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I. INTRODUCTION arrangements in the solid and gaseous states; and it 

Relating the structure of matter to its properties PJ0^f.8 uf fu l> b u t m u c h l e s s detailed descriptions 
relies greatly on the various experimental methods of of t h e h^d s t a t e > w h l c h 1S stl11 0 ^ i m P e r f e c t l v ™<kr-
"seeing" atoms. One of these, diffraction, has provided i The partial support of this work by the U.S. Atomic Energy 
the majority of what is now known of atom sizes and Commission is gratefully acknowledged. 
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stood. In this review are discussed the structural de
scriptions of liquids as given by diffraction experiments. 
Liquids are classified' as monatomic and polyatomic,2 

and there is also a section on glasses since the same 
diffraction techniques apply. Although the sections 
on liquids are supposed to be complete through 1960, 
there is only a selection of illustrative references for 
glasses. Small angle scattering and studies on colloidal 
and liquid crystal systems are not included, nor has any 
attempt been made to summarize theories of the liquid 
state. Neither has there been included a discussion of 
the recent applications (42, 170, 176, 381, 382, 383) 
of van Hove's formalism (175) for the determination 
of momentum distributions, which promises to yield 
important information about atomic motions in liquids. 
We begin with a brief description of the methods of 
determining average spatial distributions of atoms in 
liquids. 

II. THE RADIAL DISTRIBUTION FUNCTION 

In most diffraction and certain theoretical investiga
tions of liquids, knowledge of structure is sought, and 
such knowledge is frequently displayed as a distribution 
function giving the probability of finding a pair of 
atoms in a given configuration. The pair distribution 
function may be represented as P[Ti, r2), which gives 
the probability of simultaneously finding atom 1 in 
a unit volume located at Ti and atom 2 in a unit volume 
at Xt. By placing the coordinate system's origin on an 
atom and integrating over the space accessible to that 
kind of atom, a distribution function P(r2 — Ti) is 
obtained. In a crystal, for example, the occurrence of 
maxima in this function is periodic, and the period is 
determined by the direction of the position vector, 
Tt-Ti', but in a gas the probability P(r2 — Xi) of finding 
an atom in a unit volume separated from another atom 
by r2 — ri is essentially (exactly, for an ideal gas) 
1/7, which is independent of both the length and direc
tion of the position vector (V being the volume). This 
result follows from the complete lack of correlation 
between the motions of individual atoms in a gas, and 
from the equivalence of all directions in space. 

In a liquid, or very dense gas, all directions are again 
equivalent so that the distribution function still depends 
only on the magnitude of r2 — Ti, namely, r. Here atomic 
motions are not independent of one another, and our 
ignorance regarding the relative motion of atom pairs 
may be incorporated into a correlation function g(r), 
with the distribution function written, using the same 
form as for a gas, as g(r)/V. Since there is no correlation 
for large separations, g(r) approaches 1 for large r; 
and because of finite atom size g(r) is zero up to about an 
atomic diameter. Integration over the angular variables 

1 These terms are used to designate liquids containing only one 
kind of atom (elements) and those containing more than one 
kind of atom. 

in spherical coordinates gives a radial distribution func
tion, 4jrr!i/(r)/7. Multiplying this function by N, 
the number of atoms in the system, expresses the radial 
distribution function in terms of the number density, 
PW = g(r)N/V. The measurement of the diffracted 
intensity and the bulk density leads to the determina
tion of the usual radial distribution function 4HT2P(T-), 
which gives the number of atoms in a spherical shell of 
radius r and unit thickness centered on an atom ar
bitrarily selected as the origin. 

The radial distribution function furnishes, through 
the location and area of its maxima, the mean, if not 
the most likely, interatomic distances in the liquid as 
well as an indication of the number of neighbors at var
ious distances. If the liquid were completely uniform 
then p(r) would be p0 = N/V, but in an actual liquid 
the derived function p(r) shows how the density is re
distributed within the vicinity of an atom in the liquid. 
Typical distribution functions are shown in Figure 3. 
The function p(r) differs appreciably from p0 only for 
small values of r, and the disappearance of positional 
correlation results in the convergence of p to po for 
large r, that is, g{r) approaches 1. It is commonly said 
that a liquid has short-range, but not long-range, order; 
but such expressions may be misleading since such order 
does not have the same implication as ordering in a 
solid. In this connection, it should also be emphasized 
that the radial distribution function is an average in 
time and space over many configurations. 

Once the radial distribution function has been found, 
it is tempting to furnish a detailed structural model 
which accounts for the "popular" distances within the 
liquid as well as the coordination geometry. But the 
wary critic may see the ambiguity in such a procedure: 
The derived information is one-dimensional, but pro
posed structures are three-dimensional. To the extent 
that we understand the rules of atomic architecture, 
we are as well off in deducing a structure from these 
data as the carpenter who must rebuild a house given 
only the frequency with which each size of lumber is 
to be used.'Even though we demand that a proposed 
model be consistent with the distribution function, 
such consistency does not guarantee the correctness of 
the model. Fortunately, one can frequently comple
ment diffraction data with results of spectral, thermo
dynamic, or, nowadays, magnetic resonance studies to 
furnish more detail and greater certainty about struc
ture. 

Beside the obvious ambiguity in the interpretation of 
diffraction experiments, there are complications having 
to do with experimental conditions and also with the 
way in which the intensity information is converted 
into the distribution function, and these are discussed 
in subsequent sections. In spite of the obstacles to 
obtaining atom arrangements in liquids, the diffraction 
method, when carefully applied and conservatively 
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interpreted, has provided a substantial understanding 
of the structure of liquids as well as important informa
tion for testing and constructing theories of the liquid 
state. 

A. THE MONATOMIC LIQUID 

The determination of the radial distribution function 
for a liquid requires measuring the intensity of its coher
ent scattering as a function of angular displacement from 
the incident radiation. In this section we review the rela
tionship between the observed intensity and the radial 
distribution function, and in the next we describe some 
of the ways used for recording intensities and the 
problems arising in deriving structural information 
from them. 

For N atoms the intensity observed at an angle 20 
from the incident beam is (71,124,139,179) 

1(8) = N(hoh(e) + liUO))P(0)A(BMB) 

where P(0) is a polarization correction Va(I + cos220), 
A(O) is an absorption correction determined by the 
sample shape and experimental geometry, and G(O) 
is a geometrical factor whose value is 1 in the cylindrical 
symmetry usually used in recording intensities. We 
have ignored the possible contribution of fluorescent 
radiation excited in the sample, which may be im
portant for X-rays. It is the coherent intensity, /Coh, 
which is needed for structure determination, and, in the 
X-ray case, the incoherent intensity, /i„o> is due to 
the Compton scattering and has been given approx
imately by Heisenberg (157) and Bewilogua (22). 
More recently, Freeman (126, 127, 128, 129, 130), 
using self-consistent field wave functions, has provided 
more accurate values for the Compton scattering of a 
number of atoms. 

In obtaining Debye's expression (92) for the coherent 
intensity an averaging is carried out (387, 389, 404) 
with the assumption of equal probabilities for all orien
tations of any given interatomic vector.8 In this averag
ing the spherical symmetry of the atomic form factor or 
scattering factor, /, leads to 

/«* = #-> E E u sin srmn = *->/°EE Bin srmn 

in which rmn is the separation between the pair of atoms 
m and n, and s = 4TX _ 1 sin 6 (X is the wave length of the 
radiation).4 For neutrons the form factor is independent 
of s (except for very light atoms or for magnetic inter
actions) ; but for X-rays / is very nearly equal to the 

3 It has been shown (237) that the zeroth approximation in a 
statistical mechanical averaging over configurations in a free 
volume liquid gives the same result and that a higher approx
imation gives a negligible correction except near the critical 
temperature. 

4 A more exact analysis, taking account of the finite sample size, 
but still giving the Bame result, has been given by Fournet 
(124). 

number of electrons per atom at s = 0 and decreases 
rapidly for increasing s. 

Since every atom is at zero distance from itself we 
can separate the self-scattering or the independent 
scattering, which is associated only with phase differ
ences arising from within an atom. This gives 

/cob = p + N-y E E 
mp*n 

Sin Srmn 

ofniD 

For a liquid we assume that the probability of finding a 
given value of r is a continuous function of r and intro
duce the number of atoms, 47irsp(r)dr, separated from a 
given atom by a distance lying between r and r + dr. 
The number of such pairs is then A7-47rr2p(r)dr. This 
permits the conversion of the double sum to an integral 
so that 

m •* 
. ^ cob 

Jo 
4nr2p(r) dr 

or 

= / : si(8) = I irrp(r) sin sr dr 
'0 

This integral does not converge, but Warren and Ging
rich (389) have shown that one can add and subtract 
the integral fiirrpo sin sr dr to give one which does 

=r si(s) = I 4irr[p(r) — pa] sin sr dr 
'o 

in which the additive term has been dropped because its 
value is practically zero for all but the smallest values 
of s. 

Since the intensity function si(s) is the Fourier sine 
transform of 4;rr(p — po) we can write the inverse rela
tionship 

4JTf(P - po) XCO si(s) sin sr i 

which gives the distribution function from a measure
ment of scattered intensity. 

At this point we can show the corresponding treat
ment of a molecular liquid, again under the assumption 
of spherical orientational symmetry. We have 

/coh = F'+ Af-' F* E E Bin srmD 
Srmn 

where F is the form factor for the molecule, N is the 
number of molecules, and r is the intermolecular separa
tion. The indicated averages are (assuming centro-
symmetry) 

F>~ E E / . / * 8 - ^ 

and 

J - E / i sin sn 
sri 

in which i and j go over all atoms in the molecule, ru 
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is the distance between atoms i and j , and rj is the 
distance from the inversion center. Use of the corre
sponding Fourier integrals requires that structure of the 
molecule itself be known, and the distribution of mole
cule centers is then determined. Since it is usually more 
desirable to get the distribution of atom centers, the 
o priori knowledge that molecules exist has rarely been 
utilized in this way. 

Before going on to the polyatomic liquid it will be 
useful to point out that instead of finding the Fourier 
transform of si(s) = s(I — /2)/~2 it is possible to find 
the Fourier transform of s(I — P). Extensive use has 
been made of this transform in X-ray studies by Finbak 
(113, 116), and the meaning of such a transform is 
easily given. We still get a density function, pe, which, 
however, describes the electron, rather than the atom, 
density. As one might expect, this function has maxima 
at the same places, but they are extremely smeary. 
Inclusion of the factor/-2 has the mathematical effect of 
sharpening the distribution function (and changing its 
dimension as well), and we can see that inclusion of this 
rapidly increasing function of s serves to weight or 
emphasize the contribution of intensity at large s. 
In terms of diffraction theory, its inclusion essentially 
corrects the intensity to that expected for point 
scatterers. Unfortunately, in the case of X-rays, it 
becomes more and more difficult to determine (I — P) 
with precision at the larger values of s, and Finbak be
lieved that use of the factor /~2 gives unjustified em
phasis to this part of the data. 

In the neutron case, where / is constant with angle, 
the question of dual density functions does not arise, 
and the data are automatically sharpened. A more 
detailed discussion of sharpening is included in Section 
V. 

B. THE POLYATOMIC LIQUID 

Returning to Debye's expression and proceeding as 
before, we introduce functions iirr^padr which give the 
number of atoms of type j at a distance between r 
and r + dr from an atom of type i, and we have, after 
separating the self scattering 

/«b = N-i 52 W + ^ - 1 E JVi E f /I/J 47TrViJ- dr 
Jo *r 

It is convenient to think of the structurally sensitive 
part of the intensity, that is /coh — 2ii/i2, as a sum of 
components each of which is dependent on the inter
actions of a particular type of atom pair. Thus we may 
write /eoh — 2xi/is == 2 Si1J (s) as well as p(r) ss Xx v 
SAijPij, where An is the contribution of a single pair 
i, j . But in this form we cannot carry out the Fourier 
inversion in the X-ray case because each integral in the 
sum depends on s in a different way. An approximate 
solution to this problem was provided by Warren, 
Krutter, and Morningstar (390), who took advantage 

of the close agreement between reduced scattering 
factors f/K (K is the number of electrons in the 
scatterer) for atoms of nearly the same atomic number. 
Thus an /e such that / ( = Ki/e can be adopted, and the 
integrals can be factored to give 

/too 

«(/ooh - S *i/is)A"' = S x> 12 K*KI I 4irrpu sin sr dr 
Jo 

As before, we include a term containing p0, the bulk 
density, and the inversion of the intensity function gives 

4 i r r ( E * i E KxKiPH - £ S i S ^ F J P o ) = 
/VOO 

(2/TT) I S(Z0Ch - S *i / i ,y." ' sin sr da 

The first term on the left is 4irrpe where pe is usually 
written as SxiKipi with ps = ZKjpij (note that pe is 
an electron density function), and the second term is 
just po(Sa;iZi)2 where Z is the atomic number. Since this 
treatment is approximate, various techniques have been 
used for interpreting the area under the curve of 47rr2pe 

and for estimating the appropriate values of the K's, 
but it can be seen that the contribution of a pair i, 
j is essentially 2ZiKiKj. This results from the equality 
of Xipij and ZjPji when all atoms of a given type are 
structurally equivalent. If a certain area, A, is supposed 
to be due to i, j pairs then the quotient .4/2OnKiKj 
gives the number of i, j pairs per atom of type i, that is 
the number of atoms of type j lying within the indi
cated distance from an atom of type i. The analysis is 
the same for like atoms, except that the factor of 2 
does not appear. 

