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I. INTRODUCTION scopic theories in more detail (see also the "Guide to 

The purpose of this review is to enable the reader to t h e Literature" at the end), 
learn the present status of attempts to construct the-

c .i ., c r - J A 4. A l l „ J , A. THEORY OF GAS VISCOSITY 2 

ones of the viscosity of liquids. As a great deal already 
has been written on this subject, it will not be necessary The classical kinetic theory of gas viscosity furnishes 
in most cases to provide a detailed discussion of indi- a g 0 0 d example of the type of theory one would like 
vidual theories. Attention will be given instead to the to have for liquids. Starting from the assumption that a 
basic principles involved in some of the theories cur- g a s j s composed of elastic spheres whose diameter, while 
rently of interest, such as the fluctuation-dissipation finite, is small compared to their average distance of 
theory, and quantum hydrodynamics. An elementary separation, Maxwell deduced by an argument of ad-
exposition of the mathematical techniques used in mirable simplicity and generality the result that the 
these theories is included. The reasons why previous viscosity of a gas should be independent of density and 
theories of liquid viscosity are unsatisfactory also will proportional to the square root of the absolute tern-
be discussed. Topics such as linear and non-linear hy- perature. Later he showed that if the atoms instead 
drodynamics, bulk viscosity, rheology and turbulence repel each other with a force inversely as the fifth power 
are briefly surveyed. References are given to review 0f their distance of separation, the viscosity is still 
articles and books covering macroscopic and micro- independent of density but proportional to the tem

perature itself. These consequences of the kinetic 
i Work done under auspices of the U. S. Atomic Energy Com- theory were published before any extensive measure-

™ 8 Preferences and further details on the development of the ™fS ° f S a S ™COsity were available; indeed, Maxwell 
kinetic theory of gas viscosity, see ref. (80). For Glossary of h a d to_ measure the Viscosity of air himself in order to 
Symbols, see p. 537. test his theory. The confirmation of theory by sub-
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sequent experiment thus helped to establish the theory, 
particularly since the alternative static theory of gases, 
and common experience with liquids, could not have 
suggested such behavior. 

Maxwell's theory was based on the idea of a mean 
free path introduced earlier by Clausius. If different 
"layers" of a gas are moving at different average 
speeds (i.e., there is an externally imposed velocity 
gradient), atoms from a "fast" layer can wander over 
to a "slow" layer, and by colliding with atoms in it 
they will transfer some of their excess velocity to them. 
Assuming a constant velocity gradient, one sees that 
the average difference in velocity between the layer 
from which the atom came and the layer in which it 
collides with another atom will be proportional to the 
distance it has traveled. The rate at which such trans
fers take place is proportional to the density and to the 
average velocity throughout the gas. Equating the 
viscosity coefficient to the rate of change of momentum 
for unit velocity gradient, one gets by this argument the 
formula 

r) = kpv\ (1) 

where p = Nm is the density, v the mean velocity, X 
the mean free path and k a numerical constant. The mean 
free path is inversely proportional to the collision fre
quency, which in turn is simply proportional to the 
total cross-sectional area of all the atoms in a layer 

X = k'/Nc* (2) 

and hence the viscosity coefficient is 

n = kk'mv/a* (3) 

The viscosity is thus independent of density and pro
portional to the square root of the absolute temperature, 
as mentioned above; the constant kk' is of order of 
magnitude unity. (Its precise determination occupied 
the attention of Maxwell's successors for some time.) 

In Maxwell's second, more general, theory, the vis
cosity coefficient was expressed in terms of the inter
atomic force law and the velocity distribution function. 
The latter was known only for systems in equilibrium, 
but for one special case, the inverse fifth power repulsive 
force, it dropped out of the expression, and Maxwell 
was able to show that the viscosity is then proportional 
to the absolute temperature. Later, Lord Rayleigh 
showed by dimensional arguments that for atoms re
pelling with an nth power force the viscosity must vary 
as the ((n + 3)/(2n — 2)) power of the temperature. 
Chapman and Enskog both obtained the complete 
solution to the problem by finding the nonequilibrium 
velocity distribution function; Enskog did this by 
solving Boltzmann's integrodifferential equation, Chap
man by an equivalent though superficially different 
method. I t is particularly important to note that the 
numerical constants eventually were calculated fairly 
precisely, so that the viscosity of a gas could be re

lated directly to the properties of the atoms composing 
it; and, in 1924, Lennard-Jones thus was able to deduce 
the force law for various atoms from measurements of 
gas viscosity (302). (At present there is little hope of 
doing this from liquid viscosity data despite four 
decades of subsequent theoretical research.) 

B. DIFFERENCE BETWEEN THE MECHANISMS OF LIQUID 

AND GASEOUS VISCOSITY 

Following the complete acceptance of Maxwell's 
theory of gas viscosity, and its later refinements by 
Chapman and Enskog, it has become customary since 
Graetz (187) to begin theoretical discussions of liquid 
viscosity by pointing out that the mechanism of mo
mentum transport must be different from that in a gas. 
Instead of transporting momentum by their own mo
tion from one layer to another, the atoms, it is asserted, 
transfer it to their neighbors by the action of inter
atomic forces. The density of a liquid is usually so high 
that the average distance between atoms is not much 
greater than the range of these forces. 

This seems to be a perfectly reasonable explanation; 
in fact, 150 years ago anyone who believed in atoms 
would probably have given exactly the same explana
tion. I t is only because of the counterexample of gas 
viscosity that we tolerate continual repetition of this 
old "common-sense" explanation of liquid viscosity. 

However, the statement that viscosity is due to in
teratomic forces by no means constitutes a scientific 
theory. It is necessary to show that the assumption of 
some specific type of force law, not too different from 
the laws assumed in other successful theories, leads to 
correct predictions of the value of the viscosity co
efficient over the entire range of temperatures and 
pressures. We are certainly nowhere near having 
achieved this, at least if one judges by the standards 
applicable to gas theory. Instead, we have a large 
number of competing "theories of viscosity," ranging 
from those which do no more than suggest explanations 
for the factors introduced into empirical formulas, to 
those which subject the unfortunate reader to hun
dreds of complex mathematical equations without 
rewarding him with any real solution to the problem. 
As yet, there is no general agreement on whether vis
cosity is essentially due to attractive or repulsive 
forces; furthermore, although one of the most popular 
theories uses quantum-mechanical concepts such as 
tunneling through potential barriers and virtual inter
mediate states, it has not been proved that the introduc
tion of quantum mechanics is really necessary in order 
to explain viscosity at ordinary temperatures. 

The major criticism applicable to most of these 
theories is that they merely attempt to explain facts 
already known, without trying to predict new ones. 
There is no longer much possibility of predicting any 
new features of the Newtonian viscosity behavior of 
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simple liquids, since most of them already have been 
investigated experimentally over the entire liquid range 
of temperatures; the prediction of Batschinsky's theory, 
that viscosity is independent of temperature at con
stant volume, was falsified by Bridgman's measure
ments at high pressures (69). Deprived of other oppor
tunities of confirmation by successful prediction, 
theories of viscosity must instead be judged on other 
grounds. They should, for example, be able to deduce 
correct formulas for viscosity without employing any 
assumptions not already verified by experiments on 
equilibrium properties. Furthermore, one is entitled to 
expect higher standards of mathematical rigor, since 
it is well known that it is not difficult to choose the 
right approximations if one already knows the answer 
one wants to get. 

There are of course some exceptions, notably the 
recent investigations of Kirkwood (273, 551) and some 
earlier papers of Andrade (13), in which it was at
tempted to deduce the absolute numerical value of the 
viscosity of particular liquids at particular temperatures 
without employing any molecular constants not already 
known. These theories apparently were abandoned by 
their authors, not because they did not lead to suffi
ciently accurate results, but because they could not be 
generalized without introducing adjustable parameters. 

c. THEORIES AND EXPLANATIONS 

In trying to gain an over-all view of the subject of 
liquid viscosity, one soon realizes that scientists from 
several different disciplines are concerned with it, 
and a theory considered satisfactory by one group is 
often quite unacceptable to the others. To describe 
this situation it is helpful to classify theories and theo
rists into four groups, according to whether the empha
sis is placed on microscopic or macroscopic description, 
and whether the attitude toward theory is "prag
matic" or "fundamentalist." (The meaning of these 
words in this context soon will be made clear.) 

Chemists and physicists are generally more interested 
in microscopic theories, and one might say that chem
ists tend to be more pragmatic and physicists tend to 
be more fundamentalist. I t is conceded at the outset, 
however, that there are so many exceptions that these 
occupational labels should not be taken very seriously. 
We have in mind the chemist who is primarily concerned 
with measuring the viscous properties of various com
pounds and mixtures, and with correlating viscosity 
with other physical properties and with chemical con
stitution. For the "pragmatic" chemist, a theory is a 
relation between two or more measurable properties, 
which may involve a few adjustable constants, and its 
success is determined by finding whether the experi
mental points lie nearly on the theoretical curve. If a 
theory fails to pass this test, it does not necessarily 
have to be rejected; it may be "improved" by including 

other factors, or by choosing a more complicated re
lation with more adjustable constants (245, 328). 
It is desirable to be able to explain the theoretical 
relation on a molecular basis, and to show that the 
improved formula takes account of some physical or 
chemical effect, but such explanations usually must 
be proposed on an intuitive basis because of the com
plexity of the molecular processes actually involved. 

The "fundamentalist" physicist, on the other hand, 
believes that a theory is a logical deduction of the con
sequences of one or more hypotheses. I t should predict 
a definite result which can be proved or disproved by 
experiment. A successful theory is. not one whose conse
quences agree with experiment—since one never can be 
sure that a theory based on completely different hy
potheses would not also agree with experiment—but 
rather one which predicts results so unmistakably in 
conflict with experiment that there is no doubt as to 
the falsity of the hypotheses. A theory is not acceptable 
unless it is possible to disprove it (405, 535). In this 
way the number of hypotheses consistent with (even 
though not proved by) experiment is gradually reduced. 
This might seem a negative sort of progress, but to 
many physicists it is the only real progress which can 
ever be expected. Of course in the process a number of 
hypotheses survive so often that they come to be 
generally accepted as true, and it is only when a "well-
established" hypothesis (e.g., conservation of mass or of 
parity) is disproved that we are forced to realize the 
provisional nature of the others. 

Both chemists and physicists accept the kinetic 
theory of gas viscosity, because it manages to satisfy 
the requirements of both. The problem of liquid vis
cosity, on the other hand, provides a choice example of 
the difference in attitude of the two groups. The physi
cist is reluctant to tackle any problem unless there is a 
chance of getting a definite solution to it, and up to now 
this has meant that only liquids composed of atoms 
with spherically symmetric forces, preferably of very 
short range, could be considered. The largest amount of 
effort has been devoted to the hard-sphere model, 
despite the fact that such a model cannot possibly 
simulate the temperature-dependence of the viscosity 
of liquids. (Its viscosity is proportional to T1/2 at all 
densities.) The chemist realizes that it is impractical to 
expect an exact mathematical treatment for the liquids 
in which he is really interested, yet he would like to be 
able to make some use of his knowledge of molecular 
structure and not simply juggle empirical formulas. 
Thus he proposes a "mechanism" for viscous flow, or a 
reason why viscosity should be related to the heat of 
fusion or vaporization or the surface tension, and he 
believes that such a "theory" aids his understanding of 
nature. This may be the case, yet it seems not unreason
able to demand that these explanations be proposed 
before, not after, the experiment is done. 
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Among those concerned only with macroscopic 
description there are also fundamentalists and prag-
matists. The former are often the specialists in fluid 
dynamics. Most of them have been trained as mathe
maticians and cannot abide the physicists' and chem
ists' neglect of mathematical rigor, yet they are pro
fessionally concerned with some very practical problems. 
To the fluid dynamicist, the viscosity coefficient is 
just a constant multiplying some rather inconvenient 
terms in an equation he has to solve, and he is more 
interested in finding a way to eliminate those terms 
than in trying to explain why the constant has a par
ticular value. He prefers to treat fluids as continuous 
bodies described by certain differential equations, 
even though he knows they are made of atoms and 
molecules (508). He regards the kinetic theory of gases 
as suspect on mathematical grounds (it depends on an 
infinite series which has not been proved to converge) 
and incapable of describing the properties of real fluids 
as accurately as he needs to know them. 

Finally we come to the engineer or practical rheolo-
gist, who actually does need to know how a particular 
substance behaves under large deformations. Not only 
does he require the viscosity of simple fluids at various 
temperatures, but he also must deal with many sub
stances whose flow properties cannot be described by a 
single viscosity coefficient but rather depend on the 
amount of deformation or on the previous history as 
well. The rheologists can be further classified according 
to their attitudes toward theoretical models (189, 
462), but enough has been said to indicate the wide 
divergence of opinion which is encountered. 

It is interesting to compare the present situation in 
the theory of liquids with that in atomic theory in the 
last part of the nineteenth century. Before Bohr's 
quantum theory, physicists proposed a number of 
models to represent atoms; while the simple billiard-
ball model was most often used for kinetic-theory cal
culations, it was generally realized that something more 
complex would be required to account for the properties 
revealed by the spectroscope. Attractive or repulsive 
forces varying as some inverse power of the distance 
occasionally were proposed, but the lingering distrust 
of "action at a distance" caused such arbitrary hy
potheses to be regarded as no more than temporary ex
pedients. More popular were models like the "vortex" 
atom championed by Lord Kelvin and others; it was 
hoped that atoms, and thus all matter, could be reduced 
to local disturbances in a continuous medium filling all 
space. The mathematical treatment of the interaction 
of as few as two vortices turned out to be so difficult 
that no one really knew whether the model could 
legitimately be used to explain atomic properties; 
on the other hand, anyone could propose a qualitative 
vortex-atom explanation of some phenomenon without 
much risk that calculations would prove him wrong. 

The result was a "theory" which could explain anything, 
if one's imagination was good enough, yet could not be 
disproved, because no one could rigorously deduce its 
consequences. 

The tendency to "explain" the macroscopic properties 
of matter by attributing hypothetical properties to 
atoms was criticized by a group of positivists or "ener-
geticists" of which one of the leaders was the chemist 
Wilhelm Ostwald. The positivists claimed that the 
purpose of theory is not to explain but to describe and 
predict; hypotheses about atoms and ether, which can
not be directly observed, are useful only if they enable 
one to arrive at a satisfactory theory which can be 
used to predict the results of future experiments as 
well as to provide a systematic classification of known 
facts. I t was claimed that these hypotheses were being 
taken too seriously, the result being that physicists 
wasted their time in speculation and controversy about 
the "real nature" of atoms and molecules—a subject 
which was properly part of metaphysics, not physics. 

I t is interesting to note that chemists, contrasted 
with physicists, did not indulge these speculations in 
the nineteenth century. While Dalton's atomic theory 
was accepted as a convenient basis for the description 
of chemical reactions, anyone who dared to discuss the 
actual geometrical arrangements of atoms in a mole
cule was likely to be subjected to severe ridicule. This 
conservative attitude left the chemists unprepared for 
the revolution in physics in the first part of the twen
tieth century—a revolution which established the 
reality of atoms while at the same time stripping them 
of most of the properties with which they had pre
viously been endowed. The atomists like Boltzmann, 
against whom the positivists had directed their attacks, 
apparently were vindicated by this revolution; their 
speculations and calculations had eventually led to a 
successful atomic theory. But once the new theory, 
quantum mechanics, had been established in its present 
form, many physicists gave it a positivist interpreta
tion and declared that any property of an atom which 
could not be measured was not a real property, and 
hence was meaningless to discuss. The chemists then 
borrowed from theoretical physics the rich vocabulary 
of quantum mechanics, but failed to absorb its posi
tivist viewpoint toward physical theory—a viewpoint 
which many of their own predecessors had held. Chem
ists have tried to use quantum-mechanical concepts to 
explain chemical phenomena, but since it is impossible 
to do the mathematical calculations exactly for most 
problems of chemical interest, they have been reduced 
to qualitative "intuitive" explanations not unlike those 
which used to be based on the vortex atom. 

