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I. INTRODUCTION 

The subject of the thermal conductivity of liquids 
and dense gases is important for two main reasons: 
firstly, because its study can help in giving a better 
understanding of the basic molecular processes in­
volved in transport phenomena in general, and secondly, 
because of its significance in technological applications. 
In the present review both experimental and recent 
theoretical aspects are covered, and data on various 
types of systems are discussed in the light of existing 
theories. 

ORIGIN OF THE PHENOMENON 

If a system is perturbed from equilibrium by the effect 
of a temperature gradient bT/dx, the perturbation 
tends to be eliminated by a flux of heat down the gradi­
ent, giving rise to the phenomenon of thermal con­
ductivity. The coefficient of thermal conductivity X is 
then defined as the proportionality constant between 
the flux / q and the gradient, written in the one dimen­
sional case as 

jq = -xar/dx (Eq. 1) 

Equation 1 is called Fourier's law (42). The negative 
sign indicates that the flux is down the gradient, and it 
can be shown from irreversible thermodynamics (95) 
that the coefficient itself is always positive. Typical 
values of the thermal conductivity of a variety of liquids 
are given in Table I. 

Most organic liquids have thermal conductivities 
ranging between about 8 to 30 X 10™* joule cm.-1 

sec.-1 0C. -1, lowest values generally occurring for the 
lower alkyl halides (6 X 10~4 joule cm."1 sec.-1 0C.-1). 
Among common liquids, water and ammonia have ex­
ceptionally high thermal conductivities, the values of 
which are also approached by some organosilicon com­
pounds. From Table I, it can be seen that the ther­
mal conductivities of liquid metals are higher by a 
factor of about 100 than those of normal liquids. For 
molten salts, values are available only for the alkali 
nitrates. These range from about 22 to 55 X 10_4 

joule cm.-1 sec.-1 0 C. - 1 Thermal conductivities 
throughout this review are in the units used above. 
Conversion factors are given below. 

Toconvert JOuIeSOiIi1
-1SeC-10C."1 to: 

CaLCm1
- 1SeC - 1 0C. - 1 multiply by 0,2390 

kcal, m. - 1 hr. - 1 0 C. - 1 multiply by 86.042 
B.t.u. ft. -1 hr. - 1 0 F . - t multiply by 57.780 

For simple liquids, the thermal conductivities are 
about 10 to 100 times greater than those of the corre­
sponding gases at the same temperature (c/. Table XI) 
and about 0.10 to 0.20 smaller than the values of the 
corresponding solids at the melting point. Figures for 
liquid and solid argon are, respectively, 12.60 and 17.53 
X 10"4 joule cm.-1 sec.-1 0C. -1 . 

II. EXPERIMENTAL DETERMINATION OF THERMAL 
CONDUCTIVITY 

A. BASIC THEORY 

For a discussion of the problem of convection and for 
derivation of the basic equation used in the experimental 
determination of thermal conductivity, the hydro-
dynamic equations of change are necessary. These are 
simply expressions of the conservation laws for mass, 
momentum, and energy and can be written (126) in 
Cartesian tensor notation for a viscous, compressible, 
heat-conducting, isotropic fluid as 

Dp 
Bt — p 

&Vk equation of continuity 
'bxi (conservation of mass) (Eq. 2) 

- ^ • + P f i 

equation of motion ,-& „-. 
(conservation of momentum) ^ "̂ ' 

Dw _ , _ bqt energy balance equation (V,„ A\ 
pDt ~ '' ij bxi (conservation of energy) ^ q - *' 

p is the fluid density, u the internal energy per unit 
mass, V{ its hydrodynamic (i.e., center of mass) velocity, 
and /»the body force per unit mass due to an external 
field such as the gravitational field. q{ is the heat flux 
vector. The derivative D/Dt given by 

Bt ' 2tf + "* 2te* (Eq. 5) 

is generally called the substantial time derivative and 
measures the rate of change of a property of the fluid 
as "seen" by an observer seated at the center of mass 
of any element of fluid considered. <7W = ô 4 is the 
symmetric stress tensor related to the thermodynamic 
pressure p and the viscosity coefficients of the fluid, 
by the generalised form of Newton's viscosity equation 
known as the Cauchy-Poisson law. 

*u = J -P + f n' + g A dkk\ hi + %iAi,- (Eq. 6) 

Ti' is the second coefficient of viscosity and 77 the first 
or shear coefficient of viscosity. The sum (»7' + 2^/3) 
is the coefficient of bulk viscosity (for a discussion of 
the coefficient of bulk viscosity and its relationship to 

Temp., 0K. 
X X 10* joules, cm. 

TABLE I 
THE THERMAL CONDUCTIVITIES OF SOME LIQUIDS AT 1 Am. PRESSURE 

Aq. 
potassium 

Potassium chloride 
nitrate (1 mote/I.) 

0 C -

Argon 

84.2 
12.6 

Benzene 

295.9 
14.3 

Glycerol 
293.2 

28.8 

Water 
293.2 

60.0 
683.0 

42.5 
293.2 

58.6 

Sodium 
573.2 

1146 

Mercury 

303.2 
860 
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sound absorption, see ref. 82 and 128) and 8tj is the 
Kronecker delta symbol, 8ti = 1, i = j , 5W = 0, i ^ j . 
djj and A0 are related to the symmetrical rate of strain 
tensor dtj given by 

by the equation 

dicAj + Ai,-

(Eq. 7) 

(Eq. 

In Eq. 4 the term cr0dy can be rewritten in terms of 
the reversible rate of internal energy increase per unit 
volume by compression pd}1 and the irreversible rate of 
internal energy production per unit volume due to vis­
cous dissipation $, by the equation 

audi! = -pda + $ (Eq. 9) 

where $, called the dissipation function, is given by 

* = (v' + § v) da* + 2,AaA1-* (Eq. 10) 

= y'dji* + 2i)dikdik 

B. THE ENERGY BALANCE EQUATION IN TERMS 

OF THE TEMPERATURE 

To introduce the coefficient of thermal conductivity 
into the energy balance (Eq. 4) use is made of Fourier's 
law 

g,- = -\dT/dxi 

The resulting equation involving the specific internal 
energy is not, however, in a useful form for the experi­
mental determination of the thermal conductivity and is 
therefore transformed in terms of the temperature, 
which is a more readily measurable quantity. This 
transformation is made by using the thermodynamic 
equation 

dw= ~ ?l ~p + T (S)P1 dp + CydT (Eq' U) 

where Cv is the specific heat at constant volume. The 
resulting equation is 

^5IK-D-KlJ)Jt+* »-> 
or in terms of the specific heat at constant pressure Cp 

* T S - i £ © + * # + • <•*» 
by using the equation of continuity and the relationship 

*'" ^ f ( M O , (Eq'14) 
where a is the coefficient of thermal expansion. Equa­
tions 12 and 13 are equivalent expressions for the energy 
balance equation for a compressible, viscous, heat-
conducting, isotropic fluid in nonisothermal flow. 

C. EQUATION FOR THE EXPERIMENTAL DETERMINATION 

OF THERMAL CONDUCTIVITY 

In the experimental determination of thermal con­
ductivity, conditions are required under which convec­
tion is absent; i.e., heat is transferred by pure conduc­
tion and no contribution to transport arises from the 
bulk motion of elements of the fluid from hotter to 
colder regions. In such a state vt = 0 and the energy 
balance Eq. 13, for small temperature gradients, where 
\ can be considered effectively as a constant, reduces to 

^ - X V T + 3 V g (Eq. 15) 

In principle the thermal conductivity of a fluid can be 
measured in any apparatus which provides boundary 
conditions to Eq. 15. The standard reference work for 
solutions with various boundary conditions is by Car-
slaw and Jaeger (14). Steady-state, i.e., time-inde­
pendent, methods are generally preferred since, at con­
stant pressure, Eq. 15 reduces to Laplace's equation 

V1T = 0 (Eq. 16) 

the solution of which, together with information on the 
heat flux at the boundaries is sufficient to evaluate the 
thermal conductivity without recourse to the density, 
specific heat, and coefficient of expansion. In addi­
tion, time-independent temperatures are easier to 
measure. 

1. Steady-State Methods 

In practice a steady-state temperature is maintained 
by an internal heat source, and methods can be classi­
fied according to the cell geometry in which this is 
achieved. The two most important types are linear 
and radial systems. In the former the parallel plate 
apparatus is the commonest, and in the radial systems, 
either concentric cylinders or concentric spheres are 
used. 

The appropriate solutions to Eq. 16 for these sys­
tems with the assumption of constant pressure are 

x = A(T2 - T1) 
(parallel plates) (Eq. 17) 

g i n , 
X = „ , . _ TS-. (concentric cylinders) (Eq. 18) 

q(b - a) 
X = 4ffo6(r2 - Ti) 

(concentric spheres) (Eq. 19) 

q is the heat lost by conduction from the hotter surface 
at a temperature Ti to the colder surface at temperature 
Ti. For concentric cylinders and spheres the inner 
surface is generally made the hotter for convenience in 
thermostating, and for the parallel plate arrangement, 
heat is usually supplied uniformly from above as the 
system is then theoretically free from convection, d 
is the plate spacing, a and b are the inner and outer 
radii of the cylinders or spheres, I is the cylinder length, 
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and A is the effective area over which heat is conducted 
in the plate arrangement. 

In the plate and cylinder arrangements elaborate pre­
cautions are necessary to avoid distortion of the tem­
perature profile at the ends due to heat leakage. These 
"end" effects, which could lead to convection (see 
section HE) unless compensated, can be avoided by 
using concentric spheres. 

In general, with all three types, the geometrical 
factors enter the equation so that precision in construc­
tion is essential. Corrections can be applied for such 
things as eccentricity and heat conduction along spacing 
pieces and connections. These should however be 
minimized. Suitable forms of these arrangements can 
be found in the following references: flat plates, Chal-
loner and Powell (17) and Michels, Sengers, and Van der 
Gulik (87); concentric cylinders, Ziebland and Burton 
(148) and Riedel (113); concentric spheres, Riedel 
(113) and Richter and Sage (107). 

2. Transient Methods 

Nonsteady-state measurements have generally been 
restricted to hot wire cells. In this case the develop­
ment of temperature is observed in an electrically 
heated wire, immersed axially in a liquid, in a cylindri­
cal cell which is initially in thermal equilibrium. This 
system to a first approximation can be treated as an 
infinite line source of constant heat generation in an 
extended medium. If the pressure is assumed con­
stant (see section HE) the solution of Eq. 15 is 

r ^ = i fMi iS)S (Eq-20) 

where q/l is the heat conducted per unit length away 
from the wire, Tm(r,t) is referred to the initial tempera­
ture, Kn = X/pCp is called the thermal diffusivity, and 
Ei(—x) is the exponential integral. Expanding Ei-
(—x) gives the temperature at a radial distance r' as 

W O - M J111I + ln «= + J ^ + . . . . I (Eq. 21) 

where y is Euler's constant. Provided r'2/AKmt is 
sufficiently small in the range t\ to i2 then 

TaLr'M - T1^r', fc) ~ | g In | (Eq. 22) 

so that a plot of temperature against log time enables 
the thermal conductivity to be obtained. In an actual 
hot wire cell, the heating wire has a finite diameter and 
length and in addition the medium is bounded so that 
an examination of the limitation of Eq. 21 when ap­
plied to an experimental cell is necessary. This has 
been done in detail by Van der Held and Van Drunen 
(132) and by Horrocks and McLaughlin (56) who show 
that under suitable conditions the only necessary correc­
tion is a small one due to the finite wire diameter. An 
advantage of this method is that it can be used to check 
for the absence of convection by departures from linear­

ity of the T-log t plots, and in addition the time depend­
ence of the temperature can be readily obtained by us­
ing the electrical heating circuit. Suitable forms of 
this type of apparatus have been described by Van 
der Held and Van Drunen (132), Gillam and Lamm 
(44), and Horrocks and McLaughlin (56). 

Numerous other types of apparatus have been de­
scribed, especially those involving comparative tech­
niques, but the above methods are those most com­
monly used in precise work. On comparative tech­
niques it should, however, be remembered that the 
majority of viscosity results have been obtained in this 
manner, and that they are useful in exploring a wide 
variety of systems. A sophisticated comparative ap­
paratus has been described in papers by Grassmann and 
Straumann (46) and Jobst (61). 

D. RADIATION 

In Eq. 17-19 and 22, the quantity q is the heat lost 
by conduction alone. In an experimental apparatus, 
however, due to the temperature gradient, heat is also 
lost by radiation. The precise evaluation of this loss is 
a complex problem (7), but it is, nevertheless, possible 
to give an upper limit to its magnitude. 

The radiant energy q/ emitted from the surface of a 
nonblack body, of emissivity e, at a temperature T2, 
into a surrounding enclosure is given by the relation­
ship 

q,' = AzGT2* (Eq. 23) 

where d (5.67 X IO"12 joule sec."1 cm."2 0K.~4) is the 
Stefan-Boltzmann constant. The rate of energy ab­
sorption by the emitting surface of absorptivity a from 
the surroundings at a temperature T1 is given by 

q,a = AvLdTS (Eq. 24) 

where it is assumed that the radiation reaching the sur­
face is black body radiation corresponding to tem­
perature Ti. The net rate of loss is therefore 

qr = Ad(ZTi* - CiT1*) (Eq. 25) 

where A is the effective emitting area. Although e and 
a are less than unity (for example, for platinum e ca 
a C^ 0.1 and for glass 0.8), the maximum heat loss can be 
obtained by assuming that the emitting surface is a 
black body. For small temperature differences, there­
fore (as is necessary to avoid convection), T2 — Ti = 
AT, and hence 

q, =* 4AdT8Ar (Eq. 26) 

where T = (T2 + Ti)/2. 
The ratio of the rate of heat loss due to radiation to 

that due to pure conduction follows from Eq. 17 to 19 
for the steady-state systems as 

- = fig (parallel plates) (Eq. 27) 
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- = fialn(-) (concentric cylinders) (Eq. 28) 
W 

(Eq. 29) — = Sl r ( t — a) (concentric spheres) 

and from Eq. 21 for the treatment hot wire cell as 

?-°§ta(w) (Eq-30) 

where 

Q = ~ (Eq. 31) 

While both the absorption of the medium and the emis-
sivity of the surfaces reduce the error calculated by the 
equations above, it is preferable to ensure that the cor­
rection so calculated is less than 1%. 

E. CONVECTION 

If a temperature gradient is applied to a fluid initially 
at rest, the resulting density gradient produces a buoy­
ancy force which, although opposed by the viscous 
resistance in the state of mechanical equilibrium, 
eventually causes instability. This instability is mani­
fested in bulk convective motion, which is the bodily 
motion of whole portions of the fluid. The problem was 
first studied experimentally by Be*nard (5) but is still 
far from being completely understood. For the present 
work it is only necessary to consider free convection, 
by which is meant, flow where the motion is caused by 
the effect of gravity on the heated fluid of variable den­
sity. 

From thermodynamics the change in density of a 
liquid due to pressure and temperature is 

- d p = pprdp + padT (Eq. 32) 

where /3T is the isothermal compressibility. From this 
equation it follows that changes in density due to 
changes in pressure can be neglected, compared with 
changes in density due to temperature, provided 

dp « ^dT 
PT 

(Eq. 33) 

As dp ~ pgd where d is the thickness of the liquid layer 
in a cell and a/fa ^ 10 atm. deg. - 1 for common liquids 
(116) at atmospheric pressure when the density is 
approximately unity, then (pg)-la/fi? ~ 104 cm. deg. - 1 

so that the effect of pressure on the density change is 
negligible for small thickness of fluid, and the equa­
tion of state reduces to 

dp = -apdT (Eq. 34) 

As the effect of pressure on the density change is 
negligible, the fluid can first be treated as incompres­
sible in the equation of motion to eliminate the bulk 
viscosity and written 

— = — grad p + -V2V + g 
U t p p 

where g is the gravitational force per unit mass of fluid. 
This equation has now only to be modified to allow for 
the effect of the density change due to temperature. 

I t can be shown (70) that if the thermodynamic 
quantities p, T, and p are written for small gradi­
ents in the form p = p0 + p', T = T0 + T', and p = 
Po + p' where p0 and T0 are constants and pa = pogr + 
constant, then 

grad p 
p 

..g + SZUfl + gT,. 
PO 

(Eq. 36) 

which on substituting in Eq. 35 gives for steady-state 
convection (d/bt = 0) 

(^•grad)y = - (1 /p ) grad p' + [Vh)V1V - aT'g (Eq. 37) 

and 

div v = 0 (Eq. 38) 

as the fluid is taken to be incompressible. Turning to 
the energy balance equation, Eq. 13, if the pressure is 
constant the ~Dp/~Dt term vanishes, and as for the 
steady state with motion in one direction alone for a 
linear gradient (c/. 122) 

$ 
PCPV 

, 2„(AiQ' 
dT ~ PC11VATd (Eq. 39) 

Then, as 2ri/pCp c~ 10 - 9 c.g.s. unit for a typical liquid like 
water at room temperature, $, the viscous energy 
dissipation, can be neglected compared with the con­
vective transport of thermal energy, reducing Eq. 13 
finally to the form for the steady state 

v-grad 7" = -^-V2T' 
pop 

(Eq. 40) 

(Eq. 35) 

Equations 34, 37, 38, and 40 applicable to convection 
phenomena therefore are seen to contain three param­
eters, n/p, X/pCp, and ag, which together with the 
temperature difference AT and fluid thickness d serve to 
characterize the phenomena of convection. From these 
parameters two independent dimensionless quantities 
can be formed, the Prandtl number and the Grashof 
number given by Pr = ijCp/X, G = gap2ATd3/V, R = 
PrGr. The Grashof number is a measure of the rela­
tive importance of the buoyancy and viscous forces 
acting on a liquid, and the Prandtl number is a measure 
of the ratio of the molecular diffusivity of momentum 
to the molecular diffusivity of energy. 

When Eq. 34, 37, 38, and 40 are applied to solve 
specific convection problems of fixed geometry, it is 
found that the onset of convection is determined by 
critical values of the product of the Prandtl and Grashof 
numbers known as the Rayleigh number. For example, 
for concentric cylinders the value of R is 1000. This 
means that provided the Rayleigh number in a fluid 
under investigation is less than the critical value for a 
given geometry, no convection would be expected. I t 
follows, therefore, that measurements should be made 
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T*(ext..T/2-lf 
Fig. 1.—Reduced time-reduced temperature plot for the deter­
mination of the time of onset of convection in a hot wire cell. 

at low Rayleigh numbers. As mentioned previously, 
however, while experimental conditions may be ar­
ranged to give low B values, "end effects" are a com­
mon source of initiation of convection and some addi­
tional check is therefore desirable. 

While nonsteady-state methods have the particular 
disadvantage of requiring time-dependent temperature 
measurements, they can be used to determine experi­
mentally the time of onset of convection and hence 
check the Rayleigh criterion. As pointed out pre­
viously, in the steady state heat transfer by convection 
between horizontal coaxial cylinders is negligible below 
a Rayleigh number of 1000, and as a hot wire cell is 
of this geometry, this criterion is applicable. To apply 
it to hot wire cells for nonsteady-state measurements 
requires reformulation. Van der Held and Van Drunen 
(132) suggested that to the instantaneous temperature 
field in the nonsteady state, there may be found a 
pseudo-steady-state situation. Convection may be 
expected to occur when this corresponding pseudo-
steady-state situation reaches the critical value of R = 
1000. In this situation, however, the distance b in the 
characteristic dimension d — b — a (see Eq. 18) corre­
sponds to the radius of the expanding high temperature 
fluid which surrounds the axial heating wire and has to 
be determined. The slightly modified procedure used 
below is discussed in ref. 56. 

The temperature differential in the nonsteady state 
is given by Eq. 21 which may be equated in the approxi­
mation outlined above with the temperature differen­
tial of a pseudo-steady state given by Eq. 18, i.e. 

TM ' * - {&*\ (Eq. 41) 

which yields b and hence 

d = 6 - o = a\exp?~2 - li (Eq. 42) 

Substituting Eq. 42 for d and the major terms of Eq. 21 

TABLE II 
COMPARISON OP CALCULATED AND EXPERIMENTAL TIMES OF 

ONSET OP CONVECTION 
Liquid t (measured) t(calod.) 

Water 16 16.4 
Pentanol 50 55.3 
Methanol 20 19.6 
Aniline 50 59.9 
Carbon tetrachloride 18 17.6 
Benzene 18 18.2 
Acetone 16 15.0 
Chloroform 16 17.2 
Toluene 15 14 
Benzene 8.5 10 

into the Rayleigh expression, with T* = 4:r\Ta/ 
(q/l) and t* = 4\t/PCpa

2, yields the criterion for the 
onset of convection in the nonsteady-state case as 

1000 = 9J*W[T*{«^2T* ~ 0 ' ] <E* 43> 
From Eq. 43, the onset of convection may be related 
to a value of T* and hence by Eq. 21 in terms of the 
reduced variables to t* and t. This is most readily done 
from a plot of 4<* against r*(expy 2 r* - I)3 illustrated 
in Fig. 1, so that with the experimental values of a, p, 
X, rj, and q/l at any temperature for a wire radius a, t* 
can be obtained and hence t, the time of onset of convec­
tion. 

Table II compares calculated and experimental 
values of the time of onset of convection for given ex­
perimental apparatus and conditions for a range of 
liquids. The calculated values are obtained using the 
Rayleigh criterion, and the experimental values from 
departures from linearity of the temperature-log time 
plots. The results are those of Van der Held and Van 
Drunen (132) with the exception of the last two values 
which are from Horrocks and McLaughlin (56) using 
the modified procedure discussed above. The results, 
on average, are in agreement well within about 10%, 
thus substantiating the Rayleigh criterion for the time 
of onset of convection. 

For the steady-state situation, an analysis can also 
be made of the convection problem. This has been 
done by Michels and Sengers for a parallel plate ap­
paratus (86), which was used to study CO2 in the criti­
cal region. Finally, with regard to convection, it can 
be said that although far from being completely under­
stood, criteria in use at present do serve to indicate the 
onset of convection, provided spurious end effects are 
eliminated. No absolute guarantee can, however, be 
given unless direct experimental confirmation is ob­
tained. The existence of convection during measure­
ments is the most likely cause of the large discrepancies 
between thermal conductivity values for liquids re­
ported by different experimenters. This is further dis­
cussed in the following section. 
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F. THERMAL CONDUCTIVITY STANDARDS 

To check the reliability of a thermal conductivity 
apparatus, it is essential to make measurements on 
standard materials of known thermal conductivity. 
As the liquid state covers a wide temperature range 
from the liquified common gases at about 800K. to 
molten metals at about 15000K., a number of stand­
ards are required. These materials should be thermally 
stable, one-component species, and obtainable in a 
high state of purity, which has been specified. In addi­
tion they should not be highly viscous, otherwise con­
vection effects inherent in the apparatus may be ob­
scured and spurious values result when the apparatus is 
used to make measurements on less viscous materials. 
Finally, reliability of recommended values of the ther­
mal conductivity of standard materials can only be en­
sured if measurements, which must be absolute, have 
been checked in different types of apparatus. 

