THE OXYGEN FLUORIDES

A. G. STRENG

The Research Institute of Temple University, Philadelphia 44, Pennsylvania Received June 6, 1963

Contents

I.	Introduction	607
II.	Oxygen Difluoride, OF ₂	608
	A. Preparation	608
	B. Physical Properties	610
	C. Solubility	610
	D. Stability.	610
	E. Explosiveness	610
	F. Chemical Reactions	610
	1. In Aqueous Solutions	611
	2. With Metals	611
	3. With Nonmetallic Solid Substances	611
	4. With Halogens	611
	5. With Gases	612
	6. With Organic Compounds	612
	G. OF ₂ in Propellant Systems	612
	H. Methods of Analysis of OF.	612
TTT	Dioxygen Difluoride. O ₂ F ₂	613
	A. Preparation	613
	B Physical Properties	613
	C. Solubility	613
	D Stability	613
	E. Explosiveness and Inflammability	613
	F Chemical Beactions	615
	1 With Organic Compounds	615
	2 With Ammonia, Water, and Hydrogen	615
	3 With Cla CIF and HCl	615
	4 With Br. Bromine Fluorides and HBr	616
	5. With L and IF.	616
	6 With Phosphorus PF. and PF.	616
	7 With NOF NF. and NF.	617
	8. With S SF. and H.S.	617
	0 With Tatrafluoroathylana	617
	10 Behavior of O.F. with Some Other Substances	617
	G Mathed of Analysis of O.F.	617
T 77	Triozuran Difluoride O.F.	617
1 .	A Propagation	618
	B. Physical Pronortias	619
	C Solubility	619
	D. Stability	619
	E Evalorization	619
	E. Chamical Proportion	619
	C. The Compatibility of O.E. O. Solutions with Various Engineering Materials	621
	H Hypergolia Effect	621
	I. Method of Analyzia of $O \mathbf{F}$	622
T 7	Totroovygan Difluoride OF	622
v.	1 - Dramanation	622
	D. Droportion	622
νT	D. 110ptillos	622
Υ 1. 3777	Deferences	623
۷11.	1/0101010000	020

I. INTRODUCTION

There are four oxygen fluorides known to date: oxygen difluoride, OF_2 ; dioxygen difluoride, O_2F_2 ; trioxygen difluoride, O_3F_2 ; and tetraoxygen difluoride, O_4F_2 . All members of the group are endothermic compounds and have a remarkably strong oxidizing power. In recent years, oxygen fluorides attracted much attention. Some are considered to be possible ingredients for the high energy propellant and explosive systems; the others are potential reagents for chemical reactions at extremely low temperatures.

An attempt is made in this review to systematize the published material on the synthesis and properties of oxygen fluorides. The review covers the literature through 1962, plus a few publications of 1963.

II. OXYGEN DIFLUORIDE, OF2

The first success in combining fluorine with oxygen was reported in 1927, by Lebeau and Damiens (52). They observed the formation of OF_2 while preparing fluorine in an electrolytic cell at about 100° with molten (slightly moist) KF-HF as electrolyte. Later, in an attempt to purify the fluorine gas with a caustic soda solution, Lebeau and Damiens found that OF_2 is formed also by the reaction of F_2 with aqueous NaOH (53). This reaction is generally employed now for the preparation of oxygen diffuoride.

A. PREPARATION

The most common method of preparation of oxygen difluoride (10, 13, 54, 67, 71) is based on the reaction

$$2F_2 + 2NaOH \rightarrow OF_2 + 2NaF + H_2O$$

Both NaOH and KOH may be used. The yield depends on the strength of the solution. Cady (16) found that the yield rises to a maximum of about 60% in 0.5 N KOH. Other investigators (49, 80, 86, 102, 108) reported much lower yields. A supply of the base must be maintained and the concentration must be kept at about 2% in order to avoid the secondary reaction

$$OF_2 + 2OH^- \rightarrow O_2 + 2F^- + H_2O$$

TABL	εI			
PHYSICAL AND PHYSICO	Physical and Physicochemical Properties			
of Oxygen I	Difluoride			
Properties		References		
Appearance Colorless gas at room tem- perature. Yellow liquid below 128°K. Molecular weight 54.000 Molecular structure Triatomic, nonlinear with two equivalent O-F bonds		(107)		
Interatomic distance $r(O-F)$, Å.	1.3896 1.409	(33) (63)		
FOF angle	104° 163' 103° 18'	(33) (63)		
Dipole moment, D.	$\begin{array}{l} 0.297 \ \pm \ 0.005 \\ 0.1759 \ \pm \ 0.0010 \\ 0.4 \ \pm \ 0.1 \end{array}$	(63) (9) (18)		
Ground-state rotational constants, Mc./sec.				

Properties Reference			
A	61,567.71 58,780.09	(33) (63)	
В	11,066.54 10,895.87	(33) (63)	
С	9,343.85 9,166.53	(33) (63)	
Asymmetry constant k Moments of inertia, a.m.u., Å. ²	-0.93400	(33)	
Ι _Α	$8.21096 \\ 8.60037$	(33) (63)	
Ів	45.6809 46.3966	(33) (63)	
Ic	$54.1088 \\ 55.1496$	(33) (63)	
Rotational inertial defect, a.m.u., Å. ²	0.115-0.175 0.217	(63) (33)	
Ko- F , dyne/cm. K_{α} , dyne/cm. Melting point $40.4^{\circ}K = 223.8^{\circ}C$ (of the	$3.21-5.23 \times 10^{-5}$ $0.05-1.67 \times 10^{-5}$	(5) (5)	
98.5% pure compound) Boiling point		(71)	
128.4° K., -144.8°C. 127.9°K., -145.3°C.	(73) (80)		
$\begin{array}{l} \log P_{\rm mm.} = 7.3892 - 578.64 \\ \log P_{\rm mm.} = 7.2242 - 555.42 \\ P = 0.010 \ {\rm mm. at} \ \ 60.213' \\ 0.10 \ \ \ 67.535 \\ 1.0 \ \ \ 76.883 \\ 10.0 \ \ \ 89.236 \\ 100.0 \ \ \ 106.317 \end{array}$	(73) (80)		
$P = \begin{array}{cccc} 760.0 & 127.856 \\ P = & 0.03 \text{ mm. at} & 63^{\circ}\text{K. (m.p. N}_2) \\ & 1.0 & 77^{\circ}\text{K. (b.p. N}_2) \\ & 11.3 & 90^{\circ}\text{K. (b.p. O}_2) \\ & 273.0 & 116^{\circ}\text{K. (m.p. CCl}_2\text{F}_2) \end{array}$ Density			
Gas, 2.41 mg./cc. at N.1.P. Liquid, $d = 2.190 - 0.00523$ 1.521 g./cc. at b. 1.583 at 11 1.719 at 9 1.787 at 7 1.932 at m.	T g./cc. p. 6°K. 0°K. 7°K. .p.	(2)	
31.6 cc./mole at 90.3°K. 28.4 at m.p.		(73)	
Critical temperature 215.2 \pm 0.1°K., -58.0 \pm 0.	1°C.	(2)	
Critical pressure 48.9 atm.		(2)	
Critical density 0.553 g./cc.		(2)	
Critical volume 97.6 cc./mole		(2)	
Viscosity Liquid, between 120 and 127°, 131.5T - 1.5768 cp. 0.2826 cp. at 127.9°K. 168 up at 300°K (astimated)	K., $\log \eta =$	(2)	
TOO MP. at OUU II. (Command)			

The Oxygen Fluorides

		LABLE I	(Continu	ed)	
Trat of		Pro	perties		References
2 650 leas	porization	n			(72)
a.000 KC8 Entrony of	vaporizatio	0. p. m (Trou	ton's con	stant)	(13)
20.65 cal.	$/^{\circ}K.$ mole				(73)
Hildebrand	's solubility	parame	ter at b.r).	()
$\delta = 8.22$	$(cal./cc.)^{1/2}$				(32)
Heat of for	mation (fro	m the el	ements)		
$\Delta H_{298.15}$	$= 7.6 \pm 2.0$	kcal./n	nole		(20)
Fotal energ	y of atomiz	ation	1 0 1		(18)
89.4 ± 2	.u kcai/mol	e or 3.9	$\pm 0.1 e.$	7.	(17)
$E_{0-r} \sim$	y 58 kcal /boy	nd. 2.52	e v		(27)
	57		~		(61)
	57.5				(103)
	58.5				(88)
Rate of irr	eversible th	ermal de	ecomp. O	$F_2 - 0.5O_2$	
$+ F_{2}$ (at 250-270	°C.)		.	
-0.5 d [0	$[\mathbf{JF}_2] \mathrm{d}t = 0$	$\frac{1p}{dt} =$	$kp[OF_2][$	Lotal]	(07 10
In a glas	s vessel the $m/dt = \mathcal{V}^{\dagger}$	evolving	\mathbf{F}_2 forms	SIF_4 , there-	(27, 49,
TOLE, C	$p/\alpha = \Lambda_1$	K_{1}	$- \Lambda_2[\mathbf{OF}_2]$	$\frac{1}{2} + \frac{1}{2} + \frac{1}$	04, 02, 82, 82
added	gas: He A	$n_{\chi_1 O \Gamma}$	N_0 , No. etc.	$K_1 \sim K_2 \sim$	84)
K ₈ .	G	,, 0,	., = . 2, 0000		0-/
Decomp	osition cons	tant (m	ole ⁻¹ sec	1)	
$K_{\mathfrak{o}} \times$	$10^2 = 1.40$	at 250°			
	2.85	at 260°			
m	5.70	at 270°			
Tempera	ture coeffici	tent = 2	2.0 + 0.1	per 10°	
Ine rela	S.E. Har	cies of a	1 12.1 01	012:02:	
0.40.0	.б. г4: пе: А .52	1:	1.10.1.01	. 1.10. 0.00:	
Activation	energy of t	hermal o	lecompos	ition	
40.6 ± 3	kcal./mole		F - ~		(27)
Lifetime of	activated r	nolecule	s		
<10 ⁻¹² s	ec.				(27)
Thermody	namic funct	ions	a =1 dam =1		
Temp.,	,	-cai, mol	ueg. "	$-(F^0 -$	
°К.	C_{p}^{0}	-	S ⁰	H ₁₉₈ 0)/T	//=
0	0.000	0	.000	Infinite	(42, 65)
200	8.067	49 ह =	.409 975	07.487	
200 298	9.098 10 252	00 50	146	59 146	
300	10.375	59	.210	59.146	
400	11.377	62	.340	59.566	
500	12.064	64	.957	60.390	
600	12.526	67	. 201	61.342	
700	12.843	69	.157	62.322	
800	13.067	70	.887	63.287	
900	13.229	72	.436	64.219	
1000	13.349	73 l	.830	05.112	
	Hº -	KCAI.	mole -1		
	H2980	H_{f^0}	F_{f}^{0}	$Log K_p$	
0	-2.604	8.143	8.143	Infinite	
100	-1.808	7.888	9.093	-19.872	
200	-0.956	7.700	10.377	-11.339	
298	-0.000	7.600	11.715	-8.587	
ა 00 ∡იი	0.019	1.099 7 561	11.741	-3.000 -7.179	
500	2.284	7.565	14.520	-6.346	
600	3.515	7.587	15.909	-5.795	
700	4.784	7.616	17.294	-5.399	
800	6.080	7.647	18.673	-5.101	
900	7.396	7.680	20.050	-4.869	
1000	8.725	7.710	21.423	-4.682	

			Properties		References
es	Absorption				
	Absorpt	(13, 26,			
	pur 4210	27)			
	3580	Å., 28,000	em1		
	2940 .	Å., 34,000	cm1		
	a very a	brupt asce	ent is observed	at about 2640	
	A., 38	8,000 cm	¹ , the maximu	1 m of which is	
	Extinction	et reached	at 2130 A., 47	,000 cm sure at 0° film	
	thick	ness 1 cm.)) (1 mm, pres	sure at 0, min	
	λ	1054	λ	1054	
	5460	0.08	2893	1.90	(26)
	5435		2806	1.80	\/
	4916	0.14	2759	1.79	
	4715	0.18	2700	2.07	
	4580	0.23	2655	2.28	
	4450	0.26	2570	3.20 4.10	
9,	4280	0.32	2482	5.70	
62,	4210	0.35	2447	7.70	
83,	4040	0.30	2399	10.00	
	3990	0.31	2378	12.00	
	3960 3870	0.30	2345	20.00	
	3800	0.51	2253	27.00	
	3780	0.84	2236	30.00	
	3650	0.98	2210	34.00	
	3500	1.10	2181	40.00	
	3340	1.33	2165	42.00	
	3131	1.74	2137 2114	$\frac{47.00}{52.00}$	
	2967	1.87	2102	75.00	
	2925	1.88			
	Infrared s	pectrum b	ands, cm1		/r oo
	1740				(5 , 29, 30, 31
	929 909				43, 60,
	840				64, 67)
5)	826				
	461				
	Relative a	bundances	and appearan	the mass spec-	
	trum	of OF.	gative ions m	the mass spec-	
	•• •••	Relative	Appearance		
	-	abun-	potential,	Durate	
	0E.+	dance, %	e.v.	$I(OF_{\star}) = 13.7$	(17)
	Or_2	100	13.7 ± 0.2	$\pm 0.2 \text{ e.v.}$	(17)
	OF+	91	15.8 ± 0.2	Negligible ex-	
				cess KE	
				I(OF) =	
				13.0 ± 0.2	
	0+	4.3		Indeterminate	
	0	110		threshold	
	F+	0.5	•••	Immeasurably	
	~	46	10.00	small	
	F-	63	1.2 ± 0.2	$KE(F^{-}) = 1.3$	
				$KE(F^- + OF)$	
				2.0 e.v.	
				D(FO-F) =	
				= 2.8 e.v.,	
				$D(\mathbf{U}-\mathbf{r}) =$ 1.1 e.v.	

