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I. Introduction 

A. THE CONCEPT OF TUNNELING 

In this review we are concerned with tunneling in H+-transfer 
reactions. Processes in which a H+-transfer step (eq 1) is 

AH + B —> A- + HB+ (1) 

rate determining may usually be identified fairly unambig­
uously;1,2 for instance, when the acid or base is varied, the 
rate constant (k) is related to the dissociation constant (K) 
by a relation of the Brjfosted type: k = GK", where a lies 
between 0 and 1. Most of the reactions to be considered are 
undoubtedly of this type. Since the groups A and B are 
commonly much heavier than the proton, it is a good approx­
imation to suppose that the proton moves between two centers 
which remain at a fixed distance.3 The reaction can therefore 
be represented on a potential-energy diagram (Figure 1) in 

(1) R. P. Bell, "Acid-Base Catalysis," Oxford University Press, London, 
1941, Chapters 7 and 8. 
(2) R. P. Bell, "The Proton in Chemistry," Cornell University Press, 
Ithaca, N. Y., 1959, Chapters 9 and 10. 
(3) Estermann and O. Stern, Z. Physik., 53,779 (1929). 

which the abscissa represents the distance x of the proton from 
one of the centers. 

The concept of tunneling has become familiar in various 
fields, such as radioactive decay, electron emission from 
metals, and electron-transfer reactions; it now finds a place 
in textbook expositions of wave mechanics. Whereas classical 
theory predicts that a particle can cross a potential-energy 
barrier only if its energy is greater than the barrier height, 
quantum theory predicts that particles with less energy may 
also pass from one side of the barrier to the other. This may 
be seen in a qualitative way from the uncertainty principle, 
as follows. 

Consider a particle incident upon a one-dimensional energy 
barrier. On the classical picture (Figure 2a), the position (*) 
and energy of the particle may be represented by a point P. 
If the energy W of the particle is less than the height E of the 
barrier, it cannot escape, while if W > E it will always escape; 
thus the probability of escape rises abruptly from zero to 
unity at W = E, as in Figure 2b. The particle can be pictured 
as a ball rolling up the energy profile, and metaphorically we 
speak of it as "passing over" the barrier. 

In the quantum-mechanical account, however, it is no longer 
possible to specify exactly both the energy (W) and the posi­
tion (x) of a particle. If the energy is specified as W as before 
(W < E), the position becomes indeterminate, and there 
is a finite probability that the particle will be detected on the 
far side of the barrier. Since such a particle cannot be sup­
posed to pass "over" the barrier, it may be said (again meta­
phorically) to "pentrate" or "tunnel through" the barrier. 
But these expressions must not be taken literally. The region 
"inside" the barrier corresponds to a total energy of the par­
ticle less than its potential energy, so that if we were to insist 
on using particle language the kinetic energy would be nega­
tive and the velocity would therefore be imaginary. It is evi­
dent that we cannot visualize the particle as it "goes through" 
the barrier, and attempts to do so will lead to confusion. The 
problem is better approached in terms of the wave picture 
of matter, as follows. 

It is well known that to account for certain phenomena, 
whether of matter or of radiation, we must use a particle 
model, while for others (such as diffraction) we must use a 
wave model. In some situations the system must be considered 
on the analogy of a particle, in others on the analogy of a 
wave. A system of mass m and velocity v is associated with a 
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Figure 1. Potential-energy diagram for a proton-transfer reaction. 

wavelength X given by the de Broglie relation X = h/mv. The 
wave properties of a system become important only if the wave­
length is large enough in relation to the process concerned, 
so that although all systems have these properties they will 
be most easily detected when the mass is small. Electrons, 
for instance, exhibit diffraction at a crystal lattice, and similar 
effects have been observed for hydrogen and helium atoms.8'4 

Protons in thermal equilibrium at ordinary temperatures are 
associated with a wavelength between 1 and 2 A, if we assume 
that they have kinetic energy in two degrees of freedom. 