To date, only two groups of experimental workers 
have endeavored to make systematic measurements of 
thermal conductivity, of the same liquids, in different 
types of apparatus, over comparable temperature 
ranges. Riedel (113) has compared a variety of 
liquids over a range of temperatures in three types of 
apparatus, parallel plates, concentric cylinders, and 
concentric spheres. His results are given in Table III. 

TABLE III 

THERMAL CONDUCTIVITIES, X X 104," OF LIQUIDS FOR THEEB 

DIFFERENT TYPES OF APPARATUS (RIEDEL) 

' Type of apparatus • Average 
Paral­

lel 
plates 

60.0 
67.0 
16.05 
15.35 
14.05 
14.75 
15.95 
13.5 
11.75 
10.35 

Liquid 

Water 

Acetone 
n-Butyl alcohol 

Benzene 
Toluene 

Carbon tetrachloride 

Temp., 
0C. 
20 
80 
20 
20 
80 
20 

-80 
20 
80 
20 

Con­
centric 

cylinders 

59.9 
66.4 
16.15 
15.35 
14.3 
14.75 
15.95 
13.6 
11.85 
10.35 

Con- deviation 
centric from mean, 

% spheres 

59.5 

15.95 
15.25 

14.55 

13.5 

10.25 

±0 .3 
± 0 . 5 
± 0 . 4 
±0 .2 
±0 .8 
± 0 . 6 

0 
± 0 . 3 
± 0 . 4 
±0 .4 

° In joules cm. -1 sec. -1 0C. - 1 . 

Agreement between results obtained by the different 
experimental methods is excellent, lying on average 
within about ±0.4%. 

Challoner, Gundry, and Powell (16) have also carried 
out an extensive series of masurements in two types of 
apparatus, viz. parallel plates and concentric cylinders. 
Their results are given in Table IV. Again good agree­
ment is obtained, the average of the deviations from 
the mean being about ±0.6%. 

It is unfortunate that, in both sets of data, no positive 
information is given that the measurements were made 
on samples of the same degree of purity as evidenced, 
for example, by the physical constants such as boiling 

TABLE IV 
THERMAL CONDUCTIVITIES OF LIQUIDS, X X IQ4, ° 
DIFFERENT TYPES OF APPARATUS (CHALLONER, 

AND POWELL) 

Type of apparatus 

Liquid 
Temp. , 

0 C . 

Toluene 

Carbon tetrachloride 

Ethyl alcohol 

Glycerine 

Water 

Trifluorotrichloroethane 

25. 
25. 
52. 
70. 
70. 
24. 
24. 
24. 
24. 
56.1 
56.1 
24.9 
24.9 
51.1 
51.2 
24.8 
27.0 
48.0 
26.0 
51.5 
26.5 
43.0 
22.0 
36.0 

Paral­
lel 

plates 

13.6 
13.6 
12.8 
12. 
12. 
13. 
13. 
10. 
10. 
10. 
10. 
10. 
16.8 
16.0 
16.0 
16.8 
28.8 
29.1 
61.2 
64.6 
61.3 
63.6 
7.9 

7.45 

Con­
centric 

cylinders 

14.0 
14.0 
12.6 
12.3 
12.2 
14.0 
13.7 
10.8 
10.6 
9.9 

10.0 
10.5 
17.0 
15.8 
16.0 
17.0 
28.8 
29.0 
60.5 
64.3 
60.1 
61.6 

7.8 
7.5 

FOR TWO 
GRUNDY, 

Average 
deviation 

from mean, 
% 

± 1 . 5 
± 1 . 5 
± 0 . 8 
±0 .4 

0 
± 1 . 1 

0 
± 0 . 
± 0 . 
± 1 . 
± 0 . 
± 1 . 0 
±0 .6 
± 0 . 6 

0 
± 0 . 6 

0 
± 0 . 
± 0 . 
± 0 . 
± 1 . 
± 1 . 
± 0 . 

.2 

.6 

.2 

.0 

.6 

.6 
± 0 . 3 

0 In joules cm. -1 sec. -1 0C." 

point and refractive index. However, the substantial 
agreement obtained using the different experimental 
techniques, is a strong indication of the reliability of 
the measurements, especially as these are over both a 
range of temperatures for particular substances and a 
range of values of thermal conductivities between sub­
stances. This is important in checking for the absence 
of convection. Two of the liquids used in these com­
parative studies, toluene and water, have been proposed 
as thermal conductivity standards. 

To make a proper statistical analysis of the various 
results on the thermal conductivity of any particular 
substance, it is necessary to have available the actual 
experimental values obtained at the exact temperature 
of measurement, as well as the number of determina­
tions made at this temperature. While this information 
is available in some papers, in others only smoothed 
values at regular temperature intervals are reported. 
In view of this, "recommended" or "best" values, in 
what follows, cannot be strictly defined, statistically 
speaking, due to this lack of information. On the 
other hand, to discard results where full information is 
not available is not justified. 

1. Toluene 

The use of toluene as a standard has been proposed 
by Riedel (113) and by Ziebland and Burton (148) 
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TABLE V 

THE THERMAL CONDUCTIVITY OF 

Investigator 

Riedel 
Schmidt and 

Leidenfrost 
Challoner and Powell 
Vargaftik 
Ziebland and Burton 
Ziebland and Burton 

recommended values 
Horrocks and 

McLaughlin 
Bridgman 

A 

14,06 

14.06 
14,39 
14,14 
14,02 

14.06 

14,03 
IS.94 

B 

0.0272 

0.0259 
0.0314 
0.0238 
0.0285 

0.0280 

0.0292 
0.0234 

Range of 
measure­

ments, 
0 C. 

- 8 0 - 8 0 

20-80 
0-80 

25-85 
-15-112 

-20-120 

25-60 
30-75 

TOLUENE 

No. 
oi 

points 

3 

7 
8 
6 

29 

4 
2 

>> X 
joules 
sec."1 

25° 

13.38 

13.41 
13.60 
13.54 
13.31 

13.36 

13.30 
15.35 

10«, 
cm. - 1 

0 C." 1 

60° 

12.43 

12.51 
12.51 
12.71 
12.31 

12.38 

12.28 
14.54 

because of the temperature range of its liquid life, 
—94 to 110°. The latter authors have proposed a 
linear equation, 104X = A — BT, for the thermal con­
ductivity as a function of temperature, in the range 
—20 to 120°, from a statistical analysis of the results of 
Riedel (113) (concentric cylinders, parallel plates, and 
concentric spheres), Schmidt and Leidenfrost (119) 
(concentric cylinders), Challoner and Powell (17) 
(parallel plates), Vargaftik (134) (steady-state hot wire 
cell), and their own results (concentric cylinders). 
The coefficients of this equation are given in Table V to­
gether with the coefficients from the corresponding equa­
tions of the individual sets determined by a least-squares 
analysis. Also included are the results of Horrocks and 
McLaughlin (56) (nonsteady-state hot wire cell) re­
ported since Ziebland and Burton's analysis. 

From Table V it can be seen that, leaving aside 
Bridgman's results (12), the average deviation from the 
mean of the other six investigations, in the overlapping 
temperature range 25-60°, is within 0.75% at 25° and 
just within 1% at 60°. It should be noted that the 
lowest values at these temperatures reported by Zieb­
land and Burton and Horrocks and McLaughlin are 
virtually identical, and that the highest values are given 
by Vargaftik and by Challoner and Powell. Over-all, 
Ziebland and Burton find that their equation is ap­
plicable within 1% for values between —20 and 110° 

and probably within 2% between —80 and —20°. 
It is likely that if higher precision is required in the 
fixing of this standard, the lower values should be taken 
as these would be expected in the complete absence of 
convection. The results of Bridgman included in 
Table V indicate that his measurements are too high by 
about 10%. This is important to note as his measure­
ments as a function of pressure are virtually the only 
ones available, for liquids as opposed to dense gases, 
in the high pressure range. 

2. Water 

Numerous measurements have been made of the 
thermal conductivity of water by different workers. 
The temperature range between 0 and 80° has been 
covered most extensively, and in this range the available 
data over the period from about 1900 to 1958 have been 
summarized and discussed by Powell (93) who has also 
proposed a "best" set of values. These are derived 
from the results of Vater (141) (parallel plates), Riedel 
(108, 113, 114) (parallel plates, concentric cylinders, 
concentric spheres), Schmidt and Sellschopp (121) and 
Schmidt and Leidenfrost (120) (concentric cylinders), 
and his own measurements with Challoner (17) (parallel 
plates). Values obtained by these authors interpolated 
at 10° intervals are given in Table VI together with 
the more recent measurements of Vargaftik and Olesh-
chuk (135) (steady-state hot wire cell) and Leneindre, 
Johanin, and Vodar (72) (concentric cylinders). Re­
cent values reported by Lawson, Lowell, and Jain (71) 
at atmospheric pressure have not been included as 
these have been obtained by extrapolation procedures, 
and in addition the results of Vater are excluded as his 
technique is rather unorthodox. Those of Schmidt and 
Sellschopp are superseded by the more recent work of 
Schmidt and Leidenfrost. 

Water exhibits exceptional behavior in that the 
thermal conductivity increases with temperature, rather 
than decreases, and in addition is not linear in T. The 
values in Table VI were therefore fitted to the equation 

TABLE VI 

T H E THERMAL CONDUCTIVITY, X X 104,° OP WATER AT ATMOSPHERIC PRESSURE 

Temp., 
0 C. 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

Exptl. 

56.5 
58.25 
59.9 
61.4 
62.8 
64.1 
65.25 
66.3 
67.0 
67.6 
68.05 

Riedel * 
Deviation 

0.30 
0.11 

- 0 . 0 1 
-0 .12 
-0 .17 
- 0 . 1 5 
-0 .12 
-0.02 
- 0 . 1 1 
- 0 . 1 3 
-0 .14 

Challoner and 

Exptl. 

56.1 
58.35 
60.4 
61.95 
63.2 
64.5 
65.7 
66.5 
67.3 

fUW CU 
Deviation 

-0 .10 
0.21 
0.49 
0.43 
0.23 
0.25 
0.33 
0.18 
0.19 

Leneindre , Johanin, 

and \ouar 
Exptl. 

63.55 
64.7 
65.7 
66.5 
67.2 
67.7 
68.1 

Deviation 

0.58 
0.45 
0.33 
0.18 
0.09 

- 0 . 0 3 
-0 .09 

Schmidt and 
Leidenfrost 

Exptl. 

59.6 
61.3 
62.7 
64.0 
65.1 
66.15 
67.15 
68.1 

Deviation 

- 0 . 3 1 
-0 .22 
- 0 . 2 7 
-0 .25 
-0 .27 
- 0 . 1 7 

0.04 
0.37 

Vargaftik and 
Oleshchuk 

Exptl. 

55.95 
57.9 
59.8 
61.3 
62.7 
64.0 
65.0 
66.05 
66.9 
67.7 
68.3 

Deviation 

-0 .25 
-0 .24 
-0 .11 
-0 .22 
-0 .27 
-0 .28 
-0 .37 
-0 .27 
- 0 . 2 1 
-0 .03 

0.11 

Recom­
mended 

56.20 
58.14 
59.91 
61.52 
62.97 
64.25 
65.37 
66.32 
67.11 
67.73 
68.19 

: In joules cm. -1 sec. -1 0C." 

file:///ouar
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104X = A + BT + CT* 

The coefficients are given by A = 56.200, B = 2.022 X 
10-1, and C = -8.230 X 10~4 with T in 0C. The 
coefficient of variation of this regression is 0.4% and 
the maximum deviation 0.8%. Both figures are well 
within the experimental error and show that a quadratic 
is sufficient for adequate representation of the results. 
Table VI gives the recommended values and the devia­
tions of the various sets of results. I t should be noted 
that with the exception of the 0-20° range Challoner 
and Powell's values are consistently higher than those of 
Schmidt and Leidenfrost, Vargaftik and Oleshchuk, and 
Riedel. Slightly higher values were also reported by 
these authors for toluene. Riedel's value at 0° is, 
however, higher than Challoner and Powell's value, 
which is closer to the average at this temperature, and 
in addition the Schmidt and Leidenfrost values are 
higher than the average in the top end of the tempera­
ture range. The results of Leneindre, Johanin, and 
Vodar are highest in the 40-70° range. 

3. Biphenyl 

Above 100° reliable thermal conductivity data on 
liquids become increasingly scarce and are confined, 
principally to a few measurements on aromatic hydro­
carbons, molten salts, and metals. Ziebland and Bur­
ton (149) (coaxial cylinders) and Horrocks and Mc­
Laughlin (56) (nonsteady-state hot wire cell) have 
reported measurements on biphenyl, the former for the 
range 90-310° at 60 atm. with an estimated accuracy 
of ±1.5%, and the latter from 80 to 130° with an esti­
mated accuracy of ±0.25%. In the overlapping tem­
perature range, agreement between both sets of results 
is within about 0.3% as shown in Table VII. In addi-

TABLE VII 

COMPARISONS OF DATA ON TOLUENE AND BIPHENYL 

Biphenyl Toluene 

Temp., 
0 C. 

81.0 
89.7 

103.2 
115.6 
132.2 

X X 10«, joules cm.-i 
sec."1 

Horrocks 
and 

McLaughlin 

13.62 
13.50 
13.31 
13.14 
12.90 

0 C . " 1 

Ziebland 
and 

Burton 

13.68 
13.55 
13.34 
13.17 
12.92 

Temp., 
0 C. 

25 
37.4 
51.2 
61.0 

X X 10«, jo 
sec. - 1 

Horrocks 
and 

McLaughlin 

13.30 
12.94 
12.53 
12.25 

ules cm. - 1 

0 C . " 1 

Ziebland 
and 

Burton 

13.31 
12.95 
12.56 
12.28 

tion, the agreement between both sets of workers for 
the data on toluene (Table VII) strengthens the agree­
ment on biphenyl and suggests that the influence of the 
small pressure used by Ziebland and Burton can be 
neglected. Cecil, Koerner, and Munch (15) have also 
measured the thermal conductivity of biphenyl, but, 
as their data exhibit no temperature dependence be­
tween 98 and 217°, it has not been included. 

4- Lead and Sodium Nitrate 

Above 300°, if resort is not made to high pressure 

techniques, thermal stability requires a choice of stand­
ards based on molten salts or metals. This introduces 
complications in apparatus design because of the par­
ticular properties of these materials, and, as measure­
ments above this temperature are more difficult, the 
discrepancy between different results will be corre­
spondingly larger than when compared with the lower 
temperature range. 

Four investigations have been made of the thermal 
conductivity of lead. The results of Bidwell (6) are 
about 40 to 50% higher than those of the other three 
authors and so have been discarded. In addition, 
while the values of Konno (67) are in close agreement 
at the melting point with those of Powell and Tye (94), 
they decrease with increase of temperature in contrast 
to the general behavior of other heavy metals (see sec­
tion VIIIA) and so are also discarded. The results of 
Powell and Tye and Rosenthal (115) have the same 
slope and only differ by about 10%. In view of the 
fact that Powell and Tye cover the larger temperature 
range, and Powell's agreement with accepted results 
on other materials at lower temperatures, his smoothed 
values can be recommended for lead. These results 
are given in Table VIII. 

TABLE VII I 

T H E THERMAL CONDUCTIVITY OF LEAD BETWEEN 350 AND 600° 

Temp., 0C. 350 400 450 500 550 600 

X X 104, joules c m . - 1 

sec.-1 0 C . " 1 1600 1690 1760 1810 1840 1870 

For sodium nitrate the situation is no more satis­
factory than for lead. Three sets of data are available. 
The results of Turnbull (129) (nonsteady-state hot 
wire cell) are about 25% smaller than those of the other 
two investigators. The values of Bloom, Tricklebank, 
and Doroszkowski (8) (concentric cylinders) agree 
within better than 2% up to 370° and then differ by 
about 10% from those of McLaughlin, Merz, and 
Ubbelohde (83) (nonsteady-state hot wire cell) be­
tween 370 and 420°. As the values of the latter authors 
are linear throughout the range from 300 to 460°, they 
are provisionally recommended. The unsmoothed 
values are given in Table IX and have an extremely 
small coefficient. I t must be added that greater dis­
crepancies occur between the measurements (8, 83) 
for molten salts, other than those quoted above for 
sodium nitrate, and so the values in Table IX require 
further confirmation. 

TABLE IX 

T H E THERMAL CONDUCTIVITY OF SODIUM NITRATE 

Temp., 0 C. 313.2 318.1 325.2 336.2 343.3 348.8 370.9 
X X 10«, joules cm. - 1 

sec . - 1 0 C.-» 54.1 54.4 54.2 54.8 54.7 54.6 54.9 
Temp., 0 C. 388.9 401.2 417.8 427.2 451.6 464.8 
X X 10«, joules cm. - 1 

SCC- 1 0 C.- 1 54.5 54.5 55.5 54.8 55.4 55.7 
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III. THEORIES OP THERMAL CONDUCTIVITY 

In order to set up a theory and use it to calculate the 
thermal conductivity of a liquid or dense gas, it is 
necessary to have a supply of basic information about 
such things as the structure of the liquid, the molecular 
shape, the intermolecular forces between molecules, 
and the molecular mechanisms of thermal conduction. 
In practice, little of this information is available and 
resort has to be made to calculating the coefficient for 
an idealized system. This system is generally taken 
to be one composed of spherically symmetric molecules 
where the intermolecular potential can be approximated 
to, in successive degree of sophistication, by a rigid 
sphere, square well, or continuous spherically symmetric 
interaction potential such as the Lennard-Jones 12:6 
potential. Rigid sphere and square well theories have 
the advantage of relative simplicity for analytic evalua­
tion due to the discontinuous nature of the inter­
molecular potential. 

In the discussion of the various theories that exist, 
it is convenient to divide them up on the basis of the 
form of the intermolecular potential that is assumed. 
Before discussing these theories, however, the relation­
ship of the coefficient of thermal conductivity to other 
transport coefficients requires consideration as well 
as the structure of the liquid state and the molecular 
mechanism of thermal conduction. 

In addition, while viscosity per se is not the topic of 
this review, it is necessary to consider it at times, par­
ticularly in discussing the mechanisms of transport and 
also in considering various statistical theories, as these 
can sometimes be checked more readily on the basis of 
the results they give for the dimensionless ratio niK/hy 
than for the individual transport coefficients. 

A. RELATIONSHIP OF THERMAL CONDUCTIVITY TO OTHER 

TRANSPORT COEFFICIENTS (81) 

In general, as with thermal conductivity, the other 
transport coefficients are defined as the proportionality 
constants between the flux and the corresponding driv­
ing force. The flux of mass Jm down a concentration 
gradient bc/bx gives rise to the phenomenon of dif­
fusion (Fick's law), the flux of momentum Jm v down a 
velocity gradient bv/bz to viscosity (Newton's law), 
and the flux of charge Je down a potential gradient 
bV/bx to electrical conductivity <re (Ohm's law). 
These laws and the dimensions of the transport coef­
ficients derived from them are given by the equations 

Fourier's law J q = -\Z>T/Sx X = OTZr3Z1"1 

Fick's law Jm = -Dbc/bx D = IH~1 . „ . . . 
Newton's law Jmv = —ri&v/bz r/ = ml'H-1 q -

Ohm's law Je = -<rebV/i>x a, = QHl-3W,-1 

where the fundamental quantities that have been 
chosen are mass m, length I, time t, charge Q, and tem­
perature T. 

The dimensions given above are not in a useful form 
for examining possible relationships between the trans­
port coefficients because of the time dimension. This 
can however be eliminated (73) using the definition of 
absolute temperature (V2WiIi2 = ZkT/2) to give 

t - TO'/'Zfc-'/'r-v* 

and the transport coefficients rewritten 

D = m - ' / W / ' I " / " , = mVH-WT1/' 
(Eq. 45) 

X =. m'/'l-W/'T1/' <re = QHn-1ZH-1Ic-1Z1T-1/* 

where k is Boltzmann's constant. 
Various possible relationships between the thermal 

conductivity and the other transport coefficients can 
now be deduced from Eq. 45 depending on whether or 
not the system contains charged particles. 

/ . Systems Containing Uncharged Particles 

Of the other possible combinations that exist, the 
ratio of X to i\ given from Eq. 45 by the dimensionless 
quantity nik/k-q is the one of most interest. This ratio 
is generally discussed in the form of the Prandtl number 
where k (Boltzmann's constant) is replaced by the 
specific heat. As rriX/ki) is the basic dimensionless rela­
tionship, it is better to examine this ratio initially. 

Table X (82) gives the ratio m\/kr] for a series of 
simple liquids, and it can be seen that this ratio is 
constant within about 10% of 2.48 for the series. 

TABLE X 

RATIO OP mX/fa; FOE SIMPLE LIQUIDS 

Liquid Temp., 0K. m\/kq 

Argon 84.2 2.16 
87.3 2.31 

Nitrogen 69.1 2.20 
71.4 2.39 
77.3 2.98 

Carbon monoxide 72.0 2.19 
77.7 2.64 
80.8 2.80 

Methane 93.2 2.21 
103.2 2.75 
108.2 2.98 

Benzene 288.2 2.02 
298.2 2.28 
308.2 2 .55 
318.2 2.83 

Carbon tetrachloride 298.2 2.19 
308.2 2.42 
318.2 2.78 

Certain important conclusions can therefore be drawn 
from these results. In the first case, as the specific heat 
of the liquids in the series varies considerably from argon 
to carbon tetrachloride, due to the excitation of internal 
modes in the polyatomic molecules, then no correspond­
ing regularity in the Prandtl number would be observed 
since this involves Cp. Conversely if the thermal con­
ductivity involved Cp, as distinct from some specific 
heat which is only translational and configurational, 
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Pig. 2.—The Wiedemann-Franz-Lorentz ratio of the thermal 
to the electrical conductivity of a metal: 1, Hg; 2, Zn; 3, K; 
4, Na-K 77 wt. % K; 5, Na; 6, Pb-Bi 55.5 wt. % Bi; 7, Cd; 
8, Na-K 56.5 wt. % K; 9,Bi; 10,Pb; 11, Al (copied substantially 
from (82)). 

then again no corresponding regularity in m\/kri would 
be expected. Finally, examination of the temperature 
dependence of the ratio shows that in all cases it in­
creases with increase in temperature, so that the tem­
perature dependence of X and rj are not the same, ij 
decreasing faster with increase of temperature than 
X—a fact that must be accounted for in any statistical 
theory. 

