experimentally satisfied for that crystal. 

D. THE EXPERIMENTS OF SORET AND VOIGT 

The experiments carried out to determine whether 
[kij\ is symmetric are interesting and rather clever. 

.Soret's experiments (143, 144, 146) are all based on 
heating a point of a thin crystal plate. Heat will flow 
away from this point, and the temperature gradient 
will give rise to a family of isothermals. In an isotropic 
crystal these isothermals are circles; in anisotropic sys
tems, the isothermal lines are ellipses in general (13, 25, 
122c, 145, 156). 

First, consider a thin plate very large in extent (or 
alternatively surrounded by a circular bounding surface 

of highly conducting material) which is cut perpendic
ular to the principal axis (xi) of a crystal whose tensor 
is like expression 96 (144). In this case, it can be shown 
that on heating the center, the resulting isothermals are 
always circles. If the tensor is symmetric, the flow of 
heat will be in straight lines away from the center; if 
not, the heat will flow away in spirals (figure 4) (13, 25, 

FIG. 4. Circular plate cut perpendicular to the axis xs heated 
at center O. If the tensor 96 is not symmetric, heat flow (dotted 
lines) will be in spirals. 

122c, 156). Suppose now a very thin sector is cut out 
of the plate. If the tensor is not symmetric, the spiral 
heat flow will result in an accumulation of heat on one 
side of the cut and a loss on the other. One would thus 
find a temperature difference between the two sides. 
Soret (144) observed no such difference. The analogous 
experiment for electrical conductivity in a magnetic 
field (Hall effect), where ku ^ O, was suggested inde
pendently by Boltzmann (9) and carried out by Etting-
hausen and Nernst (49). 

Secondly, consider heating on an edge a very large 
but thin rectangular piece also cut perpendicular to 
the principal axis. In this case, spiral heat flow results 
in isotherms which are not symmetric about the heating 
point (143, 144). The effect is magnified by sawing such 
a piece in half, rotating one of the halves about an axis 
perpendicular to the saw cut but leaving a small space 
between the pieces, and heating a point in the crack 
between the two pieces (figure 5). When the appropriate 
crystals were used, Soret observed no discontinuity in 
the isotherms (143, 144). 

A 

B1 

FIG. 5. Thin plate of crystal cut perpendicular to the principal 
axis Xs and sawed in half. One half is rotated with respect to the 
other about an axis perpendicular to the saw cut. Thus originally 
edges A and A' were continuations of each other. The two plates 
are separated by a small space, so that no heat is transferred 
from one plate to the other. The plates are heated at O, and if 
the tensor 96 is asymmetric, the isotherms will exhibit a discon
tinuity. 
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The isotherms are made visible in this way (161). 
The plates are covered with a thin layer of melted wax, 
which is allowed to solidify. When the point is heated, 
the wax will melt in the region where the temperature 
is higher than its freezing point. The boundary line be
tween melted and solid wax is the isothermal corre
sponding to the freezing temperature. When the melted 
wax is allowed to cool, this isothermal becomes visible 
as a raised edge. 

Third, consider a large thin piece this time cut 
parallel to the principal axis. If the plate is heated at 
an interior point near the middle, the heat flow results 
in elliptical isotherms which are unsymmetric with re
spect to that diameter which is parallel to the principal 
axis (144, 146). By means of the wax technique, the iso
therm is made visible and is viewed with an ocular 
micrometer. Upon rotating the sample 180° about the 
heating point, Soret found that deviations from perfect 
symmetry appeared to be about one-fortieth of the 
diameter (146). However, such deviations were also 
observed with isotropic substances where no such dis
symmetry could occur. Since the diameter is inversely 
proportional to the square root of conductivity along 
the principal axis, he concluded that for crystals of 
gypsum, dolomite, erythrite, and apatite the tensor was 
symmetric within his experimental error (5 per cent). 