The influence of both of those historical antagonists, 
Boltzmann and Ostwald (252), can still be seen in the 
chemists' concept of liquid viscosity. Ostwald's attempt 
to reduce all physical phenomena to transformations of 
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energy is reflected in the present-day popularity of 
concepts like "energy of viscosity," combined with the 
statistical view of molecular processes, introduced by 
Maxwell and made so popular by Boltzmann that 
practically every theory of viscosity brings in sooner or 
later the "Boltzmann factor" (141, 397). 

Yet one wonders whether such hybrids are really 
viable. Like a feudal society whose traditional beliefs 
have been undermined by contact with a more advanced, 
more materialistic civilization, chemistry has seen its 
postulational basis subverted by atomic physics. I t 
seems no longer possible to maintain a precise hy
pothesis about the collective motions of atoms and mole
cules, for any such hypothesis inevitably is regarded as 
approximately deducible from the Schrodinger equa
tion. If the hypothesis in its original form turns out to 
be wrong, one can always find a plausible reason for mod
ifying it. While a theory that can explain all the phenom
ena is very attractive, in the long run our need to have 
only one explanation imposes a rigorous selection process 
which weeds out theories whose constants are not con
stant and whose mathematical deductions are not strict. 

In the last section of this article we shall discuss a 
theory which attempts to describe and predict the 
viscous properties of a liquid—helium II—by postulat
ing certain collective motions in a manner consistent 
with quantum mechanics, yet not depending on an 
exact or approximate solution of the Schrodinger equa
tion for the individual helium atoms. This theory, due to 
Landau and Khalatnikov (261, 262, 293, 294, 295, 
296), provides an extremely interesting case study in 
scientific method; it may indicate a way out of the 
difficulties just discussed, though its history also shows 
the strength of the pressures toward "atomizing" any 
macroscopic or semi-macroscopic theory. Another 
example is Jaffa's theory of liquids (251), in which 
several properties including viscosity are deduced from 
a minimum number of hypotheses and parameters. 
Overshadowed by the more ambitious (if ultimately 
less successful) efforts of Kirkwood (270, 273, 551) and 
of Born and Green (58), this theory received little 
notice from physicists; and since it did not cater to 
current fashion by linking its hypotheses to molecular 
mechanisms, it was also ignored by chemists. 

As this review does not, like some others, accord the 
place of honor to the rate theory of viscosity, it should 
be noted to its credit that the rate theory can be ap
plied to non-Newtonian flow without introducing any 
additional hypotheses (268, 537). Such applications 
will give a better indication of the validity of this 
theory than the controversies about whether the energy 
of viscosity should vary with temperature. 

D. EMPIRICAL RELATIONS B E T W E E N VISCOSITY AND 

OTHER P R O P E R T I E S 

An empirical formula giving a functional relationship 

between viscosity and some other physical property is, 
in a sense, a legitimate theory, though a rather trivial 
one. Hypothesis and prediction are identical, even 
though the importance of the latter often is neglected 
in practice; it appears that most experimenters take 
their data and then find the formula which best fits 
them. This process has provided profitable employment 
for chemists for the last hundred years, the chief 
result being a library of formulas, each containing one 
or more adjustable constants which are tabulated for 
various liquids. No one formula works for all liquids, 
nor can one predict accurately the value of the constant 
which will be needed for a particular liquid. But em
pirical formulas do at least provide a convenient means 
for presenting experimental data in a form which is 
useful to others. 

Gambill (172) says that the best formula to use when 
no experimental data are available is one proposed by 
Thomas (495) 

7, = (0.1167PLV010a (4) 

where a = B(Ta — T)/T, T0 = critical temperature, 
rj = viscosity in centipoises and pL = density in grams/ 
cc. The constant B is made up of contributions from 
the various atoms and groups in the molecule: e.g., 
carbon = —0.462, hydrogen = 0.249, double bond 
= 0.478, etc. The mean error for 108 liquids was 
found to be 5%, but for 7 other liquids (benzene and 
alkylene halide) there was a mean error of 39%. 

Equation 4 is a special case of a very popular empiri
cal formula 

ij = AeBIT = Ae?-** (5) 

where Ev is the energy of viscosity. Partington (397, 
see also 119, 418, 481) lists the following formulas, all 
of which have been proposed and tested for one or 
more liquids by various experimenters 

A C 
(1 + BT + CT2) 

C 
(A + TY 
AT^2I(T - B)2 + C] 

(D + TY + E 

A(I + Be~CTY 

C/Ts 

A + T 
A[T0 - D 

T - B 

B 

C 
(T + A\» 
\T + B) 

Ce-Br 

CT-"e-A'T 

A 
T-B 

A-BT- [(BT - A)2]112 A*-T-&'(r-« 

(A - BT)" 
(C + DT)" 
T(AeBIT + CeDiT) 

Ae3IT+CeD'T 

Some other equations recently proposed are (40, 
67, 106, 118, 179, 315, 354) 

log i, = A/T + BlogT-CT-D 
r, = (A+ BITy 
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, = ATeB'T + CT 

log r, = B + AT'" 

log r, = -AeDiT[-Ei(-D/T)] - B + CeDIT 

(where Ei(x) is the exponential integral) 

log v = AT-2 + BT'1 + C 

log v = A + BT~* 

A number of other equations involve quantities such as 
pressure, volume, surface tension, density, velocity of 
sound, refractive index, vapor concentration, vapor 
pressure, latent heat of evaporation, latent heat of 
fusion, molecular weight, and chemical composition. 

What seems to be lacking is an accepted set of 
criteria for testing these empirical formulas. When one 
is choosing the best value of an adjustable constant, 
or comparing two formulas with the same number of 
constants, one can simply calculate the mean square 
deviation of the calculated values from the experimental 
points, and try to make this as small as possible. But 
there is nothing to prevent someone else from "im
proving" the formula by "taking account of" some 
alleged physical effect—which usually means simply 
inventing a more elaborate formula with more constants. 
It is then shown that the new formula fits the data bet
ter, and this is taken as a justification of the "theory" 
which suggested the more elaborate formula (245). 
Now it is well known that any given set of experimental 
points can be fitted at least as well, and usually better, 
by a formula with n + 1 constants, as by a formula 
with only n constants, provided that the former re
duces to the latter for some particular value of one of 
the constants. If one is willing to have as many pa
rameters as one has experimental points, one can obtain 
a perfect fit, even though the resulting theoretical curve 
may oscillate wildly in between the points to which it is 
fitted. 

As long ago as 1889, Oliver Lodge wondered "whether 
chemists are not permitting themselves to be run away 
with by a smattering of quasi-mathematics and an 
over-pressing of empirical formulas" (320). 

As long as empirical formulas are regarded as just 
that, there is no reason why they should not be judged 
by the criteria of accuracy in fitting experimental data 
and ease of application. I t is when the experimenter 
succumbs to the temptation of "confirming a theory" 
that he tries to represent his data by one of the mon
strous functions listed above. Yet none of the theories 
of liquid viscosity which proceed rigorously from statis
tical mechanics is likely to produce a result which can 
be expressed in terms of a finite number of elementary 
functions—only approximate theories can do that. 
While an experimentalist may privately believe that 
one approximate theory is better than others, it is not 
up to him to decide the issue in advance by the way in 
which he reports his data. 

II. MACROSCOPIC THEORY 

Why does one want to know the viscosity of a 
liquid? Aside from the insight into the microscopic 
structure of liquids which may be gained from theoreti
cal interpretations of viscosity measurements, knowledge 
of viscous flow properties is important in many hydro
dynamics problems. This section is an attempt to 
extract from the vast literature on hydrodynamics a 
few examples of the way in which the mathematical 
theories take account of viscosity. The purpose is not 
to discuss specific technical applications, but rather to 
see how much of the information which chemists have 
accumulated about the viscosity of liquids actually can 
be incorporated into present-day theory. 

Only a few feet separate the Journal of Chemical 
Physics and the Journal of Fluid Mechanics on the shelf 
in the library, yet they seem to come from two different 
worlds. Fluid mechanics is a subject inaccessible to 
many scientists because it is surrounded by an icy wall 
of mathematical equations. This is unfortunate, for 
when one has penetrated the wall one finds much of 
interest and value. Not the least interesting is the 
fact that fluid mechanics is the last stronghold of the 
positivist school of classical physics. While chemists 
and physicists regard the kinetic-molecular nature of 
matter as an established fact, the hydrodynamicists 
still view the kinetic theory with considerable hostility. 
They are concerned only with macroscopic properties 
of matter, which they believe can best be described by 
continuum mechanics, as embodied in a few differential 
equations. If one equation doesn't work, try another, 
but the criterion of success is agreement with experi
ment (and, to a lesser extent, formal elegance), not 
the possibility of deriving the macroscopic equation 
from microscopic considerations. 

The foremost spokesman for this viewpoint is Clif
ford Truesdell (508, 510, 513). Unlike some of his 
colleagues, he is able to criticize the kinetic theory with 
some authority, having done some work on it himself 
(242, 512). While Professor Truesdell is willing to 
concede the existence of atoms, he clearly considers it 
unfortunate that modern physics and chemistry have to 
assume the discrete structure of matter; he would like 
to push continuum mechanics as far as possible before 
permitting the introduction of the kinetic theory in 
any problem (505, 510, 514; see also 177, 289). 

Synge (489) has shown that the preoccupation with 
macroscopic variables has resulted in a neglect of useful 
thermodynamic methods. In particular, some hydro
dynamicists are reluctant to use entropy, probably 
because its physical interpretation is clear only from a 
microscopic viewpoint. He says: "My guess is that the 
still prevalent entrophoby (to coin a word) springs from 
an unwritten law that mechanics should deal only with 
concepts directly related to ordinary experience . . . . 
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However commendable this common-sense attitude 
may be, the price we have to pay for it in intellectual 
confusion is too high . . . Entrophoby must be fought 
until such time as entropy takes the place it deserves 
in standard texts on hydrodynamics." 

Nevertheless, physical chemists will have to start 
learning hydrodynamics of a fairly advanced character 
in the near future. This is because practically every
thing of value already has been squeezed out of the 
study of Newtonian shear viscosity; the qualitative 
viscous properties of simple liquids can be explained 
equally well by several different crude theories, and 
hence these properties really give little information. 
Experiment is now far ahead of rigorous theory, so 
there seems little need for more detailed quantitative 
investigations, except for engineering purposes. The 
most interesting work in the next few years will be 
that on non-Newtonian flow and bulk viscosity, and 
here there is bound to be much confusion unless the 
guidance of hydrodynamic theorists is accepted. 

A. VISCOUS FLOW THEORY 

Investigations of the flow of viscous fluids are based 
in principle on three equations expressing the conserva
tion of matter, momentum, and energy, together with 
the equation of state relating the pressure to the density 
and temperature. The equation for momentum con
servation is usually taken to be that of Navier and 
Stokes 

p(dv/d<) + pv-vv + V-P = F 

where the pressure tensor P is assumed to have the 
form 

P = P0I - 2v(vy)'ym - (v-v)l 

where Po is the equilibrium (hydrostatic) pressure, 1 is the 
unit matrix, v is the velocity of the fluid at a given 
point in space, Vv is the velocity-gradient (rate-of-
deformation) tensor, and F is the external force. We 
continue to use the symbol t\ for the shear viscosity, 
though in hydrodynamics y. usually is used. The 
vector and tensor notation is explained in Section 
III-B-1. 

The Navier-Stokes equation depends on the assump
tion that there is a linear relation between stress and 
strain; and it is customary to assume the "Stokes 
relation" 3X + 277 = 0 in order to eliminate the second 
viscosity coefficient X. The first assumption restricts 
the validity of this equation to Newtonian flow proc
esses, and the second implies that the "bulk" or "vol
ume" viscosity is zero. I t would appear that the Navier-
Stokes equation is thus inadequate to deal with many 
phenomena currently of interest, yet Pai says, in the 
introduction to his recent monograph (392): 

From the theoretical point of view, we should, in the main, be 
content that the fundamental equations of gas dynamics are the 
Navier-Stokes equations, and that the stress tensor is a linear 

isotropic function of the rate of strain tensor with no dissipation 
of energy in a spherically symmetric expansion or compression, 
so that there is only one coefficient of viscosity. Even with 
such simplifying assumptions, it is still not possible at the present 
time to solve the Navier-Stokes equations for any practical prob
lems because of insurmountable mathematical difficulties. We 
have to use further assumptions to simplify the Navier-Stokes 
equations in such a manner that practical problems can be 
solved.... 

Present knowledge of the theoretical effects of vis
cosity is based on a few one-dimensional cases where 
the Navier-Stokes equation can be solved exactly 
(184, 288, 392, 510), together with a number of approxi
mate calculations which assume that the effects of 
viscosity are confined to small regions near fluid-solid 
surfaces, the flow pattern being that of an inviscid 
fluid elsewhere (77, 171, 174, 186, 236, 237, 287, 321, 
360, 392, 449, 454, 539). This "boundary-layer" 
theory corrects the theory of inviscid fluids where it is 
most flagrantly in conflict with experience, viz., in 
permitting "slip" of the fluid at a solid boundary. The 
solution of the Navier-Stokes equation changes dis-
continuously when 17 becomes zero, since a fluid with 
very small but finite viscosity cannot slip, while a 
fluid with zero viscosity can. Complete neglect of vis
cosity also leads to the prediction that a solid sphere 
immersed in a stream is not dragged along by it 
(d'Alembert's paradox). 

Viscous effects are often accounted for in shock-wave 
problems by the use of the von Neumann-Richtmyer 
approximation (75, 76, 376). Artificial dissipative 
terms are introduced in the stepwise numerical solu
tion of the equations, in order to give the shock a finite 
thickness; the extra terms are actually equivalent to a 
non-linear viscosity, since the viscosity coefficient 
itself is taken proportional to |dv/dxj. 

In the present century "fluid dynamics" almost 
always means "gas dynamics"; this becomes clear as 
soon as one looks at investigations in which the equa
tion of state of the fluid and the variation of viscosity 
with temperature are specified. The "fluid" turns out 
to be an ideal gas, whose viscosity is proportional to 
Tn. I t is often alleged that the kinetic theory predicts 
n = 1/2, whereas for "real gases" n is somewhere 
around 0.8, implying that the kinetic theory must there
fore be wrong. (Such statements are usually the result 
of ignorance rather than malice.) A perusal of recent 
literature uncovered only a handful of cases in which a 
variation of viscosity with temperature characteristic 
of liquids rather than gases was advocated or actually 
employed, and in none of the calculations did it seem 
to be very important which mathematical function was 
chosen to represent this variation (51, 57, 81, 243, 381). 
One must therefore conclude that it is not lack of 
knowledge of the precise nature of the temperature-
dependence of liquid viscosity which constitutes the 
major obstacle to progress in fluid dynamics. 
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B. NON-LINEAE THEORY 

There is now a considerable body of literature on 
non-Newtonian flow, partly because of the engineering 
or biological importance of many substances with 
peculiar rheological properties. Attempts to construct 
a consistent mathematical theory, generalizing the 
classical linear laws, are described in detail by Truesdell 
(509); the following paragraphs are based on his earlier 
simplified presentation (508). Much of the theory is 
due originally to Reiner (423, 424), whose recent books 
also should be consulted (422, 425). 