Of the possible relationships of the thermal con­
ductivity coefficient to other transport coefficients in 
systems containing uncharged particles, the only points 
of interest to note are that the ratio X/Z) and the 
product Xi? are both independent of the mass, and 
such relationships are of interest in dealing with the 
transport properties of mixtures (see section IVD). 

2. Systems Containing Charged Particles 

Again only one well-known relationship is discussed 
in detail. From Eq. 45 it follows that 

2L _ ¥Ht (Eq. 46) 

where £ is a dimensionless quantity and Q is the charge 
on the electron. The ratio \/<reT for a series of metals 
and eutectics is given in Fig. 2 where it is seen to be 
substantially constant with respect to temperature 
variations. This is the well-known Wiedemann-Franz 
law (144) for the relationship of the electrical to the 
thermal conductivities of a metal. The results of 
Fig. 2 mean that the thermal conductivity of molten 
metal systems can therefore be obtained with reason­
able accuracy from measurements of the electrical 
resistance alone. 

As it is only meaningful to combine transport coef­
ficients when the carrier species is the same, the rela­
tionship of the thermal and electrical conductivities 
obtained above must imply that the main carrier species 

in the thermal conductivity of molten metals are the 
free electrons which determine the electrical con­
ductivity. This conclusion which was put forward 
by Lorentz (77) to account for the anomalously large 
thermal conductivity does not mean that lattice terms 
are not operative. The role of lattice terms in such 
systems is discussed in section VIIIA. 

B. INTERMOLECULAR FORCES AND THE STRUCTURE OF 

THE LIQUID STATE 

Intermolecular forces and the structure of liquids are 
discussed extensively in a number of books. For the 
present review the most appropriate references are 
29, 51, and 116. The intermolecular potentials 
used in the present work are the rigid sphere, square 
well, and n,m spherically symmetric potentials given, 
respectively, by 

4>(R) = =°, R < a 
= 0, R > 0 

4>(R) 

rigid-sphere potential 

square-well potential O=, R < a\ 
— e, (Tl < R < 172 

<i>(R) = AR-* - BR-ra ( n > m) n,m potential 
Lennard-Jones 

12:6 potential «">-«{(*)" -(!)•] 

(Eq. 47) 

(Eq. 48) 

(Eq. 49) 

For the case of an n,m potential, the Lennard-Jones 
12:6 form is used in calculations as this has yielded ade­
quate representation of the equilibrium and transport 
properties of dilute gases (51). 

With regard to liquid structure most direct informa­
tion has been provided by the scattering of X-rays (29). 
This technique gives the equilibrium radial distribution 
function go^iR) which describes the radial distribution 
of neighbors about a particular molecule in the liquid; 
i.e., in essence it gives the geometry of the liquid. It is 
however a time averaged geometry. 

Various useful relationships between thermodynamic 
properties and integrals involving the radial distribu­
tion function and the intermolecular potential are well 
known. The principal ones of these are 

pV 
NkT 

U' = ^fMRW2KR)VR 

f = 1 -
N 

6VkTJ R^g,«HR)d>R dR 

(Eq. 50) 

(Eq. 51) 

and for an n,m potential (see IIIF3) 

6NkTf nm W . . , . , / pV A -I 

(~~y$RW4,{RW*\R)VR (Eq. 52) 

where U' is the configurational energy of the liquid 
and the other symbols have their usual significance. 
Equations 50, 51, and 52 show that provided <p(R) and 
<7o(2>(-R) are known, various thermodynamic properties 
can be evaluated. Alternatively, if in statistical equa­
tions for transport coefficients the liquid structure and 
intermolecular force terms occur in integrals identical 
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with Eq. 50, 51, or 52, then the transcription to ther­
modynamic properties is straightforward. 

Integration of the experimental radial distribution 
function for liquid argon at its melting point shows that 
the number of nearest neighbors has decreased from 12 
in the solid to about 10.8 in the liquid, and this type 
of evidence provides some support for lattice theories 
of the liquid state, which are simplified models for the 
evaluation of the configuration partition function. In 
the simplest of these theories, molecules are assumed to 
be confined to cells created by the potential energy 
barrier of the nearest neighbors. If the assembly is a 
dense system of hard spheres, then the change in poten­
tial energy of a molecule displaced a distance R from 
the center of its cell due to its neighbors located at the 
centers of their own cells, is given by 

MR) - *(0) = 0, 0 < R < (a - a) 

MR) - MO) = », (a - a) < R (Eq. 53) 

where a is the nearest neighbor distance. Alterna­
tively, if the molecules, located on f.c.c. lattice, inter­
act with a Lennard-Jones 12:6 potential ^p(R) — i/-(0) 
is, to terms in R2 (i.e., harmonic approximation) 

MR) - MO) = ^[L1V** - M1V^]R* (Eq. 54) 

v* = v0/v = a3/v, where v = VfN and Z= 12 is the 
coordination number of the lattice. L1 and M\ are 
lattice summation constants of values 22.11 and 10.56, 
respectively. Considered in terms of frequencies 
these \j/(R) — ^(0) values correspond (57) to 

V8l r i ._ . . , 
Ti \ (Eq. 55) 

tm 4(o — <r) \ i / 

and 

These frequencies are the basic quantities required to 
calculate the thermal conductivity on the cell model to 
be discussed. The lattice theories can also be used to 
calculate the thermodynamic properties of liquids. In 
the present work the only result which is required is the 
free volume expression for the compressibility factor of a 
dense fluid of rigid spheres 

j ^ - 1 - [ I - 1 F (Eq-57) 

which has substantially the same dependence on (afa), 
although slightly higher values than the exact expres­
sion obtained from Eq. 51, viz. 

WkT ~ 1 = 3~V~ee (<r) ( E q- 5 7 a ) 

where ga
(1)((r) is the radial distribution function at 

contact. 

C. THE MECHANISM OF THERMAL CONDUCTION AND THE 

TRANSPORT PROPERTIES OF ISOTOPIC MOLECULES 

In the gas phase the coefficients of diffusion, viscosity, 
and thermal conductivity all increase with increase of 
temperature. In this case it is well known that the 
principal mechanism of transport, for all three phe­
nomena, is the same, namely the transport over the mean 
free path between collision of mass momentum and 
energy, respectively. 

Nonsingularity of the transport mechanism in the 
liquid phase may be evidenced in the temperature de­
pendence of the coefficients. While the diffusion co­
efficient increases with temperature as in the gas phase, 
the shear viscosity coefficient decreases with tempera­
ture, and the coefficient of thermal conductivity can either 
decrease or increase with increasing temperature. For 
most normal cases it generally decreases. 

In addition, evidence of changing molecular mecha­
nisms of transport in the dense fluid phase can be ob­
tained by examining the change in magnitude of the 
transport coefficients on passing from gas to liquid. 
Values for benzene and argon are given in Table XI. 

TABLE X I 

COMPARISON OF VALUES OF TRANSPORT COEFFICIENTS FOR GASES 

A0 X 10s, om^sec. -1 

I) X 103, poise 
\ X 104, joules cm. -1 sec. 

Di" X 106, cm^sec. - 1 

17 X 10s, poise 
X X 104, joules cm. -1 sec. 

0 C. 

Benzene 
25 
25 

- 1 0 C . " 1 25 
Argon 

-189 
-189 

" 1 0 C . - 1 -189 

Liquid 

2.15 
6.01 

14.63 

2.07 
2.80 

12.60 

0 C. 

25 
25 
0 

25 
0 
0 

Gas 

4000 
0.075 
0.70 

16,000 
0.21 
1.64 

These values show that on passing from gas to liquid, 
the self-diffusion coefficient decreases by a factor of 
about 103, while the coefficients of shear viscosity and 
thermal conductivity increase by a factor of between 
10 and 102. The fall in the self-diffusion coefficient 
reflects directly the relative ease of stochastic migra­
tion of a molecule in a dilute, compared with a dense, 
assembly, and it is in this case, where a singular mech­
anism exists in any phase, that the coefficient always 
increases with increase of temperature. The increase in 
magnitude for the other coefficients indicates that as the 
density is increased, the transport of momentum and 
energy is facilitated, hence eliminating the gas-phase 
mechanism as being of prime importance for these co­
efficients in the dense fluid phase. 

The problem of the difference in transport mecha­
nisms in a dense gas or liquid compared with the dilute 
gas was first considered by Enskog (19) who differenti­
ated, for rigid spheres, between collisional and convective 
mechanisms. Convective transport is transport over 
the distance separating the peripheries of rigid spheres 
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cell l cell 2 cell 3 

Fig. 3.—Transport mechanisms for a fluid of hard spheres: 
AB, collisional transport; CD, intracellular convective; and EF, 
intercellular convective transport. 

between collisions, and collisional transport is trans­
port between the centers of colliding rigid spheres at 
contact. In statistical theories both contributions 
can be described in terms of the Boltzmann equations. 

If a lattice model of the liquid state for rigid spheres 
is assumed, it is possible (57) to factorize the convective 
contribution further. Figure 3 gives a schematic 
representation of three cells of a liquid quasi-lattice. 
In cell 1 the central rigid sphere has moved into con­
tact with one on the boundary, collisional transport 
taking place across the centers between A and B on im­
pact. In cell 2 the movement of the central sphere 
over the distance C-D constitutes the intracellular con­
vective contribution. Such motions, while contribut­
ing to viscosity and thermal conductivity, do not lead 
to a net displacement of the central molecule with re­
spect to the lattice sites and do not therefore lead to 
diffusion. In the third cell, motion of the central mole­
cule from E to a vacant lattice site at F constitutes 
intercellular convective transport which does lead to a 
net displacement with respect to the lattice cells, and, 
while being the mechanism of diffusion, also contributes 
to viscosity and thermal conductivity under appropriate 
circumstances. As can be inferred from the small value of 
the self-diffusion coefficient in a liquid, the frequency of 
intercellular motion is small and, as the distance between 
molecular centers at contact A-B is generally greater 
than the distance between peripheries C-D in the dense 
phase, it follows that collisional transport is more im­
portant in this case than either of the convective con­
tributions. 

While the factorization of mechanisms given above is 
permissible in the case of rigid spheres, for real mole­
cules, on the cell model due to the extension in space 
of the intermolecular forces, it is not readily possible to 
separate the intracellular and collisional contributions. 
If the central molecule in the cell is however imagined 
to oscillate about the lattice site, then in each quarter 
cycle of the period, intracellular convection and colli­
sional transport occurs. These are lumped together 
and called the intermolecular force term. As for rigid 
spheres the intercellular convective contribution, which 
is the diffusive mechanism, also contributes to viscos­

ity and thermal conductivity. On the basis of the 
measured values of diffusion coefficients in liquids com­
pared with gases as discussed above, indications are 
that for thermal conductivity and viscosity its role is 
likely to be unimportant. Confirmation is however 
required by a statistical calculation (see section III) . 

In some statistical theories based on the distribu­
tion function approach, the mechanisms of energy 
transport have been discussed in detail also. In the 
attempts due principally to Kirkwood (65) a molecule, 
because of its force field, is considered to experience a 
rapidly fluctuating force due to the random motion of 
its nearest neighbors. This motion can be described as a 
stochastic process. The contribution to energy and 
momentum transport during these encounters is called 
the intermolecular force contribution. Rice and AIl-
natt (101) have recently factorized this contribution 
into two terms. First the contribution arising in the 
region R > a- where a = R at <j>(R) = 0, i.e., the con­
tribution due to the soft part of the intermolecular 
potential and the collisional contribution arising at R = 
(T when the hard cores of the molecules come into con­
tact. This subdivision can also be made using the lat­
tice model. The usual convective contribution arising 
from the motion between collisions leading to a net 
displacement has also to be included to yield the total 
thermal conductivity. Again the relative importance 
of the contributions has to be assessed on the basis of 
numerical calculations. 

Some experimental information on possible molecular 
mechanisms of transport can be obtained from a study 
of isotopes (79). If a pair of molecules interact with a 
potential characterized by two parameters e/k and <r 
which are, respectively, a characteristic energy of inter­
action and a characteristic molecular diameter, then 
the transport coefficients can be rewritten from Eq. 45 
in the dimensionless form 

D* = 
DVm 

v* = -^= X* 
XVm <r2 

(Eq. 58) 

- A / — 
\ m 

(Eq. 59) 

trV« \M« ^V' 
where D*, 17*, and X* are functions of the dimensionless 
quantities kT/e and V/Na3 only, where V is the molar 
volume of the liquid. For an isotopic pair of mole­
cules like CH4 and CD4, e/k and 0- are virtually identical 
and the mass alone is different so that from Eq. 58 

JL M = _L 
D1 " v Xi 

where i refers to the isotopically substituted species. 
According to Eq. 59 the transport coefficient ratios for 

parent and isotopically substituted species should be 
proportional to the square roots of the masses, pro­
vided the force fields of the molecules are character­
ized by e/k and a alone, or, alternatively, the force field 
is spherically symmetric and the equation of motion is 
of the form 

dt (Eq. 60) 



402 E. MCLAUGHLIN 

Fa is the force on a molecule due to the potential field of 
its neighbors and va is its linear velocity. From the 
mechanistic point of view, agreement of Eq. 59 with 
experimental data on isotopic pairs will not differenti­
ate between purely convective or purely vibrational 
motion, since both involve the same law of force (80). 

If the intermolecular potential is noncentral (92), 
conservation of angular momentum given by the equa­
tion 

_ j duff 
Oa = lag; 

d< 
(Eq. 61) 

must be considered as well. Ga is the couple acting on 
the molecule from forces due to neighboring molecules, 
Iap is the inertia tensor, and U13 the angular velocity. 
Isotopic substitution does not alter Fa and Ga because 
the intermolecular potential is virtually unaffected. 
However, except for the special case when all atoms in 
the molecule are changed in the same ratio, isotopic 
substitution does alter m and lap in different ratios so 
that the equations of motion of the two systems, iso­
topic and parent, are not altered by a simple scale fac­
tor and dimensional analysis is not applicable. 

Table XII gives the measured values of the ratios 
of the viscosities and thermal conductivities of a series 
of molecules and their isotopically substituted counter­
parts, together with the square root of the mass and the 
square root of the mean moment of inertia ratios. 

TABLE XII 

TRANSPORT COEFFICIENT RATIOS OF ISOTOPIC PAIRS OP 

MOLECULES 

Temp., 
Pair 0 K. m/<l VM (.M-Jm)1Zi (IiZT)Vi 

C6Hi2-C6D12 293.2 1.064 1.063 i.070 1.215 
311.0 1.062 1.061 
333.2 1.060 1.059 

C6H6-CeD8 293.2 1.065 1.042 1.038 1.100 
311.0 1.062 1.039 
332.2 1.058 1.036 

H2O-D2O 293.2 1.245 1.043 1.054 1.390 
313.2 1.202 1.053 
333.2 1.178 1.060 
353.2 1.164 1.050 

The viscosities of perdeuteriobenzene and perdeuterio-
cyclohexane were measured by Schiessler and Dixon 
(118) and the thermal conductivities by Horrocks, 
McLaughlin, and Ubbelohde (53). The heavy water 
viscosities were measured by Hardy and Cottingham 
(49) and thermal conductivities by Challoner and 
Powell (17). Benzene and cyclohexane viscosities are 
taken from Circular C.461 of the National Bureau of 
Standards. 

These results show that the means of the thermal 
conductivity ratios over the liquid range of the three 
pairs agree within an average of 0.5% with the corre­
sponding square root of the mass ratios. This is a 
striking result in view of the diversity of structure and 
nature of the bonding in the three pairs, and contrasts 
sharply with the viscosity data where only for the 

pseudo-spherically symmetric cyclohexane pair is the 
square root of the mass law obeyed. 

This indicates that the thermal conductivity ratios 
are independent of the moments of inertia of the sys­
tems studied and hence possibly of rotational contribu­
tions to energy transport. Agreement with the square 
root of the mass law also substantiates the possibility 
of vibrational and convective mechanisms, provided no 
rotational terms enter the motion. Alternatively, if 
rotational motion accompanies diffusive motion, the 
mechanism must make a negligible contribution to the 
total heat conduction. For viscosity, on the other 
hand, the square root of the mass law is obeyed only by 
the cyclohexane system. For the nonspherical pairs 
the ratio lies between that of the square root of the 
masses and the square root of the mean moments of 
inertia, indicating that rotational motion is important 
in momentum transport. 

The isotope data and the m\/krj ratio therefore sug­
gest that internal bond vibrations and molecular rota­
tions are not important in thermal conduction in liquids. 
This contrasts with the gas phase where the Eucken 
correction factor, which takes account of internal 
modes, has been tacked on to the translational con­
tribution to provide better agreement between calcu­
lated and experimental thermal conductivities. It 
might therefore be expected that statistical theories of 
thermal conductivity of liquids could be applied to 
simple pseudo-spherically symmetric molecules with 
internal degrees of freedom, without specifically hav­
ing to take these factors into account in terms of energy 
transport mechanisms. 

D. THEORIES FOR HARD-SPHERE MOLECULES 

1. The Theory of Enskog 

The first real attempt to provide a proper theory of 
the thermal conductivity of a liquid was made by 
Enskog (19), who extended the dilute gas theory for 
hard spheres to take account of a change in density. 

As a gas is compressed the ratio of the diameter of the 
molecules to the mean free path changes, from being 
virtually negligible, to the order of unity. During this 
process the collision frequency alters due to two causes : 
(i) it is increased due to the decrease in the mean free 
path, and (ii) it is decreased because molecules are 
close enough to shield each other from collisions with 
more distant neighbors. Enskog showed that the 
collision frequency in a dense gas of rigid spheres, dif­
fered from the value of the same dilute gas at the same 
temperature by a factor Y which depends only on the 
local thermodynamic state and molecular diameter a-
as given by 

F = I + 0.6250 C^) -K0.2869 (-^-Y + 

0 . 1 1 5 ^ y + ... CEq. 62) 
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Fig. 4.—Convective, 1, collisional, 2, and total, 3, thermal 
conductivity contributions for a fluid of hard spheres on the 
Enskog model. 

where bo = (2A) T-A7V3 is the rigid-sphere second virial 
coefficient. Y is actually the contact radial distribu­
tion function, i.e., Y = gorier). 

The second effect due to increasing compression is 
the growing importance of the collisional transfer of 
energy and momentum. With these assumptions, 
Enskog modified the Boltzmann equation for higher 
densities, solved it by the Chapman-Enskog method 
used in dilute gas theory, and derived equations for the 
transport coefficients in an analogous manner to the 
dilute gas treatment. 

The derived heat flux vector 
sum of convective and collisional terms 

J9 can be written as a 

= -H 1 + h°iY)^r 
(Eq. 63) 

Ji..u = - [!""''(l + I****1') X0 + H Z]|£ (Eq. 64) .5""" V 5 

and the total subsequently as 

2 
-[K1 + B-''7 ) + %n<rs(\ + "~Tma*Y)\t + 

')> 

2m ]<>r (Eq. 65) 

where X0 is the dilute gas coefficient given in the fourth 
approximation by 

S 
IMJ-

1*6* 

Fig. 5.—Plot of the ratio of the thermal conductivity to the 
density as a function of the density for nitrogen, illustrating the 
existence of the Enskog minimum: • 25°, O 50°, 3 75° (copied 
substantially from (84)). 

and K the bulk viscosity coefficient is 

K = ^nWY(rmkTy/i (Eq. 67) 

Substituting Eq. 66 and 67 into Eq. 65 and using 
(b0/ V) Y = y gives on comparing with Fourier's law 

^ - = - + 1.2 + 0.7574*/ (Eq. 68) 

which has a minimum value 2.938 at y = 1.151. A 
correction factor of the form of Eq. 68 had previously 
been derived by Jager (60). Factorizing Eq. 68 
into its convective and collisional terms gives 

Xfi O D V K 

Xo&o -(H) 
and 

XcollV 

Xo&o - K 32?/ 
1 + 5 7 + 25(1.02513)*-

(Eq. 69) 

(Eq. 70) 

Equation 69 shows that the convective contribution to 
thermal conductivity decreases monotonically with in­
creasing compression at constant temperature as would 
be expected. The collisional contribution, however, 
increases linearly with increasing compression be­
coming the dominant term in the dense phase. Both 
terms are plotted in Fig. 4 together with the sum as 
given by Eq. 68. 

Relationship of Enskog's Theory to Experiment 

If bo in Eq. 68 is replaced by bM where M is the 
molecular weight it can be rewritten 

- = X6* (r^y+ 1.2 + 0.7574&„v) (Eq. 71) 

where p is the density. X/p plotted against the density 
therefore passes through a minimum on going from the 
dilute to the dense gas. This is illustrated in Fig. 5 
for nitrogen (84) and shows that the general predic­
tions of the theory are correctly given. 
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As the model is based on rigid spheres, it is not 
possible to use the theory directly to calculate the 
thermal conductivity wihout the injection of some 
empirical steps to correlate it with the properties of real 
molecules. This may be done as follows. As Eq. 17 
has a minimum it can be rearranged (19) as 

-p - skQXSbh+"+ °-7 5 7 4 6 p y) (Eq'72) 

If b and Y are temperature independent then as 

p = nkT(l + bPY) (Eq. 73) 

on the model 

(M»)P
 = nk(1 + bpY) (Eq' 74) 

Equation 74 suggests (85) that for real molecules bpY 
should be obtained from experimental (pVT) data us­
ing the relationship 

y-^-U&l-1 (Eq-75) 

so that with Eq. 75 the value of X can be calculated 
from Eq. 72. 

A comparison (84) of calculated and experimental 
thermal conductivities for nitrogen as a function of 
pressure is given in Table XIII where it is seen that this 
procedure reproduces the experimental results satis­
factorily. 

TABLE XIII 
CALCULATED AND EXPERIMENTAL THERMAL CONDUCTIVITIES OP 

NITROGEN AS A FUNCTION OF PRESSURE AT 50° 

(Eq. 77) 

Pressure, 
atm. 

1 
12.2 
33.8 
62.6 
93.1 

116.5 
140.7 
185.6 
228.1 
258.7 
300.0 
343 
383 
453 

X X 10«, joules 
cm."1 see."I " C . " ' 
Exptl. Calcd. 

2.77 
2.83 
2.92 
3.07 
3.26 
3.47 
3.63 
3.96 
4.27 

52 
82 
19 
44 

2.94 
3.01 
3.06 
3.22 
3.42 
3.57 

4 
4 
5 
5 
5.95 

75 
05 
36 
56 
82 
15 
40 

Pressure, 
atm. 