Voigt's experiment (155), suggested also by P. Curie 
(30), is more direct and more accurate. Suppose a fixed 
temperature difference is applied to the ends of a long, 
narrow, thin plate of a crystal whose tensor is like ex
pression 96. Let the axis X1 be along the length, z2 

along the width, and the principal axis x3 be perpen
dicular to the plate (figure 6). The solution of the 

FIG. 6. Schematic diagram of the Curie-Voigt experiment. 
The principal axis x3 comes out of the paper. If the tensor 96 
is asymmetric, the isothermal lines far from the region of end 
effects will be inclined away from the normal (dotted line) to the 
direction of heat flow. 

boundary value problem is independent of the sym
metry of the tensor and shows that the heat flows only 
along X1. Hence for this case 

r . dT , dT 

O = Z2= + * I 2 _ _ f c l _ (99) 

Consequently from the expression for J2, one obtains 

where a is the angle which the isothermal straight line 
makes with the normal to the line of heat flow (see 
figure 7). By means of the melting wax technique, an 

FIG. 7. Expanded drawing of isothermals to show how a is 
related to the thermal gradients. Since (dT/dx{) = (T" - T')/di 
= &T/(d2 tan a) and dT/dx, = ATVd2, clearly 

/dT\ IldT\ _ 
V x 2 / / XdX1) ~ tan . 

isothermal is located. If this line is inclined away from 
the normal, then the tensor is not symmetric, and the 
ratio of fci2 to fen is given by equation 100. 

Owing to possible heat losses from the edges, it is 
more precise to use Voigt's "twin plate" method. The 
plate is sawed in half along the X1 axis, one piece is 
rotated about the X2 axis, and the two pieces are 
clamped together. If the tensor is asymmetric, the iso
therms will have the form shown in figure 8. One meas-

HEAT 
RESERVOIR 

HEAT 
RESERVQR 

0 = J3= - k3 
dT_ 

' dxi 

FIG. 8. Schematic diagram of Voigt's twin-plate experiment. 
If the tensor 96 is not symmetric, the isothermals will form a V 
symmetric along the X1 axis with an interior angle /3. If symmetric, 
the isothermals are perpendicular to the X1 axis. 

ures the angle |3 at the common edge near the middle, 
which avoids any distortion due to losses at the edges 
or due to end effects. The angle a is [90° — (/3/2)]. 
Voigt (155) found that for suitable crystals of apatite 
and dolomite, the lines were straight and perpendicular 
to X1. More precisely, /3 was 180° with an error of not 
more than 4 min. (i.e., <0.037 per cent). Therefore, a 
is less than 2', and 

Wfeii < 0.0005 

This value implies that fe12 = 0 to less than 0.05 per 
cent and consequently that the tensor is symmetric. 
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E. REPLY TO CASIMIR'S OBJECTION 

An objection to the conclusions drawn from these 
•experiments has been raised by Casimir (26, 122d): 
namely, that the individual heat flows are not observ
able physical quantities, but only their divergence (net 
flow) is. Consequently one could add a divergence-free 
tensor [dy] to [fc,-,-] without altering any observable 
quantity. A sufficient condition for a divergence-free 
ten^ci is that it be antisymmetric, i.e., of the form (for 
second rank) 

0 dia du 

— dl2 0 dm 

—du — cfci 0 

Now it can be easily shown that a nonsymmetric tensor 
can be split up into the sum of a symmetric and an anti
symmetric tensor, and, conversely, the addition of an 
antisymmetric tensor to a symmetric one yields a non-
symmetric tensor. Therefore it was argued that nothing 
can be determined about the symmetry properties of 
the thermal conductivity tensor from the experiments 
cited, because only the divergence is observable and 
because the addition of the antisymmetric [da] could 
make the sum [rfy + ky] nonsymmetric irrespective of 
whether [k^] is symmetric. 