Suppose that s is the x,y component of the stress 
tensor S, and y is the same component of the rate-of-
deformation tensor G. (The following remarks also 
apply to elasticity when G is the strain tensor; when we 
specialize to the case of viscosity, G will be identified 
with the velocity-gradient tensor Vv.) Truesdell begins 
by pointing out that it is not good enough to "retain 
the non-linear terms" and write, instead of s = rjy 

S = rjy + ri'y" + . . . (6) 

with the assertion that the linear relation is valid for 
small rates of deformation (7 < < 1). Rate of deforma
tion is not dimensionless and can be given any numerical 
magnitude whatever simply by an appropriate choice 
of units. A more serious drawback of eq. 6 is that it is 
based on the unfounded assumption that shearing 
stresses alone are sufficient to maintain shearing strains. 
Actually there is no reason why the x,y component 
of the matrix S should depend only on the x,y compo
nent of G. A theory based on this assumption cannot 
describe the effects discovered by Reynolds and Poyn-
ting, who found changes of volume associated with 
changes of shape. These effects appear even before 
there are quantitative departures from the linear shear
ing laws. Poynting's experiments were done with steel 
wires and rubber cords, and Reynolds' with bags of 
solid spheres, but similar effects have been observed 
in liquids. Thus Weissenberg (536), in 1947, found that 
a liquid between two concentric moving cylinders 
climbs up the sides of both cylinders and falls in the 
interspace. 

In constructing a general theory, one might start 
by expanding the stress matrix S in a power series in 
the rate-of-deformation matrix G 

S = K1G + K2G
2 + KSG

3 + ... 

where Ku K2, etc., are scalars. This turns out to be un
necessarily complicated, since for an isotropic fluid the 
matrix G must have certain (tensor) transformation 
properties, expressing the requirement that physical 
laws must be invariant under changes of coordinate 
systems. The invariants of a matrix are its eigenvalues 
or, more precisely, for a 3 X 3 matrix, the three sym
metric functions of the eigenvalues Gi, G2 and G3 

/ = Gx + G2 + G3 

II = GzGz H~ GzGx -f- G1G2 

III = GiG2G3 

It can be shown that G3 and all the higher powers of G 
can be expressed in terms of 1, G and G2; for example 
(Cayley-Hamilton equation) 

G3 = IHl - UG + IG* 

One then obtains the exact expression 

S = Fa + F1G + F2G* (7) 

where F0, Fx and F2 are power series in the scalar in
variants, I, II, and III. Writing out the terms of 
first, second, and third order, we have 

S = (a + AI + BP + CII + DP + E-I-II + F-III)I + 

(G + HI + KP + LII)G + (M + NI)G1 (8) 

The linear terms in Eq. (8) yield the classical laws 
of viscosity or elasticity; identifying A with the co
efficient X, G with 2 Tj, and a with -Po, one gets the 
stress tensor of ordinary fluid dynamics 

S P,l + XIl + 2VG 

In a situation where only shear is present, G takes 
the form 

/0 1 0\ 
G = r 1 0 0) (9) 

\0 0 0/ 

and we have I = 0, II = r2, III = 0. The stress tensor 
is then 

/ 1 0 0\ / 0 1 0\ 
S = (a + CV2) 0 1 0 1 + r(G + Lr*)[ 1 0 0 ) + 

\ 0 0 1/ \ 0 0 0 / 

/1 0 0\ 
r » M 0 1 0 ) (10) 

\ 0 0 0 / 

In the linear case C, L, and M are negligible; the third-
order term, whose coefficient is L, corresponds to the 
term 77'73 hi eq. 6. The significant result is that two 
new effects appear, and they are of order r2, whereas the 
"non linear viscosity" included in eq. 6 is of order r3. 
The first effect, which Truesdell calls the "Kelvin 
effect" since Lord Kelvin predicted it theoretically in 
1883, is an expansion or contraction proportional to 
the square of the deformation, which results from the 
term Cr2 added to the pressure (a = -Po ) . The second, 
called the "Poynting effect," is a normal stress in the 
plane of the motion, arising from the term Mr2, which 
can cause the material to elongate or shorten. The 
general theory does not, of course, fix the sign of C 
and M. 

The Kelvin and Poynting effects are independent of 
the classical viscosity effects, the former depending 
only on even-order terms in r, the latter only on odd-
order terms. These conclusions, and the general form of 
eq. 7, are independent of the choice of units for G, 
which affects only the numerical values of the co
efficients. 
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In order to discuss the range of validity of the linear 
viscosity theory one has to consider not simply the 
rate of deformation, but some appropriate quantity 
which does not depend on the choice of units. Since S 
has dimensions (mass) (length) _ 1( t ime) - 2 while G has 
dimensions (time) -1, S must depend not only on 
G but on other quantities such as the thermodynamic 
state and material constants of the fluid. If the fluid 
has a characteristic constant to of the dimension of 
time—this would be true, for example, of any substance 
which has both a Young's modulus E and a viscosity 
rj, since rj/E has the dimension of time—the relation 
between S and G can be put in the dimensionless form 

S = (VMg(UG1PMZv, TfT0) (H) 

The thermodynamic variables P0 and T appear in the 
function g only in the dimensionless ratios Po/U/v 
and T/ T0, respectively, where T0 is some reference 
temperature such as the boiling point at one atmosphere 
pressure. If G is measured by a single magnitude r, 
as in eq. 9, the criterion of validity for the linear ap
proximation is rt0 « 1: "the rate of deformation must 
be much smaller than the reciprocal time constant of 
the fluid." A fluid which has a time constant Truesdell 
calls a "Reiner-Rivlin fluid." 

If, on the other hand, the fluid does not have a ma
terial constant with the dimension of time, the dimen
sionless relation between S and G would have the form 

S = P^nQZPt1TZTt) (12) 

The "truncation parameter" in the series expansion is 
now r\r/Po instead of rU, and the linear approximation 
is valid only at low density, low rate of deformation, 
and high pressure. An interesting consequence of eq. 12 
is that the coefficients of viscosity of all orders are 
independent of pressure. Such a fluid, lacking a time 
constant, is called "Stokesian" by Truesdell. 

C. BULK VISCOSITY 

In any general analysis of viscous flow or elastic 
deformation, at least two material constants must 
appear, even in a linear approximation. They measure 
the response of the substance to two different types of 
forces: those tending to shear it, and those tending to 
expand or contract it. While the existence of two inde
pendent constants seems to be accepted in elasticity 
theory, most of the standard works on hydrodynamics 
try to suppress one of these constants by making it 
simply proportional to the other. A typical rationaliza
tion of this policy goes as follows: write out the x,x 
component of the stress tensor 

S „ = -Po + x/ + 2,G1x 

and add to it similar equations for *Syy and SZ7:. The 
result (recalling that I = G1 + G2 + G3 = Gxx + Gyy 

+ G11) is 
S1x + Syy + 8„ = - 3 P 0 + (3X + 2V)I (13) 

It is then argued that the pressure is really the same 
as the average diagonal element of the stress tensor 

P0 = - (1 /3) (S„ + Syy + S„) (H) 

and hence one must set (3X + 2ij) equal to zero. 
The above definition of the pressure, eq. 14, usually 

attributed to Maxwell and uncritically accepted by 
later workers, can be justified only for systems in ther
modynamic equilibrium. Its adoption in non-equilib
rium situations implies that the pressure always de
pends only on the temperature and density, through 
the equation of state, and not on the rate of expansion or 
contraction of the system (represented by I in eq. 13). 
The resulting postulate, 3X + 2»? = 0, is called the 
Stokes relation; yet Stokes himself used it only be
cause he realized that in most cases of practical in
terest the rate of expansion would be so small that 
the value assigned to the quantity 3X + 2T? would be 
unimportant (484). Reiner (424) has argued that set
ting 3X + 2rj equal to infinity, rather than to zero, is 
equivalent to / = 0. 

Cohen (90) listed a number of other relations be
tween X and 7) proposed by various nineteenth century 
scientists, and the history of the subject has been re
viewed by Truesdell (sec. 61A in ref. 509; also 507, 511). 
Many theorists treated the two constants as independ
ent and related both of them to molecular properties 
(88, 138, 349, 507, 535a), but these efforts were gener
ally ignored until about twenty years ago. In 1942, 
Tisza (497) [c/. 330a, 422, 479, 481a] suggested that 
X could be measured in ultrasonic absorption experi
ments, and since then a number of such experiments 
have been interpreted by assigning various values to X. 
In many cases the Stokes relation is said to be disproved, 
and large positive values of X often are reported. 
Bulk viscosity is also said to be involved in the phe
nomenon of acoustic streaming (117, 127, 159, 255,314, 
369, 402, 438). References to the original work may be 
found in the review article by Karim and Rosen'.ead 
(256), the book by Herzfeld and Litovitz (222), and the 
various contributions to the Royal Society discussion 
(448); see also (10, 19, 22, 36, 44^45, 62, 76a, 164, 196, 
207, 229, 231, 238, 259, 285a, 289, 292, 297, 310, 
314-319, 330, 332, 333, 345, 372-374, 400, 401, 403, 
422, 425, 435, 437, 471, 475, 476, 532, 547, 551). Never
theless several recent hydrodynamics textbooks adopt 
the Stokes relation with little or no discussion (73, 105, 
113, 178, 230, 250, 394, 414, 451, 526) or even ignore 
bulk viscosity completely (47, 48, 68, 78, 145, 208, 303, 
466, 485, 543). 

Since it is the quantity 3X + 2)j whose existence is in 
question, we use the term "bulk viscosity" for K = 
X + (2/3H. 

While it may be legitimate to ignore bulk viscosity in 
some physical situations on the grounds that it is 
multiplied by a rate of expansion which is negligible, 
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this should be an explicitly stated assumption, like the 
assumption of incompressibility, and a recognized 
source of possible error. I t is well known in fluid me
chanics that the inclusion of ordinary shear viscosity 
changes the character of the differential equation and 
the qualitative nature of the flow near a boundary, 
even though the actual magnitude of the viscosity term 
is infinitesimal. There may be similar effects when bulk 
viscosity is included in the differential equation, though 
the exact mathematical theory has not yet progressed 
far enough to indicate what actually happens (177, 289, 
510). Birkhoff (53) has emphasized the falsity of the 
belief that "small causes produce small effects"— 
particularly in hydrodynamics. It would seem that 
a fluid which expands and contracts indefinitely with
out dissipation is performing perpetual motion of the 
second kind and is thus violating the second law of 
thermodynamics. However, it has been claimed (440) 
that dilatation produces no irreversible effects in a 
system of structureless particles. 

The existence of a bulk viscosity is usually taken to 
imply some kind of dissipation or relaxation mechanism 
on the molecular level. Rapid compression or expansion 
upsets the equilibrium distribution of energy among 
translational, vibrational, and rotational degrees of 
freedom, and if the rate of expansion is greater than the 
inverse of the "relaxation time" for equilibration, there 
will be an irreversible absorption of energy. A number 
of experiments have been interpreted by means of 
such relaxation mechanisms, sometimes without expli
cit mention of bulk viscosity (10, 380, 396, 438). I t 
may, of course, turn out that bulk viscosity is strongly 
frequency-dependent, which would make the linear 
theory untenable. Instead of considering K to be a 
function of 7, one should use more terms in eq. 8 [c/. 
TruesdelPs remarks, p. 673 of ref. 510]. Unfortunately, 
the condition that the dissipation of energy be non-
negative, which in the linear theory leads to the condi
tions r) > 0, K > 0, cannot be reduced to any simple 
conditions on the higher-order coefficients (see sec. 61 
of ref. 509; 457). 

It also has been suggested that there exists an "in
trinsic" bulk viscosity due solely to intermodular 
forces, quite apart from any possible relaxation proces
ses; a fluid of hard spheres, with no internal degrees of 
freedom, would thus have a finite bulk viscosity (138, 
371). 

In concluding this section, we remark that while it 
may be possible to imagine an ideal system which has 
zero bulk viscosity, the burden of proof must certainly 
be placed on anyone who claims that a real liquid has 
this rather rare property. 

D. EHEOLOGY 

The theoretical framework described in Section B is 
still not general enough for the description of many 

real substances, for it is based on the assumption that 
the stress tensor depends only on the rate-of-deforma-
tion tensor. A large number of natural and synthetic 
products have properties which cannot be described 
completely either by the theory of viscous fluids or by 
the theory of elastic solids (in which stress depends 
only on the amount of deformation). The study of the 
interrelationships of stress, strain, and time is now 
known as "rheology"; it is a subject long dealt with 
on an empirical basis, but subjected to systematic math
ematical analysis only within the last two or three 
decades. 

Scott Blair's "Survey of General and Applied 
Rheology" (462) is still an extremely fascinating and 
useful account of the subject, though it should be 
supplemented with reviews of more recent work 
(43, 81, 129, 347, 422, 425, 428, 463, 511, 545). Scott 
Blair reviews the history of the subject, going back to 
the early Egyptian water clocks, and distinguishes two 
schools of rheology, the "analytical" and the "integral." 
The former school seeks to relate the properties of a 
material to those of viscous fluids and elastic solids, 
by considering it to be composed of viscous elements 
("dashpots") and elastic elements (springs) whose 
effects are additive. The latter school avoids the use of 
models and simply postulates empirical relations be
tween stress, strain, and time. After describing the 
properties of many interesting substances and methods 
for measuring them, Scott Blair discusses the various 
theoretical interpretations in the light of psychophysical 
experiments. These experiments, which form the basis 
of the new discipline of "psychorheology," were de
signed to find out how people perceive such qualities 
as viscosity and elasticity. While one might suppose 
that viscosity and elasticity cannot be directly com
pared because they have different dimensions, it turns 
out to be possible to establish a psychological equiva
lence scale, so that one can answer such questions as, 
"is the viscosity of substance A greater than the shear 
modulus of substance B?" Accounts of more recent 
work on psychorheology may be found in Scott Blair's 
book "Measurements of Mind and Matter" (465) and 
in articles by Harper (210, 211, 464). Other "cross-
modality comparisons" in psychology are described by 
Stevens (482). 

E. TURBULENCE 

Whereas rheology is the study of particular materials 
which may never obey the linear laws of viscous flow, 
the study of turbulence phenomena deals with the 
conditions under which those laws may be invalid for 
otherwise well-behaved materials, and it attempts to 
establish other laws valid under such conditions. 
Presumably any liquid, when forced to move too fast 
relative to a solid boundary, will abandon the smooth 
"laminar" flow pattern contemplated by the linear 
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theory, and its motion will take on a certain random 
character which cannot be described precisely even by 
the more general theories we have mentioned. 

The condition for transition to turbulent flow is 
usually given by specifying the value of a dimensionless 
parameter called the Reynolds number 

R — vL p/ri 

where L is a length proportional to the radius of the 
tube, or to some linear dimension of the solid boundary. 
In a sense viscosity is responsible for turbulence, since a 
fluid with vanishing viscosity would have an infinite 
Reynolds number and would thus perform laminar flow 
at any velocity. On the other hand, the greater the 
viscosity, the more rapidly a local condition of turbu
lence will decay (311). According to Batchelor and 
Townsend (39), viscous forces are not very important 
in turbulent motion except in small regions of the fluid 
near the boundary, or in thin vortex layers. 

Theories of turbulence naturally have a strong statis
tical aspect, but while in many cases they appear to be 
similar to the kinetic theory of gases, the elements 
considered are usually small macroscopic regions of the 
fluid rather than molecules. Yet the physical mecha
nisms of viscosity and turbulence must be closely 
related, so that one should be able to develop a theory 
which accounts for both, at least in gases and ulti
mately in liquids. ("A truly rational treatment of the 
problem of turbulent friction is unattainable until the 
quality of viscosity itself has been rationally analyzed, 
if this were possible" (145).) There have been some 
recent attempts along this line but it is too early to 
judge their success. 