521 
603 
688 
783 

785 
889 
898 
1080 
1269 
1450 
1647 
1931 
2185 

X X 10«, joules 
cm. - ' sec."1 0 C . - ' 

Calcd. Exptl. 

6.36 
6.91 
7.37 
7.91 

7.83 
8.50 
8.50 
9.30 

10.13 
11.01 
11.73 
12.86 
13.78 

6.28 
6.83 
7.37 
7.91 

7.92 
8.54 
8.58 
9.55 

10.51 
11.39 
12.27 
13.44 
14.49 

Alternatively Eq. 71 can be fitted at the low density 
end using the experimental value of X0 and calculating b 
by substituting the virial expansion 

pV = RT + Bp (Eq. 76) 

into Eq. 75 which gives 6 = dB/RdT. This method 
has been used by Michels, Sengers, and Van de Klun-
dert (88). 

A good check on the applicability of Eq. 75 can be 
obtained by examining the ratio m\/kri on the Enskog 
theory. This is given by the expression (63) 

w\ 15fl + l-2y + 0.7574y'1 
hr, 4 Ll + 0.82/ + 0.76142/2J 

which shows that the dilute gas transport coefficients 
and the b factor are eliminated, the ratio being solely a 
function of y. This equation has a maximum of 4.333 
at y = 1.126 on the hard-sphere model. Table XIV 
gives experimental values (88) of this ratio and values 
calculated using y from Eq. 75 for argon. It also shows 
that the calculated maxima occur at a slightly higher 
density than that found experimentally, and, in addi­
tion, below the maximum the ratio decreases with in­
crease of temperature contrary to experiment. Over­
all, however, the largest discrepancy between calcu­
lated and experimental values of the ratio is only about 
5% so that Eq. 75 is a surprisingly good approximation 
for y. 

TABLE XIV 

COMPARISON OP EXPERIMENTAL AND CALCULATED VALUES OF THE 
RATIO mX/fe? FOR ARGON 

-Experimental— -Calculated-

P 
1 
10 
25 
40 
60 
80 
100 
120 
160 
200 
240 
280 
320 
360 
400 
440 
480 
520 
560 
600 
640 

3.733 
3.801 
3.854 
930 
002 
081 
171 
230 
340 
425 
503 
551 
563 
555 
551 
539 
519 
477 
435 
374 
288 

25° 
3.753 
3.807 
3.878 
3.946 
029 
095 
159 
226 
336 
425 
493 
535 
557 
561 
545 
533 
513 
485 
449 
402 
328 

50° 
3.773 
815 
884 
952 
031 

75° 
3.795 
3.840 
3.898 
3.962 

161 
221 
330 
431 
501 
549 
569 
573 
571 
561 
543 
521 
489 
447 
347 

035 
109 
167 
234 
340 
447 
519 
569 
593 
601 
597 
593 
571 
549 
512 
459 
419 

0° 

3.753 
3.781 
3.825 
3.866 
3.920 
.972 
.016 
.060 
.135 
.197 
.247 
.285 
.312 
.328 
.333 
.328 
.314 
.295 

4.271 
4.244 
4.218 

25° 

753 
780 
822 
866 
917 
965 
009 
053 
128 
191 
242 
282 
310 
327 
343 
329 
317 
299 
276 
250 
224 

50° 
3.753 
.779 
.820 
.861 
.911 
.959 
.004 
.046 

75° 
3.753 
778 
819 
858 
910 
955 

4.121 
.186 
.238 
.279 
.308 
.326 
346 
330 
319 
302 
281 
256 
229 

040 
116 
181 
235 
276 
306 
325 
340 
331 
321 
305 
285 
262 

4.235 

It should be remembered that these values of mk/krj 
are for the transition from the dilute to the dense fluid. 
As the density is further increased and the tempera­
ture lowered, the value becomes about 2.5 as given in 
Table X. 

2. The Theory of Longuet-Higgins and Pople 

Longuet-Higgins and Pople (74) have calculated the 
thermal conductivity and viscosity of a dense fluid of 
rigid spheres assuming the existence of a collisional 
mechanism alone. The two basic assumptions involved 
are: (i) that the spatial pair distribution function de­
pends only on the temperature and density and not 
on the temperature gradient or rate of strain; (ii) 
that the velocity distribution function of a single 
particle is Maxwellian with a mean equal to the local 
hydrodynamic velocity and a spread determined by the 
local temperature. The resulting expression for the 
coefficient of thermal conductivity is 
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Several features of this theory may be mentioned. 
First, combining Eq, 78 with the corresponding ex­
pression for the coefficient of viscosity derived by the 
same authors gives the ratio niX/ki] = 2.5. This is in 
substantial agreement with the experimental results of 
Table X, but as a rigid-sphere model is assumed no 
temperature dependence of the ratio is obtained. 
Secondly, Eq. 78 may be transformed into the reduced 
form as for Enskog's equations using values of X0 for 
the corresponding infinitely dilute gas and the definition 
of y to give 

Comparison with Eq. 70 shows, as first pointed out by 
Dahler (28), that this result is identical with that portion 
of the Enskog equation which does not depend on the 
perturbed term of the distribution function. This can 
be expected from the assumption of i and ii. However, 
neglect of the contribution to thermal conductivity 
arising from the distortion of the distribution function 
neglects a substantial portion of the collisional trans­
port as deduced by Enskog (19). 

S. The Theory of Horrocks and McLaughlin 

In this theory (57) a lattice structure for the liquid 
state is assumed. The change in potential energy of a 
molecule displaced from the center of its cell due to its 
neighbors located at the centers of their cells is given by 
Eq. 53. In such a system in which the unit is essen­
tially that of a particle in a box, the intercellular convec-
tive contribution to thermal conductivity vanishes and 
Cv = 3/c/2 as the rigid sphere has only translational 
energy. The mean frequency of motion given by Eq. 
55 then follows from the Maxwell-Boltzmann velocity 
distribution and the definition of the mean molecular 
velocity. Hence using Eq. 149 for the thermal con­
ductivity in terms of the frequency and assuming a 
f.c.c. lattice geometry, the thermal conductivity expres­
sion is 

x * f c ( * r y / , _ J _ (Eq.80) 
2 \irm/ a(a —a-) 

Equation 80 includes both the intracellular and colli­
sional contributions. In terms of the compressibility 
factor for a dense fluid of rigid spheres on the free volume 
theory, Eq. 80 becomes 

- - (£)"(£-0(&) <**•» 
This result may be compared with that of Longuet-
Higgins and Pople (78) which on assuming a f.c.c. 
lattice is 

»-"GIHS-OG?) o*» 
Identity between the two expressions would not be ex­
pected. This arises as the present theory includes 

both the intracellular convective term as well as the 
collisional contribution as can be seen from the expres-
sion for v derived from the mean molecular velocity 
\/8kT/Tm, whereas the Longuet-Higgins and Pople 
equation is for the collisional contribution alone. 

4. The Theory of Rice, Kirkwood, Ross, and Zwanzig 

The modified Boltzmann equation for dense fluids 
used by Enskog is basically derived by intuitive argu­
ments. Rice, Kirkwood, Ross, and Zwanzig (106) 
have suggested that the corresponding equation derived 
from the Kirkwood theory (see section IIIF1) for rigid 
spheres, considered as the limiting case of a spherically 
symmetric potential, is different from Enskog's equa­
tion. The final expression for the thermal conductivity 
given in terms of the kinetic and collisional contribu­
tions, in the notation of this paper, is 

^T = (H) (Eq'83) 

^ f - K 1 + 5 0 + ^ " (Eq-84) 
The sole difference lies therefore in the pre-bracket fac­
tor of the collisional contribution, viz., Vs instead of the 
Enskog value of 3/B. 

Sengers and Cohen (124) have recently reconsidered 
the statistical mechanical derivation of the modified 
Boltzmann equation from the (JV — 1) times integrated 
LiouviUe equation. The expression derived by Enskog 
was obtained and, in addition, eventually confirmed 
from a different derivation using the theory of Bogolu-
bov. Curtiss and Snider (27) have also obtained an 
expression for the thermal conductivity of a dense fluid 
of rigid spheres which differs from the Enskog result. 
Their equation was subsequently reported to be in error 
(104). 

E. THEORIES FOR MOLECULES INTERACTING WITH A 

SQUARE-WTELL POTENTIAL 

1. Theory of Longuet-Higgins and Valleau 

The equations for the coefficient of thermal con­
ductivity of a dense gas of rigid spheres, while bringing 
out several features of interest, cannot be considered 
appropriate to real molecules where attractive forces 
exist. Certain of the simplifying features of the rigid-
sphere model, due to the discontinuous nature of the 
intermolecular potential, can, however, be retained by 
considering that the molecules interact with a square-
well potential (Eq. 48). The consideration of such 
molecules which have both attractive and repulsive 
forces should therefore give a zero-order approximation 
to the behavior of real molecules. This model has al­
ready been used with some success in studying the 
equilibrium and transport properties of gases (51). 

The first attempt to calculate the transport proper­
ties of a dense fluid of molecules interacting with a 
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square-well potential is due to Longuet-Higgins and 
Valleau (76). They considered the four possible types 
of bimolecular collision between two "square-well" 
molecules and using methods similar to those in the 
rigid-sphere theory of Longuet-Higgins and Pople 
derived the equation 

^0" " B Vm" ) \~v) ^19' (<n) + 

<72W
2'0!)e-s!2(s2)} (Eq. 85) 

for the collisional contribution to thermal conductivity. 

S = e»! - \ s2[l - e«V. & ( 0 ] (Eq. 86) 

where s2 = t/kT = l/T* and Zi(s2/2) is a modified 
Bessel function of the second kind. Values of 1E for 
various values of l/T* are given in Table XV (123). 
00^C0-O an-d ffo(2) (ff2) are the equilibrium pair cor­
relation functions at ai and a%, respectively. When e = 
0,E = O and Eq. 85 reduces to the corresponding hard-
sphere result (Eq. 79). 

Equation 85 cannot be compared with experimental 
values without a knowledge of Cr1, c2, e, gow(<ri), and 
go'2)(a2). To overcome this difficulty Longuet-Higgins 
and Valleau suggested combining experimental com­
pressibility and self-diffusion data with the correspond­
ing equations on the theory 

fisT-i-l'TM^-rt 0((T1)(I - e~**)} 

A" = 128 
N_fkT\\ !)(<ri) + <7ZW2)(^)e-8!S|-

which together with e, Cr1, and <r2 from gas phase viscos­
ity results yields ffo(2)(o-i) and po(2)(^). 

For argon at 84°K. using the compressibility data of 
BaIy and Donnan (1) and Rice (96) together with the 
square-well parameters deduced by Holleran and HuI-
bert (52) and the self-diffusion coefficient of Corbett 
and Wang (26) gives a calculated collisional thermal 
conductivity of 10.39 XlO"4 joule cm.-1 sec.-1 0 C.- 1 

which compares with the experimental value of Uhlir 
(131) of 12.60 X 10-4 joule cm.-1 sec."1 0C.-1 . The 
agreement is good. However, since the same terms are 
excluded in this theory as in the hard-sphere model the 
contribution calculated is probably low. m\/kri on 
the theory is again found to be 2.5 in agreement with 
the rigid-sphere result of Longuet-Higgins and Pople 
and with the mean value of Table X. The tempera­
ture dependence of the ratio is not, however, brought 
out. 

2. The Theory of Davis, Rice, and Sengers 

Davis, Rice, and Sengers (30) have carried out a 
more elaborate treatment of the transport properties 
of a square-well fluid, computing both the convective 
and collisional contribution on the basis of a modified 
Boltzmann equation. As in Longuet-Higgins and 

Valleau's treatment the four types of bimolecular colli­
sion are used, contributions due to the rigid core diame­
ter, Cr1, and the attractive portion being factorized. 
The resulting equation for the coefficient of thermal 
conductivity is complicated, but reduces to Eq. 85 on 
setting derived nonequilibrium perturbation parameters 
to zero. The most interesting feature of the treatment 
is a prediction of the increase with temperature of the 
ratio m\/ki}. This has its origin in the perturbation 
terms neglected by Longuet-Higgins and Valleau. 
Evaluation of the equilibrium pair correlation functions 
is avoided in comparing the theory with experiment by 
similar methods used in H I E l . These were obtained 
from viscosity and equation of state data and yield a 
calculated thermal conductivity for argon at 840K. of 
13.3 X 10 - 4 joule cm. - 1 sec. - 1 deg. - 1 compared with 
the experimental value of 12.6 X 10 - 4 joule cm. - 1 sec. -1 

deg. -1. No factorization in the final comparison was 
given between the convective and collisional terms. 

8. The Theory of Sengers 

Sengers has recently reconsidered the square-well 
model (123). His treatment includes the effect of the 
perturbation of the distribution function from the 
local equilibrium value which was omitted by Longuet-
Higgins and Valleau. The result which is applicable at 
high densities only is substantially simpler than that of 
Davis, Rice, and Sengers and is 

X = x„ 
JI + | & P ( * Ji + gMff»w(«) + "((T2)A3* 

) ! ' 

go(*K<n) + gow(n)R>(s + YQS2) 
+ 

£(ffo™(<Ti) + Co(2'(<r2)iJ
4s) (Eq. 87) 

where bp = 2vN<ris/SV, R = <T2/<TI, and SP given in 
Table XV is 

•qr = l _ e- .« -f- I8J [ l + 4 = e»2 f"° e - z V d z l 

In the limit as e -»• 0, s = 0, S = 0, SP = 0, and Eq. 87 
reduces to the Enskog result (68). 

Square-well models, while bringing out some fea­
tures of thermal conductivity not obtained on the hard-
sphere model, are not very useful for predicting the 
thermal conductivity of simple systems due to the lack 
of knowledge of go(2)(<ri) and ^0

(2)'((T2)• In fact, it is 
more useful to use the empirically modified hard-sphere 
theory of Enskog. 

F. THEORIES FOR MOLECULES INTERACTING WITH 

SPHERICALLY SYMMETRIC INTERMOLECULAR POTENTIALS 

1. The Theory of Zwanzig, Kirkwood, Oppenheim, and 
Alder (150) 

This theory is a development of the work of Kirk­
wood and his school which attempts to derive expres-
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3AEAMET 

1/T* 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

TABLE XV 

EES FOR THE S Q U A E E - W E L L M O D E 

3 

0.0000 
0.0086 
0.0324 
0.0710 
0.1252 
0.1959 
0.2846 
0.3927 
0.5221 
0.6747 
0.8528 
1.0589 
1.2958 
1.5666 
1.8747 
2.2239 
2.6196 
3.0635 
3.5635 
4.1245 
4.7529 

* 
0.0000 

-0.0012 
-0.0066 
-0.0184 
-0.0387 
-0.0685 
-0.1105 
-0.1665 
-0.2385 
-0.3290 
-0.4403 
-0.5752 
-0.7368 
-0.9282 
-1.1530 
-1.4153 
-1.7194 
-2.0700 
-2.4726 
-2.9262 
-3.4570 

sions for the transport properties of liquids using non-
equilibrium statistical mechanics. The theory has been 
reviewed (23, 24, 37, 39, 73, and 103), and only an 
outline development of the theory for thermal con­
ductivity is given here. 

The probability that the coordinates r4 and momenta 
pi of a system of N particles of mass m with no internal 
degrees of freedom have specified values at a given 
moment is given by the distribution function fN) which 
satisfies the normalizing condition 

J* - • • J fm(n,n,- • -,TN]PUP1,- • -,PN) = 1 (Eq. 88) 

The distribution / essentially determines ensemble aver­
ages of the form 

(x) = J xf(x)dx (Eq. 89) 

where (x) is called the expectation value of x. The 
time dependence of the distribution function f(m satis­
fies a continuity equation in phase space which corre­
sponds to the hydrodynamic equation of continuity 
for an incompressible fluid. This is known as Liou-
ville's equation and can be written as 

d/w/dt + 
JV r 

i = l L 
[\ Im)Pi-V rJ

m + Ti-VnJW = 0 (Eq. 90) 

or, using the substantial derivative in phase space, as 

D-P''/Bt = 0 (Eq. 91) 

Ft is the force acting on the ith molecule due to the sum 
of the gradients of the separate pair potentials of its 
N — 1 neighbors which on assuming spherical sym­
metry is 

TV N 5* 
-Ti = 1A E E W » * = ^. 

» - l j - l Z>r< 
(Eq. 92) 

4>tj is not an explicit function of time but can depend on t 
through the change in r with t. The form of the 
Liouville equation was shown by Gibbs to be revers­
ible to changes in time, whereas transport processes are 
irreversible. Kirkwood has shown (65) that when 
lower order distribution functions / ^ Qi < N) are dealt 
with and these are averaged over a certain time r 
(coarse graining, see (103) for a discussion), this pro­
cedure leads to irreversible behavior. The small time 
T, determined on the basis of analogies with Brownian 
motion, is assumed by Kirkwood to be greater than the 
time interval t — t' such that the force on a given 
molecule at time t is statistically independent of the 
force at a previous time t'. This time is small com­
pared with a transport relaxation time, but is long com­
pared with the fluctuation of force on a molecule due to 
microscopic Brownian motion. This assumption plays 
a similar role to the molecular chaos assumption in the 
kinetic theory of gases. 

The lower order distributions /(A) can be derived from 
/ (w) by averaging with respect to the positions and 
momenta of the remaining (N — h) molecules so that 

PKn1T2,- - -,rh;Pi,pt, - - -,ph;t) = 

/ - / 
/W)(ri,r2 ,- • -,TN)PUP2,- • -.Av)O n dndpi 

• A + 1 

(Eq. 93) 

which on coarse graining becomes 

?(1>(»V2,- • -,Th)PuPi,- • -,Ph)t) = 

1 CT 

' I f(hKrhTi, • • -,Th)PuPi,- • -,Pht + S)ds 

i.e., we are not interested in events occurring in time 
intervals less than r. When h = 1 and 2 given by 

(Eq. 94) 

PKn,Put) = / • • • / 

WKn1T1,- • -,Tw)PuPi,- • -,pN)t) n dndpi (Eq. 95) 
i = 2 

and 

PKn,Ti,puPi;t) = 

C- CfW(Ti1T1,- • -,TN)PuPi,- • -,PN)I) n dndpi (Eq. 96) 

these are known, respectively, as the singlet and doublet 
distributions in (momentum configuration) phase space. 
Integration of / ( 1 ) and /c2) over the momenta alone 
gives 

AM 
n<»(n,t) (N 

-J1JMPUnMp1 (Eq. 

and 

n«Kn,Ti,t) = {N
 N2 2yJfMPuPi,n,Ti)t)dpidh (Eq. 

97) 

98) 

which are the singlet and pair densities in configura­
tion space. The singlet density is simply the number 
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density nm = n = NfV and n<2), the probability that 
one molecule is at rt and another at r2, is related to the 
nonequilibrium radial distribution function 0(2) by the 
equation 

nW(r,r + R;t) = n{r,t)n(r + R;t)g™(r,R;t) (Eq. 99) 

where r2 — T1 = R, which has the same form as the 
equilibrium relation 

nW{T,r + R) = n(r)n(r + RW1Kr1R) (Eq. 100) 

or 

n«KR) = nW!'(B) 

when the fluid is isotropic. gow{R) is the equilibrium 
radial distribution function. 

Expressions for the momentum and energy fluxes in 
terms of nonequilibrium distribution functions have 
been derived from the equations of classical hydro­
dynamics (Eq. 2-4) and the nonequilibrium distribu­
tion functions by several authors (11, 38, 59). For the 
heat flux vector 7q, Irving and Kirkwood (59) derive 
an expression composed of two terms 

./„ = J0K +j^ ( E q . 1 0 1 ) 

where the first J^ corresponds to the heat current due 
to transport of thermal kinetic energy (convective 
contribution) and the second J^, the heat current den­
sity due to molecular interaction arising from the 
imperceptible Brownian motion. These are given by 
the equations 

A. - \f[«*» +¥*W\ -[JWV + * -
u(r,t)nW(r,r + R1I)IdR (Eq. 103) 

where 1 is the unit dyad and 

jV2Krhn;t) = N*JJ&MPi,P*,n,rt#)dpidp* (Eq. 104) 

where u is the center of mass or hydrodynamic velocity 
(compare (23) and (38) for a discussion of the differ­
ences between the corresponding expressions derived 
by Born and Green and by Eisenschitz). In Eq. 103 
the term containing <j>(R) represents the transport of 
potential energy due to macroscopically imperceptible 
Brownian motion, while the term 4>'(R) represents the 
work dissipated by this random motion. 

I t can be seen that Eq. 102 and 103 involve the 
lower order distribution functions / (1), / (2), and n(2) 

which have to be determined. This was done by 
Kirkwood using analogies with the theory of Brownian 
motion on the molecular scale to represent collision 
events in the liquid (see section IIIC). On this basis 
reduced Liouville equations were derived which ex­
press the development in time of the coarse grained 

distribution. These equations take the form of the 
Fokker-Planck equation illustrated for / (1 ) as 

hV''[(m ~ ") ~fW + kTVpJm (Eq" 105) 

with a similar type for/(2J. f is the Brownian motion 
friction constant. It is the right-hand side of Eq. 105 
which represents the change in/ ( 1 ) due to the collision 
processes. 

This equation, which occurs in the theory of random 
processes, is called the Chandrasekhar equation. That 
it does represent a description of the irreversible evolu­
tion of / toward equilibrium, and hence describes a 
transport process, can be seen where the equation 
reduces to the Smoluchowski form for t » wi/f 

^ = -Vr(FWjW) + kTvrfw (Eq. 106) 

(see ref. 18, p. 40) which has the form of the "dif­
fusion" equation 

d?a> kT 
\ - y V,2/<» (Eq. 107) 

with 

D1" = ItT ft (Eq. 108) 

when the intermolecular force term is discarded. 
Equation 108 is the Einstein equation. 

Using the expressions for/ ( I ) , / ( 2 ) , and n(2), Zwanzig, 
Kirkwood, Oppenheim, and Alder have obtained ex­
pressions for J^K and /q* in terms of the temperature 
gradient. For example, the kinetic contribution to the 
heat flux vector is obtained as 

V = f n V T + ^ g j ) p V r (Eq. 109) 

where n is the number density. Identification of Eq. 
109 with Fourier's law gives the convective contribu­
tion to thermal conductivity as 

nk'T kiT2/im\ ._, 11A, 

*-" --w --or\*t), (E*110) 

The more complicated expression for /q* gives the 
intermolecular force term as 

x,. ̂ / s . ( 4 ! - , y w ^ * „»<«)«+ 

and hence the total thermal conductivity is X = 
Aconv r A^. 

