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I. INTRODUCTION

A. CHEMICAL SHIFTS

One of the principal objectives of high-resolution
nuclear magnetic resonance studies of liquids is the
evaluation of accurate chemical shift data. These data
are of value not only for their characterization of specific
molecules for analytical purposes, but also for their
bearing on chemical phenomena in general. The term
‘“‘chemical shift” or ‘‘chemical effect” was originally
used to indicate that a given nucleus could exhibit dif-
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ferent resonance fields (or frequencies) when contained
in different molecules; the protons in water and benzene,
for example. However, the subsequent production of
magnetic fields of high homogeneity resulted in the fre-
quent discrimination of several nuclear resonances
within a given molecule. These multiple resonances
result from internal or intramolecular chemical shifts,
the classical example being the shifts of the methyl,
methylene, and hydroxyl protons in ethyl alcohol (9).

Chemical shifts arise from a field-induced magnetic
shielding of the nuclei by the molecular electrons, and
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TABLE 1
Direction cosines for orthogonal transformations in terms of the Eulerian angles
| . . .
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are quantitatively described by an appropriate shielding
constant, o;, for each nucleus. Thus, in an applied field
H,, the field in the immediate vicinity of a particular
nucleus is given by

H.‘ = (1 it ﬂ.’)Hg (1)

The associated nuclear Larmor precession frequency is
wi=vHi= (1 —a;)vH, 2)

where v, is the gyromagnetic ratio for nucleus 7. It
should be noted that |w: = w: is in angular units
(radians sec.”!) and is related to the linear frequency by
the equation

wi = 27 (3)

More generally, equation 1 is to be replaced by

HY = {1 — o] |H, 4

where 1 is the second-rank unit tensor and ¢ is the
(second-rank) shielding tensor for nucleus ¢ when the
molecule has the orientation A with respect to a set of
space-fixed axes. The tensor form of magnetic shielding
effects is appropriate when chemical shifts are observed
in solids (49); in liquid systems, however, there are
frequent changes in molecular orientations, so that
equation 4 must be accordingly averaged. The rate of
molecular reorientations in liquids is of the order of
10!° sec.~!, which is about 1000 times faster than the
usual nuclear Larmor precession frequencies (108107
sec.”!), so the assumption of complete averaging is
normally a good onc. The averaging is most con-
veniently carried out by considering a set of principal
axes (z'y'?’) fixed in the molecule. The shielding tensor
is diagonal in this codrdinate system with the principal
values .1, o,+, and o, (the subscript 7 being dropped for
the moment). The components of ¢® relative to the
space-fixed axes are related to those in the principal
axes by the orthogonal transformation T (30)

M (z, y, 2) = Té(z', v, )T (5)
or, in compouent form,
o= Salula  pLTAMH ©®

The T, are the nine direction cosines between the (zyz)

and (z'y’z’) axes and satisfy the orthogonality rela-
tions (29)

2 TaTa = b @
where §,, is the Kronecker delta
= ier 2 ®

The direction cosines are conveniently expressed in
terms of Euler’s angles 6, ¢, x, a8 in table 1 (29).

The characteristic values, o, of the shielding tensor
do not vary as the principal axes assume all possible
orientations, so that

1 3r 3r L3 .
<oQ>a = 8;,—2:.]; dxf. d¢j; TaTwsinfdd (9)
Upon carrying out the integrations one obtains finally
<M >iva = (%Trd.-)l (10)

where T'rg; is the sum of the diagonal elements of the
shielding tensor as determined #n any codrdinate system.
Thus the averaging has the effect of diagonalizing ¢;;
but note, however, the degeneracy of the characteristic
values of equation 10. Equation 4 can now be averaged
with the result:

<H?)>nv.l =H; = {1 — <é®>.a]Ho
=(1- %Trd.-)Ho a1
This result is identical with equation 1 if one defines
g = (%de.') 12)

The first theoretical calculations of shielding con-
stants were couched in classical terms and restricted to
atoms (48). The result of this work was the “Lamb
diamagnetic correction”

o= 5:? V() 13)
where ¢ and m are, respectively, the electronic charge
and mass, ¢ is the velocity of light, and V(0) is the elec-
tric potential produced at the nucleus by the atomic
electrons. For atomic hydrogen in a 1s state

V©) = e<i>a. = £
r Qo
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(ao is the first Bohr radius) and

2
o = ¢
1s 3mcla,

= 1.76 X 10°% (14)

For nuclei with large Z the Fermi—Thomas approxima-
tion yields (48):

o = 3.19 X 10°% Z+3 15)

Equation 15 is useful for estimating the magnitudes of
chemical shifts. Fluorine (Z = 9) shifts, for example,
are about thirty times greater than proton shifts.

A quantum-mechanical theory of molecular shielding
(72, 73, 75, 77), based on second-order perturbation
theory, leads to a term equivalent to the Lamb dia-
magnetic correction and an additional term that corre-
sponds to an apparent paramagnetism of the molecular
electrons. The paramagnetic term involves the energies
and wave functions of excited states—quantities that
are presently unavailable. The introduction of a mean
electronic excitation energy, AE, reduces the correction
term to one involving only the ground-state wave func-
tion, Yo. The (averaged) shielding constant is (73, 74)

0,0
z; m,-m,
N

k

e 4
?= 3ma’ O " 38 <V

Vo> (16)

where 7; is the distance of electron k from the shielded
nucleus, mj and m} are the orbital angular momenta, of
the j** and k** electrons, and the angular brackets
denote an integration over configuration space. Since
m) and m} are differential operators in the quantum-
mechanical sense, the second term of equation 16 in-
volves a sum of second derivatives of the wave function.
Thus the ground state must be known with considerable
accuracy to avoid excessive accumulation of errors.

The lack of the required input data for this theory has
forced a more simplified approach to the problem of
molecular shielding. For example, the shielding constant
may be considered as a sum of terms which represent
the diamagnetic and paramagnetic contributions of
various atoms (82). This method has been refined by
coupling the atomic contributions by means of inter-
atomic electronic currents (62). Other approaches have
employed variational techniques (40, 54, 86), the mo-
lecular orbital approximation (2, 3, 51), and classical
ideas (66). These calculations have provided useful
qualitative results; at best, however, they are only
semiquantitative and the burden of accurate determina-
tions of chemical shifts rests almost exclusively with the
experimentalist.!

The experimental evaluation of chemical shifts is not
without its own peculiarities. Concentration-dependent
shifts occur frequently (68, 69) and may be inter- or

! Experimentally, one usually determines chemical shifts as
diamagnetic or paramagnetic with respect to some reference com-
pound, or simply the relative intramolecular shifts.

intramolecular in origin (14, 16). These effects do not
hinder the analysis of a given spectrum, but corrections
must be introduced whenever comparisons are made.

B. SPIN-SPIN COUPLINGS

High-resolution spectra frequently exhibit an abun-
dance of hyperfine structure which, in contrast to the
linear field dependence of chemical shifts, is independent
of the applied field. This additional structure arises from
an indirect coupling of the nuclear moments u;, which is
transmitted from nucleus to nucleus by the paired elec-
trons comprising the valence bonds. The effects of this
interaction were first observed in the modulation of the
echo envelope in pulse experiments (38, 39) and as
simple multiplets in early high-resolution studies (35,
36, 37). From these experiments, it was concluded that
the interaction between two spins ¢ and j had the form

—Kijuicy; a7

where K;; is a constant depending upon the molecular
electronic structure.? The scalar product form of the
coupling guarantees rotational invariance, which must
be the case since the multiplets survive the random
averaging process characteristic of liquids.? Further, the
interaction completely accounts for the fact that multi-
plets are not observed (¢f. Section IV,A) for systems
containing equivalent nuclei (35, 36, 37, 38, 39). For
example, no multiplets are observed in the proton
magnetic resonance spectra of benzene, water, methane,
etc., and these results are predictable on the basis of
equation 17. The fine structure predicted by the scalar
product coupling has also been verified in a large num-
ber of cases.

The proportionality constant K;; has the dimensions
gauss? erg™!; it is customary, however, to express spin
couplings in frequency units (angular or linear). The
magnetic moment of nucleus 7 is related to the spin
vector I; by the equation (26, 59)

i = vihl; (18)
where h is Planck’s constant 4 divided by 2. Thus
Kijpiw; = viv;KihLi I (19)

The spin-spin coupling constant (in angular units) for
spins ¢ and 7 is now defined as

Jij = viyhKsy (20)

2 The sign convention in equation 17 implies that for K;; > 0
the coupling energy is lowest when the spins are parallel; if
Ki; < 0, the minimum interaction energy is associated with
antiparallel spins. ’

3 Dipolar interactions, which produce fine structure in solids
(60), cannot be effective in liquid systems, since they depend upon
the angle 8 between the applied field and the line joining a nuclear
pair through the factor (1 — 3cos?), whose random average is

2r L3
1
<(1 — 3co8%) >, = Z;/ d¢/ (1 — 3cos?) sin §d6 = 0
0 0
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and the interaction energy becomes
—Kipeys = —Johlel, (21)

In linear units the coupling constant is

A= ";—:_1 (22)
The indirect spin-spin coupling of magnetic nuclei has
been justified quantum-theoretically (76, 78, 80)
through consideration of a rather general molecular
Hamiltonian plus a perturbation by the Fermi contact
interaction (67). The Fermi interaction is, essentially, a
coupling of nuclear and electron spins and its magnitude
depends upon the probability that the electron is at the
nucleus; hence the term “‘contact interaction.” In the
second order of pertubation one finds a scalar product
coupling of the nuclei. Actually, the interaction has the
form of a second-rank tensor which takes the dot prod-
uct form upon averaging over all possible orientations.
Since the exchange coupling of the electrons is inti-
mately involved in the interaction, the coupling mecha-
nism is more properly described as a ‘‘nuclear spin-
electron spin—electron spin—nuclear spin coupling’’; for
obvious reasons this is contracted to ‘‘spin-spin cou-
pling” or simply “exchange coupling.” For protons spin-
spin coupling constants are small (0-20 sec.~!) but may
persist over five chemical bonds (22, 58). Other nuclei
may couple to the extent of a kilocycle or more (67).
The theory is applied with some difficulty to the
direct calculation of coupling constants, again owing to
the lack of molecular energies and wave functions.
Approximate calculations (50, 51, 52, 87) have provided
qualitative and semiquantitative results of interest.
More recently, valence bond theory has been used to
calculate proton-proton coupling constants (42, 43, 44).
The results are in good agreement with the experi-
mental data and show an interesting relation with
H—C—H bond angles (34). Although this method has
only been applied to some simple molecules, the ap-
proach is very promising.

C. THE ANALYSIS OF NUCLEAR MAGNETIC RESONANCE
SPECTRA

In view of the possible interactions of a collection of
nuclei in a magnetic field, 2 Hamiltonian operator may
be constructed which involves the chemical shifts and
coupling constants parametrically. With this Hamil-
tonian ard the formalism of quantum mechanics, one
seeks a set of chemical shifts and coupling constants
which describe the experimental spectrum. This em-
pirical approach is dictated by the lack of accurate
theoretical values for the essential parameters and is
quite common in molecular spectroscopy. The quantum-
mechanical aspects of the problem lead to a formal
identity with otlier branches of spectroscopy, but the
analogy is somewhat sharper in the case of infrared with

nuclear Larmor frequencies and coupling constants cor-
responding to fundamental frequencies and force con-
stants, respectively.

The analysis of a high-resolution nuclear magnetic
resonance spectrum is a relatively simple problem when
only shielding effects are important and is closely re-
lated to the structure of the molecule under study. In
such a case, there will be a single resonance associated
with each distinct environment with an intensity
proportional to the number of nuclei in the given
environment. Measurement of the separations of the
various resonances (in magnetic field or frequency units)
gives the relative internal chemical shifts. The assign-
ment of particular resonances to definite nuclei requires
additional information obtained, for example, by iso-
topic substitution or reference to accumulated data
(32, 64).

It frequently happens that nuclei which are struc-
turally nonequivalent have nearly identical resonance
frequencies and the associated line widths prevent their
resolution. If the spectrum consists of more than one
line, the intensity relations may be used to clarify this
case.

The next order of approximation is obtained when the
spin-spin coupling constants are small in comparison to
the relative internal shifts. Simple multiplets occur in
this situation and the spectrum can be interpreted with-
out recourse to detailed calculations. The above-men-
tioned intensity rules remain valid in this “first-order
case” when applied to the multiplets themselves. The
multiplet structure may also be used to assist in the
assigninent of lines to individual nuclei.

‘When the coupling constants are comparable to the
relative shifts, the simple rules no longer apply and
detailed calculations must be made. If the molecule
contains 7 (magnetic) nuclei there will be, at most,
n(n — 1)/2 relative shifts (not all of these are inde-
pendent) and an equal number of (independent) cou-
pling constants. For n > 2 the general problem involves
algebraic equations of degree > 3, so that numerical
techniques must be employed. There are many cases,
however, where internal molecular motions result in an
“effective symmetry’’ and the orders of the algebraic
equations are accordingly reduced. Similar reductions
occur when the molecule has group symmetry, thus
allowing the use of group theoretical techniques (53,
93). Other methods of interpreting nuclear magnetic
resonance spectra are: perturbation calculations of the
second or third order (5, 9), moment calculations (7),
and multiple irradiation experiments (12, 13). The latter
is more of a “trick” than a general method of analysis,
but its use can often simplify a complicated spectrum.
All of these calculations lead to a delta function type of
description; that is, the spectrum is given by a series of
discrete lines of height Pj located at frequency Qj,
where Pji and Q. are constants denoting, respectively,
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the transition probability and frequency associated with
the transition from an initial quantum state k to the
final state 7. The calculations provide values of the P
and Q, and detailed descriptions of these calculations
are given in the text. The inclusion of relaxation
phenomena requires a quantum-statistical discussion
and will not be considered here (13, 89). Discussions of
elementary principles and the general theory of nuclear
magnetic resonance may be found in review articles
(32, 60, 61, 91) and texts (8, 64).

II. ELEMENTARY THEORY

A. INTRINSIC SPIN ANGULAR MOMENTUM

1. Spin theory for a single nucleus
The magnetic moment operator g, for a nucleus with

nonvanishing spin, is related to the intrinsic spin vector
I by the equation

y = 7hl 1)

where h is Planck’s constant divided by 2, and v is a
characteristic constant known as the gyromagnetic
ratio. The spin vector I = (I,, I,, I,) represents the
angular momentum in units of h and its components
satisfy the commutation rules (23, 26, 81)

LI, — LI, =11,
LI, - I.1I,=1I,
LI, - I.I, =11,

2)

where 7 is the imaginary unit. Equations 2 may be
succinetly expressed as a symbolic vector cross product.

IXI=1 3)

In addition to these operators, the ‘“‘square’” of the spin
vector

ILIl=sl=I4+1: 4+ I? )

and the so-called “raising” (+) and “lowering”’ (—)
operators defined as

I*=1, £, (5)

are also of importance.
From equations 2 and 4 it is easily shown that I? and
I, commute:

Pl —-IB=[1]=0 (6)

The significance of this result follows from a general
theorem which states that if a collection of operators
commute with each other, then a set of functions exist
which are simultaneously eigenfunctions of all the given
operators (23). I, and I, also commute with I2, but in
view of equation 2, only I? and one of its components
form a commuting set. It is customary to take I2 and I,
as the commuting set, and this choice defines the (space-
fixed) z-axis as the axis of quantization.

Let &1, be a set of eigenfunctions of I? and I,. It can
be shown (23) that

Pérm = I(I +1)®1m @)

where I > 0 is the spin quantum number and is re-
stricted to integral or half-odd integral values. The
physical significance of I is that it is the maximum
component of the spin vector in the z-direction. The
eigenvalues of I, are denoted by the letter m and are
precisely 21 4+ 1 in number

m=ILI1-1,1-2 .-+ —-I+41, -1 8)
and the eigenvalue equation for I, is
Isq’l.m = M®Prm (9)

There are, therefore, 21 + 1 independent spin functions
which are characterized by the quantum number I,
which is fixed, and the quantum number m, which may
assume any of the values in equation 8.

The functions ®;,, are assumed to be an orthonormal
set; i.e., the scalar product (26, 81) (®1.m,®r.m) satisfies
the equation

(q’l.m; q’l.m') = bmm’ (10)

where 8nn is the Kronecker delta. The matrix elements
of I? and I, are obtained by taking the scalar product of
equations 7 and 9 with &7 ,..:

(q>l.m', I’q’l.m) = <q’l.m'|lz|q’l.m> = I(I + 1)6m'm (11)
<q’l.m'|Is|q’I.m> = Mém'm (12)

Thus, relative to the basis ®r.., the matrix for I? is
I(I + 1) times an identity matrix with 2I + 1 rows
and columns, and the I, matrix is also diagonal with
elements I, I — 1, - .. =TI+ 1, —1.

The effects of I, and I, on the &, can be evaluated
but it is often more convenient to work with I= (23).

e =V {IFm)(I £m+1) Srmu (13)

The matrix elements of I+ are:

<Prow' | IX|Brm> =V I Fm)(I £m+1)form’=m £ 1
= 0 otherwise 14)

From equation 5 it follows that

Izq’l-m = %(I+ + I-)q>l.m (15)
Lo, = =+ - I)e (16)
vPlom % I.m

which, when combined with equation 14, defines the
matrix elements of I, and I,.

It should be noted that I, I,, L., and I? (but not I%)
are Hermitian operators; that is, if A represents any of
these operators, then

(Prm’, A®rm) = (A®Lm!, Brm) = (Brmy ABLn?)* (17)

where the asterisk denotes complex conjugation.
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For the particular case of I = 1/2, m = £1/2 and
it is customary to introduce the definitions

Pusin=a (18)

P22 =8 (19)

a and B are often referred to as the “spin up” and “spin

down’’ states, respectively. For this case, equations 7, 9,
10, and 13 yield the results:

r= (L +1)a

1/1 (20)
e =3(3 +1)s
I.a=%a

1 (21)

1= —38
Ita =1I8=0
I8 =« (22)
Ira=8
(o, 8) = (B, @) = 0} @)
(a’a),= (ﬁrﬁ)=1

2. Spin theory for a collection of nucles

The preceding results are applicable only to a single
nucleus of spin I, while later problems will involve
systems with n spins and operators such as

=3 (24)
l.=i1.,' (=292 (25)
=1
r=II= ;Ig +;;I,~n (26)
It = 2 I* (27)

i=1

The commutation rules for the components of I with
each other and with I? are (25, 26, 81)

I; X L = 8, (28)
13, I,j= 0 (29)

Equation 28 states that the operators for independent
nuclei commute, and equation 29 implies that a set of
functions can be found which are simultaneous eigen-
functions of I? and I,. For the present the simpler, but
useful, representation is considered in terms of products
of the functions ®r.». In this scheme (83) each nucleus
is represented by a function satisfying equations 7 and
9, and the entire spin system is described by products of
the type

&(m) = &(-- - I;m;- -+ ;m) = fI Primi 30)

§=1
Since there are 2/; + 1 values of m;, there will be
N=H(2I,+1) 31)

such products. These product spin functions are eigen-
functions of I,

Id(m) = ma(m) (32)

where the quantum number
m=2m, 33)
’

takes the integrally spaced values

Gy () r (B = ~(3)

The functions ®(m) are not, in general, eigenfunctions
of I?, but it is possible to express these eigenfunctions as
linear combinations of the ®(m).

In high-resolution spectroscopy, particular interest
focuses upon homogeneous spin systems with spin
quantum number one-half. For such systems equation
31 ghows that there are 2* product functions. In writing
these products explicitly, a serial order will be em-
ployed; ie., of8 . . . means that nucleus 1 is described
by the spin function e, nucleus 2 by 8, etc. The possible
values of m range from n/2 to —n/2 and it is easy to
show that the number of spin functions with a given
value of m is

n!
(34)
CRHCESY
It is to be noted that there are as many spin functions
with the eigenvalue —m as there are with the eigenvalue
m. The products are given in table 2 for the case n = 3.
The problem of constructing spin eigenfunctions of
the square and z-component of total angular momentum
for n spin 1/2 particles is discussed in texts on quantum
mechanicsand group theory (47, 83). It isshown that the
total spin quantum Ir may assume the nonnegative
values

_nn_.n_,  |0forneven
Ir=93-L3=%" %1/2 fornodd 39
TABLE 2
Product functions for three nuclei with spin 1/2

Spin Funotion m = m1 + m3 +ms | Abbreviation
GO+ oottt s 3/2 ul
QAB. e e 1/2 uz
BB, e 1/2 ug
B, i e 1/2 U4
BB e e —-1/2 us
BaB. . . s —-1/2 us
BBa&.....vi s -1/2 ur
BBB.. o e —3/2 ug
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n

Fig. 1. Total spin quantum numbers and their statistical weights for n equivalent spin 1/2 nuclei.

For n = 3, Ir = 3/2, 1/2. Now the statistical weights
gry for spin functions with given Ir are not always
unity except for Ir = n/2 (see tables 3, 4, and 5). In
this case it is clear that I,(max.) = n/2 and this occurs
only when all spins are up; hence

grr -3 =1

If Iy = n/2, the gr, may be different from unity. Con-
sider the case when n = 3. From equation 31 the total
number of spin states is 2% = 8. Therefore

(2-g +1)gun + (25 +1)gus = 8

and since gy2 = 1, g2 = 2. Thus, four of the eight
spin functions correspond to Ir = 3/2 and the remain-
ing four functions can be divided into two sets each
corresponding to Ir = 1/2. Similarly, one can show that
for n = 2 there are three spin functions for which I'r = 1
and one for Iz = 0.

These results can be extended by adding +1/2 (for
each additional spin) to the total spin quantum numbers
already obtained and remembering that Ir» > 0. In this
way one can construct the branching diagram (46)
shown in figure 1. The circled numbers give the statis-
tical weights of the states with various values of Ir. For
n = 6,Ir = 3,2, 1, 0 with the statistical weights 1, 5, 9,
and 5, respectively. In general, the statistical weights
for total spin quantum number

In=%—k
are
_ — nlin — 2k + 1)
2= G = o — % + D! (36)
where
v 0,1, -:-.-: g for n even
0,1, .--.-. nglfornodd
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TABLE 3
Spin eigenfunctions of I* and I, for two spin 1/2 nuclet
Spin Funetion Iy m C3 Symmetry

QOeervsonsnssssvsavestovssvssvsosnss 1 1 a
(@B F B&)tiieiriii i 1 0 Q
V2
- T I 1 -1 a
(@B — B&).ctreririiiiiniiiarenan 0 0 ®

The spin functions for n = 2, 3, and 4 expressed as
linear combinations of simple product functions are
given in tables 3, 4, and 5.

B. FORMULATION OF THE QUANTUM-MECHANICAL
PROBLEM

1. The Hamiltonian operator

Consider a molecule containing # nuclei with mag-
netic moments u; = v;hl; in a magnetic field H,. The
actual field at a given nucleus is altered owing to intra-
molecular magnetic effects and intermolecular inter-
actions. Assuming that all these shielding effects are
described by a scalar shielding constant, the field at
nucleus j can be expressed as

H;= (1 —e)H, (37)
The interaction energy of nucleus j with the field H; is
obtained from the classical energy (59)

= —pH=vh(1 —o,)I;Hy

38
= —hﬁ),"l,’ ( )

where w; = v;(1 — ¢;)Ho is a vector parallel to Ho
whose magnitude represents the Larmor frequency in
the absence of spin-spin couplings. If nucleus j is
indirectly coupled to the remaining nuclei there is, in
addition, the spin-spin energy

—Zk Kipujue = —th Jali L (39)

The total energy for nucleus j is the sum of equations
38 and 39

-h ;«:;-Iy + 2 J,'kly"lk%

and the Hamiltonian operator, 3¢, for the entire spin
system is obtained upon summing over j:

5= —h 32 ol + 3530 J,wlf-h% (40)

It is to be noted that |w;| and J; are in angular units
and it is convenient to have the energies associated with
3¢ in these units also. This is easily done by choosing h

for the unit of angular momentum as in the commuta-
tion rules (equations 2 in Section II,A,1). Further, the
applied field H, is usually taken to lie along the z-axis
of a laboratory cotrdinate system

H, = Hk (41)
and defining
loj] = w; (42)

the time-independent Hamiltonian operator becomes

= — 32 wilsj + Z<z Jikli'lkg (43)

Equation 43 gives the Hamiltonian operator appro-
priate to the problem of determining the stationary
states of a given spin system; ie., a set of N spin func-
tions, ¥;, which are eigenfunctions of Jc:

Xy;j=aw; j=12,-.--N (44)

(N is the total number of spin states and is deter-
mined by equation 31 in Section II,A,2)) Let wu;
(j=1,2 -+ N) be a set of zero-order initial spin
functions. The ux need not necessarily be pure product
functions but they shall be required to be an ortho-
normal set which are eigenfunctions of I,. Since the u;
form a basis, the ¢; are expressible as linear combina-
tions of these functions.

¥i= ; (T 45)

Operating on y; with 3¢ and using equation 44 yields:

2 (1 — 2)ur =0 (46)

TABLE 4
Spin eigenfunctions of I* and I, for three spin 1/2 nucles

Spin Funotion Ip m D3 Symmetry
QOB ernrnsenensnsesataiennns 3/2 3/2 @
_\}—g(aag +afia +Baa)eininnn.. 3/2 1/2 @
—\l/—g(ppa BB +aBB)eeennn. 3/2 -1/2 @
- T 3/2 —-3/2 @
—\;—g(aaa +aflx — 2Baadee...n. 1/2 1/2 e
_\1/_8(,95,, +BaB — 2aB). .- n- - 1/2 -1/2 8
—\1/—5(“3 B e 1/2 1/2 8
;/l—é(ﬁﬂa BBt 1/2 —1/2 e




ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRA

37

TABLE 5
Spin eigenfunctions of I# and I, for four spin 1/2 nucler
Spin Funotion Ip m D4 Symmetry

CEEOEOE . 4 4 e s oo e s e oo oo e ussssacnsnsanesssssssesesssessssssussnosssesssosesssssnsssssnsnsss 2 2 (<3
FaaaB + aaBa 4 @BAR S BAGE) < evve et e tus s sesn sttt ettt te et raes 2 1 @

1
—\/—g(aaﬂﬂ + Baaf + affa + BBaa + aBaB + PABA) ittt i i i rearees 2 0 @
B(888 + BBaB + BaBB - GBBB) ¢ e vvvuennanre ettt ettt a e e e 2 -1 @
. PR 2 -2 a

L (aafp + BaaB + aBfia + BBac — BaBB — BN+ ve e eerereeere e reeereaenens 0 0 @
V12
B(@aBB — BaaB — aBB& F BBAA) . ettt et e e ee et 0 0 @
HaaaB — aoBa + @Bam = BAAE) . ieie ettt e e sae s eeeaeenes 1 1 ®2

1
Vg(aﬂaﬂ 2 3 T 1 0 ®3
B(8BBc — BBAB + BaBB — aBBB) v vr et aut ettt e et aa e eeeeeaas 1 -1 ®a
e T L S 1 1 g

1 (aafif — BBac) 1 0 [
—=\aqj Ll [+ » 7+ 3 R R R R R I I I
V2
e L Y PP P 1 -1 &
V2
e T o 7 1 1 8
V2
(- 1 B |- -3 S 1 0 8
V2
B (- L B - - ) T PP 1 -1 s
V2

Now the result of operating on u; with 3C can always be
expanded in terms of the orthonormal set {u,}; that is,

U = Zxrkur (47)

where 3. = <u,|3|ux>. Substituting equation 47
into 46 and taking the scalar product with u, gives,
since the u; are orthonormal,

> (e — Q8m) =0 k=12---N) (48)
k

The N homogeneous equations for the ax; have a non-
trivial solution if and only if the determinant of the
coefficients vanishes.

detlxrl - Q,'arkl =0 (49)

Equation 49 is an algebraic equation of the N** degree
for the N characteristic roots £,. Substituting any one
of these, say Qj;, into equation 48 leads to a set of
equations for the a:;. However, only N — 1 of these

equations are linearly independent, so that one requires
one more condition upon the aj;. This condition is
obtained by imposing the normalization requirements
on the ¢;. From equation 45 this requires that*

$ a; =1 (60)

Repetition of this procedure gives the set y; and the
corresponding eigenvalues ;.

2. Some theorems on the matrix elements of
the Hamiltonian

The determination of the eigenvalues and eigenfunc-
tions of 3C requires the evaluation of the matrix elements

* Note that neglecting arbitrary phase factors of unit modutus,
the coefficient matrix (a;;) is orthogonal and the Hamiltonian
matrix real symmetric, 3¢;; = 3¢;;. These are special cases of the
more general unitary and Hermitian matrices for (a:;) and 3¢,
respectively.
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of 3¢ relative to some set of zero-order spin functions.
The total number of matrix elements is

- 2
N = {I‘I @I + 1)}
=1

which can be rather large even for small n. (If all
I,=1/2, N? = 22) Many of these matrix elements
are zero, and useful relations can be established among
the nonzero elements.

