
THEORIES OF DETONATION1 

MARJORIE W. EVANS AND C. M. ABLOW 

Stanford Research Institute, Menlo Park, California 

Received May 16, 1960 

CONTENTS 

I. Introduction 130 
II. Nonreactive flow 131 

A. Flow equations; equations of state; sound speed 131 
B. Hyperbolic flow; characteristic equations 131 
C. Hyperbolic flow; initial value problems 133 
D. Hyperbolic flow; simple waves 134 
E. Shocks 135 
F. Interactions 137 

II I . One-dimensional, steady-state reaction waves with instantaneous reaction 137 
A. Discontinuity equations 137 
B. The six classes of reaction waves; Jouguet's rule 139 
C. Existence and uniqueness of classes of reaction waves 140 

1. Strong detonations 141 
2. Weak detonations 141 
3. Chapman-Jouguet detonations; the Chapman-Jouguet hypothesis (Brinkley and 

Kirkwood); flow behind a Chapman-Jouguet wave (Taylor) 142 
4. Deflagrations 144 

D. Explicit solutions of equations for Chapman-Jouguet steady detonations 145 
E. Comments on experimental observations 145 

IV. One-dimensional, steady-state reaction waves with finite reaction rate 146 
A. Existence, uniqueness, and mechanism of propagation of deflagration waves 146 
B. The detonation wave as a discontinuous shock followed by a deflagration 147 

1. The Zeldovich-von Neumann-Doering model; the Chapman-Jouguet hypothesis; 
pathological weak detonations 147 

2. Explicit solutions of equations for Chapman-Jouguet detonations with invariant prod­
uct composition (Eyring; Doering; Paterson) 148 

3. Chapman-Jouguet detonation with varying product composition; frozen sound speed 
(Brinkley and Richardson; Kirkwood and Wood) 150 

C. Steady detonation waves in real fluids (Friedrichs; Hirschfelder and Curtiss; Cook) 152 
D. Comments on experimental observations 155 

V. Three-dimensional, axially symmetric, steady-state detonation waves with finite reaction 
rate 157 

A. Diverging flow within the steady zone 157 
1. Cylindrically symmetric flow (Wood and Kirkwood) 157 
2. Flow described in spherical coordinates (Eyring, Powell, Duffey, and Parlin) 159 
3. Prandtl-Meyer flow (H. Jones) 162 
4. Divergence due to boundary layer (Fay) 164 

B. Parallel flow within the steady zone 165 
1. Interposition of side rarefaction wave (Cook; Hino) 165 
2. Inhibition of chemical reaction at side boundary (Manson) 166 
3. Stability of waves in which reaction is not complete (Schall) 166 

C. Comments on experimental observations 167 
VI. One-dimensional, transient reaction waves 167 

A. Shock sensitivity of homogeneous solids; rectangular pressure pulse at solid boundary 
(Hubbard and Johnson) 168 

B. Formation of initiating shocks in the interior of the reactants 169 
1. Continually increasing pressure at rear boundary (Ma6ek) 169 
2. Continually increasing material velocity at rear boundary (Popov) 170 
3. Successive formation of shocks of increasing strength (Oppenheim) 171 

VII. Three-dimensional, transient detonation waves 173 
A. Initiation of detonation waves at a point (Taylor) 173 
B. Detonation waves with fluctuating velocity (Manson; Fay; Chu; Shchelkin) 174 

VIII. References 176 

1 The preparation of this review was supported by the Stanford Research Institute. 

129 



130 MARJORIE W. EVANS AND C. M. ABLOW 

I. INTRODUCTION 

The progressive character of reaction waves in sub­
stances capable of exothermic reaction was first ob­
served and described by Berthelot and Vielle (11) 
and Mallard and Le Chatelier (85) in 1881, who de­
scribed the existence in gases of two types of waves. 
The first, now generally called a deflagration wave, 
moved at a relatively slow velocity of the order of 
1 to 1000 meters per second, and its motion was 
markedly influenced by compression and rarefaction 
waves created by the reaction and by reflection from 
open or closed boundaries of the containing vessel. 
The second, a detonation wave, had a higher velocity 
of about 2000 meters per second, which was constant 
after the lapse of a period during which the velocity 
either increased or decreased to the constant value from 
the initial velocity. This steady detonation wave, 
once established, was unaffected by downstream 
boundary conditions. Transition from one type of wave 
to the other was observed and described by these investi­
gators. The earliest description of detonation in 
condensed material was in a book, written by Berthe­
lot and published in 1883, which described the conclu­
sions of a committee appointed by the French govern­
ment to study explosive substances (9, 10). The first 
theoretical descriptions of these two types of waves 
were given independently by Chapman (20) and by 
Jouguet (68, 69) more than a decade later. 

The concern of the present paper is with the various 
theoretical descriptions of reaction waves and in par­
ticular of detonation waves. I t considers the general 
phenomenon of detonation and of reaction waves which 
develop into detonation, without restriction as to 
phase of the material, and includes both steady and 
time-dependent waves. The extensive literature on 
experimental investigations of reaction waves will be 
referred to only as necessary to illuminate a theoretical 
point. The complexity of the detonation process has 
meant that the model assumed as the basis for each 
theoretical treatment deviates in one way or another 
from actuality; particular aims of this paper are to 
state explicitly the model on which a given theory is 
based and to relate the several theories to one another. 

The arrangement of material is in the order of 
increasing complexity of the system, though not neces­
sarily increasing complexity of formulation. The 
latter is determined by the quality of the assumptions. 
Section II concerns certain limited aspects of nonreac-
tive flow, an understanding of which is necessary to 
treat the more complex problem of reactive flow. 
In Section III one-dimensional, steady-state models 
which incorporate the assumption of instantaneous 
reaction are considered. In Section IV the steady-state 
and the one-dimensional simplifications are retained, 
but the consequences of allowing the reaction time to be 
greater than zero are examined. In Section V the steady-

state wave is allowed both a reaction time greater 
than zero and three dimensions in space. In Section VI 
the steady-state assumption is dropped but the one-
dimensional simplification is retained, and the problem 
of transition from transient deflagration or detonation 
to steady detonation is considered. Finally, Section 
VII concerns three-dimensional transient waves. 

Insofar as possible the notation is consistent through­
out, even though this may mean that it differs from 
that of the original papers of the authors cited. The 
following notation is used consistently, with special 
notations appropriate to individual sections indicated 
at the beginning of each section. 

t = time coordinate [t] 
x,y,z = space coordinates [I] 

£ = space coordinate within reaction wave [I] 
~q = material velocity vector [It-1] 
u = material velocity in x direction [It-1] 
U = velocity of wave with respect to observer [U-1] 
v=u—U [It'1] (except in Section H1B) 
p = pressure [ml'H'2] 
T = temperature [0] 
T = specific volume [m~H3] 
p = density [ml~3] 

V = volume per mole [Is] 
S = specific entropy [W-2S-1] 
F = specific free energy [IH'*] 

M = mass rate of flow [ml'H'1] 
e = specific internal energy [W-2] 
g = specific internal energy of formation [IH'*] 

Q# = [g(reactants) — (/(products)] at state p0,ra [IH'*] 
Q = heat of reaction for stated initial and final condi­

tions [IH-1] 
E = e+g [IH-*] 
i = e + pr [in-*] 
h = E + pr [IH-"] (except in Section III,C,3) 
c = sound speed [K-1] 

Cp = specific heat at constant pressure [W-2O-1] 
cv = specific heat at constant volume [W-2S-1] 
7 = cp/c, [1] 
D = diameter of charge [I] (except in Section IV,C) 
R = gas constant [ r f r ' r 1 ] 

R' = gas constant divided by effective molecular weight 
[W-2S-1] 

k = Boltzmann's constant [mW-20-1] 
H = Hugoniot function [W-2] 
A = cross-sectional area of charge [I2] 
a = covolume [TO-1Z3] 

K = rate of reaction [t~l] 
v = frequency factor [i-1] (except in Section III,C,3) 

Ea = activation energy per mole [?nW~2] 
Ea = activation energy per gram [W-2] 

e = fraction of reaction completed [1] 
£i = reaction zone width [I] 
ti = time required for reaction to go from e = 0 to e = 

1 It] 
X = coefficient of heat conductivity [OTK-39-1] (except 

in Sections IV,B,2, IV,B,3, and V,A,4) 
7) = coefficient of viscosity [mZ-1i-1] 
s = radius of curvature of wave front [I] (except in 

Sections II and V,A,3) 
(T0 = mass per unit area of case [ml~s] 

Subscripts: 
0: state ahead of shock, where e = 0 
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1: state behind shock, where e = 0 and S = O (except for 
Si and ti) 

2: state where e = 1 
: state at Chapman-Jouguet surface 

R: differentiation along a Rayleigh line 
H: differentiation along a Hugoniot curve 
/ : state at failure diameter 
p: state along a piston 

Superscripts: 
(0): « = 0, i.e., reactants 
(1): e = 1, i.e., products 
(<•): 0 < e < 1, i.e., mixture of reactants and products 

o: one-dimensional, steady-state, Chapman-Jouguet 
detonation 

O): detonation wave of radius of curvature s 

I I . NONREACTIVE FLOW 

A. FLOW EQUATIONS; EQUATIONS OF STATE; 

SOUND SPEED 

The differential equations of fluid dynamics express 
conservation of mass, conservation of momentum, 
conservation of energy, and an equation of state. 
For an adiabatic reversible process, viscosity and heat 
conduction processes are absent, and the equations 
read: 

-—H P div o = 0 (mass) (2.1.1) 
at 

-p = grad p (momentum) (2.1.2) 
at p 

7,+*7,-T% (energy) (2'L3) 

at at at 

— = O (adiabatic flow) (2.1.4) 
dt 

V = AP,S) = g(r,S) (state) (2.1.5) 

where 

d b 

Steady flow is defined as flow in which all partial de­
rivatives with respect to time are equal to zero. 

The equations 2.1.1 to 2.1.5, together with appro­
priate initial and boundary conditions, are sufficient 
to solve for the dependent variables q, p, p, e, and S 
in regions which are free from discontinuities. When 
dissipative irreversible effects are present, appropriate 
additional terms are required in the equations. Shocks 
can often be treated as discontinuities, using the alge­
braic equations to be developed in Section II,E. 

The equation of state (equation 2.1.5) may be as­
signed any of various forms depending upon the 
pressure and temperature range of interest, and also 
upon the readiness with which it lends itself to mathe­
matical manipulation. Gases initially at ordinary pres­
sures produce, in a detonation wave, pressures sufficiently 
low (of the order of tens of atmospheres) that the 

equation of state for an ideal gas gives satisfactory 
results (80): 

PT = R'T (2.1.6) 

For polytropic gases, i.e., ideal gases for which the 
internal energy is proportional to the temperature, 
the entropic equation of state may be used, 

p = Bpy (2.1.7) 

where B is a function of the entropy. For good results 
in computing detonation velocities the dependence of 
specific heat on temperature, and of product composi­
tion on temperature and pressure, must be taken into 
account. This form is occasionally used for solids and 
liquids. 

In condensed explosives at extremely low loading 
densities (0.1 g./cm.3 or less) an Abel equation of 
state 

p(r - a) = R'T (2.1.8) 

with a regarded constant as a first approximation, 
gives a detonation velocity in reasonable agreement 
with experiment (120). This approximation is fre­
quently used at high loading density when the primary 
aim is not accurate computation of velocities. For the 
latter purpose a more complicated form is needed as, 
for instance, 

pV b ¥ 6s b* 
P- = 1 + - + 0 . 6 2 5 - + 0 . 2 8 7 - + 0 . 1 9 3 - (2.1.9) 

where b is the high-temperature, second-virial coeffi­
cient of the gaseous products (122). Much effort has 
been devoted to the study of equations of state at 
pressures as high as several million atmospheres. 
(A discussion of the work and references to the litera­
ture may be found in references 66 and 117.) 

A function c, the sound speed, is defined as follows: 

2
 bP c = — 

Op 

For a polytropic gas 

5/ 
ap OT 

Pl 

(2.1.10) 

(2.1.11) 

(2.1.12) 

(2.1.13) 

= (y - 1)(« + PT) 

and for a gas having an Abel equation of state, 

cl = 
p ( l — ap) 

A steady flow is called subsonic, sonic, or supersonic 
at a point as the magnitude of flow velocity q at that 
point is less than, equal to, or greater than the sound 
speed at that point, in the particular coordinate system 
being used. 

B. HYPERBOLIC F L O W ; CHARACTERISTIC EQUATIONS 

The behavior of a reactive wave depends on the flow 
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of its reacting and product gases. I t is therefore ap­
propriate to consider general methods for solving flow 
problems. 

The conservation laws lead to systems of partial 
differential equations of the first order which are quasi-
linear, i.e., equations in which the partial derivatives 
appear linearly. In practical cases special symmetry of 
boundary and initial conditions is often invoked to 
reduce the number of independent variables. The 
number of dependent variables is reduced by various 
assumptions on the form of solution. For example, the 
adiabatic flow equations 2.1.1 to 2.1.4 are simplified 
to a pair of equations in two dependent and two inde­
pendent variables by assuming one-dimensional, ho­
mentropic (uniformly isentropic) flow: 

Pt +upx + Pux = O (2.2.1) 

P(M« + UUx) + C1Px = O (2.2.2) 

where c is the function of p given in equation 2.1.10. 
Equation 2.2.2 was derived from 

p(w< + UUx) + px = O (2.2.3) 

In a similar way the equations for steady, two-dimen­
sional, irrotational, homentropic flow may be written 

(tt2 - c2)ux + uv(ux + Vy) + (v2 - c2)vy = O (2.2.4) 

Uy - Vx = O (2.2.5) 

where u and v are components of velocity q in the co­
ordinate directions. 

To cover these and similar cases, consider the system 
of differential equations for u and v as functions of x 
and y (31): 

A1Ux + B1Uy + C1Vx + D1Vy + E1 = O) 
> (2.2.6) 

A2Ux + B2Uy + C2Vx + D2Vy + E2 = O; 

For example, (u,v) and (x,y) may mean (u,p) and (x,t) 
or (r,t). Coefficients Ai, A2,. . . , E2 are known functions 
of x, y, u, and v. The first equation may be read as a 
relation between the derivative of u in the direction 
of the vector (Ai1B1) and derivative of v in the direction 
of the vector (Ci,Di). Some linear combination of the 
two equations may permit a relation between deriva­
tives of u and v in the same direction, a so-called 
characteristic direction. Straightforward manipulations 
show that the vector (l,f) in the z,j/-plane is in a charac­
teristic direction if £ is a root of 

af2 - 26f + c = 0 (2.2.7) 

where 

a = A1C2 - A2C1 

b = UA1D2 - A2D1 + B1C2 - B2C1) 

c = BiA - B2D1 

If b2 — ac > 0 so that there are two real characteris­
tic directions, the system of equations is called hyper­

bolic; if b2 — ac = 0, parabolic; and if b2 — ac < 0, 
elliptic. 

The one-dimensional, unsteady flow equations 2.2.1 
and 2.2.2 form a hyperbolic system with two charac­
teristic directions (l,f+) and ( l , f-) , where 

f* = u ± c (2.2.8) 

Similarly the steady plane flow equations 2.2.4 to 
2.2.5 have the roots for the characteristic directions 

-UV ± cVu2 + V2 - C2 

f* , ; (2.2.9) 
c' — ul 

The plane flow is thus hyperbolic where the flow is 
supersonic and elliptic where the flow is subsonic. 
Extended regions of sonic flow are not generally en­
countered. Detonations involve transonic flows, i.e., 
flows that change type. 

A characteristic curve (or characteristic) is a curve 
which is tangent at every point to a characteristic 
direction. By equation 2.2.7, or more specifically by 
equation 2.2.8 or 2.2.9, there are two families of charac­
teristic curves, commonly called the C+ and C_ charac­
teristics. One seeks two independent variables, a and 
/3 instead of x and y, such that a is constant along each 
curve of the C_ family and /3 is constant along each 
curve of the C+ family. In terms of a and /3 equations 
2.2.1 and 2.2.2 become 

xa — (u + c)ta, pua + cpa = 0 (2.2.10a) 

Xp = (u — c)<0, pug — cpg = 0 (2.2.10b) 

Similarly equations 2.2.4 and 2.2.5 read 

Va = ?+Za, Ua + f_t)„ = 0 (2.2.11a) 

yt, = t-xp, ug + [+vg = 0 (2.2.11b) 

where the f̂  are given by equation 2.2.9. For the 
general case, equations 2.2.6 become 

Va = t+xa, Tu* + (of+ - S)va + (IQ+ - H)xa = 0 (2.2.12a) 

yg = S-Xg, Tug + (af_ - S)vg + (Zf. - H)xg = 0 (2.2.12b) 

where 

T = A1B2 — A2B1, S = B1C2 — B2C1 

K. = A1E2 — A2E1, H = B1E2 — B2E1 

and the £_ are the two solutions of equation 2.2.7. 
Identification of the characteristic curves is advan­

tageous for several reasons. First, weak discontinuities 
introduced at the boundaries are propagated into the 
flow along characteristic curves so that the charac­
teristics are"wave-front paths. (A weak discontinuity 
is a sharp change in a derivative of a function without 
any change in the function itself.) Second, the boundary 
values influencing the flow at a given point are just 
those between the backwards characteristics through 
the point. Thus the regions which a change in the bound­
ary will and will not affect are defined by the charac-
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teristic curves. Third, the equations in characteristic 
form are readily solved by finite difference methods. 

If given equations 2.2.6 are linear so that the coeffi­
cients are functions of the independent variables only, 
then the equations 

dj/ = f^dx (2.2.13) 

may be solved separately to give characteristic curves 
in the physical x,y-plane, curves which are the same for 
any flow. If the coefficients in equations 2.2.6 are 
functions of the dependent variables alone and if 
E1 = Ei = 0, the system is called reducible. The two 
characteristic equations 

Tdu + (aU - S)dv = 0 (2.2.14) 

of a reducible system may be solved separately to 
give characteristic curves in the hodograph w,w-plane, 
curves which are the same for any flow. 

Both the nonlinear examples of equations 2.2.1 
to 2.2.2 and 2.2.4 to 2.2.5 are reducible. The hodo­
graph characteristic equations of 2.2.10 may be inte­
grated to give the fixed characteristic curves 

U + I = Ir and U-I= - 2 s 

where 

I = KP) 
Jpa V P / 

dp 

(2.2.15) 

(2.2.16) 

and r and s are constants called Riemann invariants. 
For polytropic gases, i.e., gases with equation of state 
2.1.7, 

I 
2c 

(y - D 
(2.2.17) 

An especially simple special case is for 7 = 3, for then 
l = c and the hodograph characteristics are 

u + c = Ir, u — c = —2s (2.2.18) 

where r and s are constants on each characteristic 
curve. But then the corresponding physical charac­
teristic equations may also be integrated to give 

x — 2rt + constant 

x = — 2s( + constant 

(2.2.19) 

(2.2.20) 

Such simple straight-line characteristic curves in both 
planes lead to solutions more readily than for y ^ 3. 
Note that, as in this example, actual values of a and 
/3 do not appear. 

The hodograph characteristic equations for plane 
flow (equations 2.2.11a and 2.2.11b) have been in­
tegrated (39) to give a rather complicated analytic 
form which represents certain epicycloids generated by 
points on the circumference of one circle rolling on 
another. 

In the solution of flow problems it is clearly advan­
tageous to consider the physical and hodograph planes 

simultaneously. A unique relation between points in 
one plane and those in the other obtains only if the 
Jacobian of the transformation between them, 

J = UxVy — UyVx (2.2.21) 

and its reciprocal do not vanish. In most problems, 
however, j = 0 or » somewhere. If this occurs at 
isolated points, these points are branch points about 
which the flow turns. Hj or (1/j) is zero on a line, the 
line may be understood as a fold in the mapping of one 
plane on the other. These folds occur on characteristic 
lines. Finally iij or (1/j) is zero in a region, only special 
types of flow are possible, the simple wave flow dis­
cussed in Section II,D below, and a constant state of 
uniform flow. 

C. HYPERBOLIC F L O W ; INITIAL VALUE PROBLEMS 

In many cases a flow is known as it crosses a certain 
initial line, / , and the subsequent behavior of the flow 
is to be determined. Such an initial line may be the 
path of a piston along which velocity u is known, 
or the path of a shock wave along which plt T1, and U1 

are known. From the given data, the characteristic 
directions along / may be computed using equation 
2.2.7 and, in particular for one-dimensional, unsteady 
flow, equation 2.2.8. Different cases arise according to 
the relative directions of I and the characteristics 
through I. 

In general, the characteristic curves are not perpen­
dicular to the flow direction so that there is a down­
stream or forward direction on the characteristic. 
At a point on I, (a) I may be timelike, which means that 
it lies between the forward directions of the charac­
teristics; (b) I may be spacelike, which means that it 
lies outside the angle formed by the forward directions 
of the characteristics; or (c) I may lie along a charac­
teristic. For the homentropic one-dimensional flow of 
equations 2.2.1 and 2.2.2, a point following a spacelike 
arc moves supersonically with respect to the local flow, 

dx 
It > c 

one following a timelike arc moves subsonically, 

< c 
dx 
— — u 
dt 

and one following a characteristic moves with the speed 
of sound. 

dx 
d7 

Consider an initial curve AB whose location is 
known in the physical plane, as, for example, a piston 
whose path in a cylinder of gas is known as a function 
of x and t. A change in the values of the dependent 
variables at a point, for instance a change in velocity 
of the piston, can be shown to affect the flow only in a 



134 MARJORIE W. EVANS AND C. M. ABLOW 

region of influence of that point, the angular region 
between the forward characteristics through the point. 
If A and B are points on a spaceUke initial curve, as in 
figure 1, it follows that the curvilinear triangle lying 

Fig. 1. Domain of ̂ dependence ABP of initial 
spacelike arc AB. 

downstream of the initial arc AB and between the 
regions of influence of A and B contains points of 
flow unaffected by any values of the dependent vari­
ables given on the initial curve outside arc AB. This 
triangle APB is then a domain of dependence for arc 
AB, containing as it does the part of the flow deter­
mined by the given initial values on arc AB. If the 
given values of the dependent variables are continuous 
and continuously differentiable on the arc AB, includ­
ing its end points, then the flow is unique and equally 
continuous in the domain of dependence triangle 
including its sides. 

If an initial curve is not spacelike, a second inter­
secting initial curve is needed to obtain an initial 
(broken) line AOB with a possibly quadrilateral do­
main of dependence, as shown in figure 2 for both 
curves timelike and in figure 3 for one timelike and one 
a characteristic. Along timelike or characteristic initial 

FIG. 2. Domain of dependence AOBP of a pair 
of initial timelike arcs DA and OB. 

FIG. 3. Domain of dependence AOBP of initial time­
like arc OA and characteristic arc OB. 

arcs such as OA and OB only one of the two dependent 
variables need be prescribed in order to obtain a unique 
flow in a domain of dependence provided that both 
variables are known at the point of intersection of the 
initial arcs. 

In a case of interest below, the flow lies in the angular 
space between a spacelike initial curve on which both 
dependent variables are prescribed and an intersecting 
timelike curve on which one dependent variable is 
known. The flow is uniquely determined in two parts: 
the first unique flow in the domain of dependence of the 
spacelike curve, and the second unique flow in the 
domain of dependence between the timelike initial 
curve and the last characteristic of the first flow. 

In summary, the flow in a region between two arcs 
is unique for the following two cases of interest: (a) 
both curves are timelike and one quantity is prescribed 
along each, and at the intersection points both quan­
tities, e.g., u and p, are prescribed, and (b) one curve is 
spacelike and has two quantities prescribed on it, 
and the other curve is timelike and carries one pre­
scribed quantity. 

D. HYPERBOLIC FLOW; SIMPLE WAVES 

Consider a continuous flow, i.e., a flow in which the 
dependent variables vary continuously with position. 
In such a flow the characteristic curves in either the 
physical or the hodograph planes are also continuous, 
connected curves. A region in which the dependent 
variables have constant values, that is a region of 
uniform flow, is necessarily represented by just one 
point in the hodograph plane, since, for example in 
one-dimensional flow, u and p are everywhere the same. 
Thus those characteristics in the x,y-pl&ne that cross 
from the uniform flow to an adjacent region of non­
uniform flow are all represented by the single charac­
teristic in the hodograph plane passing in the proper 
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direction through the point corresponding to the uni­
form flow. Such a flow represented by a single charac­
teristic curve in the hodograph plane is called a simple 
wave. 

