THERMOCHEMISTRY AND OXIDATION POTENTIALS OF MANGANESE AND ITS COMPOUNDS

T. A. ZORDAN AND L. G. HEPLER

Department of Chemistry, University of Louisville, Louisville, Kentucky

Received March 1, 1968

CONTENTS

I. INTRODUCTION

In this review we are primarily concerned with the chemical thermodynamics of manganese, its compounds, and its aqueous ions. The resulting thermodynamic data are of a kind that has long been known to be useful in electrochemistry, analytical chemistry, and many applications of chemical principles to other disciplines.

We have been critical in the tabulation of data and have recalculated many of the published results cited. When data from different sources are not in good agreement, we have attempted to justify our choices. We have been explicit about the sources of data and also our treatment of data from the literature so that interested readers can check the steps leading to the tabulated values of thermodynamic properties and form their own opinions about reliability and accuracy. When we have not read the original papers cited, we have listed the *Chemical Abstracts* reference or the name of the journal in which the article has been translated.

For several compounds and aqueous ions we have combined experimental data from a cited source with our estimate of some thermodynamic property. *Numerical values of our estimates are given in parentheses.*

Whenever possible, we have used auxiliary thermodynamic data from the National Bureau of Standards Technical Note 270-3.*¹* Other auxiliary data are taken from sources such as NBS Circular 500² or Latimer's "Oxidation Potentials"³ that are explicitly cited at appropriate places in the discussion.

The matter of uncertainties in thermodynamic properties is difficult to handle. For example, the uncertainty in a heat of formation calculated from a particular heat of reaction depends on the cumulative uncertainties of all of the heats of formation used in the calculation. Many errors in thermochemical investigations are due to difficulties in the compounds or processes being studied *(i.e.,* unidentified hydrolysis phenomena, nonhomogeneous phases, impurities, etc.), which are more difficult to assess than are measurement uncertainties. Our treatment of uncertainties is simply to list results to a "reasonable" number of figures. In some cases we have indicated that an uncertainty is larger than usual by placing an approximate sign (\sim) in front of the cited quantity.

Although this review is not primarily concerned with high-temperature chemistry for its own sake, we have made considerable use of data obtained at high temperatures in calculating desired thermodynamic properties. Methods of making such calculations have been described.⁴

In spite of considerable discussion^{$5-8$} in recent years, general agreement is still lacking on "sign conventions" for potentials. Much of the confusion arises because "sign" can be either electrical or algebraic. *All potentials tabulated in this review are oxidation halfreaction potentials with algebraic signs.* This choice, which has been discussed previously,⁹ permits straightforward use of the familiar $\Delta G^{\circ} = -RT \ln K =$ $-nFE^o$. The half-reaction potentials are based on the usual references

$$
H_2(g) = 2H^+(aq) + 2e^- \qquad E^{\circ} \equiv 0 \text{ V}
$$

 $H_2(g) + 2OH^-(aq) = 2H_2O(liq) + 2e^ E^{\circ} = 0.828 \text{ V}$

(6) A. J. deBethune, *J. Electrochem. Soc,* 102, 288c (1955).

⁽¹⁾ D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, "Selected Values of Chemical Thermody-namic Properties," National Bureau of Standards Technical Note 270-3, U. S. Government Printing Office, Washington, D. C. 1968.
(2) F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, and

I. Jaffe, "Selected Values of Chemical Thermodynamic Properties, National Bureau of Standards Circular 500, U.S. Government Printing Office, Washington, D. C, 1952.

⁽³⁾ W.M. Latimer, "Oxidation Potentials," 2nd ed, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1952.

⁽⁴⁾ G. N. Lewis and M. Randall (revised by K. S. Pitzer and L . Brewer), "Thermodynamics," McGraw-Hill Book Co., Inc., New York, N. Y., 1961.

⁽⁵⁾ F. C. Anson, *J. Chem. Educ,* 36, 394 (1959).

⁽⁷⁾ T. S. Licht and A. J. deBethune, / . *Chem. Educ.,* 34,433 (1957). (8) J. B. Ramsay, *J. Electrochem. Soc,* 104, 255, 691 (1957); / . *Chem. Educ,* 38, 353 (1961).

⁽⁹⁾ R. N. Goldberg and L. G. Hepler, *Chem. Rev.,* 68, 229 (1968).

We have reserved the symbols *E°* and *K* for potentials and equilibrium constants that have been determined in very dilute solutions or in such ways that activity coefficients could be considered in treating the experimental data. Similarly, we use ΔH° and ΔS° to indicate data that refer to the usual standard states^{1,2,4} and use ΔH and ΔS to indicate data that refer to other states such as a solution maintained at constant ionic strength by means of some "inert" supporting electrolyte. The results of such investigations lead to equilibrium quotients represented by *Q* rather than equilibrium constants represented by *K.* We have used such symbols as $Q_{0.5}$ and $\Delta H_{0.5}$ to indicate that the equilibrium quotient or heat of reaction was determined in solutions having ionic strength 0.5.

II. DESCRIPTIVE CHEMISTRY

Species containing manganese in formal oxidation states ranging from -3 to $+7$ have been reported. We have no relevant data for the negative oxidation states and therefore limit our discussion to the zero and positive oxidation states.

For the zero oxidation state we have the well-characterized carbonyl compound of formula $Mn_2(CO)_{10}$. Related compounds such as $(CO)_{6}MnCo(CO)_{4}$ and $Mn(NO)₃CO$ are known, but we have no thermodynamic data for them. Reduction of $K_4Mn(CN)_6$ in liquid ammonia apparently yields $K_6Mn(CN)_6$, but we have no data for this substance.

Electrolytic or chemical reduction (with sodium amalgam) of $Mn(CN)_{6}^{4-}$ in aqueous solution yields $\rm Mn(CN)_6$ ⁻⁵ and thence such solids as $\rm K_5Mn(CN)_6$ containing Mn(I). Carbonyl halides of formula Mn- $(CO)_{5}X$ are also represented as containing Mn(I). We have no data for these compounds.

There is some evidence that the hydrocarbonyl $HMn(CO)₅$ is most realistically described as a hydrido complex containing $Mn(I)$. In this connection, it is interesting that $HMn(CO)_{5}$ ionizes to $H^{+}(aq)$ and $Mn(CO)_{5}$ ⁻(aq) with pK \cong 7.

Most of the compounds and ions for which we have data are those that contain manganese in the $+2$, $+4$, or $+7$ oxidation states. These compounds and ions account for most of the aqueous chemistry of manganese, and discussion of them is the principal subject of this review. We do, however, have some data for species in other less familiar positive oxidation states.