From the commutation rules it is readily demon-
strated that

I,= Z Iy
commutes with 3C:

(I, %}=0 (51)
This fact allows the use of an important theorem on the
matrix elements of commuting operators (23). Suppose

A and B commute and ¢; and ¢; are eigenfunctions of A
with the eigenvalues a; and az; then,

(¥5, ABys) = (¥, BAY:) = ax(¥, Byy) (52)
If A is Hermitian,
(Vi) ABYz) = (Ay;, Bys) = 6,(¥; Bys) (83)
Equating equations 52 and 53 leads to
(0 — a;) (s, B¥x) = 0 (54)

Therefore if ax # a;,
(¥, Byi) =0 (55)

If the set of zero-order spin functions are taken to be
eigenfunctions of I,, then equation 55 (with B = )
shows that the matrix elements of 3C are zero unless
¢; and ¢ have the same m-value. For the case of all
I; = 1/2, the number of spin functions with a specified
value of m is given by the binomial coefficients n and the
secular determinant factors accordingly. For example,
with a three-spin system the secular equation factors
into four subdeterminants of orders 1 X 1, 3 X 3,
3X3,and1 X 1.

The relations between the nonzero matrix elements
(18) are easily established by use of an operator, X;, for
each individual spin function with the property

*iPry me = Proyom (56)

By the definition of A; it follows that 2} =1 (the unit
operator) and from the commutation rules that

Al + 13 =0 (57)
[, L;1=0 (58)
&, Il =0 (59)
P I31=0 (60)

For the complete spin system one employs the operator

A= (61)

=1

with properties analogous to those of the ;. For the
Hamiltonian operator note that the first term

—> wily=A (62)

contributes only to the diagonal elements, while the
coupling term

_Z.<; JialjIy =B (63)
contributes to diagonal and off-diagonal elements. The

diagonal elements of 3C corresponding to the I, = m
states may therefore be written as

<®(m)|X|2(m)> = <P(m)|A|®(m)> + <P(m)|B|®&(m)>

The off-diagonal elements coming only from the second
term are of the form

<Pm)|B|E(M)> = bp'm (65)

Now the operator A commutes with the coupling oper-
ator B

B,A]l=0 (66)
and anticommutes with A,

AA +AA=0 (67)
From equations 66 and 67 A and B may be expressed as

B = ABA (68)
= —AAA (69)

Substituting these expressions into equations 64 and 65
and noting that A is Hermitian, one obtains

<P(—m)|R|B(—m)> = —Gmm + brm (70)
<@(—m')|K|2(—=m)> = bn'm (71)

Therefore, if the matrix elements of 3¢ are calculated
with respect to the states with I, = m, equations 70
and 71 give the matrix elements for I, = —m. In the
case m = 0 there are two possibilities: (1) A permutes
the several #(0) and the diagonal elements are related
by equations 64 and 70; (2) A does not permute the
®(0) and aqo = 0. Then the diagonal elements are just
boo (18). In general there will be a combination of these
possibilities for m = 0.

The above theorems are general and hold for any set
of spin functions which are eigenfunctions of I,. The
following results are restricted to the product represen-
tation and must be appropriately modified for more
general spin functions. The derivation of the matrix
elements in the product scheme (5) is facilitated by
introducing the identity

Liho= Lyla +3(IFT5 + 713 72)
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into the Hamiltonian operator;
0= — «320{1.; + 2; Jalyla
+5 30 3 Inl T + G} @)

In the product representation, the spin functions have
the form

Q(...Iﬂn,---;m) =H§I,‘,-j (74)

The diagonal matrix elements are given by

<®( - Imy- -+ ;m)||B(C - - Imy- - - ;m)>
= —{Sem + 3 D Tamm}  a5)
and the off-diagonal elements are

<§(..-Iﬂn,.*-l...[m—l.--;m)l&l@(...[m,...

The complete time-dependent Hamiltonian is

x@) = — iZ}w;I.f + 35 35Tl

+ 33wl (Tes cos ot — s sin m)} (82)

and satisfies the time-dependent Schrodinger equation.
iZem =m0 (83)

¥(¢) here represents a stale vector; i.e., the components
em(l) of ¥(t) are the probability amplitudes for the
stationary states of the time-independent Hamiltonian.
The solution of equation 83 is facilitated by the sub-
stitution

¥ (1) = elevti (1) (84)

Im. .. ;m)>

= —3Tal (s — m) (T + ma) (L +my + 1) (s —ma+ D)1 (76)

In the special case where all I; = 1/2, equations 75
and 76 become (53)

<elxle> = —3153 S +3 35 0 Twdu} @)

<¥|k|8> = —%J,—.U (78)

where S; = 1 accordingly asspinjisaorg, Tz = %1
accordingly as spin j and k are parallel or antiparallel,
and U = 1if ® and &' differ by an interchange of spins
7 and k, and is zero otherwise.

In the following sections, the matrix elements of 3¢
will be computed for a variety of spin systems and the
validity of the above formulae should be checked in
detail, since they are of great value in expediting the
calculations.

3. Transiiion probabilities

Once the eigenvalues and eigenfunctions of the

Hamiltonian operator have been determined, there

remains only the problem of calculating the probabilities
of the transitions induced by the radiofrequency field

H! = 2H, cos wt (79)

It is convenient to decompose H. into two contra-
rotating components confined to the zy-plane. For posi-
tive v;, only the component rotating in the negative
sense is effective for resonance, and its z, y~components
are

H, = H1 cos wi
. (80)
H, = —H, gin wi
The interaction of the nuclei with this field is
x = —21.31{1,.‘»”:- I sin wt) (81)

Shielding effects need not be considered here, since
H,; < Hy in high-resolution experiments.

which represents a transformation to a codrdinate sys-
tem rotating about the z-axis (71, 79, 85). ¥,(¢) satisfies
an equation of Hamiltonian form:

i ‘;—‘w,a) = (etmtge(t)eileot + I} ¥, (0) (85)

In carrying out the transformation of 3C(¢), it is helpful
to note that I,; commutes with I, and that secalar
products are invariant under rotations. Thus the first
and second terms of equation 82 are unaltered by the
transformation. The transformation of the remaining
terms (85) is determined by equations 86:

eIt [ it = I, cog wl + I, sin wi
ST ERe } (86)

et ] el = — ], gin wt + I, cos wi
Carrying out the calculations gives:

e Trmtie (f) it
= et + 3 3 Tat e + omdla) @D

The time-dependent equation for ¥,(¢) is, therefore,

500 = {30 @ - o)ty + 35 Il
+ Sl 6
For convenience one writes equation 88 as
0 = — (e +BIE0 (89)
with
6 =23 vl (90)
The eigenfunctions of e are identical with the eigen-

functions ¥m of equation 43 in Section II, and the eigen-
values of @ are just Qu -+ 7.
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" Now e and B are independent of the time, so the
solution of equation 89 in operator form is

¥, () = @iy, (0) (91)

and, since ¥(0) = ¥.(0),
V(1) = elavtei@B)ty (0) (92)
Hatt=0, |cw|2=1 and em = 0 for m’ % m, then
¥(0) = Ym and
‘I’(t) = eﬁl.ute-'(a-i-ﬁ)t¢m (93)
The probability that the system is in the state ymr at
time ¢ is
Paw'(8) = | (¥w’, T(#)) |2 = | <y’ |eilsvtei@ttit]| g, > |2
= |<|ﬁ..'|e‘(°+’)‘|¢,,.>|’ 94)

The last step follows from the fact that the ¢, are eigen-
functions of ef«!, The term e*@t)¢ cannot be further
simplified, since e and 3 do not commute. In a represen-
tation which diagonalizes e the exponential may be
easily expanded to yield:

e\’a_ —_ e\'a,,.:

(@B = e¥omBnm +  — ! Bm'm
Buiifin, f6 — e | gn — ]
+2ak—amgaa—am’ + am’ — om + (95)

Retaining only terms of the first order in 8;;, the abso-
lute square of equation 95 gives

— co8 [Om’ — Qm + w(m’ — m)}t}
[Qn — Qm + (m' — m)wp

P (t) = 212 |Gwml?  (96)
From equation 96 it follows that Pm_. will be zero
unless m’ = m £ 1 (¢f. equations 14 and 15 in Section
II). For absorption the selection ruleism’ = m — 1 and

1 —cos (Qm_1 — Om — w)t}
@1 — Qn — w)?

Proms(t) = 2L [Bmosml? (97)

It is noted further that Pp.n—; will be large for
® = Imet — Om (98)

which is just the Bohr frequency rule in the system of
units with h = 1. Integrating equation 97 over a range
of rf frequencies one finds that the fransition probability
(24) is proportional to

|Bmetim | = | <¥mot |20 7 Lsi [ ¥m > |2
Since the line intensities of nuclei with different v; are
not ordinarily compared, there is no loss of generality

in assuming all 4; = . The relative intensities are then
just proportional to

(7H1)’l <¢m—l|Ia|¢m> l’

The fact that transition probabilities are proportional
to the matrix elements of I, stems from the assumption

that H, lies along the z-axis in the rotating frame. If H;
were taken along the y-axis, I, would replace .. Hence
the transition probabilities are also proportional to the
absolute square of the matrix elements of I-. Thus
first-order time-dependent perturbation theory yields
the selection rule

(100)

and relative intensities proportional to any of the
following matrix elements:

|<m — 1|I.|m>|*
|<m — 1[I4|m> |3
|<m — 1| I-|m>|?

(101)

III. THE ANALYSIS OF SOME SIMPLE SYSTEMS

A. THE TWO-SPIN SYSTEM AB

The simplest system that can be studied is one with
two spin 1/2 nuclei 4 and B, having resonance frequen-
cies wa and wp and coupling constant J4p = Jpqa = J
(5, 10, 11, 39). For this case the Hamiltonian operator is

% = —{oalas +wala + Talos + 3005 + I} @

For a basis it is convenient to use the product functions
aa, af, Ba, and BB, whose m-values are 1, 0, 0, and —1,
respectively. Operating on these spin functions with 3¢
gives:

- —%3:»4 + s +%J£aa @
Rap = —3fua — ws — 37} a8 — JBa @)
5pa = —%{ —os +uz = 37} 6o = 3Ta8 @)
%8s = —%g —wa — o+ %J%ﬁﬁ ()

Equations 2 and 5 show that aa and 88 are eigenfunc-
tions of 3¢, while equations 3 and 4 show that o8 and
Ba are mixed by the spin coupling. This mixing is in
agreement with the considerations of Section II,B,
which showed that the secular equation is of order 2»
but factors according to the binomial coefficients of
n (1:2:1 in this case). The 2 X 2 determinant is

<af|X|af> — Q@ <Ba|3|af>

=0 (6)
<af|3|Ba> <Ba|X|[Ba> —Q

where
<Baldt|ap> = <aB|®t|fa> = —37
1 1
<af|K|af> = —Eguu — wp — §J§

<Ba|X|fa> = —%%—uu + wp — %J}
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Equation 6 is readily solved to give the eigenvalues

o = 3137 - VI T 7} @)
0 = 3337 + VT 7| ®)

with
6 = w4 — wB 9)

It can be assumed without loss of generality that
3 > 0. The eigenvalues Q; and Q; have the properties

Q1 — <af|3|af>
J—=0
Qs — <pa|3|Ba>

The eigenfunctions corresponding to these eigen-
values are obtained by use of the equations

a;{ <aB|R|aB> — ;) +bi<Ba|H|af> =0  (10)
a;<aB|i|Ba> + b;{ <fa|XK|Ba> —Q;} =0 (11)

where a; and b; are, respectively, the coefficients of aff
and B« in the mixed spin functions. Equations 10 and 11
are not independent, but either of these together with
the normalization conditions

@+ =1 (12)

is sufficient to determine the a; and b;. The quadratic
nature of equation 12 leads to several choices of sign,
but the eigenfunctions thus obtained differ only by a
factor of —1 so that no physical significance is to be
attached to the various possibilities. Upon substituting
the appropriate matrix elements and eigenvalues one
obtains

=1
1
which have the eigenvalues Q, and @, respectively, and
_ J

All of the eigenvalues and eigenfunctions are given in
table 6.
To determine the transition probabilities the nonzero

TABLE 6
Eigenvalues and eigenfunctions for the two-spin system
Eigenfunction Eigenvalue
L T —Hws +ws) — 37
1
{aB +QBa)..eieinnnininn.. 437 — Vi +73)
V1@
1
[ R v 33 + Ve +03)
V1+e
. $ws +wn) — 37

matrix elements of I- = I7 + I3 with respect to the
eigenfunctions of 3¢ are required. Operating with I~ on
the eigenfunctions yields

I"aa = af + Ba

“Vito 1:_—0‘, {1+ Qs+ (@ — 1)) (16)

Iy = \/—11———:——@, (88 + Q88)
_ 1+ .

gy = ——L -

_©-1

I"86 =0 (19)

From equations 16, 17, and 18 the transition probabili-
ties are:

| <¥alI-lea>[* = GT8F (20)
| <wsl Ilaa> |1 = £ 28 (21)
| <gglI-1vs> | = LE8F (22)
| <gpl1-lya> 1= G 23)
By some elementary algebra one can show that
G221 \/—JTJ_ﬁ (24)

The resonance frequencies corresponding to the above
transitions are given by the Bohr formula:

Qi =05 — (25)

These frequencies are given in table 7 along with rela-
tive line intensities (transition probabilities). The nota-~
tion used for the transitions will be explained in
Section IV.

From table 7 it is evident that the spectrum consists
of four lines and is symmetrical with respect to the fre-
quency 3(wa + wsz). Theoretical spectra for several J /8
ratios are shown in figure 2 with #(ws + ws) as the
frequency origin. Figure 2a represents the case JJ/8 = 0,
which occurs when J = 0 or as § — «. Only two lines
are observed in this case, since the nuclei may ‘flip”
independently (there is negligible coupling). A flip of
nucleus A corresponds to absorption at w4 and similarly
at wp for B flips; the frequency separation is just
wa — wp = 0. Figure 2b illustrates the “first-order’’
case; that is, the off-diagonal elements of equation 6 are
small compared to 8. The separations of the low- and
high-frequency doublets are J (which is true for any J /5
ratio) and

5= 3(8: + 8)
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where S, and 8; are the frequency separations of the
extreme and central resonances. In figure 2¢, J/6 = 1
and the central resonances are of greater intensity than
the extreme resonances. The coupling constant may be
determined as in the first-order case, while & is now ob-

tained as the geometric mean of S, and S.. When
J/8> 1 (figure 2d) the extreme resonances are very
weak (relative intensities &~ 0) and are at

1 1 &
m:l:E(J-FE—j)

TABLE 7*
Resonance frequencies and relative intensities for the two-spin system
Transition in the Limit J — 0 Relative Intensity Frequency

J

A173.173B1/3,1/8 = A113.c138B1/3.1/8 1 et e eeeer ettt ettt e ea et ie e ettt e traeaaes 1- z $usa +o2 +7 + R}
J

A173.1/3B113. 2178 = A8 d/8B1/8. /8. e vt e ittt et a e st ta st et ter e eraeans 14 z Houa +wr —J +RB)

A173.173B1/3,113 = A1/3.078B1,3, c1/8e st vttt et ettt e ser e eeaens 1+ % ${ws +we +7 - R}
J

A172, 17813173 = A1 1B 18 c1/Be ettt et te s steesnsneneseetaastetatsttutenesananes 1- 7 Hea +w2 -7 - R}

*1n this table B = /8 +J2.
@ J=0
-i8 ° It
B S |
b 1 o s
@o=¢
— —
| | |
-46 $5
W) 3> 8
o
() s=0
T o

Fig. 2. Theoretical spectra for the two-spin system for various
values of the J/5 ratio.

The central resonances are “peaked’’ towards the origin
and have a residual splitting of order 82/2J. The case
J/8 = = (figure 2¢), which occurs when § = 0 or as
J — «, leads to a single-line spectrum.

Zeeman energy-level diagrams corresponding to the
spectra depicted in figure 2 are shown in figure 3. The
separation of the extreme levels is actually much greater
than that shown and is reduced only to facilitate the
drawing. It should be noted that although there are
four distinct energy levels, only three of these partici-
pate in the resonance in the case 8 = 0 (orJ — =). The
spin functions for these levels are

ox
1
Vs (aB + Ba) (26)
88

These functions make up the so-called ‘“‘triplet state”
(parallel spins), since they behave under the various
spin operators like a single nucleus of spin 1 (83). The
state which does not participate in the resonance as
8 — 0 is described by the singlet state (antiparallel
spins)

;/l—g(ap — pa) @

and corresponds to zero spin. The proof of the fact that
transitions to and from the singlet state are forbidden
when 8 = 0 orJ = = is based upon the different sym-
metries of the singlet and triplet states under the oper-
ation P which interchanges spins A and B. Let ¢¥s
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denote any of the triplet-state functions and ¥4 the
singlet state; then

Pyg = yg (28)
Pys= —ya (29)

Thus the singlet state is described by an antisymmetric
spin function and the triplet state by symmetric func-
tions. Suppose now that a transition Y, — ysg is
possible; then the line intensity will be proportional to
the absolute square of

<YalI-[¢s> (30)
Now I~ = I7 + I; commutes with P
PI-=IP (31)
so that
<Ya|PI-|Ys> = <ya|I-P|es>
= <yalI|¢¥s> (32)

and since P is Hermitian,

<Ya|PI"|¥s> = <Pya|I-|¢¥g>
= —<yul|I"[ys> (33)
From equations 32 and 33 it follows that
<yalI"|[¥s>=10 (34)

When & > 0 all four levels participate in the resonance
because the spin functions are no longer purely sym-
metric or antisymmetric.

The experimental spectrum of the protons in 2,3-di-
bromothiophene (19b) is shown in figure 4. The theo-
retical spectrum for J/8 = 0.319 is added for com-
parison. From the line spacings in the experimental
trace the chemical shift and spin-spin coupling constant
are determined to be

56; = 18.5 = 0.1 c.p.s. (c.p.s. == gec.”!)
J _
= 5.9 & 0.1 c.p.s.

Although the bromine nuclei have magnetic moments
which could result in spin-spin multiplets, their quad-
rupole moments preclude the observation of additional
fine structure (37).

B. A THREE-SPIN SYSTEM, A,B

A three-spin system that frequently occurs in practice
consists of two nuclei with identical Larmor frequencies,
which are equally coupled to a third chemically shifted
nucleus (5, 10, 11, 20, 39). An example of such a system
is the substituted allene HfC=CHBX. It is assumed
that the substituent X has negligible interactions with
the H4 and H? protons and that the equilibrium con-
figuration of the molecule has a plane of symmetry
passing through the carbon chain and perpendicular to
the plane of the H4 nuclei. This spin system is actually

[CREY ] WI«s @I=5 @ ans () $=0
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m=0
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F1e. 3. Zeeman energy-level diagrams (schematic) for the
theoretical spectra of figure 2. The more intense transitions are
indicated with a solid line and the weaker transitions with a
dashed line.

more general than presently indicated, as will be seen
in Section IV.
From the assumed symmetry it follows that

w1 = wg B wy (35)
JEP=JP =y (36)
Js=JAmaJg (37)

.where the subscripts 1 and 2 refer to the two A-type

nuclei and the subscript 3 to the nucleus B. The
Hamiltonian for this system is

% = —Joa(la + L) + sl +J (L + L) s + J'TuL
+ 3IU0E + DI + (0 + DI
+ W+ G 68)
H Br éé’;_ = 5.9%0.1cps
H][sj[er 8

% = 18.520.1¢ps

N

THEORETICAL SPECTRUM FOR & =0.319

F1a. 4. Experimental and theoretical spectra of the protons in
2,3-dibromothiophene. The experimental trace is that of the pure
liquid as observed at room temperature and 60 Mc. /sec.
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For zero-order spin functions the product functions
given in table 2 may be used. However, since the
molecule possesses a plane of symmetry, there are
definite advantages if the initial spin functions reflect
this symmetry. Since reflection in the plane of sym-
metry interchanges the A spins, the correct functions
are eigenfunctions of the operator P; that is,

Py =cy

If ¢ is normalized, then (¥, ¢¥) = 1 and (Py¢, PyY) =
W, ¥) = 1= (¢}, &¥) = ¢ sothat ¢ = 1. Thus spin
functions with the proper symmetry are symmetric or
antisymmetric under the operation P. To determine
these functions operate on the product functions in
table 2 with P: .

Pur =, (39)
Pus = us (40)
Pus = uy (41)
Pus = us (42)
Pus = ug (43)
Puyg= us (44)
Pur = ug (45)
Pus = us (46)

Equations 39, 40, 45, and 46 show that u, us, ur, and us
are symmetric functions, while equations 41, 42, 43, and
44 show that us, us, us, and us do not possess definite
symmetry under the operation P. However, if equations
41 and 42 are added and subtracted, it is found that the
functions

L

V2

(12 == u4) 47)

(the factor 2-V?is for normalization) are symmestric (+)
and antisymmetric (—) with respect to P. Similarly,
equations 43 and 44 provide the pair

—J—_z. (us == ug) 8)
These are eight linearly independent spin functions of
the required symmetry which can, therefore, be used
as a basis. These functions are tabulated in table 8. It
is of importance to note that the functions in table 8
consist of all possible products (i.e., the direct product)
of the functions a and g for spin B with the singlet and
triplet state spin functions (cf. table 3) for the A spins.
The abbreviations for the spin functions have the
general form A7, m,Bra.mp, Where L4, Is, m4, and mp are
the total spins and z-components of angular momenta
for the A4 and B nuclei, respectively. Since there are two
spins of type A and one of type B, this system is
conveniently abbreviated as 4,B (11).

TABLE 8
Symmetrized spin functions for the A.B spin system
Spin Funoction m C: Symmetry Notation
- 27 PN 3/2 Q Ar1Biaa
L 1/2 Q@ A11Bi113.-1/2
1
\—/—g(aﬂa +Baa).. i 1/2 <] Ar0B13.112
1
—\/—-2-(015& +Baf)eiiiinn. -1/2 Q@ A1.0B1/3.-1/2
- -1/2 ] Ar,-1Biaa
-7 N —-3/2 Q Ar,-1B1/2.-172
1
E(aaa —Bact)...uuuins 1/2 ® Ao.oBiaass
1
E(aﬂﬂ —Baf)eeiiinie. -1/2 ® Ao.0B1/3.~173

Operating on these spin functions with 3C gives:

KA1 Bz = —%g&u +ws+J + %J’;AI.IBIHJI’ (49)

K AvBusg, e = —%;2(04 —wp —J + %J,;AI-IBIIZ.-IM

2
- ——\g: JAvneBusz  (50)

1 1
KAy oBuss = —égwa + §J'§A1.031m.uz

2
- —\g—— JA11Bys.cie (51)
1 1,
3A0Bia,—is = —g5)"ws + §J AvoBus-us
2
— —\-/2— JAy, 1Bz (52)
1 1,
Ay _1Busajs = -5 —204 4w —J +§J A \Buzae

V2

-5 JAyoBuys,—1z (53)

1 1
KAy, 1 Buysin = —53—20:4 —wp+J +§J’§A,,_IB”._,,_”2 (54)

KAroBisan= — %gwa - g-";Al.oBumlz (55)
1 3.,
HAr0.Brs.—1iz = —5% —wp — §J %AI-DBIIL—II! ‘ (56)

Equations 49, 54, 55, and 56 show that
Al.lBlI2-l/27 Al-—lBllin—llﬁy AI-OBII2-1I27 aln-d Al-OBl/2|—1/2

are eigenfunctions of 3¢, while equations 50 through 53
show that the remaining submatrices of 3 are 2 X 2,
so that only quadratic equations are involved in the
determination of the remaining eigenvalues and eigen-
functions. The calculations are identical with those
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TABLE 9
Eigenvalues and eigenfunctions for the A.B spin system
Eigenfunction C2 Symmetry Eigenvalue
DT IRY 00 e —}{2wa +ws +7 + 40}
! [A11B1/2,41/3 F QALOBURABY vt e iiiieiii ittt ittietiateaeiniiiiaannianaas e ${—ws +30 -0 - R}
V1+Q2
1
{QA11BY s, ~1s — A10B13 B oot i i it Q 4{—wa +30 -0 + R}
V1+4@2
[A1,1B1/2,073 = @ A10B1A1/2] cevte et etiie e eetiiietetaiietesrarnaeereranas a ${ws + 30 - + R}
1493
1
(@ A1, 112,18 + A1.0B13. 212} 1 eeeie ittt et aeaeaa, a $os + 30 - ) - R}
V1+@3
Y ;0 S a 4{20s +wn —J — 477}
Y 2 R Y T P {—wn + 37}
Y 1Y T Y S ${ws +37)

of Section III,A and the results are given in table 9,
where

R = /83— 8J + 9J%/4 (57)

R’ = /3 4+ oJ + 9J%/4 (58)

o=—2L (59)
) —§J+R

QI= __12'1_.___ (60)
) +§J + R’

If the simple product functions had been used as a
basis, the Hamiltonian matrix would have factored
according to the binomial coefficients of 3; that is,
1:3:3:1. The two cubic equations could have been
easily factored into pairs of linear and quadratic equa-
tions. In more complicated cases the factoring would
not be so obvious. However, if spin functions of the
proper symmetry are used, the factoring comes about
automatically as in the present case. This is not the only
advantage for, as table 9 shows, the symmetry prop-
erties are not destroyed by the perturbative effects of
the spin couplings. This is to be contrasted with the
case of the two-spin system where (excepting the
limiting cases § = 0 or / = «) the symmetry prop-
erties of the singlet and triplet states are destroyed by
the spin coupling. Since symmetry is preserved in this
case, it follows from the discussion in Section III,A that
transitions between states of different symmetry are
forbidden. Only one antisymmetric transition is
possible:

Ar,oBuzann = AveBus,—ue

The intensity of this transition is proportional to the
absolute square of

<AwiBuz,-ua| I7| A1,0Brzan>

where I~ = I7 4+ I; 4+ I;. The matrix element is
evaluated as in Section III,A with the result

| <AnoBus—uz| I7| Ay eBusan>2 =1
The frequency corresponding to this transition is

%gwa +gf'§ - %g—wa +g-7'§ = wp

Thus the antisymmetric transition is of unit intensity
and results in a resonance undeviated by the coupling.
Upon carrying out the calculations of line intensities
and frequencies as before, one obtains the results given
in table 10. In this table, wp has been taken as a new
frequency origin, so that ws = 8. The transitions de-
noted as “group A’ are such that the associated fre-
quencies — w4 asJ — 0; similarly, “group B” transitions
— wp = 0 as J — 0. The remaining transition is an
entirely different species, as its resonance frequency
— 26 as J — 0 and corresponds, in this limit, to a
simultaneous flip of three spins: aaf — BBa. Since this
transition involves flips of both 4 and B spins it is
often called a “combination” or “forbidden” (because
of its very low intensity) transition. The term “mixed”
transition is used here, since it avoids complications in
a notational scheme to be introduced later. An addi-
tional point of interest in table 10 is the fact that the
resonance frequencies and line intensities are inde-
pendent of the coupling constant J’. This result is not
peculiar to the particular system considered but is in
fact a general theorem for a number of spin systems.
The proof of this theorem and a discussion of the sys-
tems for which it applies are given in the following
section.

Theoretical spectra are given in figures 5, 6, and 7 for
a number of J/& ratios. The mixed transition is not
shown in any of the figures, since its intensity is quite
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TABLE 10
Resonance frequencies and relative intensilies for the AsB spin system
Transition in the Limit J — 0 Intensity Frequency
Transitions in group 4

L A1aBuaa/s = ALoBUB/E. civeir ettt e iQI-T\g): I+ + R
2, AL0BU2.-1/3 = ALa1B1salfBee it i i i i i s i % 36— +RB)
3. AL1BUL1s = ALOBUL e res ettt QU +v2Q) + V21 .

R Y R e T - O R Sroa Ty 3+ HR - R
4. A10B1/2,1/3 = ALaaBU/20 30t e i i Q2 — 1) + 218 ’

' A+ +e PHEE - R)
Transitions in group B
8. A11B1/2,1/2 = AL1B1/2cl/8e et it sttt st e eaeas (_\/1._23___%1_)3 6+ -R
. i ABUR Bt e 4= vy
8. ALa1Bu2as D ALaaBIs eI i i s i i e Hror 36 -y -B)
—Q) =13
7. A0,0B1/2.1/3 = A00B1Bem1/20 ettt i i s e e se e [_?T/E_'(_Qqa)._g')_'_—q% $—HR+ R
8. A0.0B1/2.1/8 = A0.0B1/80clfBe ettt at e ittt ettt e et iees e e 1 0
Mixed transition
9. A11B1/3.-1/2 = A1L,cdB1/B0 80 et e i i i i [Q((\l/_+_Q’Q)l()l :-B'/f_)m’ S+HR+RB)
(e) V=0

o s
(&) £ =o00s
L
) ]
() £ =015
! il |
) s

Fia. 5. Theoretical spectra for the A,B spin system under conditions of weak coupling.

low (cf. the numerical data in the Appendix). The 4
transitions occur at the right in each drawing. The
correspondence between the transitions shown in the
figures and those in table 10 can be easily made by
reference to the Appendix. It is interesting to note the
symmetrical spectrum that results when J — « while
6 is small but not zero (figure 7¢). The lines of the

triplet fall at 0, €8, and 4. If & = 0, the spectrum con-
sists of a single line. For any J/é ratio, the chemical
shift is the mean of transitions 3 and 4 in table 10. The
coupling constant may then be determined from any of
several frequency differences derived from table 10.
The experimental and theoretical spectra of the
—CH;0H protons in benzyl alcohol (20) are shown in
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Fia. 6. Theoretical spectra for the A:B spin system under conditions of intermediate coupling.

figure 8. The theoretical spectrum was calculated for
J/& = 0.370, and the experimental data give

5
= 15.14 = 0.10 c.p.s.

A = 5.60 = 0.08

2 . .08 c.p.s.