The most obvious difference between Eq. 110 and 
111 is that the convective term is dependent on n as 
expected from the single molecule contribution mecha­
nism, whereas the term arising from the intermolecular 
interaction between molecular pairs depends on n2. 
It would therefore be anticipated that the n2 term would 
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make a dominant contribution to thermal conduction 
compared with the term depending on n; i.e., the inter-
molecular force contribution would be more important 
than the convective. 

The remaining central problem in evaluating Eq. 
110 and 111 is the relationship of the friction constant 
to the intermolecular forces. This is discussed below. 

The Molecular Friction Constant 

A number of attempts have been made to derive an 
expression for the friction constant in terms of the 
intermolecular potential Q(R) and the structure of the 
liquid, which is usually contained in the equilibrium 
pair correlation function g0

w(R). These investiga­
tions all suggest that the basic form of the friction con­
stant is given by the equation 

f = £fo (Eq. 112) 

where 

foz = ^~jv*4>(RW*\R)d3R (Eq. 113) 

V is the volume of the fluid and m the molecular mass. 
£ has been given different values by different authors. 
Kirkwood, Buff, and Green (66), Rice and Kirkwood 
(105), Collins aud Raff el (24), and Naghizadeh and 
Rice (90) have obtained values of £ of unity; Douglass, 
McCaIl, and Anderson (31) (1/TT)1/!, and Rice (97) 
the value (2/7r)I/\ Recently Rice (98) has used an 
acoustic continuum model to derive a further expres­
sion for £ 

i = (4Xm2C3P)-1J-O5 (Eq. 114) 

where C is the velocity of sound and p the density of 
the medium. In this work it was suggested that 

?o < t (real system) < f (acoustic) (Eq. 115) 

but subsequently, on the basis of measured self-dif­
fusion coefficients (90), f (acoustic) was recommended 
as the best estimate of the molecular friction constant. 

The basic difficulty in deciding which expression to 
use for £ arises because of a lack of knowledge of go™(R) 
and its temperature dependence. As the recommenda­
tion of Naghizadeh and Rice is based partly on a 
theoretical pair correlation function, and an approxi­
mate treatment of its temperature dependence, the 
problem still requires further investigation. 

Provided the integral in Eq. 113 can be evaluated 
for an n,m potential of the form of Eq. 49 in terms of 
experimentally available quantities, then the various 
proposed values of f can be checked against experi­
mental values from Eq. 108. This is now possible due 
to a development by Rowlinson (117). 

The intermolecular virial v(R), its derivative w(R), 
and the associated macroscopic functions V and W are 
given for an arbitrary molecular configuration by the 
equations 

v(R) = J d - | l - U = - |EE»(i2„) (Eq. 116) 

and 

w(R) = R^- W = J E Z » ( B « ) (Eq. 117) 

hence 

fi2VJ0(#) = v(R) + w(R) (Eq. 118) 

as 

W(S) = dV(#)/dfi2 + 2d<f,(R)/RdR 

The integral in Eq. 113 can therefore be rewritten in the 
form 

?o2 = ^R*~2fgow(R)[v(R) + w(R)]d=R (Eq. 119) 

where #*, a function of V and T, is given by 

Cg0W(RMR) + W(R)]VR 
R*2 = -f (Eq. 120) 

J R-Zg0W(R)Iv(R) + W(R)]VR 

Rowlinson has shown that to a close approximation 
R* = a, where <r is the value of R at <j>(R) = 0, hence 
Eq. 119 transforms to 

fo2 = 1 ^ ( 3 ^ - V) (Eq. 121) 

where V? and X) are the mean values in a canonical en­
semble given by 

V = pV - NkT (Eq. 122) 

and 

W = - Y U' + C^-J3) (PV - NkT) (Eq. 123) 

with TJ' the average configurational energy. The 
friction coefficient is therefore 

„, 2mkTf nm U' . , . ,JpV A l 

(Eq. 124) 

As experimental values of TJ' and pV/NkT are avail­
able for a number of simple molecules, Eq. 124 can be 
evaluated solely from the thermodynamic properties 
of the liquid, no knowledge of goi2)(R) being necessary. 

The most usual form of Eq. 49 has n,m values of 12 
and 6, respectively; therefore 

* - * ? [ > & + »(&-•)] <"*-»> 
and so f can be calculated for the various £. Comparison 
between calculated and experimental friction constants 
is done in more familiar terms by comparing calculated 
and experimental self-diffusion coefficients as the two 
quantities are connected by the Einstein equation (Eq. 
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TABLE XVI 
COMPABISON OF CALCULATED AND EXPERIMENTAL SELF-

DIFFUSION COEFFICIENTS OF LIQUID ARGON 

Temp., 
0K. 

84.3 
87.3 
90,0 

100 
110 
120 
130 

Pressure, 
(atm). 

0.722 
1.000 
1.319 
3.20 
6.58 

11.98 
20.00 

C X 10-*, 
cm. sec . - 1 

8.636 
8.304 
7.969 
7.001 
6.405 
5.664 
4.607 

1 = 1 5 

2.35 
2.45 
2.55 
2.95 
3.40 
3.88 
4.53 

-(2Ar)1 '* 

2.95 
3.07 
3.20 
3.70 
4.26 
4.86 
5.68 

S = 
( 4 i r m 2 C V ) _ 1 

X To8 

0.97 
0.91 
0.85 
0.72 
0.69 
0.61 
0.42 

Exptl. 
(90) 

1.77" 
2.10 
2.43 
3.54 
4.80 
6.06 
7.45 

8 Additional values are 1.53 (21) and 2.07 (26). 

108). Table XVI compares the experimental and theo­
retical values of D1

0 for liquid argon along the liquid-
vapor coexistence curve. Similar results have been 
obtained by Boata, Casanova, and Levi (9). 

The theoretical velocity of sound has been calcu­
lated from the thermodynamic data listed in ref. 116 
and is used throughout for consistency, as experimental 
values are available (133) only between 83.8°K. (8.70 X 
104 cm. sec. -1) and 87.30K. (8.41 X 104Cm-SeC.-1). 

Table XVI shows in all cases only moderate agree­
ment with experimental results. For 9O0K. (the value 
2.60 X 10 - 6 cm.2 sec. - 1 obtained by Kirkwood and 
Rice (105) for £ = 1 is in close agreement with the 
present calculations. The main drawback is that the 
calculated diffusion coefficient does not increase fast 
enough with increasing temperature and no constant 
value of £ can remedy this defect. The self-diffusion 
coefficient calculated from the acoustic friction con­
stant where a variable £ is included, actually decreases 
with increasing temperature. This result is in sharp 
disagreement with the conclusions of NaghLzadeh and 
Rice (90) who recommend f obtained by this method in 
preference to the other two values. 

These results mean that transport theories which 
involve a friction coefficient given by Eq. 112 and 113 
are, generally speaking, going to prove inadequate for 
calculating the thermal conductivity of a liquid. How­
ever, it is still useful to consider such theories, particu­
larly in combinations which are independent of the 
friction coefficient, so that if a realistic expression for 
the friction coefficient is derived, a further assessment 
of the theory can be made. 

In passing, it may be useful to point out that an 
equation of the form of Eq. 113 cannot be reduced to 
the hard-sphere friction constant obtained by Enskog 
and by Longuet-Higgins and Pople, viz. 

This would seem to be an essential feature of any realis­
tic expression, as Eq. 126 reduces to the first approxima­
tion of the Chapman-Enskog equation for the self-

diffusion coefficient of an infinitely dilute gas of hard 
spheres on using Eq. 108 

JV = 7r-%(zz) V2 (Eq. 127) 

(pv \ 
where ( r — ; — 1 1 is replaced by b0/V. 

To return to the comparison of Eq. 110 and 111 with 
experiment, it is seen that while the convective con­
tribution can be transformed by the methods described 
above to purely thermodynamic quantities, numerical 
integration is required for the intermolecular force 
contribution. In view of this, only the comparison 
based on that of the original investigators is made. 

Using the 12:6 potential with e/k — 120 and <r = 
3.405 A., for liquid argon at its boiling point, evaluation 
of Eq. 110 and 111 in c.g.s. units gives 

Xccmvf = 2.02 X 10"8 X«f = 489.48 X 10"8 (Eq. 128) 

when <7o(2) is evaluated with an ad hoc factor inserted to 
give the experimental pressure of argon at its boiling 
point. I t is possible to evaluate these contributions 
using calculated or experimental friction coefficients. 
The results are given in Table XVlI. The experi-

TABLB XVII 
CALCULATED AND EXPERIMENTAL THERMAL CONDUCTIVITIES OF 

Ar AT 87.30K. AND 1 ATM. 
f X 10« g. s e c , " ' NoouT0 H" X3XPtI0 

5.69 (exptl.) 0.035 8.45 12.16 
2.85(calcd.) 0.071 17.17 12.16 

0 Value X 104 in joules cm.-1 sec.-1 deg.-1. 

mental friction coefficient is calculated from the self-
diffusion data of Naghizadeh and Rice (90) (87.3°K, 
A 0 = 2.10 X 10~5 cm.2 sec."1). The experimental 
thermal conductivity is from Uhlir (131). 

The calculated thermal conductivities differ sub­
stantially from the experimental values using either the 
calculated or experimental friction coefficients. The 
results do, however, show that the convective con­
tribution to thermal conductivity is negligible (<1%) 
compared with the intermolecular force contribution 
in agreement with the conclusions arrived at in section 
IHC, on the basis of heuristic arguments. 

The convective and intermolecular force contribu­
tions to shear viscosity have also been calculated by 
Zwanzig, Kirkwood, Stripp, and Oppenheim (151) 
giving 

Vc<my =
 g ' w * 1U „* = 2.56 X 10«f (Eq. 129) 

so that again the convective contribution to shear 
viscosity can be discarded. From Eq. 128 and 129 
it follows that if the convective contribution is neg­
lected, JJX ~ 17̂X4, which is independent of the friction 
constant. Calculated and experimental values are 
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given, respectively, by 12.53 and 30.64 poise erg cm. - 1 

sec. - 1 deg. -1, so that leaving aside the friction coefficient 
problem, the agreement of calculated and experimental 
quantities is still poor. No final assessment can be 
made of the theory until the form of the friction co­
efficient in terms of the intermolecular forces is firmly 
established and, in addition, until the assumptions in­
volved in the Fokker-Planck-Chandrasekhar equa­
tion are proven valid when applied to small molecules. 
The latter problem is essentially similar to proving the 
validity of the Stokes-Einstein equation D = kT/3irarj 
for a diffusing colloidal particle when applied to diffus­
ing molecules of the same size as the viscous medium 
they move in. 

2. The Theories of Born and Green and of Eisenschitz 

In the same year as Kirkwood's first paper on trans­
port processes by the methods described in section 
HIF l , Born and Green (10) introduced a similar type of 
approach. This theory is also based on the Liouville 
equation giving results which can only be evaluated 
with further assumptions due to the lack of irreversibil­
ity in the Liouville equations. Similar statistical ex­
pressions for the pressure tensor and heat flux vectors 
were derived by both sets of authors, and, in additon, 
the equations for the transport coefficients are closely 
similar. The theory has not, however, been developed 
to the stage at which numerical calculations can be 
made. 

The problem of determining the nonequilibrium dis­
tribution functions from the Chandrasekhar equation is 
simplified if r > > m/£ as was first shown by the de­
velopment due to Kramers (68). In this case the 
momenta essentially reach an equilibrium distribution 
in the time T whereas the configurational distribution 
does not. The singlet distribution is then Maxwellian, 
and as the doublet distribution in configuration space 
alone is given from /(2> by Eq. 98, this is the only dis­
tribution to be determined. 

Under these conditions, i.e., T » m/t;, the Chand­
rasekhar equation reduces to the Smoluchowski equa­
tion (see Eq. 106). Eisenschitz in his theory (36) 
assumed that gl2)(ri,n;t) is given by 

<7<2>(n,r2;0 = g^(R)(l + w) 

where w is a small distortion term due to nonequilib­
rium. For a linear temperature gradient T = T0 

(1 + bz), w is determined from the Smoluchouski equa­
tion, and finally use of the Kirkwood expression for 
/q* gives an expression for the coefficient of thermal 
conductivity due to the intermolecular forces. This 
involves f which has to be determined. The corre­
sponding intermolecular force viscosity term is, how­
ever, a function of f and not 1/f as for thermal con­
ductivity so that the product can be evaluated inde­
pendently of the friction coefficient. This has been 

done by Orton (91) and a representative result given for 
argon at 84.40K. and 0.8 atm. is ^X0 = 10.3, which 
compares with the experimental value of 36.4 poise erg 
cm. - 1 sec. - 1 deg. -1 . On the basis of the same com­
parison, therefore, as the theory of Zwanzig, Kirkwood, 
Oppenheim, and Alder, the discrepancy between calcu­
lated and experimental values is roughly the same. 

One of the interesting features of the Eisenschitz 
treatment is that by choosing different boundary 
conditions from those used by Kirkwood, Buff, and 
Green and Zwanzig, Kirkwood, Oppenheim, and Alder, 
he finds that his viscosity expression, unlike his ther­
mal conductivity expression, has a term exp(e/kT} 
thus establishing a different temperature dependence 
for the two coefficients. Hence qualitatively Dne 
expects an increasing value of m\/kt] with increase of 
temperature. This has not, however, been conclusively 
demonstrated. 

S. The Theory of Rice and Kirkwood 

In view of the complexities of the complete theory of 
Zwanzig, Kirkwood, Oppenheim, and Alder (150), 
Rice and Kirkwood (105) have given a much simpler 
approximate formulation for the intermolecular force 
contribution starting with Eq. 102 and 103. This 
theory involves three basic assumptions, (i) First, 
the gradient of the pair potential $(r) between mole­
cules at time (t + s) can be expanded in a Taylor series 
about the gradient at time t, and higher terms than the 
second can be neglected. This is possible as <p(R) is not 
an explicit function of time but depends on t only through 
the change in intermolecular separation with time. 
This expansion is, however, rigorously valid only if the 
molecular displacement follows Hooke's law. (ii) 
The distribution function in a pair space / (2) is approxi­
mated as the product of the local equilibrium radial 
distribution function in configuration space and the 
^eroth order distribution function in momentum space, 
which is Maxwellian with a first-order perturbation 
due to the mean velocity, (iii) Thirdly, the friction 
tensor in pair space may be approximated as the direct 
sum of the friction tensors in singlet space, which im­
plies that the molecules move independently of each 
other, an assumption which is true at large pair sepa­
ration but the limitations of which are unknown at small 
separations. 

The resulting expression for X̂  is 

x* = -^M-(TYfB^{RW2KR)d*R~] (Eq" 130) 

which can be transformed to thermodynamic quanti­
ties for an n,m potential using Eq. 52, rewritten as 

kT [~nm ^1 nm TT, Hm7-,, 

(n + m - X)NkTa + (n + m - I)Nk] (Eq. 131) 
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TABLE XVIII 

COMPARISON OF CALCULATED AND EXPERIMENTAL VISCOSITIES AND THERMAL CONDUCTIVITIES OF ARGON ON THE THEORY OF RICE AND 
KIRKWOOD 

. XXlOVJOuIeSCm 1 - ISeC-I 0 C.- ' . . m\/ki, . 
Calcn. II Exptl. Calcn. I Calcn. II Exptl. Calcn. I 

0.95 12.60 5.93 4.47 2.16 
Temp., 0K. 

84.3 
87.3 
90.0 

100.0 
110.0 
120.0 
130.0 

Pressure, 
atm. 

0.722 
1.000 
1.319 
3.20 
6.58 

11.98 
20.00 

Exptl. 
X 10', g. seo.-i-
Calcn. I 

80 
52 
32 
70 
40 
14 

0.90 

.26 

.24 

.21 

.12 

.02 
0.91 
0.79 

,06 
15 
34 
,44 
42 

1.30 

12.16 
11.98 
10.93 
9.80 
8.50 
7.37 

Calcn. I 

5.93 
6.15 
6.34 
7.16 
8.41 

10.54 
13.91 

5.27 
6.04 
8.59 

11.87 
16.46 
22.88 

32 
48 
09 
36 
58 
94 

26 
38 
52 
07 
96 
56 

8.46 

Equation 52 for a 12:6 potential has already been 
derived by Rice and Kirkwood. Rather than use a 
rigid-sphere value for X00nv as did Rice and Kirkwood, 
this term can be taken from the theory of Zwanzig, 
Kirkwood, Oppenheim, and Alder (Eq. 110) and re­
written as 

Xconv = jwp.1—3 1- Nk j (Eq. 132) 

The total thermal conductivity resulting from Eq. 131 
and 132 is, therefore, for a 12:6 potential 

Ta 
3 X = X0OnV+ X0S = A [ ( l + ^f) + 

S 2 4 M 24 
U' 
Nk0 ~ 24M" " 17T" + 17}] (Eq. 133) 

where 

A = M W TL-24MT + 17OT - 1JJ 
as £ = £o on the theory and Eq. 125 is applicable. 

A direct comparison of the convective and collisional 
contributions can now be made by comparing the ratios 
of the first and second terms of Eq. 133 which a t 84.3 
and 13O0K. for argon along the saturation curve are 
approximately 1.1:171 and 1.5:274, respectively. 
The per cent convective contribution in the case of 
thermal conductivity is therefore negligible and much 
less than the 10% contribution a t t r ibuted by Rice and 
Kirkwood from the hard-sphere model. 

Table X V I I I compares thermal conductivities calcu­
lated from Eq. 133 (calcn. I) and experimental (131) 
values for argon. The results show tha t although the 
correct order of magnitude is obtained the calculated 
coefficient, contrary to experiment, actually increases 
with increasing temperature. 

Using the experimental self-diffusion coefficient Eq . 
133 can be rewritten 

A = Di< exptl 
Nk 
2V [(' + ?) + 24 

Nk 
_ 2 & - 2 4 ^ -

Nk Nk 

17Ta + 17*] (Eq. 134) 

The associated thermal conductivity values X calcn. II 
are included in Table XVIII and show greater dis­
agreement with experiment compared with X calcn. I. 
The value calculated by numerical methods by Rice 

and Kirkwood at 9O0K. for the collisional contribu­
tion 5.94 X 10~4 joule cm.-1 sec.-1 0C. - 1 is in close 
agreement with the value from Eq. 134 which includes 
the small convective term. 

On the theory the collisional or intermolecular force 
contribution to viscosity ^ is 

^ = (£)>[vW, + l«3>»<W« 30? 

so that using Eq. 51 and 52 
r_nm W 

,1A L 

(Eq. 135) 

_ N<r/mkTy 
.+ (n + m - 3 ) ( ^ - l ) ] 

nm V 
3 NkT 

TNkT+ (n + m " 1ANkT' or 
(Eq. 136) 

as £ = £0 on the theory. 
The kinetic or convective contribution ?7Conv has also 

to be included to give the total thermal conductivity. 
This can be taken from the theory of Kirkwood, Buff, 
and Green (66) again rather than from the rigid-sphere 
model used by Rice and Kirkwood. This expression is 

NmkT 
TJconv 2r7 (Eq. 137) 

hence using f = f 0) the total viscosity is 

•G + Si" TlW+ '• + — » ( & - ' ) } ] 
(Eq. 138) 

where 

E = 

(Eq. 139) 

Calculated viscosities for argon for the 12:6 potential 
are given in Table X V I I I . 

A further check on the theoiy can now be obtained 
by examining the ratio mX/hy. This is given for 12:6 
molecules by the equation 

kit 

17Ta + 1711 9iPV 

G - 24 XJ' fj»V_ 
5 NkT^ \NkT (^- ~ 01 

\NkT ) \ 

(Eq. 140) 
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which is independent of the friction coefficient. Calcu­
lated and experimental values are compared in Table 
XVIII where the ratios are in close agreement except 
at the highest temperatures. This discrepancy is due 
to the rapid increase in Cp'/Nk and U'a/Nk. 

Where overlap between the calculations of this paper 
and those of Rice and Kirkwood occur good agreement 
is obtained. This confirms the essential correctness 
of the present method of calculation of f o- The trans­
port properties of argon along the saturation curve as 
evaluated, however, indicate substantial discrepancies 
between the theory of Rice and Kirkwood with regard 
to either or both the sign and magnitude of the tem­
perature dependence of the transport properties. 
This occurs for viscosity and thermal conductivity 
even when the experimental friction coefficient ob­
tained from the self-diffusion coefficient is used. The 
agreement for the m\/krj ratio does, however, suggest 
that the friction constant applicable to self-diffusion is 
not the friction constant which is applicable to thermal 
conductivity and viscosity. This may be so as the 
self-diffusion coefficient is really a property of an 
•equilibrium system. 

4. The Theory of Collins and Raff el 

Collins and Raffel (25) have introduced a different 
formalism for the thermal conductivity of liquids in 
which the primary step is the expression of the time 
derivative of the heat flux vector in terms of the gradi­
ent of the energy. This time derivative introduces ir­
reversibility into the corresponding statistical mechani­
cal ensemble without requiring time smoothing and is 
expressed in terms of an expansion of the molecular 
velocity distribution instead of the expansion of the 
configurational distribution. The latter would be 
required if the heat flux and not its time derivative was 
required. 

The details of the theory will not be dealt with here. 
However, it is of interest to point out that the authors 
derive the same expression as obtained by Kirkwood, 
Buff, and Green for the friction coefficient, i.e., f = f0-
Their results for thermal conductivity are of a form 
similar to those given by Kirkwood and Rice, except 
that they involve the square of the transport coef­
ficient, but f does not occur in the expressions. For 
thermal conductivity, the convective and intermolecu-
lar force contributions are 

^fsR'%gWR (Eq- 141) 

X* " SV/'M J LRdR + 

iaT (R^1 + 3R3%)~\ S"l2)dR (Eq. 142) 

which when combined and the integrals eliminated in 

TABLE X I X 

COMPARISON OF CALCULATED AND EXPERIMENTAL VALUES OF 

THERMAL CONDUCTIVITY AND mX/hq ON THE THEORY OF COLLINS 

AND R A F F E L 

Temp., °K. 84.73 87.3 90 100 110 120 130 

Pressure, 
atm. 0.722 1.000 1.319 3.20 6.58 11.98 20.00 

X, calod. 21.22 21.50 21.90 22.73 23.01 25.35 27.02 
X, exptl. 12.60 12.16 11.98 10.93 9.80 8.50 7.37 
m\/kri, 

calcd. 8.25 8.51 8.81 9.75 10.68 12.42 15.48 
mX/fo,, exptl. 2.16 2.32 2.48 3.09 3.36 3.58 3.94 

terms of thermodynamic properties for a 12:6 potential 
gives 

x2 1.388JSJTC, 
DVSM 

["-24 V 
NkT *T+ \NkT 

l)(16aT - 1 )1 

(Eq. 143) 

where Cv is the molar specific heat at constant volume, 
a the coefficient of thermal expansion, and M = Nm 
the molecular weight and v = V/N. 