In most acidic solutions and under some other conditions Mn(II) is the most stable oxidation state of manganese. Most salts of Mn(II) are quite soluble in water, but a poorly defined sulfide and a well-defined hydroxide can be precipitated. Complexes of Mn(II) are generally less stable than corresponding complexes of Fe(II), Co(II), etc.

Solids such as MnF_3 and various complexes of Mn-(III) are known. In general, the reasonably stable

compounds of Mn(III) are those that are only slightly soluble or slightly dissociated in solution.

Although several compounds of Mn (IV) are known, $MnO₂$ is certainly the most important, both as a source of manganese in nature and as a useful oxidizing agent. Heating MnO_2 causes it to decompose to Mn_3O_2 or Mn3O4, depending upon conditions. The latter compound is apparently most realistically described as $Mn^{II}Mn^{III}Q_4$ (a distorted spinel).

The dark green ion $MnO₄³⁻$ contains $Mn(V)$. This ion, which is reasonably stable only in strongly alkaline solutions, has been postulated as an intermediate in various oxidation reactions.

For the $+6$ oxidation state, we have data for the dark green manganate ion, MnO₄²⁻ which is stable only in alkaline solution.

The violet permanganate ion, $MnO₄$, and its salts contain Mn(VII). Permanganate apparently gives MnO³ + in cold concentrated sulfuric acid, but it should be noted that solutions of permanganate in concentrated acids have exploded.

III. "SIMPLE" COMPOUNDS AND AQUEOUS IONS

For the heat of sublimation of metallic manganese we follow Mah¹⁰ and adopt $\Delta H^{\circ}{}_{298} = 67.2$ kcal/mole from the work of McCabe and Hudson,¹¹ whose results are in substantial agreement with those of a more recent investigation.¹² This value is open to some question because higher values have been reported on the basis of other vapor pressure data and we can also calculate a higher (but less certain) value from the ΔH_f° , heat of sublimation, and heat of dissociation of MnO. The S° ₂₉₈ values for Mn(c) and Mn(g) are taken from Kelley and King,¹³ and the ΔG_f° for $Mn(g)$ is calculated by combination of its ΔH_i° with the entropies.

The ΔH_f° values for the gaseous ions of manganese are taken from NBS Circular 500² after adjustment for the new ΔH_f° for Mn(g) we have adopted.

We now consider the oxides MnO, Mn_2O_3 , Mn_3O_4 , and $MnO₂$. On the basis of earlier calorimetric investigations, Mah¹⁰ has adopted ΔH_i° values for $MnO(c)$, $Mn_3O_4(c)$, and $MnO_2(c)$, which we also adopt. We choose ΔH_f° of $\text{Mn}_2\text{O}_3(c)$ from the high-temperature equilibrium measurements of Otto.¹⁴ Entropies of $MnO(c)$, $Mn₂O₃(c)$, and $MnO₂(c)$ are taken from Kelley and King¹³ while that for $Mn_3O_4(c)$ is taken from Otto.¹⁴ Free energies are calculated by combination of heats

⁽¹⁰⁾ A. D. Mah, U. S. Bureau of Mines Report of Investigations No. 5600, U.S. Government Printing Office, Washington, D.C., 1960.

⁽¹¹⁾ C. L. McCabe and R. G. Hudson, *J. Metals* (Japan), 9, 17 (1957) .

⁽¹²⁾ P. L. Woolf, G. R. Zellars, E. Foerster, and J. P. Morris, U. 8. Bureau of Mines Report of Investigations No. 5634, U. S.

Government Printing Office, Washington, D. C., 1960. (13) K. K. Kelley and E. G. King, U. S. Bureau of Mines Bulletin No. 592, U. S. Government Printing Office, Washington, D. C., 1961.

⁽¹⁴⁾ E. M. Otto, *J. Electrochem. Soc,* 111, 88 (1964).

and entropies. High-temperature emf data¹⁵ lead to values for MnO in agreement with those adopted here.

Several high-temperature investigations of the manganese oxides have led to other thermodynamic data that we do not accept. For example, Matsushima and Thoburn¹⁶ have employed DTA to obtain $O₂$ pressures at various high temperatures and have calculated *AH°* values by means of the van't Hoff equation. We have combined their reported ΔH° values (at 835 and 1200° K) with $H_T - H_{298}$ data from Kelley¹⁷ to obtain $\Delta H^{\circ}{}_{298}$ values which differ by about 15 kcal/mole from those we calculate from the adopted $\Delta H_{\mathrm{f}}^{\circ}$ values for the oxides.

On the basis of a review of earlier investigations and the excellent experimental work of Covington, Cressey, Lever, and Thirsk,¹⁸ we adopt the following potential for the $Mn^2 + MnO_2$ half-reaction.

$$
Mn^{2+}(aq) + 2H_2O(liq) = MnO_2(c) + 4H^+(aq) + 2e^-
$$

$$
E^{\circ} = -1.239 \text{ V}
$$

Combination of this potential with the ΔG_f° for $MnO_2(c)$ leads to $\Delta G_f^{\circ} = -55.1$ kcal/mole for $Mn^{2+}(aq)$, and thence to the following calculated potential

$$
Mn(c) = Mn^{2} + (aq) + 2e^- \qquad E^{\circ} = 1.20 \text{ V}
$$

Cell measurements by Andrews and Brown¹⁹ lead to the following potential for the MnO_2-MnO_4 ⁻ halfreaction in alkaline solution.

$$
MnO_2(c) + 4OH^{-}(aq) = MnO_4^{-}(aq) + 2H_2O(liq) + 3e^{-}
$$

$$
E^{\circ} = -0.588 \text{ V}
$$

From this potential and the ΔG_f° of MnO₂(c) cited above, we calculate $\Delta G_f^{\circ} = -107.6$ kcal/mole for $MnO₄$ ⁻(aq).

Measurements by Carrington and Symons²⁰ on alkaline solutions lead to the following standard potential for the $MnO₄$ ⁻⁻-MnO₄⁻ half-reaction.

$$
MnO_4^2(aq) = MnO_4(aq) + e^- \qquad E^{\circ} = -0.558 \text{ V}
$$

From this potential and the ΔG_f° above for MnO_4° (aq), we calculate $\Delta G_f^{\circ} = -120.5 \text{ kcal/mole}$ for $\text{MnO}_4^{\circ-}(\text{aq})$. Other measurements^{20,21} with concentrated hydroxide solutions lead to an approximate standard potential for the MnO_4^3 ⁻ MnO_4^2 ⁻ half-reaction and to $\Delta G_f^{\circ} \cong$ -127 kcal/mole for $MnO₄³-(aq)$.

$$
MnO_4^{-3}(aq) = MnO_4^{2-}(aq) + e^- \tE^{\circ} \approx -0.3 \text{ V}
$$

We follow Latimer³ and write the following approximate potential for the Mn^{2+}/Mn^{3+} half-reaction in acidic solution.