A Pyrex glass reactor, 6-in. long and 1-in. in diameter, is provided with a bottom inlet for the caustic solution and an overflow located at about 2/3 of the height of the reactor. Another inlet for fluorine gas, made of *ca*. 2 mm. i.d. copper or platinum tubing, enters through the top and dips about 0.5-in. into the caustic solution. An outlet tube for gaseous reaction products is provided near the top of the reactor. Caustic solution is fed through the reactor at the rate of about 1 l./hr. and fluorine gas at the rate of 1 to 3 l./hr.

The gaseous OF_2 produced is washed with water and dried by passing it through the traps cooled with Dry Ice. It is collected in the form of a pale yellow liquid in a trap cooled with liquid nitrogen. The crude product is purified by fractional distillation in a low-temperature column.

Oxygen difluoride may be obtained also by electrolysis of aqueous HF containing 10% NaF (19). The anode gas contains about 60% OF₂ when 80-99% HF is used. Some ozone also is formed. The other methods reported in the literature (15, 69, 76) were shown to be inefficient.

B. PHYSICAL PROPERTIES

Oxygen difluoride is a colorless gas that is relatively stable at room temperature but begins thermal decomposition at about 200–250°. At temperatures below 128°K., it is a pale yellow liquid. Oxygen fluoride has an unpleasant, irritating odor and is very poisonous.

Considerable effort was made to study the molecular structure of OF_2 (6, 7, 11, 37, 38, 50, 81, 97–100). The most recent values of the structural parameters and selected data on the main physical and physicochemical properties of oxygen diffuoride are given in Table I.

C. SOLUBILITY

Geaseous OF_2 is slightly soluble in water, and the solution obeys Henry's law with an absorption coefficient (liter of gas in 1 l. of water) of 0.04297 at 20° (38) and 0.068 at 0° (71). The solutions are not stable; a slow hydrolysis reaction takes place at room temperature.

$$OF_2 + H_2O \rightarrow O_2 + 2HF + 80.08$$
 kcal.

Liquid oxygen difluoride mixes homogeneously in all proportions with liquid F_2 at 77°K., with liquid O_2 and O_3 at 90°K., with liquid O_3F_2 at 116°K., and with liquid ClF at 125°K. (91). It also mixes homogeneously with liquid CH₄ at 90°K. but this mixture is very dangerous. It may detonate upon the slightest provocation or temperature rise. Oxygen difluoride dissolves small amounts of O_2F_2 at 135°K. and about 0.05% by weight of ClF₃ at 140°K.

D. STABILITY

Pure and dry oxygen difluoride is relatively stable at room temperature. It can be kept in glass vessels at room temperature for a long period of time without any noticeable decomposition (27). At elevated temperatures, however, it reacts with glass forming SiF_4 and oxygen (22, 23).

The thermal decomposition of OF_2 , studied at 250–270° in glass, silica, silver, copper, and magnesium vessels, was unimolecular but followed a second-order rate (49, 82). SiF₄ was formed in glass and silica vessels; silver and copper showed steady absorption of fluorine over many days, but in the magnesium vessel the fluorine, formed by decomposition of OF_2 , remained uncombined (54). The equation of thermal decomposition of OF_2 is given in Table I.

About 72% of OF₂ did decompose to O₂ and F₂ when pure OF₂ was blown (12.5 cm.³/min.) through a platinum tube, 1 cm. in diameter, containing a Pt net heated to 300° (51).

Oxygen difluoride is slightly decomposed by light. In a mixture containing 25% OF₂ and 75% O₂ exposed to diffuse light for 24 hr., 1-2% OF₂ did decompose. Mainly the short wave length light ($\lambda > 3000$ Å., predominantly $\lambda > 2500$ Å.) was absorbed, and OF₂ was decomposed to O₂ and F₂ (26). The fluorine formed in the quartz vessel was extensively converted to SiF₄. The light with $\lambda < 2150$ Å. did not decompose OF₂ in a mixture containing 60% OF₂ and 40% O₂ (102).

E. EXPLOSIVENESS

Pure and dry OF₂ gas did not explode from a spark even at the pressure of 10 atm. (101). In the presence of water, however, OF₂ is dangerous. Concentrated OF₂ (25-70%), diluted with oxygen, exploded violently from a spark when kept over water, due to the reaction

$$OF_{i} + H_{2}O \rightarrow 2HF + O_{2}$$

An $OF_2 + O_2$ mixture containing 12% OF_2 exploded weakly. A dry mixture of 25% OF_2 with O_2 (confined over sulfuric acid) could not be exploded by a spark (99). A mixture of OF_2 and steam exploded easily.

There are no reports in the literature on spontaneous explosions of liquid OF_2 at temperatures below its boiling point.

F. CHEMICAL REACTIONS

Chemically, oxygen difluoride is a powerful oxidizer. Its reactivity is considered to be lower than that of fluorine. In reactions with solids and upon warming, OF_2 acts as a fluorinating agent, while in aqueous solutions the addition of oxygen is the main reaction (40, 51, 72, 74, 75). Following are the known chemical reactions of OF_2 .

1. In Aqueous Solutions (6, 13, 27, 39, 54, 71, 109)

With aqueous solutions of HCl, HBr, and HI, oxygen difluoride reacts quantitatively, liberating free halogens.

$$OF_2 + 4HCl \rightarrow 2Cl_2 + 2HF + H_2O$$

Halogens are displaced also from their salts. In the reaction with aqueous NH_3 , nitrogen is liberated, and the formation of HNO_3 takes place. The aqueous solutions of KOH, NaOH, and Ca(OH)₂ absorb OF₂. Reactions with KOH and NaOH are of the first order, all the oxygen is liberated as gas and no oxidizing compounds remain in solution.

The rate constants, over the temperature range of $0-35^{\circ}$, are described by the equation

$$\log K = 4.1257 - 1625/T$$

The rate constant increases about 1.5 times for each 10° of temperature rise (38). In the reaction with 1% NaOH solution, $K = 0.045 \text{ min.}^{-1}$ at 21° and 0.10 min. $^{-1}$ at 59°; in the reaction with 10% NaOH at 29°, $K = 0.34 \text{ min.}^{-1}$. Agitation causes a considerable increase in reaction rate.

From aqueous solution of H_2S , oxygen fluoride precipitates colloidal sulfur. With KCNS solutions, OF₂ reacts with heat evolution forming colloidal S, a black-red substance of unknown composition, and (CN)₂ and SO₂. With K₄[Fe(CN)₆] oxygen difluoride gives an alkali-stable wine-red solution, which by addition of H₂SO₄ first turns green and then decomposes, losing color, forming H₂O₂, and evolving oxygen. Pb(NO₈)₂ forms yellow-brown crystals which react with HNO₃ producing PbO₂. Cr⁺³ ions in alkali solutions are oxidized to chromate. From MnSO₄ solutions, OF₂ precipitates MnO₂; from AgNO₂ solutions, Ag₂O₂. The suspensions of Ni(OH)₂ and Co(OH)₂ are oxidized to peroxides.

The reducing compounds such as Na_2SO_3 , $Na_2S_2O_3$, $SnCl_2$, $FeSO_4$, and $NaAsO_2$ react with OF_2 in accordance with the equations

 $\begin{array}{rcl} 4\mathrm{FeSO_4}\,+\,2\mathrm{H_2SO_4}\,+\,\mathrm{OF_2}&\rightarrow&2\mathrm{Fe_2(SO_4)_3}\,+\,2\mathrm{HF}\,+\,\mathrm{H_2O}\\ \\ &&2\mathrm{SnCl_2}\,+\,\mathrm{HCl}\,+\,\mathrm{OF_2}\,\rightarrow&2\mathrm{SnCl_4}\,+\,2\mathrm{HF}\,+\,\mathrm{H_2O}\\ \\ &&2\mathrm{NaAsO_2}\,+\,\mathrm{H_2O}\,+\,\mathrm{OF_2}\,\rightarrow&2\mathrm{NaAsO_3}\,+\,2\mathrm{HF} \end{array}$

2. With Metals (27, 54, 73, 79, 87, 96)

Metals in finely divided form usually react with OF_2 upon gentle warming.

Au, Cu, Ni, Co, Mn, Ag, and Fe are fluorinated by heating with OF_2 . Ba, Ca, Sr, Zr, Mg, Cd, Zn, and Al react by warming intensively with evolution of light. Sn and Pb form fluorides below their melting points. Cr, by heating, gives an orange-yellow sublimate. Powdered Mo reacts forming MoO_3 and oxyfluorides. W powder reacts at 400° with an explosion forming colorless WF_6 and a blue compound. Bi is coated with a layer of BiF_3 .

K, Na, and Li react at about 400° with brilliant light and complete absorption of OF₂.

Hg reacts with OF_2 at room temperature forming a mercury "mirror" on the walls of a glass vessel (similar to that forming by F_2). Contrary to the Hg + F_2 reaction, which is used for quantitative determination of F_2 gas, the reaction of OF_2 with Hg proceeds very slowly and cannot be used for analysis of OF_2 . Only about 1/3 of the OF_2 volume, taken at 545 mm. pressure and 23°, was caused to react with Hg during 16 hr. Yellow Hg₂F₂ is formed on warming.

Pulverized Pt, Ir, Os, Ru, Rh, and Pd glow when gently warmed in a stream of OF_2 and form OsF_6 , PtF_4 , IrF_4 , PdF_3 , etc.

3. With Nonmetallic Solid Substances (27, 54, 73, 87)

At moderate temperatures OF_2 does not attack glass, neither wet nor dry, but at about 250° it reacts with glass forming SiF₄ and liberating O₂. A quartz fiber can be ignited in an OF₂ atmosphere. Charcoal adsorbs OF₂ and can be exploded by heating. S, Se, and Te react vigorously at 150°; SO₂, SF₄, SeF₄, and TeF₄ have been found among the reaction products. With red P, reaction proceeds slowly at room temperature, but upon slightly warming an energetic reaction with flame occurs; PF₅ and POF₃ are forming. P₂O₅ reacts spontaneously.

As and Sb react energetically by warming to about 150° , forming AsF₅ and SbF₅. Powdered B and Si spark when heated with OF₂.

 CrO_3 , As_2O_3 , and WO_3 react spontaneously or upon gentle warming yielding fluorides. CaO reacts only on strong heating forming CaF_2 and O_2 . PbO forms lead oxides and fluorides.

SbCl₅ reacts with OF_2 at 150° with light explosion liberating Cl₂. NaCl forms NaF and evolves Cl₂. NH₄Cl forms NH₄F. HgCl₂ forms a brown oxyfluoride. TiCl₄ forms a lemon yellow solid, slowly at 50° , rapidly at $50-90^{\circ}$. AlCl₃ reacts with an explosion yielding AlF₈.