In a simple wave each characteristic of one kind is 
represented by a single point in the hodograph plane. 
For reducible equations, by equation 2.2.7, each such 
characteristic has constant slope, i.e., is a straight line 
in the physical plane. Characteristics of the other kind, 
the cross characteristics, are curved and are all repre­
sented by the same characteristic curve in the hodo­
graph plane. 

Thus in a continuous flow governed by reducible 
equations, the region adjacent to a region of uniform 
flow is a simple wave. The transition from uniform to 
nonuniform flow occurs in the physical plane across a 
straight characteristic. Characteristics of the same 
kind as the transition characteristic are straight in both 
regions. Cross characteristics are straight in the region 
of uniform flow but become curved in the simple wave. 

An example of flow containing only uniform and 
simple wave regions is the flow caused in a gas initially 
at rest when one confining wall, the piston, accelerates 
to a constant receding speed. The path of the piston, 
P, the paths of the particles, and straight characteris­
tics in the physical plane are sketched in figure 4. 

F I G . 4. Straight characteristics and particle paths in a simple 
wave. Piston path (P) , straight characteristics (solid), and 
particle paths (dashed) are shown. 

Region I is the initial undisturbed region of uniform 
density and zero flow speed, region II is the simple 
wave here covered by straight characteristics because 
governing equations 2.2.1 and 2.2.2 are reducible, and 
region III is the final state of uniform density and 
flow speed accommodated to the piston motion. 

If the density of fluid particles crossing a simple wave 
is decreased, as in the above example, the wave is 
called an expansion or rarefaction wave; if the density 
is increased, the wave is called a compression or con­

densation wave. If the piston of figure 4 starts abruptly 
from rest with a finite velocity, the straight charac­
teristics of simple wave region II all start at a single 
point, and the wave is called a centered wave. 

In one-dimensional flow, equation 2.2.15 shows that 
Riemann invariants r and s are constant on charac­
teristics of each kind. Thus either r or s is constant 
throughout a simple wave. For the wave of figure 4, 
the negative characteristics (not shown) all map on the 
same characteristic in the hodograph plane so that s 
is constant throughout region II. The value of s is 
given by its value on the transition characteristic 
Cl between regions I and II: 

U-I- 2 s = M0 - la, U = K.Po) (2.4.1) 

where Mo = 0 and po are the values of the velocity and 
density in the uniform-flow region I. 

Through each material point of a flow only two 
characteristics can pass, one corresponding to a for­
ward-moving sound wave and one to a backward. 
If two characteristics of the same kind overtake one 
another the flow cannot remain continuous, for dif­
ferent values of the dependent variables would be ob­
tained if one characteristic or the other of the same 
kind were used in computation. Physically, if later 
sound waves can overtake earlier waves there is a 
steepening of wave shapes until discontinuities of the 
dependent quantities velocity, density, and pressure 
form. These discontinuities are called shocks. For 
ordinary materials the speed of sound increases with 
the density, so that the characteristics of either kind 
in a rarefaction cling ever more closely to the particle 
paths and so diverge from one another. In a com­
pression, on the other hand, characteristics of each 
kind tend to converge. In a simple compression wave in 
an ordinary material the straight characteristics do 
eventually converge so that shocks form in the body of 
the fluid. The boundary between a region where charac­
teristics of the same kind do intersect and a region 
where they do not is an envelope of those characteris­
tics. Since these intersections are physically impossible, 
the shock discontinuity begins at the first point of that 
envelope. 

E. SHOCKS 

The usual way of treating shocks is to idealize 
them to jump discontinuities, in this way taking into 
account the effect of the irreversible processes caused 
by friction and heat conduction. I t is assumed that the 
flow involving such a discontinuous process is com­
pletely determined by the three laws of conservation of 
mass, momentum, and energy and the condition 
that the entropy does not decrease in the discontinuous 
process. Outside of the transition zone the flow is de­
termined by the differential equations for continuous 
flow, equations 2.1.1 to 2.1.3. 
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There are two types of discontinuity surfaces, con­
tact surfaces and shock fronts. There is no flow be­
tween regions separated by a contact surface; shock 
fronts are crossed by the flow. A contact surface moves 
with the fluid and separates two zones of different 
density and temperature, but the same pressure. 
The normal component of the flow velocity is the same 
on both sides of a contact discontinuity. Let subscripts 
O and 1 refer to conditions on each side of a disconti­
nuity. The jump conditions are 

PoVo = piVi = M (mass) (2.5.1) 

Po + PQV) = pi + PiVl (momentum) (2.5.2) 

M[e(o + poro + H] = M[ef + p m + &i] (energy) (2.5.3) 

MS0 < MS1 (entropy) (2.5.4) 

Across a contact surface M = O, i.e., no fluid flows. 
Across a shock M ^ O and subscript O refers to the 
upstream side just ahead of the shock. Equation 2.5.4 
follows from the second law of thermodynamics, which 
states that for processes occurring in an isolated system 
entropy increases or remains constant. 

The following useful relations may be derived from 
the mechanical conditions, equations 2.5.1 and 2.5.2: 

M[V1 - V0) = Vo - Vi 

V1Vo -
Vo - Vi 

(2.5.5) 

(2.5.6) 
Po — Pi 

(TO + T1)(Pi - Po) = V1/(T-O + T1)(V0 - V1) = v] - v\ (2.5.7) 

Pi - Vo 
U1 — Uo 

Vi - Vo 

T1 — To 

= — Po!>0 "PlVl 

= — P1Mj = -P0VQ 

(2.5.8) 

(2.5.9) 

and if «o is set equal to zero and the shock moves to the 
right 

U1 = (To — Tl) 
P l ~ PO 

T0 — Tl 

U TO. 
Pi ~ Vo 

TO — Tl 

Pl - PO = PO^ 2 H) 

(2.5.10) 

(2.5.11) 

(2.5.12) 

According to equation 2.5.9 two solutions are possible 
according to which (a) pressure and density increase 
or (b) pressure and density decrease. It can be shown 
(33) that the entropy condition equation 2.5.4 ex­
cludes for nonreactive shocks the solution in which 
pressure and density decrease. 

For shocks (M ?* 0) equations 2.5.3 and 2.5.7 give 

(TO - T l ) (P l + Po) 
eim - 4°> = 

and since i = e + pr, 

AO) -(O) _ ( P l ~ Po)(TQ + Tl) 
*1 Ô — -. 

(2.5.13) 

(2.5.14) 

Equation 2.5.13 is the Hugoniot relation, according to 
which the increase in internal energy across the shock 
is due to the work done by the mean pressure during 
compression. Similarly the increase in enthalpy is due 
to the work done by the pressure difference on the mean 
volume. The change in enthalpy across the shock, 
since there is an entropy change from state 0 to state 
1, is not 

r. dp/p but 
/ : 

(dp/P + TdS) 

For materials in which the internal energy e is a 
function of p and T, equation 2.5.13 may be rear­
ranged to form the Hugoniot function i?(0)(r,p), 
where the superscript 0 indicates that the function 
applies to material in which no reaction has occurred. 

HW(rlP) = e»)(r fP) - e«»(T„,po) + J ( r - T0)(P + Po) (2.5.15) 

For given ro,po and known dependence of e on r and 
p, equation 2.5.15, which may be written 

H<»(r,P) = 0 (2.5.16) 

characterizes all pairs of values (r,p) which are com­
patible with the shock relations 2.5.1, 2.5.2, and 2.5.3. 

I t is useful to note certain facts about shocks. If 
the state of the fluid, i.e., the set of values of p, S, and 
u, on one side of a shock is known, the shock velocity 
and state on the other side of the shock are determined 
if one further quantity is given. The additional quantity 
may be a state variable on the other side of the shock 
or the shock velocity U, except that if flow velocity u 
is given as the additional quantity, it is also necessary 
to know which side of the shock is downstream. 

The flow velocity relative to a shock is supersonic 
ahead and subsonic behind the shock. Thus, upstream 
characteristics behind the shock overtake it, while the 
shock itself overtakes the upstream characteristics 
ahead of it, as sketched in figure 5. 

F I G . 5. Flow in a steady, normal shock. Shock tra­
jectory (S), piston path (P), sample forward charac­
teristics (solid), and particle paths (dashed) are shown. 
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The fractional increase in pressure across a shock, 
(pi — Po)/Po, is the strength of the shock. The entropy 
change through a shock increases with shock strength. 
For weak shocks, the rise of S, p, or T across a shock 
each differs from reversible adiabatic changes at most 
in terms of the third order in the shock strength. 
Thus, in the r,p-plane, adiabats for increasing values of 
S cross the shock Hugoniot curve H<-0) = 0 at increasing 
values of p. The adiabat through the initial point 
(TO,Po) and the Hugoniot curve have third-order con­
tact there, i.e., they are tangent and cross each other. 

The shock relationships for shocks which are oblique 
to the flow are derived by noting that observed from a 
suitable coordinate system an oblique shock is equiv­
alent to a stationary one-dimensional shock (40). 
Let T be a unit vector tangential to the shock and n 
a unit vector normal and pointing opposite to the 
material flow. Then if q denotes the material velocity 
vector, q-n = N, the component normal to the shock, 
and q -T = L, the tangential component, the shock 
relations equivalent to equations 2.5.1 to 2.5.3 are 

Po(JV0 - U) = Pi(N1 - U) (mass) (2.5.17) 

PoN0(N0 - U) + Po = PiN1(Ni - U) + Vi 
(momentum) (2.5.18) 

L0 = Li (continuity of tangential component) (2.5.19) 

\po(h\ - U)ql + Po(N0 - U)e^ + WoPo = 
bi(^i - U)gl + P1(N1 - U)e?} + NlPl (energy) (2.5.20) 

For a stationary shock front the relations 2.5.17 to 
2.5.20 simplify to 

iVoPo = AT1P1 (2.5.21) 

PoNl +Vo = PiNj + Vi (2.5.22) 

L0 = Li (2.5.23) 

Wo + e f + Por„ = hi + e{0) + Pin (2.5.24) 

On passing through an oblique shock the gas flow 
is always turned toward the shock. The normal compo­
nent N has the properties of one-dimensional shocks. 
Thus, for example, the normal component changes 
from supersonic to subsonic in passing through the 
shock, while the velocity vector q may be supersonic 
on both sides. 

P. INTERACTIONS 

Actually occurring one-dimensional flows often con­
tain uniform and simple wave flow regions, shocks, and 
contact discontinuities which move toward or through 
one another. The interference of one type of flow with 
another leads to complex patterns requiring general 
solutions of the conservation equations. (For solution 
methods see references 36 and 110.) 

Certain facts about interactions can be reached in an 
elementary way. Thus two initially separate simple 
rarefaction wave regions moving in the same direction 
remain separate, for they are each bounded by charac­

teristics of the same kind which cannot intersect. If 
two simple waves moving toward each other separate 
three regions of uniform flow, as would happen if two 
pistons at rest at either end of a tube started away from 
each other with constant speeds, the waves will 
intersect each other in a general flow region and pass 
on as simple waves, leaving a uniform-flow region of 
growing size between them. This follows from the fact 
that only a simple wave can be adjacent to a uniform-
flow region and that cross characteristics in a simple 
wave all lie on a single characteristic curve in the hodo-
graph plane. Thus cross characteristics from two 
such waves can only intersect in a region of uniform 
flow, a single point of the hodograph plane. 

Since shock discontinuities move at supersonic speed 
into the fluid ahead, shocks overtake contact discon­
tinuities and rarefaction waves. Since shocks move 
subsonically with respect to the fluid behind them, a 
shock will be overtaken by a shock or rarefaction behind 
it. When two shocks moving toward each other collide, 
two shocks moving away from each other are produced 
together with two regions of differing entropy separated 
by a contact discontinuity through the point of col­
lision. 

If a shock collides with a contact discontinuity be­
tween two fluids, a shock is sent ahead into the second 
fluid and a shock or rarefaction wave is reflected back 
into the first fluid. The kind of reflection depends on 
relative fluid densities and sound speeds and on the 
initiating shock strength (45, 97). 

III. ONE-DIMENSIONAL, STEADY-STATE REACTION 

WAVES WITH INSTANTANEOUS REACTION 

A. DISCONTINUITY EQUATIONS 

The restriction that no chemical reaction occurs 
in the flow field is removed but consideration is limited 
to exothermic reactions. I t is assumed that the chemical 
reaction occurs instantaneously, so that the reaction 
zone is of zero width. Under this assumption the jump 
forms of the equations of conservation of mass, momen­
tum, and energy are again justified. In place of the 
internal energy eo0> and ei0) of equation 2.5.3 for shocks, 
it is now necessary to use .E(0)(TO,PO) and E(1\T2,P2), 
respectively, where E is the internal energy plus the 
energy formation at constant volume. Superscript (1) 
indicates that the function applies to material in which 
reaction is complete. Subscript 2 indicates properties 
which apply at the point where reaction is complete. 
The three equations which are the counterparts of the 
equations for nonreactive shocks (equations 2.5.1 
to 2.5.3) are: 

Pofo = P2V2 — M (mass) (3.1.1) 

Vo + Povl = Pi + PIV\ (momentum) (3.1.2) 

#(0)(ro,po) + POTO + iv'o = E^(Ti,v*) + Pm + b2, 
(energy) (3.1 3) 
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The following useful relationships are derivable from 
equations 3.1.1 and 3.1.2 

M(v2 — V0) = Po — Vi 

(Po - Pt) 
V2V0 -

(3.1.4) 

(3.1.5) 
(PO — Pi) 

(TO + T2)(Pi - po) = M(T0 + T2)(V0 - V2) = vl - vl (3.1.6) 

(Pi ~ Po) 

(Ui — Uo) 
= — PoVo = — PiV2 

AP = - (Po - Pi) 
(To — T2) 

(3.1.7) 

(3.1.8) 

and if u0 is set equal to zero and the reaction wave moves 
to the right, 

Vi - Po = PoU2U 

P2(U — U2) = poU 

M2 = (TO — T2) 
P2 - Po 

To — T2 

U 
Vi - Vo 
TQ — T2 

Vo = PoU2 

( - : ) 

(3.1.9) 

(3.1.10) 

(3.1.11) 

(3.1.12) 

(3.1.13) 

The relation corresponding to equation 2.5.13 
is obtained by eliminating the velocity from equations 
3.1.1 to 3.1.3 

EW(T2,P2) - E^(TO,VO) | ( T 2 - T0)(Vi + Vo) (3.1.14) 

The shock Hugoniot function for the reaction products 
is, by equation 2.5.15, 

HW(T,p) = EW(T,V) - ^ ' ' ( T O . P O ) + §(r - TO) (P + Po) 

(3.1.15) 

An equation analogous to equation 2.5.16 may now be 
written by combining equations 3.1.14 and 3.1.15 to 
give 

where 

HW(T2,V2) = JW 

JW = £CO>(T0,PO) - -E (1)(T0,PO) 

(3.1.16) 

(3.1.17) 

and the dependence of # ( 1 ) and Jm on (ro,po) is tacit. 
Equation 3.1.16, or equivalently equation 3.1.14, 
is known both as the Rankine-Hugoniot relation 
and as the Hugoniot relation. Thus the locus given by 
equation 3.1.16, which is known both as the Ran­
kine-Hugoniot curve and as the Hugoniot curve, con­
sists of points in the r,p-plane which can be reached 
from the state point TO,PO through a complete reaction 
discontinuity. However, not all values of n and pi 
satisfying relation 3.1.14 or 3.1.16 are compatible with 
the conservation equations, because by equation 3.1.8 

(Pi - Po) 
(T2 — To) 

Thus the locus Ha)(T,p) = J(1> consists of two 
branches, shown diagrammatically in figure 6. The upper 

-TANGENT RAYLEIGH LINE 

H(l) = J(l,(DETONATION BRANCH) 

(P,) 

STRONG DETONATIONS 

- C - J DETONATION 

WEAK DETONATIONS 

-H(lW"(DEFLAGRATI0N BRANCH) 

< 0 (3.1.18) 

WEAK DEFLAGRATIONS 

- C - J DEFLAGRATION 

STRONG 
DEFLAGRATIONS 

F I G . 6. Hugoniot curve Hiv = J ( 1 ) of reaction products, 
with sections corresponding to strong, Chapman-Jouguet, and 
weak detonations and deflagrations. 

branch, extending from point A to higher pressures, 
corresponds to processes in which, according to equa­
tion 3.1.8, both pressure and density increase from 
state O to state 2; these are called detonations. The 
lower branch, extending from point B to lower pres­
sures, corresponds to processes in which both pressure 
and density decrease; these are called deflagrations. 
In a nonreactive rarefaction shock the decrease in 
pressure implies an unacceptable decrease in entropy, 
so such shocks are ruled out. In a reactive discontinuity, 
the increase in entropy due to the reaction normally 
compensates for any drop due to dynamic effects. 

Equations 3.1.1 to 3.1.18 apply to both detonations 
and deflagrations. For detonations, p2 > po, TO > n, 
P2 > po, and M2 and U have the same direction if W0 = O. 
For deflagrations y>2 < Po, TO < TI, Pi < po, and u% and U 
have opposite directions if U0 = O. Temperature rises 
through both. There is a solution to the flow problem 
for given po,r0,Mo = O with any detonation speed above 
a certain minimum, called the Chapman-Jouguet deto­
nation speed, and any deflagration speed up to a certain 
maximum, called the Chapman-Jouguet deflagration 
speed. In the next section the existence and uniqueness 
of various classes of these solutions are examined. 
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B. THE SIX CLASSES OF REACTION WAVES; 

JOTJGUET'S RULE 

For a given set of initial and boundary conditions a 
steady-state reaction wave, if it exists, experimentally 
is usually found to have unique values of U, U2, pt, r2, 
and Ti. (Certain special exceptions are discussed in 
Sections III,E and V,B,3.) Since the equations of con-
tinuity, momentum, energy, and state do not suffice 
to determine the five unknowns, it is necessary to 
inquire into the conditions under which solutions 
exist and whether the solutions are unique. The infor­
mation which has thus far been omitted is a specifica­
tion of the flow field of the reaction products, that is to 
say, since this section is restricted to one-dimensional 
flow, of the rear boundary condition. Before discussing 
the question of determinacy it is necessary to deduce 
from the equations of the previous section the general 
properties of flow ahead of and behind reaction waves. 

To do this the Hugoniot curve for the products, 
Hil)(T,p) = J{1), is divided into sections by considering 
the intersections with the Hugoniot curve of a family 
of straight lines, or Rayleigh lines, through the point 
(TO,Po). As the slope of the Rayleigh line intersecting 
the detonation branch becomes less negative, the two 
intersection points eventually coalesce at point C, 
which specifies a particular solution called the Chap-
man-Jouguet detonation. The tangent Rayleigh line 
OC is drawn in figure 6. Solutions lying above the 
point C on the detonation branch are called strong 
detonations; solutions lying between C and A are 
called weak detonations. Similarly, the point of coales­
cence of the two intersections on the deflagration 
branch, point D, called the Chapman-Jouguet deflagra­
tion, separates a region represented by first intersec­
tions, the weak deflagrations, from a region repre­
sented by second intersections, the strong deflagra­
tions. 

Certain general statements can be made regarding 
the character of flow relative to the reaction front for 
these six classes of reaction waves. The statements, 
known collectively as Jouguet's rule (38), assert that 
the flow relative to a steady reaction discontinuity is 

(a) supersonic ahead of a detonation, 
(b) supersonic behind a weak detonation, 
(c) subsonic behind a strong detonation, 
(d) sonic behind a Chapman-Jouguet detonation, 
(e) subsonic ahead of a deflagration, 
(/) subsonic behind a weak deflagration, 
(g) supersonic behind a strong deflagration, and 
Qi) sonic behind a Chapman-Jouguet deflagration. 

The above statements are most readily proved for 
polytropic materials or materials for which the equa­
tion of state (equation 2.1.5) has the following proper­
ties: 

gT<0,gT = -P1C2 (3.2.1) 

grr > 0 (3.2.2) 

gs > 0 (3.2.3) 

These restrictions have the effect of specifying adiabats, 
S(r,p) constant, which form a nonintersecting family 
of curves, sloping downward and concave toward posi­
tive T, with S increasing along any radius starting 
at the origin of the p,r-plane. The Hugoniot function 
forms a similar family of curves, with p0,To as pa­
rameters, which have the properties 

(IX K ° (3'2-4) 

(SX> ° (3-2-5) 
where the subscript H indicates differentiation along 
the Hugoniot curve. Along Rayleigh lines, from 
equation 2.5.9, 

/ d p \ (p - pa) / Q O ^ 
\T 1 = , ; = ~pv (3.2.6) 

\ ( 1 T / B (T — T0; 

and from equations 2.1.3a, 2.1.3b, 3.1.14, and 3.2.6 

(dff<»)B = T(dS)B (3.2.7) where the subscript -B means differentiation along a 
Rayleigh line. Figure 7 shows a Hugoniot curve, Ray­
leigh lines, and adiabats for such a system. 

Jouguet's rule is proved by showing that at a Chap-
man-Jouguet point the Hugoniot curve and the adiabat 

FIG. 7. Hugoniot curve ff(I) = Jm (heavy solid), Rayleigh 
lines (light solid), and adiabats (dashed). 
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are both tangent to the Rayleigh line, and that in the 
regions of strong detonations and weak deflagrations 
the adiabats rise with increasing pressure more steeply 
and in the regions of weak detonations and strong 
deflagrations less steeply with increasing pressure than 
the Rayleigh line. On any Rayleigh line any value of 
S where (dS)B = O is a maximum along that Rayleigh 
line, so that there is at most along a Rayleigh line one 
such stationary value of S and, by equation 3.2.7, 
of Hw. For the Rayleigh line OF in figure 7 this point 
of stationary and maximum S is indicated by point L. 
Thus S must increase along the Rayleigh line at points 
of intersection between A and C or B and D, and must 
decrease at points of intersection beyond C or D, 
so that 

( 
— ) < O at Q and J 
AT IR 

IS \ 
— 1 > 0 at F and H 
IT /B 

From equations 2.1.10 and 3.2.6 

(3.2.8) 

(3.2.9) 

(a -[^o. Spp'(c* - D2) (3.2.10) 

Since at points C and D (di7(1))ff = 0, from equation 
3.2.7 

(dS)n = (CLS)B = 0 at C and D (3.2.11) 

that is, at the Chapman-Jouguet points the Hugoniot 
curve and the adiabat are both tangent to the tangent 
Rayleigh line. By combining equations 3.2.3 and 
equations 3.2.8 to 3.2.11 one obtains 

c = \v\ at C and D (3.2.12) 

c < |»| at G and J (3.2.13) 

c > |»| at F and H (3.2.14) 

which prove parts b, c, d, f, g, and h of Jouguet's rule. 
Let 8 be the angle between the negative T-axis and the 
Rayleigh line, and <f> be the angle between the negative 
T-axis and the tangent to the adiabat passing through 
apointoni/ ( 1 > = J(1), as in figure 7. Then from equations 
2.1.10 and 3.1.8 the results of equations 3.2.12 to 
3.2.14 mean that 

e = <t> 

0 > <t> 

e < <t> 

at C and D 

at G and J 

at F and H 

(3.2.15) 

(3.2.16) 

(3.2.17) 

To prove parts a and e of Jouguet's rule, let the state 
behind the discontinuity be fixed and vary the state 
ahead of the front. The curve of figure 8 is obtained 
from the Hugoniot relation 3.1.16 by considering r0,po 
as variable, with fixed T2,P2- The branch QO'S is the 
locus of initial deflagration states and the branch 
MOU that of initial detonation states from which the 
final state at G can be reached, where G represents 

>^^(DEFLAGRATION BRANCH) 

ADIABAT 

(DETONATION 
BRANCH) 

FIG. 8. Hugoniot curve for given final condition p2,T2 (point 6). 

any of the classes of final states shown in figure 6 
or 7. Along any Rayleigh line such as GO or GO' 
it remains true that the Hugoniot function and S 
have at most one stationary value each, and these 
values are maxima. The point of maximum entropy 
along O'GO (point T) is shown in figure 8 along with 
the adiabat through T. A Rayleigh line can intersect 
a given branch of the Hugoniot curve of figure 8 only 
once. Therefore at a point of intersection on the detona­
tion branch, (d*S/dr)ij < 0, which by equation 3.2.10 
is equivalent to v2 > c2, and at points of intersection 
along the deflagration branch QS, v2 < c2. This proves 
parts a and c of Jouguet's rule. 