III . MICROSCOPIC THEORY 

A. CLASSIFICATION OF THEORIES 

We begin by listing the various theories, arranged 
according to the type of physical (rather than mathe
matical) assumptions which they make. Another prop
erty of theories of viscosity, which might have been 
used as the basis of a classification scheme, is the extent 
to which the equilibrium properties of a substance 
(determined either by theory or experiment) determine 
its transport properties. From the kinetic-theory view
point the distinction between equilibrium and non-
equilibrium processes is not really fundamental, since 
both depend on the same molecular motions, and it 
might be argued that the distinction between classi
cal and quantum-mechanical theories would be more 
significant. However, it is often useful to adopt a 
more phenomenological treatment, particularly when 
kinetic theory results are not available, and it is then of 
interest to determine the minimum number of material 
constants on which the observable properties of the 
substance depend. The only quantum-mechanical theory 

which we shall discuss is so completely different from 
the classical theories that we do not include it in the 
list at all. 

1. Dense Gas of Hard Spheres 

By analogy with the theory of equation of state, 
Gustav Jager (248) proposed to correct the dilute-gas 
viscosity formula by taking account of finite molecular 
size. He obtained an expression of the form 

v = voiy-1 + A + By) (15) 

where y is a factor correcting the collision rate, which 
may be determined from the equation of state 

P0V/BT = 1 + (46/F)2/ 

and A = 8b/V, B = IQb2/V2; b is the volume occupied 
by the spheres themselves. The second and third terms 
become negligible at low density as b/V goes to zero 
and y goes to 1, and 770 reduces to the dilute-gas vis
cosity given by eq. 1. I t should be mentioned that y is 
not an empirical quantity; it can now be calculated 
theoretically with some accuracy over the entire 
range of densities (3, 4, 5, 531). 

Jager's theory was generally ignored except by his 
contemporary Marcel Brillouin, who discussed and 
extended it in his book (72). Later Enskog (138) 
derived eq. 15 more rigorously (with A = 16b/5V, 
B = (0.7614)(m2/V2)), using a modification of his 
transport theory based on the Boltzmann equation. 
Enskog also made more explicit the nature of the 
changes in the theory needed to take account of the 
finite molecular size; not only does the collision rate 
change, but momentum can be transferred "instan
taneously" (in a non-relativistic theory) across finite 
distances when the spheres collide, in addition to the 
usual momentum transport by motion of molecules 
from one part of the gas to another. 

This type of theory is valid only for hard spheres, 
since it assumes only two-body collisions. Though it 
works well up to quite high densities, it is based on an 
assumption about the sequence of collisions which 
must eventually break down when the spheres get so 
close together that each one is trapped in a "cage" 
and collides only with its nearest neighbors. This intro
duces a correlation between successive collisions which 
makes the Boltzmann equation inapplicable, but this 
effect probably is not important until the system already 
has condensed to a solid. 

Equation 15, insofar as it refers to a system of hard 
spheres, does not predict any temperature-dependence 
for the viscosity other than the usual T1/!, since chang
ing the temperature merely changes the time scale. 
However, the third term, which is dominant at high 
densities, is comparable to some of the empirical formu
las which make the viscosity vary inversely as the 
"free space." 
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The Enskog theory is reviewed in refs. 88 and 232; 
and several similar theories have been proposed (66, 
71, 100, 103, 122, 182, 233, 326, 327, 430, 434, 472, 
480, 520). 

2. Monatomic Liquids with Gaslike Structure 

In this category we place the theories of Born and 
Green (58, 59, 194) and Kirkwood (246, 270, 271, 273, 
551), and more recent work to be discussed in Section 
HI-B. In a more mathematically oriented classification 
scheme we would label these "theories based on the 
superposition approximation for the distribution func
tion, and/or on the theory of random processes." 
While the distribution function method is general 
enough to be applicable to any state of aggregation, 
the approximations usually employed in these theories 
tend to favor the gaseous rather than the solid concept of 
liquids. Instead of starting with a completely ordered 
configuration of molecules and then introducing a 
small amount of disorder, they start from a disordered 
state and introduce a short-range correlation in the 
positions of pairs of molecules. 

The superposition approximation, introduced in 
1935 by Kirkwood (269), is the assumption that the 
probability distribution for the simultaneous positions 
of three molecules can be expressed as a product of the 
three relevant pair-distribution functions. I t has 
been shown (214, 450) that this assumption leads to 
correct values for the second and third virial coefficients 
of a hard-sphere gas, but predicts an incorrect value for 
the fourth coefficient; and there has been considerable 
discussion of the propriety of its use in transport theory 
(82, 158, 181, 276, 377, 410, 523). The basic papers are 
the following: 

Kirkwood and Boggs (272a): The superposition 
approximation is used to derive an integral equation 
for the pair distribution function for a fluid of hard 
spheres; the equation can be solved numerically. 

Kirkwood (270): Proposed a general theory of trans
port processes based on Brownian motion theory. 
The friction constant in Brownian motion is shown to 
be related to the autocorrelation function of the force 
acting on a molecule 

r = (.1/ZkT) j * Q
T (F(t)F(t + s))ds (16) 

where ( ) indicates an ensemble average, and r is the 
"plateau time" after which the correlation is essentially 
zero (see also HeIfand (217a). 

Kirkwood, Buff, and Green (273): The viscosity 
coefficient is expressed in terms of f (see also ref. 271) 
and the shear viscosity is calculated for liquid argon 
at 890K. It is found that r; ~ 2.63 X 106 f and a rough 
estimate of f leads to the result 77 ^ 1.27 X 10 - 3 poise, 
compared to the experimental value 2.39 X 10~s 

poise. 

Irving and Kirkwood (246): The equations of hydro
dynamics, and the expression for the stress tensor used 
by Kirkwood, Buff, and Green, are derived from the 
statistical mechanical theory. Other derivations have 
been given by Noll (379) and Richardson (440), and 
the generalization to multicomponent systems was 
accomplished by Bearman and Kirkwood (41). 

Born and Green (58, 59): Proposed a general theory 
of liquids based on Kirkwood's superposition approxi
mation. The Kirkwood-Boggs integral equation is 
generalized to molecules interacting with any type of 
central forces, and the general theory then is applied 
to transport processes. An expression for viscosity is 
obtained but not evaluated numerically because of 
lack of knowledge of the distribution function. I t is 
argued that the expression predicts the correct qualita
tive variation with temperature for liquids (see also 
Yang (546) and Higgins and Raw (228)). Green later 
remarked (195) that it had been assumed that the 
steady state of a non-uniform fluid depends only on 
the local values of the macroscopic parameters and their 
space derivatives: "Unfortunately this assumption 
alone did not suffice to determine a unique solution of 
any problem, and to obtain an explicit formula for the 
coefficient of viscosity, Born and Green had to "guess" 
the deformation of the molecular structure by the flow." 

Zwanzig, Kirkwood, Stripp, and Oppenheim (552): 
The calculation of the viscosity of liquid argon is 
revised, using a more accurate distribution function 
obtained by numerical solution of an integral equation 
similar (but not identical) to that of Born and Green. 
The agreement with experiment is made worse. 

Rice and Kirkwood (433): By introducing some 
further approximations, the expression for the viscosity 
coefficient is written in terms of equilibrium properties 
of the fluid. The absolute value of the calculated vis
cosity of argon is still about 50% of the experimental 
value. This theory was extended to mixtures by Rice 
and Allnatt (431). 

The present status of these theories is reviewed by 
Collins (95), Green (194, 196), Bondi (56), and Rice 
and Frisch (432): see also the comments and discussion 
(21, 110, 132, 133, 134, 135, 195, 253, 337, 342, 370, 
371) and similar theories proposed by Eisenschitz and 
others (100, 102, 103, 131, 136, 241, 382). 

A new type of theory, which developed out of Kirk
wood's calculation of the friction constant, recently has 
become fashionable. M. S. Green (198) seems to have 
been the first to obtain an explicit expression for the 
viscosity coefficient as an integral of the autocorrela
tion function of the stress tensor; the quantum-
mechanical generalization was given by Mori (362, 
363, 364). A simple general derivation, valid for classi
cal multicomponent systems, was given by Kirkwood 
shortly before his death (272, 274); we refer to several 
other papers on the subject (197, 199, 217, 218, 221,, 
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286, 343, 365), but we have not listed any of the 
numerous works on electric and magnetic properties, or 
articles on the fluctuation-dissipation theorem which 
do not discuss viscosity in particular. 

8. Monatomic Liquid with Solid-like Structure 

In these theories it is assumed that each molecule is 
confined within a fairly small space, and interacts 
directly only with a few neighbors. Four subspecies 
may be distinguished: (a) hole theories, (b) vibration 
theories, (c) phonon theories, (d) relaxation theories. 
In (a) the liquid is regarded as a lattice with some sites 
occupied by molecules and others empty. Viscous 
flow is accomplished by the "jumping" of molecules 
from one site to another under the influence of an 
applied force. In (b) the molecule vibrates around an 
equilibrium position, occasionally transferring mo
mentum to its neighbors. In (c) it is vibrations of the 
lattice as a whole (sound waves or "phonons") which 
transmit momentum. In (d) viscous flow is considered 
similar to the deformation of elastic solids. 

I t is an unfortunate characteristic of almost all 
these theories that they manage to introduce one or 
more "constants" which cannot actually be calculated 
from molecular data but may be related to macroscopic 
properties (heat of vaporization, heat of fusion, com
pressibility, etc.). Ultimately these constants become 
adjustable parameters chosen to fit experimental data; 
often the theory has to be "improved" by permitting 
the constants to vary with temperature and density; 
and extra factors, taking account of "association," 
have to be added for liquids which fail to conform to 
the original formula. Since theories based on assump
tions (a), (b), (c), or (d) usually end up with an expo
nential formula like eq. 5, or something similar to it, 
the fact that this formula works fairly well for most 
liquids gives no information about which of the four 
mechanisms, if any, is correct (c/. 340, 341). 

The theory of Eyring (142, 143, 166, 180, 406) is 
the best-known example of type (a); similar theories 
were proposed by Frenkel (162, 163), Dunn (124), 
Furth (168, 169), Guareschi (204), Irany (244), and 
others (8, 9, 26, 32, 33, 34, 219, 240, 267, 280, 330, 384, 
453, 473, 534). Many comments and criticisms of the 
Eyring theory have appeared (6, 9, 28, 46, 55, 69, 97, 
116, 125, 140, 141, 146, 179, 201, 202, 228, 231, 258, 298, 
304, 340, 355, 359, 361, 378, 415, 416, 417, 518, 522, 527, 
529, 548) of which perhaps the most serious is the 
assertion of Alfrey (6; see also 359) that the hole mech
anism cannot describe viscous flow at all, at least in the 
original form proposed by Eyring. 

The theories of Jager (223, 248a), Sato (452), 
Andrade (11, 12, 13, 16, 20), Guareschi (203), MacLeod 
(329) and others (130, 225, 226, 385, 398a, 538) belong 
to category (b); though once popular they are now out 
of fashion. The same might be said of category (c), 

the phonon theories (60, 61, 63, 64, 70, 408, 413), except 
that the phonon concept has been reincarnated in 
recent theories of liquid helium (Section III-D). 

Burgers (83, 84) and Partington (397) review the 
relaxation theories, which continue to be discussed in 
the more recent literature (277, 278, 359, 366, 373, 458, 
514a) perhaps because of the current interest in ultra
sonic absorption studies. 

4- Semi-empirical Relations with Other Physical 
Properties; Principles of Corresponding States 

Some of the theories mentioned in Section III-A-3 
might equally well be classified in this category, the 
criterion being the extent to which a definite theoretical 
model of the liquid influences the type of approxima
tions made. Partington (397) has summarized most of 
the semi-empirical theories published before 1951; 
we list a few which have appeared since then (9, 17, 
41a, 65, 179, 191, 218, 264, 265, 266, 341, 395, 420, 491, 
533). 

B. FLUCTUATION-DISSIPATION THEORY 

While the various theories of viscosity have provided 
a certain amount of insight into the molecular processes 
involved in viscous flow, they have not yet satisfied the 
natural desire for a theoretical explanation of the type 
which we possess for gas viscosity. The attitude of past 
theorists seems to have been that it is hopeless to try to 
understand liquids without first making some rather 
drastic simplifying assumptions about their structure. 
Unfortunately the choice of a structure immediately 
limits the range of flow mechanisms which can be con
sidered. Consequently, while it is possible to discuss the 
validity of various explanations of the viscosity of a 
lattice-liquid, it is very difficult to compare them with 
the results of theories such as have been proposed by 
Born and Green, or by Kirkwood's group. 

Recently a number of theorists have investigated a 
new approach which may provide a firmer basis for 
theories of irreversible processes, in the same sense 
that the method of partition functions provides a 
common starting-point for equilibrium theories. The 
new approach will be referred to here as "fluctuation-
dissipation theory," though many of the relevant 
papers do not use this name. 

The essential idea used in fluctuation-dissipation 
theory is that any irreversible process may be viewed as 
the result of the tendency of a perturbed system to 
return to equilibrium. Thus viscosity is the measure 
of the external force required to maintain a velocity 
gradient, and at the same time a measure of the 
internal force which would tend to dissipate that gra
dient if the external forces were removed. Now it is a 
consequence of equilibrium statistical mechanics that 
large fluctuations from uniform conditions occasionally 
occur, though these fluctuations usually can be neglected 
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in calculating most equilibrium properties. Suppose we 
are presented with a system in some non-uniform state, 
the forces which produce the non-uniformity having 
been removed an instant earlier, and we are asked to 
describe the system's return to equilibrium. We do not, 
in principle, need to know anything about how the sys
tem reached its present state, since its future history is 
completely determined by its present state, and we can 
therefore treat this as a problem in equilibrium statistical 
mechanics. (It may, of course, be necessary to create a 
fictitious past history of the system by extrapolating 
backward in time with the help of the equations of 
motion, in order to describe the equilibrium fluctuation 
which would produce the specified non-uniformity.) 
It remains to be seen how the transport coefficients 
should be related to the fluctuation properties of an 
equilibrium system, and how these properties can best 
be calculated. 

I t is characteristic of fluctuation-dissipation theory 
that the various transport coefficients are related to 
autocorrelation functions of dynamical variables, 
integrated over a period of time sufficient for the re
gression of local fluctuations, but short compared to 
the relaxation time of the entire system, or to the 
Poincare" recurrence time. The irreversible aspect of 
the theory is thus clearly related to our concept of 
irreversible processes in general: If we start with any 
non-equilibrium state and allow it to decay to equi
librium, it is overwhelmingly probable that the entropy 
will increase, though if we waited long enough, that 
non-equilibrium state would ultimately recur and the 
entropy would return to its original value. (The system 
is assumed to be confined to a finite volume.) Similarly, 
the autocorrelation function S(t)S(0) is positive for 
states separated by a time t so short that they are 
appreciably correlated. One then expects a long period 
during which there is no average correlation, and thus 
no contribution to the integral, so that the integral can 
be assigned a definite "plateau value." Finally, eons 
after the experiment has been completed, there is a 
fluctuation which makes S(t)S(O) negative long enough 
to cancel out the original positive contribution, and the 
transport coefficient is thus zero if the integral is 
extended over infinite time [cf. the discussion by Mazur 
and Montroll in ref. 338], 

A simple example is provided by the diffusion co
efficient for a particle performing Brownian motion. 
We recall that this coefficient is proportional to the 
mean square displacement of the particle at time t, 
divided by t; a quantity which, according to theory, 
becomes constant after a number of random impulses 
have been experienced by the particle 

D = a/m([x(,t) -x(o)Y) (i7) 

The displacement x(t) may now be expressed in terms 

of the initial position (a;(0) and the velocities of the 
particle between 0 and t 

x(t) = x(0) + V v(t')dt' 

so we can write 

D = (l/60< f0v(t'W f'o v(t")dt") = 

(1/60(J0* dr pQ v(t')v(t''W) 

where the dummy variable t" has been introduced in 
order to avoid confusing the variables in the two inte
grals. The diffusion coefficient of the particle is thus 
related to an integral over the autocorrelation function 
v(t')v(t"); the integration over t" can be taken outside 
the averaging symbols ( ) since for a stationary process 
the diffusion constant is independent of time. In 
Brownian motion theory the velocity is determined by 
a sequence of random impulses, and D is always positive 
as can be seen directly from the form of eq. 17. Fluctua
tion-dissipation theory achieves a similar result for 
the transport coefficients without having to assume 
molecular chaos at the beginning. 