Table XIX compares calculated and experimental 
thermal conductivities for liquid argon along the satura­
tion curve and also gives the ratio mk/krt which on the 
theory is 

m\ _ 
k-rj 

7.977 I- 2 4« rA& + \NkT ) 
(16aT - 1) 

Nk 
~24 M? + 10 (J>L _ A 

\NkT ) 

V« 

(Eq. 144) 

as the corresponding viscosity expression is 

. 0 .174mMT . . U' . l n / p 7 A - I ._ , , . , 
' ' " -RVTT-L- 2 4 ATr + 10KNkT ~ 1 J J <E* 1 4 5 ) 

Agreement between theory and experiment is seen 
to be poor. Like the theory of Rice and Kirkwood, the 
wrong temperature dependence is obtained. In addi­
tion, however, the values are out by a factor of about 
two, and agreement between calculated and experi­
mental values of the ratio m\/kr) is poor compared 
with the results from Rice and Kirkwood's expression. 

5. The Theory of Rice and Allnatt 

Rice and Allnat (101, 102) have recently derived 
expressions for the thermal conductivity of a dense 
fluid based on a model in which the intermolecular 
forces are factorized into hard and soft terms. For 
example, the 12:6 potential can be used to represent 
the soft portion up to R = c, after which it is replaced 
by an infinite repulsion as for hard spheres. On this 
model three contributions to thermal conduction are 
separated. The first is the usual convective or kinetic 
term, the second is the collisional hard core term, and 
the third is due to the soft part of the potential. 

The convective term is 

,V 
Xe&o -(M) A-1 (Eq. 146) 
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Xoouy 

Xo&o 

where A = I + (45fF/iV + l%mY)/(iirhT/m)l/,ai 

and reduces to the Enskog result (69) when A is unity, 
i.e., when f = 0. f in this case is given by 

f = fe — fH.s. 

where f0 is the Kirkwood expression (Eq. 113) and 
1"H.S. the hard-sphere value given by Eq. 126. The 
collisional term which arises at R = a when the cores 
of the molecules collide is 

- [K1 +IO+ s £ " > (Eq-147) 
where C is a perturbation parameter making Eq. 147 
different from the corresponding Enskog result (Eq. 70). 
This is due to the different nature of the intermolecular 
potential as well as the deviation of the triplet distribu­
tion function from equilibrium. Finally the contribu­
tion arising from the soft part of the intermolecular 
forces at R > <r, i.e., X .̂s. is identical with the inter­
molecular force term given by Eq. I l l of Zwanzig, 
Kirkwood, Oppenheim, and Alder except that the 
integration limits run from o- to <» rather than from 
0 to oo. 

Using experimental friction constants for f0, i.e., re­
placing f0 by kT/Dx°, and using a theoretical g<>{i)(R)t 

Ikenberry and Rice (58) have calculated the separate 
contributions for argon as given in Table XX. 

TABLE XX 
T H E THERMAL CONDUCTIVITY OF LIQUID ARGON ON THE THEORY 

OF R I C E AND ALLNATT 

Temp., 0 K. 90 128 133.5 185.5 
Pressure, atm. 1 50 100 500 

X00DV 0.08 0.21 0.29 0.46 
XMii 0.34 0.17 0.34 0.75 
Xes.s. 11-42 7.36 6.78 6.49 
Xtot.1 11.84 7.74 7.41 7.70 
W i 12.38 7.91 7.78 7.82 

This shows that as in all other theories, the convec-
tive contribution while increasing with falling density 
as expected, makes a negligible contribution to the 
total conduction. I t is surprising, however, that the 
core term is also small with the majority contribution 
arising from the soft part of the potential. Over-all 
the agreement with experiment is surprisingly good. 
I t is, however, unfortunate that the result depends on a 
theoretical g^\ as when this was previously used by 
Naghizadeh and Rice (90) to calculate the temperature 
dependence of the self-diffusion coefficient, the good 
agreement found by these authors is not reproduced 
when the methods used in section I I IF la are used. 
This is seen from Table XVI where the wrong tem­
perature dependence results for the acoustic calculation 
in column 6. 

6. Fluctuation-Dissipation Theory 
Since the problem of constructing a satisfactory non-

equilibrium distribution function is not yet fully re­

solved, as the results of the previous sections show, a 
more recent approach has attempted to avoid this 
problem by considering irreversible phenomena in 
terms of equilibrium ensembles whose properties are 
known. This type of approach was originally con­
sidered by Einstein (35) in the problem of Brownian 
particle diffusion, and more recent work is due to Kubo 
(69), Green (47), and Mori (89). A particularly 
simple presentation of the method of this approach has 
been given by HeIfand (50). 

In essence, the idea behind the method is, that in an 
equilibrium ensemble, there occur macroscopic fluctua­
tions in the various properties of the system. The 
decay of these fluctuations is accompanied by trans­
port phenomena. The theory is not concerned with 
how the fluctuation arises. In the case of thermal 
conductivity, for example, at a point in the liquid, 
if the total energy of a particle has a value E at time 
zero, which is in excess of the average energy (E), then 
the decay to the average value is accompanied by ther­
mal conduction. The theory gives the thermal con­
ductivity coefficient in terms of an integral over time 
of an autocorrelation function which has to be evalu­
ated. 

To date little has been done to enable the theory to 
be used to calculate the thermal conductivity of a 
liquid, but recently Cohen and Ernst (22) have sug­
gested that the theory, for the case of hard spheres, 
omits a term which, if correspondingly discarded in the 
theory of Enskog (first term of Eq. 70) would give 
poor agreement with experiment. At present little 
can be said about the possibilities of this type of ap­
proach being successful for calculating transport proper­
ties. However, the particular inadequacies of the 
friction constant as formulated in the Kirkwood-type 
treatment must provide a stimulus to alternative con­
siderations of irreversibility. Fluctuation-dissipation 
theory and the master equation approach, which is a 
further alternative method of tackling the problem of 
irreversibility due principally to Brout, Prigogme, and 
Van Hove, have been extensively discussed by Chester 
(20) and by Rice and Frisch (103). 

7. The Theory of Horrocks and McLaughlin 

In this theory (54), a f.c.c. lattice-type structure is 
assumed for the liquid, and the excess energy due to the 
temperature gradient is assumed to be transferred 
down the gradient with a frequency v which is deter­
mined by the molecular mass and the intermolecular 
forces. The expression obtained for the thermal con­
ductivity again can be written as two terms: the first 
due to motion of molecules between cells, XCOnv, and 
the second X ,̂ due to the intracellular term arising from 
the intermolecular forces, transfer taking place by the 
vibrational mechanism. The resulting equations are 

Xconr = V2hCv/a (Eq. 148) 
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X* = y/2vCy/a (Eq. 149) 

where o = (y/2V/N)w is the nearest neighbor dis­
tance, v is the lattice frequency, and k0 the frequency of 
diffusive displacement. Using the theory of self-
diffusion of McLaughlin (78) to calculate ko, it is shown 
that the convective term (Eq. 148) is negligible, 
amounting, for example, for argon at its normal boiling 
point to less than 1% of the total conduction. 

The intermolecular force contribution given by Eq. 
149 is evaluated in the harmonic approximation by 
taking v from Eq. 56, so that X0 becomes 

X* = 
_\/2Cy 

2*V ma' 
[2Ze[L1V** -Afi»*}»]Vi (Eq. 150) 

As Cv = 3k on the model, then Eq. 150 can be evalu­
ated solely from the density of the liquid which gives a, 
provided e/k and a are known. These parameters of 
the intermolecular potential are known from studies of 
the infinitely dilute gas (51). The results for a series of 
simple liquids are given in Table XXI. 

TABLE XXI 

CALCULATED AND EXPERIMENTAL THERMAL CONDUCTIVITIES OF 

SIMPLE LIQUIDS ON THE THEORY OP HORROCKS AND MCLAUGHLIN 

X X 10«, joules cm." ' 
Temp., s e c . " ' 0 C . - ' 

Liquid 0 K. Calod. Exptl. 

Argon 84.2 9.92 12.60 
87.3 9.28 12.16 

Nitrogen 69.1 10.28 15.11 
71.4 9.77 14.80 
77.3 8.49 13.96 

Carbon monoxide 72.0 7.70 15.89 
77.7 6.59 15.05 
80.8 5.96 14.21 

Methane 93.2 17.24 21.53 
103.2 15.27 20.27 
108.2 14.36 19.64 

Benzene 288.2 12.26 14.94 
298.2 11.71 14.63 
308.2 11.24 14.24 
318.2 10.78 13.89 

Carbon tetrachloride 298.2 10.18 10.64 
308.2 9.77 10.51 
318.2 9.42 10.39 

Agreement with experiment is surprisingly good. In 
all cases the correct temperature dependence is ob­
tained and the calculated values are in substantial 
agreement with experimental values. Recent pre­
liminary work on this model extending it to the case of 
anharmonic frequencies improves this agreement. In 
addition, as discussed later, the theory has proved use­
ful in studying the factors which control the pressure 
and temperature dependence of thermal conductivity. 
The theory cannot however be extended beyond the 
high density end of the liquid range, i.e., beyond the 
normal boiling point, because the concept of a lattice 
beyond this temperature is unrealistic. 
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Fig. 6.—The thermal conductivity of simple binary mixtures at 
20° (copied substantially from (109)). 

In conclusion to this section, it can be said that so far 
as existing statistical theories go, substantial progress 
has been made in getting a better understanding of the 
problem of thermal conductivity. Now that the fric­
tion constant as given by Eq. 113 has been shown to be 
clearly inadequate, this may stimulate fresh thinking 
on the problem. The reduction of the statistical equa­
tions to thermodynamic terms has simplified the check­
ing procedure for statistical expressions, and the in­
adequacies of some of these expressions are now more 
clearly evident. All this constitutes a distinct ad­
vance but clearly leaves the impression that the prob­
lem of calculating the thermal conductivity, of even a 
simple liquid, is still not satisfactorily solved. 

IV. T H E THERMAL CONDUCTIVITY OF MIXTURES 

A. HEURISTIC CONSIDERATIONS 

In this section attention is restricted to binary mix­
tures where most of the available experimental results 
have been obtained by Riedel (109) and by Filippov 
and Novoselova (41). Figure 6 illustrates the con­
centration dependence of the thermal conductivity of a 
series of binary mixtures of liquids at 20°. In all 
cases, even where polar molecules are involved, the 
thermal conductivity of the mixture Xm;x is a smooth 
function of the concentration. This suggests a quad­
ratic mixing law of the form 

Xmu = X1Xi + 2z(l - X)Xi2 + (1 - Z)2X2 (Eq. 151) 

where Xi and X2 are the values for the pure components 
of corresponding mole fractions x and (1 — x). X12, 
the cross-terms coefficient, can be taken as approxi­
mately constant at a fixed temperature. This can be 
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TABLE XXII 
VALUES OF THE CROSS-TERM COEFFICIENT OF THERMAL 

CONDUCTIVITY FOR THE SYSTEM CCl4-CeH6 AT 20° 
Xi, mole fraction of C6H6 0.8551 0.5716 0.3742 0.1359 
Xia X 104, joules cm.-1 sec._: 

0C."1 8.11 9.51 9.56 9.97 

seen from Table XXII (82) for the case of carbon tetra-
chloride-benzene mixtures where a constant value of 
9.29 ± 0.6 fits the results. I t would be expected that 
Xi2 is in some way associated with the heteromolecular 
interaction just as in the case of the corresponding 
formula for the second virial coefficient of a binary mix­
ture. I t would therefore be of interest to explore the 
relationship between theoretical expressions and Eq. 
151. 

B. THE THEORY OF THORNE 

Thorne (127) has generalized the Enskog theory for 
the thermal conductivity of a dense fluid of hard 
spheres to the case of a binary mixture. The expres­
sion is complex and no simplification or application of it 
has been made to date. This may be due to the fact 
that experimental results are not available on the 
behavior of the thermal conductivity of mixed simple 
gases as a function of pressure covering the region from 
the dilute to the dense gas. 

C. THE THEORY OF LONGUET-HIGGINS, POPLE, AND 

VALLEAU 

Longuet-Higgins, Pople, and Valleau (75) have 
extended the hard-sphere theory of Longuet-Higgins 
and Pople to cover the case of thermal conductivity 
for a binary mixture of hard-sphere molecules of the 
same molecular diameter. The expression obtained is 

2,k/pv . \ f nm / w r y / . /EQ 152) 

where MW = mim2/(wii + m2) is the reduced mass and nt 

is the number density of the individual species, i, with 
ni + n2 = n. Equation 152 reduces to Eq. 78 for n = 
Wi, W2 = 0 and can be rewritten in the form of Eq. 151 
with 

No attempt has been made to apply this result to sys­
tems of real molecules to calculate X12 using the pro­
cedures discussed in section HID la on the Enskog 
theory. This is due again principally to the lack of 
suitable data, but it is also unlikely to be a fruitful 
line of approach for the same reasons as mentioned pre­
viously when comparing the Enskog and Longuet-
Higgins and Pople theories. 

D. THE THEORY OF BEARMAN 

Bearman and Kirkwood (3) have extended the 
Kirkwood theory of section I H F l to mixtures, and 

PRODUCT Xmi^mix FOR 

Mole 
fraction z 
of CiHt 

0.0 
0.2 
0.4 
0.8 
0.9 
1.0 

1, op. 
0.84 
0.79 
0.73 
0.62 
0.59 
0.56 

CCU-C6H8 MIXTURES 

X 
cm. 

X 10«, joules 
-iseo.-' 0 C - ' 

10.16 
10.41 
10.87 
12.59 
13.49 
14.35 

AT 30° 

Xmix^mix 

8.534 
8.224 
7.935 
7.806 
7.959 
8.036 

this has subsequently been developed in detail in a 
series of papers by Bearman. For the thermal con­
ductivity of a binary mixture (2), the resulting expres­
sion undergoes substantial simplification to the form 

U - ^ ( S 5?) (Eq-154) 

when it is assumed that no volume change on mixing 
occurs, the solution is regular with a composition-
independent radial distribution function, and «//3T is 
independent of composition, a and /3T are, respec­
tively, the coefficients of thermal expansion and iso­
thermal compressibility. D1

0 is the self-diffusion co­
efficient of pure species one, and A " , the self-diffu­
sion coefficient of species one infinitely diluted in 
species two. Both are constants at constant tem­
perature. Di is the self-diffusion coefficient of species 
one in the mixture and varies with composition. S12 

is a composition independent quantity, Vi and V2 the 
molecular volumes and v = x\V\ + x2w2. 

Bearman and Vaidhyanathan (4) have shown that in 
this approximation ??mixXmix should be constant and 
that this is substantially true for the system CCl4-
C6H6 can be seen from Table XXIII . This result is not 
so surprising when it is remembered (see section IHAl) 
that rj\ is independent of the mass. 

Horrocks and McLaughlin (55) have reduced Bear-
man's equations still further and given the expressions 

Bn = 21)11)2X2/1)1° = 2fit)2Xi/Ci° (Eq. 155) 

X/A = X1/A0 = Xj/A" (Eq. 156) 

and 

X/A = X2/A
0 = Xi/A" (Eq. 157) 

which when coupled with the corresponding viscosity 
equations 

T7A = uiA0 = UsZ)1- (Eq. 158) 
I7Z)2 = Ti2D1" = uiA" (Eq. 159) 

enables the thermal conductivity of a mixture to be 
expressed in terms of other transport coefficients. The 
main obstacle in checking Bearman's theory is the 
lack of experimental data on simple systems and, in 
particular, of the various diffusion coefficients. 
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E. THE THEORY OF RICE AND ALLNATT 

Rice and Allnatt (100) have extended the theory of 
Rice and Kirkwood (IIIF3) to cover the case of mix­
tures. As in the original theory, only the intermolecu-
lar force term is given. The expression again is com­
plicated and no attempt to use the theory to calculate 
the thermal conductivity of a mixture has been made. 
In view of the results of the Rice-Kirkwood theory dis­
cussed in section IIIF3, it is unlikely that the theory for 
mixtures will be any better than for the pure com­
ponents. This was seen to give poor agreement with 
experiment. 

In conclusion it can be said that very little attention 
has been devoted to the study of the thermal conduc­
tivity of mixtures. There is a definite need for experi­
mental information on simple binary mixtures so that 
theories can be tested and progress made. 

V. THE TEMPERATURE DEPENDENCE OF THERMAL 

CONDUCTIVITY 

Where as the coefficient of viscosity of a simple liquid 
usually decreases exponentially with increasing tem­
perature according to the law 

r, = vo exp(A/r) (Eq. 160) 

the coefficient of thermal conductivity X usually de­
creases linearly with increasing temperature. 

X = X0 - BT (Eq. 161) 

rio, X0, A, and B are constants characteristic of the liquid 

U-O 

considered. Correlations proposed by Eyring (45) 
have shown that A is related to the energy of vaporiza­
tion of the liquid, and hence the temperature depend­
ence of viscosity is substantially controlled by an en­
ergy parameter. The question then arises as to what 
factors control the temperature dependence of thermal 
conductivity. 

Figure 7 gives the thermal conductivities (56) of a 
series of aromatic hydrocarbons of increasing com­
plexity. Two features immediately distinguish the 
behavior shown here from the corresponding viscosity 
behavior. In the first case, all the thermal conductivi­
ties are within about 10% of the mean value for the 
temperature range covered. This contrasts sharply 
with the case of viscosity where, for example, for o-
terphenyl and p-terphenyl, viscosities at the melting 
points are about 350 and 8 m.p., respectively. Secondly, 
the steepest temperature dependence is obtained for the 
simplest molecule of the series, benzene, and decreases 
with increasing molecular complexity which is opposite 
to what occurs for viscosity. The contrast in sensitivi­
ties to structure of viscosity and thermal conductivity 
also applies when the effect of pressure is examined. 
For example, T/P/J?I values for methyl and isoamyl 
alcohol are 9.95 and 895, respectively (T/P is the value 
of viscosity at 11,000 atm., and rn the value at 1 atm.) 
which contrasts with the close similarity of the corre­
sponding Xp/Xi values of 2.10 and 2.07. 

These problems have been dealt with by Horrocks 
and McLaughlin (57). From Eq. 145 as CV is con-

o 
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11-5 

Fig. 7.—The thermal conductivities of a series of aromatic hydrocarbons: • benzene, © diphenyl, O o-terphenyl, O 
terphenyl, + p-terphenyl (for the temperature scale for p-terphenyl, add 180°) (copied substantially from (56)). 
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Fig. 8.—Plot of the temperature dependence of thermal con­
ductivity against the coefficient thermal expansion for: 1, carbon 
monoxide; 2, argon; 3, nitrogen; 4, methane; 5, benzene; 6, 
cyclohexane; 7, carbon tetrachloride; 8, toluene; 9, biphenyl; 
10, p-terphenyl; 11, o-terphenyl; 12, m-terphenyl (copied sub­
stantially from (57)). 

stant, the temperature dependence of thermal conduc­
tivity follows on differentiating as 

Kl). - -B-(HOJ *"2> 
where (d In v/d In v) is called Gruneisen's constant. 
Equation 162 shows that the important factor in con­
trolling the temperature dependence of thermal con­
ductivity is the coefficient of thermal expansion a. 
As a is generally greatest for the simplest liquids and 
smallest for the complex, this then explains the de­
crease in the slopes of the lines on Fig. 7 on passing from 
benzene to the terphenyls. To put this observation 
onto a more quantitative basis, as Gruneisen's constant 
can, in the first approximation, be assumed constant, 
then Eq. 162 predicts that (l/X)(dX/dr)p should be 
linear in a. This is shown to be the case in Fig. 8 
for a wide variety of liquids starting with those of the 
simple liquefied gases. 

The curve does not, however, pass through the origin 
but intersects the a-axis at a value of 0.5 X 10~3 

deg.-1. This means that for a liquid with a value of a 
lower than this, the sign of the temperature dependence 
of thermal conductivity should be reversed and the 
coefficient of thermal conductivity should increase 
with increasing temperature. This reversal has been 

a * 1QJ degT1 

Fig. 9.—Plot of the temperature dependence of thermal con­
ductivity against the coefficient of thermal expansion for: • 
various aromatic hydrocarbons, O carbon disulfide, © methanol, 
© w-pentane; the straight line corresponds to that of Fig. 8 
(copied substantially from (56)). 

shown (56) to agree with some high pressure thermal 
conductivity measurements by Bridgman (13) be­
cause at high pressures, expansion coefficients which are 
much smaller even than those of complex liquids like m-
terphenyl can be obtained. This is illustrated in Fig. 9 
which shows that when the temperature dependence of 
thermal conductivity at various constant high pres­
sures for methanol, n-pentane, and carbon disulfide 
are plotted the reversal is obtained. This was origi­
nally noted by Bridgman who pointed out that the 
sign of the temperature dependence for most common 
liquids was reversed beyond about 5000 atm., but the 
origin of the phenomenon as discussed above was not 
deduced. 

The quantity (d In v/d In t>)p can be evaluated on the 
basis of the rectangular cell potential model (IIID3) 
or the harmonic oscillator model (IIIF7). In the 
former case, Eq. 162 reduces to 

K§0p = a["! + - \(v + I)] (Eq. 163) 
X W / p L 3 ' 2J7Q 

which can be compared with the result from the 
Longuet-Higgins and Pople theory, Eq. 78, viz. 

1 
xVar/p -1 + 2 T a - h + 1)] (Eq'164) 

and the result from the corresponding Enskog colli-
sional term (Eq. 70) which gives 

(Eq. 165) 



THERMAL CONDUCTIVITY OF 

06 £>a 10 12 
1 > * 

Fig. 10—Plot of -(l/\)(&X/ar)p/a against v* for: 1, carbon 
monoxide; 2, argon; 3, nitrogen; 4, methane; 5, benzene; 6, 
cyclohexane; 7, carbon tetrachloride; curve A, harmonic model; 
curves B, C, and D, rectangular cell potential model with 2Ta 
values, respectively, of », 1, and 0.5 (copied substantially from 
(57)). 

Differences between the three results are only of a 
minor nature, and all three expressions tend to the 
same value in the limit of high densities. In addition 
the origin of these differences is already known from the 
discussions in section HID. 