It is readily demonstrated that the speed of ad­
vance of the reaction front \v0\ and the entropy of the 
products are relative minima for Chapman-Jouguet 
detonations and relative maxima for Chapman-Jouguet 
deflagrations (37). 

C. EXISTENCE AND UNIQUENESS OP CLASSES OF 

REACTION WAVES 

The existence and uniqueness of reaction waves for 
specified boundary conditions will now be discussed 
(38). Let the rear boundary move with a specified 
velocity uv along the line P in the z,£-plane as in figure 9. 
Then initial data are prescribed along two lines. One 
is the a;-axis, which is spacelike with respect to the 
material behind it and carries the quantity M = O, 
if the material is initially at rest, and p = pa. The 
other is P, which is timelike, or subsonic relative to the 
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PARTICLE 
PATH 

FIG. 9. Flow in a strong detonation. Piston path (P), detonation 
front (W), and particle path (dashed) are shown. 

gas flow, since it is identical with the path of the 
adjacent gas particles; it carries the velocity up. The 
discontinuity of the reaction wave is represented by the 
line W. 

The deductions on uniqueness which were demon­
strated for nonreactive flow cannot be applied directly 
because of the interference of the unknown disconti­
nuity W. They can, however, be applied separately to the 
sectors between the 2-axis and W, and between W and 
P. There are four cases, according to whether the flow 
relative to W is supersonic or subsonic before or be­
hind the front. The directions of the characteristics on 
either side of W relative to the direction of W deter­
mine which case applies. 

1. Strong detonations 

According to Jouguet's rule for detonations W is 
spacelike or supersonic when observed from the region 
ahead of it. Thus between W and the x-axis the flow 
is uniquely determined by the z-axis and the quantities 
prescribed on it, so that u = Uo, p = p0 everywhere 
in that sector. By the transition conditions (equations 
3.1.1, 3.1.2, 3.1.3) u and p immediately behind W are 
determined for given slope of W. For a strong detona­
tion, W is subsonic, i.e., timelike, with respect to the 
region behind it, and P also is subsonic with respect 
to the same region. Thus the data, in particular flow 
velocity u, must be continuous from one timelike initial 
curve to the other. Since M2 and w„ are constants, they 
must be equal and it follows that the flow between W 
and P is uniform. But there is only one such slope of 
W, so that for strong detonations the flow is completely 
determined by the initial conditions and the piston 
velocity. A strong detonation results when the piston 
velocity uv > (M2),,, where (M2)„ is that particular value of 
the gas velocity behind the gas front which satisfies the 

Chapman-Jouguet condition (equation 3.2.12). For 
Mp = (M2),,, the strong detonation becomes as a limit a 
Chapman-Jouguet detonation. The flow in a strong 
detonation is represented by figure 9, which shows the 
initial data line or piston path P, the reaction front 
line W, and a particle path. 

2. Weak detonations 

Weak detonations arise when uP < («2)*. According to 
Jouguet's rule, the flow relative to the reaction front 
in a weak detonation is supersonic both ahead of and 
behind the wave. Since now one curve, P, is timelike 
and one, W, is spacelike, the solution for the flow be­
tween the two curves is unique only if one quantity is 
prescribed on P and two quantities are prescribed on 
W. I t is now possible for the velocity of W to be chosen 
arbitrarily, subject only to the condition that it be 
supersonic, and there is one degree of indeterminacy. 

Figures 10a and 10b show two possible solutions for 
a flow for which the curve P and the initial conditions 
Mo,po are given. In the sector bounded by W and 

PARTICLE PATH 

(a) 

FIG. 10. Two possible weak detonation solutions for given P 
and Mo,Po. 
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C where C+ is the characteristic issuing from the 
point x = O, t = O, the flow is supersonic and constant 
and is determined by the slope of W, as in figure 10a. 
The transition from constant flow to simple wave takes 
place across C+, along which u = M2 and c = c2. This 
flow must adjust through the centered simple wave to 
the piston path P, along which the material velocity 
up is prescribed. In the simple wave u — c is a constant 
throughout, u — c = U2 — C2, while u + c varies but 
has a fixed value along each C+ characteristic. Thus the 
sound speed along the piston for this solution of the 
flow will have the value cp = uv — M2 + C2, and the 
pressure pp and density pp will have appropriate values 
determined by equation 2.1.10 and an equation of 
state, say equation 2.1.7. 

Another possible flow is that of figure 10b, where a 
different detonation front curve W gives values M2 

and C2 along the characteristics in the sector between 
W and Cl. For this flow the value of c'v along P 
will be C1, = Up — M2 + C2 and the value of p along 
P will also be different from that of the first solution. 
One of the possible flows is that for which both the 
front and the first sound wave move with sonic velocity 
relative to the gas behind the front. Such values are 
designated by a subscript *, so that for this flow M2 = 
(M2)„, and C2 = (C2),,. The hypothesis that the flow which 
occurs is this Chapman-Jouguet detonation is the 
Chapman-Jouguet hypothesis (20, 68, 69). For such a 
detonation, equation 3.2.12 applies, and W and C0+ co­
incide, as is shown in figure 11. For the special case 
where up = (MS)„, the rarefaction wave drops out. 

3. Chapman-Jouguet detonations; the Chapman-Jouguet 
hypothesis (Brinkley and Kirkwood); flow behind 

a Chapman-Jouguet wave (Taylor) 

(a) The Chapman-Jouguet hypothesis 

The Chapman-Jouguet hypothesis is supported by 

PARTICLE PATH 

C° AND W 

a'* I f - U - ( U 2 ) Mc2) 

F I G . 11. Flow in a Chapman-Jouguet detonation. 

the agreement between calculated and observed deto­
nation properties under experimental conditions which 
make the one-dimensional approximation a good one. 
Its theoretical justification is usually based on argu­
ments which depend upon abandoning the simplifica­
tion of instantaneous reaction. The justifications that 
retain the simplification will be mentioned first. 

Becker (3, 4, 5) equated entropy with the probability 
of occurrence of a flow. Since the entropy increases 
with pressure along a Hugoniot curve (see figure 7), 
the entropy of final states in a strong detonation is 
greater than the entropy of states in a weak detonation. 
Thus, according to Becker, strong detonations are more 
probable than weak detonations. But strong detona­
tions, as seen above, are possible only for up > (M2), 
so that the most probable flow, for up < (M2)„, is the 
Chapman-Jouguet flow. In a somewhat similar thermo­
dynamic argument Scorah (108) argued that the 
work content for the Chapman-Jouguet detonation 
state is a minimum and inferred that this state cor­
responds to a maximum degradation of energy. Zeldo-
vich (131) demonstrated the unsatisfactory nature 
of the thermodynamic arguments by remarking that 
the increase in entropy across a shock is not sufficient 
to guarantee that a shock will form. A piston which 
compresses the gas is also necessary. 

Jouguet (69) argued that since C2 < \v2\ for a weak 
detonation, it is not possible for a small disturbance to 
overtake the wave front. Indeed, the distance between 
a disturbed region and the front will increase. He con­
cluded that this implies an instability of a weak 
detonation wave. Zeldovich (131) in contradiction 
pointed out that an instability cannot be inferred, 
since the disturbance itself does not increase, and, in 
fact, in the presence of dissipative forces it must de­
crease. Thus it cannot disturb the propagation of the 
wave. 

Brinkley and Kirkwood (15) derived the conditions 
for the existence of a stable solution to the hydrody-
namic equations 2.2.1 and 2.2.3 applied behind the dis­
continuity and subject to the Rankine-Hugoniot 
equations 3.1.9, 3.1.10, and 3.1.14 across the discon­
tinuity. They assumed a pressure-time curve behind 
the detonation discontinuity which initially decreases 
and which varies monotonically from p2 to the pres­
sure at the rear boundary. 

Equations 2.2.1 and 2.2.3 are written in Lagrange 
coordinates, h and t (32), and specialized to the high-
pressure side of the detonation discontinuity, as 
designated by the subscript 2. 

P2 d«2 1 3?>2 

Po bh P2C2 dt 
= 0 

dw2 1 d?2 

(3.3.1) 

(3.3.2) 

where 



THEORIES OP DETONATION 143 

dx 
P2r ; = Po 

Z>h 

Z>x 
zTt 

W2 

(3.3.3) 

(3.3.4) 

A derivative in which the detonation front is stationary 
is denoted by the operator 

dt EM dh 

which when applied to equation 3.1.9 yields 

g Z>p2 5M 2 du2 _ g Z>p2 

dt dh pa dh poll dt 

where 

= 1 
(dU\ 

(3.3.5) 

(3.3.6) 

(3.3.7) 

Let the function A(K) be the sum of the energy released 
per unit area by the explosive contained between the 
shock front and h, plus the work per unit area done by 
the initiating shock. Then 

Mh) = 

J tt(h) 

p(t)u(t)dt = PiU2VfJ, 

where 

Pi bt 

I Zm 
Ui Z)t 

v(h) = J 

V = 

pu 
PiUi 

t - t»(h) 

dt' 

(3.3.8) 

(3.3.9) 

(3.3.10) 

(3.3.11) 

and Ui(K) is the time of arrival of the detonation front 
at h. The integral of equation 3.3.8 is taken along a 
path of constant h. 

Equations 3.3.1 to 3.3.11 can be manipulated to give 

dpi vpiui 

dt A 

G 

1 + g + 

where 

G 

or, by equation 3.1.10, 

G = ] 

( _ E L . \ 
\ PoUiU/ 

= i - teV 
\PiCi/ 

(1 + g-G) 
(3.3.12) 

(3.3.13) 

(3.3.14) 

For the assumed behavior in the expansion wave, 
A(Zi) and v are finite and positive, so that the coefficient 
of the term in the brackets of equation 3.3.12 is always 
negative. Since G < 1, insofar as the denominator of 
the term in the brackets of equation 3.3.12 is positive, 
it follows from equations 3.3.12, 3.3.14, 3.2.12, 3.2.13, 
3.2.14, and Jouguet's rule that when 

G < 0, U > Ui + c2, ~ > 0, pi < (Pi)* (3.3.15a) 
CU 

G = 0, U = M2 + C2, 
dpi 

dt 

dpi 

0,Pi = (Pi)* (3.3.15b) 

G > 0, U < U2 + c2, -f
1 < 0, Pi > (Pi)* (3.3.15c) 

Qt 

Brinkley and Kirkwood then conclude that Chapman-
Jouguet conditions are stable. For when p2 is below 
(P2),., it increases with time, and when p2 is above (pi)t, 
it decreases with time. 

However there is a flaw in this argument, for the 
speed IU01 for Chapman-Jouguet detonations is a rela­
tive minimum; hence dU/dp = 0 at p = Cp2)*, dll/dp 
< 0 for p < (P2)*, and dU/dp > 0 for p > (p2)„. Thus g 
can be negative enough to make the denominator of 
equation 3.3.12 negative and so destroy the argument. 
The denominator will be positive at all points on the 
Hugoniot curve, AC of figure 6, below the Chapman-
Jouguet point C of the detonation branch, and over a 
certain length extending from C upward, the length 
depending on the particular explosive. Thus the con­
clusions 3.3.15, while not true in general, are true in the 
neighborhood of the Chapman-Jouguet detonation. 

(b) Flow behind a Chapman-Jouguet wave 

G. I. Taylor (116) obtained the transient flow behind 
a Chapman-Jouguet discontinuity, using Riemann's 
equations for polytropic gases. Immediately behind 
the discontinuity at Ut, u = M2, p = p2, and c = c2, 
where M2, p2, and C2 are understood to mean the Chap­
man-Jouguet values. One of u, p, p, or c can have an 
arbitrary initial distribution behind the front and the 
whole flow can be determined for initial and later times 
as a simple wave. For the equation of state (2.1.7), 

/ p \ ( 7 - D / 2 

C = CiI-J (3.3.16) 

and from equations 2.2.15 and 2.2.17 and the given 
boundary conditions, for a forward-facing wave 

u - 2 c / ( 7 - 1) = Ui - 2c 2 / ( 7 - 1) (3.3.17) 

or 
u + c = Ui + C2 - (y + I)(M2 - M ) / 2 (3.3.18) 

Combining equations 3.3.16 and 3.3.17 gives 

2c2 
M = M2 — 

7 - 1 
[ 1 - ( P / P 2 ) ( T - 1 ) / 2 ] (3.3.19) 

If the detonation begins at x = 0 at time t = 0 at a 
piston face, a centered simple wave accommodates 
M2 to the piston velocity up, assumed less than U2. 
Straight characteristics in the wave have the equation 

x = (M + c)t (3.3.20) 

A plot of M/M2 versus x/Ut is shown in figure 12 for 
M2 = U/3, C2 = 2C//3, 7 = 1.3. (In a similar figure in 

file:///PiCi/
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reference 35 the ordinate is mislabeled u/U.) If the 
rear boundary condition is u = O, the gas is at rest 
everywhere between the end x — O and the point B 
where the line ABC cuts the axis u = O in figure 12. 
Thus the detonation wave is followed by a region of 
forward-moving gas, the length of which continually 
increases, followed by a column of stationary gas which 
also continually increases in length and in which p 
and p are constant. A typical pressure profile for such 
a case is shown in figure 13 as a solid line. Doering and 
Burkhardt (43) and Pfriem (100) gave a similar treat­
ment. Experimental support for these predictions has 
been found by Paterson (98), who measured material 
velocity, Gordon (57), who measured pressure, and 
Kistiakowsky and Kydd (71), who measured density. 
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F I G . 12. Flow behind a F I G . 13. Pressure in rare-
Chapman-Jouguet detonation faction wave behind Chap-
for U2/U = 1/3, 7 = 1.3 man-Jouguet point according 
(Taylor). to Taylor and to Langweiler. 

Langweiler (75) calculated the flow field behind a 
Chapman-Jouguet detonation by assuming that the 
products maintain the velocity U2, pressure p2, and den­
sity pi until the passage of a rarefaction shock which 
reduces the velocity to zero. The rarefaction shock is 
assigned a velocity of (U -f- U2)/2. The column of 
forward-moving gas, which Langweiler calls a detona­
tion head, thus has a length which increases with time 
and is equal to [U - (U + u2)/2]t = (U - u2)t/2. A 
schematic diagram of the pressure profile according to 
the model is shown as a dotted line on figure 13. A 
rarefaction shock is not allowable by the entropy con­
dition (equation 2.5.4), so that the model represents a 
considerable simplification. 

4- Deflagrations 

In deflagrations the reaction discontinuity path W 
is timelike with respect to the state ahead of it, so that 
the flow in the sector between the a;-axis and W is 
no longer determined by the specification of the initial 
conditions u = U0, c = C0 along the a;-axis. Thus one 
quantity can be arbitrarily prescribed along W for a 
unique solution to exist. In a strong deflagration W 

is spacelike and P is timelike with respect to the region 
between them, so that if the slope of W is prescribed, 
the region between P and W is known. Thus for a 
strong deflagration, in addition to P and the initial 
state, the reaction path and one quantity ahead of it 
must be stated for the flow to be determined. For a 
weak deflagration the reaction path W is timelike with 
respect to the flow both ahead of it and behind it. 
Then only one quantity, the reaction path JF or a 
quantity ahead of it, must be prescribed to determine 
the flow. Since the flow is not determined from these 
considerations, the determining conditions must be 
sought elsewhere. They are found by abandoning the 
assumption of instantaneous reaction and examining the 
transport and chemical processes in the interior of the 
wave (48). 

According to equation 3.1.9, since p2 < p0, u2 < 0 
if W0 = 0. This is possible only if piston path P has a 
negative slope at least equal to U2. An adjustment to 
more positive piston velocities is possible only if a 
precompression wave is sent out into the explosive to 
move the unburned reactant gas forward with a velocity 
just sufficient to insure that it will come to piston veloc­
ity when the deflagration front has passed over it. 
This solution is permitted, since by Jouguet's rule the 
flow ahead of a deflagration front is subsonic and so 
influences the gas ahead of it. If the piston velocity 
is constant, as for instance uv = 0, a flow as shown in 
figure 14 exists involving a constant-velocity deflagra­
tion and a constant shock wave, S. To each such as­
sumed shock there are a number of possible solutions, 
either a uniquely determined weak deflagration, or an 
arbitrarily chosen strong deflagration wave followed 
by rarefaction or shock waves. 

PARTICLE PATH 

PRE-COMPRESSION 
SHOCK 

F I G . 14. Flow in a constanWelocity weak deflagration. The 
precompression shock (S), deflagration discontinuity (W), and 
particle path (dashed) are shown. 
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A system consisting of a shock followed by a deflagra­
tion wave is formally equivalent to a detonation wave 
in the sense that the reactants can reach the same state 
through a detonation wave as they can through the 
shock and deflagration. This may be understood by 
reference to figure 15. There a shock of velocity U 

T, T2(STRONG) T2(WEAK) T Q 

FIG. 15. Equivalence of a shock followed by a deflagration to 
a weak or strong detonation. 

and mass flux M is represented by the change along the 
Rayleigh line OGFR from p0,ro at O to pi,n at R. 
The following deflagration of the same velocity and 
mass flux with initial state pi,n is represented by the 
change from phTi to p2,T2. The change from R to F 
represents a weak deflagration; that from R to G 
represents a strong deflagration. The change from 
Po, TO to p2,r2 formally represents a detonation. A weak 
detonation is thus seen to be equivalent to a shock fol­
lowed by a strong deflagration; a strong detonation is 
equivalent to a shock followed by a weak deflagration; 
a Chapman-Jouguet deflagration when viewed from 
material in advance of the precompression shock is 
equivalent to a Chapman-Jouguet detonation. 

D. EXPLICIT SOLUTIONS OF EQUATIONS FOR C H A P M A N -

J O U G U E T STEADY DETONATIONS 

Solutions for U, p2, T2, U2, and T2 for the Chapman-
Jouguet steady detonation wave are obtained from the 
equations of conservation of mass (equation 3.1.1), 
the conservation of momentum (equation 3.1.2), the 

conservation of energy (equation 3.1.3 or its equivalent) 
an equation of state, and the Chapman-Jouguet con­
dition (equation 3.2.12) combined with an expression 
relating the sound speed to the pressure and density 
(equation 2.1.10). 

Explicit solutions are given by Eyring, Powell, 
Duffey, and Parlin (51, 52), using the Abel equation 
of state (equation 2.1.8), assuming p0 = 0 and Mo = 0, 
and setting 

E<»(r2,ps) - #"»(TO,PO) - Cv(T2 - T0) - Q* (3.4.1) 

where ct is an average specific heat at constant volume. 
The solutions are: 

p-i = 2R[Q* + CvTo)/Cv(n - a) 

n = (yn + a)/(y + 1) 

T1 = 2y(Q* + C1T0)/€v,(y + 1) 

(3.4.2) 

(3.4.3) 

(3.4.4) 

u% = [2(Q* + CvT0)(y - 1 ) / (Y + I)]1 '2 (3.4.5) 

t/2 = 2(Q* + C1T0)(T
2 - D/(l - «/ra)

2 (3.4.0) 

Similar equations with the further simplification that 
CpT0 = 0 are given by J. Taylor (120), who also gives 
methods for obtaining solutions when an equation of 
state of the form of equation 2.1.9 is used. Sources of 
methods for carrying out the computations in gaseous 
systems, taking into account dissociations, are given 
in reference 60 and a detailed scheme for calculation 
from the conservation equations allowing dissociations 
and assuming the ideal equation of state is given in 
reference 127. 

E. COMMENTS ON E X P E R I M E N T A L OBSERVATIONS 

Observed steady detonation velocities of gases are 
usually slightly lower than the calculated Chapman-
Jouguet velocities and approach the calculated values 
with increase in the diameter of the cylindrical tube 
used as a vessel. 

Condensed materials, that is homogeneous liquids, 
homogeneous solids, or granular solids, show a much 
more marked dependence upon charge diameter. 
The velocities approach the Chapman-Jouguet values 
from below as the diameter of charge is increased. 

Comparison of observed and calculated velocities 
for gases may be found in references 7, 8, 44, 77, and 
87 and for solids in references 22 and 121. 

Condensed materials characteristically have a failure 
diameter. For charges of smaller diameter than this 
failure diameter, there is no stable steady detonation 
wave. Gases (77) and mixed granular explosives such as 
ammonium perchlorate and PETN (49) show a depend­
ence of stability of a steady wave on composition. 

Some materials, particularly liquid and gelatinous 
explosives, have two steady velocities, one near the 
Chapman-Jouguet value and one at a lower velocity 
(124). 
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IV. ONE-DIMENSIONAL, STEADY-STATE REACTION 

WAVES WITH FINITE REACTION RATE 

A. EXISTENCE, UNIQUENESS, AND MECHANISM 

OF PROPAGATION OF DEFLAGRATION WAVES 

A discussion more realistic than that in the previous 
section considers the effects of finite reaction rates. 
Let a represent the fraction of reaction completed at 
any position within an extended wave. Then e = O at 
the shock front, both on upstream and on downstream 
sides, and e = 1 at the point of reaction completion. 
A space coordinate J is defined with the value J = O 
at the shock where e = O, and the value J = Ji at the 
point where e = 1. Functions Hie) and Eu) are H and 
E for the mixture of composition given by e. As before, 
the subscript 0 represents conditions ahead of the 
shock and subscript 1 those immediately behind the 
shock (where reaction has not yet occurred). Subscript 
2 represents conditions at the point Ji where reaction is 
complete. The values of the dependent variables within 
the wave are indicated by quantities without subscripts. 
This somewhat awkward notation, depicted in figure 
16, is dictated by the large volume of literature in 
which upstream and downstream sides of the shock are 
designated respectively by subscripts 0 and 1, by the 
almost equally extensive literature in which e is taken 
to vary from 0 to 1 within the reaction wave, and by 
the necessity to distinguish among the space points in a 
single set of equations. 

The relation between rate of reaction K and the 
fraction reacted can be written, if the reaction is 
assumed to be irreversible, 

de/d< = -v d« /d | = K(T,p,«) > 0 (4.1.1) 

Assume that the reaction proceeds toward a final 
and invariant product composition within a finite 
distance. Normal rates drop to zero as reaction becomes 
complete, so that t —*1 only as the time or distance 
from the reaction front becomes infinitely large. It is 
often useful to avoid this difficulty by defining the 
reaction width, Ji, as that over which the reaction attains 
within a few per cent of completion. 

Insofar as the three conservation laws 3.1.1, 3.1.2, and 
3.1.3 hold throughout the reaction zone, then 

PoVo = pv 

..2 

(4.1.2) 

+ PO*>O = P + PV1 (4.1.3) 

£(0)(TO,PO) + Poro + hi = E^(T,p) +pr + | « 2 (4.1.4) 

If it is assumed that the total internal energy of the 
mixture of burned and unburned material is equal to 
the sum of the internal energies of the components, 
then 

#<"(r,p) = (1 - *)EW(T1P) + tE^(T,p) (4.1.5) 

By combining equations 4.1.2 and 4.1.3 one obtains 
relations corresponding to equations 3.1.8 and 3.1.14: 
namely, 

(P - PO)AT - T0) = - A P (4.1.6) 

which is the equation for the Rayleigh line to which 
the reaction process is restrained, and 

E^(T,P) - £<»(T„,PO) = - I ( T - T„)(p + Po) (4.1.7) 

which is the Hugoniot relation for given e. Thus for 
given po,To there is a set of Hugoniot curves with pa­

rameter e. For exothermic processes such that 

E^(T,V) > EW(T,P) (4.1.8) 

PRODUCTS REACTION ZONE 
WAVE 

FRONT REACTANT 

£ • £ , C = o 

r<«) 

E1' 

t = O 

E (0 ) 

Pl 

F I G 16. Notation used in describing reaction wave of finite width. 

the Hugoniot curves form a set of noninter-
secting curves which are concave upward 
with curves for increasing e moving up to 
the right. 

It now follows that strong deflagrations 
are impossible for the assumptions made, 
since they are represented by intersections 
of the Rayleigh line with that portion of the 
deflagration branch of Hil) = J (1) which lies 
below D. Since rarefaction shocks produce 
a decrease in entropy and so are impossible, 
only a continuous motion of the state point 
along the Rayleigh line of figure 17 is possi­
ble. Starting at pa,n the state point can only 
reach the upper intersection point H of the 
figure without passing through regions where 
e > 1, a physical impossibility. 