 Na_2CO_3 reacts with OF_2 forming NaF, CO_2 , and O_2 . $NaNO_2$ or KNO_3 form fluorides and nitrogen oxides.

4. With Halogens (27, 54, 73, 87, 93)

 OF_2 does not react with F_2 either in gaseous phase at temperatures up to 300° or in liquid phase at cryogenic temperatures. The mixtures of OF_2 with Cl_2 , Br_2 , or I_2 explode upon warming. When a mixture of OF_2 with Cl_2 was passed through a copper tube warmed to 300°, reaction proceeded with paffs or more violent explosions. CIF and also probably Cl_2O and ClOFwere formed. The formation of iodine oxide has been reported in a reaction with solid I_2 .

5. With Gases (3, 4, 13, 73, 78, 93, 96)

Gaseous OF_2 does not react with gaseous O_2 at normal temperatures, but the liquid OF_2 under the action of ultraviolet light reacts with liquid O_2 forming small amounts of O_2F_2 and O_3F_2 .

Gaseous OF_2 may be safely mixed with H_2 , CH_4 , and CO but the mixtures explode violently when a spark is created.

Without an ignition by spark or flame, the molecular hydrogen gas, H₂, does not react with gaseous OF_2 at room temperature and at a pressure up to 1 atm. The atomic hydrogen, however, reacts with gaseous and liquid OF_2 even at 77°K. and 0.4–1.0 mm. pressure, forming HF, H₂O, H₂O₂, and N₂O₄.

There was no noticeable reaction between anhydrous HCl and OF_2 in a 1:1 molar mixture at 25° and 1 atm. pressure. HCl does not react in solidified state with gaseous or liquefied OF_2 at 90–140°K.

A strong explosion occurs when gaseous H_2S and OF_2 are mixed at normal temperatures. At 90–150°K., gaseous and liquid OF_2 do not react with solidified H_2S . At 195°K. and 400 mm. pressure, a 1:1 gaseous mixture of OF_2 and H_2S reacts slowly forming a white solid. During 1 hr. the pressure decreased to about 100 mm. When the reaction vessel was taken out of Dry Ice, a violent explosion occurred shattering the reaction vessel.

With SO₂, oxygen diffuoride reacts forming $(SO_3)_2$. OF₂ does not react with ClF₈ either in gaseous phase at room temperature or with liquid at low temperatures. There was no reaction also with ClF at 125°K.

With anhydrous NH_3 oxygen fluoride reacts slowly yielding NH_4F . A mixture with NO is slowly colored brown; NOF and NOF₂ are forming. A gaseous NO-OF₂ mixture may explode from a spark. The 1:1 mixture of liquefied OF₂ and NOF explodes on warming. A flame may be obtained when a stream of NOF is let into a flask filled with OF₂. The reaction proceeds most probably in accordance with the equation

$$NOF + OF_2 \rightarrow NF_8 + O_2$$

With water vapor OF_2 explodes violently when initiated by a spark or flame.

 OF_2 reacts with Xe forming XeF₄ and xenon oxyfluorides. Reactions were carried out in an electric discharge apparatus at 195°K. and 3–62 mm. pressure and in a nickel tube heated to about 400° at the starting pressure of about 3.5 atm. XeF₄ and xenon oxyfluorides were obtained in the form of colorless transparent crystals stable at room temperature.

6. With Organic Compounds (49, 73, 102)

Benzene and paraffinic compounds absorb OF_2 gas readily. Benzene forms quinone and hydroquinone, no phenol or pyrocatechol being observed. Indigo solution becomes colorless. Methanol and ethanol react slowly at room temperature. One-half of OF_2 dissolved in CCl_4 at room temperature reacted in 48 hr.

G. OF₂ IN PROPELLANT SYSTEMS

Oxygen difluoride is a high energy oxidizer suitable for rocket and missile propellants. It has received great attention as a space-storable oxidizer (44, 57).

Bipropellant systems using liquid OF₂ have high specific impulses. At a favorable oxidizer-fuel ratio, OF_2 with ethanol, for example, has an I_{sp} of 336 sec.; with N₂H₄, 345 sec.; with JP-4, 350 sec.; and with liquid CH₄, 357 sec. (all at $P_c = 1000$ p.s.i.a., $P_e =$ 14.696 p.s.i.a.). With liquid H_2 the value of the specific impulse reaches 457 sec. at OF_2/H_2 ratio of 7.5, $P_{\rm e} = 300, P_{\rm e} = 0.62$ p.s.i.a. In addition, the bipropellant systems with OF₂ have many advantages over the other high-performance propellants (44). OF_2 provides good performance with both carbonaceous and noncarbonaceous fuels (35, 36), with which F2, for example, does not. Oxygen difluoride has a comparatively high density which results in more compact vehicles of lower weight. The OF₂-fuel combinations are hypergolic and belong to low γ -systems.

 OF_2 was suggested also for a monopropellant mixture consisting of 2.6 parts by weight of OF_2 and 1 part of 1-fluoropropane (45). This mixture is liquid over the temperature range of 156–276°K. and has a theoretical specific impulse of 291 sec.

H. METHODS OF ANALYSIS OF OF2

Oxygen difluoride is often identified by its infrared spectrum and by determination of its physical constants: melting point, boiling point, and vapor pressure.

By chemical means the analysis may be performed by shaking the gas with a 0.5 N solution of NaOH (71). The reaction proceeds according to the equation

$$OF_2 + 2NaOH \rightarrow 2NaF + H_2O + O_2$$

The excess of NaOH is then determined by titration with HCl. In addition, the fluorine ion may be determined by titration with thorium nitrate (87, 104–106)

$$4NaF + Th(NO_3)_4 + nH_2O \rightarrow ThF_4 \cdot nH_2O + 4NaNO_3$$

or precipitated in the usual manner as CaF_2 .

Another method is based on the reaction with KI (4).

 $OF_2 + 4KI + H_2O \rightarrow 2KF + 2KOH + 2I_2$

The sample is shaken with or bubbled through to a 15% KI solution acidified with H_2SO_4 and the amount of the liberated I_2 determined by titration with a 0.1 N solution of Na₂S₂O₃.

Finally, OF_2 may be analyzed by passing the gas over melted metallic Na (59, 87). The fluorine ion

is then determined either by titration with $Th(NO_3)_4$ or by precipitation as CaF₂.

III. DIOXYGEN DIFLUORIDE, O₂F₂

The formation of dioxygen diffuoride, O_2F_2 , was first achieved by Russ and Menzel (1933), who passed an electric discharge through a gaseous O_2 -F₂ mixture at low pressure and liquid-air temperature (76, 77).

A. PREPARATION

At the present time, dioxygen difluoride is prepared directly from the elements, essentially by the principle described by Ruff and Menzel (76) and by Aoyama and Sakuraba (3, 4). The 1:1 gaseous mixture of fluorine and oxygen is prepared in the perfluorinated stainless steel cylinder. The mixture is fed from this cylinder through the flowmeter containing Kel-F oil, through the trap cooled with liquid oxygen to eliminate impurities condensable at this temperature, and into the reaction vessel. The reaction vessel, 6.5 cm. in diameter and 18 cm. long, is made of Pyrex glass; it is cooled to 77 or 90°K.

A high-voltage electrical discharge is established in the reaction vessel between two copper electrodes, which are fixed 10 cm. apart. The electrodes are 2 cm. in diameter and are connected to copper wires sealed into the reaction vessel by Teflon plugs. The other plugs in the system have ground-glass joints that are lubricated with Kel-F grease. The discharge varies from 25 to 30 ma. at 2100–2400 v. The flow of the F_2 -O₂ mixture is adjusted so that the pressure in the reaction vessel is maintained at 12 ± 5 mm.

The electrical part of the apparatus consists of a 110-5000 v. 60-cycle, single-phase transformer, in series with a 1000-ohm Ohmite vitreous-enameled limiting resistor, together with a 0-100 ma. meter and a 0-5000 v. voltmeter.

The formation of dioxygen diffuoride consumes all the entering F_2-O_2 mixture. The product condenses in solid form on the walls of the reaction vessel. When the preparation is completed, the electrical discharge and the gas supply are stopped, the reaction vessel is warmed to Dry-Ice temperature, and the O_2F_2 is distilled into the storage cylinder cooled in a liquid nitrogen bath. Distillation is conducted at reduced pressure; all the connecting tubes must be cooled with Dry Ice. Some O_2F_2 may decompose upon distillation. Therefore, the O_2 and F_2 formed must be pumped off while the O_2F_2 is cooled with liquid nitrogen.

Sodium fluoride pellets (ignited) are placed into the reaction and storage vessels, in order to remove any HF and SiF₄ which may have formed. NaF combines with these compounds according to the equations

and

$$NaF + HF \rightarrow NaF \cdot HF$$

$$2NaF + SiF_{\bullet} \rightarrow Na_2SiF$$

Pure dioxygen difluoride can be stored for a long time in darkness in Pyrex glass cylinders cooled to 93°K.

B. PHYSICAL PROPERTIES

Dioxygen difluoride is an orange-yellow solid, melting at 109.7°K. to an orange-red liquid. It decomposes rapidly into O_2 and F_2 at temperatures close to its normal boiling point of 216°K.

The most recent values of the structural parameters and selected data on the main physical and physicochemical properties of O_2F_2 are given in Table II.

C. SOLUBILITY

Experimental results on solubility and miscibility of liquid O_2F_2 obtained to date (91, 92, 94) are as follows:

O ₂ F ₂ mixes	homogeneously with:	Forms tw insoluble	vo practically layers with:
O ₃ F ₂ a	t 116°K.	N ₂ a	t 77°K.
$\mathrm{CCl}_{2}\mathrm{F}_{2}$	116	\mathbf{F}_2	77
CClF ₃	116	O_2	90
O3	116 (the mixture explodes at about 125°K.)	CF_4	90
N_2F_2	120	NF ₂	130
CO_3F	127	N_2F_4	130
ClF ₈	180	C_8F_8	140
NO_2F	195		

The solubility of O_2F_2 in anhydrous HF is about 5.8% by weight at 176°K. and about 11.6% at 186°K. Less than 1% of O_2F_2 is soluble in CF₄ at 116°K. C_3F_8 dissolves some O_2F_2 at 130°K. and N_2F_2 dissolves some O_2F_2 at 140°K.

Dioxygen difluoride dissolves about 40% by weight of OF₂, about 20% of SiF₄ at 150°K., and about 10% of HF at 186°K.

D. STABILITY

Dioxygen difluoride is thermally unstable. It decomposes into O_2 and F_2 at temperatures below its theoretical boiling point (216°K.). The activation energy and the rate of thermal decomposition of O_2F_2 are given in Table II.

To our knowledge, the photochemical stability of O_2F_2 was not studied.