 $Mn^{2+}(aq) = Mn^{3+}(aq) + e^ E^{\circ} \cong -1.5$ V

Combination of this potential with the ΔG_f° for Mn²⁺-(aq) gives $\Delta G_f^{\circ} \cong -21$ kcal/mole for Mn³⁺(aq).

Some potentials for acidic solution calculated from ΔG_f° values already cited are the following.

$$
Mn^{2+}(aq) + 4H_2O(liq) = MnO_4-(aq) + 8H^+(aq) + 5e^-
$$

$$
E^{\circ} = -1.51 \text{ V}
$$

$$
MnO_2(c) + 2H_2O(liq) = MnO_4-(aq) + 4H^+(aq) + 3e^-
$$

$$
E^{\circ} = -1.69 \text{ V}
$$

 $MnO_2(c) + 2H_2O(liq) = MnO_4^{2-}(aq) + 4H^+(aq) + 2e^ E^{\circ} = -2.26 \text{ V}$

 $Mn^{3+}(aq) + 2H_2O(liq) = MnO_2(c) + 4H^+(aq) + e^{-}$ $E^{\circ} \cong -1.0 \text{ V}$

The ΔG_f° values already cited, along with ΔG_f° = -148 kcal/mole for Mn(OH)₂(c) and $\Delta G_f^{\circ} \cong -190$ kcal/mole for $Mn(OH)_{3}(c)$ taken from later in this review, permit calculation of several potentials for alkaline solution.

 $Mn(c) + 2OH^{-}(aq) = Mn(OH)_{2}(c) + 2e^{-}$ $E^{\circ} = 1.58$ V $\text{Mn}(\text{OH})_2(c) + \text{OH}(\text{aq}) = \text{Mn}(\text{OH})_3(c) + e^-$ *E*° \cong 0.2 V $Mn(OH)_{3}(c) + OH^{-}(aq) = MnO_{2}(c) + 2H_{2}O(liq) + e^{-}$ $E^{\circ} \cong -0.1$ V

 $Mn(OH)₂(c) + 2OH⁻(aq) = MnO₂(c) + 2H₂O(liq) + 2e⁻$ $E^{\circ} \cong 0.03$ V

$$
Mn(OH)2(c) + 6OH-(aq) = MnO4-(aq) + 4H2O(liq) + 5e-
$$

$$
Eo = -0.34 V
$$

 $\text{MnO}_2(c) + 4\text{OH}^-(aq) = \text{MnO}_4^{3-}(aq) + 2\text{H}_2\text{O}(\text{liq}) + e^ E^{\circ} \cong -0.9$ V

 $\text{MnO}_2(c) + 4\text{OH}^-(aq) = \text{MnO}_4^2$ ⁻(aq) + 2H₂O(liq) + 2e⁻ $E^{\circ} = -0.603$ V

The potentials relating the various oxidation states of manganese in both acidic and basic solutions are summarized in the accompanying oxidation potential diagrams. As is now well known from the work of Latimer,³ these diagrams present a considerable amount of chemical information in convenient form. Since the potential to the left of Mn^{3+} is more negative than that to the right, we know that Mn^{3+} is unstable with respect to disproportionation to Mn^{2+} and $MnO₂$. On the other hand, the potential to the left of $Mn(OH)_{3}$ is larger than that to the right, which indicates that $Mn(OH)$ ₃ is stable with respect to disproportionation. Similarly, the potential diagrams (Scheme I) show that $MnO₄²$ is unstable with respect to $MnO₂$ and $MnO₄$ in acidic solution. In alkaline solution $MnO₄²$ is stable with respect to MnO_4^{3-} and MnO_4^- . The $MnO_2-MnO_4^{2-}$ potential is slightly more negative than the $MnO₄²$ - $MnO₄$ potential, which indicates that the equilibrium constant for the disproportionation reaction

⁽¹⁵⁾ C. B. Alcock and S. Zador, *Electrochim. Acta,* 12, 673 (1967). (16) T. Matsushima and W. J. Thoburn, *Can. J. Chem.,* 43, 1723 (1965).

⁽¹⁷⁾ K. K. Kelley, U. S. Bureau of Mines Bulletin No. 584, U. S.

Government Printing Office, Washington, D. C., 1960.

(18) A. K. Covington, T. Cressey, B. G. Lever, and H. R. Thirsk,

Trans. Faraday Soc., 58, 1975 (1962).

(19) L. V. Andrews and D. J. Brown, J. Am. Chem. Soc., 57, 254

^{(1935).} (20) A. Carrington and M. C. *R.* Symons, / . *Chem. Soc,* 3373

 $(1956).$

⁽²¹⁾ R. Thiele and R. Landsberg, *Z. Physik. Chem.* (Leipzig), 236, 95 (1967); Chem. Abstr., 68, 18081r (1968).

 $3MnO_4^2$ ⁻(aq) + 2H₂O = 2MnO₄⁻(aq) + MnO₂(c) + 4OH⁻(aq)

is only slightly greater than unity. Thus $MnO₄$ ² is reasonably stable in solutions containing moderate concentrations of OH^- and becomes more stable as the pH increases. Although the equilibrium constant for disproportionation of MnO_4^3 = is large, its instability is diminished by increasing concentration of OH^- .

Although there is no necessary simple relation between potentials and reaction mechanism, the potential diagram for acidic solution accounts for the ordinary reduction of $MnO₄$ to $Mn²⁺$, since every intermediate species that might be formed is also a strong oxidizing agent. On the other hand, reduction of $MnO₄$ in alkaline solution commonly yields $MnO₂$, which is consistent with the observation that neither $MnO₂$ nor $\text{Mn}(\text{OH})_3$ is a strong oxidizing agent in alkaline solution.

Mechanisms of oxidations by permanganate (and other high oxidation-state species of manganese) have been reviewed by Ladbury and Cullis.²²

We now turn to consideration of ΔH_f° and \bar{S}_2° values for the aqueous ions of manganese along with the related thermodynamic properties of compounds of manganese.

We combine the solubility²³ of KMnO₄ with γ_{\pm} = (0.6) estimated by comparison with activity coefficients of other 1:1 electrolytes at the same concentration to obtain its K_{sp} and thence its ΔG° of solution. Then combination of this value with the ΔG_f° value for MnO_4 ⁻(aq) quoted earlier and ΔG_f ^o for $K^+(aq)^1$ gives ΔG_f° = -176.8 kcal/mole for KMnO₄(c). We also calculate S_2 ^o = 46.5 gibbs/mole for MnO₄-(aq) by combining the *AG°* of solution with the heat of solution²⁴ and entropies of $K^+(aq)^1$ and $K MnO_4(c)$.¹³

The ΔG_f° and \bar{S}_2° for MnO_4° (aq) lead to ΔH_f° = —129.9 kcal/mole for this ion.