The particular solution which is possible, 
among a set of weak deflagrations compati­
ble with the conservation laws, is deter­
mined by internal processes (48). A re 
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H(1) = J(I> 

H W . J W 

FIG. 17. Family of Hugoniot curves Hu) = Ju) with a Rayleigh 
line for a weak (OH) and for a strong (OJ) deflagration. 

action wave can move only as fast as the boundary 
between molecules which are not reacting and those 
which have just begun to react. According to equation 
4.1.1 the rate of the chemical reaction is dependent upon 
temperature, pressure, and concentration, so that a 
wave propagates by virtue of a change in one or more 
of these three variables. For deflagrations p2 < p0, 
so that the pressure drops as one proceeds from the 
reaction wave front through the deflagration wave. 
Experimental results show that the pressure drop is 
small; in fact, the assumption of constant pressure is 
generally made in theories of deflagration. Therefore 
the effect of a change of pressure on the rate of reaction 
is negligible in a deflagration wave. The two remaining 
processes by which the deflagration wave can move 
forward and which determine the velocity are the rais­
ing of the temperature of the reactant by heat con­
duction or radiation, and the alteration of the chemical 
composition of the reactant by diffusion of particles 
from the reaction zone. A discussion of methods of 
obtaining solutions for weak deflagrations in gases 
may be found in reference 48. The differential equations 
of conservation of mass and energy (the assumption of 
constant pressure eliminates the equation of conser­
vation of momentum) are stated so as to include the 
effects of heat conduction, diffusion, viscosity, and rate 
of chemical reaction. These when solved with appro­
priate boundary conditions give a unique solution 
for the wave velocity. 

B. THE DETONATION WAVE AS A DISCONTINUOUS SHOCK 

FOLLOWED BY A DEFLAGRATION 

1. The Zeldovich-von Neumann-Doering model; the 
Chapman-Jouguet hypothesis; pathological weak 

detonations 

It is now appropriate to ask whether the initiation 
of a detonation wave is effected in the same way as a 
deflagration wave, that is, by the diffusion of heat and 
chemical species into the reactant. This has been dis­
cussed by Zeldovich (131) and Brinkley and Richard­
son (17). The discussion which follows is mainly due to 
Zeldovich. For a steady reaction wave propagated 
by heat conduction, the rate of heat production Q'U 
must equal the temperature gradient times the heat 
conductivity, or 

Q'U = X(IT2 - T0)Zi1 (4.2.1) 

where Q' is the heat produced per unit volume, U 
is the wave velocity, (T2- T0) is the temperature drop 
across the wave between the points where reaction is 
completed and where it begins, and X is the coefficient 
of heat conductivity. For gases \(T2 — TD)/Q' = ZJJ 
= 1 cm.2/sec. The observed velocities of deflagrations 
are 10 to 100 cm./sec; those of detonation are of the 
order of 105 cm./sec. Thus for a reaction wave propa­
gated by heat flow (diffusion of chemical species gives 
numbers of the same order) & = 10 - 2 cm., h = 10 - 4 

sec. for deflagrations; and £i = 10~6 cm., Ix = 10 -10 

sec. for detonations, where t\ = £i/U. The values of £i 
and h for deflagrations agree with those to be expected 
from reaction kinetics (48). It will be seen in Section 
IV, C that for reaction rates above a certain high critical 
value, detonations in which the reaction is propagated 
by heat conduction are possible. The resulting values 
of & and 1̂ have usually been considered to be so small 
as to make this mechanism unlikely. 

It was postulated independently by Zeldovich (131), 
von Neumann (92), and Doering (42, 43) that a deto­
nation is a reaction initiated by a shock. This contrasts 
with the gradual change of state guided by the reaction 
rate in deflagrations. They neglected transport effects 
within the detonation wave. In figure 18 state 1 just 
behind the shock may be represented by either point 
T, for a Chapman-Jouguet detonation, or any other 
point R above T on the Hugoniot curve for the reac-
tants, Hw) = 0. Following the compression the chemi­
cal reaction proceeds so that e goes from 0 to 1 along the 
Rayleigh line until a final state on H(1) = J (1) is reached 
as at point F, C, or G. It is assumed that the reaction 
wave is a zone which is steady in a coordinate system 
at rest in the shock front and that the zone consists of a 
nonreactive shock of pressure pi followed by a reaction 
zone in which the variables p, r, e change continuously 
to their final values, p2, T2, e = 1, along the Rayleigh 
line, i.e., in a way which everywhere satisfies equation 
4.1.6. Thus a detonation wave is composed of an 
initiating shock followed by a deflagration in which 
the pressure and density decrease from pi,pi to p2,p2. 
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P1(C-J) 

FIG. 18. Family of Hugoniot curves Hu> = Ju) for e = O, 
0 < e < 1, and « = ,1 with Rayleigh lines for a Chapman-Jouguet 
detonation (OTC)1 and for a strong (ORF) and weak (ORG) 
detonation. 

kilobars strength raises the temperature by several 
hundred to several thousand degrees, clearly sufficient 
to initiate a chemical reaction. Many solid explosives 
are granular, and many liquid explosives contain bub­
bles of air. Under these circumstances a surface of 
explosive in contact with this hot air is heated by heat 
conduction and will react. If all bubbles are removed 
from cast or liquid explosives a detonation can only 
propagate at velocities which correspond to a pressure 
Pi, of the order of 100 kilobars, sufficient to raise the 
temperature of the condensed explosive by several 
hundred degrees. The question of initiation is discussed 
in greater detail in Section VI. 

von Neumann (92) pointed out that for a family of 
Hugoniot curves having a form other than that shown 
in figure 18 the Chapman-Jouguet hypothesis may be 
false and a weak detonation possible. If the reaction 
is not exothermic at all pressures and densities so that 
equation 4.1.8 does not represent the behavior of the 
material, then the Hugoniot curves can have an en­
velope, as shown in figure 19. In such a case it is pos­
sible for the state points to change discontinuously from 
state 0 to state 1 with e = 0 (points 1 and 2, respec­
tively, on the figure) and then through continuously 
changing values of « from 0 to 1 at a lower intersection 
point on Hw = J (1) (point 4 on the figure). This 
solution is known as von Neumann's pathological 
weak detonation, since the reaction is completed at a 
lower intersection of the Rayleigh line with Hw = 

A Chapman-Jouguet detonation is a shock followed 
by a Chapman-Jouguet deflagration, a strong detona­
tion is a shock followed by a weak deflagration, and a 
weak detonation is a shock followed by a strong de­
flagration. But whenever equation 4.1.8 applies, 
strong deflagrations are impossible and therefore weak 
detonations are impossible; point G cannot be reached. 
The shock part of the detonation wave is often called 
the von Neumann spike. Solutions of the equations in the 
steady zone, to be described later, show that the word 
"spike" is a poor descriptive term. 

For detonating gases the pressure pi is about twice 
the Chapman-Jouguet pressure (P2)*. In the early 
literature in which it was postulated that a detonation 
wave is a shock followed by a reaction zone (41, 
69, 114), it was maintained that the reaction took 
place at the constant Chapman-Jouguet pressure. 
Thus in figure 18 the shock would be represented by a 
jump from 0 to W and the reaction by a point moving 
from W to C. But this is impossible for a steady wave, 
because by equations 3.1.12 shock OW has a smaller 
mass flow than detonation OC. 

The mechanism by which the detonation is initiated 
involves the temperature rise created by the shock. 
If the detonating material is a gas, a shock of a few 

2. Explicit solutions of equations for Chapman-Jouguet 
detonations with invariant product composition (Eyring; 

Doering; Paterson) 

r = radius of grain [I] 
rg = initial radius of grain [I] 
X = diameter of molecule [I] 

k, = specific reaction rate [t~l] 
m = fraction of mass which is gaseous [1] 
TO0 = mass of gas per gram of undetonated explosive [1] 
e' = internal energy of gas phase [IH~2] 
a = internal energy of solid phase [IH~2] 
T' = specific volume of gas phase [m~Hz] 
<j> = specific volume of solid phase [m~V] 

Eyring, Powell, Duffey, and Parlin (51, 52) obtained 
equations for a homogeneous explosive which relate 
p, T, u, and T within the wave to e without reference 
to reaction kinetics, by substituting eQ# for Q* in equa­
tions 3.4.2 to 3.4.5. In addition to the assumptions 
made in deriving those equations, assume that cvT0 

is small with respect to Q*. Then 

P = p»(l + Vi - e) 

-[-£(-S)] 
u = nsp/pa 

(4.2.2) 

(4.2.3) 

(4.2.4) 



THEORIES OF DETONATION 149 

Pn 

H(0,= 0 

j O ) . 

determined by the chemical kinetics of the 
explosive and the surface area of its grains. 
Thus for spherical grains burning from the 
surface inward <= is related to the ratio of 
the radius of the grain, r, to its initial radius, 
rs, according to the equation 

e = 1 - (r/V9)3 (4.2.7) 

and the rate of change of the radius is 

dr/dt = -kr\ (4.2.8) 

where kT is the specific reaction rate of the 
explosive material and X is the diameter of a 
molecule. From equations 4.2.7 and 4.2.8 
one finds: 

at rQ 
(4.2.9) 

H (0) = 0 

Fig. 19. von Neumann pathological weak detonation: 
(1) Lower intersection of Rayleigh line with Hw = 0: 

Pc TO. 

(2) Upper intersection of Rayleigh line with H(0) = 0: 
Pl , Tl. 

(3) Rayleigh line tangent to HCe> = J(e) and to envelope. 
(4) Lower intersection of Rayleigh line with ff(1) = Jn): 

T = (1 - j)Tt + £-' [«(7 + D + (7 - D(p/p2)2] (4.2.5) 

where pi} T2, w2, and T2 are given by equations 3.4.2 
to 3.4.5. The variation of p, T, U, and T is shown 
diagrammatically in figure 20. Similar equations were 
developed by Doering (42). In order to obtain the de­
pendence of the variables on space or time, a function 
relating e to space or time is required. Paterson (99) 
did this for a bimolecular reaction in an ideal gaseous 
explosive represented by the rate equation 

In a heterogeneous charge the temperature 
of the gas phase exceeds the temperature of 
the interior of the grains during the reaction 
process. Then the temperature given by 
equation 4.2.5 is appropriate only as an 
average temperature for an explosive of 
averaged initial density, customarily called 
loading density, and an average equation of 
state. 

Paterson (99) gave a more detailed analy­
sis of the behavior of the variables in a 
heterogeneous explosive. He made the fol­
lowing assumptions appropriate to any in­
termediate stage of reaction: (a) the gaseous 
products are in chemical equilibrium, with 
that part not transformed to gas being in its 
original condensed state; (b) the condensed 
state is not significantly heated by the 

gaseous products; (c) the gaseous products and the 
condensed state have the same material velocity u and 
the same pressure p. Let m be the fraction of the mass 
which is gaseous at any time, and m0 be the initial mass 
of gas, usually air, per unit of mass of undetonated ex­
plosive, so that 

OT0 + e(l — OTo) (4.2.10) 

d( l - *), 

dt 
= -BT 2 (1 - t)Wf &cp(-Ea/RT) (4.2.6) 

obtaining reaction zone profiles such as are shown in 
figure 21. 

If the material is not homogeneous but consists of 
two or more discrete phases, as in a granular charge 
which comprises solid grains and air, a different rate 
law applies. Eyring, Powell, Duffey, and Parlin (51, 
52) proposed that the reaction proceeds at a rate 

Let the internal energy and specific volume of the gas 
phase be represented by e' and r' and that of the solid 
phase by <J and cj>. Then the Hugoniot relation is 

m(e' - ei) + (1 - m)(a - a0) = tQ* + \{p + POXT0 - x) 

(4.2.11) 

The unreacted material is regarded as being traversed 
by a shock in such a way that equation 2.5.13 is 
appropriate; thus 

" - o-o = J(P + Po) (0o - 4) (4.2.12) 

The density at any time is an average between densi-
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F I G . 20. Approximate dependence of p, r, u, and T on t in a 
one-dimensional, steady-state, Chapman-Jouguet detonation 
wave in a homogeneous medium (Eyring). 

ties of solid and of gas, so that 

T0 = OT0TO + (1 — OTo)0O (4.2.13) 

T = TOT' + (1 - m)4> (4.2.14) 

Combining equations 4.2.11 to 4.2.14 yields 

m(e' - eo) = «Q* + J (p + PO)[TO0TO' — mr ' + (m — mo)0o] 

(4.2.15) 

0, and for m = m0 equation At the shock front e 
4.2.15 becomes 

ei - eo = §(pi + PO)(TO - n ) (4.2.16) 

F I G . 21. Approximate dependence of p, T, U, T, and e o n i 
in a one-dimensional, steady-state, Chapman-Jouguet detona­
tion wave in a homogeneous medium (Paterson). 

which, for appropriate expressions of the internal en­
ergy of air, permits computation of T and T in the air 
portions of the charge at that point. When m is not 
small, m = e and m0/m = 0, whence 

e' = eo = Q* + -(p + po)[ro - 0o - *(T' - 0„)j (4 2.17) 

Finally when m = 1, 

«2 - eo = Q# + UP* + Po)(T0 - T2) (4.2.18) 

since the products are assumed to consist only of 
gases. Equation 4.2.18 by definition of £,(1)(r2,p2) and 
EW(Ta1Po) agrees with equation 3.1.14. 

From equations 4.2.16 to 4.2.18 Paterson drew a 
family of Hugoniot curves similar to those of figure 18. 
The gas-phase temperature for any e can be determined 
from p,r' and an appropriate equation of state. Simi­
larly the temperature of the solid, owing to the com­
pression of the shock wave, can be computed if an 
equation of state of the material is available. Paterson 
applied the analysis to PETN for several loading 
densities. He computed conditions at the shock front 
and the Chapman-Jouguet plane, and within the 
reaction zone as a function of«. He used an equation of 
state of the form of equation 2.1.9 (taking dissociation 
and ionization into account) for the gases, and assumed 
the Hugoniot equation of state of PETN to be similar 
to that of sodium chloride. The differences between the 
equations of state of gas and solid led to large differences 
in temperature in the two phases. For example, the 
air temperature, T[, was 105 to 1O60K., depending upon 
Po, while the temperature of the solid, Ti, was only 300 
to 5000K. over the same range of p0-

S. Chapman-Jouguet detonation with varying 
product composition; frozen sound speed (Brinkley and 

Richardson; Kirkwood and Wood) 

C = frozen sound speed [It'1] 
X = reaction progress variable [1] 

Now the assumption is dropped that the chemical 
reaction is a rate-controlled conversion to an in­
variant product composition, and the composition is 
permitted to vary with local thermodynamic state. 
Zeldovich (131), Brinkley and Richardson (17), and 
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Kirkwood and Wood (70) pointed out that since in a 
chemically reactive wave, pressure is a function not only 
of density and entropy but also of chemical composi­
tion, the sound speed for a reacting material should 
be defined as the frozen sound speed, 

& 
\<>r>/s,\ 

(4.3.1) 

where X denotes a set of variables, X1, which specify the 
progress of the j reactions occurring within the reaction 
zone. Then the rarefaction wave which adjusts the 
steady zone to the rear boundary must move with the 
speed C2 defined by equation 4.3.1, with appropriate 
values of V and S. 

The treatment of Kirkwood and Wood is followed 
here. Let there be r independent chemical reactions 
designated by the index j . The progress of reaction j 
is denned in terms of X1, so that the rate of reaction 
3, K', is 

Kj = Kj
f- K{ = dx'/dt (4.3.2) 

where Kj and K{ are the rates in the forward and back 
directions. The differential equations of mass and mo­
mentum as stated for nonreactive flow, equations 2.1.1 
to 2.1.2, are again appropriate, and the energy equation 
can be written to include the effects of the changing 
chemical composition. The three equations are 

d-p + p^ = o 
dt Pdx 

— + ^ = 0 
d( dx 

M + ^ . T ^ + MF**' 
dt dt dt dt 

(mass) (4.3.3) 

(momentum) (4.3.4) 

(energy) (4.3.5) 

where A^F is the change in free energy during the 
j t h reaction. The relationship between the derivatives 
of p, p, and \ is 

dp 

dt 
1 d? 
C2 dt 

— pSo 
dt 

where <r/ is 

PF W / E , „ (dh/dT)P: p,\ W v p, r 

(4.3.6) 

(4.3.7) 

and h is the specific enthalpy. Equations 4.3.3 and 4.3.6 
when combined give 

dx 52 dt 
(4.3.8) 

When the system is at chemical equilibrium, i.e., 
when all K1 = 0, the three equations 4.3.4, 4.3.5, and 
4.3.8 become equal to those for nonreactive flow. 

For a steady state these equations become 

us = - - 2<T>KJ (4.3.9) 

Vi = 

X « - ' * ' 

(4.3.10) 

(4.3.11) 
U-u 

where 

I , - 1 -
(U - M)2 

e 2 (4.3.12) 

They may be integrated, using equation 4.3.7, to give 
the Rankine-Hugoniot conditions (equations 3.1.9, 
3.1.10, and 3.1.14), where now the subscripts 0 and 2 
may mean any two points within the wave. 

The applicability of the present discussion of steady-
state reaction waves may be extended using the follow­
ing argument of Friedrichs (55). Let / represent any of 
the flow properties, v, p, p, etc., and let x = x(t) 
be the location in the wave where / takes on a particular 
constant value. It follows that the time rate of change 
in / at a particular place is 

dt 

bfdx 

dx dt 
(4.3.13) 

If |dx/d^| is much less than the flow speed, \u\, one may 
write, approximately, 

a/ , ^/ 
\- u — 

dt dx 
\ d! ) dx dx 

But this is the way steady-flow equations are obtained. 
The partial derivative with respect to time is dropped 
from the total derivative terms in the conservation 
equations. Thus a region of a flow can be considered 
steady if the speed of particles through the region is 
much greater than the speed of constant property lines. 

Since detonations begin with a shock observed to be 
fairly steady, a region of the flow behind and near to 
the shock is steady. In Section II it was seen that for a 
continuous flow the boundary between a space-time 
region in which the flow is steady and a space-time 
region in which it is unsteady is a characteristic. There­
fore along that boundary M2 + C2 = U. This agrees 
with the Chapman-Jouguet hypothesis, so that 
this boundary may be referred to as the Chapman-
Jouguet plane of the detonation wave. It remains to 
show that the c2 defined above is the proper value for 
C2. The flow variables u, p, T have the same values on 
both sides of the boundary between the two regions. 
But their derivatives, in particular us, have different 
values on the two sides. This can only occur in an equa­
tion such as 4.3.9 if the right-hand side is indetermi­
nate, i.e., 0/0. Thus 

= 0 

and v = 0 or 
(?•*). -

U = Ui + Cs 

(4.3.15) 

(4.3.16) 
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Equations 4.3.15 and 4.3.16 express a generalized 
Chapman-Jouguet condition. 

Usually it is assumed that equation 4.3.15 is met by 
the vanishing of all rate functions, so that 

Ki = O1J = 1, „ . , r (4.3.17) 

von Neumann's pathological detonations (figure 19) 
correspond to meeting condition 4.3.15 with some or 
all K1 nonvanishing but some of u1 or K1 negative. 
According to equation 4.3.7 the pathological case may 
occur if there is either a volume decrement or an 
endothermic reaction under local conditions. No 
example of a pathological detonation has been es­
tablished. 

Thus for the postulated model of a steady reaction 
zone joined to a nonsteady rarefaction wave which 
adjusts to the rear boundary condition, the sound speed 
at the Chapman-Jouguet point must be that defined 
by equation 4.3.1. However, there is an inconsistency. 
Let the curve H^ = J (1) in figure 22 represent, as it 

H ( 0 . j ( D 

FIG. 22. Constant composition reaction Hugoniot i?(1> = Jlv 

and equilibrium Hugoniot Hw = Jie) (Wood and Kirkwood). 

has previously, a fixed composition Hugoniot along 
which the final composition products in equilibrium at 
point C remain unchanged. The point C represents, as 
before, the Chapman-Jouguet detonation, and the slope 
of the Rayleigh line determines the detonation velocity 
through equation 3.1.12. Now draw through point C 
an equilibrium Hugoniot Hm = J(e). This curve leaves 

C toward e < 1 probably not tangent to H{1) = J (1) 

and lies between H(1) = «/(1) and H^ = O throughout 
the region of interest, as is shown in figure 22. Then the 
solution cannot reach point C from T but must termi­
nate at point V on the equilibrium curve, for if the 
state point V passes toward C it will be forced back. 
V will be approached only asymptotically in time. Wood 
and Kirkwood (129, 130) conclude that for cases in­
volving a single reversible chemical reaction the 
existence of a von Neumann steady-state solution 
and the proper Chapman-Jouguet condition is still 
uncertain, and that the reaction zone may be steady 
only in an asymptotic sense. Duff (46) found in nu­
merical computations of a multiple reaction represen­
tation of the steady detonation of a mixture of 2H2 + 
O2 + Xe that the upper intersection point V was ap­
proached. 

C. STEADY DETONATION WAVES IN REAL FLUIDS 

(FRIEDRICHS; HIRSCHFELDER AND CURTISS ; COOK) 

K = Mach number [1] 
n = number of particles per unit volume [l~s] 
D = coefficient of diffusion [IH~^] 

In Section IV,B it was postulated that a steady zone 
exists which consists of two parts which can be treated 
separately, the first a shock, the second a deflagration 
wave with the shock pressure and density as initial 
conditions. A more sophisticated approach is to avoid 
the postulate of a shock and instead to state the 
differential equations of conservation of mass, momen­
tum, and energy to include more properties of a real 
fluid. Including the effects of viscosity, heat conduction, 
and diffusion along with chemical reaction gives equa­
tions with a unique solution for given boundary condi­
tions and so solves the determinacy problem. The 
boundary conditions are restricted by the assumption 
that the reaction begins and is completed within the 
region considered. This implies that the space deriva­
tives are zero at both ends of the zone. The prescribed 
p, T, and v are thus seen to satisfy the Rankine-Hu-
goniot conditions. The differential equations in the 
interior of the wave express the same conservation 
laws, but take into account chemical reaction and 
transport processes. 

The circumstances under which the differential 
equations 

pv = constant (mass) (4.4.1) 

— 7i-—\- p + pv2 = constant (momentum) (4.4.2) 
dx 

- X — + pwCE(e) + W) + V[P- V-T) = constant dx \ dx/ 

-vp + (1 - e)X = O 
dx 

(energy) (4.4.3) 

(rate) (4.4.4) 
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possess solutions satisfying the boundary conditions 
were examined by topological methods in the phase 
plane by Friedrichs (55). More recently Hirschfelder 
and Curtiss (63, 64) have made a similar investigation 
of the equations for a more realistic system, which 
includes the effect of diffusion, and have given numerical 
solutions. The result is found to be that a detonation 
begins with a shock of finite width and the Chapman-
Jouguet hypothesis is correct for the plane at which 
t = 1 provided that for a given reaction rate the 
viscosity rj and heat conduction X are sufficiently small. 
The shock is not discontinuous but has a finite width, 
because heat conduction and viscosity are diffusive 
and tend to smooth out sharp variations in properties. 
Thus the rise time and width become larger as rj and 
X become larger. Because of the finite width of the 
shock, chemical reaction can occur within it. As a 
result the solution curve for a Chapman-Jouguet deto­
nation in the phase of pressure rise no longer moves 
from point O to point T along # ( 1 ) = J (1) in figure 18, 
but along some curve which lies between Hi0) — 0 
and H ^ = J a ) to a maximum pressure less than 
PT, where pT signifies pi at point T. Thence the solution 
curve moves downward to point C. The larger the values 
of i), X, and K, the more strongly are the shock and 
reaction zones coupled and the lower is the maximum 
pressure. 

If the reaction rate is very high for given viscosity 
and heat conduction, Friedrichs showed that the deto­
nation no longer begins with a shock and the Chapman-
Jouguet hypothesis is no longer correct. More precisely, 
the pressure rises through the whole of the reaction 
zone so that no local pressure maximum like the von 
Neumann peak exists and the detonation may be weak. 