IV. Groups oF EQuivALENT NUCLEI

A. DEFINITION OF EQUIVALENT NUCLEI

In Section II,B it was noted that the Hamiltonian
operator

o= — 32 wily + Z<Z‘_, J,,,I,-Ikg 1)

and the operator for the z-component of total spin
angular momentum
I, = Z I; (2)

commute. Let us now consider whether the square of the
total angular momentum

BB=I11= ZI? + 2Z<2 LI (3)

commutes with 3¢. If this is the case, an additional
constant of the motion results, since I, and I2 commute.
Evaluation of the commutator yields:

(3¢, I*} = Z<z 2i(w; — wi) (Lzilyx — IyiIa) )

@ $=1 ‘
M " | ' [}

) s

(®) %= 10
| I
) 8

() -é-:co
1 |
o $

F16. 7. Theoretical spectra for the A.B spin system under conditions of strong coupling.
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~CH,OH =
$-ch, 3k = 5.60 0,08 cps

2 =15.14 £ 0.10 cps

THEORETICAL SPECTRUM FOR -+ = 0,370

i

Fiq. 8. Experimental and theoretical spectra of the —CH,0H
protons in benzyl alcohol. The experimental trace was observed
with a solution of benzyl alcohol in acetone at mole fraction 0.5,
room temperature, and 40 Mec. /sec.

so that 3¢ and I? do not commute in general. If, however,
w; = wy for all j, k (5)

then [3¢, I?] = 0. In this circumstance, the Hamiltonian
simplifies to

o= — ng. +33 J,-;J,--Ikg )

where w is the common Larmor frequency of nuclei
j, k, . . . and the second term is the coupling between
these nuclei. Since I, commutes with 3Co, it follows that

[3Co, 22 Jaly Lj=0 N
and the operators 3Co, I,, and

20 Ik

form a commuting set. If ¢, and ¢, are eigenfunctions
of these operators, then
HKym = _(m‘-" + Cm)\l’m = Qm¥m (8)
Hoym' = —(m'w + Cm’)ibm' = On'Ym’ (9)

where C and C.,. are the eigenvalues of

223 Jil; L

If Y — ¥ is an allowed transition, then the observed
frequency is

Q' — 0= (m — m)w + Cp — Cw’ (10)
Adding to 3¢, the perturbing rf field (equation 80 in

Section II) and using the transformation to rotating
codrdinates, one obtains

Prm (1) = | <im’|XCHrID Y > |2 (11)

where

C= Z<z Jul; I (12)

The term wlI, does not occur in equation 11, since it
vanishes if w is also the frequency of the rotating field
(¢f. equation 88 in Section II). Now

I, CI=0 @13)

and the exponential ¢/Ct and e**#11:* gperators commute.
The matrix element in equation 11 may now be ex-
pressed as

! |€NCHEID | Y > = g iChYpe|ePELLet | >
= Omit Syt |e¥E st [P >  (14)

Therefore, the absolute square of this matrix element,
and hence the transition probability, is independent of
the spin couplings.

Equation 14 can also be written as

<¢m'|e‘(c*‘151’-)‘|¢,..> = <¢,,.'|e""31’-‘|e"c‘1//,,.>
= es‘C,.( <¢m, | 6‘7311-‘||ﬁm > (15)

If ¥, — Yo is an allowed transition, then
<ym'|eErlet [ Ym> # 0

and equations 14 and 15 give
eCm¢ = @iCmr¢
which requires that
Cn=Cn’ @16)

From equations 10 and 16 it follows that the observed
frequency is also independent of the spin couplings. The
selection rule m’ = m — 1 shows that

O’ — O =0 an

that is, a molecule whose magnetic nuclei have identical
Larmor frequencies exhibits resonance at one frequency
only. It is to be emphasized that the proofs of the above
theorems are not based on perturbation calculations or
symmetry arguments. However, the circumstances
under which wy = w2 = ...... will frequently involve
(but not require) molecular symmetry. For example,
the protons in methane have w) = w2 = w3 = w, by
symmetry, so the spectrum consists of a single line
whose frequency and intensity are independent of the
spin couplings.

Since the coupling term in 3Co does not result in
observable effects it can be omitted from the Hamil-
tonian operator; that is,

5(:0 = —wI.

with the commutators I? and I,. Despite the trivial
nature of this equation and its commutators, these
results can be fruitfully generalized. Consider a molecule
containing a collection of nuclei which can be decom-
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posed into sets @ = 4, B, C, . . . such that the nuclei in
each set have identical Larmor frequencies; i.e.,

= wg (18)

WG = weEk = **

where G means nucleus j in set G. Since the spin inter-
actions within each set may be neglected, the Hamil-
tonian operator for such a system is

= - ;wafas +; GZ Jaja'i'les 1o’y 19)
’ Bid
<@

where
Ig, = Z Igjs (20)
’

and the spin-spin interactions are those between nuclei
in different sets. The Hamiltonian 3¢, had as a com-
mutator the square of the total angular momentum.
The conditions for which the square of the total angular
momentum of some set S commutes with the Hamil-
tonian (19) will now be determined.

I = ;I;,. + 22_ 2o Isila (21)
i 85 < 8k

and upon evaluating the commutator one finds:

(3, I3l = 2i;ﬂ;’<§ (Jsja'y' — Jara's’)
X N Isee(Isiula’i's — Igjela’iy)
+ Isuy(Issela’s'z — Igjzlgq’i's)
+ Isks(Isiela'sty — Isjpla'ss))  (22)

Therefore, I commutes with equation 19 if
Jsig's' = Jaa's' (23)

i.e., the nuclei Sj and Sk in set S are equally coupled to
the nuclei in G’ for all Sk, Sj, G'5'. The coupling of the
set S to the remaining sets G’ may therefore be de-
scribed by coupling constantsJ sg-, where G’ = 4, B, =
S. These considerations lead to the following definition:
A set of nuclei G which satisfy equations 18 and 23 are
said to be a group of equivalent nuclet (5, 31, 37, 39, 53).
If each set G is a group of equivalent nuclei, the
Hamiltonian for equivalent nuclei is

= - g; walg: + ;<; Jaa’la'la’g (24)

where J g¢- is the coupling constant for groups G and G'.
For this Hamiltonian, one has the commutators

(% I.]=0 (25)
[3c, If,] =0 (al @) (26)
where
I.= Z Ig.
G

The eigenfunctions of the Hamiltonian operator for
groups of equivalent nuclei are determined by the usual
expansion in product spin functions. However, in the

present case equations 25 and 26 show that the eigen-
functions of 3¢ can be chosen to be eigenfunctions of I,
and I% as well. It follows that such an expansion of an
eigenfunction of 3¢ contains only those products which
(a) have the same z-component of angular momentum
m and (b) have the same total spin quantum number,
Ig, for each G. The selection rules for allowed transitions
are

Am = ; Amg = —1 27)
Alg=0 (28)

G = A, B,.... Equation 28 follows from the fact that
I% commutes with the operator

I-= ; I (or I, = gzg,)

The selection rule Am = —1 can be satisfied in
several ways, and it is convenient to classify the various
possibilities. Transitions for which

Amgp = —1 (29)
amg =10 (G #R) (30)

are said to be transitions in group R; transitions not
satisfying these conditions are said to be ‘“‘mixed’” or
“‘combination’ transitions. Transitions which are asso-
ciated with a given group R have the property that in
the limitJzg¢— 0(G = 4, B, - - - # R) they approach
the frequency wg. To illustrate these definitions con-
sider the case of three spin 1/2 nuclei 4, B, C. A transi-
tion in group 4 means Amy = —1, while Amp =
Amg = 0. Thus spin A undergoes 1/2— —1/2, while
spins B and C remain unchanged; the latter may occur
in four distinct ways so that there are four transitions
(resonances) in group A. Similarly, there are four
transitions in groups B and C. The mixed transitions
have Amas 4+ Amp + Am¢ = —1, for which there are
three possibilities:

Amy Amp Ame

-1 -1 41
-1 41 -1
+1 -1 -1

In all, the three spin systems can exhibit fifteen lines,
four in each group and three mixed transitions.

If a group G contains ng spin 1/2 nuclei, the total
spin quantum number I¢ has the values

Ia=7—"2q—ka ka={

with the statistical weights

_ nal (ng — 2kg -+ 1)
Ole = Tng — kg + 1)1 kgl

The values of mg are just
mg = Ia, Ia—l,' . -,—Ia+1, —Ia

0,1-- -%—’forngeven

01,-- _naz— 1fornaodd
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‘When determining the various types of transitions one
must be careful to take account of the different values
of I¢ and their statistical weights. Consider the case
na =2andng = 1; here, I, = 1,0and I = 1/2, all
having statistical weights of unity. For transitions in
group 4 one need only consider I4 = 1, since states
with I, = 0 have no magnetic sublevels and hence
do not take part in the resonance; however, they
must be considered when the transitions in other groups
are calculated. For I4 = 1, Amy = —1 in two ways
(ma=1—>0 or mi=0— —1) and Amp =0 in
(2-3 + 1) = 2 ways; hence there are 2 X 2 = 4 tran-
sitions in group A. Similarly, Amp = —1 in one way
(3> —1%),whileAms = 0in (2:1 4+ 1)+ (2:0+ 1) =
4 ways, resulting in four transitions in group B. By the
same procedure one may show that there is only one
“mixed” transition.

Groups of equivalent nuclei can result in several ways.
Inherent molecular symmetry or effective molecular
symmetry brought about by rapid internal motions is
quite common. For example, in fluoromethane the sym-
metry of the molecule is such that the methyl protons
have identical resonance frequencies and are equally
coupled to the fluorine nucleus; they constitute a group
of three equivalent nuclei. On the other hand, the
methyl and methylene protons in CH;CH:X cannot be
considered as two groups of equivalent nuclei unless the
rotation about the carbon-carbon bond is sufficiently
rapid so that intermediate configurations are accord-
ingly averaged. In this event, the methyl and methylene
protons possess an ‘‘effective symmetry”’ and are
groups of equivalent nuclei. The coupling constant and
chemical shift derived from such a case are, of course,
averaged values. In general, if two sets of nuclei, G and
G’, are groups of equivalent nuclei because of the
averaging effect of some internal molecular motion with
frequency »o, then

Jog' K 27w ‘ }

|lwg — wg'| = |weg’| K 27w,

@1)

The conditions for equivalent nuclei (equations 18 and
23) do not require any particular symmetries and can
arise from accidental degeneracies. For example, in
B-propiolactone (5)

H,“(’]—CH,"
b—bo
there is no reason to expect that
JaE =42
cis TAns

Experimentally, however, these coupling constants are
equal to an excellent approximation (5) and the A and
B protons are groups of equivalent nuclei. A similar
example is that of ethylene monothiocarbonate (19a;
Section V,C).

Equation 23 is identically satisfied if the molecule
contains only magnetic nuclei of the same Larmor fre-
quency. Thus a molecule such as methane is to be
considered as a single group of four equivalent nuclei.
In general the spin couplings between these equivalent
nuclei cannot be observed but isotopic substitution
(e.g., deuterium for hydrogen) can be often used to
determine the coupling constants (44). For example, the
proton spectrum of CH;D (31) is a 1:1:1 triplet with
splitting equal to the JEP coupling constant. Since iso-
topic substitution is not expected to alter the electronic
structure significantly, one can write (cf. equation 20
in Section I):

Juu = 22 yup (32)
D
The concept of groups of equivalent nuclei can be

generalized to groups of “‘groups of equivalent nuclei”
with equations analogous to 18 and 23. It is much

TABLE 11
Ezxamples of molecules containing groups of equivalent nuclei

Number
Moleoule of na np ne
Groups
Benzene, CeHs...........c.vt 1 6
Methane, CHa..oovvvvvvvnnnnn. 1 4
Fluoromethane, CHsF........... 2 1 3
Difluoromethane, CH3Fz......... 2 2 2
Chloroethane, CH3CH3Cl*....... 2 3 2
Propane, (CH3)2CHa*........... 2 6 2
Isobutane, (CHs)sCH*........... 2 9 1
Vinyl chioride, CH2==CHCI...... 3 1 1 1
Fluoroethane, CHsCHzF*........ 3 1 2 3

* Rapid internal rotation assumed.

simpler, however, to consider these larger collections as
a single group. Propane, for example, may be con-
sidered to consist of two groups with ny = 6 and
ng = 2, provided, of course, that the internal motions
are sufficiently rapid. Table 11 lists several molecules
with groups of equivalent nuclei.

B. NOTATION FOR EQUIVALENT NUCLEI

In future discussions of equivalent nuclei a specific
notation will be used, some of which has already been
defined. Groups will be denoted by capital letters 4,

B, C, ... and the Larmor (angular) frequencies of these
groups (in the absence of spin couplings) by wa, ws,
we, . . ., respectively. The spin functions of a group will

be denoted by the appropriate capital letter for the
group and subscripts giving the quantum numbers of
total spin and z-component of angular momentum of
the group. Thus the spin function for a group G is
G1g.mg- Independent spin functions having the same
values of I and me will be distinguished by primes.
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For example, in the case of three equivalent nuclei with
spin 1/2 (cf. table 4):

Ay Az
AI/’-I/’ Al/ln—l/’
Ays,-1n Alnan
Ays,vis Al

The designation of all the groups in a molecule will be
made by a juxtaposition of the several capital letters
with subscripts giving the number of nuclei in each
group thus: 4,B:C.. . . . The simple two- and three-spin
systems already discussed are thus described as AB and
A,B systems, respectively. Groups of equivalent nuclei
that have large chemical shifts with respect to wa,
wg, . . . will be denoted by X, Y, Z.

The product spin functions for the molecule are of the
form

@(---Id’na-..

and the matrix elements of the Hamiltonian with re-
spect to the product functions are given by equations 75
and 76 of Section II,B, with 7 and k replaced by G and
@'. It is appropriate to mention at this point that when
dealing with groups of equivalent nuclei it is not neces-
sary to write a spin function explicitly. All that is re-
quired is the branching diagram (figure 1 for spin 1/2
nuclei) and a notation for the spin functions. The spin
functions are completely determined by their quantum
numbers, which are easily written down; hence there is
no need to write products as aafBafa . . . or linear
combinations of these products.

C. OTHER TYPES OF EQUIVALENCE

Before illustrating the preceding results by examples,
some additional comments on equivalent nuclei are
appropriate. In the literature one frequently encounters
the phrases “chemically equivalent,” ‘‘symmetrically
equivalent” (93, 94), and ‘“magnetically equivalent”
(381). Of these, only ‘“‘magnetically equivalent” is
synonymous with the simpler term “equivalent nuclei”
used here. The designations ‘‘chemically equivalent’”
and “symmetrically equivalent” have other connota-
tions, which lead to ambiguities in the present connec-
tion. Consider, for example, the protons in a para-
substituted benzene:

SI

H? H!
H T+
2

Protons 1 and 2 are chemically equivalent, as are
protons 3 and 4. This is the classical definition of
chemical equivalence made on the basis of additional
substitution at the two distinct ring sites. In this case,
w1 = w2 and ws = w4. The sets (1,2) and (3,4), however,

are not groups of (magnetically) equivalent nuclei,
since more than one coupling constant (Ji¢ = Ja3,
J1s = Ja¢) is required to describe the spin interactions
between them. As Ji13 — J1i, the two sets of protons
approach magnetic equivalence. The sets (1,2) and
(3,4) in this example are also symmetrically equivalent;
i.e., under the operations of the molecular point group
the nuclei in each set transform among themselves:
122, 3=4. From this example, it is seen that
chemical and symmetrical equivalence imply identical
Larmor frequencies of the nuclei in question.

As a second example, consider CHsCH,X. The de-
scription of the methyl and methylene protons as
chemically equivalent means that the internal rotation
is sufficiently rapid so that the rotation isomers cannot
be resolved. If the conditions in equation 31 are satis-
fied, the methyl and methylene protons constitute
groups of equivalent nuclei. These groups are, in effect,
symmetrically equivalent under the group operations
D; for the CH; group and C,, for the CH; group. As the
barrier to internal rotation increases, the number of
nuclei with a specified type of equivalence decreases.
To illustrate this, suppose that for high barriers the
trans isomer is the stable form:

Hf Hf X

\(J}_C/

The protons H4 and Hf are chemically and symmet-
rically equivalent as are HZ and H2, but they are not
groups of equivalent nuclei except in the event of acci-
dental degeneracy

(JIAIB = nga = J1A28 - JZAIB

As a final example, consider the situation in fluoro-
methane, CH;sF. The protons are a group of equivalent
nuclei and are chemically and symmetrically equivalent
as well.

“Chemical” and “symmetrical”’ equivalence are thus
closely related terms and may in fact be identical.
Neither term, however, is generally synonymous with
(magnetically) equivalent nuclei, and caution must be
exercised in their use. In this study the term ‘‘equiv-
alent nuclei” without additional modifiers will be used
to indicate the validity of equations 18 and 23.

V. THE ANALYSIS OF TW0-GROUP SYSTEMS

A. THE A ;B SPIN SYSTEM

The Hamiltonian operator for two groups of equiv-
alent nuclei is

= - ;NAIAl + wplps + JIA'IBg

= guu. +wslas + T Laulss + 5 (115 + z;z;)g @
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where J = Jas = J 4. The spin functions for group 4
are given in table 4, while those for group B are simply
a and B. The product functions are therefore of the
form:

ArgmgBusan, ArgmaBus,—us

where I4 = 3/2, 1/2 and gy2 = 2. Relative to this

TABLE 12
Factoring of the secular determinant for the AsB spin system

basis, the nonvanishing matrix elements of the operators
in equation 1 are:

<Igmgleme'|lg.|Iemglgmeg'> = mg 2)

<Igmglgma'|Ia:da's| IgmaIlgmg' > = maemg’ 3)
<ImnaIa’ma’|IEIE;|Imna —1, Igmg' + 1>

= [(Ig+me)(Ie—mg + 1) (I’ — me') (Ig' +ma +1)[2 (4)

where the subscripts G and G’ # @ run over 4 and B.
From the mixing rules (Section IV,A), or by direct
evaluation of the matrix elements, one finds that the

gecular determinant (16 X 16) factors into six 1 X 1
1x1 m 2 X2 m and five 2 X 2 subdeterminants. The manner in which
this factoring occurs is shown in table 12, where the
A3saBranae......... 2 AspaaBusa spin functions are tabulated according to the orders of
tomsnBiaan | ! the subdeterminants they generate. The eigenvalues
and eigenfunctions for this problem may thus be ob-
AusaBuy s ! dspanBupan | o tained through the solution of linear and quadratic
AlpzBUa. e, 1 Asjs.-112Buas equations. The algebra is lengthy but straightforward;
Att3BABA e -1 Av3a/2Bus. s the final results are given in table 13, where
Alp.1nBiscya....... -1 Apz.1izBrizage A ° Ri= /8% + J* (5)
Asja,3/2B1.1f2ee e -2 AlnanBuyz.-is Ry = /82 + 43 (6)
Aln.-y2B13a3 [ ° Ry = m ™
Assa,13B1/z, 112 | . Ri=+06 F+ 1) +3J¢ (8)
Asn,3pBizar 0 = E—J_Rl ©)
TABLE 13
Eigenvalues and eigenfunctions for the A:B spin system
Eigenfunction Eigenvalue
BT T 1YL Y T N —4Bwa +wn +3)
A+ Q312 {A32.1/2B113.0/3 + Q8A8/2.8/2B1/2.m1/2 e e vttt vttt e st $(—2ws + 47 + Rs)
(A + Q)2 {QaA5/2.12B1/3,1/3 — A8/2.813B1/2.a1/2) ee vt e vttt ettt ittt et i $(~2ws + 47 — R3)
YT 1Y O T N —$ws +wB +3)
O YY1V Y T —%ws +wn + 3
A 4+ Q)12 { A8/2.1/2B1/2.-12 + Q2A3/2,~1/3B1/2.0/2) e+ v vttt it ettt i et ettt aes $G3J + Ro)
(1 + QD) V3 {Q2A38/2.1/2B1/3 <1/ — A8/2,-1/3B1/3.1/8] 1ot vt e ettt et e 337 - Ry
(1 + Q)2 [ A1/3,1/2B1/3,-1/3 + QLALZ-13B1BAI] vt ie ettt e ettt ettt e, 437 + Ry
U + 0D V2{QA12.1/2BY2,1/3 — AU2.-12B1UBAY oo eein e e s 337 - Ry
A + QN =3[ A112.1/2B12.1/3 + QLATIZalBBUZA/Z) o eneneet ettt e et e et e et et aeian 337 + Ry
U+ Q)13 {QuAlr31/2B1/2,-1/3 = A{B1/2B1/B.12) v evtnin et i e 337 - R)
(A + QD ~12{A812.-1,2B1/2.-1/2 + QuAB/2.-8/2B1/2.1/3) 1+ vee s tertter it ee st eeeerueestnesassrraesenesensssrassnns $Quws + 3 + Ry)
(U 4+ QD) 12 {QuA8/2,-1/3B1/3.21/3 — A8/2.-8/3B1/3.1/2] « 1vvnnvt sttt ittt ettt e e a et $Quws + 347 — Ro)
Y -2V R - $ws +w — )
Ty - Y T Y SN $ws +wn — 3)
g Y $Bws +ws — $J)
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2J
Q’ = 5 — R’ (10)

_ 3J
Q'_J—ﬁ—Ra

3J

TR a2
8= ws—wp (13)
TABLE 14

Resonance frequencies and relative intensities for the AB spin system
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The line intensities and frequencies of the allowed
transitions are calculated as before and are collected in
a1 table 14. From this table it is to be noted that the
transitions 3 and 4 in group B (and the lines 3 and 4 in
group A) are separated by the frequency J, so that if
these lines are resolved J can be readily determined.
This is not a fortuitous result and, as will be shown

Transition in the Limit J — 0

Relative Intensity

Frequenoy Relative to

wB

Transitions in group

A3/3.3/2B1/2,1/2 = A3/2,1/2B1/3.1/30 cset v ci e ti ettt inie e iiiieitiietetitiaistteneres
A3/3,-1/8B1/2.21/3 = A8/, 8/8B1/2.21/20 ettt ittt

A1ppa2Biaas = Avya,-13B1pas }

AipapBipas = Als,-1pBipan

AyzanBia.-ys = A1,-12B112.-172 }

AlmanBis,1a = Alg.-13Bi.an

A3/2,1/3B112,21/3 = A8/3,-1/2B1/20a1/20 0 ittt i i i i i i e s se ey
A3f2.-1/3B1/2.1/2 = A3/3,-3/3B1/2.1/20 0 et ettt i et i
A3123,8/2B1/2,21/3 = A3/2,1/3B1/8.a1/81 0t ettt it ertttete ittt ittt ietiaretertenuenes

A3/23.1/3B1/2,112 = A813.-1/8B1/2.1/8. it i i i i i it it re e

(/3 + Q)3
1403

(+/3Qs — 123
1+Q}

2(1 + )2
1+Qf

2(1 — Q)3
1+@}

[@Qs — 1)Q« ++/312
1 +0Ha +@d

(@ +2 + /30043
a+Qha +¢h

(@ — v/3)Qs — 2Qs)2
a+ehHha +¢d

(V/3Qs +2Q: +1J2
a +eHa +¢d)

36 +27 +Ry)

46 —27 + Ry

36 +J +R)

46 -J + R)

$(28 + R2 — R4)

$@28 + Ra + RY)

428 — Rs + Rs)

%28 + Rs — Ry)

A3/3,33B172.1/8 = A312,3/3B1/2.m1/3. e ettt it i i i i s es e
Asjz.-32B1/2.173 = A3/2.-318B1/2.~1/2. 0 ciivev i iiiinnn et eveteesetetsseersnsenens

AvgapBisas = Aipaebis.-1s
AipasBisas - AlpanBip.-is

Ay/3.-1/2B1/aasa = Aifa.-1/3B1ya.-1is }

Aln.apBiaap = Alpze1zBus-in

A8/2.-1/3B1/2,173 = A8/2.~1/3B1/20 a8 s ve it i i it

A3/3,1/8B1/3,1/8 = A8/2.0/3B1/3,21/30 s e vttt ittt ettt se s

(1/3Qs —1)2
1+¢3

Qs +/3)2
1+4¢:

2(1 — Gh)?
1+Q}

201 +Qu)3
1+@f

[Q4(Q2 +2) — +/3Qa2
1 +ehHa +3

((+/3Q2 + 1)@ — 22

1 +¢pa +ed

46 +27 — Ry)

36 —2J — Ry

36 +J —R1)

36 -7 - R)

325 — Ra — Ry)

428 — Ra — Ry)

Mixed transitions

A33.173B1/3,21/2 = A8/2.-3/3B1/3.1/31 e e e ettt ittt sttt taes ittt asettissssteuneas

A3/2.3/12B1/2.-173 = A3f2.~1/8B1/3.0/8. oot e i i i i it

(2Q3 — 1 — +/3Qu)2
a+eha +¢d)

(29302 + Qs — 1/3)2

1 +eHa +dH

%28 + Ra + Ry)

4G + Ra + Ry)



At12.t12B112.-1n
A111.-t12B1n.1li
Ain.inBin.-m
A1n.-n2B1n.-1l'
Atn.n2B1n.-1n
�Am.-ti2B1ii.112
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below, occurs whenever group A contains an odd num-
ber of spin 1/2 nuclei and group B contains only one
spin 1/2 nucleus. In general, however, the internal
shift must be determined indirectly through the rela-
tions defined in table 14. In all, there are sixteen possible
lines: eight in group 4, six in group B, and two mixed
transitions. These numbers could have been found
without making any detailed calculations by using the
procedure previously discussed and noting the de-
generacy of the spin 1/2 states of group A.

In figures 9 to 11 the calculated spectra are given for
weak, intermediate, and strong coupling. The mixed
transitions are ordinarily too weak to observe and are
not shown in these figures. The correspondence between
the numbering of the transitions in table 14 and the
figures may be easily made by reference to the numerical
data in the Appendix.

An example of this system is that of CH,SH (figure
12) for which

21; = 7.42 £0.17 c.p.s.
o = 25.18 £ 0.21 c.p.s.
There are slight discrepancies of unknown origin be-
tween these values and those reported previously (1).
Other examples of this system may be found in the
literature (21, 45).

B. THE GENERAL A,,B SYSTEM

The preceding spin systems have all been special
cases of the 4,,B system, which will now be considered
in detail. There are only two spin functions for group B,
Byj2,1/2 and Byjz.—ys. For group A there will be 2%
functions, some of which will be degenerate. The degree
of degeneracy (i.e., the statistical weight) of a spin
function with total spin I4 is given by equation 36 in
Section II as

_ _nallng —2ka +1)
Jis = g’%-k = (nA — kA + 1)"04! (14)

where
01-.--: %‘5 for n even
ka= _
0,1-.--: _1;_.4_2_1_ for n odd

It is easy to show that for this system only linear and
quadratic equations are involved (10, 19a, 90). To see
this, note that for a given my

m=m,4+‘ma=m4:!:% (15)

The only states that mix are those for which

m=m4+%andm= (m4+1)—%

i.e., the states with the same m-value:

ArgmgBusars m = myu +%

Argma1Buyse-iis m= (mg+1) — % = my4 +%

The matrix elements for these states are

<ArgmsBus,us|3| ArimgBrsin>
= — 3m4w4 + %w; + %’"‘Jg (16).
<Argma+1Bus-1a[3| A1yuma1Bus, 12>
= - 3 (ma + 1)wa —%wa —%(mA + DJ% an

<ApmsBraan| ALimg1Bug.1s>
= <Aumg1Bus,—u2|3| A1y maBrisan>

= _%J\/(IA —ma)(Isa+ma+1) (18)

With these matrix elements, the eigenvalues for the
ma + 1/2 states are easily calculated; the results are

34 @ma o+ Doa — 27 + Ruum 19)
—%3 (2m4 + 1)"’4 - %J - le-m‘g (20)

where

RIA m4e

=4/ [s-3ema+ 07T + PU—mO Tt ma 1) @D

The corresponding eigenfunctions are

1
Vit@E : {AimarrBus.—uz + QuumsA i maBraan}  (22)
1
\/iT(Z":. {QuumsArimarBinis — AimBrsan)  (23)

where

Quumg = Y= mal Lot ma £ 1) gy
6 + 5(2mA + l)J + RIA-mA

There are two additional eigenfunctions which result
when my4 and mz have their maximum and minimum
values for a given I4; viz.,

1
A 1By m = Ia+ 5 (25)
Ange-1,Brs.cuzy;m= —Ia — % (26)
The eigenvalues are
1 1

- ngwA +3us + 514J§ @7
Liws — Sop + 1147 28)

- —aw4—203+24 (

Note that equations 25, 26, 27, and 28 are special cases
of equations 19, 20, 22, and 23.
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F1a. 9. Theoretical spectra for the A,B spin system under conditions of weak coupling,
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F1a. 10. Theoretical spectra for the A,B spin system for intermediate coupling.
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F1a. 11. Theoretical spectra for the A;B spin system for strong coupling.
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F16. 12. Experimental and theoretical spectra of the protons in methyl mercaptan. The experimental trace is that of the pure liquid at
room temperature and 40 Mec./sec.
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With these eigenvalues and eigenfunctions it is easy
to write recursive formulae for the line frequencies and
relative intensities (19a). To see this, note that there
can be transitions from the state

Ar,14Brze

to a pair of states with
m= (IA-*-%) —1=1,-1/2

which are linear combinations of
Args-1Bysae and Ay, 14Brs,-1i2
Similarly the states which are linear combinations of
Arg-1441Bys,—us and A, _1,Byzan
undergo transitions to
Arg._1,Bris, 112

Finally, there are transitions between states whose
m-values differ by —1 and have the form given in
equations 22 and 23. These calculations are illustrated
by considering the transitions from the state

Arg14Buzarz
Operating with I7 + I3 one finds

(I7 + Ig)An.Buza
=\ (Ia +ma)(Ia —ma + 1)Arn1,21Brz10
+ A1 1,Buya-uz (28)

= v 2IA AIA-IA—IBllzulﬂ + AIA.I‘Buz.-uz

since my = I4. The eigenfunctions which are linear
combinations of

A1 14-1Br2.a2 and Arg14Bus—e

and the corresponding eigenvalues, are obtained from
equations 19 to 24 with my = I, — 1. The products on
the right of equation 28 can be expressed in terms of the
eigenfunctions of 3¢ by applying the appropriate inverse
transformation to equations 22 and 23. The matrix of
the inverse transformation is just the transpose of the
coefficient matrix of equations 22 and 23. Substituting
these expressions for the products into equation 23
determines the transitions and frequencies. The other
cases are determined in the same fashion and the
results are given in table 15. The factor g7, accounts for
the statistical weights of the group A spin states.
Note, also, that the first and second group 4 transitions
are special cases of the third and fourth transitions
with m4 equal to T4 and — 14, respectively. Similarly,
the first pair of B transitions follow from the third with
ma = I A, o A

The theoretical spectrum of any A.,B system follows
from table 15 simply by substituting the appropriate
values of I, and gr,. Therefore, the general A4,,B
spectrum consists of a superposition of all 4,,B spectra

1’3’5’...