On the harmonic oscillator model the corresponding 
result is 

1/5X\ r i 1 U03.1&>*2 - 28.16n ._, ,„„. 
x(bf)p = -alz ~ 2J L*"-Af, [J (Eq' 166) 

and the comparison between theory and experiment on 
both models (Eq. 163 and 166) is given in Fig. 10 for a 
series of simple liquids. This shows that the experi­
mental values lie parallel to the high density end of the 
harmonic oscillator curve and secondly that, while 
overlap between the experimental and rectangular cell 
potential model occurs, the slopes in this case are in the 
wrong direction. This suggests that the quartic po­
tential, which is the intermediate case, will give better 
agreement between theory and experiment and this 
investigation is still in progress. 

The temperature dependence at constant volume 
follows from Eq. 149 as 

mi - -Mi *•«" 
and is 0 and 1/2 T on the harmonic oscillator and rec­
tangular cell potential models, respectively. This 
means that as \/2T is small the various isotherms for 
the thermal conductivity of a liquid plotted as a func­
tion of density should be either coincident or closely 
spaced together. This has been verified by Ziebland 
(146) and by Michels and co-workers (88) for a number 
of dense gases and liquids. 
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_ Fig. 11.—Plot of the pressure dependence of thermal conduc­
tivity against the isothermal compressibility for: O ether, • ace­
tone, O carbon disulfide, • methanol, • ethanol (units in kg.-1 

cm.2) (copied substantially from (62)). 

VI. T H E PRESSURE AND VOLUME DEPENDENCE OP THE 

THERMAL CONDUCTIVITY 

This problem has been investigated by Kamal and 
McLaughlin (62) who showed that on doing the appro­
priate differentiation on Eq. 149 the two equations 

KS),-*G-(!fe)J (E'-"8' 
and 

mi - 4[i - (§£),] * »> 
were obtained, where 0T is the isothermal compressibil­
ity. Figures 11 and 12 give the relevant plots for 
ether, acetone, carbon disulfide, methanol, and ethanol 
obtained from Bridgman's thermal conductivity meas­
urements at 30° and pressures up to 10,000 atm. These 
do show that (l/\)(d\/bp)i is linear in the isothermal 
compressibility and — (l/\)(d\/dy)T is linear in the 
reciprocal of the molar volume. In addition, the 
slopes of the two graphs are equal as follows from the 
thermodynamic connecting equation 

K S ) , - — KSX <E'-™» 
Figures 11 and 12 also show that both curves pass 

through the origin; hence the pressure and volume 
coefficients of thermal conductivity would always be 
expected to be positive, unlike the temperature de-
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Fig. 12.—Plot of the volume dependence of thermal conductiv­
ity against the reciprocal molar volume for O ether, • acetone, 
• carbon disulfide, A methanol, B ethanol (units in cm. ~3 mole) 
(copied substantially from (62)). 

pendence which can be negative. Again when Eq. 168 
and 169 are evaluated on the hard-sphere rectangular 
cell potential model, the results are closely similar to 
the corresponding equations derived from the Longuet-
Higgins and Pople and Enskog theories, just as dis­
cussed in section VI. 

So far, none of the statistical theories which assume 
spherically symmetric intermolecular potentials have 
been shown to predict the general type of behavior of 
the pressure, volume, and temperature dependence of 
thermal conductivity that has been obtained from the 
lattice model. The ample confirmation of these pre­
dictions with experimental measurements, however, 
suggests that an additional criterion for checking 
statistical expressions is that they can be effectively 
reduced to a form which shows the importance of the 
various thermodynamic properties a, /3T, and 1/V in 
controlling (l/X)(dX/dT)p, (l/X)(&X/dp)T, and (1/X)-
(d\/5F)T, respectively. 

The substantial success of the lattice theory tends to 
suggest that the imposition of a temperature gradient 
on a liquid is a small perturbation of the structure com­
pared with the imposition of a velocity gradient. This 
makes thermal conductivity comparatively structure 
insensitive, because to transport energy a molecule 
need only oscillate in its cell without breaking off the 
intermolecular forces with its nearest neighbors. For 
momentum transport, however, continual disruption of 
the intermolecular forces between molecules, moving 
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Fig. 13.—Corresponding states plot of reduced thermal conduc­

tivity against reduced number density: O CH4 at —42.2°, 
D CH4 at -73.2°, A O2 at -114.2°. 

with different hydrodynamic velocities, is essential for 
the process to occur and leads to sensitivity to structure 
(79). 

VII. THE PRINCIPLE OF CORRESPONDING STATES 

In the absence of complete experimental informa­
tion on the equilibrium or transport properties of gases 
or liquids, prediction of the properties is generally 
made by correlations which have a basis in the principle 
of corresponding states. According to this principle, 
molecules obeying the same form of intermolecular 
potential have the same values of a particular reduced 
property in corresponding physical states. No real 
effort has yet been made to apply this principle to the 
thermal conductivity of dense gases and liquids due 
mainly to the lack of sufficient experimental data and a 
suitable guide from theory of the functional behavior to 
expect. 

As seen from Eq. 58 the thermal conductivity of a 
liquid composed of simple molecules interacting with a 
spherically symmetric potential can be written in a 
reduced form X* which is a universal function of kT/e 
and V/Nus only. However, none of the existing statis­
tical theories of thermal conductivity for real molecules, 
covering the dilute to dense gas and liquid region, 
have shown sufficient promise to be used as a basis for 
producing a corresponding states correlation. At­
tention is therefore restricted to the Enskog theory. 

According to the ratio Eq. 68, of the thermal con-
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ductivity of a dense gas X to that of the corresponding 
infinitely dilute gas X0, at the same temperature, is a 
function of the compressibility only. This suggests 
that for a series of simple liquids \ / \ 0 , which is a reduced 
thermal conductivity, should be plotted against b^/V 
which is a reduced number density. As the theory is 
for rigid spheres, the appropriate diameter o- can be ob­
tained (22) by equating the experimental thermal con­
ductivity of the infinitely dilute gas to Eq. 63 and solv­
ing for O- which is then used to give ba and hence b0/V 
provided the density is available. 

Figure 13 shows the behavior of X/X0 as a function of 
bo/ V for the limited amount of suitable data for which 
the compressibility and X0 are also known. Data are 
given for argon (88), neon (125), nitrogen (84), methane 
(58), and oxygen (147). Due to the absence of low 
temperature values of X0, these results are confined 
principally to the dense gas region. The data falls 
clearly on two separate curves, one for the inert gases 
and the other for the simple diatomic molecules and 
methane. These curves can be used to estimate the 
thermal conductivity of a dense gas, but additional 
experimental results are necessary to confirm the be­
havior exhibited here. 

VIII. T H E THERMAL CONDUCTIVITY OF PARTICULAR 

MATERIALS 

In this final section it is relevant to consider the ther­
mal conductivities of materials which are of particular 
interest from the theoretical or technological point of 
view. 

A. MOLTEN METALS 

While the viscosities and diffusion coefficients of 
molten metals do not exhibit exceptional behavior, 
compared with ordinary liquids, the thermal con­
ductivity does. Figure 14 gives the known thermal 
conductivities of a series of molten metals, which, as 
mentioned in section IA and IIIA2, are substantially 
larger than those of ordinary liquids. The problem of 
the anomalously high thermal conductivity of solid 
metals was largely solved by Lorentz who attributed 
it to the free electrons in the metal. These comprise 
most of the valency electrons. The treatment con­
sidered a metal as a mixture of light and heavy gas 
molecules corresponding to the free electrons and the 
metal cores, respectively. For such a mixture, the 
velocity distribution function is comparatively simple 
provided the influence of mutual collisions between the 
electrons in altering their motion is negligible com­
pared with that of their collisions with the cores. 

On this basis, expressions for the electrical and ther­
mal conductivities can be derived which, although they 
cannot be readily evaluated explicitly, give the simple 
ratio (c/. Eq. 46) 

(Eq. 171) X 

<reT 3e* 

0 2DQ 4OQ BOQ BOO TEMP'C 

Fig. 14.—The thermal conductivities of molten metals. 

where e is the electronic charge. This equation im­
plies that the ratio of the thermal to the electrical con­
ductivity is the same for all metals at a given tem­
perature and is directly proportional to the temperature, 
as was first observed experimentally by Wiedemann 
and Franz (144). The quantity X/aeT is called the 
Lorentz number L and has a value of 2.45 X 1O-8 

joule ohm sec."1 0 C." 1 0K.-1 . 
As the volume change on fusion of metals is only 

about 5% (130) and the conduction is due principally 
to the free electrons, then Eq. 171 should also be appli­
cable to liquid metals, a fact which has already been 
shown in Fig. 2 for the Lorentz number as a function 
of temperature for a series of molten metals and some 
eutectic mixtures. While on average, the results lie 
slightly below the theoretical value, Eq. 171 can be 
used to estimate the thermal conductivity from a 
measurement of the electrical resistance alone using a 
value of the Lorentz number of 2.4 X 10-8. 

While the bulk of the thermal conductance in metals 
is due to free electrons, a lattice term also exists. I t is 
of interest, therefore, to determine the magnitude of 
this term which can be estimated using Bridgman's 
theory (13). This has been done for a series of metals 
at the melting point and the results (79) are given in 
Table XXIV. This shows that the percentage con­
tribution of lattice terms to the total thermal con­
ductivity, while small, is greatest for the poorest elec­
trical conductors and lowest for the best, as would be 
expected. 

TABLE XXIV 

PEECENTAGE LATTICE CONTRIBUTION TO THE THERMAL 

CONDUCTIVITY OF MOLTEN METALS 

* Metal • 
Na Cd Sn Pb Bi 

X lattice/X exptl., % 1.1 2 .6 3.0 4 .4 5.9 
Electrical resistivity, ohm cm. 10 33 48 95 128 
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Fig. 15.—The thermal conductivity of various solutions of 
alkali metals in liquid ammonia at 2350K.: + pure ammonia, 
• lithium solution, X sodium solution, O potassium solution 
(copied substantially from (140)). 

One further feature of the thermal conductivity of 
metals can be seen from Fig. 14. For metals with the 
highest atomic volumes, the thermal conductivity de­
creases with increase in temperature while for those 
with the lower atomic volumes it increases with in­
creasing temperature. This behavior is in all probabil­
ity due to differences in the coefficients of expansion be­
tween the light and heavy systems as discussed in 
section V, but no full investigation of the problem has 
yet been made. 

B. METAL SOLUTIONS IN LIQUID AMMONIA 

Like water, liquid ammonia has an abnormally high 
thermal conductivity (50 X 1O-4 joule cm.-1 sec.-1 

0 C. - I at 2350K.) when compared with other liquids. 
In .addition, it is of particular interest for its solvent 
power for alkali and alkaline earth metals as well as 
some salts. In fresh solutions, which have abnormally 
high electrical conduction, the metal can be recovered. 
If allowed to stand, however, the metal amide tends to 
form with the evolution of hydrogen. 

The extremely high electrical conductivity of metal-
ammonia solutions has been attributed to the presence 
of free electrons, and anomalously large thermal con­
ductivities would, therefore, be expected on the basis of 
the Lorentz theory. The results (140) of thermal con­
ductivity determinations on a series of freshly prepared 
Solutions of lithium, sodium, and potassium in liquid 
ammonia are given in Fig. 15. Saturation solubility 

4 8 12 
WOLE X METAL 

Fig. 16.—Electronic , lattice — • —> and total ——-— 
thermal conductivity of sodium-ammonia solutions at 2350K.: 
O experimental values (copied substantially from (140)). 

tends to be reached at about 15 mole % for Na and K 
and 20 mole % for Li, and at these concentrations the 
thermal conductivity does become extremely high. 

Figure 16 compares the experimental results on 
sodium with the sum of the calculated values of the 
electronic contribution on the basis of Eq. 171 and a 
lattice contribution from Bridgman's theory. Agree­
ment is satisfactory, and, if the lattice contribution 
were adjusted to agree with the experimental value on 
pure ammonia, the discrepancy between calculated and 
experimental values would be substantially reduced. 
From Fig. 15 it can be seen that the thermal con­
ductivity is independent of the metal dissolved and 
from Table XXV that the experimentally determined 

TABLE XXV 

LOEENTZ NUMBER L FOB METAL-AMMONIA SOLUTIONS 

Metal 

Na 

Conon., 
mole 

% 
7.3 
9 .1 

12.7 

13.9 

Temp., 
0K. 
235 
235 
235 
223 
213 
203 
198 
235 
218 
205 
192 

L X 10' 
1.0 
2 .0 
1.4 
1.3 
1.3 
1.3 
1.2 
1.6 
1.7 
1.7 
1.7 

Metal 

K 

Concn., 
mole 

% 
4.0 
6.6 
8.5 

10.4 
12.9 
15.5 

Temp., 
0 K. 

235 
235 
235 
235 
235 
235 
214 
194 
174 

L X 10« 
2.3 
2 .8 
2 .5 
2 .5 
2 .5 
3.2 
2 .7 
2 .6 
2 .5 
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Lorentz number is virtually independent of temperature 
and concentration. These results tend to confirm the 
presence of free electrons in metal ammonia solutions. 

Systems of alkali metals in liquid ammonia could be 
important in low temperature heat transfer problems 
where a heat transfer fluid of very high thermal con­
ductivity is required. 

C. MOLTEN SALTS 

With the exception of electrical conductivity and 
viscosity, little information is available on the trans­
port properties of molten salts especially the simpler 
ones like the alkali halides where both ions are spheri­
cally symmetric. This is due principally to the experi­
mental difficulties encountered in making measurements 
at temperatures of the order of 1000°. Such high tem­
peratures are not necessary for a study of the properties 
of salts like the alkali nitrates with comparatively low 
melting points, and it is for such salts with complex 
anions that most information is available. 

Molten salts differ from simple liquids like argon in 
properties where the long-range nature of the coulomb 
potential plays an important role such as the lattice 
energy. However, with regard to transport properties 
there is no evidence that either the viscosities (43), 
diffusion coefficients (32), or thermal conductivities 
(83) are substantially different from those of ordinary 
simple liquids. For example (143), for KCl which is 
isoelectronic with argon, viscosities at the melting 
point are, respectively, 15.1 X 10-3 and 2.8 X 10-8 

poise. 
The effect of the long-range coulomb potential on the 

transport properties of molten salts has recently been 
investigated by Rice (99) using as his basis the theoreti­
cal form, Eq. 113, of the friction coefficient f0- For the 
application of the theory, it is necessary to define an 
"ideal" ionic melt. This consists of one in which the 
ions are spherically symmetric, are of the same size, 
and have identical electronic properties except for the 
sign of the charge. This reduces the problem to that 
of a one-component system. Further simplification is 
ensured as, due to the preservation of electroneutrality, 
a positive ion is surrounded by negative ions and 
vice versa so that collisions most likely to occur are 
those between oppositely charged ions. 

The pair potential assumed for the interaction is of 
the form 

^ R ) = - B < ^ ) h a r d 

= 0, B > <7a/S ) 

<M«) = -RT + SR-' ">*«?{ soft 

= 0, R < <7a/3 

(Eq. 172) 

in which the repulsive term has been replaced by a rigid 
core and the polarization term by the insertion of the 
dielectric constant D in the coulomb R'1 term. za

+ 

and zf are the ion valencies and e the electronic charge. 
Caf3 in the van der Waals attractive .R-6 term is a con­
stant, and the core diameter craff is the contact distance 
between oppositely charged ions. 

From section IHFIa, the friction constant is of the 
form 

f. =c y V W W ( f l ) d « B (Eq. 173) 

so that as 
„ u , m _ &<t>{R) , 2 MR) VV(-K) jTHi- + T5 " 

&B2 R &B 
(Eq. 174) 

this gives f0 = 0 for a pure coulomb potential. By 
assuming the existence of a rigid core and a soft long-
range attractive term, the ion collisions can be taken as 
consisting of a basic rigid core collision followed by a 
quasi-Brownian motion in the fluctuating force field of 
the neighboring ions. As the core collision is instan­
taneous, the separation of force fields into the various 
terms implies a separation in relaxation times which 
leads to transport equations for the separate contribu­
tions. 

The core contribution which is the collisional con­
tribution in the terminology of section III can be taken 
as given by Eq. 70 of the Enskog theory for hard 
spheres, and the contribution from the soft portion of 
the potential X̂  as a contribution to be evaluated on the 
Kirkwood type of treatment. The actual core con­
tribution taken by Rice is slightly different from the 
Enskog equation and is given by Eq. 146, derived by 
Rice and Allnatt (101). For the soft part of the poten­
tial, the approximation of Rice and Kirkwood to Xo 
(Eq. 130) was assumed. As V2Cj)(R) for the coulomb 
potential makes no contribution to the integral or f0, 
then the soft portion of the potential can be taken ap­
proximately as given by the evaluation of Eq. 130 for 
the 12:6 potential which, when T is large as is the 
case for a molten salt, is (99) 

5kTrj(f>a 
X* ~ (Eq. 175) 

where a is the coefficient of thermal expansion. Rough 
estimation (99) of these contributions for KCl at its 
melting point gives them as 3.05 X 1O-4 and 180 
X 1O-4 joule cm.-1 sec.-1 deg.-1 for the core and soft 
portions, respectively. Compared with values avail­
able for molten nitrates, the calculated value of the 
thermal conductivity seems high. In addition, the 
weakness of the expression for f0 and the Kirkwood-
Rice theory already discussed mean that little of this 
argument can be taken as quantitative. Nevertheless, 
the spirit of it must be substantially in order as the long-
range coulomb potential does not seem to be important 
in thermal conductivity. 

D. WATER AND STEAM 

In section IIF2 where water has been discussed as a 
thermal conductivity standard, it was pointed out that 
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TABLE XXVI 
MOLE FRACTION OF WATER POLYMERS 

Temp., 
6 C. 

0 
20 
40 
60 

' Mole fraction of 
H2O 

0.050 
0.081 
0.119 
0.162 

(HiO)! 

0.350 
0.434 
0.492 
0.529 

various species • 
(HsO)< 

0.300 
0.308 
0.293 
0.261 

(H2O)8 

0.300 
0.178 
0.096 
0.048 

Scaled 

53.6 
60.3 
64.1 
67.9 

the thermal conductivity is comparatively high. The 
principal attempt to explain this is due to Eigen (33) 
who bases his theory on the Eucken model of water (40). 
On this model water is assumed to be a mixture of 
single molecules, dimers, tetramers, and octamers. 
Table XXVI gives the mole fractions of the various 
species as a function of temperature. 

According to Eigen, the dissociation of the polymers 
under the influence of the temperature gradient gives 
rise to an excess thermal conductivity over the normal 
liquid value. This excess value coupled with the normal 
lattice term estimated by a formula due to Riedel 
yields (Table XXVI) surprisingly good agreement be­
tween experimental and calculated thermal conductivi­
ties and, in addition, correctly predicts the anomalous 
increase of thermal conductivity with temperature up 
to the boiling point (c/. Tables VI and XXVI). Ob­
vious weaknesses in the theory are the Riedel formula 
and the Eucken model of water. However, the theory 
is of interest as a first attempt to calculate the transport 
properties of a liquid in which chemical reactions are 
taking place—in this particular case, dissociation. 

No "best" set of values of the thermal conductivity 
of steam have yet been proposed although the problem 
is at present under investigation by the International 
Co-ordinating Committee for the Properties of Steam 
whose recommendations should be available shortly. 
Figure 17 gives smoothed isobars for steam up to 600 kg. 
cm. - 2 and temperatures up to 800°, as proposed by 
Vargaftik and Tarzimanov (138) who also give a table 
of closely spaced values for the same range. The 
smoothing was done on experimental values originally 
obtained by Vargaftik and Tarzimanov (136, 137) 
and Vargaftik and Timrot (139). Other investiga­
tions have been made by Leneindre, Johanin, and Vodar 
(72), Keyes and Vines (64), Lawson, Lowell, and Jain 
(71), and Vukalovich and Cherneeva (142). 

E. AQUEOUS SALT SOLUTIONS 

Unlike the case of melts of pure salts, extensive data 
are available on the thermal conductivities of aqueous 
salt solutions. These measurements have been made 
principally by Riedel (110-112). With respect to 
temperature dependence, the thermal conductivities of 
the salt solutions studied increase with increasing tem­
perature following the anomalous behavior of water 
with a positive temperature coefficient not very dif­
ferent from pure water. 

tOO 200 300 400 500 600 700 S00 
TWC. 

Fig. 17.—The thermal conductivity of steam; pressures in kg. 
cm.-2: 1,1; 2, 50; 3,100; 4, 150; 5, 200; 6, 250; 7, 300; 8, 350; 
9, 400; 10, 450; 11, 500; 12, 550; 13, 600 (copied substantially 
from (138)). 

At constant temperature, the thermal conductivities 
of most salt solutions, except the alkali hydroxides, are 
linear in the concentration over the ranges studied 
which are often up to several moles per liter. In the 
majority of cases the conductivity decreases with in­
creasing concentration. Exceptions are solutions of 
Na2SO4, Na2CO3, Na2SiO3, NaF, and Na3PO4, and it 
is of interest to note that where the corresponding 
potassium salts have been studied, viz., K2SO4, KF, 
and K2CO3, the behavior conforms to the usual pattern 
with X decreasing with increasing concentration. 

Because of the linear behavior of thermal conduc­
tivity with concentration, Riedel has proposed the 
relationship 

X = Xw + Said (Eq. 176) 

to represent the thermal conductivity of salt solutions 
at 20° where Xw is the value of the thermal conductivity 
of pure water at this temperature, a; a constant char­
acteristic of the ion, and d its concentration in moles 
per liter. Values of on for a series of ions based on a 
value of 0 for the N a + ion at 20° at a concentration of 1 
mole I . - 1 are given in Table XXVII, i.e., the a ; of C l -

is taken as the magnitude of the difference of the ther­
mal conductivity of pure water and a molar solution of 
NaCl. As Riedel reports thermal conductivities in 
kcal. m._ 1 hr ._ 1 0 C. - 1 , the equation for calculating the 
thermal conductivity of a salt solution at any tempera­
ture between —40 and 100°, where X is in joule cm. - 1 

SeC- 1 0 C-SiS 

X X 104 = /(0.515 + SoaCi)/86.042 (Eq. 177) 

where / , which is the ratio of the thermal conductivity 
of water at a temperature T compared with the value 
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TABLE XXVII 

FOE COMMON CATIONS AND ANIONS 
Cations 

H + 

Li + 

Na + 

K + 

NH4
+ 

Mg+a 
Ca+2 

Sr+2 

Ba+2 

Ag+ 

Cu+2 

Zn+2 

Pb+ 2 

Co+2 

Al+3 
Th+* 

ori X 10« 

- 7 8 
- 3 0 

0 
- 6 5 

-100 
- 8 0 
- 5 

- 3 4 
- 6 6 
- 9 0 

-140 
-140 
- 8 0 

-100 
-280 
-375 

Anions 

OH-
F -
Ci-
Br-
I -
NO2-
NO3" 
ClO3-
ClO4-
BrO3-
CO3"

2 

SiO3-
2 

SO3-2 

SO4-2 

S2O3"
2 

CrO4-2 

Cr2O7-
2 

P04-a 
Fe(CN)6"4 

CH3COO-
(COO)2-

«1 X 10« 

180 
18 

- 4 7 
-150 
-236 

- 4 0 
- 6 0 

-122 
-150 
-122 
- 6 5 
- 8 0 
- 2 0 

10 
- 7 0 

10 
-137 

180 
-160 
-197 

- 3 0 

33-47 -

at 20°, is given in Table XXVIII. I t should be re­
membered that «i is for the single ion, so that for salts 
with several anions or cations ca must be multiplied by 
the appropriate factor. 