We have several paths to the ΔH_f° of Mn²⁺(aq). From the calorimetric determination of the heat of reduction of MnO₄⁻ reported by Hugus and Latimer²⁵ and the ΔH_f° for MnO_4 ⁻(aq), we calculate ΔH_f° = -53.4 kcal/mole for Mn²⁺(aq). Another approach to this quantity is by way of $\Delta H_{\rm f}^{\circ}$ and ΔH° of solution of $MnCl₂(c)$. Two investigations^{26,27} are in good agreement for the heat of solution, which we combine with a small estimated heat of dilution to obtain the desired ΔH° = -17.5 kcal/mole for solution of MnCl₂(c). Koehler and Coughlin²⁸ have reported $\Delta H_f^{\circ} = -115.2$ $kcal/mole$ for $MnCl₂(c)$, while high-temperature data^{29,30} lead to ΔH_f ^o = -116.9 kcal/mole. Combination of these latter values with the heat of solution leads to $\Delta H_f^{\circ} = -52.8$ and -54.5 kcal/mole for $Mn^{2+}(aq)$. Walkley³¹ has reported $\Delta H_f^{\circ} = -53.2$ (his best) and -52.8 (his second best, our recalculation) kcal/mole for $Mn^{2+}(aq)$. We also use the data of Southard and Shomate³² for $MnSO₄(c)$ with the most recent auxiliary data¹ to calculate $\Delta H_f^{\circ} = -254.9$ kcal/mole for $MnSO_4(c)$. Next we combine the heat of solution reported by Thomsen³³ with corrections to 25° and infinite dilution estimated by comparison with

- (25) G. Z. Hugus and W. M. Latimer, *J. Electrochem. Soc,* 98, 296 (1951) . (26) P. Ehrlich, F. W. Koknat, and H. J. Seifert, *Z. Anorg. All-*
- *gem. Chem.,* **341,** 281 (1965). (27) P. Paoletti and A. Vacca, *Trans. Faraday Soc,* 60, 50 (1964).
- (28) M. F. Koehler and J. P. Coughlin, / . *Phys. Chem.,* 63, 605 (1959).
- (29) L. Rossemyr and T. Rosenqvist, *Trans. AIME,* **224,** 140 (1962).
- (30) H. Schafer, *Z. Anorg. Allgem. Chem.,* **278,** 300 (1955).
- (31) A. Walkley, *J. Electrochem. Soc,* 93, 316 (1948); 94, 41 (1948). (32) J. C. Southard and C. H. Shomate, *J. Am. Chem. Soc,* 64, 1770
- (1942) . (33) F. R. Bichowsky and F. D. Rossini, "The Thermochemistry
- of the Chemical Substances," Reinhold Publishing Corp., New York, N. Y., 1936.

⁽²²⁾ J. W. Ladbury and C. F. Cullis, *Chem. Rev.,* 58, 403 (1958).

⁽²³⁾ A. Seidell, "Solubilities of Inorganic and Metal Organic Compounds," 3rd ed, D. Van Nostrand Co., Inc., New York, N. Y., 1940.

⁽²⁴⁾ T. Nelson, C. Moss, and L. G. Hepler, *J. Phys. Chem.,* 64, 376 (1960).

data³⁴ for ZnSO4, CdSO4, and CuSO4 to obtain the standard heat of solution and thence $\Delta H_f^{\circ} = -53.0$ kcal/mole for Mn²⁺(aq). We adopt $\Delta H_f^{\circ} = -53.2$ kcal/mole for $Mn^{2+}(aq)$ and use this value in subsequent calculations.

We combine the ΔG_f° and ΔH_f° for $Mn^{2+}(aq)$ to obtain its $\bar{S}_2^{\circ} = -17$ gibbs/mole. All other paths to this entropy involve uncertain estimates of entropies of solid compounds.

Calorimetric data $(\pm 1.5 \text{ kcal})$ from Hill and Williamson³⁵ lead to $\Delta H_f^{\circ} = -157 \text{ kcal/mole}$ for MnO_4^2 ⁻(aq). By combination of the ΔG_f° and ΔH_f° values, we obtain \bar{S}_2° = 14 gibbs/mole for this ion, which is about the same as the more certain values for $CrO₄²$ (aq) and $MoO₄²-(aq).$

Using our values for the thermodynamic properties of the aqueous ions, we now turn to systematic discussion of compounds, beginning with the zero state and proceeding to the $+7$ state.

Although the solution chemistry of manganese carbonyl, $Mn_2(CO)_{10}$, has not been much investigated, its thermodynamic properties are of special interest because of the Mn-Mn bond. The heat of formation has been determined calorimetrically by Good, Fairbrother, and Waddington,³⁶ who report ΔH_f° = -400.9 kcal/mole for $Mn_2(CO)_{10}(c)$. Cotton and Monchamp³⁷ have made vapor pressure measurements and calculated ΔH° = 15.0 kcal/mole for vaporization. We combine these data to obtain $\Delta H_i^{\circ} = -385.9$ kcal/mole for $Mn_2(CO)_{10}(g)$. Cotton and Monchamp³⁷ have used these data in calculating that the Mn-Mn bond energy is 34 ± 13 kcal/mole. A mass spectrometric investigation by Bidinosti and McIntyre³⁸ has led these workers to report 18.9 ± 1.4 kcal/mole for the Mn-Mn bond energy.

For manganous hydroxide we adopt K_{sp} = 1.6 \times 1O-13 from references cited by Sillen³⁹ and calculate the standard free energy of solution. Combination of this value with the free energies of the ions gives ΔG_f° = — 148 kcal/mole for solid manganous hydroxide represented by $Mn(OH)₂(c)$. Two different calorimetric measurements by Thomsen give data³³ that we have combined with known and estimated heats of dilution in obtaining $\Delta H_f^{\circ} = -167 \text{ kcal/mole}$ for $\text{Mn}(\text{OH})_2(\text{c})$. These values lead to $S^{\circ}_{298} = 23$ gibbs/mole for Mn-

 $(OH)₂(c)$. Berg and Kovyrzina⁴⁰ have investigated dissociation of solid $Mn(OH)_2$ into solid MnO and H₂O-(g). Their reported thermodynamic properties are not internally consistent, and their results are in poor agreement with the values already cited for thermodynamic properties of $MnO(c)$ and $Mn(OH)₂(c)$.

For $MnF_2(c)$ we adopt the values cited by Mah^{10} and Kelley and King.¹³ Both the ΔG_f° and ΔH_f° values appear to be uncertain by several kilocalories/mole.