= - na for na odd
94 = 172,4,6,: - -

- na for ny even

with the intensities of the “subspectra’’ weighted by the
gra- Such a spectrum can be quite complex, but it
should be rather easy to analyze with computer
techniques.

The analysis can sometimes be facilitated by some
properties of the general system. Consider the difference
of the first pair of A transitions and B transitions

1

e J(IA +§) + 3 Rustas = Bigeesy)
N 1

B: J(IA + 5) - E(RIA-IA—I - RIA.—IA)

If I4 = 1/2, the terms in R cancel and there are pairs
of A and B transitions whose separations are exactly J.
States with 4 = 1/2 will occur whenever n4 is an odd
integer and this proves the result mentioned previously.
Hence, experiments at two values of the magnetic field
may permit the direct evaluation of J, unless there is
excessive overlapping of the resonances. If n, is even,
then I4 = 0, - - - n4/2, and it is seen that for I, = 0,
there is a transition in group B which is undeviated and
of unit intensity. Further, for any ns > 1 the mean of
the third and fourth A transitions is just wa.

The number of lines in each group can be computed
by considering the range of m4. The third group 4
transition has m4 + 1 —m4 for spin I, and, since
|ma| < Ia, ma ranges from I, — 1 to —I4. Hence
there are 214 lines for these transitions. Similarly, the
fourth 4 transition yields 21, lines, so the total numbe*
of A transitions is

Na=4Z14 (all distinet I4) (29)

The group B and mixed transitions are calculated in the
same way with the results

Np = Z{2I4 + 1} (all distinct I4) (30)
Ny = Z(2I4 — 1} (all distinct I, # 0) (31)
oy n
By writing I4 = 3‘4 — k these sums can be evaluated by

elementary algebra:

na(%é + 1) for n4 even

Na= 1 (32)
§(n4 +1)2 for n4 odd

n4 2

(—2— + 1) for na even

Ng = (33)
T]i(nA 4+ 1)(na + 3) for n4 odd
ny for na even

Ny = 1 (34)
Z(ni -1) for n4 odd

Summing these one finds that the total number of lines
is (na + 1)2 for odd or even nu; that is, the total num-
ber of lines is just the square of the total number of



TABLE 15
Resonance frequencies and relative intensities for the A, B spin system

a68

Transition in the Limit J — 0

Intensity

Frequency

Transitions in group 4

A1404B113.0/3 = A14041B13 13 coiiiiii i

s Arg-14nBiaa1a S Al 14B1aAB e

ALimaB1i313 = Aliwmp-1B131/3 o oveiveiiiuinnnnn,s

o Algma1B1a, 173 S AlgmaB12. -1/ o i

014(Qrada-1 — V/214)?
1 + Q’)A.l‘-l

014(Q14.14 +1/214)2
14Q,

014 {Qrama-1[Qrams /T4 —ma) Ud +ma +1) — 11 + VUas + ma)Ta —ma + 1)}3
(1 +QF,m)1 +QF m, 1)

014 {VUs = ma)Ta +ma+ 1) +Qamall +Qrama-1t v/ Ta + ma)a — ma + DJJ?
A+ Q2 im0 +Qhm )

${ws +wn +JUs + %) + Riguaqa}

${os +wn —JUs + 8 + Rigoad)

${204 + Rrgmsa-1 — Rigms}

${204 + Risms — Risma}

Transitions in group B

orgod "1 d

v ArgdaBianie = AraaaBys, Lo

Arg. 14B1parm = Arg14B1Y2. -1/ oottt

AlgmaBiaam = AlamaBrg g oocooniiiiiiiiiiin,

014(/214 Q4141 +1)3
1 +Q?A-’A'l

014(+/214 Qra.-14 —1)3

14Q7,.-1,

014 {Qrima VUL —m)Ta +ma +1) — (1 +Qrymu-1 vV {Ts F ma)Ta — ma + 1)13}

4+, )0 +Q%,m, 1)

${ws +wB +JUs + %) — Rigag}

$losa +on =TT+ — Brgay)

ilz«u — Rigma-1 — RI‘.-‘]

Mixed transitions

AngmanBia.-1/a = Algma-1B1y21/a oovvennnnnnnn.

014 {Qrama-1 VU4 — ma)Ua + ma + 1) + Qrama) — Qams \/Us + ma)s — ma + 1)} 2

0 +Q%,m )0 +Qh,m 1)

}l%‘ + Rrqms + RIA.-AMI
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TABLE 16
Factors of the secular determinant for the AyBs spin system

1 X1 m 2 X2 m 3 X3 m
F SRV - IR P 2 A11B10 A11B1,-1
A11B00u.eeieeinr i 1 Ar0B11 } """"""""""" ! PLEWY: 0 0
P Y - 2 1 Ar..1B1a
A1,0B00u e vviiieire it 0 Ar,aBi1o
P Y - O N 0 A1.0B1.-1 } .............. !
A0.0B00u.tieiiit ittt 0
P T - L N T -1
. C Y 2 O -1
AlclBlialiciiiieiiiieiiiiiiiinaees -2

spins. Of course, counting these lines is quite a different
matter from resolving them.

¢c. THE A,B; SPIN SYSTEM

The Hamiltonian operator for the 4,B, spin system
(5, 19a) is given by equation 1, and its matrix elements,
in the product scheme, are derived from equations 2 to 4
with I4, Iz = 1, 0 (¢f. table 3). Upon evaluating the
matrix elements, one finds that the Hamiltonian matrix
factors into one 3 X 3, two 2 X 2, and nine 1 X 1 sub-
matrices. This factoring is indicated in table 16.

The 3 X 3 submatrix, which is generated by the
product functions with m = 0, is

(=6 +J) —J 0
s=< —J 0 —J ) (35)
0 -J 84 J

Let Q; < Qs < Q; be the eigenvalues of S and a = (a.;)
be the matrix whose normalized column vectors are the
eigenvectors of 8; that is,

aSa~!' = (Qdn) (36)

The elements of (a;;) are just the expansion coefficients
for the eigenfunctions of 3¢ in terms of the product
functions with m = 0. In the limit as J — 0 or § — o,
ais a 3 X 3 unit matrix and

01=—5+J
Q;=5+J

(The J’s in equations 37 are the first-order corrections to
Q1 and Q;.) For J — « or § — 0, it is easily shown that

= -J
Q= J (38)
Q= 2J

\/1/ V172 /173
—1/3 (39)
\/1/ —-41/2 V173

Intermediate cases require the solution of the cubic
equation

det|Ss; — Qidsi|= 0 (40)

The calculation of the eigenvalues and eigenfunctions
corresponding to the 1 X 1 and 2 X 2 determinants
presents no difficulties. The algebra leading to these
results will not be given here. All the algebra is sum-
marized in table 17 in terms of the following definitions:

§ = wa — wp (wa assumed > wp) 41)

- VE TR (42)
2J

Q=% 43)

In addition, the frequency origin has been taken at
L(wa + ws) so that

(44)

The resonance frequencies and relative intensities are
determined in the usual manner, and the results are
given in table 18. The spectrum is symmetrical with
respect to the frequency #(ws + wg) = 0, so that only
half of the lines are given. The spectrum thus consists
of eighteen lines: seven in groups 4 and B and four
mixed transitions. It is important to note that the mean
separation of the lines A7 and A2 (also B7 and B2) is
exactly J, and further, A4 — B4 = 6. Thus, if these
gignals are resolved, J and & may be determined without
solving the cubic equation. The selection of these lines



394

TABLE 17
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Eigenvalues and eigenfunctions for A1B; spin system

may be made by reference to the numerical data in the
Appendix and can be confirmed by experiments at two

field values.
Eigenfunction Eigenvalue Calculated spectra for the A,B; system are presented
in figures 13 to 15, and in figure 16 the experimental and
R - N -J theoretical spectra for ethylene monothiocarbonate are
ALiBltec e -7 compared. As noted previously, the A,B, system applies
, for this molecule because J42 = J{2,, to an excellent
ALABO0 vttt -5 approximation. The observed values of J and & are
] A 7.00 £ 0.06 c.p.s
T ;O -3 2r ’ ’ e
LGB0 et 0 o = 35.96 026 c.p.s
7 TN - 2 T T 0 D. THE AsBz SPIN SYSTEM
A0.0BO.0. et et tee ettt 0 The Hamiltonian operator for the 4B, spin system
40oBia ] (5, 19a, 55) is given by equation 1 and its matrix ele-
T 2 ments are determined by equations 2 to 4 with I, = 3/2,
B s 1/2 (g2 = 2), and I = 1,0 (cf. tables 3 and 4). Upon
Lewld30,0c 0 e v esvoverveosrosoacsnrosnsasososasunvnsens 2 calculating the ma.trix elements, one ﬁnds that the
.. . .
1 +0)-13{QA11B10 — A10B1a) v iiineniiin i -ir matrix tor 3¢ fac’cor§ into fourteen 1 _X 1, SIX 2 X 2,and
two 3 X 3 submatrices; the manner in which this factor-
(1 +@3)-2{A1,.1B10 + QA1.0B1ea1} veeereennrnnnnnnn. —3R ing oceurs is indicated in table 19.
(1 +Q)V3{A411B10 + QA10Bia) cocevnie i iR The two 3 X 3 matrices are
1 +Q@)12{QA1,-1B1,0 — A1.0Bleat} eeeviennnnnnnnnn. iR g(=F6 + —4/%.] 0
611411811 + 621410810 +68141.1BLL. e [V}
we=|-4/37  *Fls B4 (45)
61241 1B1.~1 + 63241.0B1 0 + a8241.-1BL1. e Q3 - 2 2
613411B1,-1 + 623410810 + ass 411 Bri..eeeiel Qs 0 —\V2J % (x5 + J)
TABLE 18
Resonance frequencies and relative intensities for the A.B; spin system
Transitions in group A and mixed transitions
Transition in the Limit as J — 0 Relative Intensity Frequency
—_ 2
1o A1aB1Lal B A10Bleliviieieiine it iiiiiinsssoneeiss 2z +6311 +QQ(:H ) -0 — iR
J
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Fiq. 13. Theoretical A1B; spectra for the case of weak coupling.

These matrices are generated by the states with o = g G+ J)

m==+1/2and I, = 3/2,Iz = 1. Let &1 < Q3 < 23 be

the eigenvalues of 3¢t and a = (a;;) be the matrix ) =g 48)
whose normalized column vectors are the eigenvectors

of J¢*; that is, Q;=%(_5+J)

ajtta™! = (Qd:5) (46)

Similarly, let @ < Q4 < @ and b = (b;;) be the corre-  In the opposite limit, i.e., J/82> 1, it is easily shown
sponding quantities for 3¢—. For J/8 << 1 both a and b that
are 3 X 3 identity matrices and

=22+

Q= =J (49)
Qn=—g (47) Qa=ﬂ;=gf
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F1e. 14. Theoretical A;B; spectra for the case of intermediate coupling.
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F1a. 15. Theoretical A,B, spectra for the case of strong coupling.
V1710 /2/5 V172 tions. The rather extensive algebra leading to the eigen-
.z | V35 V175 —V1/3 (50) .values and eigenfuncti.ons will .no’c be given here;
9 instead, all the algebra is summarized in tables 20, 21,
V3/10  —3V6/5 V1/6 and 22, giving the allowed transitions, relative intensi-
ties, and line frequencies. In these tables the following
(V172 V2/5 V1/10 abbreviations have been employed:
b=|—-V1/3 +V1/15 V'3/5 (51)
1
VIle LB VETm Ri= 4/ (s-37) +on

For other values of J/8 one must solve a pair of cubic
equations for the @’s; this is most conveniently done
numerically.

The eigenvalues and eigenfunctions for the remaining
states offer no difficulty, since their determination re-
quires only the solution of linear and quadratic equa-

Ra= 1/(5 +%J)’ + 62

Ry= 1/(5 +%J)’ 4200

o= T

cl"z—"cl"z 5% = 7.00¢ 0.06 cps
o s s
\%/ 3% =35.96 ¥ 0.26 €Ps
o)

THEORETICAL SPECTRUM FOR 'g' = 0.195

N i

F1a. 16. Experimental and theoretical spectra for the protons in ethylene
monothiocarbonate. The experimental trace is that of the pure liquid at
room temperature and 40 Mec./sec.

5
(52)
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TABLE 19
Factors of the secular determinant for the A3B; spin system
1X1 m 2 X2 m 3 X3 m
Y R 7Y : 1T P 5/2 As3.312B10 } Asz3.8/2B1.-1
............... 3/2
A3/2.3/2B0.00 ettt 3/2 As2.1/3B1a AsppamBro Poooiiiiiiiiiinn. 1/2
A1/20/8B1 0 et 3/2 Ays/3B1.0 } As/,-1/2B1,1
............... 172
R TR YCY: 1% PO 3/2 Aia,173B1a Asp,.3/3B11
A812.1/2B0.00 e veer e i 1/2 Aiz13B1.0 } A8/2.-112B1.0 Foiieiiiiiiiiii -1/2
............... 1/2
A1/3.1/3B0.0. covi i i 1/2 Alp,13B1,1 Asaa12B1.m1 )
AL/2B00 e e 1/2 A1za/3B1.1
............... -1/2
A1/2,-1/2B00u et -1/2 Arz,-172B10
AT/2,-1/2B0.0 vt -1/2 Aizz17aB1,-1
............... -1/2
A8/2,01/8B0,00 0 cee et -1/2 Aip,-1/2B1.0
A1/2,-1/2Bleclinie i —-3/2 Asy3,.1/3B1,-1
............... —-3/2
Y ETTIRTTY : T VU —3/2 Agys.-313B1o
A3/2.-8/2B0.00ccveet it -3/2
A8/2,.8/3B1licl. it i -5/2
0= VEJ ] tions are not shown in any of these figures because of
5 — %J - R their low intensity.
The theoretical and experimental spectra for CH,CH.I
Qs = -6 J (19a) are shown in figures 20 and 21. The chemical shift
5+ %J + Ry spin-spin coupling constants were found to be
: (83) J _
0 = V2 J o = 7.5 £ 0.3 c.p.s.
1
s+=z/—R
t3 ’ = = 5413 = 0.20 c.p.s.
__=\2J
U=—7 - E. THE GENERAL A,,B,; SPIN SYSTEM
5 — §J + R,

In addition, ws has been arbitrarily taken as the fre-
quency origin, so that ws = 4.

From the tables, it is seen that the general A:B,
spectrum consists of thirty-four lines: thirteen in group
A, twelve in group B, and nine mixed transitions. The
most intense line in group A is undeviated from the
position it would have in the absence of spin coupling.
Further, the mean of lines 4 and 5 in group B gives the
frequency origin exactly. Therefore the chemical shift
can be exactly determined without solving the system
in detail. The correct lines may be easily determined by
reference to the numerical data in the Appendix. (If
8 o 0, this procedure may be difficult to apply.) Once &
has been found, J can be determined from any of the
line spacings involving Ri, R3, Rs, and Re.

Theoretical spectra for various J/8 ratios are given
in figures 17, 18, and 19 (see the Appendix for the
correspondence between the lines in these figures and
the numbering in tables 20 and 21). The mixed transi-

The general A4,,B.; spin system will involve deter-
minantal equations of very high degree if both n, and np
are large. It is possible, however, to deduce a number of
useful facts about the general case without solving the
secular equations. Since the case ngp = 1 has been
completely solved, it will be assumed thatns > ng > 2.

Let us first consider the orders of the secular equa-
tions. These are determined by the product functions
A1y ,maBrgmg, Whose ma and mg values sum to a fixed m;
that is,

m = ma + mp (54)
Since IZ and I} commute with 3¢, I, and I are fixed,
while

—Ia<ma <L 1a (55)

—Ig<mp < Iz (56)
The largest value of m occurs when m4 and mp have
their maximum values 4 and I, so that

Mmax. = T4 + Is (57)
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TABLE 20
Transitions in group A
Transition in the Limit as J — 0 Relative Intensity Frequency
) 3
1. AspapBia = AspapBric..ooiiiiiiiiiiiiin, (—\/_1—4:'_\2-—::70—1) 36 +57 + Ry
1
AzainBra = Ais.aBira 2(Qs + V22
2 _ 36 +§J + Ry)
Al sBia - Aln.aBia } 1+Q3
— 3
3. Asp.anBuLa > Az Bl (;/_2_1(?:_04, 3¢ — 37 + Ra)
2
AaanpBiro = Aya.-13Bro 2 ) —Dp
& b Qs + ‘/,_(Q‘Q' 23] $(Rs + Ro)
AlnaaBro — Alp..y2Bro a+ea +eb)
A1/3.1/3B1,-1 = Ay3,.1/2B1,-1 2(/2Qs — 1)3
5. i, SV o 36 —37 + Ry
Al120/2B1.-1 > Alj3.-1/2B1,-1 } 1+@}
As/2.8/3Bo.0 — As3.1/2B0.0
As2.1/3Bo.0 = Asa.-1/2Bo.0
6. A3/2,-1/3B0.0 = A38/2.-8/2B0.0 P..iiiiiiiiiiiiannn 12 3

AzazBo.o — Az.-1/2Bo.0

Ai72.113B0.0 = Als2.-112Bo.0

V2813 + (+/3 + v/2Q1)azs + 2Q1asa)?

7. Ag3.1/2B1.0 = A8/2.-1/3B1.0. i i ii it

s+ +3 — iR

1+
P 3 — /2 — 2a33]3
8., A3/2,83/3B10 = A3/21/3B1,0. .t ciiiiiiiiiiiiiianes 2012 + (\/;Q_l'_ Qa\/_)a” il s+ + i+ iR
i
9. A38/2.3/2B1.c1 = A3/3.1/8Blcli ittt [v/3anbiz + 2o + +/2aa1)bas + (/3ou'+ +/2an)basl? 0 —
10. As/2.1/2B1.0 = A8/2.-1/3B1.0. . v i iiiiii i [v/3aasbiz + (2023 + +/2as3)b2z + (v/3613 + +/2a22)bas]® Q7 — Qs
11. As2.-1/2B1a = A3/2.-3/2B11. oo iiiiinieniinnns [v/3assbur + (2038 + +/2a38)b21 + (\/3615 + +/2azs)bm ]2 01 — Qs
2b 3 2 2 i
12, As/3.-12B1,0 — A8/2,-8/2B1.0. .. v tiiiiiiiiiiian ot 4 /8 1"'-:/0_203)5” 2] 5 -0 — 3 + iR
2
2Q2b 3Q3 — /2 — 2bss)2
13. As;papBiia = AspeaBrat i, /2Qsbia +(\/1_Q_: Q,\/_)b” u] $—0i — 3 —3Rs
2

Clearly, there is only one such product function and it
is an eigenfunction of 3¢. The next largest m-value is
Mmax. — 1 and this occurs twice; once when ma = I4
while mp = Ip — 1, and again when my =I4 —1
while mp = Is. The eigenvalues for these states are
obtained by solving quadratic equations. By continuing
this process one obtains the r 4 1 states

ma mB

I, Ip—1r
I,—-1 Ip—r+4+1
Ig—1r Ip

with m = I4 + Is — r. If it is supposed that Iz < 14,
then 0 < r < 2Ip; otherwise, mz would exceed the
lower limit demanded by equation 56. The greatest
number of states with a given m occur when r = 213

and this number is justr + 1 = 213 + 1. The m-value
for all of these statesism — [4 + Ig —r = I4 — Is.
This process can also be started from mupn. = —1I4 — I
and continued up to the 2I5 4+ 1 states with m =
—I4 + Is. However, this procedure has not accounted
for all possible spin states, since

21p

22_0 r+1)=2@2Izs +1)(Iz +1) (58)

The correct number is, of course, (27, + 1)(2[5 + 1),
and the reason for the above shortage is that the states
with

—Ia+Is<m<Iy—1Ip

have not been counted. To account for these states
write the m4 and mp values as follows,

ma: Ta Ta—1 Ia—2--.-I4—2Ip
-1 —Ia+1-14

mg: —Ig —Ig+1:---1Is
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TABLE 21
Transitions in group B

399

Transition in the Limit as J — 0 Relative Intensity Frequency
21 — +/3)3
1. AwsenBia = AysaBlo. .. .ovieiiininnns -(—\/_f—l_'_o%/—)- $¢ +% — R)
1
AvzzBra — Ayzai2Bro 2(+/20s — 1)2
2. Peeeseeeeees (_\{_ga_,_)_ 46 +4J — Ry)
Ai{napBia = AlnanBio +@Q
2 3Q3)2
3. Ag/a.-33B1.0 — Ag/3.-313Br-1. e S—\/_l;_'_\gz;o’—)- 36 —§J — R)
2
A1/2,-1/2B1,1 = A1/3,-1/3B1.0 } 21 + 4/2(Qs + Q)i 3 Ra)
L S P —— (R4 — Rs3
Alp.-13B1a = Aip,-1B1o @ +ena +e
AvzanaBio = AuzisBi,a } 2(Qs — +/2)% — V/2Qs13 3
75 3 (Rs — R4)
AlnanBro — AljpapBra @ +ena +Qd
Ar/2,-y3Bro — A1j3,-12B1.1 2 3)3
6. } ........... M 6 — 37 — Ry

Alz,-12B10 = Aljz -173B1-1

A3/3,8/2B1.0 = A3/2,3/2B1,ale e vviiiiiiiiiiien

1402

[WV3@an + (/3@ — v/2)an — 2aa1)2

s+ + 3 +4R

Ala.-12B1a = AippapBia

a+epa +ep

1+0f
2 3 2 2 2
8. AspapBia > A3panBro.. e, by/2oiz + (/8 T_T_/Q;Ql)‘m + 3%ioe) s+m+i—1R
1
2b 3 2Qa)ba1 + 2Qabsa]? ,
9. As/a.-3/3B11 = A3/3.-3/3B1,0. v evviiiiiiiann, /2o + /3 :--T-ZQ_’Q’) L 2Qsbu) s — — iJ + 4R
2
2Qb 3Qa — \/2bez — 2baa)? ,
10. As;m.-12B10 = Aaa.-12Brati i, [v/20ab1a + (+/30s ,\/_) 2 2l $—01 -3 - iR,
1+4+9Q;
11. As/2,-1/3B1,0 = A3/3,-12B1,c1 e cvveeniiaenn, [v/3azsbiz + (2623 + +/2a33)b22 + (/3613 + /2a28)bas]? 9 — Qs
12. AszparBio = AspanBrt...oooiiiiiiia., [v/3asabis + (2822 + +/2a32)bss + (/3613 + /2a22)bas]? 0 — Q2
TABLE 22
Mized transitions
Transition in the Limit as J — 0 Relative Intensity Frequency
3 3 2 2 2
1. Asza/2B1a = A33,83B1ali.iieiiiiiiiinnn, [v2au + v/ :-_'\_/Q?l)‘m + 2Quan] s+ + I - 4R
1
2 31 — \/2)azs — 2a8s)?
2. AsaaizBro = Agz.-12BLa.oviiiiiiianan, [V2Qa1s + (\/;Q_l'_ Q’\/ Jazs 2st] s+a+ 3 +iR
1
2b 3 2Q2)b 2Qabss)?
3. Asfpa/2Br-1 = A3/2,-312B10. . oiveieiiiien (V2 + v/ -1'-4\-/0_?2) 2 + 2Qsbusi §—-0i -3/ + 4R
2
2Q:2b 3Qa — /2)ba1 — 2ba)2
4. Asiz.-3rBira = Asnz.-12Brat oo [v/2Qsbu + (+/3Qs ,\/_) A a1l s—al -3 - 3R
1+Q3
5. As/a.s/2B1.-1 = Agj2,-312B1a. . i, [v3asibin + 2an + 4/2as1)b21 + (1/3a11 + /2621)b5112 o -
8. As/2,3/2B1.-1 = A3/2,-12B1.0. .ot [v/3asibiz + (2831 + +/2as1)b2z + (+/3an1 + /2a21)baz]2 o —m
7. As/2,/2B1,0 = A3/2,-3/2B11. .o eeiiiiiininnn. [v/3as2b11 + (2az2 + 4/2822)bn1 + (1/3a12 + +/2622)b31]2 o — 2
8. Asz.13Bia = AsppaeBrate. i, [v/3aasbis + (2628 + 4/2a38)b2s + (+/3a13 + +/2a28)bss]? Q3 — Qs
Ay.-1/2B11 = AyaysBr-1 2((1 3 — /33
9. } .............. (A ++/2000 = /21 —4(Rs + Ru)
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F1a. 17. Theoretical A3B; spectra for the case of weak coupling.
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F1a. 18. Theoretical A;B; spectra for the case of intermediate coupling.
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Fra. 19. Theoretical A;B; spectra for the case of strong coupling.

Summing the ma4 and mp values that are vertically
paired, one obtains 215 + 1stateswithm = I, — I — 1.
Each mp value is now moved one place to the right
and the addition gives 2Ip + 1 states with m = I, —
Iy — 2. This process is continued until I 5 is paired with
— 14 + 1. (The process does not start with — I paired
with 74 nor end with Ip paired with —I4, since the
states with m — I4 — I, —I4 + Ishave already been
counted.) The total number of spin states determined
by this process is

@Iz +1)[2(Ia — Ip) — 1]

which, when added to equation 58, gives (214 + 1)
(215 + 1), so that all possible states have now been
counted. These results are summarized in table 23. The
situation when I4 < Ip is obtained by interchanging
I4 and I in table 23.

From these results, it is seen that the interactions be-
tween states with spin quantum numbers I 4 > I3 gener-
ate secular equations of degree 1,2, - - - - - 2l + 1.
The number of determinantal equations of degree
(2Is + 1) is 2(I4 — I) + 1 and there are two each of
the 1 X1,2X 2, . .- and (2I3) X (2Iz) determi-
nants. It follows, then, that the A,,B; spin system

(Ip = 1,0) requires the solution of eigenvalue equations
of, at most, the third degree; the A,,Bs spin system,
eigenvalue equations of, at most, the fourth degree; and
generally, the highest-order equations for the A, B
system are nz + 1. If the statistical weights for the
states with given I, and Iz are not unity, then the
energy levels will be gr.gr5-fold degenerate and the
calculated intensities must be multiplied by the appro-
priate statistical weights.

The above considerations show also that the general
A, ,B.p spectrum is a superposition of appropriately
weighted A, A4 spectra, whore g4 and gz have the
same parities (i.e., odd or even character) as n4 and np.
It is, therefore, extremely important that the calcula-
tions for a given system be carefully indexed and stored
for use in more complicated problems. It is for this
reason that a completely detailed (but somewhat
clumsy) notational scheme has been employed here.

Let us now consider the eigenvalue problem when
I+ > Iz = 0. The highest-order secular equation is
2I5 + 1 = 1; that is, A7, msBo.0 18 an eigenfunction of
3¢ with the eigenvalue mawa. A transition in group 4
leads to a resonance at

Mawa — (Ma — 1)wa = wy



402 P. L. CORIO

GROUP A H

J _

Fiq. 20. Experimental and theoretical spectra of the methyl group protons in ethyl iodide. The experimental trace is
that of the pure liquid at room temperature and 40 Mec./sec.

GROUP B H

-8—=O.I38

l | |

Fia. 21. Experimental and theoretical spectra of the methylene protons in ethyl iodide. Except for the rate of sweep, the
experimental conditions are identical with those given for figure 20.




ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRA 403

TABLE 24
Number of group A transitions for the Aa,Bny spin system

TABLE 23
Spin states for product functions with spin quantum numbers I4 <Ig
Number of
ma ma m States
Ia Ip Is +1In 1
Ia Is —1
1 n } ......... Li+Is -1 2
Ia =Is
I -1 Bl Li—1Is 2In +1
Is —2IB Ip
Ia -1 —In
vees feseasenss Isa—Ip—1 2Ip +1
Isa —2Ip —1 Is
—JIs +2Ip +1 —Ip
P =Is+Is+1 2Ip +1
=Is+1 Ip
—I4 +2Ip —Ip
I ¥1 In 1 freeereee —Is+1Ip 2Ip +1
—Ia Ip
—Is +1 —1Ip 1. —
n o1 } ......... I —1In+1 2
—Is —=In —Is —In 1

of intensity
(Ta+ma)(Is —ma+1)

The total A intensity is then obtained by summing over
I A and ma.