X = h/mv = hl(2m[KE\)V' = hjQm\iT)l/% = 30.8/71/s (2) 

These wavelengths (in A) are comparable with the width 
expected for the energy barrier in a proton-transfer reaction, 
which may be roughly estimated by comparing the least 
distance of approach in a nonreactive collision, as given by the 
van der Waals radii of the atoms concerned, with the length 
of the bond formed. Such reactions must therefore be treated 
quantum mechanically. To do this, we represent the proton 
by the Schroedinger wave equation, and the proton transfer 
by the incidence of such a wave on the energy barrier, as in 
Figure 3a, which shows the variation of ^ with distance super­
imposed on a particular barrier. The wave equation involves 
the potential energy of the proton, and to represent the proton-
transfer process we substitute into it the expression for the 
potential-energy barrier. The resulting equation can be solved 
in simple cases (see below). For proton energies lower than the 
barrier height, the solutions show that besides the reflected 
wave, which would be expected if the proton had no chance of 
crossing the barrier, there is also a transmitted wave; that is, 
there is a finite probability that the proton will "penetrate" 
the barrier. The reaction probability rises with the energy of 
the proton, as shown in Figure 3b, which may be compared 
with Figure 2b. The steepness of the curve depends on the 
slope and especially on the thickness of the barrier. 

That this behavior is to be expected for a wave, though not 
for a particle, may be seen from an optical analogy.1 Con­
sider a light-ray traveling in a block of glass (Figure 4a) and 
meeting a glass-to-air interface at an angle such that total 
internal reflection occurs. This interface corresponds to a 

(a) 

l-Ol 

Reaction 
Probability 

W/E — » 

(b) 
l-O 2-O 

(4) T. H. Johnson, Phys. Rev., 37, 847 (1931). 

Figure 2. Incidence of a proton on a potential-energy barrier of 
height E (classical version): (a) potential energy V(x) against re­
action coordinate x; (b) reaction probability against energy W 
of proton expressed as W/E. 

potential wall, and on a particle theory of light the less dense 
medium should be quite unaffected. According to the wave 
theory, however, it experiences a disturbance, though this 
falls off sharply and becomes negligible at a distance of a few 
wavelengths. If another block of glass is brought up within a 
short distance d of the first (Figure 4b), an appreciable fraction 
of the light energy appears in a ray transmitted across the gap, 
which corresponds to a potential-energy barrier. The intensity 
of the transmitted ray decreases exponentially with increase 
of the distance d. The effect is easily demonstrated with micro­
waves, using blocks of paraffin wax as the denser medium. 

It is to be noted that tunneling is a necessary consequence 
of the use of the wave model, which is fundamental to the view 
of matter on which quantum mechanics is based. The question 
is not whether tunneling occurs, but whether it is detectable. 
If the basic principles of quantum mechanics are accepted, it 
follows that the behavior of atoms cannot be treated in terms 
of the particle model alone. For most atoms and groups, the 
effects of tunneling are negligible, but for light atoms they 
may not be, and detailed consideration of the wave model is 
needed. The theory of tunneling is simply the application of 
the wave model. Where this model is appropriate, the use 
of the particle model may lead to a misleading picture of the 
situation. We must not imagine, for instance, that some 
protons go "over" the barrier and some "through" it; since 
the particle model is fundamentally inappropriate, we cannot 
use it in this way. It is not even true that all protons with 
energy greater than the barrier height will cross the barrier; 
curves such as those in Figure 3b show that G is less than 
unity even for these, indicating that partial "reflection" occurs. 

The kinetic consequences of this view of reactions must 
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now be considered and compared with experiment. We confine 
our attention to the evidence from the rates of homogeneous 
chemical reactions involving the transfer of H or of its isotopic 
modifications D and T. The evidence from spectroscopy and 
from electrochemical phenomena, though of great interest, 
will not be discussed in this review. 

B. LIST OF SYMBOLS 

W total energy 
V(x) potential energy corresponding to reaction 

coordinate x 
E height of energy barrier 
Eu, E°, Er height of energy barrier for transfer of H, D, T 
EA., EoUi empirical Arrhenius activation energy given by 

dlnAr/d(l/r) 
2a width of parabolic barrier 
a = E/kT 
J3 = l^ailmEf^lh 
7 = 1 - WIE 
A = 2EIa2 

vx = (2Trkr/A)(a//3) = E'^aOmf'1 = ^'/27Wi 
u = 2ir<*//3 = hvtlkT 

V i 

C. THE KINETIC CONSEQUENCES 
OF TUNNELING 

The kinetic consequences of tunneling in proton-transfer 
reactions may be calculated as follows. The fraction of protons 
of a given energy that pass the barrier, which may be called 
the "reaction probability" or the "permeability" of the barrier 
for protons of that energy, is the ratio of the squares of the 
amplitudes of the transmitted and incident waves; this is 
found from the solution of the wave equation. The observed 