1. Mathematical Preliminaries 

The mathematical techniques used in modern trans
port theory appear at first sight to be rather esoteric. 
Closer inspection shows that, while these techniques 
would indeed be quite difficult to use if one attempted a 
strict mathematical justification for every step, their 
practitioners have reduced them to a set of rules for 
juggling symbols (or "formal manipulation" as it is 
called). I t is taken for granted that if anyone objects 
to a derivation produced by this method, a mathema
tician could always be found to prove the same result 
by more rigorous methods—unless the result is wrong, 
in which case its falsity will eventually be discovered by 
comparison with experiment. Often the final result is 
correct, though obtained by methods which are of 
dubious validity (42, 150, 460, 492, 493). Furthermore, 
while such tactics are undoubtedly successful in expe
diting original research, they are not very suitable when 
the time comes to explain the results to others. 

A common procedure is to represent operators, such 
as differentiation, by symbols which are manipulated 
as if they were ordinary algebraic quantities. Suppose 
Q is the operator d/dz; it is easy enough to see what 
Q2 or Qn (with n an integer) means, but what about 
eQ? An "exponentiated" operator can be defined by its 
series expansion 

and if the operator eaQ is applied to the function i(x), 
the result is 
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e°«f(x) = ^ ^ ^ i(x) = i(x + a) 

by Taylor's theorem. So eaQ is a "shift" operator which 
simply translates the argument of the function from 
z to x + a. However, if R is another operator which 
does not commute with Q {i.e., QR^RQ), the expression 
eQ+R is ambiguous and must be defined by a more 
elaborate procedure (150). 

Another useful operator is the one which converts a 
function f (x) into the number which is its value at the 
point a, viz., f(a). This operator is written 

Zl(x) = f h{x - a)((x)dx = i(a) 

usually the part 8(x — a) is written by itself and is 
called Dirac's delta function. The delta function is 
called by mathematicians a "distribution" since it is 
not really a function in the usual sense of the word; 
it cannot be denned simply by giving its value at every 
point. It can be considered as the limit of various 
sequences of functions which are strongly peaked at 
x = a; one may say that S(x — a) is zero whenever 
x 9^ a, and is infinite at x — a in such a manner that its 
integral is unity. I t is also symmetric, having the prop
erty 

S5(z - a)/dx = -dS(x - a)da (18) 

These properties are clearly described rather inade
quately by the mere statement that 5(x = a) is in
finite at x = o and zero elsewhere. While it is natural 
to use the delta function in denning the properties of a 
system of point masses, some ambiguity arises when 
one tries to take the square of a delta function. Since Z 
operates only on functions, not on numbers, an ex
pression like Z2i(x) is meaningless. 

I t may be helpful at this point to review the vector 
and matrix notation used in this article. The expression 
ab means the matrix 

( axbx axby axb,\ 
aybK ayby aybz J 
azbx aj)y azbj 

and is to be distinguished from the scalar product 
a-b which is the trace (sum of the diagonal elements) 
of that matrix. The operator V is a (symbolic) vector 
with components (b/bx, b/by, b/bz); when it acts on a 
scalar function it is called the gradient. The velocity-
gradient tensor Vv (called G in Section H-B) is repre
sented in this coordinate system by a matrix, as above, 
whose trace is V-v (known as the divergence of v). 
I t is convenient to use the symbols Vri and Vpi which 
are similar to V except that the differentiations are 
performed with respect to the position r; = (rix, 
?V> riz.) or momentum p; = (pix, piy, piz) of particle i, 
rather than with respect to a point r = (x, y, z) in 
space. 

If A is a matrix with components AaP and a is a 
vector with components aa (where a, /3 = 1, 2, 3), the 

product A • a is defined as the vector whose components 
are 

The simple product A B of two matrices A and B 
is the matrix with components 

(A- B)0Cf) = ^AyfjByg 
y 

The double product A:B is the scalar product, equal 
to the trace of A • B 

A:B = E Y1Aa1SB1I* 
a fS 

The transpose AtT of the matrix A is the matrix with 
elements 

Aaf! = AfIa 

Any matrix can be decomposed into a symmetrical 
and an antisymmetrical part 

A = Asym + A^ 

4»ym = J( A + Atr) 

A^ = i( A - A*) 

When A is the velocity-gradient tensor Vv, the matrix 
2(Vv)ant is called rot v or curl v or V X v. I t happens 
that the antisymmetrical part of a 3 X 3 matrix 
has only three independent components, since A^ 
= 0 and AIf = -Afa\ and thus students of ele
mentary vector analysis are told that curl v is a vector 
with components (curl v)x = (bvy/dz) — (bvz/by), etc. 
Students who take more advanced courses have to 
unlearn this statement, since curl v is not a "real" 
vector but only a "pseudovector." 

In classical viscous flow theory one only needs to 
use the symmetrical part of Vv provided the motion is 
"irrotational" (curl v = 0) and the velocity can be 
derived from a scalar velocity-potential function <j>: 
v = V4>. 

The phase space of an JV-body system consists of 
6iV dimensions, one for each coordinate and each mo
mentum component of each particle. The instantaneous 
state of the system may be represented by a single point 
in this 6iV-dimensional space; the "natural motion" 
of this point is determined by the laws of dynamics. 
(We are here concerned only with classical mechanics.) 
A canonical ensemble is a collection of many iV-body 
systems in different states, each represented by a point 
in phase space; we assume that there are enough points 
that we may describe their distribution by a continuous 
function f{q\,qt, . . . ,^BN) : the fraction of systems whose 
representative points lie in the range (31,51 + dqi), . . . , 
(36N1SeN + ^ N ) is f(qi, • • • ,9eN) dqi. . . dqiN. For 
brevity we write q for all the variables qi, . . . ,QeN-

As the points go through their natural motion, we 
find that f(q) changes with time, both explicitly and 



528 STEPHEN G. BRUSH 

implicitly. By this is meant that f(t,q) changes its 
value at a fixed point q, and also changes along the 
trajectory of natural motion of a representative point 
because of the variation of the coordinates and momenta 
of a particular system with time. Liouville's theorem 
states that the total time-derivative of f(t,q) along a 
trajectory is zero 

The quantities dgi/di are of course determined by the 
laws of motion: The derivative of a coordinate is a 
velocity, and the derivative of a momentum is a force. 
Thus Kirkwood (270, 274) writes 

where 

L = i El(PiM)-Vr1 + (X1 + Fi)-Vp1] 
i 

and the force acting on particle i has been separated into 
an external force X; and a force F ; due to the other 
particles in the system. This is the usual definition of 
the Liouville operator L1 the imaginary unit i = (—I)'7' 
being introduced for mathematical convenience. (It 
is actually unnecessary for our present purposes.) 

2. Determination of the Non-equilibrium Distribution 
Function 

In transport theory it usually is necessary to deter
mine the non-equilibrium distribution function by 
solving eq. 19 to some approximation; for example, 
one may try to derive Boltzmann's equation by inte
grating over the coordinates and momenta of N — 1 
particles. In fluctuation-dissipation theory this pro
cedure is avoided, and instead the distribution function 
is expressed as an integral of S: Vv over a period of time 
sufficient for the dissipation of the fluctuation from the 
equilibrium state represented by the velocity gradient 
Vv. On calculating the average value of the stress tensor 
by integrating its product with the distribution function 
over phase space, one obtains the viscosity coefficients 
as autocorrelation integrals of the form 

n = (1/VkT) J*Q
T (Sly(t, r)Sxy(0, r))di (20) 

The exact meaning of such an expression depends on 
the way in which the stress tensor S is denned at a 
point in space (r) and on the existence of a plateau value 
for the integral, more or less independent of its upper 
limit. 

Our derivation follows the one recently given by 
Kirkwood and Fitts (274), with three differences: First, 
we shall obtain eq. 20 explicitly by using a definition of 
the stress tensor suggested by Massignon (337); 
second, we do not include the generalization to multi-
component systems and temperature gradients; third, 

we do not assume the reader knows any more mathe
matics than ordinary calculus. 

We consider a non-equilibrium system, and describe 
the deviations from equilibrium by r parameters, 7 l ; 

. . . , 7r. To calculate the viscosity coefficients one needs 
only the nine components of the velocity-gradient 
tensor Vv, or more precisely the six independent compo
nents of its symmetrical part (Vv)sym, since we are in
terested only in irrotational motion. We assume that 
the system is sufficiently close to equilibrium that we 
may always discard terms in the distribution function 
(and in the stress tensor) of higher than first order 
in the 7's. This is not an approximation, since the vis
cosity coefficients are defined by the ratios of the com
ponents of the stress and rate-of-deformation tensors 
when both approach zero. 

We write / as the sum of a zero-order distribution 
function /0 and a perturbation term /1. The former is 
assumed not to depend explicitly on time (d/o/cM = 0) 
and reduces to / e q when all the 7's go to zero. The equi
librium distribution function is 

E(q) = £ p,V2m + E E Vv, 
i i * J 

/3 = 1/kT 

There is some latitude in the choice of /0 but it turns 
out to be convenient to choose it to be "locally Maxwel-
lian" having the same form as / e q but with the momenta 
Pi replaced by 

Pi ' = Pi - OTv(rO 

where v(rO is the value of the hydrodynamic velocity 
at the position of particle i. 

The perturbation function /1 will be of the form 

/1 = Z ) 7i/ij(<, 9) 
j 

according to the assumption that / is linear in the 7's 
and reduces to /eq when they vanish. 

Substituting / = /0 + /1 into eq. 19 and using the 
fact that d/o/cM = 0 we obtain 

Lf0 + Lf1 + i(d/,/a0 = Lf0 + i^h/di) = 0 (21) 

This equation is to be solved for /1. We are considering 
a situation in which the velocity gradient has been 
maintained by appropriate external forces which are 
suddenly removed at time t = 0; it is also assumed that 
previous to t = 0 the distribution function was the 
"steady-state" function, /0, so that /1 = 0 for t < 0. 
With this boundary condition we may integrate eq. 21 
in the form 

/1«) = -i Jl LU As (22) 

This expression requires some explanation. Let us 
define, with Kirkwood and Fitts (274), the quantity 

B(q) = -i(Lf,(q)/(f0(q)) 
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If we look at the representative point of a system 
which is at the phase point q0 initially, we will find it at 
a later time s at the point qs, the relation between 
qa and go being determined by the equations of motion. 
Thus the function B(qs) is an implicit function of the 
time variable s. 

We shall see that B(qa) is a linear function of the 
components of Vv (in fact it can be shown that B = 
(SS: Vv, but we have not yet defined S), and since we 
need fi(t) only as far as the terms linear in these com
ponents, we can replace f0 by / e q after operating on /0 

with L 

This is not the same as replacing Lf0 by L/eq, since in 
fact Lje,, = 0, and it is L(/0 — /eq) which gives the entire 
contribution to the integral in eq. 22. 

Equation 22 is thus replaced by 

Mt, «t) = f0 B(q,)Mq.)ds (23) 

This result is similar to that obtained by Kirkwood and 
Fitts, but has been obtained by a simpler method [c/. 
Edwards and Sanderson (128)]. I t is not exactly the 
same result since we have obtained fx(t,qt) by integrat
ing along a trajectory of the natural motion, whereas 
Kirkwood and Fitts obtained ji(t,q) by integrating at a 
fixed point in phase space. The difference has no prac
tical significance since in calculating the viscosity co
efficient one integrates over all of phase space anyway. 

The quantity B(qs) which appears in eq. 23 depends 
on the coordinates and momenta of the individual mole
cules ; since the viscosity coefficient is a relation between 
functions of points in space, we are not yet ready to use 
eq. 23. 

S. Relation between Microscopic and Macroscopic 
Variables 

The viscosity coefficient appears in a relation between 
two macroscopic quantities, the stress tensor and the 
rate-of-deformation tensor. Any theory of viscosity 
must therefore provide a definition of these tensors in 
terms of molecular variables. The rate-of-deformation 
tensor is easily identified with the velocity gradient 
tensor Vv, which is usually considered to be fixed by 
the conditions of the experiment (c/. eq. 9). The stress 
tensor is usually defined as a momentum-flux tensor, 
with a term such as Zp;pj/m to represent the transport 

i 

of momentum by molecular motion, plus another term 
representing the effect of intermolecular forces. WMIe 
there is no ambiguity in defining such a tensor for a 
finite region of space, one has to be rather careful in 
defining its value at a point. If the molecules are 
regarded as point centers of force, the stress tensor at a 
fixed point in space would almost always be zero, 
having a finite value only at occasional instants when 

a molecule happened to be at that point. Any useful 
definition of a stress tensor must therefore be some kind 
of average, spatial or temporal. 

Probability distributions associated with point masses 
are conveniently described by using the delta function. 
If the molecule is actually at the point xa, the proba
bility that it is in the interval (a, b) is 

P(a, b) = P S(X - x„)d* = j I if'**> f ^ 6 (24) Jo (0 otherwise v ' 

Thus the local mass density might be defined by writing 

p(r) - m 2 Kii - r) (25) 
i 

an expression which, when integrated over any region 
V, gives the number of molecules in that region. How
ever, the calculation of fluctuations and correlations 
requires a knowledge of (p2), and the single spatial 
integration indicated by ( ) is not sufficient to give a 
meaning to the terms which involve [5(r; — r)]2. One 
must therefore introduce some kind of spatial or tem
poral coarse-graining in the definition of the density. 
There is not yet any general agreement on the best way 
of doing this; Kirkwood (270) prefers temporal coarse-
graining, while Massignon (337) has described another 
procedure in which 8 fa — r) is replaced by a non-
singular function of r; — r corresponding to a finite 
molecular extension. In the sequel we continue to use 
delta functions with the understanding that they are 
first to be averaged over space or time before evaluating 
any expression containing squares of delta functions. 
For more detailed discussion of this point see Massig
non (337). 

The time derivative of p defined by eq. 25 is deter
mined implicitly by the time-dependence of the co
ordinates r; 

p = dP/dt = £ I J ^ 5(r. _ r ) j -P. = E [VnJ(ri _ r)] .Pl 

= - E Iv^r1 - r)]-p, V- r i > 8 ( r , - r)l = - V J N 

Li J (26) 

where we have used the symmetric property of the 
delta function (eq. 18) 

VriS(ri - r) = -V8(ri - r) 

and rearranged the expression so as to obtain the 
momentum density 

J = E PiSCri - r) 
i 

The average value of J is to be identified with the 
macroscopic mass current which satisfies the continuity 
equation of hydrodynamics 

(d/W)<P> + V-(J) = 0 (27) 

The calculation of the time derivative of J is not 
quite as simple, since it depends on the force F,j = 
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—Vr1F1J acting between two molecules which are not 
in general at the same point in space 

J - E [<Pl/m). b s \ - r )
 Pi + a(n - T)(X1 + . E . F11)] 

(28) 

In order to define a function of a single point in space 
we will need to use the Taylor expansion of the delta 
function. I t may be surprising to find that such a 
singular function can be expanded in a Taylor series, 
but it is nevertheless true (460). 