However, it should be noted that the solution of the 
boundary value problem is independent of the tensor's 
symmetry or lack of it (25). Therefore the form of equa
tions 99 is valid whether or not a divergence-free tensor 
is added. But in Voigt's experiments (as also in Soret's), 
no flow is measured. The observable quantity is the 
isothermal line, not a divergence, and Casimir's objec
tion is not relevant. Thus one concludes that the above 
experiments do exactly what they were designed to 
do; i.e., they test the asymmetry of the conductivity 
tensor. I t might be mentioned that the same type of 
experiments was successful in showing the nonsym
metrical character of the Hall tensor (49). 

I t is concluded that the experiments of Soret and of 
Voigt have shown that [ky] is symmetric, and thus by 
equation 86 the Onsager reciprocal relations are verified 
experimentally for heat conduction in anisotropic solids. 

VIII. THERMOMAGNETISM AND GALVANOMAGNETISM 

This detailed review of the experimental evidence for 
the Onsager reciprocal relations will be concluded with 
a discussion of galvanomagnetic and thermomagnetic 
effects (11, 24, 85, I l i a ) , which ordinarily are not too 
well known to chemists. The most familiar one is the 
Hall effect, but there are a large number which could be 
defined (51, 54). We shall be primarily interested in the 
Ettinghausen and Ettinghausen-Nernst effects, be
cause these, together with the thermal conductivity, 
can be related to each other by an Onsager reciprocal 
relation. The relation was originally derived by Bridg-

man (16b) in an incorrect way, analogous to the one 
used by Kelvin to derive equation 20. 

A. THE GENERAL TIP EQUATIONS FOR 

THERMOGALVANOMAGNETISM 

1. 7V 

In the general case of simultaneous heat and electrical 
flow in a magnetic field, it is necessary to consider all 
three coordinate directions. For this case it can be 
shown (21, 22, 23, 51, 52, 53, 63g, 110) that Ta may be 
written in vector form as 

2V = J-T grad(l/D + I-E (101) 

where E = - grad <j>, I is the electrical current, and the 
use of boldface type represents vectors. In component 
form, equation 101 is 

TO = J1Gx + JyGy + J,G, + IxEx + IyEy + I.E. (102) 

where 

It should be noted that E may be employed only in the 
case of a metal. Otherwise a term involving the chemical 
part of the electron chemical potential is required (21, 
22, 23, 51, 52, 53, 54). I t is interesting to note that the 
magnetic field does not appear explicitly in these 
equations. 

2. The linear laws and Onsager reciprocal relations 

In the standard way, the flows may be written as a 
linear function of the forces. It is convenient to write 
them in vector and tensor form as follows: 

I = L8(E -(- L«oG 
(103) 

J = L„E + L48G 

where G = T grad (I/T). The L's are clearly second-
rank tensors and are functions of the magnetic induc
tion B. In particular, Let is the electrical conductivity 
(Hall) tensor, Lqq is the heat conductivity tensor, and 
the Leq and Lqe are related to longitudinal and trans
verse thermoelectric effects in a magnetic field. 

The Onsager reciprocal relations for this case are 
given in component form by equation 10. In tensor 
form they become 

L„(B) = L],{-B) 

L95(B) = LU -B) (104). 

L„(B) = LU-B) 

where the dagger refers to the transposed tensor. The 
need for the transposed notation to express the Onsager 
reciprocal relations is seen by writing out equation 103 
in component form. 
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3. A more convenient form 

(a) The transformed linear laws 

Experimentally it is more convenient to deal with 
currents and temperature gradients, and therefore the 
use of I and G as independent variables will simplify 
the definitions of the effects of interest. The desired 
equations 

E = l„l + l„G 

J = Z««I + hqG 
(105) 

are obtained by writing equations 103 in component 
form, solving for the components of E, and collecting 
the proper terms. Alternatively, the inversion could be 
carried out by matrix methods (23). 