Z Z G4 <AIA-MA-IBO-0| I,Zl ArgmsBoo>
4 ™4
=22 Uatma)Ta —ma+1) (59
4 ™A

The summations are easily carried out (¢f. Section VI)
with the result

Z 2 [N <AI‘.m4-lBO.0 | I; | AI‘-MABU-0> = 2ma"Iny (60)
A4 ™4

Upon setting ns = 1, 2, 3, one obtains the numbers
1, 2, and 12 which were found for the 4.8, A,B;, and
A 3B; systems, respectively. Thus, if one of the groups
has an even number of nuclei, the other group has an
unshifted resonance whose intensity is given by equa-
tion 60. If both groups have an even number of equiva-
lent nuclei, then there are a pair of lines whose separa-
tion is exactly 8 = w4 — wp and whose intensity ratio is

2n‘-1 na

98- np
Further, since the 4,B; system is included in the spec-
trum, there are A and B resonances separated by 2J.
Hence, experiments at two values of the magnetic field
may permit the evaluation of J and & without recourse

n4 nB Na
0dd odd (n4 +1)2(ne + 1)(n8 + 3)
16
0dd Even W +1
Even odd nana 4+ 2)(ns +1)(ns + 3)
18
Even Even nanp(na +2)(Ne + 4) +1

16

to detailed calculations. An example of such a system is
propane, for which ny = 6, ng = 4.

As in the 4,,B case it is possible to derive formulae
for the number of transitions in groups A and B. These
calculations are carried out as in the 4.,B case and the
results are given in table 24. (The number of group B
transitions are obtained from table 24 simply by inter-
changing n4 and ng.) If in table 24 one sets ng = 1, the
results previously derived for the 4,,B system are ob-
tained. Expressions can also be derived for the mixed
transitions, but they will not be given here.

VI. PERTURBATION CALCULATIONS
When the ratios J ger/wes (weer = we — wer, G = @)
are less than unity, a perturbation calculation of the
line frequencies and intensitics may be appropriate (5).
For this purpose, the Hamiltonian is written in the form

3 = 5600 4 36 45’ )
where

3000 = —; walgs (2)

a0 = —;<; Jea'Ig:Ilg's (3)

R = —333 33 Tao' (1315 + I18) )

3¢©® is the zero-order Hamiltonian; that is, 3¢ is
applicable when the groups are uncoupled. 3¢V is the
first-order correction to 3¢® when the groups are
coupled and 3¢’ includes all corrections of higher order.

The eigenfunctions of 3¢ are the product spin
functions

&( - Igmg- -+ ;m) = I;I(,z,am (5)

which are also eigenfunctions of I,, I, and I%. Oper-
ating on ® with 3¢ gives the zero-order energies
QO mg ) = _§,,,Gm(, (6)

which depend only upon the mg.
For transitions in group @ one has the selection rules

Amg = -1
)
Alg = Amer =0
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and the associated frequency is

QO( e mg—1--+)—0QOC+ mg: ) =wg

Thus, there is but one line for each group of equivalent
nuclei. The relative line intensity for the transition
mg—me — lis

|<q>(. o Igmg—1,- )|15|¢( o« Igmg- - .)>|2
= (Ig + mg)(I¢ —mg +1) (8)

Now all possible group G transitions result in a single
resonance at wg independent of the total spin quantum
numbers. Therefore, the total (relative) intensity of the
group transitions is obtained by summing equation 8
over all mg consistent with I, and then summing over
all I G-

Group @G intensity
Ig
= 9N Za;na;a g1o{le +mg)(Is —mag +1) (9)

The statistical factor 2¥—n"¢ is the number of spin
orientations of the remaining N — ng nuclei. The sta-
tistical weights grs are given by the familiar equation

_ nal(ng — 2kg +1)

91e = “ng — kg + Dkl 10)

The sum over mg is easily carried out for integral or
half-off integral I, with the result

ON-ng+1
3

Group @ intensity = }r;_‘, Iellg +1)2I¢ +1) (11)

Substituting equation 10 into equation 11 and writing

Ig = % — kg, one finds:

or 201
. . IN-ng+1 !
- Group @ intensity = 3 Z} X
neg (g _ (ng — 2kg + 1)ngl
3—2‘(2 +1) —ko(ne ka+1)§ (ng — ko + 1)Tka! 12)

The summation may be evaluated with the aid of the
identity (15)

-3

a1
* 3

nl(n — 2k 4 1) — on
= morsDw =2 (13)

Using this result one finds:
Group @ intensity = 2¥"ng (14)

From this equation follows the familiar fact that the
ratio of the intensities of group R and group S is equal
to ng/ns. But note, however, that the proof is presently
limited to the zero-order approximation. In this approxi-
mation

Total intensity = @ W -1pg = V-1 (15)

When the
Jaog’

- &1
waEe

a first-order perturbation calculation is indicated with
3¢ ag the perturbation. The product functions (6) are
eigenfunctions of 3©® + 3¢, so that the first-order
energy levels are

QU mg.-.) = _gg wgme +;<§_‘, Jao"ma’ma’} (16)

From equation 16 and the selection rules the group G
resonance frequencies are

QO mg—1++.) =00 - 2 mg- - +)
=wg + > Jegma' (17)
T

Since the first-order energies are independent of the
spin quantum numbers, the correct number and fre-
quencies of the group G resonances result if one takes
me = Ig(max.), I¢(max.) — 1, - . . - —Ig(max.),
where Ig(max.) = ng is the maximum total spin
quantum number of group G’. It follows from equation
17 that the coupling of group G with group @ results
in 2I¢:(max.) + 1 = ng + 1 resonances in group G.
The intensity of a given line in the multiplet will depend
upon the number of ways in which m¢ can arise con-
sistent with the total spin quantum numbers of group
G'. If all the nuclei in G’ have spin 1/2, then equation 34
of Section II gives the degeneracy of m¢ as

ng'l
2 — o)t (B + mer )1

From equations 17 and 18 it follows that there are
ng + 1 group G resonances, which are symmetrically
situated with respect to we and whose intensities are
given by the binomial coefficients of ng.. If group G is
further coupled to group G, then each of the above
lines is split into ng: + 1 lines whose intensities are
given by the degeneracies of the mg, ete. In all, there
are

(18)

I1 e +1)
[ede el
lines in group G. Since the &(- - - Igmg - - - ; m) are
eigenfunctions of 3¢ 4 3V, the intensity relations in
equations 14 and 15 are also valid in the first-order
approximation.
If the conditions

Jag’

K1
waEe

are not satisfied, second(or higher)-order perturbation
theory may be used. In the case of ethyl alcohol (9),

Joa! n g
wge’
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and an accurate analysis requires a third-order calculation. The second-order correction to the energy levels is

given by the standard expansion

Z; |5€:, !

oo — ﬂ§0> 19)

where ¢ and j refer to all of the quantum numbers (- + + Igmg - -

-} of the unperturbed system and the

prime indicates omission of the term for which ¢ = j. The off-diagonal elements of 3¢’ are given by

<@( - Igmg- + - Igma'|%'|®( - - Ioma — 1, - - - Igmg' +1)>
= _%JGG'I(IG —mg + 1)(Ig + mg)(Ig — mg’)(Ig +me + 1)} (20)

and, upon substitution into equation 19, lead to the second-order energy levels:

1 2
QN - Igmg: + +) = —;‘Pola. - ;<;Jaa’mmna’ - §§<; waJiGwa, {ma(l}, + Ig — mg)) — me' (It + Ig — m$)} (21)

The frequency of a transition in group G (Alg¢ =0, Amg = —1)is

1 Ja
wg + ;Gfaa’ma’ + 2.4

G — WG’

S’ _ (Ig'(Ig* + 1) — mg*(mg’ + 1) + 2meme’) (22)

The significant point here is that the second-order frequencies for group G depend upon the total spin quantum

numbers of all the remaining groups.

The calculation of the relative line intensities requires the first-order perturbed spin functions, which are given by

equation 23:

\Il(o..ImnG..-;m)=q>(.-.Id’na.-.’-m)

;m) |3 $(- - - Igmg - -

c;m)>

+;I <q>(. . Ialmal- .

QU(. © Mg

...)_Qo(...mal.

- .) @(. .. IG’mG" .. ;m) (23)

On substitution of the matrix elements obtained from equation 20, there results

'IG'_].,"' ;m)
—_ F(mG' +1)F(ma)§(- .. Id’na —_ 1, PRI Ialmal +1, e

im)}  (24)

T =T~ B P
X lF(mg')F(mg +1)§(' v Igmg +1, - -
where

F(me) = vV (Ig + mg)(Ig — ma + 1)
The relative intensity of a transition
V(- Igmg: )= ¥(---Igmg—1-")
is now obtained from
| <¥( -+ Igmg+ - ) IGIW( - - Iemg — 1+ -)>|?

Evaluating the matrix element and retaining only the
first-order terms after squaring gives, for the relative
intensity,

2J ga'ma’

(To = mo + 1) (Ta +mo) 1 — 33 Moamal )

From these second-order formulae two facts can be

deduced that will be of value in later sections. First note

that if wg — wg > J ger, then the product spin functions

are good approximations to the stationary states.

Further, from equation 21 it follows that the interaction

between a pair of widely separated unperturbed levels
is negligible.

In the special case of two groups, 4 and B, with

internal shift 6 = ws — ws > 0, equations 22 and 25
reduce to

wa + Jms +é%" {Ip(Iz + 1) — mp(ms + 1) + 2mamp} (26)
and

@7

(Ia = ma + 1)(Ia + ma) 31 _m;

8

From equation 26 or 22 one notes that the second-order
line spacings are of order J2/25 (unless Iz = 0) and
from equation 27 that the intensities of the transitions
in group A with mp < 0 are greater than those with
ms > 0. From equation 26 it can be shown that the
more intense lines are those which are closest to the
frequency wg, while the weaker lines are those displaced
away from wp in the direction of higher frequencies.
Examples of perturbation calculations for two groups
are given in figures 2, 5, 9, 13, and 17. Parts (a) and (b)
are examples of zero-order and first-order perturbation
calculations; part (c) of these figures roughly corre-
sponds to second-order theory.

The perturbation formulae are actually seldom used,
since the present trend in spectral analysis is towards



406 P. L. CORIO

exact diagonalization of 3¢. However, perturbation cal-
culations can provide a convenient set of initial param-
eters for an exact analysis.

VII. SysteEMs wiTH THREE GROUPS OF
EQUIVALENT NUCLED

A. SIGNS OF THE COUPLING CONSTANTS

The extension of the preceding calculations to sys-
tems with three or more groups of equivalent nuclei is
straightforward. There is one aspect of the analysis
that has previously been ignored but now requires de-
tailed consideration. This concerns the relative signs of
the (two or more) coupling constants (4, 5, 34). The
absolute signs of the coupling constants cannot (ordi-
narily) be determined from a high-resolution spectrum.
In the cases already studied, one may see the validity of
this theorem by writing —J for +J in the expressions
for the line frequencies and intensities. This sign change
does not alter the resonance spectrum and J may be
given an arbitrary positive sign. This theorem can be
demonstrated to hold for a set of nuclei with arbitrary
spins (19a). To prove this, one uses the operator A
defined in Section II,B. Let

X=-—-A-B (6]

where —A is the Zeeman energy and — B is the coupling
energy. If the signs of all the coupling constants are
changed (J;x — —J i), the Hamiltonian becomes

X'=—A+4+B 2)

Adding equations 2 and 3 gives:

X431 =24 (3)
Now
[3c, A] = 2AA
hence
AJA — ¢ = 2A @)

Combining equations 3 and 4 gives a relation between
3¢ and 3¢/

A = —XC'A (5)
Suppose now that {¢:} is a set of eigenfunctions 3¢ and

{Q:} the corresponding eigenvalues. From equation 5
it follows that

AR = Q(Ad:) = —H'(Ads) (6)

Therefore, the eigenfunctions of 3¢’ are {A¢;} and the
eigenvalues are {—Q.}. If the transition ¢:— ¢; is
allowed, one can write

Intensity

;’YkIzb

Frequency
1 Q; —

Transition

bi — ¢y | (¢i

2

But
| <¢1‘|Z‘YEI=I:|¢-‘>|’ = | <¢i|2’7bIzb|¢i>|’
= |<¢.~|anzklA'¢,~>|’= |<A¢:|2nInIA¢,->|= @

upon recalling that A2 =1 and [A, Ix] = 0. From
equation 7 one can write for the spectrum defined by 3¢’
Intensity

I (4’:‘ Izﬂlu ¢-')

which proves the theorem. The only assumption made
in this proof is that the Boltzmann factors are so close
to unity that they may be omitted in the calculation of
relative intensities.

Since the absolute signs cannot be determined, only
the relative signs require consideration. For example,
with three coupling constants there are four sign possi-
bilities: (+ + +), (+ + =), (+ — +),and (- + +).
In general, for n coupling constants there are 27! sign
possibilities.

Frequency
() — (—%)

Transition
Api —Ads

B. THE ASYMMETRICAL THREE-SPIN SYSTEM (4BC)

The simplest system with three groups of equivalent
nuclei has nq = ng = ne =1 (28, 34). The Hamil-
tonian operator is

X=- 3”4141 + wglps + wclce + JaBlasls: + Jaclasdc,
+ TacIsulcs + 5T as (515 + I5I5)

+ LTz + I18) + §aoIST; + I} ©®)

Since the problem has no symmetry, the simple product
functions may be used as a basis. The functions
aca (m = 3/2) and BBB (m = —3/2) are eigenfunctions
of 3¢ with the eigenvalues
<1/2,1/2,1/2]3]1/2,1/2,1/2> = &

= —%3&4 + ws + wc +%(JAB + Jac + Jac)g 9)

<-1/2, —1/2, —1/2[%¢} -1/2, —1/2, —1/2> = Qs

= _%3_,“ — wp — we +é(JA3 + Jac + Jac)g 10)

The quantum numbers in equations 9 and 10 refer to
ma, ms, and me (Io = Ip = I¢ = 1/2). The states with
m = £1/2 generate 3 X 3 submatrices of 3¢ whose
matrix elements are:

<1/2,1/2, —1/2|%(1/2, 1/2, —1/2>

= —%gtu + wp — we +%(JAB — Jac — Jac)% (11)

<1/2, —1/2,1/2|3¢|1/2, —1/2, 1/2>

= _-;-3,.,4 — wp + wg +%(—JAB + Jac — JBC)} (12)

<—1/2,1/2,1/2|%|—1/2,1/2, 1/2>

= _%; —w4 + wp + wo + 15(—J.u; — Jac + Jac)g (13)
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Fig. 22. The asymmetric three-spin system for (a) vanishingly small coupling, (b) first-order
coupling effects, (¢) second-order frequencies and first~order intensities.
<1/2,1/2, —1/2\3¢|1/2, —1/2,1/2> TABLE 25
= <1/2, —1/2,1/2|3¢|1/2, 1/2, —1/2> = _%JBC (14) Transitions and frequencies for the ABC spin system
<-1/2,1/2,1/2|3¢11/2,1/2, —1/2> Transition in the Limit J — 0 Frequency
= <1/2,1/2, —1/2|3|—1/2,1/2, 1/2> = —%JAC (15)
Group 4
<-1/2,1/2,1/2|3€|1/2, —1/2, 1/2>
. . . A1/3,.1/3B Cl/3.0/300evnennnnns -
— <1/2’ _1/2’ 1/2|.’}C| _1/2’ 1/2’ 1/2> - —%JAB (16) AvzaeBrzazCysays = Avyz..12B12 12011373 Qe —
A3 1/aB12,12C13.-13 = A12,.1/3B1/31/3C1/3. 213000 evvu e Qs — 03
<-=1/2, =172, 1/2|3¢|-1/2, —1/2, 1/2>
/2 1/ ’ / | | /2 /1’ / Avaa2Brz.112Cy3,008 = Ays,-13Buz 20180800 Qs — Qs
= —5<—w4 — wB +wc +_(JAB—JAC—JBC) (17)
2 2
A13,1/3B1/2.-1/12C112, 113 = Av2,-1/3B1/2,-112C13,-1/3. 00 o Q3 — Q7
<—1/2,1/2, —1/2|3|—-1/2,1/2, —1/2>
1 1 G B
= —53 —wa +wp —we +5(—Jus + Juc —Jac)g (18) i
<1/2, —1/2, —1/2|%|1/2, —1/2, —1/2> AnsapBuzapCuysas = A1z 1aB1a.-12C130. . cceiee Qs —M
= _%;‘“ —wp —we + %(—JAB — Jac + JBC)% (19) . A1/3.1/2B1/3,1y3C1/2.-1/3 = A12.1/3B1/2,-1/3C1/3,=1/3. v iven s Q7 — Q3
. Ayz.aaBieanCyzas = Ays.-a2Bia.-11204y208. 00000 e e Qs — Q4
The rema'ining Off'd%a'gonal elements are obtained from A1/2.-1/3B1/3.1/3C173, 2172 = A1/2,-1/3B1/2, 173012, -1/3. 0 s e e s s Qs — Qs
equations 14 to 16 simply by changing the signs of m.,
ms, and me. The eigenvalues for the m = 4 1/2 states Group C
will be denoted by Q,, 23, and Qq; similarly Qs, Qs, and @,
will be used to denote the eigenvalues forthem = —1 /2 AyzanBuyinaCyzase = AusazBriasCus-is.. ol Q2 —
states. The relation between the transition types and A1/2.11B1/2.-172C1/3.018 —= A1/2.1/3B120 120Ut e e v n g7 — Qs
the @’s is shown in table 25. Since this system involves a
. . . .. . Ava,-113Bryaa2Cuzan = Az -1y2Br2aaCys-1a.eenene. ., Qs — Q4
pair of cubic equations containing six parameters and
four choices of sign, numerical techniques are preferable Ava.1i2Bus.anCiiaans = Avz, 2Bz anCineifz. ... Os — 05
to the (clumsy) closed form solution. Some insight into : —
the structure of an ABC spectrum can be obtained by Mixed transitions
amini resul . . g
examining the results given by the perturbation for Ai s BAasCirs.tra — A1/, taBAe s CABA e eene e o5 — 0
mulae. In the absence of coupling there are only three
lines’ each Occurring with equal intensity (ﬁgure 22a). Aza/2Bua.asCuzagz = Ayz-13B11313012. 1030 oo Q6 — Qs
In the first-order case (figure 22b), there are twelve lines Aj2.173B17212C 2018 = A173,1/2B13t 2OVt e e 0 —

(three quartets) and all lines are of equal intensity. It




408 P. L. CORIO

TABLE 26*
Second-order frequencies and first-order intensities for the ABC system
Transitiont in the Limit as J — 0 Frequency Intensity
3 J? J
P wa + $(Jap + Ja0) +1{J—4'B— +—‘c—} 1- Jan s
4(ws —wB  ws —wC WA — @B WA — «&C
3 2
J
3 w4+§(lu—hc)+l{’#‘i—+#c—} 1——~"—‘-—B—+—L
4 lwda —wB w4 — w0 WA —wB @A — wC
3 2
Bttt e u+}(-m+m>+l{#‘;+—"—‘°—} PTIL ZL R
4lws —wB w4 —ac WA —wB wA — &
3 3
S P ws — $(Jap +Jac) +1{"-JAB;— + #c_} 1 +——‘-’—‘-—B— +—JL
4{wsa —wB WA —uc WA —wB wA — oC

* The frequencies and intensities are for group A: the resulte for groups B and C are obtained by cyclical permutation of ABC.
} The numbering of the group A transitions gorresponds to that given in table 25.

can be seen from figure 22b that in a given group G
(i.e., a quartet) the first and second lines have the
separation Jge, and the first and third lines have the
separation Jgg. If the signs of the coupling constants
are changed in turn, the spectrum is unaltered and only
the magnitudes of the J’s can be obtained from a first-
order spectrum. The second-order frequencies and first-
order intensities are given in table 26 and are shown in
figure 22c. Here it is seen that the intensities are dif-
ferent in the first-order approximation. (It is to be
noted that by ‘first order’”’ one means first order in
J¢er/wge, not first order in I..) Further, from table 26
it is seen that the spectrum still has the property of
constant spacings. In fact, the general ABC spectrum
has this property. To see this, consider the following
differences obtained from table 25:

Al—A2=Q4—91—Qg+ng=Cl—C3=a

20
A3 — A4 =0 — Q- B+ U2=C2—-Ci=2qa @)

These separations are in fact equal, for
a—a = -+ Q2+ U+ D) — Qs+ Qs+ D) + Qs

and the sums in parentheses are just the diagonal sums
(i.e., the traces) of the 3 X 3 submatrices with m =
=+1/2. From equations 11 to 13 and 17 to 18, one finds:

Q + Qs + Q4

= %g—uu — wp — we +%(-]AB + Jac + Jac)g
Q4 + 2 + Qs (21)

= %;w. 4+ wp + wc +%(J43 + Jac + JBC)%
Substituting for Q;, Qs and the traces, it follows that
a — &’ = 0. Similarly, one can show that
Al —A3=A2—-A4=B1—B3=B2—-B4=b (22)
Bl1—-B2=(C2—-C1=B3—-—B4=C4—-C3=c¢ (23)

Thus, the groupings (AC), (4B), and (BC) have com-
mon characteristic splittings which, if observable,

enable one to divide the spectrum into three quartets.
The magnitudes of a, b, and ¢ are useful approximations
to the coupling constants (a o~ Jac, b =2 J 48, ¢ = J ).
There are, however, exact sum rules (28) for the cou-
pling constants which are easily derived from table 25
and equations 20 to 24. It is first noted that although
a, b, and ¢ are line spacings, a sign can be given to each
of them. For example, if wa; > was, @ > 0; and if
wa1 < waz, then a < 0. Now if the sign of one of the J's
is changed, the assignments of the corresponding lines
(i.e., those lines with the associated characteristic
splitting) are interchanged. Therefore,

|Jag + Jac + Jpcl=]a +b +c¢|ifall Jgg' >0 (24)
[Jag + Jac + Jecl=|a +b —c|if Jac <0 25)
|Jag + Jac +Jac|=|a — b +e¢|if Jug <0 (26)
|Ja +Jac +Jpcl=|—a +b+c]if Jae <0 (27)

Thus, for a given assumption about the relative signs,
one parameter can be eliminated from the problem.
There is a similar sum rule for the chemical shifts which
is obtained by summing all the frequencies in table 25:

ZQij = wa + wB + wc

This sum depends upon the frequency origin but the
difficulty can be removed by measuring all lines relative
to some standard reference. The real problem with
equation 27 is the observation of all the resonances.
Another sum rule can be obtained (19) by summing only
the frequencies in groups 4, B, and C:

; 2.@%), = 4{(awa)r + (Awp), + (Awc):)  (28)

where (AX), indicates the measurement of the fre-
quency X relative to some reference r. Now the twelve
lines for groups A, B, and C are frequently resolved so
that if two shifts relative to r are known or assumed, the
third shift can be calculated from equation 28. In the
case of protons, deuterium substitution can be very
useful in this connection (19b).
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TABLE 27
Eigenvalues and eigenfunctions for the ABX .z spin system

Elgenfunction

Eigenvalue

A1/2,172B173 113X 1 g T et vventen et ettt e i i et e i ey

1
— = {AyzamBiz.-1s + QixmxA12.-1/2B12013} X1z covenivenniannnn,
\/ 1 +Q—X

1

———{Qry mxA1/2.1/2B12.-13 — A12.-1/2B12.1/3) XIxmZ e evneenvnnennnnn.
V1 +Qix

Y YLy : 1Y TR Y 9.4 g e

—}{ws +wb +2mxox + §Jan + mx(Jax + Jox)}

—}{2mzwx — 4748 + Rux)

—}{2mzwx — $74p — Rux)

—4{ —wa — wB + 2mxox + $J4p — mxax + Jox))

¢. THE ABX,; SPIN SYSTEM

Considerably more progress is possible with three-
group systems if one of the groups has a chemical shift
which is large compared to all other parameters; that is,

lwx — wal, lwx —ws|> |wa —ws|, Jas, Jax, Jex (29)

In this case, the results of second-order perturbation
theory show that only zero-order states of comparable
energy (that is, states with the same values of m and
mx) can mix. Hence, those product functions which
have different values of mx are good approximations to
the correct stationary states even if they have the same
m-value. For nx = 1, one has, for example, the case of
two protons coupled to another proton (11) or a fluorine
nucleus (33, 92). Solutions have also been given for
small nx (17, 27, 56). It is, however, very easy to write
recursive formulae for the general case (19a), and this
will be carried out here rather than discussing individual
cases.

The spin functions for a particular value of mx are

AvzizBuznXizmg AvscusBusc1ilX 1z.my,
AvzaeBus-uXizumzy Auz—1sBuzaieXizmg

From the general mixing rules and the perturbation
approximations only the last two functions mix. The
algebra is straightforward and the results are given in
table 27, where

Ruy = V5 + mx(Jax — Jsx)P + J3p (30)

Qg = Jan
™ 7§ + mx(Jax — JBx) + Rmx

@1

Since there are 2Ix + 1 values of mx, it follows that
table 27 gives (nx + 1)(nx + 3) eigenvalues and eigen-
functions for nx odd and n% + 4nx + 4 for nx even.
The calculation of the relative intensities and frequen-
cies for allowed transitions is carried out as in the 4,,B
system and the results are given in table 28, where gry is
the statistical weight of Ix.

From table 28 one notes that if Ix = 0 then the
ABX,x system reduces to the simple AB system. For
Ix =1/2, g1y = 1, mx = £1/2 and the ABX system

with fourteen lines results. If Ix = 1, g1z = 1, mx =
1,0, —1 and the system reduces, for example, to that of
two protons and a deuteron. Other cases are obtained
by substituting the appropriate values of I'x, mx, and
grxz-

The ABX system can often be useful in the analysis
of ABC systems even if the conditions 29 are not
strongly satisfied. This approximation will give better
values for the coupling constants than the usual second-
order perturbation theory and may even provide infor-
mation about the relative signs of the coupling con-
stants. The ABX system is most accurately applied
when vyx # y4 = v¥s, as in the case of protons and
fluorine, and has been extensively applied to substituted
fluorobenzenes (33).

VIII. Grour THEORETICAL TECHNIQUES

A. SYMMETRIZATION OF SPIN FUNCTIONS

In the discussion of the A,B spin system it was noted
that whenever the molecule under consideration is sym-
metrical, additional factoring of the Hamiltonian will
occur if the zero-order spin functions are chosen prop-
erly. For the A,B case, the correct spin functions were
obtained by elementary considerations; in more com-
plicated cases it is convenient to employ standard group
theoretical techniques (47, 53, 93, 94). The procedure
amounts to forming symmetrized linear combinations
of product spin functions and classifying them according
to the symmetry species (irreducible representations) of
the group. One-dimensional representations are denoted
by @ and ®, while higher-dimensional representations
are described by & (two-dimensional), § (three-dimen-
sional), etc. The factoring of the Hamiltonian follows
from the well-known group theoretical result (47, 94)
that there is no mixing between states which ‘‘belong”
to different symmetry species. Of course, in each sym-
metry species there is additional factoring according to
z-components of total angular momentum.

The symmetrization of spin functions will be illus-
trated by considering three spin 1/2 nuclei situated at
the vertices of an equilateral triangle. The point group
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TABLE 28

Resonance frequencies and relative intensities for the ABX.y spin system

Transition in the Limit as Al J — 0

Intensity

Frequency

A transitions

A1aanBisaXizmg = A1z.-18B13012X1x mx. o iiennes

AsaisBis. 18Xz mx — A1 1B 12 X1z mx..oe.. ...

01x(1 — Qux)?
1+0Qix

O1x(1 + Qmx)?
1+Q3r

${ws + wp + Jas + m2(Uax + Jrx) + Rax)

${ws +ws —Jan + mx(Jax +Jbx) + Rax).

B transitions

AzanBipaneXigsx = AinsanBis.1aXiger.. . oooe..

Aja.-13B121s X1z mx = Az, -12B1a, 32 X1gmg. e nnns

01x(1 + Qux)?
14+Qiz

O1x(l1 — Qurx)?
14+Qir

${wa + @B +Jap +mx(Uax +Jar) — Buy}

${wa +wp — Jap + mx(Uax + JBx) = Ruy}

X transitions

Avz,-12B1201s X1z mx = A1a.-12B1paaXigmx -1, oo

Arzai2Bus.-12X1gmy = A1302Buys. 12X 1xmxleeeen.e,

AvyzanBiaanXizay = AyzasBryaapXizmg-1. oo,

Az, 1aBrz.-172X13mx = A1/2,-1/3B1/2, 173X 1x g1 000 e

orxx + mx)(Ix = mx + 1)(QuzQuy-1 + 1)2

1 +Q35)1 +Qir-1)

o1xIx + mx)Ix — mx + 1)(QuxQur-1 +1)2
(1 +QarX1 +Qiza)

orx{Ix +mx)Ix —mx +1)

o1x(Ix + mx)(Ix —mx + 1)

${20x + Ruz-1 — Ruy}

$ {201 — Rur-1 + Rux}

% (2wx + Jax + Jar}

${2wx — Jux — Jax)

M transitions

Ayz12By3.-112X1xmx = A13.-18B1a aXIxmx e euuon .