The first term in eq. 28 may be transformed by using 
the relation 

A-(BC) = B-(AC) 

valid for any three vectors A, B and C, and by using 
eq. 18 

Pi-Vri«(ri - r)pi = Vr1S(T1 - r)-(pip0 = 

-VS(rL - r)-(piPi) (29) 

The term 25 (r; — r)X; is easily interpreted as the 
external force X acting on the molecules at r. This 
leaves the third term, the sum over the intermolecular 
forces, to be dealt with. 

Using the fact (equality of action and reaction) 
that Fjj = — Fjj and introducing the variables r^ = 
Ti — Tj, we have 

£ E *n*(n - r ) = l E E IFiiWri - r) ~ 

a(n - r - Xv1)]} (30) 

Now expanding 5(r; — r — r^) in a Taylor series in 
powers of r^, we have 

S(T1 - r - ru) = S ( - r i i ^ " - r ) " «(r, - r) 
» n! 

= exp{-rij-Vri-r!5(ri - r) 

= exp {ru-V}5(ri - r) 

The right-hand side of eq. 30 thus can be written 

* E E F « ( 1 -exp{r u -V J)S(I1 - r ) = 

- * E EFii( r>i-vWru-V)S(ri - r) = 

V - I - J E E (rijFuMru.vWr, - r)} (31) 

where the operator function a is defined by 

We can now define a momentum-current tensor « 

it = «K + Xv (32) 

WK = 2 (PiPiM)S(Ii - r) 
i 

"v = - J E E (ruF,i)a(r,j.v)»(ri - r) 
i * j 

which satisfies the equation 

j V-* + X (33) 

When one multiplies eq. 33 by / and integrates over 
the r's and p's one gets a similar equation for the 
average values 

(j) = -V-(x) + (X> (34) 

We have given here the exact expression for * v 

derived by Massignon (sec. 8 of ref. 337); Kirkwood and 
others consider it sufficiently accurate to replace a by 1, 
an approximation valid for short-range forces. 

The local hydrodynamic velocity v, which already 
has been introduced as an externally fixed parameter, 
now can be related to the momentum density and mass 
density defined in terms of molecular variables 

(J) = (P>V (35) 

We can choose a pressure tensor having the same form 
as it, with the momenta p; replaced by p ; — mv, thus 

P = <«> - (P)W = PK + Py (36) 

PK = <«K> - (P)VV = < E m - 1(Pi _ OTV)(Pi - wv)6(r; - r)> 
i 

Py = <*v) 

In macroscopic hydrodynamics the viscosity coeffi
cients ri and X are denned as the coefficients of the sym
metrical part and the divergence, respectively, of the 
rate-of-deformation tensor, provided the pressure tensor 
can be expressed in the form 

P = P0I - 2,(vv)sym - X(v-v)l (37) 

We can thus find the appropriate microscopic defini
tions of t) and X by expressing P as an average of the 
stress tensor using the non-equilibrium distribution 
function / already determined. 

Recalling that / has been expressed as a sum of /o 
and /i , we can write the average of any quantity 
S in the form 

(S) = (S)0 + (S)1 

When S is the pressure tensor defined above, (S)o 
must be simply the local equilibrium pressure P0 

which is unaffected by the presence of a local velocity v, 
provided the variation of v over a very small but macro
scopic region of space can be ignored. The effects of 
viscosity are all contained in (S)i, which is an average 
calculated with the perturbation function /i defined by 
eq. 23. 

The remainder of the derivation consists of showing 
that B = /3S:Vv, sorting out the various components 
of the pressure tensor, showing that terms like SxySxx-
(Vv)xx (which arise from substituting the value of 
/i according to eq. 23) vanish on integrating over 
all the momenta, and only terms like SxxSxx(Vv)XK and 
SxySXy(Vv)xy remain. The reader will only be convinced 
of this if he works it out himself. The result is that in an 
isotropic fluid the coefficient i/ is equal to the integral 
of the autocorrelation function of any off-diagonal 
component of S 
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V = WV) j * (&y(/, r)Sly(0, r))dt (20) 

and the bulk viscosity is similarly related to the diagonal 
components 

K = X + Iv = (P/V) J* (S1xV, r)S„(0, r))di (38) 

One could also write K as the sum of three integrals 
over the autocorrelation functions of Sxx, Syy and 
Szz, divided by three, and similarly for r\. 

We now review the approximations used in deriving 
eq. 20 and 38. First, we dropped terms non-linear in the 
velocity gradient several times; these can be retained if 
one wants to describe non-Newtonian flow, but little 
progress has been made along this line so far although a 
general expression could be written down. Second, we 
have not proved that the integral of (S(t)S(O)) really 
has a plateau value independent of its upper limit T, al
though this seems a plausible assumption. Third, it 
should be remembered in doing actual calculations that 
the delta functions must be "smeared out" by spatial 
or temporal coarse-graining before integrating over 
phase space. Fourth, the replacement of the operator 
afoj-V) by unity in the potential part of S is valid 
only when the dominant contribution to the viscosity 
comes from the short-range forces. Finally, it should 
again be emphasized that ( ) means an average over 
all states of an equilibrium ensemble, including the 
fluctuations which give rise to macroscopic velocity 
gradients, and may not be approximated, as is some
times done in other problems, by assuming that the 
system is always in its "most probable" state. With 
these reservations, it is fair to say that eq. 20 and 38 
are exact expressions for the viscosity coefficients of a 
fluid. They do not depend on any assumptions about 
the structure of the fluid except those which are com
pletely consistent with our present state of knowledge— 
i.e., that velocity gradients not maintained by external 
forces are dissipated by viscous forces, and that small 
regions of the fluid quickly reach local equilibrium in 
the presence of a hydrodynamic velocity whose varia
tion is significant only over large distances. 

The question now arises, is a fluctuation-dissipation 
formula of any practical use? While it may be a "formal" 
solution of the problem, it appears that one needs to 
know quite a lot about molecular motions in order to 
evaluate such an autocorrelation integral. The situation 
is not any better than in equilibrium theory, where 
exact solutions are impossible except in a few special 
cases; and one can hardly expect to be able to calculate 
the viscosity of a real liquid when one cannot yet cal
culate its heat capacity or compressibility without 
making drastic approximations. 

Nevertheless, it is encouraging to find that the new 
theory can yield all the exact results previously ob
tained by kinetic-theory methods, and offers a possible 
method for tackling problems for which the older 

methods are completely inadequate. Mori (363) (see 
also H. S. Green (197)) has shown that for dilute gases 
the autocorrelation formula reduces to the Chapman-
Enskog (binary collision) results; recently it has been 
shown (553) that Enskog's results for a dense fluid of 
hard spheres also can be derived from the formula. 
I t can be seen easily that eq. 20 has the same form as 
eq. 15 by writing S = S K + Sv and expanding the 
product S(t)S(O) into a sum of three terms. The first 
term, f(SK(t)SK(0))dt, is the contribution from 
momentum transport by molecular motion, and re
duces to eq. 3 in the low-density limit. (One assumes an 
exponential autocorrelation function with no cor
relation between successive collisions, as in the kinetic 
theory.) The other terms describe the contribution from 
momentum transport at collisions. While the force 
between two hard spheres is either zero or infinite de
pending on whether they are in contact, the time inte
gral of the force over a short time during which a col
lision takes place is just the momentum change at that 
collision. I t can be shown that the three terms depend 
on the collision rate exactly as indicated in eq. 15, 
although it is considerably more difficult to prove that 
the numerical constants are the ones found by Enskog. 
This can be done, but the details of the calculation 
have not yet been published. 

The autocorrelation integral also can be evaluated by 
the method of molecular dynamics, invented by Alder 
and Wainwright (2, 3, 4, 5, 531). An electronic computer 
was used to solve the equations of motion for a few 
hundred particles, and detailed records of all positions 
and velocities are thus available for systems of various 
densities over periods of time corresponding to hun
dreds of thousands of collisions. The particles have a 
hard-sphere repulsive interaction, and in some cases a 
"square-well" attractive force has been added. It would 
be possible to deal with more complicated forces, but 
with these simple models one can simulate many 
properties of real substances. A calculation of the dif
fusion constant, using the autocorrelation formula, 
already has been published (2, 531), and work on the 
viscosity coefficient is now in progress (79). 

C. QUANTUM-MECHANICAL GENERALIZATION 

While one might get the impression, from reading 
discussions of the "rate theory" of viscosity, that 
viscous flow is necessarily a quantum-mechanical 
process, involving transition states or tunneling through 
potential barriers, there is little direct evidence that 
quantum-mechanical effects are important in liquids at 
room temperature. Only in the case of helium, at tem
peratures near absolute zero, is it certain that any 
theory based on classical mechanics must fail to describe 
viscous behavior. One of the quantum theories con
structed to explain the properties of liquid helium will 
be discussed in the next section; here we must add a 
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brief note on the quantum-mechanical generalization 
of fluctuation-dissipation theory. 

Mori (364) has shown that for a quantum system the 
viscosity coefficient is formally equal to 

n - (l/V) f* ds J j 3 (SV(S + ih\)S„(0))d\ (39) 

where h is Planck's constant divided by 2ir. His proof 
depends on finding the perturbation of the quantum-
mechanical density operator by a procedure similar to 
that used by Kirkwood and Fitts (274) to find the 
perturbation of the classical distribution function. 
The physical meaning of the result is not as clear since 
it involves the value of the stress tensor at a complex 
time (s + ifr\). Equation 20 is recovered easily as the 
classical limit by letting h go to zero; and if one expands 
Sxy(s + HiK) as a Taylor series in powers of iKk, one 
can see that the magnitude of the quantum-mechanical 
correction increases with /3 ( = 1/kT) and becomes 
dominant at low temperatures. Montroll and Ward 
(356, 358) have proposed a method for evaluating 
expressions like eq. 39 using diagrams similar to those 
introduced by Feynman in quantum electrodynamics, 
but taking account of the complex time variable. At 
this writing, no explicit results for the viscosity coeffi
cient based on eq. 39 have been published. 

D. QUANTUM HYDRODYNAMICS (LANDAU-KHALATNIKOV 

THEORY) 

It is now generally recognized that the peculiar 
viscous behavior of helium at temperatures near ab
solute zero is not merely a curiosity of interest only to 
specialists in low-temperature physics. Rather it is, for 
viscous flow theory, the "exception which proves the 
rule," in the deepest sense of that expression. The 
relation between theory and experience cannot be 
comprehended fully unless one knows at just what 
point the physical postulates of the theory must 
become false. One does not have to be able to integrate 
the equations of motion of classical mechanics in order 
to conclude that no theory based on those equations 
can describe liquid helium. 

We can hardly do justice here to the many theories 
proposed to explain superfluidity, and therefore we 
select for consideration, rather arbitrarily, just one of 
them: the Landau-Khalatnikov (L.K.) theory (261, 
262, 263, 293, 294, 295, 296). To justify this choice it 
could be said that this theory seems to have been de
veloped more intensively, and to have yielded more 
definite predictions capable of experimental verification, 
than any other. While its results frequently are referred 
to, the L.K. theory itself has not been sufficiently 
discussed, except in Russia. English translations of the 
basic papers exist, but do not seem to be universally 
accessible. 

In his first paper in 1941, Landau proposed to explain 
the properties of liquid helium as a consequence of the 
limited nature of the collective motions or "excitations" 
permitted to the system at low temperatures (293). 
In order to give a precise description of these collective 
excitations, he treated the macroscopic hydrodynamic 
variables—density and velocity—as quantum-mechani
cal operators, instead of applying quantum mechanics 
to the motions of the individual particles. While the 
quantization procedure was carried out by analogy 
with particle quantum mechanics, quantum hydro
dynamics was not deduced from a "more fundamental" 
hypothesis; it must be considered as a new set of postu
lates, which can only be justified by comparing its con
sequences with experiment. Thus Landau was able to 
predict the phenomenon of "second sound" (thermal 
waves), previously predicted by Tisza, and confirmed 
experimentally by Peshkov in 1944. Landau also pre
dicted that at absolute zero the velocity of propagation 
of second sound would equal that of ordinary sound 
divided by V3, a prediction not yet conclusively tested. 
Landau and Khalatnikov attempted a quantitative 
calculation of the viscosity coefficient in 1949 (295, 296), 
and were able to reach some definite conclusions about 
the temperature dependence (vide infra). 

The basic excitations in the L.K. theory are "pho-
nons" and "rotons." (The Onsager-Feynman vortex 
filaments also have been incorporated in some recent 
papers (309, 404).) The phonons are simply quantized 
sound waves or density fluctuations, similar to photons 
in the quantum theory of the electromagnetic field. 
The exact nature of rotons is a subject of some contro
versy; they may be described as some kind of local 
vortex motion (154, 155, 284, 323, 419). In the L.K. 
theory, rotons are short-wave excitations characterized 
by a certain relation between energy and momentum, 
and they merge continuously into the long-wave pho
nons, although in Landau's earlier paper (293) there 
appeared to be a sharper distinction between phonons 
and rotons. 

Quantum hydrodynamics is similar to quantum field 
theory, but it should be remembered that this is vintage-
1941 quantum field theory, a rather mild variety com
pared to some of the exotic brews we have seen in 
recent years. In fact, it can be understood byanyonewho 
is familiar with elementary quantum mechanics, as 
expounded in a textbook such as Schiff's. (For a more 
detailed exposition of quantum hydrodynamics we 
refer to London's book (322).) 

For the local mass density operator we can use the 
function p(R) already defined by eq. 25 

P(R) = t » S a(n - R) (25) 
i 

since for a single particle described by a wave function 
\f/(r) the probability of finding that particle at the 
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point R is 

(p(R)> = j V ( r ) p ( R ) , K r ) d r = m j V ( r ) 5 ( r - R)v(r)dr = 

m^*(R)i/-(R) = m | v ( R ) | 2 

The symbol ( ) now indicates the quantum-mechanical 
expectation value of an operator. 

The quantum-mechanical operator for the momentum 
of particle i is pt = %{ — l)1/2Ari, and one might expect 
to be able to define a momentum-density operator by 
multiplying p ; by 5(r; — R) and summing over all the 
particles. However, PiSfo — R) is no longer the same as 
5(ri — R)p; since p ; and r; are non-commuting opera
tors. I t turns out to be consistent to define 

Ji = MPi«(n - R) + s(n - R)Pi] 

thus 

(Ji) = W - I ) - 1 " JVvS(ri - R)̂ dT1 + 

ift(-l)-1 '2 JVsOr1 -R)WdTi 

Integrating by parts in the first term, we get 

<Ji> = §7t(-I)-1^-(R)Vy(R) - *(R)v**(R)l 

The total momentum-density operator is 

J(R) £ Ji(R) 
i 

The local velocity is similarly represented, not by 
P - 1J or J p - 1 but by 

v = K P - 1 J + JP- 1 ) 

Following Landau's notation (293) we shall hence
forth use pi and Vx to denote the density and velocity 
operators at the point Ri in space, rather than the 
operators associated with particle one; and having 
defined these operators we can forget about the atomic 
constitution of the fluid and treat it as a continuum. 

We now need the commutation rules for p and v. 
These are calculated easily and the results are 

PlP2 — P2Pl = 0 (40) 

vip2 - p2v, = h(-I)-^2VS(Ri - R2) (41) 

ViV2 - V2Vi = / K - I ) - 1 ^ S ( R I ~ R2)Pi"1 curl v (42) 

(curl v)ip? — p2(curl v)i = 0 (43) 

Note that in eq. 42 one can use either p,_1 or p 2
- 1 on the 

right-hand side because of the delta function; and that 
in eq. 43, (curl v)i means the tensor operator curl v at 
the point 1 in space. 