Suppose that the experimental conditions are such 
that B is parallel to the z axis and that I and G are 
restricted to the xy plane. Then in component form 
equation 105 is written 

(106) 

Ex = InIx + hlly + IuGx + IuG11 

Ev = IvJx + haJy + InGx + IaG1/ 

Jx = InIx + hily + I33Gx + In Gy 

Jy = UJx + UiIy + UlGx + IuGy 

(b) The transformed Onsager reciprocal relations 

When the Onsager reciprocal relations (equations 
104) are applied to the expressions for U1- in terms of 
the Lk, it is found that 

WB) = lt.(-B) 
« B ) = 4 ( - B ) (107) 

1.,(B) = - iJ.(-B) 

Conversely, the validity of equations 107 implies the 
validity of equations 104. Equations 107 are therefore 
the Onsager reciprocal relations for the linear laws 
(equations 105). 

B. T H E ISOTROPIC METAL 

1. Form of the tensor with and without the field 

Consider an isotropic metal. In the absence of a 
field, it can be shown by the same kind of geometrical 
symmetry arguments used in Section VII that the 
tensor of equations 106 has the form 

l(B = 0) = 

In 0 I11 0 

0 In 0 Iu 

hi 0 Z33 0 

o in o k, 

(108) 

where Iu is the resistance, hs the thermal conductivity, 
and In and hi are related to the absolute thermoelectric 
power and the absolute Peltier coefficient, respectively. 
For example, for the junction of two isotropic metals 
a and b, n = & - Hi (122e). 

»-x 
FIG. 9. Schematic diagram of an isotropic metal in a magnetic 

field. The field is directed along the z axis, and x is chosen as the 
direction of the primary currents. The metal is isotropic only 
in the xy plane in a non-zero field. 

Suppose now that a magnetic field is directed along 
the z axis as shown in figure 9. Then in a sense the metal 
is no longer isotropic, since z is now a unique direction. 
However there is still isotropy in the xy plane. Since 
systems with a three-, four-, or sixfold z axis are also 
isotropic in the xy plane, the four pieces of I—lee, ltq, 
hq, and lqe—each take exactly the same form as expres
sion 96, with the z (= Z3) components omitted. Thus 

1(B) 

hi hi hs In 
_'i2 In —In lis 

hi ~hi Us Ui 

hi hi —hi hz 

(109) 

Because of the isotropy (21, 51, 54, 79) Zi2, Iu, hi, and 
hi must be odd functions of B, i.e., Uj{ — B) = -Uj(B), 
and Zn, hs, In, and hi must be even functions of B, i.e., 
hi-B) = UB). 

2. The Onsager reciprocal relations 

Owing to the assumed symmetry, a number of the 
Onsager reciprocal relations are redundant. However 
there are still two independent ones arising from the 
leq and lqe pieces of I. From equations 107 and because 
hz and hi are even and Z14 and Z41 are odd, one finds that 

IUB) = -hi(-B) = -I31(B) (110) 

Iu(B) = -Ui(-B) = In(B) (111) 

The Bridgman equation is related to equation 111, and 
equation 110 is the Kelvin thermoelectric equation for 
absolute Peltier and thermoelectric coefficients in a 
magnetic field (85). 

C. E X P E R I M E N T A L DEFINITIONS OF T H E DESIRED E F F E C T S 

The Bridgman equation relates the Ettinghausen 
and Ettinghausen-Nernst effects to the thermal con
ductivity. By means of Fieschi's definitions (51, 54), 
the desired coefficients are given in terms of the Uj 
without appeal to the Onsager reciprocal relations. 
Other definitions (21, 22, 23, 85, 110) are the same 
except for sign or a factor B. 
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The (isothermal) thermal conductivity fc,- is denned 

as 

ki = 
— Jx Jx 
8T_ TGx 

dx 

Ix= Iy = Gy= 0 

and by equations 109 

h = WT 

(112) 

(113) 

The definition is clearly the same if one chooses the y 
direction. T h e label " isothermal" is necessary because 
an "ad iaba t ic" hea t conductivity can be defined for 
which Ix = / „ = Jy = 0 (21, 22, 23, 51, 54, 85, 110). 