E. EXPLOSIVENESS AND INFLAMMABILITY

Samples of the liquid dioxygen difluoride were subjected at Dry-Ice temperature to the flame of a safety fuse, to a 1.25-joule electric spark, and to an impact of a 22-caliber bullet. There was no explosion or inflammation of O_2F_2 in any of these tests. A 50-g. cartridge of liquid O_2F_2 at 195° K. in a prefluorinated 1.25-in. brass tube (loading density about 1.507 g./cm.³) did not detonate when affected by a

TABLE II

Physical and Physicochemical Properties of Dioxygen Difluoride

	Properties	References				
Appearance	Appearance					
Pale brown gas	(dec.)					
Orange-red liqu	id at 110°K.					
Orange-yellow s	olid below 110°K.					
Molecular weight						
70.000						
Molecular structur	re					
Nonplanar atom	uc chain, F—O—O—F	(41, 47,				
		55,56)				
Molecular constan	ts					
Interatomic dist	ance $r(O - O) = 1.217 \pm 0.003$ A.	(41)				
Interatomic dist	ance $r(F - O) = 1.575 \pm 0.003$ A.					
OOF angle = 10	$09^{-}30' \pm 30'$					
Dinedral angle	$= 87^{-}30^{\circ} \pm 30^{\circ}$					
Dipole moment	$= 1.44 \pm 0.04 D.$					
a b b b b						
Ground-state rota	tional constants and					
moment	s of inertia					
	O ₂ ¹⁶ F ₂ O ¹⁸ O ¹⁶ F ₂ O ₂ ¹⁸ F,					
A(Mc, /sec.)	20,266.18 19,531.98 18,859.19					
B	5,011.09 4,975.78 4,938.34					
С	4,360.14 4,318.68 4.279.31					
Asymmetry						
constant K	-0.91815 - 0.91362 - 0.90960					
I _A (a.m.u. Å.²)	24.94456 25.88222 26.80555					
Iв	100.8824 101.5981 102.3686					
Ισ	115.9438 117.0570 118.1338					
Force constants, d	ynes/cm.					
$K_{\text{O-F}} = 5.2 \times 10^{-10}$	10-5	(47)				
$K_{0-0} = 2.9 \times$	10-5	(1))				
Melting point	***	(
109.7° K., -163	.5°C.	(76)				
Boiling point	1	(20)				
210° K., -57° U.	. dec.	(76)				
$\log P = 751$	5 = 1000 / T (at the temperatures					
$\log I mm = 7.03$	1000/1 (at the temperatures	(76)				
$P = 0.010 \mathrm{m}$	/ m st 105 097°K	(10)				
1 = 0.010 m 0.100	117 440					
1.00	133.067					
10.00	153.492					
100.00	181.324					
Density						
Liquid, over the	temperature range of 117-186°K.	(77)				
d = 2.074 - 0.00291T g./cc.						
1.736 g./cc.	at 116°K.					
Molar volume						
40.4 cc./mole at	116°K.	(77)				
Activation energy	of thermal decomposition					
17.3 kcal./mole		(24, 25, 07)				
Data of the much de	a a man a siti a n	85)				
$\frac{-\mathrm{d}[\mathrm{O}_2\mathrm{F}_2]}{\mathrm{O}_2\mathrm{F}_2} = [\mathrm{O}_2\mathrm{F}_2] \times 10^{12.4} \exp(-1700/4.57T)$						
dt						
4.3% per day at 195°K.						
96.5% per day a	t 214.5°K.	· · · · · ·				
Half-life at 223°	K. = 220 min. , increasing seven-	(21, 22,				
told for a 10° dr	op of temperature	24, 46,				
		85)				

Pti	D. (
Heat of vanorization	References			
Heat of vaporization $\Delta H_{\rm vap.} = 4.583 \pm 0.100 \text{ kcal./mole, at } 216.2^{\circ}\text{K.}$ (46) Entropy of vaporization (Trouton's constant) $21.22 \text{ cal./}^{\circ}\text{K.}$ mole Hildebrand's solubility parameter at b.p.				
9.20 (cal./cc.) ** Heat of formation (from the elements)				
$\Delta H_{298} = 4.73 \pm 0.30$ kcal./mole	(47)			
151.5 kcal./mole Heat of decomposition	(47)			
For the reaction:				
$O_2F_2 I_{1q.} \rightarrow O_2 I_{gas} + F_2 I_{gas}$, at 190°K., $\Delta E = -1120$ $\pm 100 \text{ cal./mole}$)			
For the reaction:				
$\begin{array}{l} \mathrm{O_2F_2}_{\mathrm{gas}} \rightarrow \mathrm{O_2}_{\mathrm{gas}} + \mathrm{F_2}_{\mathrm{gas}} \text{ at } 298^\circ\mathrm{K.}, \Delta E = -5324 \\ \pm 300 \text{ cal./mole} \end{array}$	(47)			
Bond energy $E_{0-0} = 62.1$ kcal./bond	(47)			
Specific heat Gas $C_{r} = 10 \pm 1$ cal./mole °K. (estimated)				
Liquid, over the temperature range of 121–186°K.	(47)			
$C_{\rm v} = 24.5 \pm 0.7$ kcal./mole				
Infrared spectrum bands, cm				
628	(46)			
463				
Molar extinction coefficients ^{a}	(
Gas, at 195°K. 28.1 at 340 m μ	(12)			
15.2 360				
12.5 365				
10.6 370				
8.13 380				
13.8 400				
16.5 405				
9.04 420				
4,52 440				
0.72 500				
Liquid, dissolved in a mixture of 23% (by volume)				
Freen $12 + 77\%$ Freen 13, at 77° K.				
13.13 at 350 mµ	(48, 93)			
14.10 360				
11.79 380				
8.02 400				
5.15 420 2.52 450				
1 24 470				
0.63 500				
0.24 580				
0.10 600				
0.07 625				
0.09 650				
0.10 700 The mention character				
at 140°K.: 15.27 at 360 m μ at 175°K.: 15.65 at 360 m μ				
·				

" In the visible range, cm. $^{-1}$ mole $^{-1}$ l.

pentaerythritol tetranitrate primacord. In contact with a sheet of Pt, covered with Pt fluoride, O_2F_2 exploded at 160°K. (46, 90, 96).

F. CHEMICAL REACTIONS

Dioxygen difluoride has a remarkably high oxidizing power. With most of the substances tested, it reacted at cryogenic conditions. Following are the main results obtained to date in the study of the basic chemistry of O_2F_2 (90, 93–96).

1. With Organic Compounds (90, 96)

 O_2F_2 reacts vigorously with organic compounds, even at temperatures close to its melting point. It reacted instantaneously with solid ethyl alcohol, producing a blue flame and an explosion. When a drop of liquid O_2F_2 was added to liquid methane, cooled at 90°K., a white flame was produced instantaneously, which turned green upon further burning. When 0.2 cm.³ of liquid O_2F_2 was added to 0.5 cm.³ of liquid CH₄ at 90°K., a violent explosion occurred.

When added to Dry Ice, dioxygen difluoride does not react and is only absorbed by the solid. Addition of acetone to this mixture resulted in sparking accompanied by an explosion.

A 2% solution of O_2F_2 in HF reacts violently with a flash with benzene at 195°K.

2. With Ammonia, Water, and Hydrogen (90, 93)

Liquid O_2F_2 reacts vigorously when added to solid anhydrous ammonia at temperatures close to 110° K. It causes explosions when added to ice at $130-140^{\circ}$ K. and reacts also with traces of water if dissolved in HF containing H₂O, at 195° K.; the brown color of the solution disappears and the O₂ gas escapes.

There was no reaction between O_2F_2 and molecular hydrogen when gas was pumped through to the U-tube at 77°K., in amounts of 1.25 l./hr. (1 mm.). Atomic hydrogen, however, reacted with O_2F_2 at the same conditions. The reaction proceeds in accordance with the equation

 $3O_2F_2 + 15H \cdot \rightarrow 6HF + 1.5H_2O_2 + 3H_2O$

Traces of H_2O_4 also form. No radical or other intermediate products have been found.

3. With Cl₂, ClF, and HCl (90, 93-95)

A rapid introduction of chlorine to O_2F_2 , cooled to about 140°K., causes a violent explosion. However, when small portions of Cl_2 are added slowly to O_2F_2 cooled to 130°K., a violet intermediate product forms, together with ClF_3 . Here, the first step is the fluorination of Cl_2 to ClF. After ClF is formed, it reacts further with O_2F_2 as described below.

The study of the reaction of O_2F_2 with ClF showed that if the reaction is carried out without special precautions at temperatures above 140°K., the two substances react violently with heat evolution following the stoichiometric equation

$$O_2F_2 + ClF \rightarrow O_2 + ClF_3 + 30.1 \text{ kcal.}$$

The ClF abstracts the fluorine from O_2F_2 , forming ClF₃ and liberating O_2 . Simultaneously, due to the heat of the O_2F_2 + ClF reaction, a part of O_2F_2 decomposes to O_2 and F_2 .

$$O_2F_2 \rightarrow O_2 + F_2 + 4.73$$
 kcal.

However, if the reaction between O_2F_2 and ClF is carried out at moderate temperatures (119–130°K.) and with a slow addition of ClF, a third reaction takes place, forming an intermediate compound of the elementary composition $(O_2ClF_3)_n$ in accordance with the scheme

$$nO_2F_2 + nClF \rightarrow (O_2ClF_3)_n$$

The extent of each of these three reactions depends upon the reaction conditions.

The intermediate compound, dioxygen chlorine trifluoride, has an intense violet color and is a very strong oxidizer. Its properties are described elsewhere (95).

Much effort was exerted to increase the yield of O₂ClF₃. Freon 12, CCl₂F₂, Freon 13, CClF₃, perfluoropropane, C₃F₈, perchloryl fluoride, ClO₃F, hydrogen fluoride, HF, and oxygen difluoride, OF₂, were tried as diluents. There was no formation of the violet intermediate product when Freon 12 or OF_2 was used as the solvent for O_2F_2 and cooled ClF gas (diluted by He or O_2) was bubbled through the solutions. With Freon 13 or ClO₃F as the solvent, the violet product formed in small amounts and collected on the bottom of the reaction vessel. Its stability, however, in the presence of these compounds is low and the compound decomposes completely at about 195°K. With HF, solutions of about 23% of O_2ClF_3 were obtained. A difficulty arises, however, from the fact that the solution of the violet compound in HF is stable at 193-195°K. only under an oxygen pressure of 2 atm. For this reason the removal of HF and the isolation of the violet compound are complicated. Attempts to lower the melting point of HF by the addition of KF (14), and thereby to increase the stability of the solutions of the violet compound, gave no improvement. On the contrary, in the presence of KF the solutions of the violet compound in HF lost their color much faster than normally, most probably owing to the formation of $K(ClF_4)$.

With C_3F_8 as a diluent, the yield of the violet compound was increased to 81% of theory, but again the stability of O_2ClF_3 in the presence of C_3F_8 was found to be low.

It was found also that in the presence of traces of

water, nitrogen oxides, or nitrogen oxyfluorides, the violet compound decomposes quickly or does not form.

If the violet compound, O_2ClF_3 , is warmed to about 140°K. in the presence of ClF and ClF₃, it changes into a greenish blue compound, which exists only over a very narrow temperature range. The greenish blue compound dissolves in ClF at about 125–130°K., to form a greenish blue solution, but the color disappears in about 3–5 min. Probably another blue compound was formed while pumping off the oxygen from a violet solution of O_2ClF_3 in anhydrous HF at 190–195°K. The solution changed color and became deep blue.

Dioxygen chlorine trifluoride, O_2ClF_3 , also forms in the reaction of HCl with O_2F_2 at 130–140°K.

$$2O_2F_2 + HCl \rightarrow O_2ClF_3 + HF + O_2$$

The reaction steps probably are the formation of Cl_2 and then of ClF, which reacts in the usual manner to form O_2ClF_3 . An excess of HCl and a rise of temperature above 143°K. cause decomposition of O_2ClF_3 .

At 130 and 140°K., HCl is solid (m.p. 158.9°K.) but it has a vapor pressure of about 10 mm. at 140°K. Thus, the reaction actually takes place between the gaseous HCl and gaseous or liquid O_2F_2 . The violet compound partly deposits on the walls, but also dissolves in the liquid O_2F_2 . Solutions containing up to 8.5% by weight of O_2ClF_3 in O_2F_2 were obtained.

At temperatures above 140° K. the reaction proceeds rapidly with substantial amounts of O₂ClF₃ decomposing to O₂ and ClF₈.

No reaction was observed between O_2F_2 and ClF_3 in the solid state at 90°K. or in the liquid state at temperatures up to 190°K.

4. With Br₂, Bromine Fluorides, and HBr (90, 93, 94)

Liquid O_2F_2 , at temperatures close to its melting point (109.7°K.), reacts vigorously when added to solid bromine cooled at 90°K.

If liquid BrF_3 cooled to its melting point (282°K.) is dropped onto solid O_2F_2 cooled to 90°K., a spontaneous reaction occurs with evolution of heat and gas. The reaction proceeds in accordance with the equation

$$O_2F_2 + BrF_3 \rightarrow BrF_5 + O_2 + 46.1$$
 kcal.

Under milder conditions, when very small amounts of BrF_3 are added to O_2F_2 cooled to $90^{\circ}K$. and the reaction vessel is slowly warmed to $130^{\circ}K$., an intermediate brown-violet compound may form. The reaction proceeds analogously to the O_2F_2 + ClF reaction, in accordance with the equation

$$\mathrm{O}_2\mathrm{F}_2\,+\,\mathrm{Br}\mathrm{F}_8\ \rightarrow\ \mathrm{O}_2\mathrm{Br}\mathrm{F}_5$$

The reaction is accompanied by some gas evolution due to the decomposition of O_2BrF_5 to BrF_5 and O_2 and to partial decomposition of O_2F_2 to O_2 and F_2 .