A more satisfactory analysis of the polyatomic case 
employs a powerful Fourier formalism set forth by 
Waser and Schomaker (391), who, in their famous paper, 
show how to predict the exact effect of the atomic 
scattering factor on the peak shape and area contributed 
to pe by a given atom pair. This method also allows one 
to predict the effect of other factors on pe and is dis
cussed in Section V. 

III. EXPERIMENTAL TECHNIQUES 

In any diffraction experiment a sample is exposed 
to collimated radiation, and the spatial distribution 
of diffracted intensity is recorded. If the directions of 
the incident and diffracted beams are represented by 
the vectors S0 and S, then the behavior of a crystal and 
a liquid may be contrasted by saying that the crystal's 
diffracted intensity is a discontinuous function of 
S — So, being non-zero only for a Bragg reflection. 
The intensity diffracted by a liquid, however, is a con
tinuous function of the magnitude of S — So, which is 
usually taken to be 2X-1 sin d. Thus, for a liquid, we 
need only to record the scattering along any azimuth 
from S0. 

There have been two ways of detecting the scatter-
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ing, the one using photographic film, and the other a 
radiation detector such as a counter or ionization cham
ber. Each method has certain advantages, but the use 
of a counter is increasingly favored (and the only one 
practical for neutrons). Gingrich (139) has discussed 
in detail some of the experimental features of X-ray 
diffraction studies of liquids. 

In addition to a detector, a source of radiation and a 
method of monochromatization are necessary. The 
latter is needed because, once the intensity record is 
made, the diffraction due to one wave length cannot be 
separated easily from that of the others. Some of the 
factors upon which the selection of an appropriate wave 
length is based are: 

(a) In a transmission method the radiation must be 
sufficiently penetrating so that not too great a fraction 
is lost before reaching the detector. Optimum sample 
thickness is of the order of /*_1, the reciprocal of the 
linear absorption coefficient for the wave length used. 

(b) For a reflection technique, it is desirable to avoid 
deep penetration so that the scattering volume is 
localized near the sample surface. This simplifies the 
absorption correction. 

(c) Because the intensity is a function of X - 1 sin 6 
(or s, which is 4 T X - 1 sin 8) the wave length acts as a 
scale factor. The smaller the wave length, the greater 
is the value of s to which measurements may extend 
(smM = 47r/X), but a wave length that is too short 
crowds the intensity at small s too close to the incident 
beam to be measured conveniently. This difficulty is 
sometimes avoided by using a long wave length for low 
angles and a shorLer one for the rest of the range. 

(d) For X-rays a wave length that corresponds to an 
absorption edge in the sample is avoided since it excites 
fluorescent X-rays which add an undesirable back
ground. If the diffracted beam is monochromatized, 
this ceases to be a limitation on the composition of either 
the sample or X-ray target. 

One characteristic of the radiation that is of no 
concern in the photographic method is the stability 
of its source, since the entire angular range is recorded 
at once. In a counter method, however, there should be 
an extremely stable source or some method of monitor
ing intensity so that data from each angular region may 
be normalized to the same incident intensity. 

Several methods have been used for monochroma
tization : 

(a) Crystal Monochromatization—This is the usual 
method for neutrons and the most selective one for 
X-rays. Variations (217) include placing the mono-
chromator between the radiation source and the sample 
or, less frequently, in the diffracted beam. The latter 
arrangement is advantageous in discriminating against 
fluorescent X-rays but it can only be used conveniently 
when a counter is the detector. With slightly divergent 
collimation the bent and ground Du Mond-Johann-

Johansson (98, 181, 182, 183) focusing monochromator 
guards against undue intensity loss, and the Fankuchen 
cut (110, 111) frequently is used with parallel colli
mation. 

(b) Balanced or Ross Filters (314, 340) .^-In this 
technique two intensity records are made for two 
different absorbers whose absorption edges bracket the 
desired wave length. When the absorptions have been 
matched properly or balanced a nearly monochromatic 
window is obtained, and the necessary intensity data 
are given by the difference in the two records. 

(c) Partial Monochromatization has been achieved 
in a counter method by using an absorber for the K/9 
radiation and then selecting the response of a scintilla
tion detector in the Ka range by means of a pulse height 
analyzer. Since, for the low energies of X-ray range, the 
resolution of a scintillator is rather poor, a proportional 
counter is much to be preferred in this method. Even 
with crystal monochromatization a pulse height 
analyzer is useful because background counting rates 
can be reduced to as little as 2 counts/min., and it also 
permits one to operate an X-ray tube at the high volt
age needed for efficient X-ray production and, at the 
same time, reject pulses due to the shorter wave lengths 
passed in higher orders by the monochromator. 

IV. TREATMENT OF DATA 

We can now outline the procedure that leads to the 
determination of a radial distribution function. 

(a) Correction for Background and Fluorescent Radia
tion.—Both of these are nearly constant quantities 
subtracted over the entire angular range. In the neu
tron case a constant correction for multiple scattering 
is usually applied. 

(b) The Absorption Correction.—This correction has 
been tabulated for a number of sample shapes (317). 
Corrections have been worked out (311) for the ab
sorption of a cylindrical sample holder, and an ab
sorption correction for parafocusing geometry is avail
able (231, 246). Even though, for the last case, the 
correction has been held to be independent of angle, 
this is true only for highly absorbing samples, and the 
correction may be substantial otherwise. 

(c) The Polarization Correction.—If a monochromator 
is used this becomes (1 + cos2 2a cos2 20)/(l + cos2 

2a) where a is the Bragg angle for the crystal. 
(d) At this stage the intensity is in arbitrary units and 

it must be scaled to the units of /2 . Scaling depends on 
the fact that at large values of s the observed corrected 
intensity approaches that of independent atoms, that is, 
Sxi/i2 + line- In the neutron case, the fact that /in o 

is usually isotropic and the constancy of the neutron 
form factors makes it easy to calculate the value of 
/ „ about which the observed intensity oscillates and to 
which it finally converges at large s. Comparison of the 
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value of the arbitrarily scaled corrected intensity with 
I„ furnishes the necessary scale factor. 

In the case of X-rays one calculates Szi/i2 + 7jno 

with tabulated values of form factors and incoherent 
scattering. The former may be corrected for dispersion 
(90, 369). The arbitrarily scaled intensity may be fitted 
approximately by eye, but analytical tests for correct
ness of fit have been proposed (177, 213, 255), and these 
may be used for calculating the scale factor. 

(e) Having scaled the intensity one can then sub
tract the incoherent contribution and tabulate the 
intensity function s(/ooh — Sxi/s2) in preparation for the 
Fourier inversion. Where values of form factors are 
available from several sources, differences between 
them lead to noticeable differences in the radial distribu
tion functions. 

(/) The inversion of the intensity function may be 
carried out either by graphical or numerical integration. 
For graphical integration a curve must be drawn for 
each value of r, but this can be speeded by making a 
series of measuring strips giving the positions of selected 
values of sin sr on the s scale for each value of r, and by 
making use of the fact that the curves ± S(Z00I1 — Sxi/is) 
form the envelope of all integrands. 

In numerical methods a linear or quadratic interpola
tion is usually used, but one must guard against taking 
too large an interval in s. This problem becomes more 
acute with increasing r so that, for example, with an 
interval of 0.1 A. -1 in s there are only about 5 panels 
per half-cycle of sin sr for r = 6.0 A. (period in s = 
2w/r), and considering the oscillation of the intensity 
function itself, it is clear that serious errors may de
velop unless the interval in s is sufficiently small (see 
Fig. 1). The use of Filon's method (112) helps to avoid 
this difficulty. 

V. INTEBPRETATION OF THE RADIAL 
DISTRIBUTION FUNCTION 

Structure determinations based on radial distribution 
data fall into two main categories. In the first, the radial 
distribution function yields the mean distribution of 
interatomic distances for those liquids in which there 
are no permanent aggregates of atoms, either molecules 
or complex ions. Examples include the inert gases, 
metals, and certain molten salts. In such cases it is 
impossible to characterize the liquid in terms of fixed 
coordination, and attempts to confirm lattice or micro-
crystalline arrangements have not been convincing. 
Indeed such ordering is inconsistent with the properties 
of the liquid state, and it is presumptuous to interpret 
the radial distribution function in terms of specific 
geometrical models. The most that can be said of such a 
function is that it is consistent with a particular statis
tical distribution, and indeed such experimentally 
determined distribution functions have been used ex-

FiG. 1.—An arbitrary function was inverted by numerical 
integration to give the curves shown above. For A the increment 
in s is 0.05, whereas it is 0.5 for B. In the former case the incre
ment is small compared to period in sin sr (namely, 2ir/r). When 
the period in sin sr, however, becomes comparable with the incre
ment, as it does for r approaching 2a- in B, the error becomes 
enormous. 

tensively in the testing of statistical mechanical theories 
of the liquid state. 

Representative of the second category are the deter
minations of the structures of molecules or complex 
ions in liquids. The deduction of the intramolecular 
arrangements is strongly suggestive of the procedures 
used for electron diffraction by gases. Thus the first 
maximum in the radial distribution function for carbon 
tetrachloride is easily ascribed to carbon-chlorine pairs, 
and the second (at a distance V 8/3 times that of the 
first) to the chlorine-chlorine pairs within the molecule. 
Special success has been achieved with strongly scatter
ing molecules or complex ions dispersed in a solvent of 
low scattering power, although corrections must be 
made for solvent-solvent and solvent-solute interac
tions. Obviously it is extremely difficult, if not impos
sible, to unravel structures where more than one solute 
species is present, as in the cases of certain solutions of 
transition metal ions. 

That experimental findings should fall into these two 
broad categories was fully anticipated by the pro
genitors of the radial distribution method in diffraction, 
Zernike and Prins (404). In either category, deductions 
about structure are based on the peak positions and 
areas in the radial distribution function, but even 
assuming that a careful determination has been made, 
the positions of maxima may not have unique structural 
significance. This comes from the possibility that a given 
maximum may be a superposition of maxima spanning 
the apparent distance at which the observed maximum 
occurs. 

The determination of the area of a peak provides 
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mean coordination numbers, but unless the maximum 
is discrete the assignment of area is not unique. Dis
crete maxima occur occasionally (in the radial distri
bution for chlorine, CU, for example, the first maximum 
is discrete), and this usually is taken as an indication 
of the existence of a permanent species. Methods for 
assigning area in cases where the peaks are not discrete 
include: 

(a) For a first maximum the right-hand side of the 
peak is drawn to be symmetrical with the left-hand side, 
or the left side of the second maximum may be extrap
olated to the r axis, and the difference between the 
extrapolation and radial distribution function is taken. 

(b) A vertical line is dropped to the r scale at the 
minima on either side of the maximum (on the right 
only, if the first maximum). The indicated area gives 
the mean number of neighbors within that range. 

(c) Synthetic peaks are calculated and fitted to that 
part of the maximum which seems reasonably free of 
interference from neighboring maxima. 

The arbitrariness of making the assignment of area 
leads to considerable variance for different treatments 
of a given distribution function, and this may produce 
uncertainties of as much as 1, or even more, in the co
ordination number. 

As we proceed with the discussion of areas, only the 
treatment of X-ray intensity data will be indicated. 
If the function s(/00h — / 2 ) /~ 2 has been inverted, then 
the distribution function will be in terms of atom dens
ity, and the area gives the number of neighbors directly. 
If, however, an electron density is obtained, as in the 
polyatomic case, then the area is in units of /2, that 
is electron2, and for a given maximum is very nearly 
proportional to ZiZm, where n is the coordination 
number sought. Here the determination of the number 
of nearest neighbors for an atom requires assessing the 
contribution of a single pair, and this was discussed 
for the method of Warren, Krutter, and Morningstar 
in Section HB. 

In place of this approximate method Waser and Scho-
maker (391) have shown how form factors may be used 
exactly in determining the area contributed by a single 
pair. For the electron distribution function obtained 
by inverting s(Icoh — 2 X-Jf), a single pair i, j gives a 

peak whose shape is Tu(u) = T _ 1 I fjj cos us ds where 
Jo 

u is the distance from the center of the peak. 
As we mentioned before, however, such an inversion 

of S(I00^ — 2 £i/i2) gives a distribution function with 
extremely broad and smeary maxima. This difficulty 
can be overcome, to a great extent, by a sharpening 
procedure. The smeariness in the unsharpened distribu
tion is due largely to intra-atomic diffraction, which is 
also responsible for the diminishing of intensity with 
increasing angle. The. sharpening procedure may be 

used to compensate for any arbitrary share of this 
diminution of intensity. 

In the monatomic case, division of s(7ooh — /2) by f* 
compensates completely for the diminution, and the 
resultant distribution is much sharper than the corre
sponding electron distribution function. In the treat
ment of Warren, Krutter, and Morningstar, division 
by /e2 compensates in a similar way. This type of sharp
ening was what Finbak (116) objected to on the grounds 
that any error at large s is magnified and might give 
spurious maxima in the distribution function. Therefore 
a comparison between sharpened and unsharpened 
distribution functions has been used as a test for false 
peaks. 