Avy2,-12B112.1/2X1x.mx = A13.13B1/2. 12X 1z mxeleniinna

o1x(Ix + mx)Ix — mx + 1)(Qur — Qux-1)2
a +Qinad + Q3r.1)

O1xUx + mx)Jx — mx + 1)(Qux — Qur-1)?
1 +Qin(a +Qizra)

${20z + Buy-1 + Rar}

${20x — Ruz-1 — Rux}

is D; and its symmetry elements (operators) are as

follows:

E = the identity operator,

From equation 1 and table 29 one obtains

x(E) = 8; x(A) = x(B) = x(C) = 4; x(D) = x(F) = 2

A, B, C = reflections in the planes passing through
the three vertices and perpendicular
to the sides opposite these vertices,

D = in the plane rotation by 120°, and
F = in the plane rotation by —120°

Operating on the eight spin functions with the group
elements one obtains the results given in table 29. (The
abbreviations for the spin functions are those given in
table 2.) From table 29 a matrix can be defined for each
of the group elements. This matrix representation is
reducible (47, 94), and its reduction can be expressed in
terms of the irreducible representations of Ds. To do
this, one requires the characters (i.e., the diagonal sums)
of the group operators which are obtained from the
formula

xR) =2 3<u|Rlus>;R=EA, -+ -+ (1)

The characters of the irreducible representations of Dj
are given in table 30 (94), and the reduction of the
product function representation is determined by the
equation (47, 94)

nn = %;x(") (R)x (R) (2)

TABLE 29

Transformation properties of product spin funclions for three spin
1/2 nuclei under the D, point group

U1 u3 u3 u4 us us ur us
) [} us us 4 us us u7 us
- ul us u3 4 us u7 us us
Boviiiiiieninnen ul “e us ug u7 s us us
Civvvvvnnnenenns " us U4 us ue us ur us
B 0 TN ul us w4 us uy us us us
) %1 Uue ua us us uzr us us
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ANALYSIS OF NUCLEAR MAGNETIC RESONANCE SPECTRA 411

TABLE 30
Character table for the point group D,

D3 E A B (o] D F
Qliieinn... 1 1 1 1 1 1
@uininanns 1 -1 -1 -1 1 1
Berirrreinns 2 0 0 0 -1 -1

where n is the number of times the representation v
occurs, x(R) is the character of R in the (irreducible)
representation v, and g is the number of symmetry
elements in the group. From the characters in the
product representation and table 30 one finds

n(“1>=%l8+4+4+4+2+2]=4
n<u>=%|8—4—4—4+2+2}=0
wo =3i16-2-2) =2

that is, the product representation, I', contains @, four
times and & twice. The reduction of a representation is
often expressed in equation form as

T =2 ny ®)
k4

which, in the present case, is
I = 4@, + 28 @)
It should be noted that if d, is the dimension of ¥, then
2ondy = TL@L; +1) (5)

For the case under consideration this is easily checked,
sinced X14+2X2=2-3+12=8.

The spin functions with the @; and &§ symmetries are
easily determined with the projection operator (47):

Ty = ;x“" ®R)R (6)

The operator 7, acting on a set of spin functions extracts
sets of linear combinations with the symmetry of «.
Consider the operator

T =E+A+B+C+D+F ()

Operating on the u; with 7, one finds (omitting multi-
plicative factors) the following linear combinations:

U
+uy - u
bt u;} ®)
Us

It is readily verified that these functions are symmetric

with respect to all of the group operators. Similarly, the
projection operator

m=2E—D—F @)

yields the six functions:

2us — Uy — Uy
2u. —_ Uy — U
2uy — us — Us
2u; — Ug — Ut
2u¢ — Us — Uy
22Uy — us — us

However, equation 4 states that only four functions
“belong’’ to the symmetry species &, so that the above
functions are linearly dependent. By inspection, it is
easily seen that the first three functions sum to zero and
one may take any pair (or two linear combinations of
any pair) as two of the functions with § symmetry.
Similarly, the last three sum to zero and any pair of
these may be taken for the remaining two & functions.

Since the three nuclei are equivalent, one could also
require that the symmetrized functions be eigenfunc-
tions of I2. This simply leads to the usual eigenvalue
problem which, when solved, yields the (normalized)
functions in table 4. In general, the 2" spin functions
which are eigenfunctions of I, and I? must also trans-
form according to the symmetry species of D,. The
functions in table 5 (n = 4) were derived by this
procedure and it will be found useful to carry out the
detailed calculations.

Before considering a symmetrical spin system, it
should be noted that the point groups required in
nuclear magnetic resonance spectroscopy are usually
simpler than those required for the same molecule in
other connections. For example, the correct group for
the normal vibrational modes of three equivalent nuclei
i8 Dss. In the nuclear magnetic resonance case only the
equilibrium positions of the nuclei are really pertinent
and the correct group is Dj;. Strictly speaking, it would
not be incorrect to use Dj;, but this group has twice the
number of elements in D; and the calculations would be
unnecessarily elaborate.

B. A FOUR-SPIN SYSTEM WITH C'; SYMMETRY

Molecules whose equilibrium configurations have a
twofold symmetry axis are described (for purposes of
nuclear magnetic resonance) by the C, point group.
Examples of such molecules are 1,1-difluoroethylene
(53), thiophene (19b), furan, pyridine (84), o-dichloro-
benzene (7, 63), etc. Consider the case of four spins,
none of which lie on the C, axis. Using thiophene as a
prototype system one has, by symmetry,

HA\ 54’
0
B/ 87N\
B,

wA = w4’

wB = wa’
Jap=Ju'sg = J (10)
Jap'= Jap= J’
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From equations 10 the Hamiltonian operator is

% = —dallac + L) + wn(Ta + It
+ J(IA'sIB'l + IAtIBz) + J’(IAISIBI + IAIIB'I)
t Talasdats + Tslsalsts + 3 alf + T3 + TI;) I
+ ST + PIIE R0y + T T Iy
+ U5+ T I + 30T + I} A
where J4 = J44 and Jg = Jgp-.
The symmetrized spin functions are derived as above.
The group C; has only two elements E and C, and there

are only two irreducible representations (94), @ and ®.
The required characters are

X.(E) =1 Xe (Ce) =1
a®o1 ey 0
and the projection operators are
m =E 4 C, (13)
7 =E —Cy

Upon calculating the characters for the product func-
tion representation, one finds that

T = 10a + 6@ (14)

that is, ten of the symmetrized functions belong to the
symmetric representation and six belong to the anti-
symmetric representation. The projection operators
may be used to determine the functions explicitly and a
symmetrized set is given in table 31. This set is not
unique since, in a given representation, one may con-
struct linear combinations of spin functions which also
belong to the same symmetry species. The subscripts
affixed to the symmetry species in table 31 give the
m-values, and it is at once evident from these m-values
that the Hamiltonian matrix factors into one 4 X 4
(@ species), five 2 X 2 (two from @, three from ®), and
two 1 X 1 (@) submatrices. The 4 X 4 submatrix is

As before, let @, 22, @3, and Q4 be the eigenvalues and
a = (a;;) be the diagonalizing orthogonal matrix. The
eigenvalues are such that

Q- =8+ 5 + ) — s + T5)
2 = —5(a + Ja)
2=+ 10+ 7)) =304+ 70)

2 -4+ Ja)

=430+ =0l O+
LT+ ~Wa+Ja)

0 —3 )

L, » Ly _

—3@ =) 37 =)

TABLE 31*

Symmetrized zero-order spin functions for four spin 1/2
nuclei with Cy symmetry

Spin Functions Symmetry

CIEOE . o v e v s sase s s sasnosssssnsssssnnsnsssnsssssnaness (@)a
L(a:a:aﬁ + aafa) i@an
308 Tama)
%&ﬁm B =) PP 2(@ah
L7 7 FX N 1(a@)o
$(apaB + apfa + BaBa +BacB)......oieiiiiiiii 2(@)o
7 . PP 3(a)o
$aBaB — affa + BaPa — BaaB).i.eeiie i 4@

1
S@BBB F BaBB) i i i i e i i e e e 1(@)-
\/2(aﬂﬂﬂ + Bapp) @-1

1
= (BBaB F BBBA) . ittt i st 2(q)-
\/E(ﬂﬂaﬂ + BBBa) (@)1
7 - (@)-2
L (aaas — aapa) 1@®
ﬁ O ORPA) s oot s v oo v et avesroanssstssrossasess vy 1
——(afiaa — faaa) 2®
ﬁ xpac L2 72 L ) R I L T 1
HaBaf — affa — Pafa +BaaB).ciueeeirei e, 1(®)o
$@aBaB + aBfa — BaBa — BaaB)....cavii it i, 2(®)o

1
—= el - -7+ ) TN 1{(®)-
\/E(aﬂﬂﬂ BaBB) ‘ (®)-1
é(ﬂﬂaﬂ BB et e, 2A®)1

* The produot funotions are ordered according to the scheme A’ABB’.

L, _ g
0 —§(J -J)
Loy L, _p
—§(J +J) 2(J J)
v+ —duatiml S0 -n
—%(J -J) %(JA + JB)

as the off-diagonal elements of 3¢ — 0. The remaining
eigenvalues and eigenfunctions require the solution of
elementary equations and the results are given in
table 32, where

0=wa—wp >0
Ri=+VE+Ja—Jde)+ T -0
Re=({Ja—Je + J = J)?
Ri=(G—Jat+ I+ (T —=J)
Ri=Vo + ([T + 70
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TABLE 32

Eigenvalues and eigenfunctions for four spin 1/2 nuclei with Cs symmetry

Eigenfunction

Eigenvalue

()2 e eerenenenneernereneesssnnsonnnassnnses
1
v +Q’l1(a)l +Qu2@nt} e,
4
= {Qel1(an] — 2(an}
— 1] — L ceeveannovarocns
Vita

an[1{@)o] + a21[2(@)0] + aa1[3(@)o] + sa1l4(ado]

612(1(@)o] + a22(2(@)0] + a32(3(@)0] + a43(4(a@)o}
a13(1(a)o] + a23[2(@)o] + as3(3(a)o] + assl4(@)o]

a14[1(a@)0] + a24[2(@)0] + a34[3(@)o] + a44[4(@)o]

—fwa +wn 4+ 30 +I) + 104 +Im)

—4{ws +wp + B4 +JB) + R4}

—}{wa + o8 + 34 +78) — Ri)

931
Q2
Q3

Q4

${ws +wB — 304 +JB) — R4}

${ws +wn — 34 +78) + Rs}
wi +ws — 3 +7I) — 24 +J78)

—3{ws +ws — 34 +735) + Ri}

—}{ws +wB — 5(Js +J78) — R1}

3304 +78) — Ra)

%H(JA +JB) + Rz]

}l«u +ws + }(JA +Jz) — Rs]

4{ws +we + (s +J8) + Rs}

1
{L@) w1 A Qal2(@ 1]} evvneerneeet ettt e
V1+¢ )
L (Qul1(@)-1] — 2@) ]
‘\/]‘ﬁ 4 -l] = T T T T T TE T T T PP
[ 3 P T et eeuetee et ettt teretnatcacennsettases
1
= {1(®)1 +QUABNI}.....ccnvarniinnnrns N
V1+@
L (QuL®N] — 2(®) ]
- /11 1) — 1] teevesasossecsnunsesonsonsonnseessnnsocnnnnss
V1+¢@
1
—==——{1(B)0 + Qal2(®B)0]} cverrrrrrrririrnte it rairree e
V1 +@3 o e
N
\/i+—Q:|Qz[1((B)o] B0 en et
1
\/mll(a)-l e | DT
1 i
\/Toglo'“(“)"] - 2(®)a}....... Fientettitnninntteretatnrnnnnreeeinn
0 = J =J
VU s+ Ja—Js+ R
Om L=
?T (Ja—Js) + R:
0= J —=J
T8 —Ja+Js+ R
_J+T
Q=7 iy

The resonance frequencies and relative intensities are
given in table 33. Since the spectrum is symmetrical
about %#(wa + wp) only fourteen of the twenty-eight
possible lines are given. (The @ and ® transitions in
these tables refer, of course, to symmetry species, not
groups of equivalent nuclei.)

From table 33 it is clear that the transitions 1, 2, and
their images constitute a quartet which is similar to the
AB spectrum except that J is replaced by J + J'.
Hence if these lines can be identified, one may obtain
8 and |J + J’| exactly. The symmetrical nature of the

spectrum may make the identification of these lines
difficult and if 6~ 0, the identification may be im-
possible. There are, however, eight ® transitions in-
volving R,, R,, R3, @, Q:, and Q; whose intensities and
frequencies are expressed in closed form and additional
information may be obtainable. In general, it is best to
“‘guess” a set of parameters and test them with the
twelve explicitly known @ and ® lines, using the
experimental data. If the fit is reasonable, the param-
eters can be used to diagonalize the 4 X 4 matrix and
be checked in detail. If computers are available, the
problem of fitting a spectrum is almost trivial.
In the special case where J = J',

2=1Ua+Jn)

and the system reduces to the A,B; system already
considered. Further, for J4, J5, J'— 0, the system
reduces to the superposition of two independent AB
spin systems. Another special case of interest occurs
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TABLE 33

Resonance frequencies and relative intensities for four spin 1/2 nuclei with C, symmetry

Transition in the Limit as All Ji — 0 Intensity Frequency
@ transitions
) TR 1) T T “—H_‘—%’—’ ${ws +wB = +J) + R}
()T IE 31 (<) | DO U M—‘;): Hos +wp + T +7) + R4}
14}
3, 1{@)0 = @) mdeurensrnueesunnntarnnessnenaneens ﬁa[au + 1 +Quan + Quanp ${ws +ws — 4Ws +78) — Re — 20}
B 1@ = (@0 erereeeeeenereaeeaaeanin T—E—az[au + {1 +Quass + Quasal2 ${wa +ws + 34 +J5) + Ra +203)
Ba 1(@) = 3(@)0 vvverernnnerionatnrsensnncsionas T—E-b—z[au + (1 + Q4)azs + Quaas)? ${ws +ws + 44 +78) + Ra + 203}
B, 1{@N = 4(@)0.ueenurrntrnerttenaennsreraasnne T—E—a-g[au + (0 + Qu)azs + Quasal? ${ws +ws + §a +T8) + Re + 204}
To @0 = 2(0)aleeieerrenennererrnnsenneensenes 1—4_1@[0«;:1 + (@ — Das —anl Hoa + o — §0U4 +75) + Re —301)
8. 2(@)0 = 2(B)adereneene e et e T%&[Q“’” + Q4 — 1)azz - asal? $os +os — $Ja +T8) + Ra — 200}
9. 2(8)1 = B(@0..urenarrrtreet et ea i 1—%&[04«:13 + (@« — 1)a2s — asa}3 $os +wp + 84 +J8) — Be + 2}
10, 4(R)0 = 2{@)aknrvrrrreererunsnsuneonennennees '1%05[0«114 +(Q4 — 1)az4 = as4]? ${ws +wr — 30 +78) + Ra =204
® transitiona
11e BN = 1B)00 enernnnnnnnneonuurarsereneeenns (72_%221"5‘(21‘0—:_):25 4{od 4+ w8 + R1 = R}
12, L(B)1 = 2(®)0r - +eeeeennerereaeeaernennnns (T%%z—)%;—) #{os +ws + R1 4+ Rs)
13, 280 = 2®) ot v e eere e %—) os + o8 + Rs — Rs}
14 1(®)0 = 2(B)alvvnvnrrnntenneeeaianenens 20— @:Qs)? ${os + o5 + & + Ba)

a+eha +ed

when & — « as, for example, with 1,1-difluoroethylene

(563). In this case, the only mixing of zero-order spin
functions occurs between 2(®)o and 4(®)o, and 1(®),
and 2(®),. The 4 X 4 factors into two 1 X 1 and one
2 X 2 submatrices and one finds the eigenvalues:

Q= =0+ 3+ ) —3a+ Ta)

2 =14+ 5 - 3B

Q=8 +30 + ) —50a+ T5)

0t = 34 + J5) + 3Rs

where

The corresponding eigenfunctions are

L(®)e

1
—_— {2(@ 4
m{ (@)o + @s[4(@)o]}
3{@)s

1
—_— 2(@)o] — 4(R)o

Bi= /Ty + Ta)t + (J = J)?
QeI =d
T Ja+JB + Rs
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TABLE 34

Resonance frequencies and relative intensities for four spin
1/2 nuclei with Cs symmetry as §— »

Transition in the Limit
as AllJiy —» 0 Intensity Frequency
@ transitions
1(@)-1 = (@)2 _ )
L @ — 1(a)-1} ........ 4 ${201 - +1)
(@)s = 2(@n ,
% 2@n _’3(0)0} ......... 4 {204 + U +)}
2
3. 1@h —=2(@)0...een.... Tt a ${204 +Ja +75 — Rs}
20}
4. Leh =4@0.iceeennn. 3 ${2wa +J4 +JB + Ry}
1+Q;
5. 2 2 2
. 2(@)o = 2(@)a1...nn... . 1Tra ${2ws — W4 +JB) + Rs}
203
6. 4@e = 2@erenn.., T +‘Q: ${204 — s +J5) — Rs)
7. 1@} —2@a......... 0 ${404 — 208 =7 -1’}
8 l@n —=3@.......... 0 ${40s — 2un +7 + 7}
® transitions
2
9. L{®h = UBo......... e ${2uw4 +Js —JB — R3}
10, 1{®)1 = 2(®)o......... 26 3{204 +Js =B + R3}
1+@Q
203
11, 2(®)e = 2(®)1........ 3 ${204 —Js +Jp — Ra}
14+Q;3
2
12, U®) — 2(®)a........ ‘H__Q; 4{2wa —J4 + 7B + Rs}

With these results, one finds the intensities and fre-
quencies given in table 34.

C. GROUPS OF SYMMETRICALLY EQUIVALENT NUCLEI

Inspection of table 31 shows that the symmetrized
spin functions for four spins with C; symmetry consist
of all possible products (i.e., the direct product) of the
singlet and triplet functions for the A nuclei with the
singlet and triplet functions for the B nuclei. Further,
the symmetry species of these products are given by the
ruiles X A=@ AX®=@® ®X ® = @ These
results can be generalized and lead to the concept of
groups of symmetrically equivalent nuclei (94); that is,
a set of nuclei which are permuted under the operations
of the appropriate point group. If the molecule can be
divided into a number of such sets, then the spin func-
tions for the molecule may be obtained by taking the
direct products of the (symmetrized) functions for the
various sets. The symmetry species of the molecular
product functions may then be derived by standard

rules (94). For example, 1,3,5-triflucrobenzene (94)
may be considered as two sets of symmetrically equiv-
alent nuclei: three protons with D; symmetry and three
fluorine nuclei with D; symmetry. Thus, one has a
systematic procedure for dealing with molecules of high
symmetry. Since this procedure involves little that is
essentially new, it will not be discussed further here. For
full discussion and illustrations the reader is referred to
the literature (57, 94).

IX. MoMENT ANALYSIS OF HIGH-RESOLUTION SPECTRA

The preceding calculations have been characterized
by the fact that chemical shifts and coupling constants
are obtained after the complete (or approximate)
diagonalization of the Hamiltonian matrix. This proce-
dure may require lengthy numerical computations—
even in simple cases—and it is natural to seek more
direct methods of analysis. Some simple rules, which can
lead directly to coupling constants and chemical shifts
in favorable cases, have already been discussed. There
are, however, more general techniques (7, 70) and in
this section moment calculations (7) will be discussed.
This technique is, in principle, perfectly general, but
practical considerations often impose severe restrictions
and the method is of limited value. However, when the
method is applicable, significant information is obtained
which can lead to a complete solution of some problems
or facilitate the solution of others.

The n** moment of a spectrum is defined as

Zz‘_,(m — )% I |*
I IFAE »

where Q: — Q; is the resonance frequency associated
with the transition ¢; — ¢4 and |I;|? the correspond-
ing relative intemsity. <w"> is thus a weighting of
each resonance line according to intensity; <w> is the
mean frequency of the spectrum, <w?> is the mean
square frequency, etc. The denominator in equation 1
is the sum of the (relative) intensities of all resonances
and can be rewritten in an alternative form as follows:

<Lw*> =

N
| 75l* = IR)(IR)* = (T 25(Ter — i)}, = IRIY

where N is the total number of number of nuclei and the
Hermitian property for I., and I,. has been used. Sum-
ming this result over j and k gives

2220 G| = 3030l = Te I-I+ = Tr IMT-

where Tr denotes the diagonal sum or trace of the
matrix product I-I*. Now Q« = 3¢ and Q; = 3¢,;, so
that the numerator of equation 1 can be expressed as

2 2(5@& — R LI
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and
2 — ) LI
<wn> = Tr I+I_ (2)

Forn =1,

(B — 3si) I TH
Tr I+1-
enly — I5R)I;,

= Tr I+1-
;[sc, I*lyI;

=T Tr It

_ Trlge, I*)I-
=TT I'T- ®

<w> =2

Similarly, one can show that
_ Tr[xe, I}, ¥}
<w?> = _———,_Tr TH[= 4)
_ Trlse, (e, I+1111-, 3¢]
=TT ©)
_ Trlse, fse, I+]){[1-, 5, 5€] ®)
Tr It~

<wi>

<wt>

The rules of formation are now clear and the commuta-
tor form for <w®> can be written down immediately.

The distinguishing feature of these moment equations
is that they are expressed in terms of traces of matrices
and, since the trace is a matrix invariant, it is not
necessary to solve a complicated eigenvalue problem in
order to evaluate the moments; any convenient repre-
sentation of the matrices involved will suffice. Consider,
for example, the denominator Tr I*]~; expanding the
product of I*I- one finds:

Te 14T~ = Tr(ZIu + iI,,,) (ZI - iI,,.)
- T‘%ZZ"’I" + LpoLye +i(Tyeles — I“I,,.); @)

Now in a matrix product of the type I..I., (r # 8) both
operators cannot make simultaneous contributions to
the diagonal elements, since the spins are independent.
These traces may be computed independently and,
since Tr I, = Tr I,, = Tr I,, = 0, equation 7 reduces
to

Tr I¥1- = Tr 2 (I, + 1)

r

The last equality in equation 8 results from the equiv-
alence of the z-, y-, and z-components of angular
momentum. The assumption that all nuclei have the
same spin quantum number I simplifies equation 8 to

2N Tr I3 9

In the product function representation, the matrix for
I?, is diagonal and may be expressed as the direct

product of two matrices, one involving the codrdinates
of nucleus r alone and an identity matrix of dimension
(2I 4+ 1)¥-. For a direct product C = A X B one has
the result

Tr C = (Tr A)(Tr B) (10)

Further, Tr IZ, over the codrdinates of r alone is simply
Tr I = ‘Z‘jmz, = T+ DI +1) an)
Combining equations 9, 10, and 11 there results finally
T 11— = 2 p@r + 1y 12)

To proceed further, one must specify 3¢ and evaluate
the required commutators and traces. For 3¢ one may
use

s = 2 Joiluy + 23 S0 nlr ke (13)

(The minus sign that is usually prefixed to 3C is omitted
here for convenience; this omission simply inverts the
energy levels and does not alter the moments in any
way.) From the commutation rules the following equa-
tions are readily verified:

[, I} = Zw,-z;r (14)
I, 5] = 2«:,!; (15)
[3e, e, I+]] = 2@,’.1; + 22‘_,@.(;.,,. —w) It (16)
{[1-, 5], 3] = Z}m,?z,.- + 22&;(:»,- —w) ;s (17)

The evaluation of the requisite traces is straightforward
and one obtains for the first four moments:

2w =N<w> (18)
2wl = N<w?> (19)
2w =N<u*> (20)

H

> + AU +D@I + I IV ACTEPNY
= N<wi> (21)

From these equations, it is clear that the first three
moments are independent of the spin quantum number
and the coupling constants. The fourth moment (and
higher moments) depends upon I and the J’s. For the
case I = 1/2 the fourth moment becomes

S+ 530 S — et = N<at> (@)

It will be convenient to set <w> = 0 in subsequent
calculations; that is, one evaluates <w> from equation
18 and introduces a new reference system at the mean
frequency from which all other moments are computed.
Chemical shifts relative to this “center of gravity” will
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be denoted by Aw: and the moment equations 18 to 20
and 22 become

> Aw; =0 (23)
> (8w)? = N<(aw)?> (24)
D(8w;) = N<(8w)?> (25)

S5 (@)t + 530 SO0 (8 — aun)t = N<(Qu)>  (26)
H
where
Awy = wj; — <w>

Some simple cases of equations 23 to 26 will now be
considered. If there are only two groups (4 and B) of
equivalent nuclei, the first four moments are

na(Aws) + np(awp) = 0 (27)
n4(Awa)? + na(Awp)t = N <(Aw)?> (28)
n4(Awa)® + np(Aws)® = N < (Aw)®> (29)

14 (Bwa)* + na(dws)® + %(nAnana’) = N<(dw)*> (30)

where

na +ng=N (31)
8 = Awas — Awp (32)

From equations 27, 28, and 32 one obtains

= 2 33
= <(aw)?> )

while equations 27, 28, 32, and 30 yield

3 3
J? N<(@o)t> —"atm <(Aw)*>=§ (34)
nang

-2 3
T N< (Aw)2>
Equations 33 and 34 show that J and & may be obtained
from measurements of <(Aw)?2> and >(Aw)*>.
Dividing equation 34 by equation 32 gives

J\% _ 2nanp <(fw)t> nY +nd)
(a) T ON# 3N<(Aw)2>’ Amma; (35)

so that the J /8 ratio may be obtained without the aid of
a frequency measurement.

For the case of three groups, the first three moments
provide the equations

nalAws + npdwg + ncAwe = 0
na(Awa)? + np(Awp)? + ne(Awc)? = N<(Aw)’>} (36)
na(Awa)? -+ np(Awp)? + nc(Awe)d = N < (Aw)E>

Thus if <(Aw)>, <(Aw)?>, and < (Aw)®> are meas-
ured, equations 36 provide simultaneous equations for
the chemical shifts. If the coupling constants are desired
by this method, the fourth, fifth, and sixth moments are
required. This is not to be recommended in general, as
the higher moments are quite sensitive to experimental
errors (e.g., field and frequency drifts, saturation, ete.).

Equations 36 are most conveniently solved by graphical
methods (7). For this purpose, let

= A
"= ep (37)

Then equations 36 become

n4dws + (np + rnc)Awp = 0
n4(Bwa)? + (np + rPnc) (Awp)? = N < (4w)?> (38)
n4(Awa)? + (np + r3nc) (Awp)? = N <(dw)?>
The first of equations 38 gives:

(ng + rnc) A
-_— T AWB
n4

Awg = (39)
Substituting into the second and third of equations 38
yields:

(ng + ™c)?

i + (ns + rPn¢) (Awp)? = N< (Aw)?>  (40)

— L2t (np o rinc) (dws) = N< (20> (41)
A
Taking the two-thirds power of equation 41 and
dividing equation 40 by the result gives:

[(ng + rnc)® + nalns + rinc)}
[— (s + rnc)® + n} (np + ring) |23
_ (_]\_f 1/3 <(Aw)z>
N4 <(Aw)’>2’3

(42)

In equation 42 n4, ng, ne, and N are assumed known,
so that by assigning values to r (— <r £ 4+ )
values can be computed for the ratio

<(Aw)?>/ < (Bw)3>s

and plotted against 7. From an experimental value of
this ratio one may determine the value(s) of r. The
quantity Aws may be obtained from equations 40 and 41
as

Awn = (np + rne)? 4 na(ns 4 rine) 3"A<(Aw)'>
wp =

= (g + rnc)? + 7 (nz + r*nc) st )

Equation 39 then determines Awy and, finally, equation
37 provides Awg.

The plot of equation 42 will generally provide several
values for r (7) and, consequently, several sets of shifts.
Some of these may be ruled out by a comparison with
the experimental spectrum; other sets may require
additional information for their elimination.

The experimental moments are calculated by means
of the equation

_ 244w

<w"> A (44)

where A: and (w?) are, respectively, the area and fre-
quency of the 7*» resonance. If all the resonances have
the same width dw, then line heights may be used in
place of the A.. The widths of resonance lines frequently
result in overlapping signals, so that one must decom-
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pose such a region into subareas and assign these to the
appropriate resonances. This decomposition is some-
what arbitrary and can introduce large errors in the
higher moments. Perhaps the most serious difficulty
with the moment method is the assumption that all the
resonance lines are observed. Hence weak or unresolved
lines can lead to very large errors in the experimental
moments, It is clear then, that before the moment
technique is applied, there must be some consideration
of the maximum number of lines, their intensities and
frequencies. Ideally, one desires a well-resolved spec-
trum which is free from field and frequency drifts and
saturation effects. Only a modest acquaintance with
high-resolution work is required to know that this is
almost impossible to realize. Except for the simplest
cases, it is best to compromise and use the moment
technique to obtain relations among the various
parameters. ~

Equation 35 was applied to the spectrum of ethylene
monothiocarbonate (figure 21) with the result J/é =
0.198, in excellent agreement with the value of 0.195
obtained directly from the spectrum. The use of mo-
ments in this particular case is really superfluous, since,
as already noted, J and 6 may be obtained very easily.
The example does show, however, that with well-
resolved spectra and with proper regard of instrumental
drifts, excellent results may be obtained.