An 80% yield was achieved, but the compound began

to decompose at 150°K. to O_2 and BrF_5 . The reaction of O_2F_2 with BrF_3 is more difficult to control than the reaction with ClF.

In approximately the same condition, dioxygen difluoride reacted also with a mixture of Br₂, BrF, and BrF_3 . A product obtained by mixing BrF_3 with 10% of Br2 and consisting of Br2, BrF, and BrF3 was used in the experiments with O_2F_2 . This product reacted with O_2F_2 between 90 and 130°K., forming a dark brown (violet shaded) intermediate, which decomposed to BrF_{a} and BrF_{5} at temperatures above 130°K. If the reaction was carried out at temperatures above 130°K., it proceeded rapidly and directly to BrF₃, BrF₅, and O₂, without forming any colored intermediate. The colored intermediate reaction products formed with BrF3 and Br2-BrF-BrF3 mixture have only a transitory existence and attempts to stabilize them were not successful. Moreover, these reactions are not always reproducible.

The study of the reaction between O_2F_2 and HBr showed that when a small amount of O_2F_2 reacts with an excess of HBr at about 130° K., the reaction proceeds according to the equation

$$O_2F_2 + 2HBr \rightarrow 2HF + Br_2 + O_2$$

but when an excess of O_2F_2 reacts with a small amount of HBr, the reaction follows the equation

 $3O_2F_2 + HBr \rightarrow O_2BrF_5 + HF + O_2$

The colored intermediate product, O_2BrF_5 , decomposed at higher temperatures, forming BrF_5 and liberating gaseous O_2 .

5. With
$$I_2$$
 and IF_5 (90, 93, 94)

A spontaneous reaction occurred when liquid O_2F_2 , cooled to about 110°K., was added rapidly to iodine crystals cooled to 90°K., but there was no visible reaction between 8–50% solutions of O_2F_2 in Freon 13 (CClF₃) and iodine at temperatures up to 195°K.

Iodine pentafluoride, IF_5 , in contrast to its chlorine and bromine analogs (ClF and BrF₃) did not react with O_2F_2 over the temperature range of 90–195°K. Only a slow decomposition of O_2F_2 to O_2 and F_2 took place.

6. With Phosphorus, PF_3 (90, 93, 94), and PF_5 (88a)

With red phosphorus, O_2F_2 reacts vigorously when rapidly added at about 110°K.

Phosphorus trifluoride, PF₃, reacts with O_2F_2 at 125°K. forming PF₅ and O_2 .

$$O_2F_2 + PF_8 \rightarrow PF_8 + O_2$$

At the same time some of the oxygen liberated reacts with PF_3 , forming a solid white compound at 0°. The white compound is fairly stable at 0°. This compound is the only solid reaction product; it is *not* the well known POF₃, which melts at 233.4° K. and boils at 233.8° K., but is an interesting polymer of POF₃.

$$nO_2F_2 + 3nPF_3 \rightarrow nPF_5 + 2(POF_3)_n$$

On standing at 0° or at room temperature, the polymer depolymerizes completely to POF₃ according to the equation

$$(POF_3)_n \rightarrow n(POF_3)$$

If the amount of PF_3 added in one portion was larger than 50 mg. or if the compounds were warmed quickly, the reaction proceeded with flame.

A new compound, tentatively assigned the formula O_2PF_6 , has been obtained by the reaction of O_2F_2 with PF_5 .

7. With NO_2F , NF_3 , and N_2F_4 (90, 93, 94)

Dioxygen difluoride is soluble in nitryl fluoride, NO_2F , at 195°K., forming a very fluid orange solution. A slow decomposition of O_2F_2 takes place at this temperature, but no reaction with NO_2F was observed.

There was no visible reaction between nitrogen trifluoride, NF₃, and O_2F_2 at 130–140°K. Tetrafluorohydrazine, N_2F_4 , reacts with O_2F_2 at 170°K., forming NF₃ and O_2 , but without the formation of any colored intermediate product.

8. With S,
$$SF_4$$
, and H_2S (90, 93, 94)

When added rapidly to sulfur cooled to 90° K., liquid O_2F_2 reacts instantaneously with a flash. SOF₄, SO₂F₂, and (SO₃)*n* were found among the reaction products (88a). Sulfur tetrafluoride, SF₄, reacts with O_2F_2 at 125°K. and may form an intensely violetcolored intermediate product.

$$O_2F_2 + SF_4 \rightarrow O_2SF_6$$

This reaction is not always reproducible. Once started, the reaction between O_2F_2 and SF_4 is difficult to control. In most cases it proceeds directly to the formation of SF_6 and O_2

$$\mathrm{O_2F_2} + \mathrm{SF_4} \ \rightarrow \ \mathrm{SF_6} + \mathrm{O_2} + 121.5 \ \mathrm{kcal}.$$

and leads to an explosion. With perchloryl fluoride, ClO_3F , as a solvent, explosions could be avoided in some cases (at temperatures below $116^{\circ}K$.), but the yield and the stability of the intermediate product were very low.

With H_2S , dioxygen diffuoride reacts in accord with the equation

$$4O_2F_2 + H_2S \rightarrow 2HF + 4O_2 + SF_6 + 432.9$$
 kcal.

It was observed that a very slow reaction starts in the gas phase at 130°K. The vapor pressure of O_2F_2 at this temperature is about 1 mm. and of H_2S , about 0.5 mm. When the reaction vessel is further warmed slowly to 195°K., the rate of the reaction increases. In distinction to the O_2F_2 + HCl and O_2F_2 + HBr

reactions, there was no formation of any colored intermediate compound with H_2S .

9. With Tetrafluoroethylene (34)

When C_2F_4 was allowed to condense into a vessel containing O₂F₂ at 77°K., flashes were observed upon gradual lowering of the refrigerant; COF₂, CF₄, and in smaller amounts also C₂F₂, SiF₄, and CF₂OOCF₂ were formed. Reaction proceeded with flashes also when several cm.³ of liquid argon were condensed into the reaction vessel containing O_2F_2 , and C_2F_4 was allowed to diffuse to the cold zone; CF₃OF, OF₂, and C_4F_{10} did form in addition to the products formed at the previous reaction conditions. When C_2F_4 was highly diluted with helium and passed at a pressure of 2–4 mm. through the reaction vessel cooled to 77°K., no flashes were noticed, but on warming a few flashes occurred again. The reaction products contained all the compounds obtained previously (except OF_2) plus CO_2 , $C_2F_5OCF_3$, and perfluorotetramethylene oxide, C_4F_8O .

10. Behavior of O_2F_2 with Some Other Substances (90)

Liquid dioxygen difluoride, at temperatures close to its melting point, reacts vigorously when added to charcoal cooled to 90°K. It did not appear to react, however, with beryllium powder, quartz fiber, and chromium trioxide, even upon warming to room temperature.

Solid SiF₄ (m.p. 183°K.) does not react with liquid O_2F_2 . Approximately 20% SiF₄ is soluble in liquid O_2F_2 at 150°K. without noticeable reaction. At about 195°K., O_2F_2 decomposes into O_2 and F_2 , while SiF₄ remains unchanged. Similarly, CF₄ does not react with O_2F_2 .

In contact with a Pt sheet covered with Pt fluoride, dioxygen difluoride exploded at 160°K.

The reactions of Na, Li, and K with O_2F_2 are surprisingly mild. The products of these reactions are not identified yet. Ca shows no sign of reaction with O_2F_2 (88a).

G. METHOD OF ANALYSIS OF O₂F₂

The sample is warmed to room temperature. O_2F_2 decomposes quantitatively to O_2 and F_2 . The gas is then analyzed for fluorine by shaking with metallic Hg or any other known methods, and for oxygen by absorbing it with an alkali solution of pyrogallol (46).

IV. TRIOXYGEN DIFLUORIDE, O₃F₂

The next member of the family, trioxygen difluoride, or ozone fluoride, O_3F_2 , was obtained by Aoyama and Sakuraba (1938) when the proper mixture of O_2 and F_2 was subjected to an electrical discharge at low

TABLE III

PHYSICAL AND PHYSICOCHEMICAL PROPERTIES OF TRIOXYGEN DIFLUORIDE

Properties	Reference	Properties	References
Appearance		Heat of decomposition	
Dark red liquid at 84°K. Reddish brown solid		For the reaction:	
below 83°K.		$O_3F_{2}_{1iq.} \rightarrow O_2F_{2}_{1iq.} + 0.5O_2$ gas, at 121°K.,	(47)
Molecular weight		$\Delta E = -2040 \pm 150 \text{ cal./mole}$	
86.000		For the reaction:	
Melting point		$O_3F_2 _{liq.} \rightarrow 1.5O_2 _{gas} + F_2 _{gas}$, at 121°K.,	
83–84°K., –189 to –190°C.	(46)	$\Delta E = -2160 \pm 250 \text{ cal./mole}$	
Boiling point		For the reaction:	
213°K., -60°C. dec.	(46)	$O_3F_{2 gas} \rightarrow 1.5O_{2 gas} + F_{2 g.s}$, at $121^{\circ}K.$	
Vapor pressure ^a		$\Delta E = -6500 \pm 450 \text{ cal./mole}$	
$\log P_{\rm mm}$. = 6.1343 - 675.57/T		For the reaction:	
(over the temp. range of 79 to 114°K.)		$O_8F_2 g_{as} \rightarrow 1.5O_2 g_{as} + F_2 g_{as}$, at 298°K.,	
$P = 0.010 \text{ mm. at } 83.052^{\circ}\text{K.}$		$\Delta E = -7130 \pm 750 \text{ cal./mole}$	
0.100 94.693°K.			
1.00 110.130°K.		Bond energy	(20)
10.00 131.580°K.		$E_{0-0} = 61.1 \text{ kcal./bond}$	(68)
Density		Specific heat	
Liquid, $d = 2.357 - 0.00676T$ g./cc.	(46)	Gas. at 121°K	
1.573 g./cc. at 116°K.		$C_{\rm r} = 16 \pm 1.5 \text{ cal./mole }^{\circ}\text{K. (estd.)}$	(47)
1.749 g./cc. at 90° K.			()
1.895 g./cc. at m.p.		Molar extinction coefficient ^c	
Molar volume		18.76 (350)	
49.3 cc./mole at 90.3°K.		17.63 (365)	
Activation energy of thermal decomposition		16.59 (380)	(48, 93)
3.7 kcal./mole	(46)	16.95 (400)	
Rate of thermal decomposition		17.28(420)	
3.6×10^{-5} /hr. at 77.3°K.	(46)	17.28(430)	
6.2×10^{-5} /hr. at 77.8°K.		15.21(450)	
8.3×10^{-5} /hr. at 79.4°K.		13.26 (470)	
1.6×10^{-3} /hr. at 89.6°K.		13.94 (480)	
7.2×10^{-2} /hr. at 113.8°K.		11.96 (500)	
Heat of vaporization		5.48(540)	
$\Delta H_{\rm vap.} = 4.581 \pm 0.200$ kcal./mole, at 121 °K.	(47)	1.98 (580)	
Entropy of vaporization (Trouton's constant)		0.12(600)	
21.51 cal/°K. mole		0.12 (625)	
Hildebrand's solubility parameter at b.p.		0.12(650)	
$6.66 \text{ (cal./cc.)}^{1/2} (10.7, \text{ at } 90^{\circ}\text{K.})$		0.12(675)	
Heat of formation (from the elements)		0.00(700)	
$\Delta H_{238} = 6.24 \pm 0.75$ kcal./mole	(47)	0.12 (750)	

^a This equation was derived from the experimental data. The equation given in the original work (36) and quoted in other publications (1, 66) is in error. ^b Preliminary data. ^c In the visible range for liquid O_3F_2 dissolved in a mixture of 23% (by volume) of Freen 12 + 77% Freen 13, in cm.⁻¹ mole⁻¹ (m μ).

temperatures (3). The same investigators showed also that O_3F_2 is formed by the action of ultraviolet light on a mixture of liquid oxygen and fluorine (4). For many years the claims of these Japanese scientists were not accepted for our standard reference books or were regarded with skepticism. This action was due to the fact that Aoyama and Sakuraba did not give a quantitative analysis of their product. Grosse and Kirshenbaum (1958) confirmed, however, that O_3F_2 is a definite compound and investigated its properties (46).