Attempts to meet at least part of Finbak's criticism 
have involved the simultaneous application of an ex
ponential function, or artificial temperature factor, 
exp (—6s2), along with the sharpening function. 
Although counting techniques now permit arbitrary im
provement of the precision of the intensity determina
tion at large s, there still exists a practical need for a 
compromise that utilizes the data at large s to give suffi
cient detail, but yet does not create false detail. I t is 
characteristic of the Fourier method that the resolution 
obtainable in the distribution function depsnds on S0, 
the upper limit to which measurement extends. Ter
minating the inversion at smaller values of s has much 
in common with the application of an artificial tempera
ture factor, which attaches decreasing weight to the high 
angle data. We see, however, that any differences in the 
distribution functions obtained with and without an 
artificial temperature factor can as well be laid to the 
failure of the damped function to resolve the density as 
to the cutoff error itself. The effect of the finite upper 
limit, as well as that of any arbitrary modification of 
the intensity function, has been described by Waser and 
Schomaker (391), and we briefly summarize their treat
ment of these effects. 

The intensity function s(/coh — 2.Tj/i2) may be con
sidered as a sum of contributions, sSSiij(s), from the 
various kinds of atom pairs. Each contribution is given 
by 

si\M = //!/j4irr(p!j -- ZJPO) sin sr dr 

or 

sJii(s)(/i/i)-1 = S 4irr(pii - XJPO) sin sr dr 

Now if we consider 47rr(p — p0) to be given by a corre
sponding sum of contributions SSxi47rr(pij — £JPO), 

it is clear that, in order to obtain this sum, we should 
have to invert not s22t'ij(s) but .sS.2iij(s)(/i/j)-1. This 
is, of course, impossible since there is no way to de
compose the intensity into separate contributions 
weighted by the appropriate.(/jfj)-1. 

In actual practice s(Zcoh — 2xi/i2)ilfi(s)M2(s)i¥3(8) 
is inverted so that the contribution by i, j pairs is 

Si^s)(Mj)-1MiMMMM1(S)MM 
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where 
MM -A/, 
Mi(a) = exp(— bs') 
Mt(s) •= a sharpening function auch as /e

J or (Sxi/i(0)/ 
SXiZi(J))1Or some other convenient function, 

Mt(s) = a step function which is unity up to 80 and zero 
beyond. 

The resulting density contribution from i, j pairs is the 
convolution of p\} with T{r), the cosine transform of 
Mi1MiMiMz. Dropping subscripts, we may write the 
relationship between the density contribution actually 
obtained for i, j pairs (electron density) and the corre
sponding atom density as 

up(u)T(.u - r) Au 
CD 

T(r) may be considered as the ideal peak contributed by 
a single pair so that, regardless of what treatment of 
data is required, there is a means of predicting its effect 
on peak areas. This procedure may be used successfully 
to assign area where there is reason to believe that a 
particular well-resolved peak is associated with a par
ticular pair. The ideal peak shape is given by 

T(r) = T'1 J Mn(S)M1(S)M1(S)M1(S) cos sr ds = 

Mij(s)Mi(s)Mi(8) cos sr ds 
0 

Where applicable, this proves to be a highly effective 
way of assigning areas and of determining the number 
of pairs contributing to a particular peak. The number 
of i, j pairs per atom of i is given by dividing the associ-

ated area by Xi S I Tu(r)dr, where 5 is 1 for i = j and 
• / -co 

2fori^j . 
For a given M3 (s) the amount of sharpening provided 

may be adjusted by varying b, and some typical peak 
jhapes are shown in Figure 2. It can be seen that un
desirable ripple is created by oversharpening, and the 
peaks themselves undershoot. Tompson and Gingrich 
(374) have called attention to the need for including 
the negative as well as the positive areas to obtain more 
reliable total areas in such cases. The ripple behaves 
like (s0r)~l sin s0r, and this fact can be useful in diag
nosing ripple suspected to be due to the finite upper 
limit. 

Bienenstock (23) discusses one aspect of data treat
ment which may not be handled by these methods, 
namely, scaling errors, and he shows that if the frac
tional error in the scaling is a then, to a first approx
imation, a is the fractional error in peak area. In addi
tion, there is an oscillatory component introduced which 
can account for ripples in the distribution function at 
small r and can also distort peaks in both area and 
position. 

To summarize, the radial distribution function pro-

Fio. 2.—The effect of data treatment is shown for a single inter
action. Each curve is calculated according to 

T(r) = T-'JY'/ufi exp (-bs>)M(s) cos rs ds. 
In all cases but the one indicated M(s) = f,~'. Both the effect 
of artificial damping and of termination may be seen. The 
enormous sharpening effect of / , - ' is seen in comparing the two 
curves for 6 = 0.00. The undesirable ripple may be almost com
pletely removed by damping, without too serious a loss in resolu
tion. In the sequence for 6 = 0.01 the termination ripple has its 
first maximum at 7.725/so. 

vides meaningful information about the mean number 
of nearest neighbors and their mean distance of ap
proach; and in certain cases intramolecular configura
tions may be deduced. Although in the latter case con
firmation of structure is afforded by agreement between 
observed intensity and that calculated on the basis 
of the model (as for electron diffraction by gases), 
such a procedure is not generally applicable since 
the radial distribution function rarely gives enough 
information to permit identification of all of the inter
actions needed to get good agreement between calcu
lated and observed intensities. 

VI. THE ELEMENTS 

Only a few of the elements are liquid under ordinary 
conditions, and much of the experimental effort in 
studying the liquid elements goes into maintaining the 
sample at a low or high temperature as required. Pre
vious reviews of experimental work present data for 
some of the elements (74, 75, 87, 132, 133, 143, 196, 
228, 283, 285, 286, 318, 320, 378), and the last compre
hensive review of the elements is that of Gingrich (139). 

Of the elements perhaps the inert gases have received 
the most attention as a result of their relative simplicity 
as liquids. The same simplicity has made them popular 
subjects for theoretical descriptions, and the aptness 
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of many a theory of the liquid state has been demon
strated by its ability to produce a radial distribution 
function agreeing with that observed for an inert gas. 
There is an enormous literature on the theory of liquids, 
and we may mention a few representative works. Among 
them are the celebrated methods of Born-Green-Yvon 
(29, 397) and of Kirkwood (195) in which the radial 
distribution function is obtained by the solution of 
integro-differential equations. Other methods of ob
taining the distribution function are based on cell 
models (11, 65, 72, 149, 172, 229, 294), free volume 
models (109, 197), smeared crystal models (258, 315), 
the highly instructive statistical geometrical model of 
Bernal (18, 19, 20), and the elegant Monte Carlo tech
niques originally employed in this work at the Los 
Alamos Laboratories (1, 2, 240, 313). A review of most 
of these methods may be found in the reference work by 
Hirschfelder, Curtiss, and Bird (173). 

Although the radial distribution function is, of course, 
sensitive to the geometry selected for a cell model, it 
does not seem to be greatly affected by the choice of 
potential function in the Born-Green-Yvon or Kirk
wood treatments. Results (199) based on a Lennard-
Jones 6:12 potential are little different from those 
(198, 200) in which a model of hard, non-interacting 
spheres is assumed. The main difference is that in the 
latter case the first peak in the distribution function 
rises sharply to a maximum at one atomic diameter, 
whereas in the former the maximum is rounded and 
shifted to 1.1-1.2 atomic diameters. 

The result for hard spheres had been anticipated in 
mechanical experiments by Debye and Menke (93, 94) 
and by Morrell and Hildebrand (251), who determined 
optically the distribution of colored gelatine balls in a 
medium of the same density and refractive index. 
In these cases the agreement between the calculated 
distribution functions and those observed for, say, 
argon is quite acceptable. Radchenko (284) tried to 
determine the effect of interatomic forces by placing 
weak magnets in plastic balls, and he concluded that 
entirely different arrangements might have similar 
distribution functiens. 

Before proceeding to the diffraction results for the 
inert gases we should point out that, for most liquids, 
the diffraction experiment has been unable to furnish 
proof of coincidence between liquid structures and struc
tures in the corresponding solids (except for occasional 
agreement in number of nearest neighbors and their 
mean separation). Moreover, it is practically impossible 
to deduce the average geometrical disposition of near
est neighbors, much less remote neighbors, even in those 
hopeful attempts made at or near the freezing point. 
Indeed, experimental evidence supports the notion of 
complete discontinuity between liquid and solid. The 
late Professor Kirkwood summarizes by saying, "We 
believe that liquid structure cannot be adequately 

described in terms of a lattice blurred by thermal mo
tion, but that the local order in liquids manifested in 
the radial distribution function is of an essentially 
different nature from the long range order in crystals 
(198)." 

A. THE INERT GASES 

/ . Helium 

In spite of the difficulty of making diffraction meas
urements on liquid helium, there has been great interest 
in comparing its scattering above and below the lambda 
transition. Early observation (192) showed no differ
ence in scattering for HeI and HeII, and later work 
(15, 146, 168, 178, 291, 292, 293) seems to confirm this 
even to the extent of showing (377) no anomaly in the 
low angle scattering at the transition temperature. 
Nevertheless, because of very small intensity differ
ences, Henshaw (165, 166) suggested that there is some 
indication of less spatial order below the lambda point 
than above. Although others (147) also find the first 
maximum in intensity to be from 4 to 6% greater 
above the lambda transition, and even though this 
temperature effect is in the opposite direction from that 
exhibited by ordinary liquids, the exact structural 
implication, if any, is not made clear. The distribution 
functions obtained at 1.06° and 2.29°K. under satura
tion vapor pressure are practically superimposable and 
differ in height by only about 2% at the first maximum. 

Henshaw's results, obtained over a wide range of 
conditions, show a distance of closest approach (that 
is, where the distribution function becomes essentially 
zero) that remains practically constant at about 2.3 A., 
but the first maximum in the distribution function, as 
well as the mean number of nearest neighbors, changes 
with temperature and pressure. In going from a density 
of 0.166 g./cm.8 at 2.050K. and 14.9 atm. to 0.184 
g./cm.s at 4.20K. and 51.3 atm. there is also a shift 
in the main maximum in intensity to higher angles, 
and it becomes sharper. The maxima in the distribution 
function also become more sharply defined and indicate 
smaller mean separations. Some of the results are given 
in Table I. 

TABLE I 

RADIAL DISTRIBUTION DATA FOR HELIUM 

Mean separation of Mean number 

T, °K. 
1.06') 
2.28 V 
2.46J 
5.04 
4.2 
1.4 
2.4 
4.2 
2.06 

Pressure 

VP 

VP 
S l .3 atm. 

VP 
VP 
VP 
VP 

nearest neighbors, 

3. 

A. 

3.80 

3.94 
3.55 
4.00 
3.85 
3.87 

15 and 4.24 

of nearest 
neighbors 

8.6-9.7 

5 .8-7.0 
8.9-10.2 

10.4 
10.5 
10.6 

4 + 8 

Ref. 

(165) 

(166) 
(166) 
( 1 « ) 
(147) 
(147) 
(292) 

Henshaw records positions of second nearest neigh-
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bors at about 5 A. The second maximum in the radial 
distribution; however, actually occurs around 7 A., 
and the former value is near a minimum, having been 
inferred by subtracting a symmetrical first maximum 
from the distribution function. This resolution is one of 
subjective judgment, and his further suggestion that 
close packing may be deduced from the fact that the 
ratio of separations between first and second neighbors 
is approximately \ / S seems somewhat beyond actual 
experimental verification. Even so, it is reasonably 
certain that there is little or no demonstrable structural 
change at the lambda point, and other indications are 
that changes in the momentum may be more significant 
in explaining the transition (144,164,170, 220). 

2. Neon 

In a neutron diffraction study of liquid neon at 260K., 
Henshaw (163) has made intensity measurements to 
about s = 6 A.-1. The distribution function's first 
maximum is at 3.17 A. and corresponds to 8.8 nearest 
neighbors. Comparison with the density changes upon 
melting shows that more than a mere dilation of the 
solid structure is involved. These results are in excellent 
agreement with those obtained in an extensive X-ray 
study by Stirpe and Tompson (356) over a wide range 
of conditions. At 24.70K. they report 8.4-8.5 nearest 
neighbors centered at 3.18 A. Their measurements are 
along the saturation vapor pressure curve and show a 
decrease to about 4 nearest neighbors at the critical 
temperature. The maxima in the intensity and in the 
radial distribution function broaden with increasing 
temperature, in keeping with the intuitive notion that 
increased thermal motion reduces preferential ordering. 
In a qualitative study of the low angle scattering they 
show that large scale inhomogeneities become sig
nificant as the critical region is approached and that, 
at equal densities, the low angle scattering is much the 
same for the gas and liquid. 

Henshaw considers the possibility that the repulsive 
energy in the pair potential function rises more sharply 
than r~12 and that the potential bowl may be broader 
than that in the Lennard-Jones 6:12 potential. This 
he bases on the fact that the ratio between the distances 
at which the density cutoff and first density maximum 
are observed is less (0.79) than the expected value 
(0.89) for a Lennard-Jones potential. Even though the 
small incoherent correction has little influence on this 
ratio, it must be remembered that the finite upper 
limit of intensity measurement and other experimental 
factors broaden all maxima in the distribution function 
(391). Thus the value of 0.79 must be viewed as a lower 
limit. 

3. Argon 

Liquid argon is perhaps the most accessible of the 
inert gases in terms of boiling point and commercial 

availability, and it has received much attention (105, 
106,107,138,162,169,190, 219). 