The Et t inghausen effect is the appearance of a tem
perature gradient in the y direction when a current 
flows in the x direction. The Et t inghausen coefficient 
P'ia 

P<; (Bf/ay) -TGy 

whence 

P' = 

I, = Jy =\Gx = 0 : (114) 

UiT (115) 

T h e E t t inghausen-Nerns t effect is the appearance of 
a potential gradient in the y direction when heat flows 
in the x direction. The (isothermal) E t t inghausen-
Nerns t coefficient Ql is defined as 

dx 

Ey_ 

TGx 
Ix = Iy = Gy = 0 

whence 

Ii - iii 

(116) 

(117) 

Although pure heat conduction in a magnetic field is 
not a par t of the Bridgman equation, it is of interest 
because of i ts connection with the discussion of Section 
VI I . The Righi-Leduc effect is the appearance of a 
tempera ture gradient in the y direction when heat flows 
only in the x direction. The appropriate coefficient S is 
defined by 

S = 

whence 

dT/dy _ 
dT/dx 

Gy 
Gx 

S = 

/ . 

'Iu 

Iy = JyI= 0 (118) 

(119) 

B u t this definition corresponds exactly to Voigt 's ex
periment (Section VI I ,D) , S being the t an a of equa
t ion 100. Thus S, t he measure of the asymmetry of the 
heat conductivity tensor in a magnetic field, can be 
determined by the same technique used to show the 
symmetry of the tensor in the absence of the field. 

D. T H E BRIDGMAN RELATION AND T H E 

E X P E R I M E N T A L E V I D E N C E 

From equations 113, 115, and 117 i t is immediate 
t h a t 

P'k( = 1« 

TQl = I14 

(120) 

(121) 

If the Onsager reciprocal relation (equation 111) is 
valid, then the Bridgman relation 

P'h = TQ\ (122) 

is valid. Conversely, the validity of the Bridgman rela
tion entails the validity of Zu = la

in table 13 are the values of Ql and (P%)/T (11, 
I l i a , 142). Unfortunately the experiments are quite 
difficult, and the results differ from sample to sample, 
as was found in the thermoelectric and electrokinetic 
cases. Except for Little 's measurements on arsenic (95), 
there are no cases where all three measurements were 
done on the same sample (142). In most of the entries 
in the table the thermal conductivity was the one not 
directly measured. Perhaps for these reasons the On
sager reciprocal relation (equation 111) is not satisfied 
quite as well as in the previous examples. Optimistically 
it could be said t ha t considering the difficulty of the 
experiments and their a t t endan t errors, the Onsager 
reciprocal relation is satisfied, especially since the only 
really appropriate case (Little's da ta for arsenic) gives 
almost perfect agreement. Pessimistically it could be 
said t ha t the validity of the Onsager reciprocal relation 

TABLE 13 
Test of the Bridgman relation 

Substance 

Ag 
Al 
Aa 
Au 
Bi 
Cd 
Co 
Cu 

Fe 
Ni 
Pd 

Sb 
Zn 
PbSe-I*. 
PbSe-2*. 
PbTe-I* 
PbTe-2* 

10" X -
P'kt 

2.2 
0.60 

22.0 
1.2 

2200 
0.9 

22.0 
2 

8, 
22, 

4. 

220 
1 
6, 
4, 

19 
3 

1 0 " XQ't 

1. 
0. 

22. 
1. 

2340 
1. 

21. 
1. 

9, 
30, 

3. 