A. PREPARATION

Trioxygen difluoride is prepared by the principle that is used for preparing O_2F_2 . The gaseous fluorine-

oxygen mixture must contain three volumes of oxygen and two volumes of fluorine. This mixture combines quantitatively to O_3F_2 in the same type of apparatus that is used for O_2F_2 preparation (47, 94). Slightly different are the reaction conditions: the reaction vessel is cooled in a liquid nitrogen bath, and the electrical discharge is varied from 20 to 25 ma. at 2000-2200 v. The gas pressure in the reaction vessel is the same, 12 ± 5 mm.

When the preparation is completed, the gas flow and the discharge are stopped and the reaction vessel is warmed to 90°K. by changing to a liquid oxygen bath. Trioxygen diffuoride liquefies and flows into the side tube. This tube is then disconnected and can be used as the storage vessel. Pure trioxygen difluoride can be stored for a long time at 77°K. in darkness in a Pyrex glass vessel. The rate of decomposition at this temperature is about 3.6×10^{-5} /hr.

B. PHYSICAL PROPERTIES

Trioxygen difluoride is a dark red, viscous liquid at 90°K. Since the compound is liquid at 90°K, it can be easily distinguished from O_2F_2 .

Trioxygen difluoride is a very strong oxidizer, very similar to O_2F_2 . It is also an endothermic compound and decomposes quantitatively, with heat evolution, at about 115°K., according to the equation

$$2O_3F_2 \rightarrow O_2 + 2O_2F_2$$

At about 200°K., O_2F_2 dissociates quantitatively, again with heat evolution, to O_2 and F_2 . Trioxygen difluoride may be distilled in the range of 96–114°K. at a pressure of 0.1 to 1.5 mm. with only slight decomposition.

The selected data on the main physical and physicochemical properties of trioxygen difluoride are presented in Table III.

In regard to the density of O_3F_2 , it is pertinent to recall that in our study of the miscibility and solubility of the liquefied and solidified gases, liquid O_3F_2 proved to be heavier at 90.3°K. than liquid NF₃. According to the literature (70), the density of liquid NF₃ at this temperature is 1.772 g./cc. The density of O_3F_2 at the same temperature, according to the equation based on preliminary measurements (46), presented in Table III, is 1.747 g./cc. However, the layer of liquid O_3F_2 , which is immiscible with NF₃ at 90°K., lay below the layer of NF₃. Thus, the preliminary data on density of O_3F_2 (the only available to date) must be considered inaccurate.

The molecular structure of trioxygen diffuoride is still unknown. The electron paramagnetic absorption measurements showed that O_3F_2 is paramagnetic in both the solid and the liquid state. The two-line electron paramagnetic resonance absorption spectrum of liquid O_3F_2 (dissolved in Freon 13 at 93°K.) was interpreted to be due to two unpaired-electron spins, each of which is localized near a fluorine atom. From the complicated multiline e.p.r. spectrum of the solidified (at 77°K.) O_3F_2 -CClF₃ solution, it appears that a triplet state is not involved, and the O_3F_2 has the structure of an asymmetric top (55).

C. SOLUBILITY

An experimental investigation of the solubility of liquid O_3F_2 in some liquefied gases and the miscibility with them was made in our laboratories. The results obtained to date are as follows:

O_3F_2 mixes hom	ogeneously	with:	Forms two insoluble l	o practically ayers with:
O ₃ at	t 90°K.	the mixture ex- plodes readily	N_2 a	t 77°K.
OF_2	116		\mathbf{F}_2	77
$O_2 F_2$	116		NF_3	90
NO_2F	116		ClF	90
$\mathrm{CCl}_2\mathrm{F}_2$	116		ClF_{3}	90
CClF_3	116		CF_4	90
ClO_3F	127			

At 90°K., CCl_2F_2 and $CClF_3$ dissolve about 1/3 of a volume of O_3F_2 . Trioxygen difluoride is slightly soluble in CF_4 at 116°K. It is also slightly soluble in liquid oxygen; 0.110% by weight of O_3F_2 is soluble in liquid O_2 at 90°K. and 0.046% at 77°K. The solutions of trioxygen difluoride in liquid oxygen are of great interest in connection with rocket propulsion systems (91).

D. STABILITY

Although O_3F_2 is very reactive even at cryogenic temperatures, it is considered to be safer to handle than ozone. Liquid O_3F_2 can be evaporated rapidly, refluxed, or thermally decomposed without explosion. In contact with organic or other oxidizable materials, however, it will either cause burning or explosions.

Trioxygen difluoride decomposes thermally above its melting point to O_2F_2 and O_2 . At higher temperatures O_2F_2 decomposes further to O_2 and F_2 (46). The activation energy and the rate of thermal decomposition of O_3F_2 are presented in Table III.

Direct light also causes a slow decomposition of O_3F_2 to O_2F_2 and O_2 (3, 4).

The saturated solutions of O_3F_2 in liquid oxygen are relatively stable when stored in darkness at 90°K. A sample maintained its pale yellow color for about 3.5 weeks. Under the influence of fluorescent light, however, the color disappeared in 2–3 days (1).

E. EXPLOSIVENESS

Electric spark did not cause O_3F_2 to explode. In contact with oxidizable materials O_3F_2 causes burning or explosions (93).

An approximate "detonation velocity" of pure ${\rm O}_3F_2$ was calculated to be about 550 m./sec. for the reaction

 $2O_3F_2(\text{liq.}) \rightarrow 3O_2(\text{gas}) + 2F_2(\text{gas}); \Delta H_{90^\circ\text{K.}} = -6.94\frac{5}{2}$ kcal. assuming products to be perfect gases. From the preliminary experimental tests performed at 90°K., it could not be concluded, however, whether O_3F_2 detonates when initiated by tetryl (1).

F. CHEMICAL PROPERTIES (46, 47, 93, 94, 96)

Trioxygen difluoride is considered to be one of the most potent oxidizers known. It is definitely more reactive than F_2 , OF_2 , or mixtures of O_2 and F_2 . Its reactivity is demonstrated by its ability to initiate

spontaneous combustion when added to organic matter, even when very diluted in liquid oxygen. When a saturated solution of O_3F_2 in liquid oxygen (~0.1%) O_3F_2) is poured onto absorbent cotton, the cotton bursts into flame and explodes. When similar liquid mixtures of small amounts of F_2 in O_2 and of O_3 in O_2 are used, no visible reaction takes place. This phenomenon, which is unique for O_3F_2 , is best explained as follows. After the liquid oxygen has evaporated, the temperature of the cotton soaked with the concentrated O_3F_2 increases. When the temperature rises to about 120°K., the O₃F₂ starts to decompose with heat evolution and initiates the reaction. When the liquid solutions of F_2 in O_2 and O_3 in O_2 are used, no spontaneous combustion occurs, since F_2 cannot decompose and O₃ evaporates completely (b.p. 161°K.), long before its decomposition temperature (\sim 373°K.) is reached.

The addition of one drop of O_3F_2 to solid anhydrous ammonia (both at 90°K.) results in an instantaneous yellow-white flame, accompanied by mild explosions. When one drop of O_3F_2 is added to a few drops of either liquid methane or solid hydrazine at 90°K. an instantaneous, loud, sharp, powerful explosion occurs, shattering the reaction vessel. A mild explosion and bright white flame result upon contact of a drop of liquid O_3F_2 with red phosphorus powder at 90°K., and an instantaneous blue flame is produced upon adding liquid O_3F_2 to sulfur at 90°K. The addition of liquid O_3F_2 to powdered wood charcoal resulted immediately in a yellow flame at 90°K.

Trioxygen difluoride does not react with solid ethyl alcohol at 90°K. When removed from the liquid oxygen bath, however, the mixture bursts immediately into a blue-white flame, accompanied by mild explosions.

When liquid O_3F_2 comes into contact with solid bromine or iodine at 90°K. a white flash and mild explosions occur. With an 8% O_3F_2 solution in Freon 13, however, no reaction with iodine could be observed. A 50% solution of O_3F_2 cooled to 90°K. reacts visibly with I_2 crystals; a mild flash and gas evolution occur when iodine crystals, precooled to 195°K., are added. IF₅, IF₇, and I₂O₅ were found among the reaction products.

When a 5% solution of O_3F_2 in CClF₃ is mixed with pure nitryl fluoride, NO₂F, at 90°K., a homogeneous solution is formed. No visible reaction, gas evolution, or color change takes place. Pure O_3F_2 does not dissolve solid NO₂F at 90°K. and does not react with it at this temperature. At 116°K., however, both substances are liquid and mix homogeneously, forming a red-brown, very fluid solution. No reaction could be noticed at 116°K., but on warming to 125°K. slow O₂ evolution was observed due to the decomposition of O₃F₂ to O₂F₂ and oxygen. At higher temperatures, up to 160° K., the decomposition of O_3F_2 proceeds faster. The formation of N_2O_5 that was observed may be due to a reaction of the stainless steel parts of the apparatus with NO₂F (+ subsequent oxidation by oxygen fluorides).

Tetryl detonates spontaneously upon contact with $O_{3}F_{2}(1)$.

Gaseous fluorine does not react with liquid O_8F_2 at 77°K. When the fluorine was activated, however, by an electrical discharge of 30–60 ma. at 3000–4000 v., it reacted and was converted quantitatively to O_2F_2 , in accord with the equation

$$2\mathrm{O}_3\mathrm{F}_2\,+\,\mathrm{F}_2\ \rightarrow\ 3\mathrm{O}_2\mathrm{F}_2$$

There was no noticeable reaction between O_3F_2 and molecular hydrogen when the latter was pumped through the reaction tube at 77°K. in amounts of about 1.25 l./hr. (1 mm.), but when the H atoms were pumped through the reaction tube, they reacted with O_3F_2 forming a white solid. There was neither O_8 nor any other colored reaction product formation, nor was any H_2O_4 formed. Only HF, H_2O_1 , and H_2O_2 were found in the reaction product.

A 1.5% solution of O_3F_2 in Freon 13 does not react with KO₃ at 90°K. At a higher temperature, O_3F_2 decomposes first to O_2F_2 then at 170°K., to F_2 and O_2 . The potassium ozonide remains unchanged.

Trioxygen difluoride does not react with solid ClF_3 at 90°K. No reaction was observed between O_3F_2 and NF_3 at 77 and at 90°K.

A spontaneous reaction with sparks and evolution of gas was observed when liquid O_3F_2 was dropped into an open tube containing solid CIF cooled in a liquid oxygen bath.

At 77°K., the reaction between the solid O_3F_2 and solid ClF proceeds so slowly that the formation of colored reaction products was noticed *only after 5 days*. At the points of contact of reagents, violet and blue compounds formed. Then amount increased with the time. The compounds have not been identified yet, but the violet compound is very similar to O_2ClF_3 .

The blue compound is new. It was kept at 77° K. for 25 days without noticeable decomposition. It was found that the new blue compound is not ozone. This was accomplished by extracting the reaction product with liquid O₂ at 77° K.; the blue compound was found to be insoluble in liquid O₂, while ozone is readily soluble under the same conditions.

The reaction between O_3F_2 and ClF dissolved in liquid oxygen at 77°K. proceeds even slower. Only 0.05 wt. % of O_3F_2 is soluble in liquid oxygen at 77°K., and the formation of a violet compound was noticed only after 10 days. At 90°K., when solid ClF, condensed on the walls of a reaction vessel, is soaked with liquid O_3F_2 , the formation of a violet compound (or compounds) was observed after 2–3 hr.

G. THE COMPATIBILITY OF 03F2-02 SOLUTIONS WITH VARIOUS ENGINEERING MATERIALS

The results of the compatibility tests of $O_3F_2-O_2$ solutions with various engineering materials, including those most frequently used in space-vehicle liquid oxygen systems, are presented in Table IV (66). They show that with the possible exception of some chlorotrifluoroethylene base materials (Halocarbon No. 11-15, Kel-F elastomer, and Kel-F alkane No. 464 oil) 0.05 or 0.10% of O_3F_2 does not cause liquid oxygen to react spontaneously with those materials that are employed most frequently in liquid oxygen systems.

H. HYPERGOLIC EFFECT

In spite of the very low solubility of O_3F_2 in liquid oxygen, these solutions were shown to be hypergolic with most of the fuels used in rocket propellants.