TABLE II 

RADIAL DISTRIBUTION DATA FOR ARGON 

T, 0K. 
86.3 
89 
84 
90 
84.4 
91.8 

126.7 
144.1 
149.3 

Pressure, 
atm. 
VP 

1.2 
VP 
4.5 
0.8 
1.8 

18.3 
37.7 
46.8 

Mean sep
aration of 

nearest 
neighbors, 

L 
3.9 
3.8 
3.81 
3.90 
3.79 
3.79 
3.8 
3.8 
4.5 

Mean number of 
nearest neighbors 

8.2 
9.6-10.3 

8.2 
7 

10.2-10.9 
6.8-7.2 
S.9-6.2 
3.9-4.6 

6 

Ref. 
(169) 
(219) 
(162) 
(100) 
(107) 
(107) 
(107) 
(107) 
(107) 

In a now classic study (107) of argon, which includes 
measurements at ten points along the vapor pressure 
curve and at fifteen other conditions, there is demon
strated spectacularly the effect of both temperature 
and pressure on the observed intensity and the distribu
tion functions. The measurements extend to about 
s = 8.5 A. -1 and are some of the first to be made with a 
counter as detector. 

In proceeding from 84.40K. and 0.8 atm. to 149.30K. 
and 46.8 atm. (see Table II) the number and sharpness 
of oscillations in the intensity decrease markedly, and 
the intensity at small angles becomes noticeable. As 
expected, there is a corresponding broadening of the 
maxima in the distribution function at the higher tem
peratures. The behavior of the distribution function 
at small values of r is not shown, but considerable 
undershoot (to negative values) is suggested. Thus, 
unless this is taken into account, the number of nearest 
neighbors may be slightly overestimated. 

An interesting sequence spanning the critical tem
perature above the critical pressure shows the change 
from the intensity expected for a liquid to that of a gas; 
and in another series the intensity scattered by the 
vapor is shown to change from a practically smooth 
curve at low pressure to one with a pronounced max
imum at high pressure. 

The results show that samples with the same specific 
volume scatter similarly and that there is no abrupt 
change in passing through the critical region. Detail 
persists in the diffraction pattern even at volumes 
10-20% greater than the critical volume. 

4. Krypton 

The only study of liquid krypton is one by neutron 
diffraction recently completed by Clayton and Heaton 
(67, 68) at the Argonne National Laboratory. Their 
findings (Table III) are similar to those for the other 
inert gases except for scale, but they also studied the 
effects of data treatment in considerable detail. Mod
erate shifts in the scale factor and in the isotropic 
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TABLE III 

RADIAL DISTRIBUTION DATA FOB KRYPTON AT SATURATION 

VAPOR PRKSSURE (68) 

T1
 0K. 
117 
133 
153 
183 
210 

Mean separation of 
nearest neighbors, A. 

4.02 
4.04 
4.08 
4.10 
4.20 

Mean number of 
nearest neighbors 

8.5 
8.0 
7.0 
0.5 
4.0 

background correction had little effect on the radial 
distribution function. Much more dramatic, however, 
is the effect on the radial distribution function produced 
by terminating the intensity data at selected values of 
s. The intensity curve for 1170K. is shown in Figure 4, 
and the distribution functions obtained by termination 
of the Fourier transform at the points indicated are 
shown in Figure 5. The most evident trend, aside from 
the loss of detail, is in the appearance of a small max
imum between the first and second main maxima. 
Although it might be thought that this is a result of the 

FIG. 3.—Radial distribution curves for liquid krypton (67). The 
parabolas are given by 4jrr2po. (Reproduced by permission.) 

improved resolution afforded by the higher upper limit, 
its behavior is exactly that expected for termination 
error. Stirpe and Tompson (356) came to a similar 
conclusion about a small intervening peak for neon. 
This phenomenon occurs in many determinations, and 
it usually can be accounted for in this way. 

Finbak (117) recognized this and other types of 
errors as the'source of small spurious maxima in the 
radial distribution function. His statement still applies 
to current work on the inert gases and many metals: 
"When the small extra maxima are removed, all these 

Fio. 4.—Intensity for liquid krypton at 1170K (67). (Repro
duced by permission.) 

r,A. 

FIG. 5.—The effect of termination is examined in this sequence 
where the Fourier inversion of intensity for liquid krypton at 
1170K. was carried, in each case, to the corresponding limit 
indicated in Fig. 4. The behavior of the small maxima flanking 
the first maximum is approximately that expected from the ter
mination effect (67). (Reproduced by permission.) 

distribution curves become astonishingly similar and 
extremely simple." 

In addition, Clayton and Heaton show how peak 
positions and area shift with termination (see Table 
IV). Table IV also includes the ratio between r0, the 

TABLE IV 

EFFECT OF TERMINATION OF INTENSITY DATA, 117°K. (68) 

»o, A. -' 
2.14 
3.10 
3.90 
4.76 
5.54 
6.35 
7.30 

ro/rm 

0.59 
.70 
.74 
.79 
.81 
.82 
.84 

rm , A. 
4.46 
4.30 
4.20 
4.14 
4.08 
4.05 
4.02 

Mean number of 
nearest neighbors 

12.0 
11.5 
11.0 
10.0 
9.5 
9.0 
8.5 
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value of r at which the distribution function falls to 
zero, and rm, the value of r at the first maximum, and 
it seems to approach that value suggested by the 
Lennard-Jones potential. 

5. Xenon 

That the radial distribution function depends largely 
on volume is once again demonstrated in the work of 
Campbell and Hildebrand (55). The function for 1600K. 
and 1 atm. is practically superimposable on that of 
1830K. and 130 atm, where the density is the same. 
The results are much the same as those for the other 
inert gases, and there is a small, but prominent, max
imum in the distribution function between the first 
two main maxima. Since the behavior of the distribution 
function is not shown from r = 0 out to the first maxi
mum it is more difficult to tell whether it is caused by the 
finite intensity limit, but the minor peak is in the correct 
location for attribution as such. The number of nearest 
neighbors ranges from 8.3 to 10.1 depending on the 
conditions and the way of assigning areas, and their 
mean separation ranges from 4.43 to 4.50 A. 

B. THE NON-METALS 

1. Oxygen 

From early observations (188, 189, 359) it was de
duced that the internuclear distance in the oxygen 
molecule is about 1.3 A. More recent diffraction meas
urements agree on this point, but uncertainty still re
mains about the structure of liquid oxygen. Sharrah 
and Gingrich (326, 327) obtained maxima in the radial 
distribution function at 1.3, 2.2, and 3.4 A. at 89°K. and 
1.25, 2.15, and 3.2 at 620K. Since the area of the first 
peak was for slightly more (1.18 at 62° and 1.08 at 89°) 
than one near neighbor, and because of the discrete 
peak at 2.15 A. they suggested, with some hesitancy, 
the possible existence of ozone, Oj, molecules in the 
liquid. It has been shown (28, 184, 358), however, that 
the peak at 2.15 A. probably is due to termination 
error. 

When this work was first repeated by neutron diffrac
tion (169) the maximum at 2.2 A. did not occur in the 
distribution function. At the same time 1.5 nearest 
neighbors at 1.25 A. were found and tetrahedral 0« 
molecules, present in about 25% by weight, were pre
sumed responsible for the excess beyond the value of 1 
expected for a diatomic molecule. 

A question about the significance of unusual low 
angle intensity for the neutron case evidently provoked 
a re-examination of this system, and in measurements at 
54.7, 62.4, 69.0, and 90.70K., Henshaw (167) proposes 
an angularly dependent magnetic contribution to the 
scattering to explain this anomaly. After subtracting a 
correction based on the assumption of independent 

magnetic moments and a magnetic scattering cross 
section of 4.58 barns, good agreement is obtained be
tween the corrected neutron intensity and the X-ray 
intensity. It is good enough, considering the spread of 
the corrected neutron data, that the author's sugges
tion of magnetic coupling must be viewed with reser
vation. 

The radial distribution functions in this study are 
highly oscillatory, and the peak at 2.2 A. reappears. A 
serious systematic error is probable, and, if the locations 
of main peaks are taken from the least oscillatory curve 
at 54.70K. the subsidiary maxima in the other curves 
are reasonably well accounted for by a termination 
error due to the cutoff at s = 7.6 A.-1. 

Although Henshaw indicates that the first maximum 
(at 1.26 A.) contains an area of 1.26 atoms and that this 
could be explained by 12% by weight of 0<, he adds 
that the experiments may not be precise enough to 
warrant attaching significance to the deviation of the 
value 1.26 from unity. The second maximum in the 
distribution function at about 4 A. gives 16-20 second 
nearest atom neighbors or 8-10 molecules per atom of 
oxygen. 

The available diffraction data do not provide a very 
satisfactory picture of the structure of liquid oxygen, 
but it seems quite unlikely that significant amounts of 
molecules other than the diatomic O2 might be found 
upon careful re-examination. 

2. Nitrogen 

Twenty years after the first measurements on liquid 
nitrogen (191), Sharrah (325) repeated the observa
tions, finding intensity maxima at different locations, 
and he obtained a radial distribution function with a 
discrete maximum at 1.3 A. containing 1.03 atoms. 
The separation is about 0.2 A. greater than that found 
for gaseous nitrogen molecules, and is greater than that 
shown in the radial distribution function obtained from 
neutron diffraction (169), namely, 1.1 A. In both func
tions there is a gap in atom density between the first 
and second main maxima, the latter occurring at about 
4.4 A. in the neutron study and at about 4.0 A. in the 
X-ray case. Although Sharrah's radial distribution func
tion shows a small intervening bump, the distance of 
closest approach for the second nearest atom neighbors 
is approximately 3 A. In the neutron study, 23.6 atom 
neighbors or 11.8 molecule neighbors per nitrogen atom 
are assigned to the second maximum. Although these 
studies agree on the expected diatomic molecule indi
cated by the first maximum, the over-all agreement of 
the distribution functions is not satisfactory. The ex
planation for this is more likely to be found in intensity 
and scaling errors than in the difference in upper limits 
for intensity data (6.3 A. -1 for X-rays and 7.4 A."1 for 
neutrons). 
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3. Chlorine 

The main feature in the radial distribution function 
(134, 135, 136) is the discrete first maximum at 2.01 A., 
which corresponds to 1 atom neighbor per chlorine 
atom. The second main peak, at 4.0 A., appears to con
tain only 6-8 atoms. 

4- Phosphorus 

In liquid yellow phosphorus the tetrahedral molecule 
P4 apparently exists, as the first peak, at 2.25 A., is 
discrete, and corresponds to 3 nearest neighbors (372). 
The existence of the molecule is supported by the con
stancy of the peak's position with temperature, al
though it does become slightly broader at higher tem
perature. Even though the higher melting amorphous 
red and black forms of phosphorus also show 3 nearest 
neighbors at 2.28 A., the remaining features of their 
radial distribution functions are different from those of 
yellow phosphorus, and it is likely that they have dis
ordered structures related to the puckered layering in 
crystalline black phosphorus (177). 

5. Sulfur 

Liquid sulfur was the subject of several observations 
(27, 88, 89, 274, 276, 277, 278, 282) of the way in which 
positions of maxima in the intensity change with tem
perature. In an attempt to resolve conflicting findings 
Gingrich (137) had made photographic measurements 
over the range 124-300°, and found an apparent shift 
near 160°, the temperature above which sudden cooling 
yields plastic or amorphous sulfur. On re-examination, 
however, with improved collimation and counting 
techniques, he and Tompson (374) discovered that this 
effect was due actually to the varying relative con
tributions of two maxima (at s = 1.23 and 1.72 A."1), 
the positions of which are insensitive to temperature. 

At 300° the two maxima are of comparable intensity, 
but below 200° the maximum at 1.72 A. -1 predomi
nates. Except for this feature the curves are remarkably 
similar at the several temperatures. At each tempera
ture the number of nearest neighbors (at 2.07 A.) is 
essentially 2. There are additional maxima in the radial 
distribution function which occur at distances appro
priate (3.4 and 4.5 A.) to a ring-like S8 molecule, and 
although the first maximum remains unaffected, the 
third maximum, especially, undergoes drastic broaden
ing with increasing temperature. It is attractive to 
think that the S8 molecule does exist in liquid sulfur and 
that extensive reorganization involving both ring scis
sion and chain formation may account for these obser
vations. 

Tompson and Gingrich found that their X-ray in
tensity agreed well with that they obtained by neutron 
diffraction, but not as well with that obtained earlier by 
Chamberlain (66). In addition they completed an inter

esting demonstration of the effect of the high angle 
intensity limit on the radial distribution function. 
Seven distribution functions, obtained by terminating 
the Fourier transform at values of 5 ranging from 5.76 
to 15 A.-1, show the improvement of resolution at the 
higher cutoff values. 

This careful study, carried to high s values with Ag 
radiation, appears to be representative of the best 
analyses that are currently being made with X-rays. 

6. Selenium and Tellurium 

When Prins had completed his early study (279) of 
selenium, the difficulties he had encountered were put 
aside, and his interest in "cette oeuvre laborieuse" was 
bequeathed to Lark-Horovitz. Under the direction of the 
latter, radial distribution functions for liquid selenium 
and tellurium eventually were obtained (50, 51, 53). 
There is good evidence for the retention of connectivity 
of atoms as found in the solids, but whether the atom 
chains form closed rings in the liquid is not firmly es
tablished, although it is strongly suggested. At 235 
and 310° liquid selenium has 2 (observed value 2.3) 
nearest neighbors at 2.36 A.; and at 465 and 610° liquid 
tellurium has 2 (observed 2.3) nearest neighbors at 
2.9 A. The values for liquid selenium agree well with 
those found (50, 131, 151, 204, 205, 297, 306, 307, 308) 
for amorphous selenium at room temperature, although 
there is lack of agreement on the further details of the 
radial distribution functions. 

c. METALS 

1. Alkali Metals 

Gingrich and Heaton (140) recently have completed 
a neutron study of the alkali metals. There seems to be 
good agreement between their findings and those given 

TABLE V 
RADIAL DISTRIBUTION DATA FOB THE ALKALI METALS 

Li 

Na 

K 

Hb 
Cs 

Temper
ature, 

"C. 