X. MiscELLANEOUS TECHNIQUES
A. DOUBLE RESONANCE EXPERIMENTS

A useful technique for removing the effects of an
undesirable spin coupling is available in the double
resonance experiment (5, 12, 13). The essential idea in
this experiment is to observe the resonance of a par-
ticular group with a weak radiofrequency field and
simultaneously irradiate a second (coupled) group with
a strong radiofrequency field whose frequency is near
the resonance value for the second group. In this way,
the spins in the second group are constrained to undergo
rapid transitions, which reduce the lifetime of states
with a given value of m. If this lifetime is much less
than J—!, then the observed group is effectively de-
coupled. Actually, a residual splitting of order J2/5
remains even for large amplitudes of the second radio-
frequency field (12). This qualitative deseription is anal-
ogous to that used in discussions of exchange phe-
nomena (9, 37, 39). An approximate treatment of the
double resonance experiment has been given which is
valid when J < §. A rigorous discussion requires statis-
tical quantum mechanics (12).

From an experimental point of view, the method is
most easily used when 6 >> J. Hence, with one exception
(5) the technique is usually applied to nuclei with
different gyromagnetic ratios. Even with this restric-
tion, the technique is useful in removing small cou-
plings and line-broadening effects from nuclei such as
nitrogen and deuterium.

B. MULTIPLE QUANTUM TRANSITIONS

From equation 95 in Section II it can be seen that the
expansion of [¢@+®¢],,,. to the second order in § involves
terms of the type

Brm'iBiem = (YH:)A*<m' | L |k> <k|I.|m>

Terms of this type can result in multiple quantum
transitions (6, 41, 95); that is, the spin system can
absorb more than one quantum of energy. In the second
order this occurs when the system absorbs a single
quantum in the state m’ and undergoes a transition to a
virtual state k; a second quantum of energy is then
absorbed which induces a transition to the final state m.
In third order, triple quantum transitions can occur,
etc. The observation of multiple quantum transitions
involves large amplitudes of the radiofrequency field
and detailed treatment of intensities requires statistical
theory (95). However, if the stationary energies are
known, the frequencies of transitions of higher order
can be determined. Little has been done with multiple
quantum transitions in analyzing high-resolution
spectra.
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XII. INDEX OF SYMBOLS

4,B,C=
a

groups of equivalent nuclei

symmetry species

= spin functions for groups A and B with total
spins I4, Is and z-components of angular
momenta m4, ma

Zeeman energy operator; group operator

symmetry species

spin coupling operator; group operator

spin coupling operator

group operator

group identity element

symmetry species

group operator

generic group of equivalent nuclei

G14.mg = generic spin function for group of equivalent

nuclei with total spin I'¢ and z-component

of angular momentum mg

A;
B;

Qe HUaEe >

H, = applied magnetic field
H; = field at nucleus ¢
I = spin vector
I, I,, I, = cartesian components of I

I* =1, & il, = “raising” (4) and “lowering”
(—) operators

I? = I.I = square of the spin vector

Ir = total spin quantum number

Ig = total spin quantum number for group G

J = spin-spin coupling constant in circular fre-
quency units
Jge' = spin-spin coupling constant for groups G
and @&’
N = total number of nuclei, total number of spin
functions
P = permutation operator
P;i(t) = probability of transition of state k to state j
at time ¢
= transition probability
R = generic group operator
Z = groups of equivalent nuclei with large
chemical shifts

characteristic spacing for the ABC system
(a:y) = diagonalizing orthogonal matrix
characteristic spacing for the ABC system
(bs;) = diagonalizing orthogonal matrix
characteristic spacing for the ABC system

oo A
mnnnu

16 =

h=

h=

L k=

Lk

1

ma, mp,mg, * -

meg

T4, B, Nc, ° ° -
neg

T8

t

Ui

R
I

™
I

Y
Y
8
Ny
8
ES
A
'y
v
6
a5

-
i, i
x(R)

wy

W@

w
&

Numerical

statistical weight for the spin function with
total spin I4

Planck’s constant

Planck’s constant divided by 2=

4tk gpin, j** spin, ktb spin

summation indices

imaginary unit

z-components of angular momentum for
groups 4, B,C, - - .

generic z-component of angular momentum

number of nuclei in groups 4, B, C,

number of nuclei in group G

summation indices

time

product spin function

spin function for spin 1/2 nucleus with
m= +41/2

spin function for spin 1/2 nucleus with

= —1/2

gyromagnetic ratio, generic symmetry species

symmetry species

relative internal shift

projection operator for symmetry species

Eulerian angle

operator which transforms m; —» —m;

operator which transforms m — —m

magnetic moment of nucleus ¢

linear frequency

shielding tensor for nucleus ¢

averaged scalar shielding constant for
nucleus ¢

Eulerian angles

eigenfunctions for the 7** quantum states

character of the operator R

uncoupled angular Larmor frequency for
nucleus 7

uncoupled angular Larmor frequency for
group G

angular frequency of radiofrequency field

energy of 7tt level in angular frequency

XIII. APPENDIX
tables of the line frequencies and

relative intensities for some two-group systems

Tables 35, 36, 37, and 38 provide numerical data on the
resonance frequencies and relative intensities for the
systems: A,B, A3B, A3Bs, and 4 ;B,. All line frequencies
are given in units of the relative internal shift § =
w4 — wp. The transitions in groups A and B are so
labeled, while combination (mixed) transitions are pre-
fixed with the letter “M”. In the A;Bs; case, the
spectrum is symmetrical about 3(wa + ws), so that
only one-half of the spectrum is given in the table. The
center of symmetry is the frequency origin in this case,
while in the other systems the origin is at wp(assumed
< wa). The numbering of the lines corresponds, in each
case, to that given in the text. The frequencies and
intensities are given as a function of the ratio J/8, and
for 0 < J/8 £ 1, the usual interval of interest, the
increments in this parameter are 0.05. Additional data
are given for J/8 = 2, 3, 4, 5, 10, and .
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TABLE 35

Line frequencies and relative intensities for the AyB spin system

421

J/s Intensity Frequency J/8 Intensity Frequenoy J/8 Intensity Frequency J/s Intensity Frequency
Al....| 0.00 2.00000 1.00000 0.05 1.89640 1.02628 0.60 0.72727 1.50000 0.85 0.65603 1.55772
42.... 2.00000 1.00000 2.09615 0.97622 2.69169 0.82621 2.71695 0.81882
A3.... 2.00000 1.00000 2.10361 0.97506 3.26433 0.77379 3.33436 0.76390
A4.... 2.00000 1.00000 1.90386 1.02494 1.29991 1.22621 1.27345 1.23610
Bl.... 1.00000 0.00000 1.10361 0.04872 2.27273 0.40000 2.34397 0.41728
B2.... 1.00000 0.00000 0.90386 —0.05122 0.30831 —0.72621 0.28306 —0.79382
B3.... 1.00000 0.00000 0.99254 —0.00250 0.42737 —0.32621 0.38258 —0.37655
B4.... 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
Ml.... 0.00000 2.00000 0.00000 2.00250 0.00840 2.32621 0.00960 2.37655
Al....}] 0.10 1.,78632 1.05523 0.15 1.67123 1.08701 0.70 0.59227 1.61714 0.75 0.53542 1.67805
A2.... 2.18430 0.95474 2.26433 0.93537 2.73950 0.81203 2.75968 0.80578
A3. ... 2.21366 0.95049 2.32866 0.92664 3.39704 0.75510 3.45294 0.74728
A4, ... 1.81568 1.04951 1.73556 1.07336 1.24982 1.24490 1.22868 1.25272
Bl 1.21368 0.00477 1.32877 0.13799 2.40773 0.43286 2.46458 0.44695
B2.... 0.81570 —0.10474 0.73567 —0.16037 0.26050 —0.86203 0.24032 —0.93078
B3.... 0.97064 —0.00997 0.93568 —0.02237 0.34245 —0.42917 0.30674 —0.48383
B4.... 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
Mi.. 0.00002 2.00997 0.00011 2.02237 0.01089 2.42917 0.01164 2.48383
Al. 0.20 1.55300 1.12170 0.25 1.43377 1.15938 0.80 0.48487 1.74031 0.85 0.43998 1.80376
A2. 2.33643 0.91789 2.40100 0.90212 2.77778 0.80000 2.79405 0.79465
A3. 2.44667 0.90381 2.56548 0.88224 3.50269 0.74031 3.54691 0.73411
A4. 1.66324 1.09619 1.59826 1.11776 1.20978 1.25969 1.19284 1.26589
Bl.. 1.44700 0.17830 1.56623 0.21564 2.51513 0.45969 2.56002 0.47124
B2,. 0.66357 —0.21789 0.59900 —=0.27712 0.22222 —1.00000 0.20595 —1.06965
B3.. 0.88976 —0.03959 0.83552 ~0.06149 0.27509 —0.54031 0.24714 —0.59841
B4. 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
M1. 0.00034 2.03959 0.00074 2.08149 0.01245 2.54031 0.01311 2.59841
Al, 0.30 1.31579 1.20000 0.35 1.20117 1.24355 0.90 0.40014 1.86827 0.95 0.36477 1.93372
A2, 2.45859 0.88788 2.50981 0.87500 2.80871 0.78969 2.82196 0.78508
A3. 2.68284 0.86212 2.79660 0.84355 3.58623 0.72858 3.62120 0.72364
A4. 1.54004 1.13788 1.48796 1.15645 1.17766 1.27142 1.16401 1.27636
Bl.. 1.68421 0.25000 1.79883 0.28145 2.59986 0.48173 2.63523 0.49128
B2.. 0.54141 —0.33788 0.49020 —0.40000 0.19129 —1.13969 0.17804 —1.21008
B3.. 0.77575 —0.08788 0.71321 —0.11855 0.22249 —0.65796 0.20076 —0.71879
B4. 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
Mi. 0.00137 2.08788 0.00223 2.11855 0.01363 2.65796 0.01403 2,71879
Al, 0.40 1.09175 1.28990 0.45 0.98894 1.33890 1.00 0.33333 2.00000 2.00 0.08579 3.41421
A2, 2.55529 0.86332 2.59566 0.85272 2.83395 0.78078 2.94338 0.73205
A3. 2.90496 0.82657 3.00656 0.81118 3.65235 0.71922 3.90354 0.68216
A4. 1.44142 1.17343 1.39984 1.18882 1.15174 1.28078 1.04595 1.31784
Bl.. 1.90825 0.31010 2.01107 0.33610 2.66667 0.50000 2.91421 0.58579
B2.. 0.44471 —0.46332 0.40434 —0.52772 0.16605 —1.28078 0.05662 —2.73205
B3.. 0.65033 ~0.15322 0.58910 —0.19163 0.18160 —0.78078 0.03984 —2.14626
B4. 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
Ml.... 0.00329 2.15322 0.00450 2.19163 0.01432 2.78078 0.01067 4.14626
Al....| 0.50 0.89366 1.39039 0.55 0.80641 1.44415 3.00 0.03699 4.88600 4.00 0.02034 6.37228
A2.... 2.63151 0.84307 2.66335 0.83426 2.97225 0.71221 2.98385 0.70156
A3.... 3.10054 0.79732 3.18647 0.78489 3.95651 0.67379 3.97543 0.67072
A4.... 1.36270 1.20268 1.32953 1.21511 1.02125 1.32621 1.01212 1.32928
Bl.. 2.10634 0.35961 2.19359 0.38085 2.96302 0.61400 2.97966 0462772
B2.. 0.36850 —0.59307 0.33665 —0.65926 0.02775 —4.21221 0.01635 —5.70158
B3.. 0.53007 —0.23346 0.47688 —0.27842 0.01574 —3.59822 0.00822 —5.07384
B4. 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
Mi.. 0.00580 2.23346 0.00712 2.27842 0.00650 5.59822 0.00423 7.07384




422

P. L. CORIO

TABLE 35—Concluded

J/8

Intensity

Frequency

J/8

Fr J/8 Intensity Frequency
5.00 0.01281 7.86421 10.00 0.00309 15,34847 L 0.00000 @

2.98925 0.69493 2.99717 0.68115 3.00000 0.66667

3.98425 0.66927 3.99605 0.66732 4.00000 0.66667

1.00781 1.33073 1.00197 1.33268 1.00000 1.33333

- 2 2,98719 0.63579 2,99691 0.65153 3.00000 0.66667
B2, iiiiiiiiiiiiienes 0.01075 —7.19493 0.00283 —14.68115 0.00000 — o
2 T 0.00501 —6.55914 0.00112 —14.02961 0.00000 — o
7 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000
. 5 0.00294 8.55014 0.00086 16.02961 0.00000 ©
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TABLE 36
Line frequencies and relalive intensities for the A;B spin system

J/8 Intensity Frequency J/8 Intensity Frequency J/8 Intensity Frequency J/8 Intensity Frequency
Al.. 0.00 3.00000 1.00000 0.05 2.83863 1.02697 0.40 1,.34535 1.358268 0.45 1.16137 1.42697
A2.. 3.00000 1.00000 3.13899 0.97678 3.66448 0.88102 3.70088 0.87310
A3. 2.00000 1.00000 1.90012 1.02562 1.25722 1.23852 1.17927 1.27329
A4. 2.00000 1.00000 2.090088 0.97562 2.74278 0.83852 2.82073 0.82329
A5, 4.00000 1.00000 4.19900 0.97571 5.24658 0.85929 5.33451 0.84958
AB. 3.00000 1.00000 2.86104 1.02429 2.33271 1.14071 2.29570 1.15042
A7, 3.00000 1.00000 3.16141 0.97448 4.63898 0.81795 4.81807 0.80429
AS8. 4.00000 1.00000 3.80099 1.02552 2.73403 1.18205 2.64151 1.19571
Bl.. 1.00000 0.00000 1.16137 0.07303 2.65465 0.44174 2.83863 0.47303
B2,, 1.00000 0.00000 0.86101 —0.07678 0.33552 —0.68102 0.29912 —0.77310
B3.. 2.00000 0.00000 2.09988 0.02438 2.74278 0.16148 2.82073 0.17671
B4.. 2.00000 0.00000 1.90012 —0.02562 1,25722 —0.23852 1.17927 —0.27329
B5. 1.00000 0.00000 0.94000 —0.02928 0.41790 —0.42134 0.36637 —0.49579
Bg. 1.00000 0.00000 1.03765 0.02054 0.61041 —0.09857 0.51986 —0.14965
M1. 0.00000 2.00000 0.00000 2.02928 0.00281 2.42134 0.00342 2.49579
M2, 0.00000 2.00000 0.00001 1.979468 0.01568 2.09857 0.02056 2,14965
Al.. 0.10 2.65465 1.05826 0.15 2.45004 1.09441 0.50 1.00000 1.50000 0.55 0.86101 1.57678
A2, . 3.25724 0.95678 3.35710 0.93949 3.73205 0.86603 3.75888 0.85967
A3, 1.80099 1.05249 1.70332 1.08059 1.10557 1.30902 1.03616 1.34564
A4. 2.19901 0.95249 2.29668 0.93059 2.89443 0.80902 2.96384 0.79564
AS. 4.39218 0.95313 4.57449 0.93252 5.41025 0.84108 5.47545 0.83363
AB. 2.74271 1.04687 2.64269 1.06748 2.26399 1.15892 2,23669 1.16637
A7. 3.34525 0.94836 3.54948 0.92239 4.97487 0.79289 5.10993 0.78348
AS8. 3.60767 1.05164 3.42481 1.07761 2.56066 1.20711 2.49108 1.21652
Bi.. 1.34535 0.14174 1,54996 0.20559 3.00000 0.50000 3.13809 0.52322
B2,. 0.74276 —0.15678 0.64290 —0.23949 0.26795 —0.86603 0.24112 —0.95967
B3.. 2.19901 0.04751 2.29668 0.06941 2.89443 0.19098 2.96384 0.20436
B4. 1.80099 —0.05249 1.70332 —0.08059 1.10557 —0.30902 1.03616 —0.34564
B5. 0.86508 —0.06668 0.78262 —0.11151 0.32180 —0.57313 0.28343 —0.65297
B6. 1.04698 0.03184 1.02522 0.03358 0.43934 —0.20711 0.36995 —0.27009
M1. 0.00005 2.06668 0.00021 2.11151 0.00396 2.57313 0.00443 2.65297
M2. 0.00009 1.96816 0.00049 1.96643 0.02513 2.20711 0.02906 2.27009
Al.. 0.20 2.22042 1.13589 0.25 2,00000 1.18301 0.60 0.74276 1.65678 0.65 0.64290 1.73949
A2.. 3.44115 0.92450 3.51188 0.91144 3.78208 0.85394 3.80225 0.84875
A3. 1.60777 1.10890 1.51493 1.14039 0.97101 1.38310 0.91002 1.42134
A4, 2.39223 0.90890 2.48507 0.89039 3.02899 0.78310 3.08998 0.77134
A5. 4.74226 0.91402 4.80345 0.89758 5.53162 0.82709 5.58012 0.82131
AS6. 2.55833 1.08598 2.48717 1.10242 2.21309 1.17291 2.19261 1.17869
A7. 3.76904 0.89737 3.99641 0.87400 5.22503 0.77575 5.32257 0.76943
AS8. 3.25567 1.10263 3.10198 1.12600 2.,43135 1.22425 2.38022 1.23057
Bl.. 1.77058 0.26411 2.00000 0.31699 3.25724 0.54322 3.35710 0.56051
B2,, 0.55885 —0.32450 0.48814 —0.41144 0.21792 —1.05394 0.19775 —1.14875
B3.. 2.39223 0.09010 2.48507 0.10961 3.02899 0.21690 3.08998 0.22866
B4. 1.60777 —0.10990 1.51493 —0.14039 0.97101 —0.38310 0.91002 —0.42134
B5. 0.69889 —0.16302 0.61841 —0.22045 0.25046 —0.73406 0.22214 —0.81881
Bg. 0.97375 0.02559 0.89802 0.00797 0.31141 —0.33780 0.26268 —0.40955
Ml.. 0.00052 2.16302 0.00098 2.22045 0.00482 2.73406 0.00513 2.81881
M2.. 0.00155 1.97441 0.00359 1.99203 0.03221 2.33780 0.03453 2.40955
Al....| 0.30 1.77058 1.23589 0.35 1.54997 1.29441 0.70 0.55885 1.82450 0.75 0.48814 1.91144
A2.... 3.57143 0.90000 3.62177 0.88993 3.81987 0.84403 3.83533 0.83972
A3.... 1.42530 1.17202 1.33930 1.20474 0.85308 1.46033 0.80000 1.50000
A4. ... 2.57470 0.87202 2.66070 0.85474 3.14692 0.76033 3.20000 0.75000
A5.... 5.02745 0.88310 5.14475 0.87040 5.62210 0.81620 5.65857 0.81166
A6.... 2.42703 1.116890 2.37606 1.12960 2.17478 1.18380 2.15914 1.18834
A7.... 4.22266 0.85279 4.43912 0.83408 5.40507 0.76427 5.47489 0.76005
A8.... 2.96425 1.14721 2.84216 1.16592 2.33645 1.23573 2.29893 1.23995
Bi.... 2,22942 0.36411 2.45004 0.40559 3.44115 0.57550 3.51188 0.58856
B2.. 0.42857 —0.50000 0.37823 —0.58993 0.18013 —1,24403 0.16467 —1.33972
B3.... 2.57470 0.12798 2.66070 0.14526 3.14692 0.23967 3.20000 0.25000
B4.... 1.42530 —0.17202 1.33930 —0.20474 0.85308 —0.46033 0.80000 —0.50000
B5.... 0.54398 -—0.28310 0.47702 —0.35026 0.19777 —0.90426 0.17676 —0.99111
B6.... 0.80634 —0.01809 0.70780 —0.05474 0.22240 —0.48473 0.18921 —0.56283
Mli.... 0.00155 2.28310 0.00218 2.35026 0.00537 2.90426 0.00553 2.99111
M2.... 0.00676 2.01899 0.01092 2.05474 0.03608 2.48473 0.03697 2.56283
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TABLE 36—Concluded

J/8 Intensity Frequency J/8 Intensity Frequency J/8 Intensity Frequency J/8 Intensity Frequency
Al....|] 0.80 0.42857 2.00000 0.85 0.37823 2.08993 3.00 0.02434 6.28388 4.00 0.01320 8.27492
A2, ... 3.84895 0.83578 3.86100 0.83216 3.98248 0.77872 3.98970 0.77200
A3.... 0.75061 1.54031 0.70470 1.58122 0.10263 3.58114 0.05972 4.56155
A4.... 3.24939 0.74031 3.29530 0.73122 3.89737 0.58114 3.94029 0.56155
A5, 5.69035 0.80762 5.71816 0.80400 5.97075 0.76266 5.98324 0.75913
A8, . 2.14541 1.19238 2.13330 1.19600 2.01548 1.23734 2.00898 1.24087
AT. 5.53414 0.75660 5.58460 0.75378 5.96729 0.74250 5.98178 0.74379
AS8. 2.26671 1.24340 2.23896 1.24622 2.01884 1.25750 2.01042 1.25621
Bi.. 3.57143 0.60000 3.62177 0.61007 3.97566 0.71612 3.98680 0.72508
B2.. 0.15105 —1.43578 0.13900 —1.53216 0.01752 —5.77872 0.01030 —7.77200
B3.... 3.24939 0.25969 3.29530 0.26878 3.89737 0.41886 3.94029 0.43845
Bs.... 0.75081 —0.54031 0.70470 —0.58122 0.10263 —2.58114 0.05972 ~3.56155
B5. 0.15859 —1.07918 0.14284 —1.16831 0.01173 —5.32010 0.00646 ~7.30313
Bs. 0.16186 —0.64340 0.13927 —0.72609 0.00550 —4.82526 0.00278 —6.80605
Mi. 0.00564 3.07918 0.00570 3.16831 0.00204 7.32010 0.00132 9.30313
M2.. 0.03729 2.64340 0.03717 2.72609 0.00837 6.82526 0.00502 8.80605
Al....|] 0.90 0.33552 2.18102 0.95 0.29912 2.27310 5.00 0.00826 10.26970 10.00 0.00197 20.25961
A2. 3.87171 0.82882 3.88127 0.82574 3.99323 0.76783 3.99822 0.75914
A3. 0.66207 1.62268 0.62250 1.66466 0.03884 5.54951 0.00993 10.52494
A4. 3.33793 0.72268 3.37750 0.71466 3.96116 0.54951 3.99007 0.52494
A5, 5.74259 0.80074 5.76413 0.79781 5.98916 0.75711 5.99724 0.75335
A6. 2.12257 1.19926 2.11303 1.20219 2.00585 1.24289 2.00151 1.24665
AT. 5.62777 0.75146 5.66488 0.74956 5.98841 0.74476 5.99714 0.74712
A8. 2.21497 1.24854 2.19416 1.25044 2.00660 1.25524 2.00161 1.25288
Bl.. 3.66448 0.61898 3.70088 0.62690 3.99174 0.73030 3.99803 0.74039
B2.. 0.12829 —1.62882 0.11873 —1.72574 0.00677 —9.76783 0.00178 —19.75914
B3.. 3.33793 0.27732 3.37750 0.28534 3.96116 0.45049 3.99007 0.47506
B4. 0.66207 -0.62268 0.62250 —0.66466 0.03884 —4.54951 0.00993 —9.52494
B5, 0.12912 —1.25838 0.11714 —1.34928 0.00407 —9.29276 0.00008 —19.27163
BS6. 0.12055 —0.81059 0.10496 —0.89665 0.00166 —8.79463 0.00036 —18.77210
Mi.. 0.00572 3.25838 0.00570 3.34928 0.00091 11.29276 0.00027 21.27163
M2.. 0.03671 2.81059 0.03600 2.89665 0.00333 10.79463 0.00089 20.77210
Al....| 1.00 0.26795 2.36603 2.00 0.05855 4.30278 ® 0.00000 ®
A2. 3.88982 0.82288 3.96396 0.79129 4.00000 0.75000
A3. 0.58579 1.70711 0.21115 2.61803 0.00000 ®
A4, 3.41421 0.70711 3.78885 0.61803 4.00000 0.50000
A5. 5.78319 0.79516 5.93683 0.77026 6.00000 0.75000
AS. 2.10452 1.20484 2.03259 1.22974 2.00000 1.25000
AT. 5.69694 0.74799 5.92525 0.74122 6.00000 0.75000
AS8. 2.17604 1.25201 2.04352 1.25878 2.00000 1.25000
Bl.... 3.73205 0.63397 3.94145 0.69722 4.00000 0.75000
B2.... 0.11018 —1.82288 0.03604 —3.79129 0.00000 -
B3.... 3.41421 0.29289 3.78835 0.38197 4.00000 0.50000
B4.... 0.58579 —0.70711 0.21115 —1.61803 0.00000 —©
Bs.... 0.10663 —1.44091 0.02713 —3.35284 0.00000 —o
Bg.... 0.09191 —0.98406 0.01503 —2.86433 0.00000 -
Mi.... 0.00566 3.44091 0.00345 5.35284 0.00000 @
M2.... 0.03511 2.98406 0.01620 4.86433 0.00000 @
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TABLE 37
Line frequencies and relative iniensities for the A1Bs spin system
J/s Intensity | Frequenoy J/8 Intensity | Frequency J/8 Intensity | Frequency J/8 Intensity | Frequency

Al ....oovvns 0.00 2.00000 0.50000 0.05 2,21487 0.45013 0.70 5.26595 0.08474 0.75 5.35366 0.07701
A2, ... 2.00000 0.50000 2.19901 0.45249 3.62747 0.16023 3.66410 0.15139
A3, i 2.00000 0.50000 1.98654 0.50224 1.59935 0.49322 1.60086 0.48270
. 4.00000 0.50000 4.00000 0.50000 4.00000 0.50000 4.00000 0.50000
P ¥ 2.00000 0.50000 1.81445 0.54988 0.74740 1.11773 0.70015 1.15833
AB. ... ..o 2.00000 0.50000 1.98413 0.50274 0.35985 1.22725 0.30881 1.32007
P & A 2.00000 0.50000 1.80099 0.55249 0.37253 1.56023 0.33590 1.65139
Mi............ 0.00000 1.50000 0.00000 1.45512 0.02579 1.80521 0.02588 1.87979
M2............ 0.00000 1.50000 0.00000 1.55487 0.00167 2.83819 0.00163 2.96110
Al ..ovviiinen 0.10 2.46251 0.40113 0.15 2,73999 0.35400 0.80 5.42746 0.07044 0.85 5.48990 0.06481
A2... . .00iians 2.39223 0.40090 2.57470 0.37202 3.69600 0.14340 3.72387 0.13615
A3. ..ol 1.95243 0.50792 1.90650 0.51543 1.60483 0.47195 1.61071 0.46113
Ad .. ... 4.00000 0. 50000 4.00000 0. 50000 4.00000 0.50000 4.00000 0.50000
A5. ..., 1.65527 0.59915 1.51843 0.64741 0.67356 1.19900 0.64034 1.23979
AB. ... ..l 1.92969 0.51188 1.83459 0.52860 0.26696 1.41484 0.23246 1.51118
P ¥ 1.60777 0.60990 1.42530 0.67202 0.30400 1.74340 0.27613 1.83615
Mi............ 0.00007 1.42094 0.00037 1.39803 0.02562 1.95724 0.02508 2.03712
M2............ 0.00003 1.61896 0.00012 1.69144 0.00158 3.08579 0.00151 3.21209
S 0.20 3.04200 0.30975 0.25 3.35787 0.26928 0.90 5.54302 0.05996 0.95 5.58894 0.05574
A2, .0l 2.74278 0.33852 2.89443 0.30902 3.74831 0.12956 3.76984 0.12355
A3, oo, 1.85526 0.52322 1.80518 0.52998 1.61804 0.45033 1.62637 0.43965
Ad. ... 4.00000 0.50000 4.00000 0.50000 4.00000 0.50000 4.00000 0.50000
A5 . ..l 1.40074 0.69445 1.29754 0.74024 0.60929 1.28072 0.58020 1.32184
1 N 1.70049 0.55381 1.53606 0.58805 0.20386 1.60880 0.17954 1.70745
V¥ 1.25722 0.73852 1.10557 0.80902 0.25169 1.92956 0.23016 2.02355
Mi............ 0.00122 1.38678 0.00288 1.38732 0.02436 2.11909 0.02359 2.20283
M2............ 0.00028 1.77148 0.00050 1.85828 0.00143 3.33985 0.00135 3.46893
Al oo 0.30 3.67373 0.23322 0.35 3.97544 0.20182 1.00 5.62808 0.05205 2.00 5.90634 0.02232
A2, .. .o 3.02899 0.28310 3.14692 0.26033 3.78885 0.11803 3.94029 0.06155
A3, .o 1.75801 0.53474 1.71648 0.53694 1.63556 0.42914 1.81161 0.27475
Ad ..., 4.00000 0.50000 4.00000 0.50000 4.00000 0.50000 4.00000 0.50000
Ab. i 1.20752 0.78486 1.12774 0.82843 0.55292 1.36318 0.23917 2.23552
AB.. ... ...l 1.35451 0.63145 1.17049 0.68371 0.15950 1.80693 0.03365 3.84835
p: ¥ A 0.97101 0.88310 0.85308 0.96033 0.21115 2.11803 0.05972 4.06155
Ml............ 0.00547 1.39941 0.00885 1.42247 0.02267 2,28812 0.00894 4.14542
M2,............ 0.00075 1.95105 0.00009 2.04909 0.00127 3.59923 0.00029 6.35862
Al .ooieiiann 0.40 4.25184 0.17500 0.45 4.49640 0.15242 3.00 5.95830 0.01434 4.00 5.97655 0.01061
A2 ... e 3.24939 0.24031 3.33793 0.22268 3.97279 0.04138 3.98456 0.03113
A3, 1.68151 0.53644 1.65329 0.53340 1.89741 0.19571 1.93738 0.15066
Ad. ... ...l 4.00000 0.50000 4.00000 0.50000 4.00000 0.50000 4.00000 0.50000
A5, i 1.05648 0.87113 0.99244 0.91313 0.12550 3.16867 0.07557 4.13014
A6, ... s 0.99634 0.74418 0.84015 0.81197 0.01441 5.88705 0.00797 7.91160
AT . i 0.76061 1.04031 0.66207 1.12268 0.02721 6.04138 0.01544 8.03113
Ml......c.oves 0.01262 1.45563 0.01634 1.49778 0.00431 6.09710 0.00250 8.07287
M2.......0000 0.00121 2.15176 0.00138 2.25850 0.00008 9.25143 0.00003 12.19240
Al .ouenniinn, 0.50 4.70725 0.13356 0.55 4.88597 0.11786 5.00 5.98500 0.00843 10.00 5.99625 0.00418
A2, ... 0000 3.41421 0.20711 3.47988 0.19330 3.99007 0.02494 3.99750 0.01249
A3, e 1.63173 0.52814 1.61632 0.52111 1.95828 0.12207 1.98897 0.06212
Ad. . oiiiin. 4.00000 0.50000 4.00000 0.50000 4.00000 0.50000 4.00000 0.50000
A5, . oiiiiias 0.93449 0.95459 0.88162 0.99567 0.05002 5.10556 0.01311 10.05380
;1 0.70542 0.88607 0.59229 0.96550 0.00506 9.92780 0.00125 19.96286
AT ciiiiiians 0.58579 1.20711 0.52012 1.29330 0.00993 10.02494 0.00250 20.01249
Mi............ 0.01956 1.54777 0.02217 1.60447 0.00163 10.05831 0.00041 20.02916
M2......000000 0.00154 2.36881 0.00162 2.48227 0.00001 15.15543 0.00000 30.07878
- 0.60 5.03592 0.10480 0.65 5.16124 0.09390 ® 6.00000 0.00000