A series of open-cup tests showed that an instantaneous ignition occurs at the contact of a 0.05%solution of O_3F_2 in liquid O_2 with U-DETA and with 50, 10, 5, and 1% (by volume) solutions of UDMH in JP-4. An instantaneous explosion occurred with pure UDMH. In these experiments 1-5 cm.³ of O_3F_2 solution was poured into an aluminum cup containing 5 cm.³ of fuel.

An ignition occurred with 5 cm.³ of pure JP-4 after a delay of 3.4 sec., and an explosion with 10 cm.³ of JP-4 after a delay of 12.4 sec (66, 89).

A series of experiments with gaseous H_2 and with pure liquid O_3F_2 or its solutions in liquid O_2 , performed at 77 and 90°K. in a hypergolic ignition test apparatus (1), showed a hypergolic ignition in every test made at 0.25 and 0.5 atm. pressures of H_2 . Confusing results, requiring further investigation, were obtained at 1 atm. pressure of H_2 (1).

Tests performed in a small-scale rocket motor (of about 20 lb. thrust) resulted in a hypergolic ignition with alcohol, JP-4, U-DETA, and hydrogen (66, 89).

These tests showed also an improved combustion stability which was evident from visual observation, high-speed photography, and chamber-pressure traces. No significant difference in specific-impulse values was obtained.

The mechanism of hypergolic ignition is assumed to be as follows. As oxygen boils from the solution, the liquid remaining becomes enriched in O_3F_2 and, therefore, more reactive, to the point where a spontaneous reaction occurs. The degree of reactivity is dependent on the nature of the fuel, some requiring longer times than others for ignition. This requirement can be met by proper injector design, which may depend upon motor size. With the fuel and oxidizer impinging at 45° from a two-part injector, it was found that hypergolic ignition occurred only in about half of the trials

Table IV Compatibility Tests of Engineering Materials with 0.05% O₃F₂ (by weight) Solution in Liquid Oxygen

Materials	Results
Metals	
Stainless steel No. 303 ⁰ 303	
316 321 347	$\left. \right\}$ No appreciable reaction ^{<i>a</i>}
Copper	
Brass	No appreciable reaction; surface pitted on con- tinued exposure
Stainless steel carpenter 20 cb ^σ Titanium alloy β-120-VCA ^σ Magnesium-lithium (14.1%) al- loy ^σ Magnesium-thorium alloy XK31	} No appreciable reaction
Packing materials	
Kel-F elastomer (plasticized)	Delayed (50 sec.) slight reaction
Allpax 500 Allpax 500 (fluorolube T-80 treated) Teflon JM 76 Duroid 3400° JM "Lo-Flo"	<pre>No appreciable reaction</pre>
Polyethylene film Lubricants and sealants Fluorolube T-80, (T-45) Halocarbon, series 11–14	Delayed (60 sec.) ignition No appreciable reaction Delayed (50 sec.) slight
Kel-F oil, Alkane No. 464	reaction Delayed (50 sec.) slight reaction
Molykote "Z" [,] Oxylube 702 ^{b, c}	$\Big\}$ No appreciable reaction
AR-1F, LOX lube	Delayed (50 sec.) slight

^a No appreciable reaction indicates no fire, flame, or other visible evidence of reaction. ^b These samples were tested additionally by being immersed in 0.10% of O_3F_2 - O_2 solution, which was cooled with liquid nitrogen for a specified time, then allowed to warm up and the solution evaporated. These samples again showed no tendency to react. ^c The residue indicated a possible reaction, although no obvious reaction took place during evaporation of solutions.

reaction

with JP-4. However, by widening the impingement angle to 90° , immediate ignition resulted in each of nine tests.

It is of interest to indicate here that in a small rocket engine at least a 35% solution of fluorine in liquid oxygen is required to get a hypergolic ignition with hydrogen (8). The 0.05% O₃F₂ solution offers this characteristic without the change in physical properties that results from a higher concentration of additive. The density difference between liquid oxygen and a 0.05% O₃F₂-O₂ solution is less than 0.03%. The viscosity of the solution has not been measured, but it cannot be expected that such a small concentration of O_3F_2 will cause a significant difference. The handling hazards, however, would be much greater with 35% F₂ than with 0.05% O_3F_2 . The O_3F_2 -O₂ solutions present a greater hazard upon spilling than liquid oxygen alone presents, but again much smaller than that of F_2 -O₂ mixtures.

Experiments with gaseous H_2 and a saturated solution of O_3F_2 in liquid O_2 (both at 77°K.) carried out in a hypergolic ignition test apparatus of the Pratt and Whitney Co. showed that hypergolic ignition occurs with delays of up to 1200 msec. At 195°K. starting temperature for H_2 , the time to ignition was shortened. The ignition delay decreased also with the increase of the chamber pressure (58).

One satisfactory run, achieved in a series of tests performed with liquid H₂ and a saturated solution of O_3F_2 in O_2 in a 500-lb. thrust engine utilizing a 90° injector, showed "an apparently well behaved hypergolic ignition 0.5 sec. after the full LOX injector pressure was reached" (1).

I. METHOD OF ANALYSIS OF 03F2

 O_3F_2 is decomposed to F_2 and O_2 by warming slowly to room temperature. The simplest way to determine fluorine in the obtained gas mixture is the classical method of H. Moissan: absorption by mercury in a gas buret. The residual gas is then analyzed for O_2 by any desired method (absorption in an alkaline pyrogallol solution, for example) (46).

V. TETRAOXYGEN DIFLUORIDE, O4F2

The latest known member of the series, tetraoxygen difluoride, O_4F_2 , was synthesized by Grosse, Kirshenbaum, and Streng (1960) (28, 93). Since the name oxozone has been used to denote O_4 , O_4F_2 may also be called *oxozone fluoride*.

A. PREPARATION

Tetraoxygen difluoride is produced by an electrical discharge in a $2O_2 + F_2$ gas mixture at a temperature of 60-77 °K. and 5-15 mm. pressure. The electrical discharge applied is 4.5-4.8 ma. at 840-1280 v. The discharge vessel is made of Pyrex glass with copper electrodes. In form and dimensions it is similar to the discharge vessel used in the preparation of O_3F_2 .

The composition of O_4F_2 was established both by (a) synthesis and (b) analysis. In a synthetic test, 355 cm.³ (at S.T.P.), of a 2.05 \pm 0.03:1 O_2/F_2 mixture reacted at 77°K. in a discharge vessel. The gas mixture was admitted at a rate of 2.0 cm.³/min. The mixture was converted quantitatively to the solid reaction product, except for 15.4 cm.³ of gas which was pumped off periodically in order to keep the gas phase composition constant. Even if the 15.4 cm.³ is pure

 $O_{2},$ the composition of the product should equal $O_{4\cdot00}F_{2\cdot06}.$

Typical analyses of the gas produced from the solid product, using Moissan's absorption buret for F_2 and an Orsat apparatus for O_2 , were as follows: 96.9 cm.³ contained 66.3 mole % O_2 and 33.7 mole % F_2 , ratio O_2 $F_2 = 1.95 \pm 0.03$; 55.6 cm.³ gas gave 66.5 mole % O_2 and 33.4 mole % F_2 , ratio $O_2:F_2 = 1.98 \pm 0.05\%$. Theory for O_4F_2 is 2.00.

The vapor pressures of O_3F_2 , O_2F_2 , and O_2 differ widely, and O_2 can be pumped off easily; thus, the elementary composition, O_4F_2 , cannot be due to dissolved O_2 . The proof that it is *not* due to O_3 is more difficult. This proof was necessary, however, because O_2 -gas alone, under the pressure, temperature, and discharge conditions, is converted into liquid O_3 . Furthermore, liquid O_3 and liquid O_3F_2 mix homogeneously in all proportions at 90°K., and the $O_3 + 3O_3F_2$ mixture, on cooling to 77°K., forms a brown mass very similar in appearance to O_4F_2 . Attempts to distinguish O_4F_2 from the $O_3 + O_3F_2$ mixtures by visible spectra could not be made because the molecular extinction coefficients for O_3F_2 and O_4F_2 were not known.

A simple means of differentiation, however, is provided by the solubility behavior in liquid O₂. It was found that the samples of O_4F_2 extracted at 77°K. gave no visible trace of O₃. On analysis, this particular sample, after liquid O₂ extraction and pumping off all O₂, had the composition O_{4.00}F_{2.04}. In contrast, the O₃ + 3O₃F₂ mixture prepared from pure O₃ and O₃F₂ immediately gave a deep blue extract of O₃ in liquid O₂ (28, 93).

B. PROPERTIES

Tetraoxygen difluoride is one of the most potent oxidizers known.

At 77°K., O_4F_2 is a reddish brown *solid*, depositing on the walls of the discharge vessel between the electrodes. It differs in color from O_3F_2 and sometimes forms clusters of long needle-like brown crystals.

Tetraoxygen difluoride has a vapor pressure of less than 1 mm. at 90°K. It is liquid and stable, at least for a few hours, at 90°K., since no noticeable rise in pressure occurs. Between 90 and 110°K. it decomposes slowly into O_3F_2 and O_2 , and the former at 110°K., to O_2 and O_2F_2 . Since O_2F_2 in turn forms $O_2 + F_2$ at about 200°K., all the O_4F_2 is decomposed finally into O_2 and F_2 gas.

Tetraoxygen difluoride is only slightly soluble in liquid O₂ (pale brown solution) at 77°K., *viz.*, of the same order of magnitude as that of O₃F₂ (0.05 mole %) (28, 93).

VI. CONCLUDING REMARKS

The knowledge gained during the synthesis of O_4F_2 suggests that under certain conditions higher members of the oxygen-fluoride series, namely, O_5F_2 and O_6F_2 , should be obtainable.

The general rule in the preparation of oxygen fluorides is that the less stable the given member of the oxygenfluoride series, the milder or more delicate must be the preparation conditions. For a synthesis in an electrical-discharge vessel, the more sensitive the oxygen fluoride compound to be prepared, the less must be the energy per time unit, the lower the temperature, and the more effective the cooling provided. The shape of the reaction vessel, its surface-volume ratio, and the wall thickness also play a very important role. The most suitable forms of the reaction vessels known are described above (for details, see ref. 47 and 94). Some investigators are using U-shape reaction vessels for the preparation of O_2F_2 and O_3F_2 . This practice is not recommended because in such tubes ozone is also formed (94); it condenses on the walls and sometimes causes explosions when it mixes with the oxygen fluorides at temperatures above 120°K.

The author wishes to express his deep appreciation to his wife and assistant, Mrs. Lucia V. Streng, for help in the systematization of the material, to Dr. A. V. Grosse for advice and important suggestions, to Dr. W. F. Faragher for reading and commenting on the manuscript, and to Messrs. A. D. Kirshenbaum and C. S. Stokes for the data on the sensitivity of O_2F_2 and on the specific impulses of the OF_2 -fuel systems.

This review was written in connection with the research work performed for the Office of Naval Research, Contract Nonr 3085 (01).

VII. References

- Amster, A. B., Neff, J. A., and Aitken, A. J., "Preparation and Properties of Ozone Fluoride," Final Report. Stanford Research Institute, Menlo Park, Calif., November 1, 1962.
- (2) Anderson, R., Schnitzlein, J. G., Toole, R. C., and O'Brien, T. D., J. Phys. Chem., 56, 473 (1952).
- (3) Aoyama, S., and Sakuraba, S., J. Chem. Soc. Japan, 59, 1321 (1938).
- (4) Aoyama, S., and Sakuraba, S., J. Chem. Soc. Japan, 62, 208 (1941).
- (5) Bernstein, H. J., and Powling, J., J. Chem. Phys., 18, 685 (1950).
- (6) Boersch, H., Monatsh. Chem., 65, 311 (1935).
- (7) Boersch, H., Sitzungsber. Akad. Wiss. Wien., 144, 1 (1935).
- (8) Bollbuhler, R. J., and Straight, D. M., "Ignition of a Hydrogen-Oxygen Rocket Engine by Addition of Fluorine to the Oxidant," N.A.S.A. Report TN-D-1308, July, 1962. See reference 1.
- (9) Bransford, J. W., Kunkel, A. C., and Jache, A. W., J. Inorg. Nucl. Chem., 14, 159 (1960).
- (10) Brauer, G., "Handbuch der Preparativen Anorganischen Chemie," Ferdinand Enke Verlag, Stuttgart, 1954.
- (11) Brockway, L. O., Rev. Mod. Phys., 8, 231 (1936).
- (12) Brodersen, P. H., Frisch, P., and Schumacher, H. J., Z. physik. Chem., B37, 25 (1937).
- (13) Burg, A. B., "Volatile Inorganic Fluorides." "Fluorine

Chemistry," Vol. 1, Simmons, J. H., Ed., Academic Press, Inc., New York, N. Y., 1950.