180 
200 
100 
100 
103 
115 
400 
65 
70 

100 
115 
300 
395 

40 
30 

Mean 
number of 

nearest 
neighbors 

9.5 
9.8 
9.0 

7-8 
9-10 

7-8 
9.0 
9.0 

10 

9 
9.2 
9.5 
9.0 

Mean sep
aration of 

nearest 
neighbors, 

A. 
3.15 
3.24 
3.82 
3.83 
4.0 
3.83 
3.90 
4.64 
4.7 
4.7 
4.62 
4.7 
4.76 
4.97 
5.31 

Ret. 
(140) 
(136) 
(140) 
(375, 376) 
(362) 
(141) 
(375, 376) 
(140) 
(371) 
(221) 
(141) 
(221) 
(371) 
(140) 
(140) 

in the earlier literature (see Table V). The use of neu
trons was considered to be an improvement over X-rays 
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in the cases of lithium, for which the incoherent scat
tering is a large part of the X-ray intensity, and of 
rubidium and cesium, for which large absorption coef
ficients make transmission measurements by X-ray 
difficult. 

As might be expected, the number of nearest neigh
bors seems to be constant, between 9 and 10, for all 
members of the series, and, in fact, a normalization of 
the distribution curves to a common density and size 
shows little difference among the members. For in
stance, the ratio of the positions of the first and second 
maxima in the radial distribution functions is 1.9 for 
each metal. 

A rather unusual feature of the study of rubidium is 
the splitting of the first maximum in the distribution 
function above 160°. At 240° this is manifested as a 
shoulder at about 5.8 A., but at 360° there are two 
maxima, one at 5.0 and the other at 5.8 A., of about 
equal height. Attempts to eliminate this effect by 
application of an artificial temperature factor were un
successful, so that one cannot easily blame the extra 
peak on termination error. Such behavior does not seem 
to occur for liquid cesium, although a small bump be
tween the first and second maxima appears in the radial 
distribution function at 300°, which, however, is not 
present at 30° and 575°. 

2. Mercury 

Mercury has been studied more than any other metal, 
and the literature contains some lively controversy 
about the results, especially for the intensity. With the 
exception of Debye and Menke's (93, 94) pioneering 
work in deriving a radial distribution function for mer
cury, the early investigations (81, 270, 288, 289, 321, 
322, 370, 392, 393, 396) displayed only intensities, to 
which Bragg's law occasionally was applied to estimate 
the separation of near neighbors. 

In 1935 Boyd and Wakeham (32) made photographic 
measurements from —36 to 250°. Molybdenum Ka 
X-radiation was incident at a grazing angle, and the K/3 
radiation was filtered with zirconium oxide. A large 

J, el.1 

inner maximum (at s values of 1.4-1.7 A.-1, depending 
on temperature) became the subject of reinvestigation 
when Gregg and Gingrich (148) suggested that it might 
have arisen from incomplete monochromatization. 
The work was repeated in the same laboratory by 
Campbell and Hildebrand (54) using a crystal mono-
chromator. They, too, found a strong inner maximum 
although at s = 1.25 A.-1. Subsequent determinations 
(80, 159, 180, 235, 236, 262, 335, 337, 380), as well as 
the other ealier ones, failed to confirm the presence of 
the large inner maximum, and since the same camera was 
used for both experiments in which it appeared, we 
conclude that it was a function of the apparatus. This, 
however, does not satisfactorily explain why the inten
sity of the inner maximum varied with temperature. 

Data from the radial distribution functions are as
sembled in Table VI. Most of the functions show as-

TABLE VI 

RADIAL DISTRIBUTION DATA FOR MERCURY 

Radiation, 
neutron or 

X-ray 
X 
X 
X 
X 
X 
n 
X 
X 
X 
X 

Mean separation of 
nearest neighbors, 

3.23 
3.0 + 3.47 

3.0(30°) 
2.87 ( - 3 6 ° ) 

3.00 
3.0 
3.12 
3.15 
3.1 

A. 

Mean number 
of nearest 
neighbors 

10 
8 + 4 

6 
6 

4.4-7 
8 
8 
8 

8.2 
8.6 

Ref. 
(93) 
(159) 
(32) 
(32) 
(54) 
(380) 
(335) 
(262) 
(337) 
(180) 

12 14 

FIQ. 6.—X-Ray intensity for liquid mercury at room temperature; 
the smooth curve is / J + U„c. 

sorted small maxima or ripples between the first and the 
second main maxima, and in some cases these are quite 
pronounced (32, 54, 159, 335). Since they are so ir
regular and irreproducible it is probable that they arise 
from a combination of termination error and incomplete 
compensation for absorption. 

S. Lead and Bismuth 

These metals frequently have been considered to
gether as their melting points are relatively low, and 
since they are completely miscible in each other they 
are a convenient binary system to study. Many experi
ments on lead (81, 82, 83, 290, 295, 321) and bismuth 
(81, 82, 83, 266, 274, 290) dealt only with the positions 
of maxima in the intensity, but more recent investi
gations of lead (66, 86, 158, 328, 329) and bismuth (47, 
48, 49, 66, 86, 158, 203, 309, 328, 329, 360) include the 
radial distribution function. A summary is shown in 
Table VII. 

The mean separation for lead is somewhat shorter 
than that in the crystal at room temperature, namely, 
3.49 A., while the separation for bismuth lies between 
3.11 and 3.47 A., the distances to the three nearest and 
three next nearest neighbors in the crystal. Because it 
appears that the mean coordination number of lead is 
nearly 12 and the mean interatomic distance is shorter 
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TABLE VII 

RADIAL DISTRIBUTION DATA FOR LEAD AND BISMUTH 

Mean sep-

Pb 

Bi 

Radiation, 
electron 
neutron 
or X-ray 

X 
n 
X 
n 
X 
n 
X 
n 
n 
X 
n 
X 
e 
e 

T, °C. 

375 
390 

350 
331 
350 
285 
300 
300 

310 
340 
280 

aration of 
nearest 

neighbors, 
A. 

3.40 
3.4 
3.4 
3.40 
3.39 
3.38 
3.35 
3.36 
3.35 
3.2 
3.2 
3.32 
3.55 
3.32 

Mean 
number of 

nearest 
neighbors 

9 + 4 
12 
11 
9.4 
12.1 
11.7 
7.6 
7.8 
7.7 

7-7.5 
8 to 4 A. 

7-8 
8.6 
7 

Ref. 

(158) 
(66) 
(86) 
(329) 
(328) 
(328) 
(328) 
(328) 
(329) 
(86) 
(66) 
(158) 
(49) 
(309) 

than in the crystal, the lower density of the liquid indi
cates empty regions comparable in size with atomic 
dimensions. Although we cannot further describe these 
regions, the liquid may not be viewed as being produced 
by a dilation of the solid; rather the destruction of 
long-range order prevents efficient packing and leaves a 
greater proportion of unfilled space. The decrease in 
density (4%) upon melting, however, is less than that 
expected (10%) for a "perfectly disordered" (19) ar
rangement, but perhaps the closer approach of atoms 
accounts for this. 

That the density of liquid bismuth is greater than 
that of the solid is to be expected upon melting of the 
open solid structure and the accompanying increase in 
coordination number. Why the arrangements in liquid 
bismuth and liquid lead are so very different remains a 
baffling structural question. 

4. Miscellaneous 

Of the remaining metals, mainly those with low melt
ing points have been studied: aluminum (47, 49, 136, 
266), tin (46, 48, 49, 86, 136, 158, 266, 274, 309, 321), 
thallium (158, 321, 370), indium (49, 136, 158, 194, 
295, 309), gold (158), gallium (158, 295, 340), germa
nium (158), zinc (136, 295), cadmium (136), antimony 
(160, 161), and silver (310). Radial distribution data 
are given in Table VIII. As is to be expected from the 
previous discussion, there is considerable variation in 
results of different workers, some due to undetected 
errors in intensity and scaling, some to termination 
error, and some to the subjective assignment of peak 
areas. Estimated probable errors for most studies of 
liquid metals are: mean number of nearest neighbors 
0.5-1; mean separation of nearest neighbors, 0.1 A. 
Some of the studies (158, 309, 310) in Table VIII show 
the enigmatic small maximum lying between the first 
and second main maxima of the distribution function. 
Experience suggests that this is due to experimental 
rather than to a structural effect. 

Ag 
Al 

Au 
Cd 
Ga 

Ge 
In 

Sb 
Sn 

Tl 
Zn 

TABLE VIII 

RADIAL DISTRIBUTION DATA 

Radiation, 
electron 

or X-ray 

e 
X 
e 
X 
X 
e 
X 
X 
X 
X 
X 
X 
e 
e 
X 
X 
X 
X 
e 
X 
X 
e 
e 
e 
X 
X 

T, 0 C. 

700 
720 

1100 
350 

20 
34 

1000 
160 
390 
165 
170 

176 
665 

280 

250 
390 
300 
350 
390 
375 
460 

Mean sep
aration of 

nearest 
neigbbors, 

A. 
2.86 
2.96 
2.94 
2.86 
3.06 
2.79 
2.77 
2.81 
2.70 
3.30 
3.36 
3.17 
3.40 
3.32 
3.32 
3.12 
3.3 
3.2 
3.38 
3.38 
3.36 
3.6 
3.4 
3.4 
3.30 
2.94 

FOR METALS 

Mean 
number of 

nearest 
neighbors 

10.6 
10 
11 
8.3 
9.0 

11 
10.5 
8 
8.5 
8.4 
8 

11 
10.1 
8.5 
6 

10 
10 
10.9 
10 
8.9 

11.5 
10 
8.9 
8 

10.8 

Ref. 

(310) 
(136) 
(49) 
(158) 
(136) 
(295) 
(158) 
(340) 
(158) 
(136) 
(136) 
(158) 
(49) 
(295) 
(340) 
(160, 161) 
(86) 
(158) 
(309) 
(136) 
(136) 
(46, 48, 49) 
(46, 48) 
(46, 48) 
(158) 
(136) 

D. AMORPHOUS ELEMENTS 

Richter and his colleagues have studied the non
crystalline solid phases of selenium (131, 151, 297, 306, 
307, 308), antimony (296, 298, 300, 302), arsenic (299, 
304, 305), germanium (301, 303), silicon (301), and bis
muth (310), which are produced by rapid cooling of 
either vapor or liquid. Although their diffraction pat
terns resemble those obtained from liquids, the accom
panying distribution functions are highly oscillatory 
and contain regions of negative density. The behavior 
of the distribution function to the left of the first maxi
mum is almost never shown, and the fact that in most 
cases the left side of the first maximum plunges steeply 
toward negative densities suggests a common irregular
ity either in the data or in the way it is processed. The 
authors of these reports give highly detailed inter
pretations in terms of layer formation and coordination 
polyhedra, but these have been criticized by Krebs 
(202), who offers an explanation for the spurious max
ima based on error in the intensity scale (205). Table IX 
shows some of the results. 

VII. POLYATOMIC LIQUIDS 

A. COMPOUNDS 

In this section we discuss compounds, but inter-
metallic ones are to be found under alloys, and a 
subsequent section deals with glassy compounds. 

1. Organic Compounds 

Historically this class of liquids has consumed more 
attention and has been the subject of more publications 
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TABLE IX 

RADIAL DISTRIBUTION DATA FOR AMORPHOUS ELEMENTS 

Mean separation of Mean number 
rest neighbors, 

A. 

2.25 
2.51 

2.46-2.50 
2.5 
2.36 
2.4 
2.8 

2.87 
2.86 
3.3 

of nearest 
neighbors 

3.1 
3.2 
2 

2.3-3 
3 
4 
4 
4.2 
4 
3 

3 
6.8 

Ref. 
(204, 205) 
(204, 205) 
(304) 
(305) 
(299) 
(301) 
(303) 
(301) 
(368) 
(298) 
(296, 300) 
(298) 
(310) 

(by scores of pages) than any other. Indeed, one of the 
first diffraction experiments in this field was that of 
Debye and Scherrer (95) on paraffin. The growth of 
interest in studying the diffraction of organic liquids 
paralleled the development of theories of chemical 
binding, and it was fitting, although not always re
warding, to apply a then new technique to the prob
lems suggested by these theories. Diffraction by gases 
and crystals was ultimately to furnish the detailed de
scription of molecular configurations and bond lengths 
that the chemist needs, but in retrospect it seems that 
concern with organic liquids at a time when the theory 
and the limitations of the diffraction method had not 
been perfected supplied little structural information. 
Some of the early studies of these complex liquids led 
inevitably to notions about the structure of liquids 
which are no longer felt to apply. 