Combination of the previously cited heat of solution^{26,27} with the ΔH_f° of Mn²⁺(aq) leads to ΔH_f° = -115.6 kcal/mole for MnCl₂(c), which is the value we adopt. This value falls between the values cited earlier.²⁸⁻³⁰ Combination of this ΔH_i° with S° ₂₉₈ from Chisholm and Stout⁴¹ gives $\Delta G_f^{\circ} = -105.9 \text{ kcal/}$ mole for $MnCl₂(c)$.

Mah¹⁰ has cited earlier calculations of ΔH_f° of Mn-Br₂(c) from *gaseous* bromine. The more recently determined heat of solution⁴² of this compound combined with an estimated heat of dilution and our ΔH_i° of $Mn^{2+}(aq)$ permits us to calculate $\Delta H_f^{\circ} = -92.6$ kcal/mole for formation of MnBr₂(c) from *liquid* bromine. We combine this ΔH_f° with our estimated $S^{\circ}{}_{298}$ to obtain the tabulated ΔG_f° .

For $MnI_2(c)$ we adopt $\Delta H_f^{\circ} = -64.2$ kcal/mole from the heat of solution⁴³ combined with our estimated heat of dilution and ΔH_f° values for $Mn^{2+}(aq)$ and $I^{-}(aq).$ ¹ Our estimated S°_{298} with ΔH_{f}° leads to the tabulated ΔG_f° .

Results of several investigations^{2,31,33} of hydrates of manganous halides are in poor agreement and we do not tabulate thermodynamic properties for these compounds.

Hayes and Martin⁴⁴ have determined the solubility of $Mn(IO₃)₂(c)$ at several temperatures and report $K_{\rm sp}$ = 4.79 \times 10⁻⁷, ΔG° = 8.61 kcal/mole, ΔH° = 2.28 kcal/mole, and $\Delta S^{\circ} = -21.1$ gibbs/mole for the solution reaction at $298^{\circ}K$. We combine these values with data for $IO_3^-(aq)^1$ and $Mn^{2+}(aq)$ to obtain $\Delta G_f^{\circ} =$ -124.9 kcal/mole, $\Delta H_f^{\circ} = -161.3$ kcal/mole, and $S^{\circ}_{298} = 61$ gibbs/mole for $\text{Mn}(\text{IO}_3)_2(\text{c})$. Heat capacity data leading to a third-law entropy are needed and would thence lead to a new \bar{S}_2° for Mn^2 ⁺(aq).

Manganous sulfide, MnS, has been investigated by a number of workers. Kelley⁴⁵ has calculated $\Delta G^{\circ}_{2\Re}$ = 18.4 kcal/mole, $\Delta H^{\circ}{}_{298} = 28.9$ kcal/mole, and $\Delta S^{\circ}{}_{298} =$ 35.3 gibbs/mole for

⁽³⁴⁾ J. W. Larson, P. Cerutti, H. K. Garber, and L. G. Hepler, *J. Phys. Chem.,* 72, 2902 (1968).

⁽³⁵⁾ R. A. W. Hill and J. F. Williamson, *J. Chem. Soc,* 2417 (1957).

⁽³⁶⁾ W. D. Good, D. M. Fairbrother, and G. Waddington, *J. Phys. Chem.,* 62, 853 (1958). (37) F. A. Cotton and R. R. Monchamp, *J. Chem. Soc,* 533 (1960).

⁽³⁸⁾ D. R. Bidinosti and N. S. Mclntyre, *Chem. Commun.,* 555 (1966).

⁽³⁹⁾ L. G. Sillen and A. E. Martell, "Stability Constants of Metal-Ion Complexes," Special Publication No. 17, The Chemical Society, London, 1964.

⁽⁴⁰⁾ L. G. Berg and V. P. Kovyrzina, *Zh. Neorg. KHm.,* 8, 2041 (1963); *Buss. J.Inorg. Chem.,* 8, 1065 (1963).

⁽⁴¹⁾ R. C. Chisholm and J. W. Stout, *J. Chem. Phys.,* 36, 972 (1962).

⁽⁴²⁾ P. Paoletti, *Trans. Faraday Soc,* 61, 219 (1965).

⁽⁴³⁾ P. Paoletti, A. Sabatini, and A. Vacca, *ibid.,* 61, 2417 (1965). (44) A. M. Hayes and D. S. Martin, / . *Am. Chem. Soc,* 73, 4853 $(1951).$

⁽⁴⁵⁾ K. K. Kelley, U. S. Bureau of Mines Bulletin No. 406, U. S. Government Printing Office, Washington, D. C, 1937; reprinted as Bureau of Mines Bulletin No. 601, 1962.

$MnCl₂(c) + H₂S(g) = MnS(c) + 2HCl(g)$

from the high-temperature data of Jellinek and Podiaski. We use our data for MnCl₂ with the above ΔG° and ΔH° values in calculating $\Delta G_f^{\circ} = -50.0$ kcal/mole and $\Delta H_f^{\circ} = -47.5$ kcal/mole for MnS. The thirdlaw $\Delta S^{\circ}{}_{298}$ for this reaction is 30.5 gibbs/mole, which differs significantly from that cited above. We have therefore combined this latter $\Delta S^{\circ}{}_{298}$ with the $\Delta G^{\circ}{}_{298}$ calculated by Kelley⁴⁵ to obtain $\Delta H^{\circ}{}_{298} = 27.5 \text{ kcal/}$ mole for the reaction and thence $\Delta H_i^{\circ} = -48.9 \text{ kcal/}$ mole for $MnS(c)$. Since this last value depends on the free energy of reaction but not its temperature derivative, it may be more reliable than the first value given here.

We have recalculated the results of calorimetric measurements by Thomsen and Berthelot³³ to obtain $\Delta H_f^{\circ} = -48$ and -49 kcal/mole for MnS. Combination of these values with the third-law $S^{\circ}_{298} = 18.7$ gibbs/mole leads to $\Delta G_f^{\circ} = -49$ and -50 kcal/mole for MnS. Mah¹⁰ has adopted $\Delta H_f^{\circ} = -49.5$ kcal/ mole from the calorimetric work of Jeffes, Richardson, and Pearson. Combination of this value, which may be the most reliable of those we have cited, with the entropy leads to $\Delta G_f^{\circ} = -50.5 \text{ kcal/mole}$ for MnS.

We adopt $\Delta G_f^{\circ} = -50.5 \text{ kcal/mole}, \Delta H_f^{\circ} = -49.5$ kcal/mole, and $S^{\circ}{}_{298} = 18.7$ gibbs/mole for MnS(c). Combination of this ΔG_f° with that for $S^{2-}(aq)^{1.46}$ leads to $K_{sp} = 2 \times 10^{-12}$ for MnS. Solubility measurements have led various investigators to report³⁹ "experimental" K_{sp} values covering a wide range, but it appears to us that the "best" values are in reasonable agreement with this calculated value.