Energy 

V(x) 

i-or-
T Reaction 
I Probability 

i 

U/ 

<—Classical 

W/E 

b 

i 
I-O 2-O 

Figure 3. Incidence of a proton on a potential-energy barrier of 
height E (quantum-mechanical version): (a) variation of \p with x, 
superimposed on potential-energy diagram V(x) against x (after 
D. L. Bunker); (b) reaction probability against energy W of proton, 
expressed as WjE, for various parabolic barriers (after Johnston 
and Rapp10). The parameter /3 is related to the barrier dimensions. 

Air Glass Glass 

(b) 

Figure 4. Optical analog of tunneling. 

rate of reaction involves a large number of systems with differ­
ent energies, so the reaction probability must be suitably 
averaged; this may be done by assuming a Boltzmann distri­
bution of energies, which is true for any system in thermal 
equilibrium. One can then calculate the rate of reaction for a 
given barrier. Solutions of varying exactness have been de­
rived for barriers of various shapes (see below). It emerges 
that, regardless of the shape of the barrier, the following 
general behavior can be expected. '•2 

1. Nonlinear Arrhenius Plots 

For most reactions the variation of the rate constant k 
with temperature is given by the empirical Arrhenius equation 
k = A exp(—EA/RT) within experimental error. The equation 
may be written in the form 

whence 

In k = In A - ExIRT 

dlnk/d(l/T): EAIR 

(3) 

A plot of In k against l/T is therefore linear, and its slope is 
constant and equal to -EAI R. The A factor is evidently 
given by (In k + EAIRT). 

The Arrhenius equation approximates closely to the equa­
tions predicted on the simplest assumptions by the collision 
and transition-state theories for reactions in which a system 
must surmount an energy barrier, so that the reaction prob­
ability jumps from O to 1 at a particular energy (Figure 2b). 
The temperature dependence of the rates calculated for tunnel­
ing does not follow this law, especially at low temperatures. 
Some typical values of the rate constants for proton and deu-
teron transfer, calculated for a parabolic barrier, are shown in 
Figure 5 in the form of Arrhenius plots. The linear plot calcu­
lated from the expression in which tunneling is ignored, k 
= A exp(—E/RT), is shown for comparison. For proton trans­
fers, it is evident that as the temperature falls (from left to 
right) the rate constant falls off less steeply than it would in 
the absence of tunneling; the plot is not linear but concave 
upward. The physical reason for this increasing positive de­
viation with decrease of temperature is that, although the 
fraction of systems with energy less than the barrier height 
decreases, according to the Boltzmann law, such systems have 
still a finite chance of passing the barrier. The deviation from 
linearity is markedly dependent on the width of the energy 
barrier; compare the curves in Figure 5 for barrier widths of 
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Figure 5. Arrhenius plots of log k against 1/rfor proton- and deu-
teron-transfer reactions: (a) calculated from the Arrhenius equa­
tion without tunneling (dashed lines), and (b) calculated for tun­
neling through a parabolic barrier (full lines). The height of the 
barrier for proton transfer Ea is 15 kcal mole-1, and for deuteron 
transfer £"D is 16 kcal mole-1. The width is shown beside each line. 
Heat of reaction AH = 1 kcal mole-1. 

1.5 and 1.0 A. There should, then, be a temperature range 
in which deviations from a linear Arrhenius plot can be ob­
served; but this range is difficult to predict, since we have no 
accurate knowledge of the dimensions of energy barriers. 