From studies reaching over almost twenty years 
Stewart developed a picture of b'quid structure in
volving cybotaxis (344). This was the term he applied 
to molecular ordering sufficient to cause X-ray diffrac
tion effects, and it was suggested that a liquid behaved 
as if composed of very small and imperfect crystals or 
ordered regions (perhaps 10-20. A across) which were 
without sharp boundaries and constantly in motion. 

In sequences of hydrocarbons, alcohols, and acids 
an intensity maximum that remains unchanged in 
position with increasing chain length was interpreted 
to yield diameters of transverse cross sections, while the 
maximum that changes position was supposed to give 
chain lengths. Warren (386) was able to rationalize 
the observed intensity patterns on the assumption of 
approximate parallelism of extended carbon skeletons, 
but it was not necessary to assume the organization 
required by the postulate of cybotaxis. In his many 
papers, Stewart felt that such organization justified the 
application of Bragg's law5 to determine "spacings," 

'Bragg's law does provide a crude estimate of distances at 
which density maxima occur, but a translational identity period, 
as in a crystal, is not required. For diatomic molecules with an 
internuclear separation a, the first maximum in intensity would 
be observed at s such that »o = 7.72 (the value of x for the 
second maximum in i _ 1 sin x) so that X = 0.814(2a sin 6). 

and he did not determine radial distribution functions, 
even though worthwhile results were obtained by others 
(142, 399) who inverted his reliable intensity data. 
There are several reviews of his pioneering work (344, 
346, 348, 350, 354), and a selection of other qualitative, 
and rather inconclusive, studies includes such com
pounds as fatty acids, pyridine, piperidine, and quino-
line (338, 339); normal paraffins (206, 343); hexa-
methylbenzene (209); hexamethylenetetramine (210); 
naphthalene (59, 61, 62); benzene (58, 60); andhexyl 
alcohol (265). Cybotaxis, in the meantime, seems likely 
to suffer the fate of phlogiston. 

a. Carbon Tetrachloride 

Eisenstein (104) obtained intensities by photographic 
and counter methods to 8 » 12 A.-1 using crystal 
monochromatization. Applying the method of Warren, 
Knitter, and Morningstar (390) he found 4.6 chlorine 
neighbors per carbon (775 el.2 observed vs. 648 el.' for 4 
neighbors) at 1.85 A. and 3.4 chlorine neighbors per 
chlorine (4129 el.2 observed vs. 3610 calculated for 3 
neighbors) at 2.95 A. The ratio of these two distances is 
1.60, within 2% of the value 1.63 expected for tetra-
hedral geometry. Peaks at 3.9 and 6.2 A. are assigned to 
intermolecular pairs. 

Since the structure of the carbon tetrachloride mole
cule was well established by this and other means, 
Eisenstein calculated the intensity based on the tetra-
hedral configuration. A density function was used in 
which only the intramolecular atom pairs appeared. 
Beyond 3.6 A. the density was taken to be that of the 
bulk liquid, and exceptionally good agreement with 
observed intensity was found for s > 4 A.-1. Below this 
value, contributions of intermolecular pairs give added 
detail which cannot, of course, be reproduced easily. 

Bray and Gingrich (40) repeated this work at 25 and 
—20°. The intramolecular distances are 1.74 and 2.92 
A., and the corresponding maxima in the radial dis
tribution function are discrete at both temperatures. 

b. Hydrocarbons 

Katzoff (187) carefully measured the intensities from 
normal heptane and decane, benzene, and cyclo-
hexane. Although he did not carry out a distribu
tion analysis, his suggestion that benzene molecules 
might be oriented as in the solid led to fair agreement 
between calculated and observed intensities. Pierce 
(264), however, upon inverting these data, was not 
convinced of the correctness of the suggestion. Pierce 
showed that at high angles the experimental intensity 
could be fitted with that due to independent molecules, 
and that benzene molecules are probably roughly paral
lel in the liquid with a mean distance of 4.3 A. be
tween molecular planes. He also tried to interpret 
Katzoff's data for normal heptane, but was unable 
to reach any definite conclusion about mutual orien-
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tation of molecules (263). The first two maxima in his 
radial distribution function, at 1.4 and 2.5 A. if inter
preted as due to the first and second carbon neighbors, 
give 120° for the C-C-C angle. The first distance prob
ably is in error, and Zachariasen (399) finds 1.54 and 
2.50 A. for these distances in nonyl alcohol, giving an 
angle of about 109°. 

Skrishevskii and Mamedov (336) were able to dis
tinguish between benzene and toluene, since the dis
tribution function for the latter contained a peak at 
1.65 A. which they attributed to the interaction of the 
ring and methyl carbons. Subsequently Mamedov (238) 
compared the intensities for the xylene isomers. 

c. Methanol and Ethanol 

Harvey (155, 156) investigated these alcohols at room 
temperature and at —75°. The greater detail in inten
sity and the accompanying increase in resolution in the 
radial distribution function at low temperature simplify 
interpretation. Harvey's intensities agree well with 
those of others (45, 99, 384), and his interpretation 
parallels that of Prietzschk (268) and of Zachariasen 
(399), which was deduced from somewhat cruder data 
(355). The first maximum for methanol is at 1.6 A., 
which is somewhat large, but it undoubtedly is due to 
carbon-oxygen pairs. The second, at 2.7 A., is hardly 
noticeable at room temperature and is astonishingly 
well resolved at —75°. Its area corresponds to 2 oxygen 
neighbors per oxygen. Since it readily suggests hydro
gen-bonded oxygen pairs, there must be a significant 
amount of chain formation in the liquid. 

Ethanol gives similar results, with a spectacular tem
perature dependence. The first maximum in the dis
tribution function is at 1.50 A., which is consistent with 
the superposition of carbon-oxygen pairs (1.43 A.) and 
carbon-carbon pairs (1.54 A.). The third maximum, at 
2.9 A., again suggests 2 oxygen neighbors per oxygen. A 
second maximum, due to the terminal carbon-oxygen 
distance, is at 2.4 A. 

Propanol and butanol have also been studied (145), 
but with inconclusive results. 

d. Miscellaneous 

The carbon-chlorine distance in o-dichlorobenzene 
and p-dichlorobenzene has been estimated to be 1.7 A. 
(84, 331), and the iodine-iodine distance in p,p'-diiodo-
phenylmethane to be 10.5 A. (201). A brief report on 
l,3-(trimethyltin)-propane appeared recently (239). 

2. Water 

Bernal and Fowler's famous review (21) of hydra
tion phenomena relied heavily on their interpretation of 
diffraction data (6, 243, 345, 347) for water. They pro
posed a continuous transition, with relative amounts 
changing with increasing temperature, from a tridymite 
or ice-like structure, through a quartz-like one, to a 

close-packed structure resembling that of solid am
monia. The models giving best agreement between 
calculated and observed intensities involve 4 nearest 
neighbors centered at 3.0 A. These are nearly the values 
found by Morgan and Warren (250), whose definitive 
work over a range of temperature provides the best 
available radial distribution data. 

Their intensity and radial distribution functions both 
show a loss of detail with increasing temperature, and 
the first maximum in the latter shifts from 2.90 A. at 
1.5° to 3.05 A. at 83°. Accompanying this shift is a grad
ual increase in the apparent number of nearest neighbors 
from 4.4 to 4.9. For complete tetrahedral alignment a 
significant maximum at about 3.0 X V8/3 A. is ex
pected, but is not nicely resolved. On the basis of this 
and the density change on melting, Morgan and War
ren suggested that the structure be described more 
aptly as a broken down ice structure. The remarkable 
(because the contact distance in the crystal is 2.76 A.) 
density increase accompanying melting is supposed to 
be due to the filling in of neighbors between the first 
and second coordination shells in the crystal rather 
than to the closer approach of second nearest neighbors. 
Much of this description had been surmised by Katzoff 
(187), who first obtained a radial distribution function 
from X-ray data. 

Incidentally, Stewart (349) compared the scattering 
from heavy water (D2O) and normal water, finding 
virtually no difference at 25°. The slightly sharper 
peaks for heavy water are attributed to the fact that 
the heavy water is closer to its freezing point. 

Following Morgan and Warren's careful study, 
Simons (330) and Finbak and Viervoll (121) made 
determinations with similar results. The former found 
4 nearest neighbors lying between 2.75 and 3.25 A., 
and the distribution function we construct from the 
latter's data gives about 4.5 nearest neighbors centered 
at 2.9 A. This distribution function practically coin
cides with that of Morgan and Warren, although its 
second maximum, corresponding to the tetrahedron's 
edge, is more clearly indicated. 

A more recent determination (100, 102) of the dis
tribution function is rather dubious, agreeing only 
poorly with the earlier findings. Moreover, a rather 
unusual octahedral coordination is proposed without 
checking its consistency with area in the distribution 
function. To resolve what to them appeared to be a 
conflict, Brady and Romanow (39) report having ob
tained essentially the same radial distribution function 
as Morgan and Warren, although there is no indication 
that application of a significant absorption correction 
(231, 246) was made. 

Future reconsideration requires careful attention to 
the incoherent correction (which is only approximately 
known), the absorption correction (especially in the 
usual parafocusing geometry), and the independent 
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coherent scattering. For the last, the form factor of 
Banyard and March (10) should be valuable. At the 
moment, X-ray measurements on liquid water are only 
able to confirm our intuitive notions, which are based 
largely on the well-known structures of ice and the solid 
hydrates of some of the permanent gases (125, 257, 
259). Measurements of the incoherent neutron scatter
ing have shown distinct momentum components and 
a duration of configurations for about 10-12 sec. (42, 
176). 

S. Molten Salts 

a. Alkali Halides 

The alkali halides are perhaps the simplest systems 
in which to learn something of molten salt structures, 
and they have been studied in great detail at the Oak 
Ridge National Laboratory (230). The interpretation is 
similar to the one which Zarzycki (402) deduces from 
the decrease of both the mean number of nearest neigh
bors and their distance of closest approach upon melt
ing. He has suggested that, taken together with the de
crease in density, these observations show the exist
ence of lacunae or hollow places in the liquid, that is, 
unoccupied space surrounded by ions in close contact. 
This is a rather vague picture, and the average descrip
tion given by the distribution function includes no 
further detail. It is apparent, however, that the re
duced efficiency of filling space permits a wider range 
of interionic distances than in the crystal, and that 
these separations are centered, for unlike ions, at values 
smaller than those the crystals have even at room tem
perature (see Table X). Distances between like ions 
seem to be larger, however. Coordination numbers for 
the liquids are significantly less than 6, the usual value 

TABLE X 

RADIAL DISTRIBUTION DATA FOR ALKALI HALIDES 

LiF 
LiCl 

LiBr 
LiI 
NaF 
NaCl 
NaI 
KF 
KCl 

CsCl 
CsBr 

CsI 

Radiation 
X 
X 
X 
n 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
n 
X 
X 
n 
X 

Mean sep
aration of 

anion-
cation, A. 

2.0 
2.47 
2.6 

2.68 
2,85 
2.4 
2.8 
3.15 
2.8 
3,10 
3.2 

3.14 
3.10 
3.53 
3.55 
3.55 
3.85 

Anion-
cation 

separation 
in crystal 
a t room 
temper

ature, A. 
2.00 
2.57 

2.75 
3.00 
2.31 
2.81 
3.23 
2.66 
3.14 

3.57 
3.71 

3.95 

Mean 
number of 

nearest 
neighbors 

3.7 
4.0 
4.1 
3.5 
5.2 
5.6 
4.1 
4.7 
4 .0 
4.9 
3.7 
5.2 
4.5 
5.8 
3.5 
4.6 
4.6 
4.7 
4.5 

Ref. 
(402) 
(230) 
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(248) 
(230) 
(230) 
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for the solids, although Zarzycki (400) does find nearly 6 
halide neighbors per cation in molten barium chloride 
and calcium fluoride. 

The studies at Oak Ridge show the utmost precau
tion at every stage, and both neutrons and X-rays were 
used, with the spectrometer for the latter of rather 
sophisticated design. The negative neutron cross sec
tion for Li7 permits unequivocal assignment of the lith
ium-chloride interaction, as it produces a minimum in 
the radial distribution function. In making assign
ments of peak areas the formalism of Waser and Scho-
maker (391) was used. 

With reference to other investigations of alkali 
halides (218, 248, 400, 403), mention should be made 
of Zarzycki's ingenious apparatus (400). The molten 
salt is held by surface tension in a slotted platinum 
ribbon. Heating is controlled by passage of large cur
rents through the ribbon, and X-ray measurements 
are made by transmission. 

b. Low-melting Metal Halides 
Ritter, Wood, and Harris have investigated alu

minum chloride (154), indium trichloride (394), tin 
tetraiodide (395), and cadmium iodide (312), and mole
cule formation is adduced in each case but the last. 
Aluminum chloride is an unusual salt because it suffers 
a 45% decrease in density on melting, and its electrical 
resistivity increases enormously. The positions of the 
maxima in the radial distribution function lead to the 
proposal of a molecule Al2Cl6 in which two tetrahedra of 
chlorines share a common edge. The tetrahedral co
ordination of aluminum is borne out by the correspond
ing area in the first maximum, lying at 2.20 A. As ex-
pected the second maximum falls at 2.20 X V8/3 = 
3.60 A. 

For indium iodide the results are less satisfying. The 
behavior of the distribution function is not shown for 
r < 2 A., and only two principal maxima occur, at 2.70 
and 4.52 A. If one takes the area of the first maximum 
to give 4 iodines per indium (4.7 observed) then a model 
similar to that for aluminum chloride seems likely. In 
all, however, this proposal is more speculative. 