Hirschfelder and Curtiss write the equations assum­
ing (a) an irreversible unimolecular reaction, (b) 
the ideal equation of state 2.1.6, (c) cppD/\ = 1, (d) 
CpTj/X = f, and (e) v\p = constant, where D is the 
coefficient of diffusion and v is the rate factor. The 
following reduced quantities are defined: 

e = hT/Ea 

W = V/Va, 

I' = Mc,f*dt/\ 

n = M(CpMp) 1 " 

K = V„/Ca 

G = Mn(» + V) JM 

B = Q*/Ea 

(4.4.5) 

(4.4.6) 

(4.4.7) 

(4.4.8) 

(4.4.9) 

(4.4.10) 

(4.4.11) 

where n is the number of molecules per unit volume 
and V is the diffusion velocity. The subscript » 
indicates the values of variables at the point where 
reaction is complete, i.e., at £2 = °°. The differential 
equations are 

dw _ - ( „ _ ! ) + 
d£ 7 

- (— - \ \ 

AG 

*2d7' = - ( 1 

(motion) (4.4.12) 

« ) e x p ( - l / 0 ) (continuity) (4.4.13) 

dd_ = /y - 1\ 

<U' ~ \ y ) 

d 

d£ 
/3ff + (9 - O + 

( ^ ) 
X 

[w6„ - B - %n'y9a(w 

df 

I)2] (energy) (4.4.14) 

e - G (diffusion) (4.4.15) 

The chemical kinetics are included in the equation of 
continuity. 

From equations 4.4.12, 4.4.14, and 4.4.15 

dy/d*' = 

where 

= (~^)0(l - e) + (e - ft.) + ( 2 ^ W 

(4.4.16) 

,(w2 - 1) 

(4.4.17) 

At the hot boundary y = 0, since at that point Q = 
0„, e = 1, w = 1. Then the only solution of equation 
4.4.16 is y = 0, so that from equation 4.4.17 one finds 
that the following condition applies everywhere in the 
wave: 

w1) ( 2 ^ W - .) = (e„ - e) + f^-^Wu -
(4.4.18) 

At the cold boundary e = 0, and dw/d%', d0/d£', and 
d(l — «)/d£' are zero. Also dG/d£' is nearly zero, be­
cause of the exponential expression in equation 4.4.13. 
Then from equation 4.4.15 

Go = 1 (4.4.19) 

and from equations 4.4.12 and 4.4.14 

W0 
1 + — . ( — - I ) = O (4.4.20) 

TK2 \Wo0o= / 

and 

+ (9o - (U + 

[W0I - B 0 - 5K276U«)o I)2] = 0 (4.4.21) 

Equations 4.4.20 and 4.4.21 can be solved to give Wa 
and 8„ as functions of 0O, K, y, and j3. The equation 
for W0, the reduced velocity of the reaction wave, is 
quadratic and has two solutions, one associated with 
detonations and one with deflagrations. 

The hydrodynamic equations which describe deto­
nations are the same as those which describe deflagra­
tions. Customarily in the description of deflagrations 
the kinetic energy of the gases is ignored and the 
reaction wave is taken in approximation to be a con­
stant-pressure reaction wave. Steady-state deflagra­
tions and steady-state detonations represent two types 

file:///Wo0o=


154 MABJORIE W. EVANS AND C. M. ABLOW 

of solutions to the same set of equations and boundary-
conditions. The detonation solutions are those in 
which the velocity of the wave relative to the unreacted 
material is supersonic; the deflagration solutions are 
those in which it is subsonic. For the same initial con­
ditions, the deflagration final temperature, Ta, 
is lower than the detonation final temperature. A de­
flagration solution can exist only if the reaction rate at 
the initial conditions is sufficiently small, and it exists 
for only a single value of K (48). A detonation solution 
for the steady-state case formally exists for a continuous 
range of values of K. The limitations on possible values 
of K have been considered previously. For von Neu­
mann type solutions in ideal gases it was found that 
only Chapman-Jouguet detonations can exist (K 
= 1) unless Up > (u2)*, in which case solutions for which 
K < 1 exist. 

Consider the Hirschfelder-Curtiss results for K = 1, 
in particular a zeroth order approximation to their deto­
nation equations obtained by assuming the steady 
wave to consist of two zones. The first is the shock zone 
in which p0, ^0, and po are increased to p\, Th and pi. 
In this zone it is assumed that chemical reactions and 
thus diffusion can be ignored, while viscosity and heat 
conduction are retained. Following this first zone is the 
reaction zone in which diffusion and viscosity are 
neglected but the effects of chemical reaction and heat 
conduction are retained. The reaction zone solution is 
that for a deflagration with initial conditions ph Ti, 
P1. Figure 23 shows the variation of the variables for 
K = 1 and selected values of /3, y, do, po, cp, X, v, and 
Ea. Note the similarities between figures 23 and 21. 
In figure 21, viscosity and heat conduction, as well as 
chemical reaction, were ignored in the shock, so that it 
rose discontinuously to p = pi at £ = O. In figure 23, 

FIG. 23. Sketch of zeroth order approximation to the solution 
of the detonation equations (Hirschfelder and Curtiss). 

the shock rises continuously to p = p\ at $' = £ = O. 
Next consider the numerical solutions of the differen­

tial equations which include the effects of heat conduc­
tion, viscosity, diffusion, and chemical reaction (for 
the assumed simplifications) throughout the steady 
wave, from p0,r0 to p„,T„. The authors studied the 
effect on the solution of the variation of K and Y, 
where 

T = po(cp/\pnEa)"> (4.4.22) 

The values of the parameters 6, y, j3, and T were speci­
fied and a solution was sought for each value of K 
< 1. The numerical integration was started at an 
arbitrary point near the hot boundary, generally at 
T/Ta = 1, and an arbitrary value of w. The starting 
value of w was varied until a solution was obtained 
which approached G = 1 at the cold boundary. It was 
found that as T becomes smaller the coupling between 
shock and the following deflagration becomes stronger, 
so that the solution curve moves farther from that 
obtained for the zeroth order approximation of figure 
23. For the parameter values /c = 1, /3 = 1.12, y = 1.25, 
0o = 0.02, and T = 0.0028 the ratio pi/pa, where pi 
is the peak pressure in the von Neumann approximation, 
is 1.97. The exact solution, however, gives pi/p„ = 
1.55. A sketch of this exact solution is given in figure 24. 
Thus for an irreversible unimolecular reaction in an 
ideal gas, substantial chemical reaction occurs within 
the short rise time, there is strong coupling between 
shock and deflagration zone, and the peak pressure is 
less by 20 per cent than that calculated from an 
uncoupled model. 

Numerical solutions for reversible unimolecular 
reactions have been discussed by Linder, Curtiss, 
and Hirschfelder (82). They found that for an every­
where steady wave, where complete chemical and 
thermal equilibrium are attained at | = «=, K = 1 
only when it is defined in terms of the equilibrium 
velocity of sound. This agrees with the conclusions of 
Wood and Kirkwood (129). The solutions obtained 
were similar to the corresponding solutions obtained 
for irreversible kinetics. 

Friedrichs showed that for given heat conduction 
and viscosity there is a certain critical value of the 
reaction rate, K0, above which a Chapman-Jouguet deto­
nation is not possible and a particular weak detonation 
solution is determined. This solution corresponds to 
point G in figure 25, with the direction of increasing 
e being from O to G. The pressure would be expected 
to increase from point O to point G along a curve the 
shape of which will depend on the reaction kinetics, 
possibly as in figure 26. With viscosity, equation 3.1.8 
is no longer valid so that the point representing the 
reaction in figure 25 need not follow Rayleigh line OG. 
Let Kc be the critical rate and rj0 the viscosity at 300 0K. 
and atmospheric pressure. Friedrichs gave a graph 
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FIG. 24. Sketch of exact solution of detonation equations (Hirschfelder and 
Curtiss). 

for nKc/va as a function of the ignition temperature 
T^ a temperature below which the reaction rate is 
insignificant and can be set equal to zero. His calcula­
tions were made for a polytropic gas initially at 3000K. 
for which the Chapman-Jouguet calculated velocity 
was 1.57 mm.//usee. Figure 27 gives the results. Ac­
cording to the graph, for Tt = 7000K., I)KC/TIO is ap­

proximately equal to 1010 sec.-1 If »70/97 = 1 and 
& = U/Kc, where £i is the width of the reac­
tion zone, then £i = 1O-4 mm., which is the 
order of one mean free path. If the appropriate 
value of 77/770 is 10, then & = 10 ~3 mm. These 
rates, while high, are not impossible; the rate 
expression for PETN, for instance, is K = 
de/dt = v(l - e) exp(- EJRT) with v = 
1019-8 sec."1 and E. = 47 kcal. per mole (103). 

Cook (24, 28) suggested that a stable steady 
zone of finite width must have a pressure pro­
file of the form shown in figure 28, with pressure 
constant at the Chapman-Jouguet pressure. He 
postulated that the Hugoniot curves are altered 
by a large thermal conductivity in the reaction 
zone so that they have the form sketched in 
figure 19, but with all curves except Hm = J u ) 

crossing the Rayleigh line at the same point 
and with the Rayleigh line tangent to Hu> = 
J(1) at that point as shown in figure 29. This 
particular pathological detonation would be a 
Chapman-Jouguet detonation, and the p vs. £ 
profile would show the desired form. 

H0W" 

D. COMMENTS ON EXPERIMENTAL OBSERVATIONS 

Relevant experimental work has included attempts 
to establish the validity of the von Neumann model 
and to measure the width of the reaction zone. Among 
this work is the following: 

Kistiakowsky and Kydd (72) measured the varia­
tion of density with position within the reaction zone 
of a gaseous Chapman-Jouguet detonation wave by 

FIG. 26. Variation of pressure with | in a one-
dimensional, steady-state detonation not involv­
ing a shock. 
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FIG. 25. Detonation solutions not involving a shock. 
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FIG. 27. Critical reaction rates for weak detonation 
versus the initiation temperature (Friedrichs). 
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FIG. 28. Variation of pressure with J in a 
one-dimensional, constant-pressure, Chapman-
Jouguet, pathological detonation. 

FIG. 29. Constant-pressure, Chapman-Jouguet, pathological 
detonation. 

x-ray absorption photometry. The gases were hydrogen 
and oxygen mixed with various diluent gases at an 
initial pressure of 10 to 100 mm. of mercury. Inter­
pretation of the data, taking into account the time 
constant of the detection system, the traverse time of 
the wave across the slit, and the tilt and curvature 
of the wave led to the following conclusions: The re­
action times were between 1 and 10 jusec. No pro­
nounced induction time as depicted in figure 21 was 
observed. Instead there was a rapid rise of density 
at the wave front followed by a gradual decrease to a 
constant value. The value at the wave front, pi, was 
only two-thirds that expected from the von Neumann 
model. The constant value at the rear of the wave, 
p2, was essentially equal to the calculated Chapman-
Jouguet value. Duff (46) calculated the reaction profile 
in a steady-state detonation of 2H2O + O2 + Xe, 
one of the mixtures studied by Kistiakowsky and Kydd, 
by numerical integration methods. He assumed the 

von Neumann model and integrated a system of simul­
taneous equations for the reaction kinetics of the mix­
ture, subject to hydrodynamic constraints so that mass, 
momentum, and energy were conserved throughout 
the wave. The integration was begun at the shock front 
assuming the theoretical value of density at the shock 
front, pi. By assuming that the density observed by 
Kistiakowsky and Kydd was the average density over 
the slit width of the detecting system, and that a 
reasonable amount of wave tilt existed, Duff was able 
to explain the results in terms of the von Neumann 
model with a straightforward kinetic mechanism and 
reasonable rate constants. 

Duff and Houston (47) measured the Chapman-
Jouguet pressure and the reaction zone length of a 
solid explosive composed of Composition B containing 
63 per cent RDX at a density of 1.67 g./cc. They 
measured the initial free surface velocity imparted to 
aluminum plates as a function of plate thickness. 
Their interpretation of the data in terms of shock-wave 
theory showed a decrease in pressure from a peak at the 
front of the wave to the Chapman-Jouguet pressure 
over a distance of approximately 0.1 mm., with pi/pt 
= 1.42. 

Berger and Viard (6) measured the material velocity 
within a detonation wave of a solid explosive by observ­
ing by flash x-ray the displacement of a thin lead foil 
placed at an angle of 45° to the axis, as the detonation 
wave moved across it. Their interpretation of the data 
showed a rarefaction discontinuity at the Chapman-
Jouguet surface. They attributed it to a discontinuity 
in the equation of state for the products at the moment 
when the solid fraction completely disappears. 

Cook (27) described experiments in support of his 
model of a steady detonation wave according to which 
the pressure is nearly constant at the Chapman-
Jouguet pressure in the steady zone. He measured 
electrical conductivities within detonation waves in 
solid explosives. The results, when interpreted in terms 
of some assumptions about the relationship between 
electrical conductivity and thermal conductivity, 
gave X = 0.25 cal./cm.-°K.-sec. He suggested that a 
thermal conductivity of this magnitude would result 
in a p vs. £ profile such as that of figure 28. Cook cited 
as experimental evidence of the zone of large thermal 
conductivity his observations relating to the shock 
sensitivity of explosives (24, 30). If one section of 
a steadily detonating charge is separated from another 
section by a barrier of inert material placed perpen­
dicular to the direction of the wave propagation, the 
detonation wave on meeting the barrier is inter­
rupted for a time before it is re-formed on the other 
side and moves forward with its steady velocity. 
The thicker the barrier, the longer the time and the 
greater the distance from the barrier at which the 
steady wave is re-formed. If the barrier is thicker than 
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(see Section II,E). The region between the shock and 
the Chapman-Jouguet surface is called the steady 
zone, since weak disturbances downstream of the zone 
cannot propagate into it across the sonic bounding sur­
face. 

The second decision has to do with the completeness 
of reaction within the steady zone. In a one-dimensional 
model there is no difficulty in allowing the Chapman-
Jouguet surface to be at infinity. When the flow di­
verges, however, the Chapman-Jouguet surface, as will 
be seen in the following section, is at a finite distance 
from the shock. It then becomes necessary to decide 
whether the reaction is completed in the steady zone, 
and if it is not, to determine the consequences of partial 
reaction outside the steady-state region. In Section V,A 
theories are discussed which assume diverging flow in 
the steady-state zone, and in Section V,B those that 
assume parallel flow. 

A. DIVERGING FLOW WITHIN THE STEADY ZONE 

1. CyHndricaUy symmetric flow (Wood and Kirkwood) 

r = radial coordinate [I] 
en = radial component of velocity [lt~ 
C = frozen sound speed [It'1] 

1J 

a certain minimum, the wave will not re-form. Cook 
believes that the absence of luminosity which he found 
in solid explosives during the period of re-formation of 
the steady wave is evidence that the zone of high 
thermal conductivity was erased by the barrier. This 
is not conclusive evidence for such a zone, as the re­
sults can be explained by (a) the emergence from the 
barrier of a shock of lower strength than the maximum 
pressure in the steady detonation wave, together with 
(b) transient chemical reaction and wave behavior as 
described in Section VI below. 

V. THREE-DIMENSIONAL, AXIALLY 

SYMMETRIC, STEADY-STATE DETONATION 

WAVES WITH FINITE REACTION RATE 

The pressures developed in the detonation reaction 
zone in condensed explosives are of the order of 103 to 
106 atm. Material at such pressures cannot in general 
be contained, so that the flow behind the front has a 
component radially outward. Gases, which develop 
considerably lower detonation pressures (of the order 
of 10 atm.), can be confined in a tube, and for them the 
one-dimensional approximation is good (78, 80). A 
diverging flow is expected and is found experimentally 
to result in lower pressures and densities within the 
steady wave, and consequently in lower detonation 
velocities. Explosives which cannot be contained ex­
hibit a diameter effect on detonation velocity and on 
the other detonation characteristics, with the values 
tending toward the limit calculated from the one-
dimensional model as the diameter of a cylindrical 
charge is increased. It is therefore of interest to state 
the detonation equations in a mathematical form in 
which mass velocity, pressure, and density are depend­
ent on a radial as well as a longitudinal coordinate and 
to find a relationship between diameter of charge and 
detonation characteristics. It will be useful to use the 
superscript o to designate detonation properties for a 
one-dimensional Chapman-Jouguet detona­
tion wave. Such a wave is often referred to 
as an ideal wave, or as a plane detonation 
wave. 

The models upon which the theories of 
three-dimensional detonation waves are 
based embody two arbitrary decisions made 
to avoid solving a completely stated problem, 
including boundary conditions. The first is 
the choice of flow pattern between the shock 
front and the Chapman-Jouguet or sonic sur­
face. A common assumption is that the flow 
with respect to the shock front diverges in 
this region. This assumption is supported by 
the experimental observation that the deto­
nation front is curved, i.e., it is oblique to the 

oncoming flow, and the knowledge that flow F l G . 30. Schematic diagram of cyHndricaUy symmetric flow in a detonation 
crossing such shocks turns toward the shock wave, with coordinate system at rest in the detonation front. 

Wood and Kirkwood (128) assumed a curved shock 
front leading a zone which is cylindrically symmetric. 
Their coordinates were x, coincident with the axis of the 
cylindrical charge, and r, the radial distance from the 
axis. The vector mass velocity q has an axial component 
u and a radial component «. Figure 30 is a sketch of 
the flow in a coordinate system which moves with the 
detonation wave. 

The rate equation corresponding to equation 4.3.2 
is written for a single reaction so that A = e and 

dx/di = de/dt = K (5.1.1) 

The relation between dp/dt and dp/dt (equation 4.3.6) 

H 
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for a single reaction becomes 

dp 1 dp 

dt C2 dt 
- <jPK (5.1.2) 

If equation 5.1.2 is used and transformed into a co­
ordinate system which moves with the wave front, the 
steady-state differential equations for conservation of 
mass, momentum, and energy and the rate equation 
become in cylindrical coordinates 

-p&ui + (U- u)pi = p&<t>\ (5.1.3a) 

(mass) 

(5.1.3b) 
d> = <jK — Wr — Vr ~ u / r 

p52 

p(U - M)Mf - Pi = -polUr) (5.1.4) 
/ I T i i r (momentum) . . . . . 

p(U — M)wf + Pr = — paUr) (5.1.5) 

(U - U)(Ei + pri) + w(Er + pTr) = O (energy) (5.1.6) 

(U - M)XJ + w\r = K (rate) (5.1.7) 

A complete solution of the set of equations 5.1.3 
to 5.1.7 is not attempted. Instead the equations are 
specialized to the axis (r = O) to give, since w(£,r = 
O) = 0, pr($,r = 0) = 0, and Pf(g,r = 0) = 0, 

-PC2Ui +(U- u)pi = p&(aK - 2wr) (5.1.8) 

p(U - u)w{ - p { = 0 (5.1.9) 

p, = 0 (5.1.10) 

(C/ - M)Xf = K (5.1.11) 

Ei + Pn = Q (5.1.12) 

Equations 5.1.8 and 5.1.9 solved for w{ and p{ give 
equations analogous to equations 4.3.9, 4.3.10, and 
4.3.12 of one-dimensional theory: 

Wf = (aK — 2«,) 
I? 

P(U-U), 

„ = i - (u - u)y& 

(5.1.13) 

(5.1.14) 

(5.1.15) 

Recalling the arguments leading to equations 4.3.15 
and 4.3.16 one sees that the generalized conditions on 
the Chapman-Jouguet surface are 

U = M„ + C„ 

<rK - 2a, = 0 

(5.1.16) 

(5.1.17) 

Equation 5.1.17 relates the radial flow divergence at the 
sonic point indicated by the subscript * to the rate of 
reaction and the thermodynamic quantities described 
in equations 4.3.7. A generalized Chapman-Jouguet 
condition of this type was first described by Eyring, 
Powell, Duffey, and Parlin (51, 52) for a three-dimen­
sional model of a detonation wave, described in Section 
V,B. 

Equations 5.1.12, 5.1.13, and 5.1.14 are integrated, 
using equation 5.1.2, to give the Rankine-Hugoniot 
relations between any two points in the steady reaction 

zone. Then with the aid of the equivalent conditions 
across an oblique shock, equations 2.5.17 to 2.5.20, 
Rankine-Hugoniot relations valid between the un-
shocked state ahead of the wave and any point within 
the steady portion of the reaction zone are obtained. 
The subscript 0 represents the unshocked state ahead 
of the wave; unsubscripted variables represent variables 
behind the front. The integrated conservation of mass 
equation, analogous to equation 3.1.10, is 

PaU Jo 

1 - 2L(Q 

p(rM£')dr 

(5.1.18a) 

(5.1.18b) 

The integration of equation 5.1.14 gives, in analogy to 
equation 3.1.9 and neglecting p0) 

p = POCM \ l — 2 • n - u(i') 

«(0J 
or with neglect of terms in oil 

2T/TO 

POU 
di'> (5.1.19) 

p = p0U\l — T/T0) i1 + ^n_r 
1 1 - T/TO L 

2L«) - r- Q(I) 
Po 

Q(Z) 
mhL« •(SOdf 

(5.1.20a) 

(5.1.20b) 

(5.1.21) 

Finally the integration of equation 5.1.12 gives, in 
analogy to equation 3.1.14, if terms in ul are ignored 
and po is again neglected, 

E(T,P) - EW(TO,PO) - h ( n ~ T) = 

U>1(1 + r/r„)fi(!) -2^U$)\ 

Once again the three conservation equations (5.1.18, 
5.1.20, and 5.1.21), the Chapman-Jouguet condition 
(equations 5.1.16 and 5.1.17), and an equation of state 
are combined to obtain expressions for U and the values 
at r = 0 throughout the steady zone of p, u, p, and X. 
To do this it is, however, necessary to obtain an 
expression for w„ the radial flow divergence, as a func­
tion of J at r = 0. This expression is obtained by 
relating u, to prr through the law of conservation of 
momentum, and estimating prr. Differentiating equa­
tion 5.1.5, specializing it to r = 0, neglecting terms in 
Wr, and integrating gives 

Wr(S1O) = Wr(0,0) - - ! - I Prra,0)d£ (5.1.22) 

PoU Jo 

where the quantities are functions of | and r. The value 
of wr(0,0) is expressed in terms of the radius of curva­
ture, s, of the shock front at the axis, 

Wr(0,0) - U(0,0)/S (5.1.23) 

and Prr(?,0) is estimated on the basis of an assumed 
geometry of the reaction zone. Let £ = £„ designate 
the Chapman-Jouguet point on the axis. Assume that 
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the Chapman-Jouguet surface is a plane perpendicular 
to the axis at £ = (•„, which intersects the shock front. 
Assume that on the portion of the curved shock front 
ahead of the Chapman-Jouguet plane the surface can 
be represented by a sphere of radius s, as shown in 
figure 31. The second radial derivative of pressure, 

(U0 - U)/U" - 3.«./« (5.1.28) 

P "P . !SP(O1O). 

F I G . 31. Schematic diagram of physical model assumed by 
Wood and Kirkwood. 

prT, at the axis is obtained approximately by expanding 
the pressure in a power series in r, 

p, = p(j,0) + rprdfl) + - p„(i,0) + (5.1.24) 

where ps(k,r) denotes the pressure at point £ on the 
shock front. The second term on the right-hand side is 
zero, by equation 5.1.10, and in approximation r2 = 
2s£. Furthermore, in approximation ps = p(0,0). Hence 
equation 5.1.24 becomes 

PT(J 1O) 
P(O1O) V1 P(I1O)I 

L P(O1O)J 
(5.1.25) 

so that the approximate expression for w, becomes, 
by combining equations 5.1.22, 5.1.23, and 5.1.25, 

Ur(J1O) M(0,0)6({) 

U 

KQ - J T t -
Us 

P(H',O)' 
P(O1O) . 

d£' 
J' 

(5.1.26a) 

(5.1.26b) 

An approximate explicit solution is obtained 
for the following assumptions: (a) The pressure 
profile is a square wave such that 

2. Flow described in spherical coordinates {Eyring, 
Powell, Duffey, and Parlin) 

r = radial distance from origin [J] 
t/ ( s ) = detonation velocity of wave of radius of curvature s 

in which reaction is complete at |* [tt -1] 
4> = angle between the axis and the normal to detonation 

front [1] 

Eyring, Powell, Duffey, and Parlin (51, 52) postulated 
that the curved shock front is made up of spherical 
segments and that behind each segment is the radially 
divergent flow which occurs behind a spherical detona­
tion wave initiated at a point inside an explosive 
(116). The flow lines in a coordinate system at rest in 
the unreacted explosive are shown in figure 32a. 
A spherical detonation is not steady, since the radius 
of curvature increases with time. For an instantaneously 
steady spherical segment of shock front moving in the 
direction of the axis of a cylindrical charge, the flow 
lines between the front and the Chapman-Jouguet 
plane in a coordinate system at rest in the shock 
front will diverge, as shown schematically in figure 32b. 