The slope of the linear Arrhenius plot in the absence of 
tunneling gives E, the height of the energy barrier. The barrier 

3 -
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Energy barrier for D 
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Energy barrier for H 

ED 
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IO 

heights will be designated as EB for the proton transfer, E0 

for deuteron transfer, and ET for triton transfer. For the 
nonlinear plots calculated for tunneling, the gradient of the 
curve at any temperature gives the apparent energy of activa­
tion that would be derived from rate measurements made close 
to that temperature (cf. eq 3). It is evident that these observed 
values, which we will write as E3^d, ED

0b,d, and ET
ob»i, 

will decrease as the temperature falls, especially £Hob«i. They 
will be less than the barrier heights, the difference being 
largest for En — EB

cM. Plots of £H„b.d and £Dobsd against 
temperature, derived from plots in Figure 5, are shown in 
Figure 6. 

2. Anomalous Isotope Effects 

The deviations calculated for the transfer of D+ or T+ are 
much smaller than for H+, because the associated de Broglie 
wavelengths are shorter than those of the proton. Figure 5 
illustrates this point; the curves for deuteron transfer are 
much closer to the line calculated without taking tunneling 
into account than are those for proton transfer. Several conse­
quences follow. 

(i) The rate ratio kBlkD is larger than it would be in the ab­
sence of tunneling, and the deviation increases with decrease 
of temperature. This can be seen from the vertical distance 
between the curves for H+ and D+ transfer in Figure 5 and is 
shown in Figure 6. The maximum value of £H/&D that can be 
explained without tunneling is calculated by supposing that all 
the zero-point energy associated with the A-H or A-D bond 
is lost in the transition state, so that the activation energy 
for the deuteron transfer is higher by the difference of the 
zero-point energies of these bonds; the value so obtained6'• 
is around 7 at 25 °, if stretching alone is taken into account. 
(If the zero-point energy for bending also is assumed to be 
lost, which is less likely, the value is 17.) Larger values are 
anomalous and suggest that tunneling should be taken into 
account. Much smaller values may also be significant if they 
deviate from an otherwise regular relation between k^jkn 

and the equilibrium constant of the reaction (see below). 

(ii) The difference in the observed activation energies for 
the two isotopes CED

0b.d — £Hobsd) is larger than it would be 
in the absence of tunneling (£D — Es). This can be seen from 
Figure 5, which shows that at any temperature £H

0bsd de­
viates from En more than En<,b,d does from £D ; the corre­
sponding values are plotted in Figure 6. The maximum value 
of CED — En) corresponds to the difference of zero-point 
energy for the stretching of the C-D and C-H bonds, which is 
usually in the region of 1.1 kcal mole-1. Any value of (£D„bid 
— E11ObBi) larger than this suggests that tunneling may have 
to be taken into account. 

(iii) The apparent A factor for proton transfer 04H
Obid) 

is greater than that for deuteron transfer G4D
ob!d). This may 

be seen by extending the Arrhenius plots as in Figure 7, which 
is similar to Figure 5 but extends to 1/T = O on the left. From 
eq 3 it is evident that the intercept on the Arrhenius plot 
when 1/T = O is In Aoh.i. Suppose that the rate constants 
kB and fcD are measured over the temperature range 250-
22O0K, and that this is not long enough for the nonlinearity 

Figure"6. Plots derived from Figure 5, showing the variation with 
temperature of EB

abad, ED
ohli, kslk°, and ^D„b8dA4Hob8d. The 

heights of the energy barriers, as in Figure 5, are (in kcal mole-1) 
£H, = 15, £D = 16, AH = 1. The width of the parabolic barrier is 
2a = 1.5 A. 

(5) J. Bigeleisen, /. Chem. Phys., 17, 675 (1949); Pure Appl. Chem., 8, 
217 (1964). 
(6) J. Bigeleisen in "Tritium in the Physical and Biological Sciences," 
Vol. I, IAEA, Vienna, 1962, p 161. 
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of the plot to be detectable. The values of /4H
0bsd and A°0ui 

that would be derived from such results may be seen by ex­
trapolation to \\T = 0, as in Figure 7. It is seen that /lD0b»d 
> ^Hob.a- This is quite anomalous from the point of view of 
collision theory, in which A depends on the collision number 
and on steric factors, so that it cannot be appreciably larger for 
deuteron than for proton transfer; since the isotopic molecules 
AH and AD differ little in mass or shape, we should expect 
that /4Dob»dMHob.d ^ 1. Transition-state theory likewise 
predicts that /lD0b.dA4Hob.d will not usually be greater than 
unity; the maximum value is 2, and this supposes an improb­
able state of affairs in the transition state.6 Any larger value 
of ^Dobsd//4Hob,d is anomalous and suggests that tunneling 
should be taken into account. Similar considerations apply to 
^Tob.dA4Hob.d. Such an indication of tunneling is particularly 
striking because there is no obvious alternative explanation. 