Tin tetraiodide appears to be tetrahedral with a 
tin-iodine distance of 2.66 A., and an iodine-iodine 
distance of 4.35 A. 

The interpretation of the distribution function for 
cadmium iodide is almost completely subjective. Al
though the area of the first maximum at 2.90 A. gives 6 
iodine neighbors per cadmium, the authors rule out 
regular octahedral coordination because the requisite 
maxima at 2.90 X y/2 and 2.90 X 2 A. do not.appear 
to be resolved. They contend, moreover, that such an 
arrangement would have too high a density and then 
go on to propose that the liquid is formed by a dilation 
of the solid in order that they might account for the 
position of the second maximum. 
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That the agreement with the maximum required by 
the octahedron is lacking does not seem surprising nor 
serious inasmuch as the second maximum is surely 
a superposition of several interactions, and it spans a 
range of 2 A. As for the density, each cadmium could 
well have six octahedral neighbors, and yet the liquid 
could manage a sufficiently low density through inef
ficient packing. If the octahedral interactions are 
viewed as smeared together with others in the second 
maximum, then the awkwardness can be avoided of 
having to account for an inconsistency in the cadmium-
iodide distance required by dilation and of having to 
suggest preferential interaction to form some Cdl2 
molecules. 

In liquid bismuth(I) tetrachloroaluminate good 
evidence has been found for the existence of a tri
angular trimer, Bi3

+++ (233). A bismuth-bismuth dis
tance of 3.0 A. is reported, but the further details of 
the structure are to appear later. 

c. Oxy-salts 

These include only potassium nitrate (79), sodium 
nitrate (79, 216, 361), and sodium nitrite (361). It 
seems reasonable to suppose that the anions are intact 
in the melts, as 3 (2.6 observed) and 2 (1.7 observed) 
oxygen neighbors per nitrogen are found for the nitrate 
and nitrite. The mean nitrogen-oxygen distance is 
about 1.2 A. in each case. The second maximum in the 
distribution function suffers from overlap of oxygen-
oxygen and cation-oxygen interactions, but the mean 
separations are estimated to be 2.20 A. for the former 
and 2.45 and 2.95 A. for sodium-oxygen and potas
sium-oxygen. The third maximum, at 4.3 A. is quite 
large and probably contains interactions of ions of like 
charge. 

4- Miscellaneous 

Data for nitric oxide are consistent with a diatomic 
molecule of mean internuclear separation 1.3 A. For 
nitrous oxide the first maximum in the distribution func
tion is at 1.2 A., and its area, 225 el.2, is that expected 
for a linear (as opposed to a triangular) molecule (325). 

Krogh-Moe's study (212) of carbon disulfide provides 
carbon-sulfur and sulfur-sulfur distances of 1.55 and 
3.1 A., respectively, while Bastiansen and Finbak in
ferred a sulfur-oxygen distance of 1.46 A. and an O-S-0 
angle of 124° in sulfur dioxide (13). 

B. ALLOYS 

The search for novel structural effects in alloys has 
been rather disappointing. Among the elusive effects 
for which diffraction evidence has been sought are com
pound formation, segregation into regions of essentially 
pure components, specific interactions in eutectic melts, 
and retention of crystalline arrangements. One of the 
earliest such studies was that of Banerjee (9), who 

attempted to show the formation of NasK molecules in 
the molten alloy. Later examination (141, 256) gives 
no such evidence and indicates a smooth variation in 
radial distribution with changing composition. It is 
shown that, for the first maximum, a sum of distribu
tion functions for the pure components (weighted ac
cording to composition) can be made to coincide with 
the observed distribution function. Such coincidence, 
which omits explicit account of pairs of unlike atoms, 
should not be taken in the misleading sense that such 
pairs do not occur nor that the liquid is segregated into 
regions of pure components. 

The coincidence of Xipx + x2p2 with the observed dis
tribution function merely implies that 

Ai2 = ( « i ! + n2t ) - I ( r a i i -4 i i + Ji22An) 

where X1U^ is the number of atoms of type j around one 
of type i, and the A's are the areas that single atom 
pairs contribute to the first maximum in the radial dis
tribution function. If the n's have comparable values, 
then An becomes essentially the arithmetic mean of An 
and A22, although the geometric mean is likely to be 
nearer to the value that should then be used. There will 
not be too much difference in these means for atoms of 
about the same atomic number, so that agreement of a 
distribution function so calculated with the one ob
served is a good indication of the random participation 
of atoms in a common distribution. 

This type of variation of distribution function with 
composition also has been found for the mercury-
indium (193) and tin-cadmium (3) systems. In the 
lead-bismuth (76, 223), lead-tin (334), tin-bismuth 
(227), lead-zinc (234), tin-zinc, and aluminum-silver 
(226) systems correspondence between observed inten
sity for the eutectic melts and a calculated sum of 
contributions from the pure liquids has been taken as 
evidence of segregation. The preceding analysis shows 
that such need not be the case. 

Heterogeneity also has been suggested (158) for the 
molten compound AuSn, but on the basis of an unusual 
splitting in the first intensity maximum. The splitting 
has been confirmed (225, 260), but it can be accounted 
for by a fortuitous synthesis of (sr)~l sin sr components. 
The radial distribution functions for all of these systems 
show no indication of irregularities. That for AuSn has 
only two pronounced maxima, one at 3.0 A. and the 
other at 4 A., while the function changes smoothly with 
composition in the lead-bismuth system (328), and it is 
unlikely that the supposed segregation into pure com
ponents exists in any of these systems. 

In the aluminum-iron system it has been proposed 
(26) that iron in the liquid retains the coordination 
polyhedron of aluminums existing in the solid. 

Only in electron diffraction studies of very thin metal 
films does the distribution function support the hy
pothesis that segregation of components occurs. For 
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both aluminum-tin and aluminum-indium (49) there 
are two large maxima in the vicinity of 2.7 and 3.5 A. 
which have been assigned to aluminum-aluminum and 
tin-tin (or indium-indium) pairs. As the temperature 
is raised, however, an intervening maximum at 3.1 A. 
becomes especially prominent. It is possible that in 
the film there is preferential accumulation of one com
ponent in the surface phase which becomes washed out 
with increasing temperature. 

One of the best demonstrations of the persistence of 
crystal forces in the liquids is that by Smallman and 
Frost (337), who studied the mercury-thallium system 
in the vicinity of the compound Hg6TI2. These atoms 
have essentially the same scattering power so that the 
variation of scattered intensity with composition can 
be taken as a qualitative index of relative ordering of 
nearest neighbors. In a series at constant temperature 
they found that the lower the melting point of the 
alloy the smaller is the intensity of the first maximum; 
the intensity actually follows the melting point and is a 
maximum for Hg6Tl2. Although these workers go on to 
propose an approach to the crystalline arrangement for 
the melt, the precision of the distances used in the argu
ment does not seem sufficient to confirm the conclusion. 
They do not suggest, however, that the solutions are 
not homogeneous, as true solutions are indicated in 
zinc and cadmium amalgams as well (185, 186). 

There have been several studies (50, 52, 203, 367) 
of molten semiconductors with no unusual features to 
report. In both InSb and GaSe each atom is surrounded 
by 6 neighbors, at 3.13 A. in the former and 2.40 A. in 
the latter. The molten compounds In2Bi and InBi do 
not seem to retain the specific interactions found in the 
solids (5). 

C. SOLUTIONS OF NON-ELECTROLYTES 

Our inability to describe most of these solutions as 
perfect extends to X-ray diffraction. Almost without 
exception the many studies in this area have been 
qualitative and productive of little understanding of 
structure. Upon occasion, the enthusiasm for a precon
ceived model has sought justification in what later 
proved to be erroneous results, but the justification 
was found, nevertheless. So Ward's (385) suggestion 
of the existence of emulsoid behavior in the cyclo-
hexane-benzene system was found lacking by Murray 
and Warren (253). This did not deter Bell and Davey 
(17) from an assault upon the system seven years later, 
but their extensive discourse on molecular ordering 
was found to be "without experimental foundation" 
(108). 

The qualitative studies are mostly in water solution 
and do not result in radial distribution data. Rather the 
dependence of intensity on concentration has been of 
concern, and Bragg's law is still applied empirically. 
In this category are aqueous solutions of sugar (56, 

207), formaldehyde (356), dioxane (63), methanol 
(287), ethanol (63, 208, 373), acetone (85), and phenol 
(208, 249). Other systems include toluene-ethanol (25), 
benzene-ethanol (57), cyclohexane-carbon tetrachlo
ride (64), ethanol-carbon tetrachloride (64), benzene-
nitrobenzene, benzene-acetone, dioxane-ethanol (366), 
and such complicated ones as l-butanol-l,2-dimethyl-
cyclohexane (241, 242). 

Rumpf (316) was able to find a bromine-bromine 
distance (3.53 A.) for carbon tetrabromide in benzene, 
and Grjotheim and Krogh-Moe (152) have given evi
dence of sulfur chains for sulfur dissolved in carbon di
sulfide. 

Holleman (174) tried to study the interaction be
tween terminal iodine atoms in a series of di-iodoalkanes 
dissolved in decane. This involved compensating for 
all other interactions by subtracting from the distribu
tion function a distribution due to mono-iodohexane. 
It appears that the uncertainty in the distribution func
tions probably is greater than the effect to be detected, 
and the interpretation is rather dubious. An iodine-
iodine distance of 3.6 A. is indicated for methylene 
iodide. 

D. IONIC SOLUTIONS 

Because of its importance in theories of ion-ion and 
ion-solvent interaction, knowledge of coordination or 
solvation numbers and of spatial configuration is in 
great demand. The diffraction method provides neces
sary information for theoretical purposes, but, as we 
have seen, it is often insufficient in detail, and subjective 
judgment must be applied to identifying even the first 
maximum in the radial distribution function. As it is 
in the case of solutions of non-electrolytes, most of the 
study of ionic solutions has been qualitative, and radial 
distribution functions are not included. Again, many of 
the observations are limited to the way in which inten
sity depends on concentration, and they have generated 
speculation over alterations in solvent structure, de
gree of ionization, or extent of solvation. Such studies 
include sulfuric acid (30, 211), sulfates (323, 324, 363, 
364), halides (16, 243, 271, 272, 351, 352, 353), and a 
rather comprehensive attempt to classify the scatter
ing patterns of salt solutions (273, 275, 280, 281). 
Studies of aqueous ammonium nitrate (244) and per
chloric acid (245) were uninformative. 

1. Solvation Studies 

Attempts to get more detail about ion-solvent inter
actions have relied on radial distribution functions, 
but in most cases these only suggest structural possibili
ties, and limited, but not unequivocal, confirmation of 
proposed structures is provided. Thus Finbak, for ex
ample, concluded that, in concentrated sulfuric acid 
(115, 120, 122), there is hydrogen bonding between 
oxygens of adjacent sulfate ions. This he believed to 
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follow from the fact that the distribution maximum at 
2.85 A. decreases upon dilution. Also he and his col
leagues obtained these interatomic distances: S-O 
in sulfate, 1.51 A.; P-O in phosphate, 1.56 A.; N-O in 
nitrate, 1.2 A.; 0 -0 in nitrate, 3.7 A.; and Cl-H2O 
in hydrochloric acid, 3.3 A. (12, 13, 119). Although at 
first (97) it appeared that each sodium in concentrated 
sodium hydroxide is surrounded by 4 waters at 2.03 A., 
a later experiment on 25% solution gave 6 waters at 
2.33 A. Much of this work confirmed the enhancement 
of hydrogen-bonding in acids and bases, and further 
discussion of the applicability of diffraction methods 
is given in a review by Samoilov (319). 

In an effort to understand the effect of dissolved ions 
on the structure of water, Brady and Krause (38) have 
investigated solutions of potassium hydroxide, both of 
whose ions are of about the same size as a water mole
cule, and also potassium chloride. The distribution 
functions for the hydroxide solutions are very much 
like that for water, and this suggests that the ions enter 
substitutional^ into the water arrangement. Although 
this presumes coordination numbers of about 4 for the 
ions, the insensitivity of the calculated peak area to the 
water-hydroxide contribution makes values as high as 
6 a possibility for the hydration number of hydroxide. 
There is clearly an infinite number of ways in which 
the first maximum might be fitted with the three pairs 
of interactions falling in this range, but this choice is 
made in view of its consistency with accepted notions 
concerning solvation. 

For the potassium chloride solution the first maxi
mum (at 3.2 A.) is ascribed largely to chlorine-water 
pairs, and the water-water interaction appears as a 
shoulder at 2.8 A. The overlapping of water-water, chlo
rine-water, and potassium-water interactions makes 
accounting for the area especially difficult. The problem 
seems to be that there is too much area unless a greater 
number of water-water pairs is accepted. It is suggested 
that this may be made possible through the disrupting 
of the usual water arrangement by the large chloride 
ions. 

Brady (35) later examined a more concentrated solu
tion of potassium hydroxide (approximately KOH-
3H2O) and also one of lithium chloride (approximately 
LiCl-8H20) as part of this study. The former solution 
was used to decide between 4 and 6 for the hydration 
number of hydroxide ion. In its distribution function a 
small peak appears at about 3.9 A., and, since this 
is about 2.8 X \ / 2 , it was assumed that it is due to an 
octahedron of waters around each hydroxide. This 
may be so, but the supposition can hardly be substan
tiated, as suggested, by the agreement between calcu
lated and observed areas for the first maximum when 
the choice between 4 and 6 involves only 3% of the 
area. 