176 
0, 
2. 
4, 

13 
3.5 

P'h 

1.00 

1.00 

(1.34) 
(1.8) 

(0.67) 
(2.9) 
(0.76) 

(0.76) 

(0.88) 
(3.4) 
(0.82) 

(0.66) 
(4.2) 

Refer
ence 

(154) 
(154) 
(95) 
(66) 
(162) 
(154) 
(66) 
(154) 
(67) 
(154) 
(66) 
(66) 
(67) 
(162) 
(154) 
(133) 
(133) 
(133) 
(133) 

P'ki/T and QH are in volts per gauss degree. The data and references are 
primarily taken from Borelius' collection (11). The values of P'fo/QiT in 
parentheses are from a similar collection by Meissner ( I l ia) . A crude calcula
tion of Ui/lu from the adiabatic quantities for iron and nickel (20) gives the 
values 0.28 and 0.27, respectively. 

* The units of P'ifcj/T and Q'are in 10s cm.2 sec.-1 deg."1 The heat conducti
vities were estimated from a Peltier heat measurement. 
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is quite probable, but awaits a series of precise measure
ments on single samples f6r verification. 

I t should be emphasized that only one of the Onsager 
reciprocal relations is tested by the Bridgman equation. 
The other one, Zi3 = — hi, is strictly analogous to equa
tion 20 and must be checked through longitudinal 
thermoelectric and Peltier measurements in a trans
verse magnetic field. Although a few such measure
ments have been made, there are no recent ones (85). 
The comparisons of Peltier heats and thermoelectric 
powers obtained by different workers are discordant, 
and there seem to be only the measurements of Houlli-
wegue (80) on iron in which both experiments were done 
on the same sample (24a, 111b). Here the agreement 
was within 5 per cent. 

IX. CASES WITH MEAGER OR INCONCLUSIVE EVIDENCE 

Six quite different types of irreversible phenomena 
have been discussed in some detail above. There are 
two more for which the evidence is meager or inconclu
sive and which will be mentioned very briefly. 

A. CHEMICAL REACTIONS 

The first case, chemical reactions, is the only common 
one where the linear laws do not hold in a useful range 
of deviations from equilibrium. Consequently, the hy
pothesis of the fundamental assumption (Section II, 
B,3) is not satisfied. However, sufficiently close to 
equilibrium it would be expected that linear laws should 
be valid, and this was in fact shown by Prigogine, Outer, 
and Herbo (131). Hence near equilibrium, a test of the 
Onsager reciprocal relations becomes meaningful. The 
first nontrivial Onsager reciprocal relation comes from 
a consideration of a triangular chemical reaction system 
(32b, 125), and it can be shown that the Onsager recip
rocal relation is equivalent to the well-accepted prin
ciple of detailed balance (32b, 125). It can also be shown 
that if the Onsager reciprocal relation (detailed balance) 
is not satisfied, then such a reaction system will exhibit 
oscillations in the concentrations of its components as 
it comes to equilibrium. (See, however, the recent dis
cussions in references 1, 2A, 69, 74, and 141.) The 
experimental studies of this phenomenon, however, 
have been inconclusive (2A, 140), and the question is 
still open from an experimental standpoint. 

B. THERMOMECHANICAL EFFECTS 

The second case is the interaction of heat and matter 
flows in a one-component system (62, 63h, 132b). The 
two experimental effects are the thermomolecular pres
sure difference (TPD) and the mechanocaloric effect 
(MCE), which are defined as follows (132b): Consider 
a one-component fluid in two vessels connected by a 
slit or capillary. If there is a temperature difference 
between the vessels, a flow Jm will result and a pressure 
difference will be set up. In the steady state Jm = 0 

and the quantity (dP/dT)j^ is the thermomolecular 
pressure difference. A related quantity is the amount 
of heat Jq necessary to maintain the system at constant 
temperature when the fluid is forced through the slit 
by a pressure difference. This quantity, (Jg/Jm)AT=o, is 
the mechanocaloric effect. It can be shown (132b) that 