If values of /4D„badA4Hob.d were determined over a tempera­
ture range in which a change in £H

0bsd was detectable, we 
should expect a change in the values with temperature, as 
shown in Figure 6. This case has not yet been realized experi­
mentally; changes in £H„b«d have been reported only at tem­
peratures where the deuteron-transfer reaction has become too 
slow to follow. 

Figure 7. Extrapolation to 1/T = 0 from Arrhenius plots for tun­
neling through a parabolic barrier The barrier heights are as in 
Figure 5; the width is taken as 1.0 A. 

(iv) Comparison of the rate constants for proton, deuteron, 
and triton transfer (ka, k°, and kT) at a single temperature 
may show an anomaly. In the absence of tunneling, the rela­
tion between knlk° and kakT is given, on the simplest assump­
tions, by Swain's equation7 

log (fcH//cT) = r log (&H/A:D) (4) 

where r = 1.442. The derivation has been generalized by 
Bigeleisen,6 who has shown that the factor r may be as high 
as 1.58 if the isotope effect is temperature independent, or as 
low as 1.33 for small isotope effects at very high temperature, 
but that normally it should be close to Swain's value of 1.442. 

Lewis has pointed out8 that tunneling may lead to deviations 
from this value, although it will not necessarily do so. 

3. The Interest of the 
Results-Barrier Dimensions 

Besides its obvious interest as a possible explanation of 
anomalous isotope effects and nonlinear Arrhenius plots, 
quantum-mechanical tunneling is of interest because its 
effects depend very markedly on the width of the potential-
energy barrier. Rate measurements that can be confidently 
interpreted in terms of tunneling are therefore a means of 
investigating the dimensions of energy barriers, on which there 
is remarkably little other information. The dimensions derived 
from the experimental results depend, as we shall see, on the 
shape assumed for the barrier, and their absolute values 
therefore cannot be relied upon; but their relative values 
in a series of related reactions, or a series of solvents, should 
be of interest. 

II. Sketch of the Mathematical Theory of 
Tunneling in Chemical Reactions 

A. THE ECKART BARRIER 

We first assume that there is a unique potential-energy profile 
for the movement of the proton along the reaction coordinate, 
as in Figure 1. This is equivalent to assuming that, on the 
potential-energy surface, the only path that need be considered 
is the path of minimum potential energy, along the bottom of 
the valley and over the lowest point of the saddle. (This re­
striction can later be removed.) 

1. Solution of the Wave Equation 

The Schroedinger equation representing wave motion in 
one dimension along the reaction coordinate x may be 
written 

(dV/dt2) + ( 8 T T V ^ W - V(xM = 0 (5) 

Here W is the total energy of the wave particle, V(x) is its 
potential energy at x, and n is the reduced mass, which in our 
problem can be identified with the mass of the proton. To 
represent the incidence of a proton on a potential-energy 
barrier, we must insert for V(x) the function representing the 
form of the barrier and solve the resulting equation. It is 
evident that when W — V{x) is effectively constant, at a con­
siderable distance on either side of the barrier, the equation 
becomes 

(d^/dx2) + (constant)^ = 0 (6) 

This is the equation for a sinusoidal wave, as shown in Figure 
3a. We wish to calculate the ratio of the amplitudes of the 
waves on the left and right, since the square of this ratio gives 
the permeability of the barrier. 

A type of barrier for which an exact solution can be ob­
tained is the Eckart barrier,9-12 of which a symmetrical form 

(7) C. G. Swain, E. C. Stivers, J. F. Reuwer, and L. J. Schaad,/. Amer. 
Chem. Soc, 80, 5885 (1958). 

(8) E. S. Lewis and J. K. Robinson, ibid., 90, 4337 (1968). 
(9) C. Eckart, Phys. Rev., 35,1303 (1930). 
(10) H. S. Johnston and D. Rapp, J. Amer. Chem. Soc, 83, 1 (1961). 
(11) H. S. Johnston, Advan. Chem.Phys., 3,131 (1960). 
(12) T. E. Sharp and H. S. Johnston, J. Chem. Phys., 37, 1541 (1962). 