A recent investigation of MnS is that of Adami and King⁴⁷ who have reported $\Delta H_f^{\circ} = -51.0$ kcal/mole for MnS (alabandite). Taking $S_{298}^{\circ} = 18.7$ gibbs/mole as before, we obtain $\Delta G_f^{\circ} = -52.0 \text{ kcal/mole}$ and calculate $K_{\text{sp}} = 2 \times 10^{-13}$ for the alabandite modification of MnS. It might also be noted that Sato⁴⁸ has taken $\Delta G_f^{\circ} = -50.0$ kcal/mole for alabandite from Robie. This ΔG_f° leads to $K_{sp} = 5 \times 10^{-12}$.

Although it is known that MnS can exist in several forms and solubilities have been reported for both pink and green forms, we have been unable to distinguish thermodynamically between these forms.

For MnSO₄(c), we adopt $\Delta H_f^{\circ} = -254.9$ kcal/ mole1,32 as mentioned earlier. Combination of this $\Delta H_{\text{f}}^{\circ}$ with the entropy^{10,13} leads to $\Delta G_{\text{f}}^{\circ}$.

Heats of solution measured by Thomsen³³ lead to $\Delta H^{\circ} = -6.0 \text{ kcal/mole for}$

 $MnSO_4(c) + H_2O(liq) = MnSO_4 \cdot H_2O(c)$

This value gives $\Delta H_f^{\circ} = -329.2$ kcal/mole for Mn- $SO_4 \cdot H_2O(c)$. Kelley⁴⁵ quotes an equilibrium dissociation pressure of 2.64×10^{-2} atm at 25° . This pressure leads to $\Delta G^{\circ} = 2.15$ kcal/mole for the dissociation reaction

$MnSO_4 \cdot H_2O(c) = MnSO_4(c) + H_2O(g)$

Combination of this ΔG° with ΔH° from ΔH_f° values leads to ΔS°_{298} = 48 gibbs/mole for the dissociation. We have reliable S°_{298} values for both Mn- $SO_4(c)$ and $H_2O(g)$ and are confident that an estimated S°_{298} = (37) gibbs/mole is satisfactory for Mn- $SO_4 \cdot H_2O(c)$, leading to $\Delta S^{\circ}_{298} = 35$ gibbs/mole for the dissociation. We combine this ΔS° with ΔH_f° values to obtain $\Delta G^{\circ}_{298} = 6.1$ kcal/mole for the dissociation reaction and thence a dissociation pressure of 3×10^{-5} atm. This pressure seems more consistent with the stability of the hydrate than does the larger pressure cited above. Our own interpretation of the equilibrium $data of Carpenter and Jette⁴⁹ cited by Keller⁴⁵ suggests$ that the quoted dissociation pressure actually refers to a higher hydrate. We adopt a ΔG_f° for MnSO₄. $H_0O(c)$ based on the ΔH_0° and our estimated S° .

Although there are data for higher hydrates of Mn-SO4, there are so many uncertainties that we are not listing thermodynamic properties for these compounds.

For $\text{Mn}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}(\text{c}, \text{liq})$, we combine the results of Shomate and Young⁵⁰ with the most recent auxiliary data¹ to obtain $\Delta H_f^{\circ} = -566.9$ and -557.3 kcal/mole, respectively. Although there have been difficulties associated with determining the melting point of this compound, it is certainly close to the 25.8° cited in NBS Circular 500.² For $\text{Mn}(\text{NO}_3)_2(\text{c})$ and $\text{Mn}(\text{NO}_3)_2$. $3H_2O(c)$ we adopt $\Delta H_f^{\circ} = -167$ and -355 kcal/mole, respectively, from data of uncertain accuracy cited in NBS Circular 500.²

For MnCO₃(c) we adopt $\Delta H_f^{\circ} = -214$ kcal/mole on the basis of investigations cited in NBS Circular 500.² Our recalculations with the data of Thomsen and Berthe lot³³ lead to $\Delta H_f^{\circ} = -211$ kcal/mole for MnCO₃-(ppt), in agreement with the value listed in NBS Circular 500.² Anderson's low-temperature data have led NBS Circular 500,² Kelley and King,¹³ and Mah¹⁰ to adopt S°_{298} = 20.5 gibbs/mole for MnCO₈(c). Kostryukov and Kalinkina⁵¹ have reported $S^{\circ}_{298} = 27.0$ gibbs/mole for a "synthetic" sample (rather than the mineral used by Anderson) of $MnCO₃$. This entropy is larger than entropies of similar carbonates, but we know of no other reason to question it.

Although it is not entirely clear how the ΔH_f° and S°_{298} values above should be combined, we have chosen to associate the lower entropy^{2,10,13} with $MnCO₃(c)$

⁽⁴⁶⁾ J. W. Kury, A. J. Zielen, and W. M. Latimer, *J. Electrochem. Soc,* 100,468 (1953).

⁽⁴⁷⁾ L. W. Adami and E. G. King, U. S. Bureau of Mines Report of Investigations No. 6495, U. S. Government Printing Office, Washington, D. C, 1964.

⁽⁴⁸⁾ M. Sato, *Electrochim. Acta,* 11, 361 (1966).

⁽⁴⁹⁾ C. D. Carpenter and E. R. Jette, *J. Am. Chem. Soc,* 45, 578 (1923).

⁽⁵⁰⁾ C. H. Shomate and F. E. Young, *ibid.,* 66, 771 (1944). (51) V. N. Kostryukov and I. N. Kalinkina, *Zh. Fiz. KMm.,* 38, 780 (1964).

and the larger entropy⁵¹ with $MnCO₃(ppt)$. Thus we obtain $\Delta G_f^{\circ} = -196 \text{ kcal/mole}$ for MnCO₃(c) and $\Delta G_f^{\circ} = -194 \text{ kcal/mole for MnCO}_3(\text{ppt.})$ The corresponding solubility products are $K_{\text{sp}} = 10^{-11}$ for Mn- $CO₃(c)$ and $K_{sp} = 10⁻¹⁰$ for MnCO₃(ppt). Previously reported^{39,45} solubility products fall between 3×10^{-10} and 2×10^{-11} . It should also be noted that Garrels and Christ⁵² quote $\Delta G_f^{\circ} = -195.7$ kcal/mole for natural rhodochrosite, which corresponds to $K_{\rm sp}$ = 3 \times 10^{-11} .