A2, . v 3.53644 0.18102 3.58525 0.17008 4.00000 0.00000

A3. .. oiieiinn. 1.60632 0.51270 1.60092 0.50330 2 400000 0.00000

Ad. . iviiiiinns 4.00000 0.60000 4.00000 0.50000 4.00000 0.50000

P 1 0.83322 1.03648 0.78863 1.07713 0.00000 ®

AB. . aiiiinnnn 0.40884 1.04935 0.42232 1.13682 0.00000 ®

V- ¥ A 0.46356 1.38102 0.41475 1.47008 0.00000 ®

Ml............ 0.02402 1.66685 0.02520 1.73402 0.00000 @

M2......000000 0.00168 2.59853 0.00169 2.71725 0.00000 ®
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TABLE 38
Line frequencies and relative iniensities for the A3B, spin system

J/8 Intensity Frequency J/8 Intensity Frequency J/8 Intensity Frequency J/8 Intensity Frequency
Al....| 0.00 3.00000 1.00000 0.06 2.69081 1.05383 0.20 1.76808 1.26235 0.25 1.50515 1.34650
A2 2.00000 1.00000 1.80771 1.05122 1.32714 1.21789 1.19800 1.27712
A3 3.00000 1.00000 3.28708 0.95365 3.95330 0.85208 4.11024 0.82793
A4 2.00000 1.00000 1.98508 1.00250 1.77953 1.03959 1.67103 1.06149
A5 2.00000 1.00000 2.20721 0.95128 2.89400 0.82170 3.13245 0.78436
A6 12.00000 1.00000 12.00000 1.00000 12.00000 1.00000 12.00000 1.00000
A7 4.00000 1.00000 3.61692 1.05103 2.69509 1.20794 2.45798 1.25940
A8 3.00000 1.00000 2.97284 1.00301 2.38893 1.07329 2.03210 1.12573
A9 3.00000 1.00000 3.33633 0.94894 4.83922 0.79765 5.45443 0.75560
Al0 4.00000 1.00000 3.97054 1.00244 3.64181 1.02684 3.51396 1.03278
All 3.00000 1.00000 2.73116 1.04862 2.19304 1.17551 2.07115 1.21162
A12 3.00000 1.00000 2.98175 1.00202 2.85171 1.01431 2.81489 1.01593
Al13 4.00000 1,00000 4.41251 0.95147 5.65470 0.83149 6.00914 0.80158
Bi.. 2.00000 0.00000 2.30919 0.07117 3.23193 0.23765 3.49485 0.27850
B2.. 4.00000 0.00000 4.19229 0.02378 4.67286 0.08211 4.80200 0.09788
B3.. 2.00000 0.00000 1.71292 —0.07865 1.04671 —0.35208 0.88977 —0.45293
B4. 4.00000 0.00000 3.80771 —0.02494 3.32648 —0.09619 3.19652 —0.11776
B5. 4.00000 0.00000 4,20721 0.02494 4.89333 0.09619 5.13097 0.11776
BS.. 4.00000 0.00000 3.79279 —0.02628 3.10600 —0.12170 2.86755 —0.15936
B7.. 2.00000 0.00000 2.33634 0.07478 3.84190 0.28112 4.46083 0.33638
BS. 2.00000 0.00000 2.07388 0.02035 2.06969 0.04859 2.03914 0.05772
B9.... 2.00000 0.00000 1.73116 —0.07484 1.19341 —0.29372 1.07188 —0.36458
B10... 2.00000 0.00000 1.87457 —0.03027 1.29841 —0.18985 1.10080 —0.26494
Bil... 2.00000 0.00000 1.88577 —0.02824 1.50233 —0.13251 1.38730 —0.16890
Bi2... 2.00000 0.00000 2.07618 0.02071 1.81624 0.00549 1.55627 —0.03374
Mi. 0.00000 —1.00000 0.00001 —0.90788 0.00329 —0.74357 0.00803 —0.73162
M2, 0.00000 2.00000 0.00001 2.03370 0.00110 2.23263 0.00192 2.32740
M3. 0.00000 2.00000 0.00001 1.98376 0.00159 2.03565 0.00300 2.08245
M4. 0.00000 —1.00000 0.00000 —1.10713 0.00019 —1.49787 0.00030 —1.64545
M5. 0.00000 3.00000 0.00000 3.00753 0.00000 3.12702 0.00000 3.20264
M8. 0.00000 2.00000 0.00001 1.93067 0.00597 1.81900 0.01443 1.82212
M7 0.00000 2,00000 0.00001 2.07930 0.00057 2.33486 0.00102 2.41329
M8 0.00000 —1.00000 0.00001 —1.00997 0.00082 —1.15385 0.00144 —1.23542
M9 0.00000 —1.00000 0.00000 —1.00250 0.00067 —1.03959 0.00149 —1.08149
Al....| 0.10 2.37259 1.11554 0.15 2.06044 1.18515 0.30 1.27627 1.43681 0.36 1.08169 1.53240
A2. 1.63141 1.10474 1.47134 1.16037 1.08283 1.33788 0.98039 1.40000
A3. 3.54341 0.91410 3.76534 0.88053 4.,24027 0.80737 4.34769 0.78976
A4. 1.94128 1.00097 1.87135 1.02237 1.55150 1.08788 1.42642 1.11855
A5, ., 2.42736 0.90523 2.65754 0.86201 3.36842 0.75000 3.59766 0.71855
46. . 12.00000 1.00000 12.00000 1.00000 12.00000 1.00000 12.00000 1.00000
A7, 3.27099 1.10331 2.96460 1.15583 2.24844 1.31028 2.06194 1.36075
AS8. 2.87275 1.01419 2.67892 1.03669 1.65864 1.19428 1.31588 1.27769
A9, 3.75441 0.89675 4.25941 0.84548 6.050684 0.72076 6.58156 0.69328
A10 3.88909 1.00910 3.77276 1.01810 3.40196 1.03427 3.31352 1.03091
A11 2.51488 1.09415 2.33849 1.13642 1.96723 1.24498 1.87783 1,27580
Al2, 2.94153 1.00835 2.89540 1.01089 2.78667 1.01562 2.76641 1.01355
Al13. 4.83939 0.90666 5.25994 0.86651 6.31618 0.77641 8.57539 0.75540
Bi.. 2.62741 0.13446 2.93957 0.18985 3.72374 0.31319 3.91831 0.34260
B2.. 4.36860 0.04526 4.52866 0.06463 4.91717 0.11212 5.01961 0.12500
B3. 1.45659 —0.16410 1.23466 —0.25553 0.75974 —0.55737 0.65231 —0.66476
B4. 3.63136 —0.04951 3.47111 —0.07336 3.08008 —0.13788 2.97593 —0.15645
B5. 4.42732 0.04951 4.65731 0.073368 5.36568 0.13788 5.59319 0.15645
B6. . 3.57264 —0.05523 3.34248 —0.08701 2.63158 —0.20000 2.40235 —0.24355
B7.. 2.75454 0.14803 3.26018 0.21763 5.06234 0.38227 5.59901 0.41896
BS.. 2.10145 0.03312 2.00490 0.04139 2.01299 0.07067 1.99743 0.08789
B9.. 1.51492 —0.14891 1.33864 —-0.22187 0.96842 —0.43467 0.87963 —0.50419
B10. 1.70399 —-0.07185 1.50530 —0.12517 0.92371 —0.34911 0.77185 —0.44006
Bil... 1.75615 —0.06110 1.62624 —0.09834 1.28190 —0.20532 1.18499 —0.24194
Bi2... 2.08504 0.03059 2.00081 0.02642 1.26810 —-0.09128 0.99756 —0.16545
Ml.... 0.00015 —0.83304 0.00093 —0.77767 0.01483 —0.74134 0.02232 —0,77084
M2.... 0.00012 2,08438 0.00046 2.15113 0.00276 2.43387 0.00342 2.55055
M3.... 0.00014 1.98485 0.00062 2.00257 0.00464 2.14115 0.00627 2.20992
M4.... 0.00003 —1.22710 0.00010 —1.35793 0.00038 —1.79940 0.00045 —1.95871
M5.... 0.00000 3.03050 0.00000 3.06992 0.00001 3.29657 0.00002 3.40739
M6.... 0.00028 1.87525 0.00170 1.83716 0.02652 1.84628 0.03976 1.88964
M7.... 0.00007 2.16435 0.00025 2.25086 0.00157 2.48456 0.00222 2.54866
MSs.... 0.00008 —1.03960 0.00034 —1.08802 0.00207 —1.33084 0.00254 -=1.43831
M9.... 0.00005 -1.00997 0.00023 —1.02237 0.00275 —1.08788 0.00447 —1.11855
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TABLE 38—Continued

J/8 Intensity Frequency J/8 Intensity Frequency J/8 Intensity Frequency J/8 Intensity Frequency
Al. 0.40 0.91886 1.63246 0.45 0.78380 1.73623 0.60 0.50354 2,06394 0.65 0.43997 2.177117
A2, 0.88942 1.46332 0.80868 1.52772 0.61662 1.72621 0.56611 1.79382
A3. 4.43649 0.77460 4,51012 0.76146 4.66600 0.73107 4.70264 0.72319
A4, 1.30087 1.15322 1.17820 1.19163 0.85473 1.32621 0.76517 1.37655
AS. 3.81650 0.68990 4.02213 0.66390 4.54546 0.60000 4.68793 0.58272
46, 12.00000 1.00000 12.00000 1.00000 12.00000 1.00000 12.00000 1.00000
A7, 1.89490 1.41118 1.74410 1.46185 1.36828 1.61775 1.26374 1.67155
AS8. 1.03032 1.37367 0.80666 1.47960 0.41427 1.83505 0.34184 1.96085
A9.. 7.02442 0.687235 7.37932 0.65669 8.04950 0.62972 8.18647 0.62468
Al0. 3.25156 1.02335 3.21495 1.01287 3.21663 0.97215 3.24000 0.95812
All. 1.80014 1.30430 1.73203 1.33064 1.57026 1.39813 1.52721 1.41720
A12, 2.75314 1.01004 2.74568 1.00541 2.74690 0.98781 2.75213 0.98140
Al3. 6.79072 0.73790 6.96805 0.72330 7.33265 0.69201 7.41487 0.68453
Bi.. 4.08114 0.36754 4.21620 0.38877 4.49646 0.43606 4.56003 0.44783
B2,. 5.11058 0.13668 5.19133 0.14728 5.38338 0.17379 5.43389 0.18118
B3.. 0.56351 —0.77460 0.48989 —0.88646 0.33400 —1.23107 0.29736 —1.34819
B4, 2.88284 —0.17343 2.79967 —0.,18832 2.59981 —0.22621 2.54690 —0.23610
B5. 5.80991 0.17343 6.01313 0.18882 6.52865 0.22621 6.66873 0.23610
B8. . 2.18350 —0.28990 1.97787 —0.33890 1.45455 —0.50000 1.31207 —0.55772
B7.. 6.04688 0.44761 6.40536 0.46977 7.07832 0.51114 7.21461 0.51978
BS.. 1.99530 0.10876 2.00663 0.13215 2.10005 0.20717 2.14250 0.23150
B9.. 0.80267 —0.57334 0.73541 —0.64226 0.57674 —0.84875 0.53484 —0.91773
B10. 0.64529 —0.53916 0.54154 —0.64250 0.33288 —0.97433 0.28730 —1.08999
Bil 1.09579 —0.27907 1.01323 —0.31703 0.79920 —0.43843 0.73766 —0.48192
Bi2. 0.77108 —0.25371 0.59450 —0.35314 0.29082 —0.69419 0.23635 —0.81639
M1. 0.02366 —0.81730 0.03307 —0.87768 0.03520 -1.11675 0.03373 —1.20957
M2. 0.00394 2.67609 0.00418 2.80930 0.00387 3.24564 0.00359 3.40089
M3. 0.00769 2.28709 0.00879 2.37122 0.01036 2.65415 0.01040 2.75591
M4. 0.00048 —2.12253 0.00052 —2.29017 0.00047 -2.81082 0.00046 —2.98911
M5, 0.00003 3.53278 0.00006 3.67016 0.00009 4.13263 0.00010 4.29832
Mé6. 0.05108 1.94941 0.05905 2.02250 0.06394 2.29607 0.06177 2.39919
M7. 0.00298 2.60672 0.00385 2.66034 0.00686 2.80871 0.00799 2.85725
M8, 0.00291 —1.55613 0.00302 —1.68283 0.00270 —2.10478 0.00245 —2.25644
M9. 9.00658 —1.15322 0.00001 —1.19163 0.01681 —1.32621 0.01921 —1.37655
Al. 0.50 0.67218 1.84307 0.55 0.57995 1.95246 0.70 0.38680 2.29186 0.75 0.34208 2.40776
A2. 0.73699 1.59307 0.67329 1.65926 0.52101 1.86203 0.48084 1.93078
A3. 4.57143 0.75000 4.62277 0.73995 4.73387 0.71616 4.76085 0.70985
A4. 1.06193 1.23346 0.95377 1.27842 0.68491 1.42917 0.61347 1.48383
A5, 4.21268 0.64039 4.38718 0.61915 4.81546 0.56714 4.92916 0.55305
AB. 12.00000 1.00000 12.00000 1.00000 12.00000 1.00000 12.00000 1.00000
AT. 1.60713 1.51304 1.48239 1.56495 1.16788 1.72640 1.07993 1.78234
AS8. 0.63702 1.59307 0.50982 1.71207 0.28623 2.08859 0.24290 2.21766
A9.. 7.65848 0.64503 7.87721 0.63631 8.29662 0.62076 8.38625 0.61767
AlQ. 3.20005 1.00000 3.20204 0.98627 3.26911 0.94448 3.30171 0.93141
All 1.67178 1.35496 1.61820 1.37742 1.48837 1.43476 1.45322 1.45091
A12 2.74285 1.00000 2.74356 0.99406 2.75867 0.97494 2.76609 0.96853
A13. 7.11376 0.71107 7.23363 0.70076 7.48362 0.67808 7.54147 0.67248
Bi. 4.32782 0.40693 4.42005 0.42255 4.61320 0.45814 4,65793 0.46724
B2, 5.26301 0.15693 5.32671 0.16574 5.47900 0.18797 5.51936 0.19422
B3. 0.42857 —1.00000 0.37724 —1.11495 0.26613 —1.46616 0.23935 —1.58485
B4, 2.72539 —0.20268 2.65905 —0.21511 2.49963 —0.24490 2.45737 —0.25272
B5. 6.20108 0.20268 6.37294 0.21511 6.79400 0.24490 6.90588 0.25272
B6.. 1.78732 —0.39039 1.61282 —0.44415 1.18454 —0.61714 1.07084 —0.67805
BT.. 6.68659 0.48696 6.90614 0.50043 7.32371 0.52686 7.41208 0.53276
BS.. 2.02969 0.15693 2.06166 0.18216 2.18709 0.25488 2.23240 0.27714
B9.. 0.67612 —-0.71107 0.62358 —0.77988 0.49716 —0.98686 0.46315 —1.05617
B10. 0.45715 —0.75000 0.38863 —0.86083 0.24982 —1.20737 0.21879 —1.32616
Bli... 0.93656 —0.35611 0.86541 ~0.39652 0.68057 —0.52704 0.62769 —0.57379
Bl12... 0.46188 ~0.46107 0.36363 —0.57533 0.19509 —0.94097 0.16336 —1.06723
Ml.... 0.03536 —0.94918 0.03590 —1.02948 0.03183 —1.30685 0.02974 —1.40776
M2.... 0.00421 2.94918 0.00410 3.09486 0.00327 3.56011 0.00294 3.72286
M3.... 0.00960 2.46107 0.01010 2.55566 0.01030 2.86039 0.01010 2.98717
M4.... 0.00051 | /—2.46107 0.00050 —2.63477 0.00043 —3.16918 0.00039 —3.35086
Ms.... 0.00007 3.81718 0.00008 3.97185 0.00010 4.46801 0.00010 4.64101
M6. ... 0.06340 2.10611 0.06474 2.19791 0.05882 2.50621 0.05548 2.61631
M7.... 0.00478 2.71107 0.00380 2.76021 0.00911 2.90628 0.01023 2.95611
MS.... 0.00301 —1.81718 0.00288 —1.95812 0.00221 —2.41249 0.00197 —2.57243
M9.... 0.01160 —1.23346 0.01424 —1.27842 0.02138 —1.42917 0.02328 —1.48383
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TABLE 38—Continued

J/8 Intensity Frequency J/8 Intensity Frequency J/8 Intensity Frequency J/8 Intensity Frequency
Al....| 0.8 0.30422 2.52470 | 0.85 0.27200 2.64250 1.00 0.20000 3.00000 2.00 0.05051 5.44949
A2.... 0.44444 2.00000 0.41190 2.,06965 0.33211 2.28078 0.11325 3.73205
Us.... 4.78375 0.70416 4.80379 0.69901 4.85005 0.68614 4.95677 0.64575
U4.... 0.55019 1.54031 0.49428 1.59841 0.36319 1.78078 0.07967 3.14626
A5.... 5.03026 0.54031 5.12004 0.52876 5.33334 0.50000 5.82843 0.41421
AB.... 12,00000 1.00000 12.00000 1.00000 12.00000 1.00000 12.00000 1,00000
AT.... 0.99926 1.83936 0.92530 1.89745 0.73859 2.07772 0.21674 3.42349
AS8.... 0.20864 2.34759 0.18117 2.47806 0.12515 2,87056 0.02886 5.44949
A9.... 8.46000 0.61521 8.52134 0.61322 8.65386 0.60911 8.91359 0.60202 .
A410.. 3.33609 0.91903 3.37101 0.90738 3.47168 0.87687 3.82280 0.78246
All. .. 1.42133 1.46576 1.39232 1.47940 1.31962 1.51402 1.10843 1.61552
Al2. .. 2.77405 0.96223 2.,78228 0.95608 2.80704 0.93872 2.91365 0.86329
Al3... 7.59049 0.66758 7.63231 0.66328 7.72619 0.65302 7.92684 0.62521
Bl.... 4.69578 0.47531 4.72800 0.48250 4 .80000 0.60000 4.94949 0.55051
B2.... 5.55556 0.20000 5.58810 0.20535 5.66789 0.21922 5.88675 0.26795
B3.... 0.21625 —1.70416 0.19621 —1.82401 0.14995 -2,18614 0.04323 —4.64575
B4.... 2.41956 —0.25969 2.38569 —0.26589 2.30348 —0.28078 2.09190 —0.31784
B5.... 7.00537 0.25969 7.09382 0.26589 7.30470 0.28078 7.80708 0.31784
BS.... 0.96974 —0.74031 0.87997 —0.80376 0.66667 —1.00000 0.17157 —2.41421
BT.... 7.48451 0.53774 7.54450 0.54200 7.67326 0.55173 7.92048 0.57651
B8 2.27734 0.29820 2.32114 0.31805 2.44131 0.37056 2.82828 0.55051
B9.... 0.43238 —1.12566 0.40444 ~1.19534 0.33453 —1.40560 0.12613 —2,84275
Bi0... 0.19290 —1.44609 0.17115 —1.56694 0.12361 —1.93356 0.02989 —4,42822
Bli... 0.57883 —0.62213 0.53379 —0.67202 0.41955 —0.83030 0.10837 —2.09052
Bi2... 0.13858 —1.19464 0.11894 —1.32284 0.07969 —1.70972 0.01661 —4.27096
Mi.... 0.02762 —1.51165 0.02556 —1.61801 0.02010 —1.94827 0.00550 ~4.32247
M2.... 0.00263 3.88375 0.00233 4.05745 0.00159 4.57772 0.00014 8.32247
M3.... 0.00982 3.07590 0.00949 3.18630 0.00838 3.52530 0.00345 5.91671
M4.... 0.00036 —3.53398 0.00034 —3.71836 0.00026 —4.27788 0.00005 —8.13425
M5.... 0.00010 4.81677 0.00009 4.99486 0.00008 5.54001 0.00002 9.36148
Mé.... 0.05203 2.72883 0.04863 2.84344 0.03942 3.19570 0.01237 5.685545
M7.... 0.01132 3.00692 0.01236 3.05880 0.01508 3.22118 0.01773 4.48850
MS.... 0.00173 —2.73580 0.00152 —2.90224 0.00101 —3.41688 0.00008 —7.14395
M9.... 0.02489 —1.54031 0.02622 —1.59841 0.02863 —1.78078 0.02135 —3.14626
Al....] 0.90 0.24439 2.76108 0.95 0.22061 2.88025 3.00 0.02222 7.93273 4.00 0.01240 10.42443
A2.... 0.38258 2.13969 0.35609 2.21008 0.05550 5.21221 0.03270 6.70156
A3.... 4.82126 0.69433 4.83657 0.69005 4.98000 0.63104 4.98855 0.62348
A4. ... 0.44497 1.65796 0.40151 1.71879 0.03148 4.59822 0.01644 6.07384
Ab.... 5.19972 0.50827 5.27046 0.50872 5.926C3 0.38600 5.95932 0.37228
AB.... 12.00000 1.00000 12.00000 1.00000 12.000C0 1.00000 12.00000 1.00000
AT, ... 0.85753 1.95657 0.79545 2.01667 0.09497 4.86824 0.05225 6.34128
A8.... 0.15884 2.60881 0.14046 2.73969 0.01272 7.98019 0.00715 10.49496
A9.... 8.57286 0.61159 8.61654 0.61024 8.96163 0.60087 8.97836 0.60049
Al0. .. 3.40561 0.89648 3.43928 0.88631 3.91785 0.75671 3.95328 0.74681
All... 1.36587 1.49193 1.34172 1.50344 1.05170 1.64241 1.02984 1.65270
Al2... 2.79061 0.95010 2.79889 0.94431 2.95387 0.82687 2.97172 0.80613
A13. 7.66821 0.65946 7.69923 0.65606 7.96693 0.61651 7.98118 0.61228
Bl.... 4.75561 0.48894 4.77940 0.49475 4.97778 0.56727 4.98760 0.57557
B2.... 5.61743 0.21031 5.64391 0.21492 5.94451 0.28779 5.96730 0.29844
B3.... 0.17874 —1.94433 0.16343 -2.06505 0.02)C0 —7.13104 0.01145 —9.62348
B4.... 2.35531 —0.27142 2.32803 —0.27636 2.04219 -=0.32621 2.02424 —0.32928
B5.... 7.17245 0.27142 7.24240 0.27636 7.91303 0.32621 7.95087 0.32928
B6.... 0.80028 —0.86827 0.72954 —0.93372 0.07397 —3.88600 0.04068 —5.37228
BT.... 7.58471 0.5¢4568 7.63713 0.54889 7.96508 0.58430 7.98044 0.58819
BSs.... 2.36326 0.33670 2.40337 0.35418 2.92485 0.61473 2.95883 0.64610
B9.... 0.37900 —1.26523 0.35577 —1.33531 0.06437 —4.31234 0.03871 —5.79493
B10... 0.15274 —1.68856 0.13706 —1.81080 0.01308 —6,93522 0.00738 —9.44082
Bli... 0.49238 —0.72339 0.45439 —0.77618 0.04329 —3.49680 0.02242 —4.94837
Bi2... 0.10315 —1.45154 0.09029 —1.58055 0.00704 —6.79502 0.00382 —9.30628
Mi.... 0.02360 —1.72643 0.02178 -1.83661 0.00239 —6.78116 0.00132 —9.26067
M2.... 0.00206 4.22868 0.00181 4.40218 0.00003 12.23370 0.00001 16.19014
M3.... 0.00913 3.20812 0.00876 3.41117 0.00176 8.37860 0.00103 10.85923
M4.... 0.00031 —3.90388 0.00028 ~4.09042 0.00001 —12.07443 0.00000 —16.04188
Ms.... 0.00009 5.17493 0.00008 5.35673 0.00001 13.29181 0.00000 17.25465
MS.... 0.04536 2.95961 0.04228 3.07711 0.00578 8.15260 0.00340 10.65358
M7.... 0.01334 3.11180 0.01425 3.16594 0.01268 5.89592 0.00883 7.34788
MS8.... 0.00133 -3.07141 0.00116 —3.24304 0.00001 —11.04852 0.00000 ~15.00146
M9.... 0.02727 —1.65796 0.02806 —1.71879 0.01301 —4.59822 0.00846 —6.07384
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TABLE 38—Concluded
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J/8 Intensity Frequency J/8 Intensity Frequency J/8 Intensity Frequenoy

I 5.00 0.00789 12,91948 10.00 0.00195 25.40967 ® 0.00000 @

7 2 0.02150 8.19493 0.00566 15.68115 0.00000 @
7 - 2 4.99260 0.61887 4.99811 0.60952 5.00000 0.60000

7 0.01001 7.55914 0.00224 15.02961 0.00000 @
7 ¥ 5.97437 0.36421 5.99382 0.34847 6.00000 0.33333
7 L 12.00000 1.00000 12.00000 1.00000 12.00000 1.00000

7 0.03284 7.82550 0.00784 15.29514 0.00000 @

7 0.00458 13.00345 0.00115 25.51929 0.00000 ]
7 R 8.98615 0.60031 8.99656 0.60008 9.00000 0.60000
7 5 3.96996 0.74206 3.99243 0.73555 4.00000 0.73333
7 1 G 1.01933 1.65763 1.00491 1.66437 1.00000 1.66667
7§ 2 2.98097 0.79284 2.99477 0.76436 3.00000 0.73333
7 7.98788 0.60977 7.99698 0.60484 8.00000 0.60000
2 2 4.99211 0.58052 4.99805 0.59033 5.00000 0.60000
22 5.97851 0.30507 5.99435 0.31885 '6 . 00000 0.33333

22 2 0.00741 —12,11887 0.00189 —24.60952 0.00000 -
2 Z 2.01562 —0.33073 2.00394 —0.33268 2.00000 —0.33333
1 7 7.96850 0.33073 7.99211 0.33268 8.00000 0.33333

£ 0.02563 —6.86421 0.00818 —14.34847 0.00000 —o
2 7.98753 0.59053 7.99690 0.59524 8.00000 0. 50000
B8....iiiiiiiians aeeieeeseans e 2.97422 0.66448 2.99390 0.69995 3.00000 0.73333

- 1 0.02576 —7.28374 0.00693 —14.75966 0.00000 -

2 2 1 0.00471 —11.94489 0.00113 —24.45469 0.00000 -

2 2 0.01352 —6.41896 0.00293 —13.85965 0.00000 -

2 25 2N 0.00241 —11.81261 0.00061 —24.32398 0.00000 - o

7 5 S 0.00083 —11.74843 0.00020 —24,.22411 0.00000 -

0.00001 20.16448 0.00000 40.11449 0.00000 ®

0.00068 13.34751 0.00019 25.82388 0.00000 —o

0.00000 —20.02148 0.00000 —39.97870 0.00000 -

0.00000 21.23157 0.00000 41.18362 0.00000 ®

0.00221 13.15498 0.00054 25.65960 0.00000 @

0.00643 8.81865 0.00202 16.25956 0.00000 ]

0.00000 —18.97363 0.00000 —38.91917 0.00000 — o

0.00588 —7.55914 0.00172 —15.02961 0.00000 -