Landau now points out that if (curl v) = 0 at every 
point in space at any time, then curl v commutes with 
p, v and the Hamiltonian and therefore remains zero 
at all subsequent times. This "irrotational" state of 
motion is thus a stationary state of the system; and he 
argues that there are no states with non-zero but in-
finitesimally small values of curl v. There is of course 
a whole spectrum of states with finite values of curl v, 
but there must be an "energy gap" A separating them 

from the lowest irrotational state. Of course for any 
real liquid the lowest rotational states may have either 
higher or lower energy than the lowest irrotational states; 
A may be either positive or negative. The value of A 
cannot be calculated from such a macroscopic theory, 
but must be taken as a parameter fixed by experiment. 
In the case of liquid helium, it is consistent to assume 
that A is positive, so that the motion is irrotational at 
very low temperatures; it is known by experiment that 
liquid helium can flow through very thin tubes with no 
resistance, and therefore the usual mechanism of energy 
dissipation by excitation of internal motions somehow 
fails to operate. The absence of friction is explained by 
invoking the quantum concept that a system cannot 
absorb a certain amount of energy unless that amount is 
sufficient to raise it to one of its excited states. 

After Landau's theory was published, the criticism 
was made that it did not really explain why there hap
pens to be such a scarcity of low-lying excited states in 
liquid helium; this could only be explained by consider
ing the actual nature of helium atoms (152, 154). 
There seemed to be no reason why the isotope 3He 
should not have the same superfluid properties as 4He 
if Landau's theory was correct; whereas the atomic 
theories could take into account the fact that 8He 
obeys Fermi-Dirac statistics while 4He obeys Bose-
Einstein statistics. With these criticisms in mind, let 
us continue with Landau's theory. 

From a macroscopic point of view, the energy per unit 
volume of a liquid is V2 pv2 + pt(p) where the internal 
energy e is some function of the density. Taking into 
account the fact that p and v at the same point do not 
commute, we can write the corresponding quantum-
mechanical Hamiltonian operator as V2 v-pv + 
pe(p), and the total Hamiltonian as 

H = J*{§vpv + (p)pe}dr (44) 

In order to reproduce the equations of hydrodynamics 
with our quantized density and velocity operators, we 
use the rule that the time derivative of an operator is 
determined by its commutator with the Hamiltonian 

](Pi = [i/hHp - pH) 

= [i/K] I J[v2'p2(v2pi - PiV2) + (v2pi — PiV2)' p2v2]dr 

= TvS(R2 - Ri)-J2dR2 

= - Js(R2 - Ri)V-dR2 

= -V'J i 

(Terms involving e(p) vanish because pi and p2 commute 
everywhere.) Thus we have the continuity equation in 
operator form 

^ + V-KPV +vp) = 0 
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and similarly one can obtain Euler's equation in the 
form 

§ + Kv-V)V + i(V-v)v = - p - i v | j 

where de/dp is the pressure. 
Any function describing the density of the liquid can 

be expanded in a Fourier series of the form 

p(r) = po + 7 - " 2 Y, fpke ik ' r + Pk*e~*T) ( 4 S ) 

where p0 = Nm/V is the equilibrium average density. 
The same expansion can be used when p and v are 
quantum-mechanical operators; each term in the sum 
can then be associated with a phonon of momentum 
p = hk, representing a sound wave of frequency w = ck 
traveling at a velocity c. 

The commutation rules for the operators pt and vk, 
which we now call pp and vp following Landau and 
Khalatnikov, are determined by substituting eq. 45 
and 46 into eq. 41 and using the Fourier expansion of 
the delta function 

«(ri - r2) = W~112 Y f«ik'(n_rs) + «-*•<"-*>} ( 4 6 ) 

In order that eq. 41 may be satisfied as an identity for 
all values of ri and r2, the coefficients of corresponding 
exponentials on the left and right sides of the equation 
must be equal, and this gives the results 

ppps* - ps*pp = (p0p/2c)5ps (47) 

vp = (cp/pop)pp 

where 5ps is the Kronecker delta symbol, equal to one if 
p = s and to zero if p ^ s. 

If we now substitute the Fourier expansions of p 
and v into the term (l/2)v-pv in eq. 44 and integrate 
over the volume of the liquid, we find that the result 
can be written in the form 

H = H0 + Vs + Vi (48) 

Ho = (CVPO) Y (PPPP* + PP*PP) 
p 

where V3 and F4 are sums of products of three and four 
of the p's, respectively. 

Equation 48 is essentially the Hamiltonian for a 
system of harmonic oscillators, whose properties are 
well known. pp* and pp can be related to operators which 
create and annihilate phonons of momentum p 

PP* = ap+e-'<•><(pop/2c)1/2, pp = ape-'^popAO1 '2 (49) 

where 
a = cp/h 

Substituting eq. 49 into eq. 48, we obtain 

Ho = Y (apfflp+ + a P
+ a p ) ( W 2 ) (50) 

Instead of using wave functions, we define a state of 
the system by specifying the number of phonons present 
in each momentum state p. A state with np phonons in 

state p is denoted by Dirac's ket symbol, | . . . np . . . > 
where " . . . " indicates the occupation numbers of 
the other states, not specified. When ap

+ operates on a 
state with np phonons on momentum p, it changes it to 
a state with np + 1 phonons of momentum p, a state
ment represented symbolically by the equation 

<zp
 + | . . . r a p . . . > = (rap + l ) 1 / 2 | . . . n p + l . . . > (51) 

Similarly the annihilation operator cxp reduces by one 
the number of phonons with momentum p 

OpI. . . n P . . . > = ( ra p )" 2 | . . .np - 1. . . > (52) 

The factors (np + 1)1/2 and (wp)
1/2 have been included 

in the definitions of ap
+ and czp so that the product 

ap+ap will have the convenient property 

a p + a p | . . . np . . . > = « p | . . . np . . . > (53) 

thus Op+CJp is the "number operator" which, operating on 
a state, brings out as a factor the number of phonons of 
momentum p in that state. Conversely 

ap<zp + | . . .rap.. . > = (rap + 1 ) | . . . n p . . . > (54) 

and combining eq. 53 and 54 we recover the commu
tation rule, eq. 47 

(ZpCZp+ — Op+Op = 1 

(dp commutes with ap> and <zp<
+, if p ^ p'.) 

When Ho operates on any state | . . . > the result is 

Hoi...> = [ 2 > p + 1A)H | . . .> 

and we can therefore write H0 symbolically in the form 

H0 = Y (nP + 1A)Ho1 (55) 

which is the familiar expression for the energy of a 
system of independent harmonic oscillators, including 
the zero-point energy. The "matrix elements" of the 
operators ap and ap

+ are 

(op)B,n' = <n'|op |ra) = (rap + l)1/2Sn,> +i , rap' = (ap +)„',„ (56) 

where n stands for the set of occupation numbers and 
differs from n' only in the occupation number of the 
momentum state p. Equation 56 follows from eq. 51 
and 52 and the orthonormality condition 

(n'\n) = 5no,nD/ 

To calculate the viscosity coefficient, Landau and 
Khalatnikov (295, 296) introduced the approximation 
of treating the phonon and roton excitations as an ideal 
gas of quasi-particles, applying the kinetic theory to 
compute the transport of momentum in the binary 
collision approximation. One might think that this 
would lead to a viscosity coefficient increasing with 
temperature, as in a gas, contrary to the experimental 
evidence which indicates a negative temperature co
efficient below 1.60K. (We refer here to the viscosity 
as measured by the disk experiments, rather than by 
capillary flow measurements.) However, it turns out 
that the effective cross section (and thus the mean free 
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path) for phonon-phonon scattering is strongly tem
perature dependent, and hence the L.K. theory is able 
to give a fairly convincing qualitative explanation of 
the temperature variation of the viscosity coefficient at 
temperatures well below the lambda point. 

The interaction between phonons is determined by 
the terms Vz and Vi in the Hamiltonian. We consider 
the scattering of phonons with momenta p and pi, 
resulting in phonons with momenta p ' and p / after 
the collision. The term V%, which contains products of 
three annihilation or creation operators, cannot give a 
direct contribution to this process in first-order pertur
bation theory, since it must change a state with an even 
number of phonons to one with an odd number of 
phonons, and conversely. Vi contains products of four 
operators, and we are interested, in particular, in 
terms like av>

 +av>
 +apa9l. This operator annihilates a 

phonon of momentum pi and one of momentum p, 
and then creates one of momentum p / and one of mo
mentum p'. Vi will contain other terms in which these 
same operators appear in a different order, but one can 
rearrange them by using the commutation rules. 

Term F 3 gives a second-order contribution to the 
scattering process, since it can induce transitions from 
the initial state (A) to a virtual intermediate state (I) 
and then to the final state (F). There are six possible 
kinds of intermediate states; we denote by YAi the 
combination of operators which produces the state i 
from the initial state A containing two phonons of mo
menta p and pi; F i F converts this state to the final 
state F, with two phonons of momenta p' and p / . 
Note that momentum but not energy is conserved in 
the intermediate state. 

Intermediate state and phonon momenta 

According to quantum-mechanical scattering theory, 
the effective differential cross section is 

d<r(p, P l , p', P l ' ) = ( ^ C ) - I | - H " A F ' | 2 5 ( 6 + ei - «' - e i')A-8dp' 

(57) 

where, in the approximation used in the L.K. theory 

ff'AP = E ^ l ^ : * + (V1)J,, (58) 

and the matrix elements (F3)Ai, (F3)iF and (F4)AF are 
to be computed using eq. 48 and 56 together with some 
empirical information about e(p) obtained from the com
pressibility of the liquid, e, ei, e' and ei' are the energies 
for phonons of momenta p, pi, p ' and p', respectively. 

The denominators in eq. 58 depend on the energy-
momentum relation for phonons. The energy of a free 
phonon is hoi = cp, according to eq. 55, but we cannot 
use this relation in eq. 58 because the denominators of 
the first five terms in the sum would be zero. To avoid 
getting an infinite result for H^' Landau and Khalat-
nikov combine the phonons and rotons to obtain a 
single energy-momentum spectrum. They assume that 
for small p the energy is proportional to p, and for 
larger momenta it falls back to a minimum value A at 
p = P0. The rotons have an energy 

E = A + (p - P 0 ) V 2 M 

where JJ. is the "effective mass" of a roton, a parameter 
to be determined from experiments like A and P0. 
(This can be done by fitting the specific heat curve or, 
more directly, from neutron scattering experiments.) 

The combined spectrum is assumed to have the form 

e2 = Aip2 + A2p* + Asp* + Atp* 

where the constants Ai to Ai are determined by the 
conditions 

(de/dp) p_o = c; (d«/dp)j ,-p0 = 0; 

The values of the A's are thus found to be 

Ai =• c2; Ai = (l/4Po2)(24A2/Po2 + A//* - 12c2) 

At = (1/P0
4)(3c2 - 8A2/Po2 - A/2M); 

Ai = - ( l / 4P 0
6 ) (4c 2 - 12A2/P»2 - A/M) 

For small p the energy spectrum has the form 

e = c(p - TP3 + • • • ) (59) 

7 = - A 2 / 2 c 2 

Equation 59 is then used to calculate the energy de
nominators in eq. 58 

EA - E1 = ((p) + e(pi) - e([p + PiI), etc. 

We omit the details of the rest of the calculation and 
summarize the results. The viscosity coefficient is a 
sum of three parts 

representing the contributions from phonon-phonon, 
phonon-roton, and roton-roton scattering, respec
tively. The second of these is not calculated in detail in 
the L.K. theory because it is asserted to be negligible 
compared to r?rr at temperatures above 0.70K., and 
negligible compared to ^ 0 below 0.70K. The other two 

I 
II 
III 
IV 
V 
VI 

P + Pl 
P - P ' 
P - Pl' 
Pl - Pl' 
Pl - P' 
P Pl 

Pl 
Pl 
P 
P 
P' 

P' 
Pl' 
Pl' 
P ' 
Pl' - p ' - P l ' 

FAi 

Ctp-j-piflpflpi 

G p - p '&p'&p 

flpi —pi'Ctpi'Ctp 
_ • + • rt + 

-,+ , „+ „ 
a p l — p'tZp "-pi 
a p ' d p i ' a — p ' - p i ' 

FiF 

&p'Gtp'iflp-fpl 

O p i ' t t p ^ p - p ' 

Gtp'Gtp — P1 CSp1 

flpi'flp! — pi/Ctp 

CJpi'Gtpi — p'CSp 

GfpGtpiOp' — p i ' 
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parts are called the phonon and roton viscosities. The 
phonon viscosity is estimated as 

W = 8.7 X 10-»r-l'!eA'*r poise, for T > I0K. 

= 7.8 X 10-Ic(ri'2e-A>"' + 4.8 X 10-6T5)-' poise, for 

T < 0.80K. 

Between 0.80K. and 1.00K. the phonon viscosity cannot 
be estimated accurately because processes involving a 
change in the total number of phonons interfere with 
the establishment of equilibrium in the phonon gas. 
While processes such as one phonon turning into two, 
or two into one, are forbidden, because it is impossible 
to satisfy both momentum and energy conservation, it 
is possible for two phonons to combine and produce 
three; the intermediate states II, III, IV, and V can be 
"real" states providing p' and p / have the particular 
values required by energy conservation. Many other 
terms in Vz also can contribute to this process in second-
order perturbation theory; Landau and Khalatnikov 
decided it was not worth while to calculate all these 
contributions since the process is important only in a 
very small temperature range. They claim that the 
relaxation time corresponding to such five-phonon 
processes can be estimated from experimental values 
for the coefficient of sound absorption, and conclude 
that at temperatures above 0.90K. these processes 
take place more slowly than the scattering processes 
characterizing viscosity, whereas below 0.90K. they 
are more rapid. I t is only when phonon emission and 
scattering take place at about the same rate that 
Landau and Khalatnikov's method for solving the 
Boltzmann equation (by assuming rapid establishment 
of equilibrium in the phonon gas) becomes inapplicable. 

I t should be remarked at this point that while pho
nons obey Bose-Einstein statistics, they do not undergo 
a Bose-Einstein condensation because their total 
number is not fixed. Therefore the L.K. theory cannot 
explain the lambda transition without introducing some 
further hypotheses. 

The roton viscosity cannot be estimated quantita
tively from the theory because the nature of the inter
action between rotons is unknown. Landau and Khalat
nikov assume it has the form 

V(r) = 7„5(r) 

where V0 is a parameter to be determined empirically. 
They show that ^11 is independent of temperature for 
such a point interaction, and may be assigned a value 
t?rr « 10~6 poise. This is about the value of the total 
viscosity of helium at 1.70K., where it is a minimum. 
The L.K. theory does not explain the subsequent in
crease in the viscosity as the temperature approaches 
the lambda point (2.20K). 

Tisza (496) predicted that the viscosity would be 
proportional to the fraction of the "normal" component, 
which would have a gas-like viscosity proportional to 

!T'7'; the viscosity of helium II would thus have a posi
tive temperature coefficient, in disagreement with later 
experiments (23). The L.K. theory attributes the ob
served sharp increase in viscosity as the temperature 
is lowered below 1.70K. to the strong temperature-
dependence of the phonon-phonon scattering cross 
section. 