Calorimetric measurements by Barany⁵³ give ΔH_f° = -284.8 kcal/mole for MnMoO₄(c). Combination of this value with our estimated entropy leads to the tabulated ΔG_f° . We use this ΔG_f° with that for MoO_4° - $(aq)^{54}$ to calculate $K_{sp} = 10^{-3}$ on the assumption that the solid phase in equilibrium with saturated solution is indeed $MnMoO₄(c)$

We have several highly uncertain paths to ΔG_f° for $Mn(OH)₃$. First, we may combine the ΔH_f° = -212 kcal/mole for Mn(OH)₃ listed in NBS Circular 500² with our estimated $S^{\circ}{}_{298}$ = (24) gibbs/mole to obtain $\Delta G_f^{\circ} \cong -181$ kcal/mole. We may also adjust the heat of formation listed by Bichowsky and Ros- $\sin i^{33}$ for different ΔH_f° values for reference compounds to obtain $\Delta H_f^{\circ} \approx -224$ kcal/mole and thence $\Delta G_f^{\circ} \cong -193$ kcal/mole for Mn(OH)₃. All of these values are from the calorimetric data of Petersen, which are difficult to interpret. Our view inclines toward the more exothermic value. Still another approach is to take the ΔG° for hydration of Mn_2O_3 to $Mn(OH)_3$ by liquid water to be small, which leads to $\Delta G_f^{\circ} \cong -190$ kcal/mole for $Mn(OH)$ ₃. Adopting an uncertainly weighted average $\Delta G_f^{\circ} \cong -190$ kcal/mole, we obtain potentials cited earlier and also calculate $K_{sp} \cong 10^{-42}$ for $Mn(OH)₃$. Although this K_{sp} is smaller than several published estimates, it is not unreasonable, and we know of no experimental data that contradict (or confirm) this value.

For the solubility of barium manganate $(BaMnO₄)$, Latimer³ has given $K_{sp} = 1.5 \times 10^{-10}$. Combination of this K_{sp} with our ΔG_f° for $MnO_4^{2-}(aq)$ and ΔG_f° for Ba²⁺(aq)² gives $\Delta G_f^{\circ} = -268$ kcal/mole for Ba-MnO₄(c). We estimate S°_{298} = (37) gibbs/mole for this compound and combine with the ΔG_f° to obtain its $\Delta H_f^{\circ} = -293 \text{ kcal/mole}$. The $\Delta H_f^{\circ} = -282$ kcal/mole listed in NBS Circular 500² appears to be in error.

We have no further data for solid manganates, but a comment on estimation of ΔH_f° of $K_2MnO_4(c)$ may be worthwhile. Hill and Williamson³⁵ have combined

experimental data on $MnO₄²$ (aq) with their estimate that the heat of solution of $K_2MnO_4(c)$ is about 10 kcal/mole [as it is for $KMnO_4(c)^{24}$] to calculate ΔH_f° of $K_2MnO_4(c)$. It seems more reasonable to estimate $\Delta H^{\circ} = (4)$ kcal/mole [by analogy to $K_2CrO_4(c)^{55,56}$] for the heat solution of $K_2MnO_4(c)$, which leads to its $\Delta H_f^{\circ} = -282 \text{ kcal/mole}.$

The heat of formation of $KMD_4(c)$ is calculated from its heat of solution²⁴ and combined with its entropy^{10.13} to yield its ΔG_f° .

IV. COMPLEX COMPOUNDS AND IONS

The best data on hydrolysis of $Mn^{2+}(aq)$ appear to be those of Perrin,⁵⁷ who has reported the following.

$$
Mn^{2+}(aq) + H_2O(liq) = MnOH^{+}(aq) + H^{+}(aq)
$$

 $K = 2.6 \times 10^{-11}$

We use this equilibrium constant in calculating ΔG° _f = -97.3 kcal/mole for MnOH+(aq). Perrin⁵⁷ also reported *K* values at other temperatures, but we do not believe the accuracy justifies calculation of ΔH_f° or \bar{S}_2° for MnOH+(aq).

In addition to the stability data and references cited by Sillen and Martell,³⁹ we call attention to some other investigations of complex ions of Mn2+ . Cell measurements by Nair and Nancollas⁵⁸ have led to ΔG° = -3.07 , $\Delta H^{\circ} = 3.37$ kcal/mole, and $\Delta S^{\circ} = 21.6$ gibbs/ mole for the association of Mn^{2+} with SO_4 ²⁻ as in

$$
Mn^{2+}(aq) + SO_4^{2-}(aq) = MnSO_4(aq \text{ ion pair}) \qquad K = 181
$$

Combination of these data with our data for $Mn^{2+}(aq)$ and those for SO_4^2 ⁻(aq)¹ lead to the tabulated values for MnSO₄(aq ion pair). Atkinson and Petrucci⁵⁹ have measured conductances of manganous sulfate and manganous *m*-benzenedisulfonate in water and mixed solvents. Their data indicate that the latter may be very close to a true strong electrolyte in dilute aqueous solution, while the former was found to be associated, in satisfactory agreement with the results cited above.⁵⁸ We also call attention to recent ultrasonic investigations^{60,61} of solutions of these same salts. Although the experimental results and their interpretation are still controversial, the method is ultimately capable of providing detailed information about association of ions in solution.

Nair and Nancollas⁶² have investigated association of $Mn^{2+}(aq)$ with malonate at several temperatures and have calculated $\Delta H^{\circ} = 3.53 \pm 0.2$ kcal/mole for the association reaction. Later, McAuley and Nancollas⁶³

(58) V. S. K. Nair and G. H. Nancollas, *ibid.,* 3934 (1959).

(63) A. McAuley and G. H. Nancollas, *ibid.,* 989 (1963).

⁽⁵²⁾ R. M. Garrels and C. L. Christ, "Solutions, Minerals and Equilibria," Harper and Row, Publishers, New York, N. Y., 1965.

⁽⁵³⁾ R. Barany, U. S. Bureau of Mines Report of Investigations No .6618, U.S. Government Printing Office, Washington, D.C., 1965.

⁽⁵⁴⁾ R. L. Graham and L. G. Hepler, / . *Am. Chem. Soc,* 78, 4846 (1956).

⁽⁵⁵⁾ L. G. Hepler, *ibid.,* 80, 6181 (1958).

⁽⁵⁶⁾ C. N. Muldrow and L. G. Hepler, *ibid.,* 79, 4045 (1957). (57) D. D. Perrin, *J. Chem. Soc,* 2197 (1962).