The above authors (a) obtained relationships allow­
ing them to calculate the detonation velocity of a 
solid explosive for a given ratio of radius of curvature of 
a spherical front to reaction zone width, assuming that 
reaction is complete at the Chapman-Jouguet surface. 
Next, (6) they extended their calculations for this 
relationship to waves in which the reaction is not 
complete in the steady wave, making use of a generalized 
Chapman-Jouguet condition. Finally, (c), using the 
results of (a) and (6) they performed computations 
which gave for a typical solid explosive a relation con­
necting the detonation velocity, the width of the reac­
tion zone, the radius of the charge, and the downstream 
boundary condition. The results were correlated in 
empirical equations. 

P(i) -\l (5.1.27) IPi I <£* 
|p(£.) I = J* 

an approximation to the pressure profiles 
sketched in figures 21 and 23; (b) the reaction 
is complete at £ = £„; (c) a free-volume equa­
tion of state is used; (d) po/p* = 0.7 and po/pi 
= 0.55. For these assumptions the following 
equation is given relating the detonation veloc­
ity for given £„ and s to the detonation velocity 
for a plane wave, U", 

UNREACTED 

(•) 
COORO IN4TE S Y S T E H JT RES 

U N R E A C T E D N A T E R I A L 

SHOCK 

(b) 

C O O R D INATE S Y S T E M AT 

REST IH S H O C K FRONT 

F I G . 32. Schematic diagram of spherically symmetric flow in the steady zone 
of a detonation wave. 
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For spherically symmetric flow the differential equa­
tions for the conservation of mass and momentum are, 
respectively, where r is the radial distance from the 
origin, 

Pt + (pu), + 2pu/r = O (mass) (5.2.1) 

U1 + UUr + - Pr = O (momentum) (5.2.2) 
P 

Introduce a coordinate which moves with the wave, 

j = WH - r (5.2.3) 

where £ is now the radial distance measured backward 
from the shock which is at r = s and U{S) is the detona­
tion velocity of a spherical front of radius s. Assuming 
steady-state behavior so that the time derivatives 
vanish, equations 5.2.1 and 5.2.2 become 

(£/<•> -U)Pi = pu( - 2pu/r (5.2.4) 

P ( f7« - M)M{ = Pi (5.2.5) 

Note that the assumption of steady flow relative to a 
spherically expanding shock is self-contradictory. 

Integrating equation 5.2.4 from f = O at the shock 
front to another point £ within the wave, and making use 
of the Rankine-Hugoniot condition (equation 2.5.21) 
across the shock front at £ = O gives 

„([/(.> - w ) - p<suMe 

where 

pCe'Mf) 
d«' 

(5.2.6) 

(5.2.7) 

Equations 5.2.6 and 5.2.7 are analogous to equations 
5.1.18 in that they contain the effects of diverging flow. 
An approximate expression for 6 is obtained by re­
writing equation 5.2.7 to obtain 

, = ! _ 2 C MA/* ~ * dr ( 5 .2 .8) 
J o r 

By approximating the integrand by its value at £ = 
0, and pi by p„, one obtains: 

S \P0 / 
(5.2.9) 

Take po/p* = 0.8 and assume that the reaction is 
completed at the Chapman-Jouguet surface so that 
£„ = £i, the width of the reaction zone. This finally 
gives for 6 

9 = 1 - 0.5&/S (5.2.10) 

Integrating equation 5.2.5 from £ = 0 to a point | 
within the wave, and using equation 5.2.6, gives 

P-Pi = 
-P§t/w202

 p$w -T 2p 2 

Integrating by parts, setting 

« e * * ^ * (5.2.H) 
d? 

/>d(l/P) = - - -
P Pi 

(5.2.12) 

and making use of equation 2.5.12 results in 

PlU^ 
2P 

(9» + 1) + PoUW (5.2.13) 

The one-dimensional, integrated form of the equation 
of energy (equation 3.1.14) is used. This means that 
terms due to radial expansion such as are included in 
equation 5.1.21 are neglected. Hence, neglecting p0, 

E(r,p) - £(»)(T„,PO) = | ( r 0 - r)p (5.2.14) 

From equations 5.2.13, 5.2.14, the Abel equation of 
state (equation 2.1.8), the assumption that the Chap­
man-Jouguet condition applies at e = 1, the definition 
of sound velocity (equation 2.1.10), and the approxi­
mation of equation 3.4.1, one obtains a relationship 
between pt and 9, 

Po 7 + poaB2 

P« ~ e2 + (i + e2)7/2 (5.2.15) 

as well as an expression for U as a function of 6. Values 
are calculated for U(a)/U° versus £i/s, where U" is 
the plane-wave velocity given by equation 3.4.6, and 
are shown as the solid line of figure 33. The values 

i.o 

U(S)/u°f 

.(S) 

0 Si IO 20 

F I G . 33. Uw/U" versus s/h for a typical solid 
explosive (Eyring, Powell, Duffey, and Parlin). 

7 = 1.26 and PO/P* = 0.8 were assumed in the calcu­
lations (44). 

Equations 5.2.4 and 5.2.5 can be written in the form 

n 

Pi = 

= _1 / Z _ 2M\ 

1 \PC2 T ) 

^ (* - ^) (5.2 
17 \PC 2 T I 

(5.2.16) 

-p(7J<» -

„ = 1 - (TJW - M)2/C2 

17) 

(5.2.18) 

where 

and may be compared with equations 5.1.13 to 5.1.15. 
The generalized Chapman-Jouguet condition is 

UM = «„ + <:„ 

X 2ut 

pc' r 
= 0 

(5.2.20) 

(5.2.21) 
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The results shown as the solid line on figure 33 were 
based on the assumption that, as in the plane wave, 
e = 1 at the Chapman-Jouguet point, so that ut 
= M2i c* — c2- If the radius of curvature of the wave is 
small compared to the width of the reaction zone, the 
reaction will be incomplete at %r The consequences of 
this were described by the authors as follows: 

Assume that a time h is required for a reaction to 
proceed from e = 0 to e = 1, so that the reaction zone 
width £i is defined by the equation 

k = f ...** (5.2.22) 
Jo UM -u 

This becomes, by equation 5.2.6 and assuming that 
P = PI everywhere in the wave, 

-r. ePliu
M d? = p'.ft 

P0UM 
(5.2.23) 

where p° = p% represents the density at the Chap­
man-Jouguet plane in the plane wave. Let rm be the 
position of the Chapman-Jouguet surface. The width 
of the reaction zone, when reaction goes to completion, 
is £i. One asks for the particular value of r, such that the 
reaction is just completed at r„, i.e., rt + J1 = s, 
and calls this particular value rx. The subscript J 
represents values of variables at the Chapman-Jouguet 
surface for a wave of a particular radius of curvature 
.Sj = rx + J1. Combine equations 5.2.19 and 5.2.21 
to find 

1 1_ 

r% 2upc2 

Eyring, Powell, Duffey, and Parlin approximate 
(dp/be),, by px and de/d£ by 1/h. Then from equations 
5.2.24, 2.1.13, 5.2.6, and 5.2.23 one obtains 

VA/„d< 
(5.2.24) 

|_i _ p |Po(l — apX) 

r% 2ypl(pt — PoS) 
(5.2.25) 

A solution for ^1/sx can now be obtained from equations 
5.2.10, 5.2.15, and 5.2.25. The approximate solution 

l i / s j = 0.616 (5.2.26) 

is cited. The explosive properties assumed are not stated 
but are probably the ones used to give the results 
represented by the solid line of figure 33. 

In order to extend the curve of figure 33 to s/£i 
< sx/J1 it is assumed that no reaction which can in­
fluence the steady zone occurs in the rarefaction wave. 
To a first approximation the detonation velocity 
of a curved wave is assumed to be proportional to the 
square root of the heat released during the reaction, 
with the further assumption that the heat released is 
proportional to the fraction of reaction which occurs 
in the distance J = 0 to J = J„. Then 

(5.2.27) 

where t7(s) is the detonation velocity for a wave in 

UM 

UM 

which the reaction is completed at the Chapman-
Jouguet surface, i.e., J11, = J1, and where e„ is the 
fraction of reaction which has occurred between the 
shock front and the Chapman-Jouguet surface. Thus 

TJM 

~U' 

» QM £ 
(5.2.28) 

£7WITJ0 can be obtained from figure 33. It is assumed 
that equation 5.2.26 applies for all J„, not only for 
f* = Ii for which the equation was derived. Then equa­
tions 5.2.26 and 5.2.28 give 

TJM 

IF 
_ £M Jp.eifa 

(5.2.29) 

which is used to extend the curve of figure 33 to smaller 
values of 8/J1, the extension being shown as a dotted 
line. 

These solutions for spherical waves are used to ob­
tain an empirical expression for the dependence of 
detonation velocity on charge diameter. It is assumed 
that a curved detonation front can be approximated by 
connected portions of spherical surfaces, the spherical 
radius of successive portions decreasing as one moves 
from the axis to the outside of the charge. For a steady 
wave every point on the wave front must have the 
same velocity TJ parallel to the axis. According to the 
model the velocity of this point along the normal to 
the plane tangent to the front is TJ^. If <j> is the angle 
between the normal and the axis of the charge 

UM = TJ cos 0 (5.2.30) 

so that for every angle <f> a different velocity U^, 
hence a different radius of curvature s, is required if 
the wave is to be steady. The authors construct in 10-
degree intervals for given TJ/TJ0 and ^1 the surface 
which will meet the requirement of stationarity. Thus 
forgiven U and fc, set Uis)/U° = (U/U0) cos 5° and com­
pute U(a). From figure 33 find s. Construct an arc of 
10° from cj> = 0 to 4> = 10° of radius s. Repeat for 
jjis)/jjo = (JJ/JjO-) c o s 15o_ Construct an arc, joining the 

previously constructed arc, from <j> = 10° to 4> — 
20° with the new radius s. Repeat until the boundary 
condition is satisfied. 

The side boundary condition depends on the ma­
terial surrounding the charge. I t is assumed that if 
the charge is surrounded by air, the wave front will 
reach the surface at <t> = 90°. Then the diameter D 
of the charge appropriate to given TJ and £i is the 
distance from the axis to the point where the con­
structed curve representing the wave front becomes 
parallel to the charge axis (or boundary). Construction of 
these curves was carried out for explosive characteristics 
leading to figure 33, a table of 2&/Z) versus TJ/U" 
was compiled, and the results were represented by the 
empirical formula 

U 

U" 
= 1 | i / D for ii/D < 0.25 (5.2.31) 
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For &/Z> > 0.25 the values of XJ/XJ" obtained by con­
struction are higher than equation 5.2.31 indicates. 
Equation 5.2.31 is frequently used to determine £i, 
since this quantity is not generally known, whereas 
XJ versus D can be readily measured. The authors 
plotted XJ versus 2/D for RDX and picric acid and 
found that the data generally fall on a straight line 
for 2/D less than about 2.5. 

The effect on TJ/XJ0 of a case surrounding the charge 
is found by deducing the angle of the wall with the 
axis after the pressure within the steady zone has 
acted upon the wall for time t\. If the wall is assumed to 
be nearly parallel with the axis, then its velocity will be 
«2S) sin 4>, where t48) is the material velocity of the 
spherical segment of radius s which is in contact with 
the wall. If the pressure acting on the wall for time h 
is assumed to have an average value pf, then 

pfh = acii^ sin $ (5.2.32) 

where ac is the mass per unit area of the case. Substi­
tuting equations 3.1.9 (for p0 = 0) and 5.2.23 into 
equation 5.2.32 and setting p° = p2 gives 

sin 4, = lipj/o-, (5.2.33) 

An empirical expression relating XJ/XJ0 with 2£i/D 
and <JC is obtained in the same way as equation 5.2.31, 
with the side boundary condition requiring that the 
wave meet the wall when its radius of curvature is at 
angle 4> with the axis. The resulting empirical formula is 

(U0 - U)/U = 2.2?m/D<rc (5.2.34) 

8. Prandtl-Meyer flow (H. Jones) 

r = ratio of radius of axial stream tube to its initial 
radius [1] 

Although, as has been observed in previous sections, 
the shock is curved when the flow diverges, near the 
axis it is plane. Jones (67) approximated the divergence 
of the flow near the axis by that in the Prandtl-Meyer 
expansion around a corner a distance D/2 from the 
axis. He assumed the Abel equation of state, complete 
reaction, and the plane form of the Chapman-Jouguet 
condition (equation 3.2.12). 

Let T be the ratio of the radius of the axial stream tube 
to its initial radius at £ = 0, so that it has the value 
r0 = 1 at £ = 0, and r = ri at £ = £i. Then the integrated 
form of the equation of continuity along the axis is 

pvr2 = P(M (mass) (5.3.1) 

and of momentum is 

hv1 + I T — dr = constant (momentum) (5.3.2) 
J l dr 

Equations 5.3.1, 5.3.2, and 2.5.1 when combined give 
for po = 0 

-JL = ! - £ % - < _ 2 fe°r-'dr (5.3.3) 
U2Pa p Jl P 

An average density over the reaction zone is defined as 
follows: 

flpJ rsdr = * f " r-=dr = ) ^ (1 - n*) (5.3.4) 
JlP P Ji 4 p 

Introducing equation 5.3.4 into equation 5.3.3 and 
evaluating at r = n, where e = 1, gives 

"- -" i ' -S - •« ( ; -S ) ] <5A5> 

Equation 5.3.5, the integrated form of the conservation 
of momentum for this model, may be compared with 
equations 5.1.20 and 5.2.13. For no expansion, T1 = 1, 
it reduces to the plane-wave equation 3.1.13 for 
Po = O. 

The conservation of energy equation is, if pa is neg­
lected, 

E(r,p) - EW(To1Po) = ^1CT0 - r,) - I p ^ dr 
2 J i d r 

(energy) (5.3.6) 

Introducing equations 5.3.3 and 2.5.12 and evaluating 
at r — ri gives 

EW(Tt1P,) - £(»'(r„,Po) = ^ - PIT, - ~ (jj n4 (5.3.7) 

which may be compared with equations 5.1.21 and 
5.2.14. If there is no expansion along the stream tube, 
then Ti = 1 and equation 5.3.7 reduces to equation 
3.1.3 for the plane wave, if p0 is neglected. 

Expressions for p2, Pz, r2, T2, and XJ in terms of rx 

and p can now be obtained from the Abel equation of 
state (making use of equation 3.4.1 but setting cvT0 = 
0), the Chapman-Jouguet condition with the definition 
of sound velocity, and the equations of conservation of 
mass (equation 5.3.1), momentum (equation 5.3.5), and 
energy (equation 5.3.7). The result for the detonation 
velocity is 

U* = 2Q^7* ~ D [ ( 1 _ 70 J' + 

y^ri [ l -gU-r/) ]2-l} + 

" ( ^ - - V l - ^ ) T 1 (5.3.8) 
T0\P T0/ J 

For no radial expansion, so that n = 1, equation 5.3.8 
reduces to equation 3.4.6 for CCTQ = 0. Dividing 
equation 3.4.6 by equation 5.3.8 and setting cvT = 0 
gives 

[>-£<'^>KT^(?-£H ( 6 -» 
If equation 5.3.9 is applied to situations where XJ is 
only a little less than XJ", an approximate expression is 
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obtained by letting ri = 1 for all terms inside the braces. 
Jones estimates the value of the quantity inside the 
braces at 2.0 for cast explosives, so that equation 5.3.9 
becomes 

(U0ZU)* = 1 + 2.0(rf - 1) (5.3.10) 

It remains to find the value of n for given radius of 
charge. This is done using the Prandtl-Meyer approxi­
mation. The radial expansion is calculated for product 
gases obeying an adiabatic pressure-volume relation 

VP-1 = PIPI 3 (5.3.11) 

The flow is described by a centered simple wave with 
straight C_ characteristics issuing from a point A 
on the boundary of the charge, as in figure 34. Let the 

where s0 = AD and s = AG. In terms of r and u 
equation 5.3.14 becomes 

r = 1 + /3[1 - (cos u / \ / 2 ) " 2 cos a] (5.3.15) 

and 

/3=So /Y- - s 0 j (5.3.16) 

where D = 2AB in figure 34, the diameter of the 
charge. If c is set equal to ch equations 5.3.11, 5.3.13, 
and 2.1.10 combine to give 

t = (LA' = (C0S „/^/2)3 (5.3.17) 

which is an expression for the variation of pressure 
along a stream line in Prandtl-Meyer flow. 

Next consider the flow inside a tube generated by 
rotating the stream line (equation 5.3.17) about the 
axis of symmetry. Combining equations 5.3.1, 5.3.2, 

5.3.11, and 2.1.11 gives 

- - on* - OT — 

dV d2r 
vD«c— = irDacU*— = 2 B-rp (5.3.22) 

at1 df2 

Assume the pressure acting on the wall to have an 

CHARGE BOUNDARY 

Equations 5.3.15, 5.3.16, and 5.3.18 
can be combined to give the varia­
tion of pressure along a stream line. 
The particular stream line which gave 
the closest agreement between these 
pressures and those obtained from 
equation 5.3.17 was found to be that 
for which /3 = 0.85. From figure 34 
and equation 5.3.14 

i = 
cos2(w/V2) 

(5.3.19) 

AXIS 

f 

When the numerical value of /3 is 
used, equation 5.3.15 becomes 

r = 1.85[1 - (2|/D) cot «] (5.3.20) 

FIG. 34. Prandtl-Meyer flow within a steady detonation zone (Jones). Characteristics The three equations 5.3.10, 5.3.19, 
{solid lines) and stream lines (dashed) are shown. Line AB is the shock front. a n ( J 5,3.20 constitute the Jones de­

scription of the dependence of U 

angle of a C_ characteristic with the sonic plane AB 
be w. (Note that in this approximation the sonic plane 
is assumed to be at e = 0, instead of at the end of or 
within the reaction zone according to the Chapman-
Jouguet condition.) Let —g be the component of the 
velocity vector along the C_ characteristic and c 
the component normal thereto. For a polytropic gas 
with 7 = 3 (39), 

g = — C sin w/ \ /2 

C = C cos w/ \ /2 

c is the speed of sound at a sonic point, i.e. 
v. = c. The equation of the stream line is 

s = So(cos w / \ / 2 ) - s 

(5.3.12) 

(5.3.13) 

, where 

(5.3.14) 

on |i and D. Set £ = £i and r = n in equations 5.3.19 
and 5.3.20. These two equations can be solved simul­
taneously for ri in terms of 2£i/D. Finally, equation 
5.3.10 is used to obtain U"/U as a function of n 
or 2£i/Z). According to Taylor (123) graphical solution 
yields the relationship 

(U/U0)2 = 1 - 0.8(2^/D)2 (5.3.21) 

a formula which may be compared with equation 
5.2.31. 

The effect upon the radial expansion and hence upon 
the ratio (U/U") of a case surrounding the charge is 
obtained by assuming that the motion of the wall is 
caused by the pressure acting on it according to the 
equation 
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average valuep2, introduce equation 3.1.13, andapproxi-
mate po/p2 by 3/4; equation 5.3.22 then becomes 

dV por 

dj2 = 2Da 
(5.3.23) 

At I = O, dr/d£ = O and r = 1, and the solution of 
equation 5.3.23 is 

r = cosh (5.3.24) 

Set £ = £i, r = rx and introduce equation 5.3.10 to 
obtain 

(V - V)/U = ilpo/Dac (5.3.25) 

This equation may be compared with equation 5.2.34. 

4- Divergence due to boundary layer (Fay) 

S = thickness of boundary layer [Z] 
y = coordinate perpendicular to axis of tube [I] 
X = relaxation distance [I] 
subscript e = conditions at outer edge of boundary layer 

Fay (54) proposed that the small effect of diameter on 
detonation velocity which is exhibited by contained 
gaseous detonations can be attributed to divergence of 
flow between the shock front and the Chapman-
Jouguet plane. Since the effect exists even when the 
tube walls remain intact, the flow divergence cannot 
be due to imperfect confinement. Fay ascribes it to 
the effect of a turbulent boundary layer adjacent to 
the wall of the confining tube. 

The equations are written in a coordinate system at 
rest in the wave, so that the tube wall has a velocity 
V0 — — U. A schematic diagram of the flow is shown in 
figure 35. In this coordinate system the wall has a 
velocity higher than the bulk of the gas, and through 
the boundary layer of thickness 5(£) the velocity of the 
gas decreases continuously from Vo to ve(£) at y = 5 
and is constant at fe(£) for all values of 5 < y < D/2. 
D/2 is the radius of the tube and y is a coordinate 
coincident with a radius of the cylindrical tube and 
measured from the wall toward the axis. The subscript 
e denotes values of the flow variables outside the 
boundary layer. The gas in the boundary layer not 

only has a velocity greater than that of the main 
stream but is cooler as well, by virtue of the conduc­
tion of heat to the wall; it therefore has a higher den­
sity than the gas in the main stream. The simpli­
fying assumption is made that pressure, which de­
creases with increasing £, is independent of y. The fluid 
in the boundary layer, because of its higher velocity 
and density, has a larger mass flow per unit area than 
the rest of the gas stream, and since 5 increases with 
£, the effect is to cause the flow to diverge. This diver­
gence is expressed in terms of a fictitious increase in 
tube area by increasing the radius an amount 5'(£) 
such that at a given value of £ 

P.(*)t>.({)a'U) - / : My,iMy,& - P.(SM&]dy (5.4.1) 

Fay assumes a turbulent boundary layer for the par­
ticular systems that he has studied and makes use of 
experimental shock-tube measurements of Gooderum 
(56) to deduce an approximate expression for 5', 

6' = 0.22^WpOfO)0'2 (5.4.2) 

where t)e is the viscosity of the gas within the detonation 
wave at the edge of the boundary layer. 

It is assumed that the flow diverges uniformly 
throughout the cross-section and can be described as 
a quasi-one-dimensional flow in a slowly enlarging 
channel of cross-sectional area A. For such a flow the 
differential equations of continuity, momentum, and 
energy are written (81) as follows: 

djpvA) 

d| 
= 0 

dv dp 
p"dl + d! = 0 

d(h + jv2) 
d£ 

= 0 

(5.4.3) 

(5.4.4) 

(5.4.5) 

AXIS OF T U B E - N 
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^ ^ 

C 

y= D/2 

V0 =-U 

Vh 

y = 0 
= 0 

Upon integration from £ = 0 to | = £„ and use of the 
relationships 2.5.1, 2.5.2, and 2.5.3 across the shock 
front, equations 5.4.3, 5.4.4, and 5.4.5 become 

Pofo = P2K2(I + f*) (5.4.6) 

Po + Pô o = (Pt + P:»l)(l + f*) - /3f„p2 (5.4.7) 

h + hi = h + bt (5.4.8) 

where 

A* 
A f. = -T - 1 (5.4.9) 

is the fractional increase in A between £ = 0 
and £ = £ and /3 is defined by 

vtf*P = J7**>ds (5.4.10) 

FIG. 35. Flow in a steady detonation zone with turbulent boundary layer, 
with coordinate system at rest in the shock front (Fay). 