We refer to the recent literature (109, 200a, 205, 216, 
259, 260, 261, 262, 263, 309, 398, 404, 494, 549) for 
extensions and revisions of the L.K. theory. There also 
have been several discussions of the nature of phonons 
and rotons, and attempts to calculate equilibrium prop
erties using various proposed wave functions for these 
excitations. Considerable work still needs to be done on 
the interaction of rotons with each other and with other 
excitations, and it is not clear whether roton scattering 
cross sections can be deduced directly from the postu
lates of quantum hydrodynamics without invoking 
atomic considerations. The L.K. theory, especially the 
rather messy calculations which we did not go into, 
needs to be put in a more presentable form before it 
can be regarded as an established scientific theory; 
up to now, Landau and his collaborators seem to have 
been more interested in getting quick results and sug
gestions for further experiments than in refining the 
original calculation of the shear viscosity coefficient. 
This is quite proper in such a rapidly developing field 
as low temperature physics, where a theoretical predic
tion can often motivate experimentalists to overcome 
many technical obstacles. However, we commend to the 
reader with a theoretical bent Lord Kelvin's remark, 
once again relevant after nearly a century (257): 

A full mathematical investigation of the mutual action be
tween two vortex rings of any given magnitudes and velocities, 
passing one another in any two lines, so directed that they never 
come nearer than a large multiple of the diameter of either, is a 
perfectly soluble mathematical problem; and the novelty of the 
circumstances contemplated presents difficulties of an exciting 
character. Its solution will become the foundation of the pro
posed new kinetic theory of gases. 

The original vortex atom theory was, as Truesdell 
would say, "one of the many molecular speculations 
whose dry bones litter the by-paths of physics" (508). 
But a successful investigation of the interaction of two 
vortex rings, in their modern reincarnation as rotons, 
would be an important contribution toward the synthe
sis of quantum mechanics and hydrodynamics, and 
toward the construction of a theory which promises to 
achieve a consistent and unambiguous deduction of 
observable properties from postulates about collective 
molecular motions, without attempting the apparently 
hopeless task of describing the motions of all the indi
vidual particles. The possibility of constructing such 
theories is of considerable significance for both physics 
and chemistry. 
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Note Added in Proof 

Since this article was written, there have appeared 
several papers deserving at least a brief mention. 
Davis, Rice, and Sengers (559) have derived by kinetic 
theory methods a formula which appears to be the 
generalization of Enskog's result (eq. 15) for the vis
cosity of dense fluids of hard spheres with "square-well" 
attractive forces. Sather and Dahler (576) also ob
tained formulas for the viscosity of dense fluids of 
"rough" spheres and of rigid convex molecular "cores" 
surrounded by "potential staircases." Livingston and 
Curtiss (566) modified the Enskog theory of dense 
fluids of hard spheres by attempting a more accurate 
determination of the non-equilibrium pair distribution 
function. Yih (583) analyzed the dual role of viscosity 
in the stability of the flow of rotating fluids. Fluctua
tion-dissipation expressions were used to calculate 
transport coefficients by Swenson (581) and by Nishi-
mura and Mori (574). The other papers cited deal with 
entropy production due to viscous forces (563); deriva
tion of the equations of hydrodynamics from statistical 
mechanics (571); the Landau-Khalatnikov theory 
(555, 584); turbulence (558); viscosity of glasses (554); 
non-Newtonian fluids (565); polymers (561); relaxation 
theory (569, 572); the superposition approximation 
(573); ultrasonic absorption (570, 578); empirical or 
semi-empirical formulas for viscosity (556, 564, 579, 
580). 

The author thanks Drs. B. J. Alder, D. S. Carter, 
G. M. Harris, H. B. Levine and T. E. Wainwright for 
discussions and suggestions. 

IV. GLOSSARY OF SYMBOLS 

Symbol and definition 

Op 

+ 
d p 

b 
c 
e 

f 
a 

h 
h 
i,3 
i 
i 
k 

k 
m 
n 
Up 

P 
Pi 

Section where introduced 

IH-D Annihilation operator for phonons of mo
mentum p 

Creation operator for phonons of momen- IH-D 
turn p 

Volume occupied by spheres III-A-1 
Velocity of sound HI-D 
Base of natural logarithms (2.718. . .) I-D 
Distribution function HI-B 
Function used to define dimensionless rela- H-B 

tion between stress and deformation 
Planck's constant IH-C 
h/2ir IH-C 
Labels for molecules (1 to TV) III-B-1 
Label for intermediate state (I to VI) HI-D 
Imaginary unit ( - 1 ) >'2 III-B-1 
Wave number in Fourier expansion of the IH-D 

phonon field (k = p/h) 
Boltzmann constant I-D 
Mass of particle I-A 
Set of occupation numbers for phonon states IH-D 
Number of phonons with momentum p IH-D 
Momentum of a phonon IH-D 
Momentum of molecule i III-B-1 
Generalized coordinate (position or mo- III-B-1 

men turn) 
Point in phase space (set of all the g,'s) III-B-1 

r 
r 
S 

t 
U 
V 

V 

y 

B 
E 
Fi,-
G 
H 
I, II, III 

J 
L 
P 
Po 
S 
T 
V 
Vu 

V1, V1 

X 
a 
J3 
T 

S 
A 
e 
V 
K 

X 
X 

M 

TT 

« 
P 

PO 

a 
T 

* 
O) 

V 
Vn, vsi 
l 

Rate of deformation 
Point in space (x, y, z) 
Dummy time variable 
Time 
Characteristic time constant of a fluid 
Local hydrodynamic velocity 
Boot^mean-square molecular velocity 
Ratio of collision rate in dense gas to that 

in dilute gas 
Equal to — i(L/0)//o and also to /SS: Vv 
Energy 
Force between particles i and j 
Rate-of-deformation tensor, equal to Vv 
Hamiltonian operator 
Invariant functions of the eigenvalues ol 

the rate-of-deformation tensor 
Momentum density 
Liouville operator 
Pressure tensor 
Equilibrium hydrostatic pressure 
Stress tensor 
Temperature 
Volume 
Potential energy of interaction between 

particles i and j 
Terms in the phonon Hamiltonian operator 

containing 3 and 4 annihilation and/or 
creation operators, respectively 

External force 
Operator function: a{x) = (ex — \)/x 
MkT 
x, y component of rate-of-deformation ten

sor 
Dirac delta function Minimum roton energy 
Energy of phonons 
Shear viscosity coefficient 
Bulk viscosity = X + (2/3)r; 
Second viscosity coefficient 
Dummy variable in Mori's quantum-

mechanical formula 
Roton "effective mass" 
Ratio of circumference to diameter of circle 

(3.14...) 
Momentum-current tensor 
Density 
Equilibrium average density 
Molecular diameter 
Plateau time 
Wave function 
Phonon frequency (u = cp/^) 
Differential operator (d/dx, d/dj/, d/dz) 
Same as V with x replaced by nx or ptx, etc. 
Unit matrix 

H-B 
III-B-2 
III-B-2 
IH-B 
H-B 
H-A 
I-A 
III-A-1 

III-B-2 
III-B-2 
III-B-3 
H-B 
HI-D 

: H-B 

III-B-3 
III-B-1 
H-A 
H-A 
H-B 
I-D 
III-A-1 
III-B-2 

IH-D 

III-B-1 
III-B-3 
III-B-2 
H-B 

III-B-1 
IH-D 
IH-D 
I-A 
H-C 
II-A 
HI-C 

IH-D 
IH-C 

III-B-3 
I-A 
IH-D 
I-A 
III-A-2 
IH-D 
IH-D 
III-B-1 
III-B-1 
H-A 

V. GUIDE TO THE LITERATURE 

A number of review articles and books are available 
on various aspects of liquid viscosity; we begin with 
those on the statistical mechanical methods used in 
transport theory. The treatise by Hirschfelder, Curtiss 
and Bird (232) is now the standard reference for this 
subject, and it includes an account of Enskog's theory 
of dense gases and Eyring's rate theory of viscosity. 
Chapman and Cowling (88) give a more mathematical 
treatment of the classical kinetic theory of gases, and 
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of Enskog's theory of dense gases. Both are essential 
handbooks for research workers, but others may be 
discouraged by the large mass of material which ap
parently must be digested before one gets to the 
applications to liquid viscosity. The reader who wants 
to master the mathematical techniques used in the 
more recent theories, as opposed to the older kinetic 
theory methods, would be better advised to try Mas-
signon's monograph (337). This exposition sets a high 
standard for clarity and simplicity yet does not sacri
fice mathematical rigor. 

Books on statistical mechanics (107, 135, 194) and 
irreversible thermodynamics (114, 115, 409) include 
applications of those disciplines to viscous flow prob
lems. The books by Bingham (49), Brillouin (72), Dun-
stan and Thole (126), Hatschek (215), Merrington 
(346), Barr (30), Gemant (176) and Andrade (16) are 
entirely devoted to viscosity, and some of them devote 
a great deal of space to discussions of experimental 
methods and results, empirical formulas, and approxi
mate theories and mechanisms. Bingham's book (49) 
contains a particularly comprehensive bibliography of 
work published before 1922; a later revision of this 
bibliography carried it up to 1931 (50). 

There are many review articles which discuss par
ticular theories of viscosity: by Graetz (188); Herzfeld 
and Smallwood, on Jager's theory (223); Ferguson (147) 
and Barr (31) on the theories of Andrade and others; 
Burgers (84) on the theories of Andrade and van der 
Waals, Jr.; Jaeger (247) and Schulz (459) on the effect 
of chemical constitution on viscosity; Gemant (175) 
on the theories of Andrade, Eyring, Prandtl, Taylor and 
van der Waals, Jr.; a chapter in the book by Glasstone, 
Laidler, and Eyring (180) on Eyring's theory; Schubert 
(455) on German work during World War I I ; H. S. 
Green (194, 196) on the theory proposed by Born and 
himself; Harrap and Heymann (212) on the applica
tion of the Frenkel and Eyring theories to ionic liquids; 
Verschaffelt (524) on his own previous work; Rost (446) 
on the theories of Eyring, Andrade, Born and Green, 
and Vogel; Bondi (56) on the theories of Born and 
Green, Kirkwood, and Eyring; Collins (95) on the 
theories of Andrade, Born and Green, Collins and Raff el, 
Eyring, Kirkwood, and van der Waals, Jr.; Dow (120) 
on the pressure-variation of viscosity according to the 
theories of Frenkel, van Velden, Bondi, and Waring 
and Becher; Frank and Jost (161) on the application of 
theories of Enskog and others to the viscosity of liquid 
mixtures; Eyring (144) on his own theory and its 
application to Newtonian and non-Newtonian flow; 
Kochendorfer (281) on theories which explain viscous 
flow in terms of molecular rearrangements; Longuet-
Higgins (324) on Kirkwood's and Enskog's theories; 
Cole (91, 92) on the work of Kirkwood and Eisenschitz; 
Eisenschitz (132, 133, 134, 135) on his own theory and 
those of Kirkwood and Born and Green. Some of the 

most recent work on transport theory is discussed by 
Rice and Frisch (432) and by Mori, Oppenheim, and 
Ross (365); a good sample of original papers was pre
sented at the Kirkwood Memorial Symposium (108) 
and published in November, 1960, issue of the Journal 
of Chemical Physics. Partington (397) gives an exhaus
tive survey of experimental methods, empirical and 
semi-empirical formulas, effects of temperature and 
pressure, relaxation theories, solutions of nonelectro-
lytes and of electrolytes, and good bibliographies on 
all these subjects. Dresden (120a) reviews quantum 
theories of transport phenomena. 

Another group of articles is concerned with the mo
lecular theory of the viscous flow of colloidal or high-
polymeric systems (6, 144, 149, 160, 167, 170, 206, 220, 
283, 300, 331, 335, 348, 368, 399, 442, 498, 550) and one 
of the supplements of the Progress of Theoretical Physics 
contains review articles on this subject (170). The 
books and articles on rheology mentioned below are 
also relevant. 

The mathematical theory of Brownian motion, 
originally developed for the study of macromolecular 
or colloidal systems, also has been applied to monatomic 
liquids by Kirkwood (270), and the exposition of this 
theory by Chandrasekhar (87a) is helpful in under
standing Kirkwood's theory. Cox (107) and Eisenschitz 
(135) have also discussed viscous forces from the view
point of Brownian motion theory. Lax (299) reviews 
theoretical work on fluctuations from the non-equi
librium steady state. 

Since experiments on ultrasonic absorption often are 
interpreted as measurements of the bulk viscosity co
efficient, we have included in the bibliography several 
publications on this subject, and on the molecular re
laxation processes involved in ultrasonics (76a, 111, 
137,238, 279, 285,333, 336,437,439, 448, 469, 490). The 
recent book by Herzfeld and Litovitz is particularly rec
ommended (222). Bergmann's treatise (44) covers bulk 
viscosity as well as many other aspects of ultrasonics, 
and an appendix (45) brings his bibliography to a total 
of over 7000 items. 

While viscosity is mentioned in almost every book on 
hydrodynamics, its effects are often largely ignored; 
we cite only those books which pay particular attention 
to the role of viscosity (53, 68, 105, 121, 145, 178, 183, 
184, 208, 290, 297, 311, 339, 352, 353, 391, 392, 393, 
394, 407, 414, 478, 487, 526, 528, 543). The early history 
of viscous hydrodynamics is discussed by Rouse and 
Ince (447) and by Truesdell (509, 510a) and others 
(227, 483). Boundary layer theory, which takes account 
of viscous effects only at fluid-solid interfaces, is the 
subject of books by Pai (392), Loitsianskii (321), 
Gortler (186), Schlichting (454), Brun (77), and Wick 
(539) and articles by Gadd (171), Geis (174), Howarth 
(236, 237), Kuethe (287), Rubesin (449), and Moore 
(360) (see also 105, 183, and 391). Turbulence theory is 
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reviewed in refs. 37, 38, 39, 105, 148, 173, 183, 209, 
230, 307, 311, 312, 313, 393, 466, 503. 

During the last few years, annual review articles have 
appeared in Industrial and Engineering Chemistry 
on "Molecular Transport Properties of Fluids" (254) 
and "Fluid Dynamics" (239, 386, 387, 388, 389, 390, 
477); these provide useful surveys of current theoretical 
and experimental work. 

Truesdell (506, 509) has reviewed the various at
tempts to provide rational generalizations of the classi
cal linear theories of elastic and viscous substances, and 
has also recently (508, 513, 515) given non-technical 
accounts of some of this work. Reiner (422, 425, 426, 
427), Bland (54), Gross (200), Tsui (517), and Cole
man and Noll (93b) have also covered the more mathe
matical aspects of viscoelasticity theory. Books on 
rheology (73, 74, 89, 192, 213, 350, 428, 461, 462, 463, 
465, 519) show how the observed properties of particu
lar substances can be described by these theories. The 
British Rheologists' Club has published several volumes 
based on its conferences; the first of these (73) gives a 
good survey of the whole field, later volumes being 
collections of more technical papers (74, 350). The 
series of volumes edited by Eirich (129) contains many 
useful reviews of various aspects of rheology (see also 
81, 347, 421, 458, 541, 545). Burgers and Scott Blair 
(85) and Treloar (504) have discussed rheological nomen
clature. 

Quantum-mechanical theories of viscosity usually 
have been developed with reference to liquid helium, 
and are thus covered in books and articles on low 
temperature physics and superfluidity (24, 25, 185, 190, 
308, 322, 542). Many of the discussions are concerned 
with establishing the nature of the excitations involved 
—phonons, rotons, and quantized vortex lines—rather 
than with explicit calculation of the viscosity coeffi
cient. Landau's theory of a Fermi liquid, intended to be 
applied to the isotope 3He, is reviewed by Abrikosov 
and Khalatnikov (1), and the Landau-Khalatnikov 
theory of 4He is reviewed by Khalatnikov (261, 262). 

Touloukian (500, 502) has announced the establish
ment of a "Thermophysical Properties Research Cen
ter" for the collection and dissemination of data and 
information on seven physical properties, including 
viscosity, and the first volume of a Retrieval Guide 
has been published (501). 
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