(SU-# <«> 
(J,/Jm) XT* = Q^ (124) 

where Qf1- (heat of transfer) = Li3-/LM. Since dP/dT 
can be obtained from vapor pressure measurements 
and Q12 from calorimetric measurements, it is possible 
in principle to verify the Onsager reciprocal relation. 
The first measurements of these quantities were carried 
out on liquid helium II by Kapitza (91) and Meyer 
and Mellink (115) who stated, without giving numerical 
comparisons, that to within a few ^3r cent Qu = Qn 
(and thus Li2 = L21). More recent data, obtained by 
Brewer and Edwards (15A) from 1.1 to 1.70K., are 
shown in figure 10. Clearly Qu and Q*i are equal within 
about 5 to 8 per cent, which is the scatter of the data 
for each type of experiment. 

2Oi 

] 5 _ • Calorimetric 

UJ . . o dP/dT 
e> z IO — 

22 5 

s i o«•*?.«.'•?•: *'* 
Uj UJ - _ O 
Q. Q 5 ° 

. J l 1 I 1 I l I 
1.2 1.4 1.6 1.8 
TEMPERATURE (0K.) 

FIG. 10. Plot of Q*,- for liquid helium II, adapted from figure 3 
of reference 15A. Closed circles represent Qf2 (calorimetric) 
and open circles Q2* (dP/dT). The per cent deviation is from a 
theoretical calculation of Q*,- which is not relevant to this 
discussion. 

X. ASSESSMENT 

By means of the data in the foregoing sections, it 
has been possible to check the validity of the Onsager 
reciprocal relations. The results may be summarized as 
follows: For thermoelectricity, electrokinetics, iso
thermal diffusion, and anisotropic heat conduction, the 
experimental checks are sufficiently good that the va
lidity of these relations is practically unquestionable. 
With electrolytic transference, most systems check 
pretty well, i.e., within about 10 per cent. In the re
maining ones the experimental errors are too large to 
yield a significant test, even though equations 67 and 
68 are satisfied within these errors. In the thermo-
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galvanomagnetic case, the Bridgman relation is nicely 
verified for the only system where all the quantities were 
measured on the same sample. With the other systems, 
the values of Ui/lu are more scattered but still reason
ably close to 1, i.e., 1 ± 0.5. Because it is most likely 
that the scatter is a result of not doing all measurements 
on the same sample, the validity of the Onsager recip
rocal relation (equation 111) may be accepted with 
considerable confidence. With the thermomechanical 
effects the experimental test is very good, but there are 
data for only one system. Finally, for chemical reac
tions, the evidence is inconclusive. 

In view of the above, the author concludes that the 
experimental evidence is overwhelmingly in favor of 
the validity of the Onsager reciprocal relations. More
over, this experimental check of the relations is at the 
same time a proof of both the essential correctness of 
the linearity assumption and the adequacy of the 
thermodynamic description of these irreversible phe
nomena. 

It would of course be desirable to have some further 
experiments to clinch the argument in those cases where 
experimental errors were especially large. The following 
are suggested: (o) Accurate measurements of Hittorf 
(or moving boundary) and cell transference numbers in 
relatively concentrated solutions of weak electrolytes 
such as cadmium bromide; because of ion association 
Ln and Ln will be significantly larger, (b) A series of 
measurements by modern techniques of the three ther-
mogalvanomagnetic coefficients and of the longitudinal 
Peltier heats and thermoelectric powers in a transverse 
field to check equations 110 and 111, respectively; all 
quantities to be determined on the same sample. Since 
semiconductors often have large galvanomagnetic ef
fects, such systems would be most suitable, (c) Some 
direct calorimetric measurements of the heat of trans
port to compare with the value obtained from the 
thermomolecular pressure difference on systems other 
than helium II. Both measurements of course should 
be made using the same diaphragm, (d) A careful rein
vestigation of the question of oscillating concentrations 
in triangular chemical reactions. 

The author would like to thank his colleagues, D. F. 
Abell and M. W. Nathans, for their generous help with 
various sections of the manuscript. 
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