When f * = 0 the entire flow is one-dimensional 
and equations 5.4.6 to 5.4.8 reduce to equations 
3.1.1 to 3.1.3. From equations 5.4.6, 5.4.7, 5.4.8, 
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an equation of state, and the Chapman-Jouguet condi­
tion, Fay obtained numerical solutions for (U0 — 
U) /U" for stoichiometric hydrogen-oxygen mixtures at 
Po = 1 atm., and for 2 > /3 > 1 and 5 <C 1, as follows: 

(U0 - U)/U" = 0.53/3f„ (5.4.11) 

For a tube of diameter D the fractional increase in A 
between £ = 0 and £ = £„ is J; times the tube circum­
ference divided by the tube cross-section, or 

r* = K/D (5.4.12) 

Taking/3 = 1 and combining equations 5.4.11 and 5.4.12 
one finds 

{U° (5.4.13) V)IU0 = 2.UJ D 

where Ŝ  is given by equation 5.4.2. 
Fay deduced £„, from the generalized Chapman-

Jouguet condition below and then found U as a func­
tion of D. Since h = h(p,p,e), equations 5.4.3, 5.4.4, 
and 5.4.5 give 

/dh\ de _ /bh\ din A 
1 dp = \de/p,,,d{ \dp/p,< df 

"**"-[(&.+i®J 
From thermodynamic identities, when 

,* = c* = (**) 

(5.4.14) 

(5.4.15) 

the denominator of equation 5.4.14 is zero. I t has been 
seen that the numerator of equation 5.4.14 must also 
be zero, i.e., 

l_dA 
A d{ 

dp/p,« 

df 
(5.4.16) 

Equations 5.4.15 and 5.4.16 are thus a statement of the 
generalized Chapman-Jouguet condition. The right-
hand side of equation 5.4.16 is approximated by 

(dfe/d^p,, d_e = _Q_ de 

P(dh/bp)p,e' dj ~ cPTd£ 

and the left-hand side by 

(5.4.17) 

1 /dA\ f. 45' 
- — ) = s-i = - i (5.4.18 

Equations 5.4.16, 5.4.17, 5.4.18, and 5.4.2 are com­
bined to give 

/ d . \ . 0 8 8 Z 6 T A Z 3 ^ y . . 
\d{A = f* D \ Q J \p0v0l;J 

Since there are no direct measurements or accurate 
theoretical estimates for (de/d£) Fay assumed a reac­
tion rate described by the equation 

where X is a relaxation distance corresponding to the 
approach to equilibrium. 

Using relaxation distances inferred from the experi­
ments of Kistiakowsky and Kydd (72) and from his 
own work, Fay computed £* from equations 5.4.19 
and 5.4.20 for several gaseous mixtures at 1 atm. 
initial pressure in tubes 2 cm. in diameter. The gases 
were a mixture of 53 per cent C2H2 + 47 per cent O2 

and stoichiometric mixtures of hydrogen and oxygen 
with added helium, argon, or nitrogen. He then com­
puted 5* and (U0 - U)/U" from equations 5.4.2 
and 5.4.13, respectively. The calculated and measured 
velocity deficits corresponded within factors of 12 to 
41 per cent. Experimental results indicated a reaction 
zone thickness varying inversely with initial pressure 
for oxygen-hydrogen mixtures. This is in agreement 
with the data for U versus D if Fay's theory is accepted 
as correct. 

B. PARALLEL FLOW WITHIN THE STEADY ZONE 

1. Interposition of side rarefaction wave (Cook; Hino) 

<„ = time spent by a particle in region between J = O and 
I = Z* It] 

Y = thickness of case [I] 
cw = shock velocity in case [It'1-] 

A bar over a symbol indicates the properties of an uncased 
charge (Hino) 

Cook (26, 29) made the following assumptions: 
(a) The flow does not diverge between the shock front 
and the Chapman-Jouguet plane. Pressure, density, 
and velocity are constant from the shock front to the 
Chapman-Jouguet plane at the Chapman-Jouguet 
values, as in his one-dimensional model described in 
Section IV,C. (b) The Chapman-Jouguet position 
occurs at the intersection with the charge axis of the 
rarefaction wave moving in from the side, so that 

U = dD' (5.5.1) 

where d is a constant having a properly chosen value 
between 0 and 1. D' is a corrected diameter, 

D' = D - 0.6 cm. (5.5.2) 

e = [1 - exp(-|/X)] (5.4.20) 

(c) Any reaction which occurs at £ > £„ does not in­
fluence the steady zone. According to these assumptions 
the reduction of detonation velocity with diameter 
is due not to diverging flow but to the circumstance that 
£„, < £i. Thus when D'd > £i the velocity is constant and 
equal to U" and no diameter effect is observed. 

If one assumes that the reaction is a surface reaction 
on spherical grains, then equation 4.2.7 applies, or 

^ = 1 - (1 - iJUY (5.5.3) 

where <„ is the time spent by a particle in the region 
between £ = 0 and £ = £„, and h is the time spent by a 
particle in a reaction zone in which the reaction goes 
to completion. The assumptions leading to equation 
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5.2.23 are applied to any time £„ < h to give 

L = 
PoU 

it* 
3U 

(5.5.4) 

By the assumption that there is no divergence in the 
reaction zone and that U = U0 when £„ = | j , equation 
5.2.27 is rewritten to give 

u/u° = V i for e, < a (5.5.5) 

Equations 5.5.1, 5.5.3, 5.5.4, and 5.5.5 are combined 
to give 

(U IU I 4AD'\3 

0)2 = 1 "(1^) (5-5-6) 

Hino (61, 62) deduced from the variation of deto­
nation velocity with thickness of charge container and 
with the radius of the charge the reaction zone length, 
£1, for complete reaction, and the position within a 
given charge at which reaction ceases, ^ . He made no 
explicit assumption that £„ is the position of the 
Chapman-Jouguet surface. In place of equation 5.5.3 
he assumed 

and in place of equation 5.5.4 

and 
K = U u 

ii/u° 

(5.5.7) 

(5.5.8) 

(5.5.9) 

where a bar over a symbol represents the value of the 
variable in an uncased charge. He assumed that the 
effect of a charge container is to increase the time avail­
able for reaction by the time required for a shock 
wave to pass through the thickness of the container. 
Let Y be the thickness of the case and c„ the shock 
velocity therein. Then equation 5.5.7 becomes 

<•* = (Z* + YIcn)Zh 

which gives, with equation 5.5.5, 

(U/Uy = (I, + Y/o,)Zk 

and, making use of equations 5.5.8 and 5.5.9, 

m Ii u iicw 

(5.5.10) 

(5.5.11) 

(5.5.12) 

For U", U, \ , and | i being given, (U/U0)2 varies 
linearly with Y, and h may be evaluted from the slope 
and £„ from the intercept. U is constant for Y > 
c„{h - h). 

The effect of the diameter D on the detonation ve­
locity is similarly deduced. Let Df be the failure di­
ameter, at which the charge exhibits the detonation 
velocity U1 and reaction time tf and below which steady 
detonation does not occur. It is assumed that the effect 
of increasing the diameter is the same as that of enclos­
ing the charge in a tube, i.e., the reaction time is in­
creased by (D — D,)/2c2, where C2 is the velocity of 

sound in the detonation products. Then in place of 
equation 5.5.11 one writes 

W) u 
2L + JL 
2tid 2iiC2 

(5.5.13) 

The values of [(tf/t\) — (D//2^c2)] and l/hc2 may be 
evaluated from intercept and slope of the straight line 
describing the experimentally observed dependence of 
(U/U0Y on D. For D/2 > [C2(U - tf) - D,/2] the de­
tonation velocity will be constant. A combined expres­
sion for the effect of the diameter of the charge and the 
material and thickness of the charge container is ob­
tained by applying the previous results to form a 
general equation 

®-(-l& Y_ D_ 

h cwh 2c2h 
(5.5.14) 

2. Inhibition of chemical reaction at side 
boundary (Manson) 

Manson (89) proposed that the decrease of detona­
tion velocity with diameter exhibited by gases is due 
to the inhibition of the chemical reaction in the neigh­
borhood of the wall over a layer of thickness 5. Assum­
ing one-dimensional flow, a perfect gas, and c„To = O, 
he wrote equation 3.4.6 as 

U"1 = 2(7* - 1)Q# (5.6.1) 

Assume that over the thickness 5 the reaction is in­
hibited in such a way that the energy of reaction in the 
layer is Q', that the detonation velocity for such an 
inhibited reaction is U', and that 

U'' = 2 ( 7
2 - I )Q' (5.6.2) 

Assume further that the observed steady velocity of a 
wave U is an average determined by the relative 
proportions of the gas having detonation velocities 
U0 and U'. Then 

--"•v-?M>-(-I)" U'1 (5.6.3) 

Finally assume that 5 = Df/2, the failure radius. Then 
for D ^> Df and 5 = D J2, equation 5.6.3 becomes 

U = U°(l - DiZD) (5.6.4) 

Thus according to equation 5.6.4 the wave velocity 
at a given diameter is determined by the ideal Chap­
man-Jouguet velocity and the failure diameter. No 
direct experimental test of equation 5.6.4 has been 
made. 

3. Stability of waves in which reaction is not 
complete (Schall) 

Schall studied the stability of steady detonation 
waves for which reaction is not complete in the steady 
zone (105, 106). He assumed that the position of the 
Chapman-Jouguet plane, $„ does not change with U. 
On the other hand, he assumed that the length, & 



THEORIES OP DETONATION 167 

of the reaction zone varies with U according to the 
equation 

dh/dU |,/E7 (5.7.1) 

The total energy Q released in the steady zone of a 
wave of velocity U is 

Q = «„Q7& (5.7.2) 

since £„ is taken to be position at which reaction ceases. 
Q0 is here used to represent the heat of reaction in the 
ideal wave. Furthermore, from equation 3.4.6, for a 
perfect gas and cvT0 = O, 

Assume that a wave is stable provided that 

5Qin < dQont (5.7.4) 

where 5Qin is the increase in energy release caused by 
the increased reaction rate due to an increase HU in 
wave velocity, and 5Q0Ut is the additional energy re­
quired to support a wave of velocity U + SU. 5Q0ut 
is found from equation 5.7.3 to be 

20 
5Qout = jr SU (5.7.5) 

The amount of heat released to the steady zone by the 
reaction is a function of the position £, of the Chap-
man-Jouguet plane and the width & of the reaction 
zone, so that 

^ = d7wir)L i J (5'7'6) 

If one assumes d^/dU = O, equation 5.7.6 becomes, 
by equation 5.7.1, 

dQin _ dQ i n J ^ 

dU d(Uh) hV 

The condition of stability (inequality 5.7.4) now 
becomes, through equations 5.7.5 and 5.7.7, 

i | * ^ Q _ 
2 Ii d{Uh) K ' 

For a homogeneous, first-order reaction, Schall plots 
the right-hand and left-hand sides of inequality 5.7.8 
versus the fraction of reaction occurring in the steady 
zone, £„,/&. He finds that for all values of the pa­
rameters of the rate equation there is a narrow stable 
region near ideal Chapman-Jouguet or complete 
reaction, ^/fr = 1. For certain values of the pa­
rameters there is a second broader stable region extend­
ing from {„/Ji = 0 to some fraction £„/fi > 0. Schall sug­
gests that the two regions of stability are related to the 
two steady detonation velocities, one near the Chap-
man-Jouguet value and the other a low velocity of 
about 2 mm./jusec, which are observed for liquid 
and gelatinous explosives and for some solid explosives 

(124). His theoretical results also correspond with 
the experimental observation that a range of low ve­
locities rather than a single value can occur. 

C. COMMENTS ON EXPERIMENTAL OBSERVATIONS 

There is a large body of experimental data relating 
detonation velocity to diameter, particularly for con­
densed explosives. The width of the reaction zone 
has not usually been directly measured, an exception 
being the work of Fay described in Section V,A,4. 
Since the theoretical equations relate U, D, and £i, 
the test of the validity of a model rests on one's confi­
dence in the validity of the equations used for reaction 
kinetics. These are often obtained from data taken at 
lower temperatures, so that the correctness of their 
use at detonation temperatures is uncertain. Thus a 
rigorous test of the models cannot yet be claimed. 
Comparisons of results for several models may be 
found in references 1 and 23. 

VI. ONE-DIMENSIONAL, TRANSIENT 

REACTION WAVES 

Thus far only steady reaction waves have been 
considered, those characterized by the absence of par­
tial derivatives with respect to time in the partial 
differential equations describing continuous flow in the 
region £ = 0 to £ = £„. The stability of the time-
dependent initiation process which leads to the steady 
reaction wave has been tacitly assumed. Transient 
shocks and reaction waves and the characteristics which 
they must have if they are to result in the formation 
of a steady detonation wave are now considered. 

In this discussion a model is assumed according to 
which a detonation wave is a shock followed by a 
deflagration wave. In a steady wave the reaction at a 
given layer of unreacted material is initiated by the 
leading shock. It follows that a shock from an external 
source initiates a detonation wave in the same way, as 
was first proposed by Cachia and Whitbread (18) 
and by Majowicz and Jacobs (84). A detonation wave 
in a charge of finite diameter can, in general, be ini­
tiated by a shock of velocity and pressure less than 
the leading shock of the steady detonation. The mini­
mum initiating shock for a given charge is experimen­
tally determined by creating shocks of known pressure-
time profile within the charge and observing whether 
the shock develops into a steady detonation wave. 
There is evidence that this minimum shock is that 
which creates in the shocked material a temperature-
time history which causes the material to react com­
pletely before the temperature drops and halts the 
reaction (49). This minimum initiating shock, which is a 
measure of the detonation sensitivity, is therefore to be 
defined in terms of shock strength and duration. Those 
materials are more sensitive which react faster at shock 
temperatures. 
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The sensitivity is dependent not only upon the 
chemical kinetics of the reactant but upon the structure 
of the charge, whether it is a homogeneous solid or 
liquid, or a mixture of solid grains and air or liquid 
and air bubbles. A steady detonation wave in a typical 
solid explosive in the form of grains mixed with air can 
be initiated by a pressure pulse with a peak value of 
the order of 1 to 3 kilobars (49). The same explosive 
when cast or packed solidly so that little air is present 
has a pressure sensitivity two orders of magnitude 
greater. This is because the temperature reached in a 
shocked material depends upon its equation of state, 
and a 2-kilobar shock will raise the temperature of a 
typical solid only a few degrees. This is insufficient 
to allow reaction to approach completion within the 
usual few microseconds before the reduction of tempera­
ture by a rarefaction wave. On the other hand, a 
2-kilobar shock will raise the temperature of the air 
in a granular charge several hundred degrees. The 
surfaces of the grains in contact with the air achieve a 
high temperature by heat conduction, a temperature 
which is sufficient, for the applicable reaction kinetics, 
to permit the material to react completely. The pres­
sure sensitivity of a charge can be predicted, for given 
grain size and ratio of solid material to air, by combining 
calculations of the heat conduction from air to solid 
grain with the rate of reaction. 

In Section V it was seen that the pressure of the 
steady zone of a detonation wave decreases as the 
charge diameter decreases. For every cylindrical charge 
there is a failure diameter, less than which the material 
will not support a steady detonation wave. It seems 
likely that the failure diameter is that for which the 
pressure profile of the steady zone is lower than the 
pressure sensitivity profile of the material, so that the 
wave is unable to propagate itself. 

The theories of transient processes leading to steady 
detonation waves have been concerned on the one 
hand with the prediction of the shape of pressure waves 
which will initiate, described in Section VI,A, and on 
the other hand with the processes leading to the forma­
tion of such an initiating pulse, described in Section 
VI,B. In Section V it was shown that the time-inde­
pendent side boundary conditions are important in 
determining the characteristics of steady three-
dimensional waves. It now becomes necessary to take 
into consideration time-dependent rear boundary 
conditions. For one-dimensional waves, the side bound­
ary conditions are not involved. 

A. SHOCK SENSITIVITY OF HOMOGENEOUS SOLIDS; 

RECTANGULAR PRESSURE PULSE AT SOLID BOUNDARY 

(HUBBARD AND JOHNSON) 

m = Lagrange coordinate [ml~2] 
n = reaction order [1] 

Hubbard and Johnson (65) studied the properties 

of the minimum shock necessary for the initiation of a 
steady detonation wave in a homogeneous solid ex­
plosive. They described a numerical solution of the 
one-dimensional equations of conservation of mass, 
conservation of momentum, conservation of energy, 
state, and reaction rate for a rectangular pressure 
pulse applied to the surface of a semi-infinite slab of 
explosive. From these results they drew conclusions 
as to the magnitude and duration of a pressure pulse 
necessary to cause initiation. 

The method of solution was that of von Neumann 
and Richtmyer (93). The hydrodynamic equations 
were stated in the Lagrange form (32), 

bx 
— = T (mass) (6.1.1) 
om 

bu Ov 
— = — (momentum) (6.1.2) 
dt om 

be be br 
T. " Q T, - P ̂  (energy) (6.1.3) 
bt bt bt 

where x is an Eulerian coordinate, u = dx/dt, and m 
is the Lagrange coordinate which follows the individual 
particle and is taken equal to the mass of explosive 
between x = O and the point labeled by m. The Abel 
equation of state (equation 2.1.8) is used, and it is 
assumed that 

e = evT (6.1.4) 

where c, is constant. The rate of chemical reaction is 
taken to be 

P = „(1 - ()
nexp(.-E0/RT) (rate) (6.1.5) 

ot 

The following numerical values of the constants are 
assumed: 

Q = 1 kcal./gram c = 1014SeC.-1 

Ea = 40 kcal./mole y = 3.0 
c, = 0.30 cal./g. 0K. a = 0.25 cm.'/gram 
n = 1 T0 = 0.625 cm.Vgram 

The values of cv, a\, and y apply to both unreacted pro-
pellant and product gases. For the above values the 
ideal Chapman-Jouguet velocity, calculated according 
to equation 3.4.6 and assuming C,TQ = 0 and Q = Q*, 
is 13.7 mm./^sec. The Chapman-Jouguet pressure, cal­
culated according to an equation resembling equation 
3.4.2, is 4.46 X 106 atm. The value of 13.7 mm./jusec. 
for the detonation velocity is much higher than that 
customarily encountered with solid explosives, which 
rarely show a velocity greater than 9 mm./^sec. The 
pressure is also high. 

The initial condition assumed is a rectangular pres­
sure pulse at the boundary of the semi-infinite slab, 
having the form 

{ 0 t< 0 

105 atm. 0 < t < k (6.1.6) 

0 Oh 
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The choice of peak pressure was dictated by the desire 
to have it less than the ideal Chapman-Jouguet pres­
sure and great enough to result in initiation in a time 
convenient for machine computation. The machine 
solution of equations 2.1.8, 6.1.1, 6.1.2, 6.1.3, and 6.1.5 
with the boundary condition 6.1.6, where J2 is of the 
order of 1 usee, gives pressure and composition profiles 
of the type shown schematically in figure 36 at any 
point within the explosive. 

p = IO6 atm, < = I 

o 

FIG. 36. Approximate time dependence of p and e at a given 
point within a homogeneous solid explosive for a rectangular 
pressure pulse at the boundary (Hubbard and Johnson). 

Hubbard and Johnson (65) concluded that for 
materials which have a rate dependence on temperature 
of the form of equation 6.1.5, there is a delay or induc­
tion time during which very little chemical reaction 
occurs (i.e., e remains near 0), followed by a period of 
rapid reaction in which e goes from 0 to 1 in a very 
short time. This is in accord with the variation of e 
with £ in steady waves, for similar reaction kinetics 
(see, for instance, figure 23). The hydrodynamic vari­
ables will remain essentially unchanged until either the 
pulse ends so that a rarefaction wave moves into the 
explosive or substantial chemical reaction occurs. 
Thus the duration of the high-pressure regime at the 
surface is equal to the duration of the pressure pulse. 
Since a following rarefaction wave will overtake a 
shock (Section II,F), at least in the absence of reaction, 
the duration of the high pressure will be greatest at 
the boundary. It is assumed that at the space-time 
point where the induction time is first exceeded the 
steady detonation wave is established. The induction 
time for a given material is a function of the tempera­
ture of the reactant and hence of the pressure of the 
rectangular pulse. If for a given pulse height the dura­
tion of the pulse is sufficiently short that the following 
rarefaction wave expands and cools the reacting ma­
terial before the induction time is over, the pulse fails 
to initiate a steady detonation wave. For a given 
pulse height there is a corresponding pulse width which 
is capable of initiating a steady detonation wave. 

An explicit formulation of the induction time U 
in terms of Ea, c„, Q, v, and Ef is derived. Since there 
is no substantial hydrodynamic motion preceding the 
arrival of the rarefaction wave except that due to 
chemical reaction, and since it is assumed that the 
amount of chemical reaction is very small until a time 
equal to the delay time is reached, equation 6.1.3 
can be integrated and combined with equation 6.1.5 
to give 

h = v- de (6.1.7) 

Now since the greatest contribution to Ji arises from 
values of e = 0, equation 6.1.7 can be integrated to 
give 

1 ~ ,QcJE. eXPREl° 
(6.1.8) 

According to equation 6.1.8 the induction time does 
not depend on the order of reaction, and it is much 
more sensitive to variations in activation energy and 
specific heat than to variations in collision frequency 
and energy content. When account is taken of the 
approximations made, particularly in the form of the 
equation of state, the calculated values of delay time 
are consistent with experimental data reported by 
Majowicz and Jacobs (84). If the initial pulse is not a 
rectangular pulse but has a finite rise time, the time 
for a shock to develop in the explosive must be added 
to that calculated from equation 6.1.8 in order to obtain 
the observed induction time. 

B. FORMATION OF INITIATING SHOCKS IN THE INTERIOR 

OF THE REACTANTS 

1. Continually increasing pressure at rear 
boundary (Macek) 

Macek (83) assumed that a detonation wave, not 
necessarily steady but capable of attaining the steady 
state, is initiated at the time and position of the forma­
tion of the first shock wave within the receiver material. 
He assumed an exponential rise of pressure at the 
boundary of a semi-infinite slab of solid explosive at 
which a deflagration has been initiated, sought the 
point in space where a shock is first formed, and made 
the assumption that this point is the beginning of 
detonation. He found experimentally that for a par­
ticular exponential form of pressure-time behavior at 
the rear boundary, a detonation wave is formed within 
the explosive, and this provided him with the substan­
tiation of his assumption and a boundary condition. 
He computed for the assumed equation of state of the 
solid the envelope formed by the converging straight 
C+ characteristics and determined the position at 
which the values of u conflict. This cusp represents the 
position of formation of a shock (see Section II, D) 
and is by assumption the point of initiation of detona-
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tion. Macek compared the position of the cusp as 
computed by the method of characteristics with the 
point of initiation of detonation observed experi­
mentally. 

For the rear boundary condition assumed, a simple 
forward-facing compression wave is formed in the solid 
with straight C+ characteristics and a boundary path 
P(t). The equation of state of the solid is taken to be 
the modified Tait equation (64) 

P = 6[(P/PO)S - 1] (6.2.1) 

where b is determined from equation 2.1.10 and an 
experimental measurement of c = c0 at p0 and po 
= 1 atm. Equations 6.2.1 and 2.1.10 combine to give 

c(0 = (C0/PO)P(0 (6.2.2) 

so that from equation 2.2.16, 

Kt) = c(0 (6.2.3) 

For a forward-facing wave, equation 2.4.1 applies 
throughout the simple wave region. For this problem 
Mo = 0, so that combining equations 6.2.3 and 2.4.1 
gives 

u(t) - c(0 = -C0 (6.2.4) 

everywhere in the simple wave region. Along a given 
C+ characteristic, u(t) + c(t) is constant. 

The problem is solved for an exponential rise of 
pressure at the solid boundary according to the equa­
tion 

p = 0.08 exp(O.K) (6.2.5) 

where p is in kilobars and t is in microseconds. This 
represents the experimentally measured behavior 
at the boundary of a confined stick of cast diethylnitra-
mine dinitrate, thermally initiated, in which detonation 
was observed to begin at about 10 cm. from the plane 
of thermal initiation. Given p(t) along the boundary 
from equation 6.2.5, p(t) along the boundary is obtained 
from equation 6.2.1. Then c(t) and u(t) along the bound­
ary are computed from equations 6.2.2 and 6.2.4, 
respectively. Finally the position of the solid boundary, 
P, is calculated as 

p(<) = foudt = JT ( c ~ c°)d< (6-2-6) 

The characteristics originating in the boundary are 
drawn with slope u + c. A schematic diagram of the 
result is shown in figure 37. 

Because pressures were not above 5 kilobars, which 
was the bursting strength of the confining tube, there 
was some uncertainty about determining the position 
of the cusp. In view of this uncertainty and that in­
volved in the experimental determination of the posi­
tion at which detonation begins, the agreement between 
theory and experiment that the detonation wave is 
formed 10 to 15 cm. from the original position of the 
boundary is good. 

I ^ ^ . x 

FIG. 37. Formation of a shock from a simple compression 
wave in a solid explosive (Ma^ek). 

2. Continually increasing material velocity 
at rear boundary (Popov) 

Popov (101) assumed u to be increasing with time 
at the boundary of a one-dimensional column of a 
stoichiometric mixture of hydrogen and oxygen. He 
obtained the function u(t) by assuming that the flame 
front pushed the gas ahead of it as a solid piston would 
and by observing its velocity as it accelerated until a 
detonation was formed. Given the observation and the 
assumption, a piston path P can be drawn in the air­
plane, characteristics can be drawn from this boundary, 
and their intersection or the position of the cusp can be 
determined. 