TABLE XXVIII 

FACTOB / = XTA20 FOR WATEB 
T1

 0 C. 
- 4 0 
- 3 0 
- 2 0 
- 1 0 

/ 
0.838 
0.865 
0.892 
0.919 

T, 0 C. 
0 

10 
20 
30 

/ 
0.946 
0.973 
1.000 
1.025 

T, 0 C. 
40 
50 
60 
70 

/ 
1.048 
1.069 
1.088 
1.105 

T, °C. 
80 
90 

100 

/ 
1.119 
1.130 
1.137 

Eigen (34) has interpreted the effect of the addition 
of salts on the thermal conductivity of water based 
on the model mentioned in section VIII, but the theory 
will not be discussed here. 

F. CARBON DIOXIDE 

The thermal conductivity of carbon dioxide is of 
particular interest because it is the only substance where 
extensive measurements have been made in the critical 
region (48). In the critical region the problem of convec­
tion is substantially magnified compared with the 
normal gas or the normal liquid away from the critical 
point. Michels and Sengers (86) have made a care­
ful analysis of the convection problem for a steady-
state parallel plate apparatus as mentioned in section 
HE, and their results, obtained with Van der Gulik 
(Fig. 18) (87) in the critical region for CO2, are claimed 
to be free from convection. These exhibit a pro­
nounced peak in the thermal conductivity-density plot 
which diminishes on raising the temperature from the 
critical temperature. 

The form of these curves closely resemble those for Cv 

over the same range, and hence from Eq. 149 the peak 
in thermal conductivity is not unexpected. As dis-

'S 

|16-735 -

(Oamogat 

Fig. 18.—The thermal conductivity of carbon dioxide in the 
critical region; temperatures in 0 C : 1,25; 2,30; 3,31.2; 4, 
32.1; 5,34.8; 6,40; 7,50; 8, 75 (copied substantially from (87)) 

cussed in section HIC, however, it is not yet fully 
established what contributions to the specific heat are 
operative in thermal conductivity, and in the critical 
region, as the gas phase convective mechanism is still 
important, the problem is more complex. However, 
as the peak in the Cv curve is known to be due to cluster 
formation, it must follow (122) that the energy varia­
tion involved in the association and dissociation of 
clusters contributes to thermal conductivity. This 
conclusion is also basically similar to Eigen's conclu­
sions on the origin of the anomalous thermal conduc­
tivity of water. Finally, as the thermal conductivity 
curves like the Cv curves are continuous, whereas Cp 

is discontinuous at the critical point, this strongly sup­
ports the necessity for Cv as opposed to Cp terms in 
thermal conductivity equations. 

IX. CONCLUSIONS 

The present survey of thermal conductivity in dense 
gases and liquids indicates that over the course of the 
past 10 years considerable attention has been devoted 
to this subject. This has somewhat remedied the pre­
vious situation where, in the study of transport phe­
nomena, viscosity and diffusion attracted most attention, 
particularly among chemists. 

Obvious gaps in experimental knowledge require 
filling, principally in the establishment of the thermal 
conductivities of standard materials and the effects of 
temperature and pressure on the thermal conductivity 
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of liquids of simple molecules. Such results are neces­
sary to check statistical theories. 

With regard to theoretical work, significant progress 
has been made. The factors which control the pres­
sure and temperature dependence of the coefficient 
have been largely established, and, in addition, tran­
scription of the friction coefficient into a thermodynamic 
expression has enabled further checks to be made on 
existing statistical theories. While a better under­
standing of the problems of transport theory has been 
achieved, no statistical theory for dense fluids can be 
said to have attained a comparable degree of success 
to that of the Chapman-Enskog theory for the dilute 
gas phase. Development of such a theory for thermal 
conductivity is dependent, not only on the solution of 
transport problems per se, but on the emergence of a 
satisfactory equilibrium theory for liquids. It is 
hoped that the large amount of effort being devoted at 
present to a study of the liquid state will yield sig­
nificant progress in the near future. 

ACKNOWLEDGMENT.—Thanks are due to Mr. J. 
Hilsenrath of the National Bureau of Standards for 
determining the coefficients in the thermal conductivity 
equation for water, and to two of my colleagues, Mr. I. 
Kamal for the calculations necessary for Fig. 13 and 
Mr. A. F. Collings for the calculations for Table XIX. 

Thanks are also due to the following for permission to 
copy figures: The Royal Society (Fig. 7 and 9), The 
Faraday Society (Fig. 8,10,11, and 12), Prof. L. Riedel 
(Fig. 6), The American Institute of Physics (Fig. 15 
and 16), The Physica Foundation of Amsterdam (Fig. 
5 and 18), and the American Society of Mechanical 
Engineers (Fig. 2). 

X. REFERENCES 

(1) BaIy, E. C. C , and Donnan, F. G., J. Chem. Soc, 81, 907 
(1902). 

(2) Bearman, R. J., / . Chem. Phys., 29, 1278 (1958). 
(3) Bearman, R. J., and Kirkwood, J. G., J. Chem. Phys., 28, 

136 (1958). 
(4) Bearman, R. J., and Vaidhyanathan, V. S., J. Chem. 

Phys., 34, 264 (1961). 
(5) Bfoard, H., Rev. gin. sci. pures Appl., 12,1261,1309 (1900). 
(6) Bidwell, C. C., Phys. Rev., 58, 561 (1940). 
(7) Bird, R. B., Stewart, W. E., and Lightfoot, E. N., "Trans­

port Phenomena," John Wiley and Sons, Inc., New York, 
N. Y., 1960, p. 426. 

(8) Bloom, H., Tricklebank, S. B., and Doroszkowski, A., 
private communication. 

(9) Boata, G., Casanova, G., and Levi, A., J. Chem. Phys., 40, 
2419 (1964). 

(10) Born, M., and Green, H. S., Proc. Roy. Soc. (London), 
A188, 10 (1946). 

(11) Born, M., and Green, H. S., Proc. Roy. Soc. (London), 
A190, 455 (1947). 

(12) Bridgman, P. W., Proc. Am. Acad. Arts Sci., 49, 141 
(1923). 

(13) Bridgman, P. W., "The Physics of High Pressure," Bell 
and Sons, London, 1949. 

(14) Carslaw, H. S., and Jaeger, J. C., "Conduction of Heat in 
Solids," Oxford University Press, London, 1959. 

(15) Cecil, D. B., Koerner, W. E., and Munch, R. H., Chem. 
Eng. Data Ser., 2, 54 (1957). 

(16) Challoner, A. R., Gundry, H. A., and Powell, R. W., Proc. 
Roy. Soc. (London), A245, 259 (1958). 

(17) Challoner, A., and Powell, R. W., Proc. Roy. Soc. (London), 
A238, 90 (1956). 

(18) Chandrasekhar, S., Rev. Mod. Phys., IS, 1 (1943). 
(19) Chapman, S., and Cowling, T. G., "The Mathematical 

Theory of Non-Uniform Gases," Cambridge University 
Press, London, 1953, p. 273. 

(20) Chester, G. V., Rept. Progr. Phys., 26, 411 (1963). 
(21) Cini-Castagnoli, G., and Ricci, F. P., / . Chem. Phys., 32, 

19 (1960). 
(22) Cohen, E. G. D., and Ernst, M. H. J. J., Phys. Rev. Letters, 

5, 192 (1963). 
(23) Cole, G. H. A., Rept. Progr. Phys., 19, 1 (1956). 
(24) Collins, C. F., and Raffel, H., Advan. Chem. Phys., 1, 135 

(1958). 
(25) Collins, F. C , and Raffel, H., J. Chem. Phys., 29, 699 

(1958). 
(26) Corbett, J. W., and Wang, J. H., J. Chem. Phys., 25, 422 

(1956). 
(27) Curtiss, C. F., and Snider, R. F., J. Phys. Fluids, 1, 122 

(1958). 
(28) Dahler, J. S., J. Chem. Phys., 27, 1428 (1957). 
(29) Dahler, J. S., A.I.Ch.E. J., 5, 212 (1959). 
(30) Davis, H. T., Rice, S. A., and Sengers, J. V., J. Chem. 

Phys., 35, 2210 (1961). 
(31) Douglass, D. C , McCaIl, D., and Anderson, J. H., J. 

Chem. Phys., 34, 152 (1961). 
(32) Dworkin, A. S., Escue, R. B., and Van Artsdalen, E. R,, 

J. Phys. Chem., 64, 872 (1960). 
(33) Eigen, M., Z. Elektrochem., 56, 176 (1952). 
(34) Eigen, M., Z. Elektrochem., 56, 836 (1952). 
(35) Einstein, A., Ann. Physik., 17, 549 (1905). 
(36) Eisenschitz, R., Proc. Phys. Soc. (London), 62A, 41 (1949). 
(37) Eisenschitz, R., Proc. Roy. Soc. (London), A215, 29 (1952). 
(38) Eisenschitz, R., Phys. Rev., 99,1059 (1955). 
(39) Eisenschitz, R., "Statistical Theory of Irreversible Proc­

esses," Oxford University Press, London, 1958. 
(40) Eucken, A., Z. Elektrochem., 53, 102 (1949). 
(41) Filippov, L. P., and Novoselova, N. C, Vestn. Mosk. 

Univ., No. 3, 37 (1955). 
(42) Fourier, J. B., "Theorie Analytique de la Chaleur," Paris, 

1822. 
(43) Frame, J. P., Rhodes, E., and Ubbelohde, A. R., Trans. 

Faraday Soc., 55, 2039 (1959). 
(44) Gillam, D. G., and Lamm, O., Acta Chem. Scand., 9, 657 

(1955). 
(45) Glasstone, S., Laidler, J. K., and Eyring, H., "The Theory 

of Absolute Reaction Rates," John Wiley and Sons, Inc., 
New York, N. Y., 1941. 

(46) Grassmann, P., and Straumann, W., Intern. J. Heat Mass 
Transfer, 1, 50(1960). 

(47) Green, M. S., / . Chem. Phys., 20, 1281 (1952); 22, 398 
(1954). 

(48) Guildner, L. A., J. Res. Natl. Bur. Std., 66A, 341 (1962). 
(49) Hardy, R. C , and Cottingham, R. L., J. Res. Natl. Bur. 

Std., 42, 572 (1949). 
(50) Helfand, E., Phys. Rev., 119, 1 (1960). 
(51) Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., "Mo­

lecular Theory of Gases and Liquids," John Wiley and 
Sons, Inc., New York, N. Y., 1954. 

(52) Holleran, E. M., and Hulbert, H. M., / . Chem. Phys., 19, 
232 (1951). 



THERMAL CONDUCTIVITY OF LIQUIDS AND DENSE GASES 427 
(53) Horrocks, J. K., McLaughlin, E., and Ubbelohde, A. R., 

Trans. Faraday Soc, 59, 1110 (1963). 
(54) Horrocks, J. K., and McLaughlin, E., Trans. Faraday Soc, 

56, 206 (1960). 
(55) Horrocks, J. K., and McLaughlin, E., Trans. Faraday Soc, 

58, 1357 (1962). 
(56) Horrocks, J. K., and McLaughlin, E., Proc Roy. Soc 

(London), A273, 259 (1963). 
(57) Horrocks, J. K., and McLaughlin, E., Trans. Faraday 

Soc, 59, 1709 (1963). 
(58) Ikenberry, L. D., and Rice, S. A., / . Chem. Phys., 39, 1561 

(1963). 
(59) Irving, J. H., and Kirkwood, J. G., J. Chem. Phys., 18, 817 

(1950). 
(60) Jager, G., Zitzber. kgl. Akad. Wiss., Physik-math. Kl., 

109, 74 (1900). 
(61) Jobst, W. von, Z. Angew. Math Phys., 14, 186 (1963). 
(62) Kamal, L, and McLaughlin, E., Trans. Faraday Soc, 60, 

809 (1964). 
(63) Kamal, L, and McLaughlin, E., unpublished work. 
(64) Keyes, F. G., and Vines, R. G., Intern. J. Heat Mass 

Transfer, 7, 33 (1964). 
(65) Kirkwood, J. G., / . Chem. Phys., 14, 180 (1946). 
(66) Kirkwood, J. G., Buff, F. P., and Green, H. S., / . Chem. 

Phys., 17, 988 (1949). 
(67) Konno, S., Sd. Rept. Tdhoku Imp. Univ., 8, 169 (1919). 
(68) Kramers, A. H., Physica, 7, 234 (1940). 
(69) Kubo, R., J. Phys. Soc. Japan, 12, 570 (1957). 
(70) Landau, L. D., and Lifshitz, E. M., "Fluid Mechanics," 

Pergamon Press, London, 1957, p. 212. 
(71) Lawson, A. W., Lowell, R., and Jain, A. L., J. Chem. 

Phys., 30, 643 (1959). 
(72) Leneindre, B., Johanin, P., and Vodar, B., to be published. 
(73) Longuet-Higgins, H. C , Nuovo cimento Suppl. al, No. 2, 

140 (1955). 
(74) Longuet-Higgins, H. C , and Pople, J. A., / . Chem. Phys., 

25, 884 (1956). 
(75) Longuet-Higgins, H. C, Pople, J. A., and Valleau, J. P., 

"International Symposium on Transport Processes in 
Statistical Mechanics, Brussels, 1956," I. Prigogine, 
Ed., Interscience Publishers, Inc., New York, N. Y., 
1958, p. 73. 

(76) Longuet-Higgins, H. C., and Valleau, J. P., MoI. Phys., 1, 
284 (1958). 

(77) Lorentz, H. A., Pogg. Ann., 147, 429 (1872); Wied. Ann., 
13, 422 (1882). 

(78) McLaughlin, E., Trans. Faraday Soc, 55, 21 (1959). 
(79) McLaughlin, E., Quart. Rev. (London), 14, 236 (1960). 
(80) McLaughlin, E., Physica, 26, 650 (1960). 
(81) McLaughlin, E., Chem. Eng. Sd., 16, 76 (1961). 
(82) McLaughlin, E., "Progress in International Research on 

Thermodynamic and Transport Properties," Academic 
Press, New York, N. Y., 1962, p. 288. 

(83) McLaughlin, E., Merz, M., and Ubbelohde, A. R., to be 
published. 

(84) Michels, A., and Botzen, A., Physica, 19, 585 (1953). 
(85) Michels, A., and Gibson, R. O., Proc. Roy. Soc. (London), 

A134, 288 (1931). 
(86) Michels, A., and Sengers, J. V., Physica, 28, 1238 (1962). 
(87) Michels, A., Sengers, J. V., and Van der Gulik, P. S., 

Physica, 28, 1201, 1216 (1962). 
(88) Michels, A., Sengers, J. V., and Van de Klundert, J. J. M., 

Physica, 29, 149 (1963). 
(89) Mori, H., / . Phys. Soc. Japan, 11, 1029 (1956). 
(90) Naghizadeh, J., and Rice, S. A., / . Chem. Phys., 36, 2710 

(1962). 
(91) Orton, B. R., M.Sc. Thesis, University of London, 1955. 

(92 
(93 
(94 

(95 

(96 
(97 
(98 
(99 
100 

101 

102 

103 

104 

105 

106 

107 

108 
109 

110 
H l 
112 
113 
114 
115; 

116 

117 
118 

119 

120 

121 

122 
123 
124; 
125 

126 

127 
128 
129 

130 
131 
132 

34, 409 

34, 2144 

, Ann. Rev. Phys. Chem., 11, 

Ann. Rev. Phys. Chem., 11, 

Pople, J. A., Physica, 19, 668 (1953). 
Powell, R. W., Phil. Mag. Suppl., 7, 276 (1958). 
Powell, R. W., and Tye, R. P., "Joint Conference on Ther­

modynamic and Transport Properties of Fluids," Insti­
tute of Mechanical Engineering, London, 1958, p. 182. 

Prigogine, L, "Thermodynamics of Irreversible Processes," 
2nd Ed., Interscience Publishers, Inc., London, 1961, 
p. 46. 

Rice, O. K., / . Chem. Phys., 14, 324 (1946). 
Rice, S. A., / . Chem. Phys., 33, 1376 (1960). 
Rice, S. A., MoI. Phys., 4, 305 (1961). 
Rice, S. A., Trans. Faraday Soc, 58, 499 (1962). 
Rice, S. A., and Allnatt, A. R., J. Chem. Phys., 

(1961). 
Rice, S. A., and Allnatt, A. R., / . Chem. Phys., 

(1961). 
Rice, S. A., and Allnatt, A. R., / . Chem. Phys., 34, 2156 

(1961). 
Rice, S. A., and Frisch, H. L., 

187 (1960). 
Rice, S. A., and Frisch, H. L., 

244(1960); see footnote 7. 
Rice, S. A., and Kirkwood, J. G., / . Chem. Phys., 31, 901 

(1959). 
Rice, S. A., Kirkwood, J. G., Ross, J., and Zwanzig, R. W., 

/ . Chem. Phys., 31, 575 (1959), and appendix III, ref. 
30. 

Richter, G. N., and Sage, B. H., Chem. Eng. Data Ser., 2, 
61 (1957). 

Riedel, L., Forsch. Gebiete Ingenieurw., 11, 340 (1940). 
Riedel, L., Mitt. Kdltetech. Insts. Reichforsch. Anstalt 

Lebensmittelfrischhalt. tech. Hochschule Karlsruhe, No. 
2, 32 (1948). 

Riedel, L., Chem. Ing. Tech., 22, 54 (1950). 
Riedel, L., Kaltetechnik, 2, 99 (1950). 
Riedel, L., Chem. Ing. Tech., 23, 59 (1951). 
Riedel, L., Chem. Ing. Tech., 23, 321 (1951). 
Riedel, L., Arch. tech. Messen., 1, 273 (1954). 
Rosenthal, M. W., Thesis, Massachusetts Institute of 

Technology, 1953. 
Rowlinson, J. S., "Liquids and Liquid Mixtures," Butter-

worths, London, 1959. 
Rowlinson, J. S., MoI. Phys., 7, 477 (1963-1964). 
Schiessler, R. W., and Dixon, J. A., J. Phys. Chem., 58, 430 

(1954). 
Schmidt, E., and Leidenfrost, W., Chem. Ing. Tech., 26, 

35 (1954). 
Schmidt, E., and Leidenfrost, W., Forsch Gebiete Ingen­

ieurw., 21, 176(1955). 
Schmidt, E., and Sellschopp, W., Forsch Gebiete Ingenieurw., 

3, 277 (1932). 
Sengers, J. V., Thesis, University of Amsterdam, 1962. 
Sengers, J. V., Physica, to be published. 
Sengers, J. V., and Cohen, E. G. D., Physica, 27,230 (1961). 
Sengers, J. V., BoIk, W. T., and Stigter, C. J., to be pub­

lished. 
Serrin, J., "Handbuch der Physik," 1st Ed., Springer, 

Berlin, 1959, p. 178. 
Thorne, H. H., quoted in ref. 19, p. 292. 
Truesdell, C , / . Rat. Mech. Anal, 2, 642 (1953). 
Turnbull, A. G., Ph.D. Thesis, University of London, 1959; 

Australian J. Appl. Sd., 12, 324 (1961). 
Ubbelohde, A. R., Quart. Rev. (London), 4, 356 (1950). 
Uhlir, A., / . Chem. Phys., 20, 463 (1952). 
Van der Held, E. F. M., and Van Drunen, F. G., Physica, 

15, 865 (1949). 



428 E. MCLAUGHLIN 

(133) Van Itterbeek, A., and Verhaegen, L., Proc. Phys. Soc. 
(London), 62B, 800 (1949). 

(134) Vargaftik, N. B., "Joint Conference on Thermodynamio 
and Transport Properties of Fluids," Institute of Me­
chanical Engineering, London, 1958, p. 142. 

(135) Vargaftik, N. B., and Oleshchuk, O. N., Teploenerg., 6, 70 
(1959). 

(136) Vargaftik, N. B., and Tarzimanov, A. A., Teploenerg., 6, 
15 (1959). 

(137) Vargaftik, N. B., and Tarzimanov, A. A., Teploenerg., 7, 
12 (1960). 

(138) Vargaftik, N. B., and Tarzimanov, A. A., Teploenerg., 8, 5 
(1961). 

(139) Vargaftik, N. B., and Timrot, D. L., Zh. Tekhn. Fw., 9, 
1 (1939). 

(140) Varlashkin, P. G., and Thompson, J. C, J. Chem. Phys., 
38, 1974 (1963). 

(141) Vater, H., Dissertation, University of Leipzig, 1936. 
(142) Vukalovich, M. P., and Cherneeva, L. I., Teploenerg., 10, 

71 (1963). 
(143) Ward, A. G., Trans. Faraday Soc. 33, 88 (1937). 
(144) Wiedemann, G., and Franz, R., Pogg. Ann., 89, 497 (1853). 
(145) Ziebland, H., Brit. J. Appl. Phys., 6, 416 (1955). 
(146) Ziebland, H., Dechema Monograph., 32, 74 (1959). 
(147) Ziebland, H., and Burton, J. T. A., Brit. J. Appl. Phys., 6, 

416 (1955). 
(148) Ziebland, H., and Burton, J. T. A., Intern. J. Heat Mass 

Transfer, 1, 242 (1960). 
(149) Ziebland, H., and Burton, J. T. A., J. Chem. Eng. Data, 6, 

879(1961). 
(150) Zwanzig, R. W., Kirkwood, J. G., Oppenheim, I., and 

Alder, B. J., J. Chem. Phys., 22, 783 (1954). 
(151) Zwanzig, R. W., Kirkwood, J. G., Stripp, K. F., and Oppen­

heim, L, J. Chem. Phys., 21, 2050 (1953). 