For the lithium chloride solution there is little evi

dence for the water-water interaction that occurs at 
2.8-2.9 A. for pure water and in dilute solutions. The 
first maximum in the distribution function occurs at a 
chlorine-water distance, but accounting for its area re
quires considerable juggling of overlapping interac
tions, and it is possible to do this in a way that pleases 
intuition. A hydration number of 4 was assumed for 
lithium, and associated water-water interactions have 
been subtracted. Chlorines then were assumed to have 
8-9 water neighbors and the interactions of these waters 
were subtracted leaving an area consistent with a hy
dration by 8-9 waters. In this analysis the interactions 
of water between the two hydrated ions were ignored, 
and it is likely that the hydration number of the chlo
ride ion is somewhat smaller. To correct for this and 
try to extract the desired information appears to be 
futile, because one's expectation is virtually the only 
guide in choosing from the wide spectrum of possible 
coordination numbers. It is clear, however, and sig
nificant that lithium chloride produces an extensive 
rearrangement of water molecules upon solution. 

Lithium iodide also produces a marked change in 
water's structure, and a hydration number of 8 has 
been suggested for the iodide ion (357). 

Most recently Brady (37) describes measurements 
on erbium chloride and iodide solutions, showing nicely 
the octahedral coordination of the erbium ion by water 
molecules. An accounting is given of the likely deposi
tion of halide ions near the solvated cation, and there 
is a discussion of the ordering effect that the tight sol
vation sheath has upon neighboring water molecules. 
There appears to be an error in the calculation of the 
expected erbium-iodine and erbium-chlorine distance 
based on the radii given. We calculate 4.8 and 4.4 A., 
and, although the values 5.2 and 4.6 A. are used in the 
interpretation, the main features of the structural de
scription seem to agree with what one expects. 

2. Halide Complexes 

At times the failure to obtain meaningful information 
from the distribution data has resulted from poor res
olution, disturbance by diffraction errors, or lack of its 
complete utilization. Thus in an inconclusive study 
(269) of 1.05 and 2.98 F barium iodide solutions, the 
only positive result is that there is a barium-iodine 
interaction at 3.8 A. Again, only the distances in the 
radial distribution functions were used to make struc
tural deductions for aqueous solutions of mercury halide 
complexes (100, 103) and for calcium and potassium 
chloride solutions (101). The functions themselves are 
questionable, however, because a proportionate amount 
for pure water has been subtracted from them. This 
is to assume that the water distribution is unaltered 
upon addition of solute, a rather unlikely surmise. Even 
though assignments of various interactions are not 
checked against peak areas, and though coordination 
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numbers given are those assumed a priori, it is prob
able that tetrahedral halide complexes, HgX4—, exist 
in the solutions studied. Tetrahedral iodide complexes 
for both mercury(II) and zinc (II) had been suggested 
by earlier work (77, 78). 

Nilsson has examined iodide, thiocyanate, and thio-
sulfate complexes of silver(I) in aqueous solution (254). 
He, too, tried to make a solvent correction by subtract
ing a distribution function for a lithium iodide solution 
containing the same concentration of iodide as esti
mated to be free in the solution of complex. For the 
iodide this has little effect, however, on any but the 
most dilute solutions (maximum silver ion concentra
tion is 3.7 F), The first maximum (at 2.9 A.) is at
tributed entirely to silver-iodine interactions, and a co
ordination number of 4 is obtained. The iodine-iodine 
interaction expected for a tetrahedron is apparent in 
the maximum at 4.8 A. Nilsson supposed that poly-
nuclear species must exist to give four-coordination 
because the I/Ag ratio in the solution is only 2.9, but 
the nature of the species cannot be deduced. A previous 
study (73) of silver iodide complexes in acetone gave a 
similar distribution function, but molecular weight 
considerations led to curious proposals of a non-linear 
AgI2

- and an ion Ag4I6—, depending on the condi
tions (which are not given). 

For the thiocyanate and thiosulfate complexes it 
proved impossible to determine coordination numbers 
of silver, even though it is reasonably certain that the 
sulfur is attached to silver in both cases. 

Debot's study (91) of zinc and cadmium chloride 
solutions is based on the unlikely assumption that linear 
molecules of ZnCl2 and CdCl2 exist in solution, and the 
resulting distribution function is supposed to give the 
distribution of these molecules. In another study (215) 3 
chlorine neighbors at 2.28 A. and one water neighbor at 
2.05 are assigned to each zinc in 27.5 molal zinc chloride 
solution, which is virtually molten ZnCl2'2H20. 

To see whether the extent of complex ion formation 
could be determined by diffraction, Brady (36) meas
ured the X-ray scattering from ferric chloride solution 
and decided that half of the iron in 5.1 molal solution is 
complexed as octahedral FeCU ions. He appears, 
however, to have ignored the fact that any reasonable 
coordination of the remaining half of the iron (say, by 
water) would make a substantial contribution to the 
area of the first maximum, and the example of a literal 
mono-coordinate FeCl++, with which he dismisses the 
remaining half, is unrealistic. 

In a repetition of this work and in experiments with 
added chloride ion (as hydrochloric acid), it seems that 
a more reasonable interpretation can be made in terms 
of FeCl4

- complex ions (342). Both studies suggest 
minimal coordination of iron by water, but the latter 
interpretation is more acceptable in terms of spectral 
and extraction measurements (60). 

S. Polynuclear Complexes 

In a unique application of the methods of treating 
electron diffraction data, the structures of several heavy 
metal halide complex ions have been given (358). Al
though it has been objected (14) that interaction be
tween solvent (water) and the ion has been ignored, the 
credibility of the results justifies the assumption that 
the short-range interactions between the heavy scat-
terers dominate the intensity. Octahedral coordination 
of metal by halide is found for the hexachloro- and hexa-
bromoplatinate(IV) ions. The metal-halogen and halo
gen-halogen distances are 2.37, 3.35 A., and 2.43, 3.41 
A. In a solution of Nb6CIu^H2O good evidence exists 
for the Nb6CIi2

++ ion. The niobiums are at the corners 
of an octahedron of edge 2.9 A., and the chlorines are on 
radial lines bisecting the octahedron's edges so that 
the niobium-chlorine distance is 2.4 A. Similar struc
tures are found for Ta6Brn++ and Ta6CIi2++. 

Equally complex structures have been unravelled for 
the silicotungstate ion, SiWi2O4O (232), the Bi6-
(OH)12

6+ ion (233), the Mo6Cl8
4+ ion in ethanol (45), 

and the Hf4(OH)8Cl8 molecule (252). In the first two 
cases the correctness of the proposed structures is con
firmed by the beautiful agreement (to s = 16 A.-1) 
between calculated and observed intensities. The struc
ture of the silicotungstate ion in solution is essentially 
the same as that found for the crystal, and the same 
probably is true of the phosphotungstate ion (7, 8). 
The structure of the bismuth hydroxide complex is like 
that of the niobium chloride complex, with an octa
hedron edge of 3.70 A. and a bismuth-oxygen distance 
of 2.33 A. 

The analysis of the molybdenum chloride data is not 
as persuasive, but similarity with the crystal configura
tion (43, 44) is likely. In this, the corners of an octahe
dron of molybdenums point toward the faces of a cube 
defined by eight chlorines. The molybdenum-molyb
denum distance is 2.6 A., and that for molybdenum-
chlorine is 2.5 A. 

Using data to a = 10 A.-1, Muha and Vaughan (252) 
have shown the correspondence between solution and 
crystal structures (69) for the (Hf4(OH)8- 16H2O)8+ ion 
and the similar ion for zirconium. When the oxy-
halides are dissolved it appears that the two halogens 
per hafnium are incorporated with this complex cation 
to give a neutral molecule. 

E. GLASSES 

In 1940 Warren (388) reviewed the X-ray work on 
glasses which, at that time, applied (with the excep
tion of beryllium fluoride) only to silicates and borates. 
It was then quite well established that the tetrahedral 
coordination of silicon by oxygen was the rule in glassy 
silica as well as in modified glasses. Addition of alkali 
metal oxides as modifiers apparently breaks Si-O-Si 
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bonds and gives singly bonded oxygens. Continued 
addition results in structural units small enough to 
orient more easily and eventually to form crystalline 
material, and devitrification occurs. 

For boric oxide the picture of planar trigonal co
ordination of boron is accepted, and when alkali metal 
oxide is added, not only are singly bonded oxygens 
produced, but a point is reached where there is enough 
oxygen for tetrahedral coordination to take place. 

Since the time of Warren's review there has been little 
structural work on glasses other than borates and sili
cates, and for these the findings reflect the features he 
described. Zarzycki (401) looked at both silicon di
oxide and germanium dioxide glasses, finding the ex
pected four-coordination in both the solid glasses and 
the melts at temperatures well above 1000°. 

In a clever neutron study of silica (41), a velocity 
selector was used to scan s at constant angle, and the 
radial distribution found is similar to that of Warren 
(388). 

For boric oxide there have been new determinations, 
which support the trigonal coordination scheme. 
Despujols (96) shows a completely resolved first maxi
mum in the radial distribution function at 1.37 A. 
which corresponds to 3 (observed 2.6) boron-oxygen 
pairs and Milberg and Meller (247) find much the same 
situation for 3B2O3-H2O. The first two maxima are the 
same as for boric oxide, but the third moves out a bit 
for the hydrate, indicating a loosening of the network 
through addition of the extra oxygens. The radial dis
tribution function of Herre and Richter (171) seems to 
indicate the trigonal coordination, but the function is 
so oscillatory as to have limited value, and not much 
confidence can be placed in their discussion of a layer 
structure. 

Green (150) gives data for potassium borate glasses, 
which are similar to those for sodium borate glasses 
(24) in that they, too, show a shift from three to four-
coordination with increasing oxygen content. Whether 
this occurs or not for lithium borate glasses is not clear 
since it was suggested (153) that there is actually a 
shift from four to three-coordination upon addition of 
lithium oxide to boric oxide. Later it was decided that 
the change, if it takes place, could not be proved from 
the data (214). Really the situation is probably much 
the same as for the other alkali metal oxides. 

X-Ray study (34) of sodium metaphosphate glass, 
NaPO3, shows the expected tetrahedron of oxygens 
around each phosphorus at a mean distance of 1.55 A. 
Negatively charged linear phosphate polymers are 
proposed to be held together by sodium ions. 

The structure of glassy arsenious oxide is like that of 
the mineral claudetite, in which arsenic forms a trig
onal pyramid with 3 oxygen neighbors, and each oxy
gen has 2 arsenic neighbors (31, 267). 

A similar structure is found (261) for arsenic sulfide 

glass and, upon addition of lead sulfide, the arsenic 
changes to tetrahedral coordination. Indeed, in the 
unusual natural glass revoredite, 5PbS-SAs2S8, it seems 
that the structure is largely determined by a dis
ordered close-packing of sulfurs in which lead occupies 
octahedral holes and arsenic occupies tetrahedral holes 
(261). 

Another unusual glass which also does not seem to 
fit into Zachariasen's highly successful classification 
(398) is formed by tellurium oxide. Actually the glass 
does not form unless a modifier is added, and the glass 
studied (33) contains 10 mole per cent lithium oxide. 
Apparently the coordination is similar to the distorted 
octahedral one found in the crystal. 

VIII. SUMMARY 

"Things are seldom what they seem. 
Skim milk masquerades as cream." 

"H.M.S. Pinafore" 

The history of the application of diffraction tech
niques to liquids shows that its ability to furnish useful 
structural information depends first of all upon ob
taining precise data for the coherent intensity to large 
values of s and upon attention to possible errors in data 
treatment. Indirectly it depends on the level of detail 
to which the structural questions are directed. For the 
main question, namely, how to describe the geometrical 
arrangement of nearly close-packed atoms where atom 
positions are constantly changing and exchanging, we 
must be content with a rather gross answer. In terms of 
the diffraction technique there is little operational justifi
cation for demanding too specific an answer, for to 
describe the average coordination geometry is a problem 
which does not have a unique solution if distribution 
functions alone are used. These restrictions are the most 
severe in the liquids which, chemically, are the simplest. 
The problem is that of the mathematician with more 
variables than relationships with which to determine 
them. 

For other liquids, those containing molecules, it is 
possible to give a reasonable accounting of the intra
molecular structure, but the interpretation of inter-
molecular structure remains ambiguous. Thus as we 
review Zernike and Prins' early classification (404) of 
ordering into two categories, (a) the arrangement of 
atoms in molecules, and (b) the arrangement of mole
cules relative to each other, we see that adequate 
descriptions can be given of the first category, but the 
last, which is the heart of the liquid structure problem, 
is too poorly defined to allow any but a statistical 
description incapable of suggesting unique structures. 

Although these remarks may sound pessimistic, they 
are intended to emphasize the properties peculiar to 
the liquid state and the limitations they place not only 
upon the deductions that may be made from diffraction 
data but also upon the questions that may be asked 
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legitimately of a diffraction experiment. They may also 
serve as a caution to the experimentalist, who, as Prins 
shrewdly observes (277), often finds that "it is difficult 
not to fall a victim to wishful analyzing." If the current 
development of inductive approaches to understanding 
of liquid structure is to proceed, however, further ac
curate determinations, and redeterminations, of dis
tribution functions will be needed, and diffraction will 
continue to be important in gaining that understanding. 
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