- (14) Cady, G. H., J. Am. Chem. Soc., 56, 1431 (1934).
- (15) Cady, G. H., J. Am. Chem. Soc., 56, 1647 (1934).
- (16) Cady, G. H., J. Am. Chem. Soc., 57, 246 (1935).
- (17) Dibeler, V. H., Reese, R. M., and Franklin, J. L., J. Chem. Phys., 27, 1296 (1957).
- (18) Dodd, R. E., and Little, R., Nature, 188, 737 (1960).
- (19) Engelbrecht, A., and Nachbaur, E., Monatsh. Chem., 90, 367 (1959).
- (20) Evans, W. H., Munson, T. R., and Wagman, D. D., J. Res. Natl. Bur. Std., 55, 147 (1955).
- (21) Frisch, P., and Schumacher, H. J., Z. physik. Chem., B34, 322 (1936).
- (22) Frisch, P., and Schumacher, H. J., Z. anorg. allgem. Chem., 229, 423 (1936).
- (23) Frisch, P., and Schumacher, H. J., Z. physik. Chem., B37, 1 (1937).
- (24) Frisch, P., and Schumacher, H. J., Z. physik. Chem., B37, 18 (1937).
- (25) Frisch, P., and Schumacher, H. J., Z. Elektrochem., 43, 807 (1937).
- (26) Glissman, A., and Schumacher, H. J., Z. physik. Chem., B24, 328 (1934).
- (27) Gmelin, "Handbuch der Anorganischen Chemie, Fluor, System-Nummer 5," Verlag Chemie, GMBH, Weinheim, Bergstrasse, 1959.
- (28) Grosse, A. V., Streng, A. G., and Kirshenbaum, A. D., J. Am. Chem. Soc., 83, 1004 (1961).
- (29) Hettner, G., Pohlman, R., and Schumacher, H. J., Z. Physik, 96, 203 (1935).
- (30) Hettner, G., Pohlman, R., and Schumacher, H. J., Naturwissenschaften, 23, 114 (1935).
- (31) Hettner, G., Pohlman, R., and Schumacher, H. J., Z. Elektrochem., 41, 524 (1935).
- (32) Hildebrand, J. H., and Scott, R. L., "The Solubility of Nonelectrolytes," 3rd Ed., Reinhold Publishing Corp., New York, N. Y., 1950, p. 424.
- (33) Hilton, A. P., Jr., Jache, A. W., Beal, J. B., Jr., Henderson,
 W. D., and Robinson, R. J., J. Chem. Phys., 34, 1137 (1961).
- (34) Holzmann, R. T., and Cohen, M. S., Inorg. Chem., 1, 972 (1962).
- (35) Huff, V. N., Calvert, C. S., and Erdmann, V. C., NASA Memo RM-E8117a, 1949.
- (36) Huff, V. N., and Gordon, S., NASA Memo RM-E52H14, 1952; NASA Memo RM-E51L11, 1952; NASA Memo RM-E52GO9, 1952.
- (37) Ibers, J. A., and Schomaker, V., J. Phys. Chem., 57, 699 (1953).
- (38) Ishikawa, F., Murooka, T., and Hagisawa, H., Bull. Inst. Phys. Chem. Res. (Tokyo), 12, 742 (1933).
- (39) Ishikawa, F., Murooka, T., and Hagisawa, H., Sci. Rept. Tohoku Univ., 23, 431 (1934).
- (40) Ishikawa, F., and Takai, T., Sci. Rept. Tohoku Univ., 24, 98 (1935).
- (41) Jackson, R. H., J. Chem. Soc., 4585 (1962).
- (42) JANAF Thermochemical Data, 1960–1962.
- (43) Jones, E. A., Kirby-Smith, J. S., Woltz, P. J. H., and Nielsen, A. H., J. Chem. Phys., 19, 337 (1951).
- (44) Judge, J. F., Missiles Rockets, 9, 22 (1961).
- (45) Kanarek, I. A., U. S. Patent 2,968,145 (January 17, 1961).
- (46) Kirshenbaum, A. D., and Grosse, A. V., J. Am. Chem. Soc., 81, 1277 (1959).
- (47) Kirshenbaum, A. D., Grosse, A. V., and Aston, J. G., J. Am. Chem. Soc., 81, 6398 (1959).

- (48) Kirshenbaum, A. D., and Streng, A. G., J. Chem. Phys., 35, 1440 (1961).
- (49) Koblitz, W., and Schumacher, H. J., Z. physik. Chem., B25, 283 (1934).
- (50) Lagemann, R. T., J. Chem. Phys., 14, 743 (1946).
- (51) Lange, W., Chem. Ztg., 59, 393 (1935).
- (52) Lebeau, P., and Damiens, A., Compt. rend., 185, 652 (1927).
- (53) Lebeau, P., and Damiens, A., Compt. rend., 188, 1253 (1929).
- (54) Leech, H. R., "Compounds of Fluorine with Oxygen," "Mellor's Comprehensive Treatis eon Inorganic and Theoretical Chemistry, Supplement II, Part I," Longmans, Green and Co., London, New York, Toronto, 1956, pp. 186-193.
- (55) Maguire, R. G., ARL Technical Report 60-287, 1960.
- (56) Maguire, R. G., private communication, March 30, 1962.
- (57) Mann, D. J., and Smith, D. S., "Evaluation of Oxygen Difluoride as a High Energy Space Storable Propellant," paper presented at the 142nd National A.C.S. Meeting, September 9-14, 1962, Atlantic City, N. J.
- (58) McAnally, W. J., III, "Hypergolic Ignition Studies," Short Memorandum Report FR-384, March, 1962, Pratt and Whitney Aircraft, Division of United Aircraft Corp. See reference 1.
- (59) McKenna, F. E., "Methods of Fluorine and Fluoride Analysis," McGraw-Hill Publishing Co., New York, N. Y., 1951.
- (60) Nielsen, A. H., J. Chem. Phys., 19, 379 (1951).
- (61) Pauling, L., J. Am. Chem. Soc., 54, 3570 (1932).
- (62) Petat, F., Z. Elektrochem., 42, 85 (1936); 42, 94 (1936).
- (63) Pierce, L., and Jackson, R., J. Chem. Phys., 35, 2240 (1961).
- (64) Pohlman, R., and Schumacher, H. J., Z. physik. Chem., 102, 678 (1936).
- (65) Potter, L. R., J. Chem. Phys., 17, 957 (1949).
- (66) Riehl, W. A., Perkins, H., Stokes, C. S., and Kirshenbaum,
 A. D., ARS J., 32, 384 (1962).
- (67) Rohzbach, G. H., and Cady, G. H., J. Am. Chem. Soc., 69, 677 (1947).
- (68) Ruff, O., "Die Chemie des Fluores," Verlag von J. Springer, Berlin, 1920.
- (69) Ruff, O., Z. angew Chem., 41, 1291 (1928).
- (70) Ruff, O., Z. anorg. allgem. Chem., 197, 273 (1931).
- (71) Ruff, O., and Clusius, K., Z. anorg. allgem. Chem., 190, 267 (1930).
- (72) Ruff, O., and Menzel, W., Z. anorg. allgem. Chem., 190, 257 (1930).
- (73) Ruff, O., and Menzel, W., Z. anorg. allgem. Chem., 198, 39 (1931).
- (74) Ruff, O., and Menzel, W., Z. anorg. allgem. Chem., 198, 375 (1931).
- (75) Ruff, O., and Menzel, W., Z. anorg. allge . Chem., 229, 423 (1932).
- (76) Ruff, O., and Menzel, W., Z. anorg. allgem. Chem., 211, 204 (1933).
- (77) Ruff, O., and Menzel, W., Z. anorg. allgem. Chem., 217, 85 (1934).
- (78) Ruff, O., Menzel, W., and Neumann, W., Z. anorg. allgem. Chem., 208, 293 (1932).
- (79) Ruff, O., and Zedner, J., Ber., 42, 1037 (1909).
- (80) Schnitzlein, J. G., Sheard, J. L., Toole, R. C., and O'Brien, T. D., J. Phys. Chem., 56, 233 (1952).

- (81) Schomaker, V., and Stevenson, D. P., J. Am. Chem. Soc.,
 63, 37 (1941).
- (82) Schumacher, H. J., Congr. Intern. Quim. Pura Apl., 9 Madrid 1934, 2, 485 (1935).
- (83) Schumacher, H. J., Z. Physik, 96, 203 (1935).
- (84) Schumacher, H. J., An. Argent., 38, 209 (1950).
- (85) Schumacher, H. J., and Frisch, P., Z. physik. Chem., B37, 1 (1937).
- (86) Simons, E., Willson, T. P., and Schuman, S. C., Natl. Nucl. Energy Ser., Div. II, 16, 1922 (1949).
- (87) Simons, J. H., "Fluorine Chemistry," Vol. I and II, Academic Press, Inc., New York, N. Y., 1950 and 1954.
- (88) Skinner, H. A., Trans. Faraday Soc., 41, 645 (1945).
- (88a) Solomon, I. J., "Research on Chemistry of O₃F₂ and O₂F₂," Technical Summary Reports, Nov. 8, 1962, and Feb. 13, 1963, Armour Research Foundation, Chicago, Ill.
- (89) Stokes, C. S., "The Use of Ozone Fluoride as a Hypergolic Additive to Liquid Oxygen," Research Institute of Temple University, Philadelphia, Pa., March 1, 1961.
- (90) Streng, A. G., J. Am. Chem. Soc., 85, 1380 (1963).
- (91) Streng, A. G., "The Miscibility and Solubility of Liquified and Solidified Gases," Research Institute of Temple University, Philadelphia, Pa., 1962.
- (92) Streng, A. G., and Grosse, A. V., J. Inorg. Nucl. Chem., 9, 315 (1959).
- (93) Streng, A. G., and Grosse, A. V., "Addition and Substitution Compounds of Oxygen Fluorides," First Annual Progress Report for the Office of Naval Research, Contract Nonr 3085(01), Research Institute of Temple University, Philadelphia, Pa., January 3, 1961.
- (94) Streng, A. G., and Grosse, A. D., "Addition and Substitution Compounds of Oxygen Fluorides," Second Annual Progress Report for the Office of Naval Research, Contract Nonr 3085(01), Research Institute of Temple University, Philadelphia, Pa., January 19, 1962.
- (95) Streng, A. G., and Grosse, A. V., "Free Radicals in Inorganic Chemistry," Advances in Chemistry Series, No. 36, American Chemical Society, Washington, D. C., 1962, p. 159.
- (96) Streng, A. G., Kirshenbaum, A. D., and Grosse, A. V., Third Annual Progress Report for the Office of Naval Research, Contract Nonr 3085(01), Research Institute of Temple University, Philadelphia, Pa., January 15, 1963.
- (97) Stuart, H. A., Z. physik. Chem., B36, 155 (1937).
- (98) Sutherland, G. B. B. M., and Penny, W. G., Proc. Roy. Soc. (London), A156, 678 (1936).
- (99) Sutton, L. E., and Brockway, L. O., J. Am. Chem. Soc., 57, 473 (1935).
- (100) Warhurst, E., Trans. Faraday Soc., 45, 461 (1949).
- (101) Wartenberg, H., Z. anorg. allgem. Chem., 200, 235 (1931).
- (102) Wartenberg, H., and Klinkott, G., Z. anorg. allgem. Chem., 193, 418 (1930).
- (103) Wicke, E., Nature, 33, 132 (1946).
- (104) Willard, H. H., Ind. Eng. Chem., Anal. Ed., 5, 7 (1933).
- (105) Willard, H. H., and Horton, C. A., Anal. Chem., 22, 1190 (1950).
- (106) Willard, H. H., and Horton, C. A., Anal. Chem., 24, 862 (1952).
- (107) Wulfman, C. E., J. Chem. Phys., 33, 1567 (1960).
- (108) Yost, D. M., Inorg. Syn. 1, 109 (1939).
- (109) Yost, D. M., and Hetcher, J. B., J. Chem. Educ., 10, 330 (1933).