⁽⁵⁹⁾ G. Atkinson and S. Petrucci, *J. Am. Chem. Soc.*, **86, 7** (1964).
(60) G. Atkinson and S. K. Kor, *J. Phys. Chem.*, **70**, **3**14 (1966).
(61) L. G. Jackopin and E. Yeager, *ibid.*, **70**, 313 (1966).
(62) V. S. K. Nair

investigated the same system calorimetrically and reported ΔH° = 3.68 ± 0.12 kcal/mole for the same association reaction. McAuley and Nancollas^{64,65} have also investigated association of $Mn^{2+}(aq)$ with succinate in these same ways and reported ΔH° = $2.95 \pm 0.1 \text{ kcal/mole}$ and $\Delta H^{\circ} = 3.02 \pm 0.15 \text{ kcal/m}$ mole. This agreement of results obtained by different methods is characteristic of the best investigations, but is all too uncommon. Other data for association reactions are presented in a book by Nancollas.⁶⁶

Brannan, Dunsmore, and Nancollas⁶⁷ have investigated association of $Mn^{2+}(aq)$ with glycine, and Desai and Nair⁶⁸ have done an unusually thorough investigation of complexes with phthalate. Atkinson and Bauman⁶⁹ and Davies and Dunning⁷⁰ have employed emf and calorimetric measurements in investigating association of Mn^{2+} with 2,2'-bipyridine. Data for oxalate complexes have been reported.⁷¹

Ciampolini, Paoletti, and Sacconi^{72,73} have carried out detailed calorimetric investigations of the association of Mn2+ (and ions of other transition elements) with ethylenediamine and various other amines. The association of manganous thiocyanate has been studied by Nancollas and Torrance.⁷⁴ Thermodynamic parameters for the association of $Mn^2+(aq)$ with adenosine triphosphate⁷⁵ and histidine^{76,77} have also been reported.

Various studies of the association of $Mn^{2+}(aq)$ with aqueous halide ions have been made. Ciavatta and Grimaldi⁷⁸ have investigated the competition of Mn^{2+1} (aq) and $H^+(aq)$ for $F^-(aq)$. They report the following.

$$
Mn^{2+}(aq) + F^{-}(aq) = MnF^{+}(aq) \qquad Q_2 = 6.2
$$

Morris and Short⁷⁹ have reported

 $Mn^{2+}(aq) + Cl^{-}(aq) = MnCl^{+}(aq)$ $Q_{0.7} = 3.85$

Approximate equilibrium quotients for complexes con-

- (67) J. R. Brannan, H. S. Dunsmore, and G. H. Nancollas, / . *Chem. Soc,* 304 (1964).
	- (68) I. R. Desai and V. S. K. Nair, *ibid.,* 2360 (1962).
- (69) G. Atkinson and J. E. Bauman, *Inorg. Chem.,* 1, 900 (1962); 2,64 (1963).
- (70) R. L. Davies and D. W. Dunning, *J. Chem. Soc,* 4168 (1965). (71) A. McAuley and G. H. Nancollas, *ibid.,* 2215 (1961).
- (72) M. Ciampolini, P. Paoletti, and L. Sacconi, *Nature,* 186, 880 (1960); *J. Chem. Soc,* 4553 (1960); 2994, 5115 (1961); 3589 (1963).
- (73) P. Paoletti and M. Ciampolini, *Inorg. Chem.,* 6, 64 (1967). (74) G. H. Nancollas and K. Torrance, *ibid., 6,* 1567 (1967).
- (75) M. M. T. Kahn and A. E. Martell, *J. Am. Chem. Soc, 88,* 668 (1966).
	-
	-
- (76) H. Kroll, *ibid.,* 74, 2032 (1952). (77) D. Perrin and V. S. Sharma, / . *Chem. Soc, A,* 724 (1967). (78) L. Ciavatta and M. Grimaldi, *J. Inorg. Nucl. Chem.,* 27, 2019 (1965).
	- (79) D. F. C. Morris and E. L. Short, / . *Chem. Soc,* 5149 (1961).

0 Superscript numbers are references.

taining more Cl⁻ indicate that these species are significant only in concentrated solutions.

Heat of solution measurements by Ehrlich, Koknat, and Seifert²⁶ permit calculation of $\Delta H^{\circ}{}_{298} = -9.73$, $-6.21, -3.63,$ and -0.71 kcal/mole for reactions of type

$$
MCl(c) + MnCl2(c) = MMnCl3(c)
$$

in which M represents Cs, Rb, K, and Na. We use these results with our ΔH_f° for $MnCl_2(c)$ and data for MCl(c) compounds from NBS Circular 500² to calculate our tabulated ΔH_f° values. Their heats of solution permit calculation of the following.

$$
2CsCl(c) + MnCl2(c) = Cs2MnCl4(c)
$$

$$
\Delta H^{\circ}{}_{295} = -11.21 \text{ kcal/mole}
$$

$$
3CsCl(c) + MnCl_2(c) = Cs_3MnCl_5(c)
$$

$$
\Delta H^{\circ}{}_{295} = -9.81 \text{ kcal/mole}
$$

⁽⁶⁴⁾ A. McAuley and G. H. Nancollas, *J. Chen. Soc,* 4458 (1961). (65) A. McAuley, G. H. Nancollas, and K. Torrance, *Inorg. Chem., 6,* 136 (1967).

⁽⁶⁶⁾ G. H. Nancollas, "Interactions in Electrolyte Solutions," Elsevier Publishing Co., Amsterdam, 1966.

We also calculate ΔH_f° values for $Cs_2MnCl_4(c)$ and $Cs₈MnCl₆(c)$. The ΔH data are relevant to the interesting phase diagram²² for the CsCl-MnCl₂ system.

Heats of solution of compounds of type $(NR_4)_2$ - MnX_4 have been determined^{27,42,43} and discussed, but auxiliary data required for calculation of heats of formation are not available.

Wells and Davies⁸⁰ have investigated the hydrolysis of $Mn^{3+}(aq)$ and report

$$
Mn^{3+}(aq) + H_2O(aq) = MnOH^{2+}(aq) + H^+(aq)
$$

 $Q_{4,0} = 0.88$

It thus appears than Mn^{3+} is more extensively hydrolyzed than any other $+3$ ion. Wells and Davies⁸⁰ also determined the equilibrium quotient $(Q_{4,0})$ at several other temperatures and calculated *AH* and *AS* values for the hydrolysis reaction in this solvent system. Data required to convert their values to our standard state are not available, so we tabulate no values for $MnOH₂⁺(aq)$.

Suwyn and Hamm⁸¹ report results of interesting kinetic and equilibrium investigations of the reaction

$$
Mn^{III}EDTA(OH2)^{-(aq)} + N3^{-(aq)} = Mn^{III}EDTA(N3)2^{-(aq)}
$$

Q_{0.25} = 32.1

AH and *AS* values for this reaction are also given. They⁸¹ also review and discuss evidence for sevencoordination of Mn(III).

Table I presents a summary of thermodynamic data for manganese at 298° K.

ACKNOWLEDGMENT.—We thank the National Science Foundation for support of this work and Professor C. A. Wulff of the University of Vermont for making his literature search available to us.

⁽⁸⁰⁾ C. F. Wells and G. Davies, *Nature,* 205, 692 (1965). (81) M. A. Suwyn and R. E. Hamm, *Inorg. Chem., 6,* 2150 (1967).