140 E. F. Caldin 

is shown in Figure 8 and an unsymmetrical form in Figure 3. 
The potential energy for this barrier is denned by 

V(x) = [A exp(27rx//)]/[l + exp(2irx//)] + 
[B exp(27rx//)]/tl + exp(2xx//)]2 (7) 

where A, B, and / are constants. This function —> 0 for 
large negative values of x, and A for large positive values; thus 
for the symmetrical barrier (Figure 8) A = 0, while for the 
unsymmetrical barrier A represents the heat of reaction (Fig­
ure 3). The effective width of the transition region is of the 
order of 2/. 

When the equation defining this barrier (eq 7) is combined 
with the Schroedinger eq 5, one obtains an equation of the 
hypergeometric type, whose solution may be written down in 
terms of the hypergeometric series. For large positive values 
of JC, corresponding to completion of the proton transfer, 
this solution reduces to an equation representing a single 
transmitted wave 

\p = a txp(2rix/\') (8) 

where 

X' = h/(2m[W - A])1/' 

For large negative values of x, the solution represents two 
waves, one incident and one reflected, corresponding to the 
protons approaching the barrier and those not transmitted 

\p = cii exp(2irix/\) + a2 exp(—2irixj\) (9) 

where X = h/(2mW)l/'. The quantity p = (a2/«i)2 may be 
called the reflection coefficient; the transmission coefficient or 
permeability G of the barrier is (1 — p). These may be ex­
pressed in terms of the barrier parameters A, B, and / and 
the energy W of the incident particle. The equation is 

P = |a2M|2 = 
r [ | + i(S - /3 - a)]T[j + K-B - fl -«)] 2 

r[J+i(8-i8 + a)]r[i-M-s-0 + «)] L } 

where a = 1/X, /3 = 1/X', C = /J2/8/W/2, 5 = 1MCB - QIC??*. 
If the barrier is not too narrow, B> C and eq 10 gives for the 
permeability G of the barrier to protons of energy W. 

& m = j _ = cosh [2T(a + ffl - cosh [27r(a - /S)] 
P cosh [2ir(a + /3)] + cosh [2ir5] 

(H) 

The form of this variation of G with W is similar to that 
illustrated in Figure 3b. 

2. Derivation of the Kinetic Equation 

The next step is to combine this expression for the permeability 
of the barrier to protons of a given energy, which is the same 
as the reaction probability for protons of that energy, with the 
fraction of the protons possessing that energy. The system 
will be assumed to be in thermal equilibrium, so the Boltzmann 
distribution will hold. The simplest form of the equation 
for the fraction of protons with energies between W and 
W + dWis 

— = — exp(-W/kT)dW (12) 

Figure 8. Symmetrical Eckart barrier (A) and parabolic barrier 
(B). The curvature at the top of each barrier is the same. 

This is strictly true only when the energy is expressible as two 
square terms and is nonquantized. It is thus valid for trans-
lational kinetic energy of the reacting molecules along the line 
of centers. When applied to vibrational or rotational energy, 
it implies a neglect of quantization, and in particular of the 
zero-point energy, but will be a reasonable approximation 
if the temperature is not too low. 

To obtain a quantity proportional to the rate of reaction, 
we multiply this expression by the reaction probability, G(W), 
corresponding to the energy W, and integrate over all possible 
values of W. The product is 

/•eo 

0 = I (1IkT)G(W) exp(-W/kT) dW (13) 

If we had ignored tunneling, we should have put G = O when 
W < E, and G = I when W> E, and so should have obtained 
an expression for classical behavior. 