By combining equations 2.2.15 and 2.2.17 one obtains 

which differs from equation 6.2.4 because y = 3 is a 
suitable choice for solid explosives but not for gases. 
For Popov's problem w0 = 0. Characteristics can be 
constructed as before, and results are given in a graph 
which resembles figure 37, with the cusp forming at 
approximately x = 94 cm., t = 1.5 msec. Experimental 
results are not cited so that comparison of experiment 
and theory is not possible, though Popov states that 
the characteristics issuing from the lower part of the 
curve P intersect at the point of formation of the 
detonation wave. 

It is to be noted that if the characteristics do not 
intersect before the end of the tube, as may be the case 
if the slope of the line P is small, reflection from the 
end of the pipe will produce an interaction between 
flame front and reflected wave. This may have the 
effect of increasing the burning rate to such an extent 
that the slope of line P becomes great enough to allow 
the characteristics to intersect and create a detonation. 
Another possibility is that although a cusp is formed 
before the end of the tube is reached, the shock is in­
sufficient to initiate detonation. In this case, too, 
initiation may occur after one or more reflections 
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from the ends of the one-dimensional tube (16, 101). 

3. Successive formation of shocks of increasing 
strength (Oppenheim) 

Heretofore in Section VI it has been assumed that 
initiation of detonation occurs where and when a 
shock is first formed within an explosive material. 
The formation of a shock, however, need not be suf­
ficient for initiation if the shock is of insufficient 
strength to produce a chemical reaction rate fast enough 
to sustain a steady detonation wave. It is necessary 
therefore to consider the possibility of formation of 
successively stronger shocks until one of initiating 
strength is created. 

Consider a deflagration moving forward into initially 
quiescent gas, with a piston behind the deflagration. 
If the piston moves backward at a velocity uv < M2, 
where M2 is negative, a weak deflagration can exist 
according to the argument in Section 1II,C,4. For given 
Po, ro the material velocity M2 and wave velocity U are 
determined by the transport properties. If the piston 
velocity is greater than M2 (i.e., is more positive than 
-M2), then the deflagration requires a precompression 
shock. If the piston velocity is as large as the par­
ticular value of ) (M2),,) appropriate to the system, then 
the system of precompression shock and deflagration 
is equivalent to a Chapman-Jouguet detonation. 
With constant transport properties a continuous tran­
sition from a deflagration of low velocity to a Chapman-
Jouguet detonation is possible only by continuously 
increasing the velocity of the supporting piston. Sub­
stantial experimental evidence exists, however, to dem­
onstrate continuous transition in gases from a deflagra­
tion of essentially zero velocity to Chapman-Jouguet 
detonation, even though the piston velocity is constant 
with a value uv = O. This boundary condition applies 
to tubes containing initially quiescent gas, with the 
end at which deflagration begins being closed. The 
question thus posed is how a detonation wave can be 
formed in the absence of a supporting piston of con­
stantly increasing velocity. 

There is general agreement that the deflagration 
velocity itself increases until it becomes a Chapman-
Jouguet deflagration, that is to say, considering the 
initial conditions as those of the uncompressed gas, 
a Chapman-Jouguet detonation. Three mechanisms 
have been proposed to account for the deflagration 
acceleration, and in a real system all may play a part. 
The first, discussed by Shchelkin (112) and by Brinkley 
and Lewis (16), who call it differential acceleration, is 
related to the increase of the reaction rate with tem­
perature and pressure for most gases. When a pre­
compression shock is formed within the gas, the tem­
perature and pressure are increased by the shock and 
the velocity of a deflagration passing into this region 
of increased pressure can be expected to increase. 

This in turn could produce a second shock wave of 
greater velocity and amplitude, so that the tempera­
ture and pressure of the compressed unburned material 
are further increased. 

The second mechanism is an increase in the burning 
area of the deflagration front by turbulence or entrain-
ment of unburned gas within the reaction zone. Vari­
ous modifications of this view, having to do chiefly with 
the mechanism of formation of such a flame zone, have 
been offered by Brinkley and Lewis (16), Adams and 
Pack (1), Troshin (126), Salamandra, Bazhenova, and 
Naboko (104), and Shchelkin (111, 112). Troshin 
pointed out that while one-dimensional laminar de­
flagration theories predict a nearly constant pressure 
deflagration (48), a point very near point B on the de­
flagration branch of the Hugoniot curve (figure 6), 
the portions of the curve between B and D, can become 
accessible by increasing the rate of conversion of un­
burned gas to product in a turbulent flame. Brinkley 
and Lewis postulate a periodic formation of shock 
waves due to the almost instantaneous reaction of un­
burned gas in a reaction zone which has become strongly 
turbulent, such that the distance between elemental 
combustion waves is comparable to the preheating dis­
tance. They cite as evidence the schlieren pictures 
taken by Greifer (59), in which discontinuous pressure 
pulses, accompanied by increases of deflagration 
velocity, periodically occurred, with the transition to 
detonation coinciding with one such pulse. There is 
extensive evidence, chiefly from schlieren pictures of 
reaction waves, for the simultaneous increase of the 
area of a flame and its acceleration (50, 90, 104, 126). 

The third mechanism is the reflection of a shock from 
a closed end, with a consequent increase in its pressure 
and temperature (35) and its subsequent interaction 
with the flame zone. Sokolik (115) attributes pre-
detonation acceleration in gases solely to this mech­
anism. Experimental evidence shows abrupt increases 
of deflagration velocity accompanying such interaction, 
and in some cases the initiation of detonation coincides 
with it (79). Occasionally initiation will occur ahead 
of a flame at the point of intersection of two shocks. 

Oppenheim (94, 95) discussed the transient system 
of shocks, deflagration waves, and detonation waves 
in terms of two discontinuities, the first the shock 
across which the material changes from state 0 to 
state 1, the second a deflagration discontinuity through 
which state 1 is changed to state 2. He pointed out 
that the development of a steady Chapman-Jouguet 
detonation can be conceived of as successive states 
of either a steady or an unsteady double-discontinuity 
system. In the first system the velocities of the 
two discontinuities are always equal to each other, 
but heat release continually increases from 0 to Q so 
that the discontinuity velocities also increase. He 
rejected this as unlikely, and proposed the alternative 
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of an unsteady double-discontinuity system in which 
the heat release is constant and equal to Q and the two 
fronts move with different velocities. He found the 
locus in the p,T-plane of deflagrations with sonic speed 
relative to the product gases and with a precompression 
shock wave, and proposed that the development of 
the Chapman-Jouguet detonation occurred through a 
succession of states lying on this curve. To find the 
locus, called the Q curve, write equation 2.5.15 for the 
condition across the shock discontinuity 

EW(Ti1Pi) ~ EOKr01P,) = ^ 4 - ^ - ° (T0 - T1) (6.4.1) 

and equation 3.1.14 for the condition across the de­
flagration discontinuity, substituting state 1 for state O, 

E(1»(T2,pa) - EUKT11PI) = — r ^ i n - T2) (6.4.2) 
Li 

The requirement of relative sonic velocity is obtained 
by combining equations 2.1.10 and 2.1.11 to give 

SLZL* _ _ fe>) = / J (6.4.3) 
Ti — Tl \ O T 2 / B T2 

From equations 6.4.1 to 6.4.3, p\ and n can be elim­
inated to give F(p2,Ti) = 0, the Q curve. Adams and 
Pack (1) discussed earlier states in which the velocity 
of the deflagration with respect to the product gases 
is less than the sound speed. 

Following Oppenheim, a diagram in the p,r-plane 
of an instantaneous predetonation process in the un­
steady double-discontinuity system is shown in figure 
38, which gives both Hugoniot curves and the Q curve. 

CURVE 

F I G . 38. Instantaneous predetonation process in unsteady 
double-discontinuity system (Oppenheim). 

The flow at some instant before formation of the 
Chapman-Jouguet detonation is represented by the 
change from state p0,T<t at O to state pi,n at Y, which 
represents a shock traveling with velocity U\ = TY 

tan a\, followed by the change from F to state 2 at Z 
on the Q curve. The velocity of the deflagration is 
CZ2 = TY tan a2 < U\. At a subsequent instant the 
velocities U\ and Ui increase by mechanisms un­
specified. At point C the Q curve coincides with the 
Hugoniot for e = 1 and the line OTC represents the 
steady Chapman-Jouguet detonation. If the deflagra­
tion discontinuity is to overtake the shock front, since 
Ui > Ui for all instantaneous processes leading up to 
OTC, Oppenheim argued that the shock must some­
time move faster than the deflagration; i.e., a strong 
detonation occurs, at least momentarily, prior to the 
formation of the Chapman-Jouguet detonation. This 
argument ignores the role the shock plays as reaction 
initiator; if a shock of strength pT occurs, it will initiate 
a Chapman-Jouguet detonation regardless of events 
behind it. 

In a later paper Oppenheim and Stern (96) analyze 
the flow in the entire space-time domain of a process 
within a gas which includes a transition from deflagra­
tion to detonation. They assume as data that must be 
satisfied by their solution the experimental observations 
of Schmidt, Steinicke, and Neubert (107) on an 8-50-42 
propane-oxygen-nitrogen mixture ignited at the closed 
end of a tube. The experimental observations, shown 
schematically in figure 39, consist of x-t traces of an 
accelerating deflagration, ABCDE; two converging 
shocks ahead of the deflagration, HJ and GJ; one 
shock originating at the deflagration front and moving 
ahead of it but being overtaken by it at the point 
where detonation begins, BE; a shock wave moving 
backward from the point at which initiation begins, 
EF; and a detonation wave, EK. 

The solution is obtained by graphical trial and error 
until the experimental observations of figure 39 are 
satisfied, using conventional graphical hodograph plane 
methods (110) extended to include deflagration dis­
continuities as well as shock and rarefactions. A 
qualitative summary of the analysis which most 
closely duplicates the observations of figure 39 follows: 
The deflagration accelerates discontinuously at points 
B, C, and D and at earlier points not recorded in the 
experiment. The shocks HJ and GJ originate at two 
such points of deflagration acceleration at a point 
earlier than A, not observed during the experiment. 
Simultaneously with the formation of the forward 
shocks HJ and GJ, backward-moving shocks are 
formed. These backward-moving shocks are reflected 
from the closed end and move forward to overtake the 
deflagration. The deflagration between A and B is a 
weak deflagration. At B the reflection of the backward-
moving shock formed simultaneously with HJ interacts 
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FIG. 39. Traces of deflagration, shocks, and detonation dur­
ing change from deflagration to detonation in a gas (Schmidt, 
Steinicke, and Neubert). 

with the weak deflagration to form a Chapman-
Jouguet deflagration BC, a shock BE, a rearward-
moving shock not observed, and a contact discontinuity. 
Another acceleration of the deflagration occurs at D, 
with the accompanying formation of the shocks and 
contact discontinuities required by hydrodynamics 
(see Section II,F). Deflagration DE is also a Chapman-
Jouguet deflagration, but it is now followed by a rarefac­
tion wave. At E a detonation wave EK is formed 
which propagates into a state having pressure greater 
than po because it has been precompressed by two 
shocks, BE and a shock which results from the merging 
of HJ and GJ. Simultaneously at E the rearward-
moving shock FE is formed. Detonation EK has a 
higher velocity than that of the preceding shock, 
which is moving into state po,ro. Eventually the deto­
nation wave will overtake the shock, if the tube is 
long enough, and establish a Chapman-Jouguet deto­
nation moving into state po,ro. 

Oppenheim and Stern gave quantitative results 
which included a map of the flow lines and of the 
thermodynamic states everywhere in the space-time 
domain. They deduced the velocities of the reaction 
front with respect to the mixture immediately ahead. 
From this they deduced chemical kinetic parameters, 
but the possibility that the observed rate of reaction 
is a function of flame area as well as chemical factors 

leaves these deductions open to question. The accel­
eration of the deflagration front is assumed to coincide 
at B and E with a deflagration-shock interaction, while 
at C, D, and earlier points the acceleration must be 
caused by other processes. 

VII. THREE-DIMENSIONAL, TRANSIENT 

DETONATION WAVES 

Two aspects of this most general problem have re­
ceived attention: (1) the initiation of detonation by a 
point or localized source; (S) oscillating detonation. 

A. INITIATION OP DETONATION WAVES AT A 

POINT (TAYLOR) 

r = radial distance from origin [I] 

The question considered is a description of the con­
ditions which must be met by a localized initiator if a 
spherical detonation wave is to be formed. The first 
problem is a determination of the possibility of the 
existence of such a wave. G. I. Taylor (116) analyzed 
the dynamics of spherical detonation from a point, as­
suming a wave of zero reaction-zone thickness at 
which the Chapman-Jouguet condition applies. He 
inquired into the hydrodynamic conditions which 
permit the existence of a flow for which M2 + C2 = U 
at a sphere which expands with radial velocity TJ. He 
demonstrated theoretically the existence of a spherical 
detonation wave with constant velocity TJ and pres­
sure p2 equal to the values for the plane wave, but with 
radial distribution of material velocity and pressure 
behind the wave different from the plane wave. 

Let r be the distance from the point of initiation. 
In a spherically symmetric system the equations of 
continuity and motion are equations 5.2.1 and 5.2.2. 
If a steadily expanding regime is set up in which u, p, 
and p depend only on x = r/t, then 

dt 
(u,p,p) = ( ^ + s gM (u,P,p) = O (7.1.1) 

Applying equation 7.1.1 to equations 5.2.1 and 5.2.2 
gives 

and 

Au 1 dp 
(u - x) — = - - — 

ax p ax 

u — x dp du Iu 
p dx dx x 

(7.1.2) 

(7.1.3) 

For c2 = dp/dp, equations 7.1.2 and 7.1.3 can be com­
bined to give 

du 
dx b-C~)']--^ <"•« 

Equations 7.1.3 and 7.1.4 determine u and c as functions 
of x for given boundary conditions. The values of TJ 
and M2 are determined by the Rankine-Hugoniot 
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equation (equation 3.1.4) and the Chapman-Jouguet 
condition (equation 3.2.12). Equations 7.1.3 and 7.1.4 
were integrated numerically from the surface Ut 
inward, for products treated as perfect gases. The 
pressure and velocity were found to drop behind the 
front more rapidly than in a plane wave. The radial 
rates of change of velocity, pressure, and density were 
infinite at the front. (This infinite rate of change prob­
ably would not occur if account were taken of the 
actual reaction times.) The velocity became zero at a 
point between the origin and the front in an x/TJt 
versus u/U plot. This means that a spherical detona­
tion wave of zero reaction-wave thickness can exist 
with constant velocity equal to plane-wave velocity and 
with a fixed proportion of the whole volume at rest in 
the center. 

Eyring showed (Section V,A,2) that for detonation 
zones of finite width between the shock front and the 
Chapman-Jouguet surface, the detonation velocity is 
a function of the radius. Then the wave velocity in­
creases with radius and approaches the plane-wave 
velocity in the limit. Manson and Ferrie" (88) observed 
experimentally that several gas mixtures support a 
spherical detonation wave moving at the velocity of the 
plane detonation wave. This work confirmed earlier 
observations by Laffitte (74). 

Since it has been demonstrated that three-
dimensional, transient detonation waves exist, the 
requirements upon the initiator should be examined. 
The comments made in Section VI on the sensitivity 
of one-dimensional explosives are valid here. An 
initiating shock is one of sufficient pressure and dura­
tion to permit complete reaction before a terminating 
rarefaction wave intervenes. The quantitative require­
ments, as in the one-dimensional case, are determined 
by the reaction kinetics, the physical state, and the 
equations of state of the material or of its components 
if the charge is heterogeneous. The shock-terminating 
rarefaction is here provided by the three-dimensional 
geometry and does not need a pressure-relieving rear 
boundary condition as in the one-dimensional case. 
If the shock wave is inadequate for detonation initia­
tion, a deflagration frequently occurs instead. In 
Section VI,B it was seen that for the correct boundary 
conditions a deflagration can create a shock wave 
which can initiate a detonation. Zeldovich, Kogarko, 
and Siminov (132) described an experimental investi­
gation of initiation of spherical detonation of gases by 
sparks, by caps, and by a detonation wave issuing 
from a tube of small diameter into a wider one. Their 
results support the contention that an initiating shock 
is one with an appropriate pressure-time profile. 
Bowden and coworkers (13, 14) have described experi­
ments in which friction and relatively slow adiabatic 
compression, as well as the other means mentioned 
above, were used to initiate. 

B. DETONATION WAVES WITH FLUCTUATING VELOCITY 

(MANSON; FAY; CHU; SHCHELKIN) 

v = frequency of oscillation [t_1] 
L = longitudinal wave length [I] 

r,B,i = cylindrical coordinates [I], [1], [I] 
<f> = velocity potential [IH'1] 

Many explosives and detonable gases of near stoichio­
metric composition have a constant detonation velocity 
after the wave has progressed some distance from the 
initiator. There are, however, detonable materials 
which support a detonation wave of fluctuating velocity, 
usually an oscillation about an average velocity. Such 
behavior is observed in granular explosives which 
characteristically have low values of U/U" and thus 
are assumed to have a long reaction zone. Examples 
are mixtures of potassium perchlorate, ammonium 
perchlorate, or ammonium nitrate with small amounts 
of aluminum, PETN, or other metal or high explosive 
(49). A fluctuating velocity is also observed in gases, 
where the phenomenon is usually referred to as spinning 
detonation. The gases which support such fluctuating 
waves have compositions near the detonation limits; 
this suggests again that their reaction rates are prob­
ably slow and the reaction zones long. 

Experimental and theoretical work has been con­
cerned almost exclusively with gases. The experimental 
observations have been summarized by Fay (53). 
Observations of the path of the front as made through 
a longitudinal slit in the wall of a tube show variations 
in velocity of the wave superimposed on its approxi­
mately Chapman-Jouguet mean value. Oscillations are 
also observed in the burned gas behind the front. 
Pressure measurements and optical observation into 
the end of the tube give evidence of a maximum of 
pressure and temperature at the front moving in a 
helix along the detonation tube wall at an average 
forward velocity U approximately equal to U0. The 
pitch of the helix, U/v where v is the observed frequency, 
is proportional to the diameter of the tube so that 

V/Dv = constant (7.2.1) 

Attempts at prediction of the frequency of oscillation 
have been successful. Manson (86, 87) showed that 
transverse acoustic oscillations of the burned gas of the 
lowest permitted frequencies with none or one or two 
(fixed) nodal meridional planes agree reasonably well 
with the observed frequencies while also satisfying 
equation 7.2.1. 

Fay (53) carried out a similar treatment, admitting 
longitudinal oscillations. His development is followed 
here. In a cylindrical or r,0,£ coordinate system with 
origin in the wave front, the velocity potential <f> for 
small oscillations satisfies the wave equation 

W i a * i_** + *+ i * * ( 7 2 2 ) 
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The acoustic wave having frequency v, longitudinal 
wave length L, and n nodal helical surfaces is given by 

<t> = cos[n$ + 2T(V - a/L)t + 2TT{/L] • 

Jn{(2*r/C2)[v(v - 2c2/L)]"2} (7.2.3) 

where Jn is the Bessel function of the first kind of order 
n and an inessential dimensional amplitude factor has 
been set to unity. If the tube walls are rigid, the radial 
component of the velocity will vanish at the wall: 

50/Sr = 0 at r = D / 2 (7.2.4) 

Thus if knm is the mth zero of the derivative of Jn, 

d 

Ar 
J n\knm) — " 

then compatible values of v, L, and n satisfy 

knm = (x f l / c . ) [ i . ( i . - 2CiZL)Vi* 

(7.2.5) 

(7.2.6) 

for some TO. Nodal surfaces of the oscillation correspond­
ing to knm are n helical surfaces and (m — 1) concentric 
cylinders. Fay notes that the observations suggest 
large values for L. Setting 1/L to zero, and so assuming 
purely transverse waves, gives 

irDv/d (7.2.7) 

Thus the product of frequency and diameter is seen to 
be constant for detonations of a gas in tubes of various 
sizes in consonance with the observed equation 7.2.1. 

Observed and theoretical frequencies obtained using 
equation 7.2.7 for n = 0 or 1 and m = 1 agree to within 
less than 10 per cent for mixtures of (1) carbon monoxide 
and oxygen, (2) methane and oxygen, and (3) carbon 
monoxide, hydrogen, and oxygen. Other observed 
values explained by the complex wave forms with n 
equal to 2 or more are perhaps suspect as extending a 
simple theoretical model beyond its limits of appli­
cability. 

Fay pointed out that if the walls of the containing 
tube are elastic, the appropriate constants knm in 
equation 7.2.6 are larger than for rigid walls. He 
predicted increases of frequency in agreement with 
experiment when an axial rod is placed down the 
length of the detonation tube, as well as the frequencies 
observed in tubes of square, rectangular, and triangular 
cross-sections. 

While the Manson-Fay treatment predicts the ob­
served frequencies, the problem of the origin of the 
oscillations is not solved by them. Boa Teh Chu (21) 
attempted to do this by seeking the conditions of in­
stability. He considered small perturbations on a system 
consisting of a confined thin detonation front and prod­
uct gases, in which the perturbations satisfy all boundary 
conditions, at the front or at the tube walls (equations 
3.1.1, 3.1.2, 3.1.3, and 7.2.4). As a first approximation 
to a variation in downstream temperature the response 
of this system to a rotating heating element placed 
nfinitely far downstream from the detonation front 

was sought. Chu found a stable, bounded response for 
any rotational frequency of the heater, so that his 
attempt to discover a condition of instability was 
unsuccessful. 

It thus appears that a more realistic theoretical model 
is needed to explain the appearance of the observed 
oscillations, for a system which is stable to small 
perturbations does not spontaneously develop vibra­
tions large enough to be observed. The needed in­
stability may be expected to be provided by time delays 
in the system such as those caused by the finite width 
of the reaction zone. 

Shchelkin (113) based a criterion for instability of a 
plane detonation wave on the concept of the time 
delay. Assume a model in which the pressure profile 
of figure 21 is simplified to a step form in which the 
pressure rises discontinuously from po to pi at £ = 0, 
remains at pi from £ = 0 to £ = £i, and drops to p2 

at £i. This means that there is practically no reaction 
between 0 and £i and that at £i the reaction goes in­
stantaneously to completion. Thus the induction time 
is h = i\/U- Assume a disturbance at the plane £i so 
that a wrinkle is formed. If the perturbation grows 
sufficiently rapidly the zone will become unstable. 
Unburned gas along the indentation will expand from 
Vi to p2, with a consequent lowering of temperature. 
This reduction of temperature will lead to an increased 
induction time. Shchelkin postulated that instability 
occurs if the induction time is doubled by the drop in 
temperature of unburned gas. Thus 

dT Ti 
(T - T1) > I1 (7.2.8) 

where T is the temperature of the unburned gas in the 
perturbed area after expansion. If one neglects the 
dependence of t\ on p and p, then ti is proportional to 
exp(Ea/RT) (109) and in approximation inequality 
7.2.8 becomes 

Mi - -) 
RT, \ T1J 

> 1 (7.2.9) 

which in turn can be written 

RT r [ l - OVPi)(7-1)/r] > 1 (7.2.10) 

Loss of stability of the reaction at the deflagration 
plane £i leads to disturbances at the shock front, £ = 0. 
If £i is small compared to the diameter D, there ought 
to be a large number of perturbations over the plane, 
so that the detonation front should resemble a pulsating 
brush. As the diameter of the tube decreases or t\ 
increases, the charge cross-section will contain fewer 
and fewer irregularities until only one remains, this 
being a single-headed spin detonation. 

An alternative theory of spinning detonation has been 
proposed (19, 102), according to which helical flow 
is assumed to occur in the tube. By helical flow Predvo-
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ditelev (102), for example, means a central core rotating 
almost like a rigid body as it moves axially forward, 
the core being surrounded by a turbulent transition 
to zero flow velocity at the wall. He describes spinning 
detonation in terms of the rotation of a nearly plane 
surface tilted to the axis and rotating about it. Such a 
flow is not possible however, because angular momen­
tum is not conserved. The incoming uniform flow has 
zero angular momentum, while Predvoditelev's out­
going flow has angular momentum, though only oppos­
ing torques are applied. An experiment by Bone and 
Fraser (12) in which a longitudinal fin projecting 
radially inward from the wall had no effect on the 
observations is evidence against such helical flow. 
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