0.1«. = ( (1/kT) exp(-W/kT)dW = txp(-E/kT) (14) 
JE 

The ratio Q of the two expressions for the rate is 

Q = v/v^. = exp(ElkT) (l/kT)G(W) X 
Jo 

exp(-J*7kr)d^ (15) 

This is the tunneling correction factor which would have 
to be applied to any value of the rate constant that had been 
calculated without taking account of tunneling. For instance, 
on simple collision theory such a value is k — PZ exp(—EIkT), 
where Z is the collision number and the factor P corrects for 
steric and other effects. The corresponding expression for k 
that takes account of tunneling is thus 

k = Pz[ (1IkT)G(W) exp(- WJkT) dW (16) 
Jo 

When we insert in eq 15 or 16 the expression for G(W) 
given in eq 11, the result is not susceptible of exact integration. 
Numerical integrations have been carried out10-13 and con-

(13) E. M. Mortensen and K. S. Pitzer in "The Transition State," 
Special Publication No. 16, The Chemical Society, London, 1962, p 57. 
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40C02000 IOOO ' ' SOO 333 

Figure 9. Calculated and observed kinetic isotope effect for reac­
tions of methyl radicals with ethane and acetone: circles, experi­
mental points; curves, calculated. A, no tunneling; B, tunneling, 
Eckart potential, not restricted to single path; C, tunneling, one-
dimensional Eckart barrier. Reproduced by permission from /. 
Amer. Chem. Soc, 83, 1 (1961). 

venient tables have been published.14* An approximate 
expression which gives good results in chemically interesting 
cases has also been obtained by Shin.14b A simplified form, 
applicable when E ~ A// and AH is considerable, has been 
given by Weiss.140 The lack of an exact and general analytical 
solution is nonetheless a disadvantage. 

In summary, then, the Eckart barrier gives an exact solu­
tion to the wave equation and an exact expression for the 
permeability of a barrier of given energy, but the form of 
this expression is not in general convenient for the second stage 
of the calculation, when the permeability has to be combined 
with the Boltzman distribution to give a rate constant. 

3. Extension to More Than One 
Reaction Path 

Thus far we have assumed that there is a unique reaction path, 
so that a treatment in terms of a single reaction coordinate x 
is adequate. This is not strictly true; there are alternative 
paths on the potential-energy surface (corresponding to 
different configurations of the activated complex) along which 
tunneling might also occur. (The mathematical condition for 
these paths to be important is that the de Broglie wavelength 
for the atom transferred is large compared to the parabolic 
region near the top of the barrier.) 

The treatment has been extended to include such paths by 
Johnston and Rapp10'11 who fitted Eckart potentials to 
sections through the potential-energy surface parallel to the 
reaction coordinate and carried out the multiple integration 

(14) fa) H. S. Johnston and J. Heicklen, J. Phys. Chem., 66,532 (1962); Qo) 
H. Shin, J. Chem. Phys., 39, 2934 (1963); (c) J. J. Weiss, ibid., 41, 

numerically by computer. They applied this method to the 
reaction H + H2 -*• H2 + H and found that, assuming the 
two-dimensional treatment to be correct, the one-dimensional 
Eckart barrier overestimates the tunneling correction by a 
factor of 3 at 3330K and 1.4 at 50O0K (see also Figure 9). 
These conclusions conflict, however, with some results by 
Mortensen and Pitzer,13 who solved the two-dimensional 
Schroedinger equation numerically, and found that the one-
dimensional Eckart barrier underestimated the correction by a 
factor of the order of 0.6. Further calculations must be awaited 
before a conclusion can be reached about the quantitative 
reliability of calculations from the one-dimensional equation; 
some further evidence is mentioned in section III. There is no 
doubt, however, about the general form of the results as out­
lined in section I. 

B. THE PARABOLIC BARRIER 

1. Bell's Earlier Treatment 

A type of barrier that is more convenient for kinetic calcula­
tions is the parabolic barrier. We consider first a symmetrical 
truncated parabola, as represented in Figure 8; this corre­
sponds to a reaction with zero heat of reaction. The equation 
for the potential energy, if the width of the parabola at the 
base is 2a and the height is E, is 

V(x) = E[I- (x'la*)] (17) 

This type of barrier was originally treated by Bell,1,16 

who noted that the discontinuity of shape at the base of the 
parabola might lead to inaccurate results for very small 
values of W. He used an approximate solution of the Schroed­
inger equation (the Brillouin-Wenzel-Kramers approxima­
tion16), which is valid when W is considerably less than E, 
but becomes less accurate as W approaches E. He also as­
sumed that G = I when W ^ E, whereas the accurate solution 
for the Eckart barrier shows that G < 1; this approximation 
will lead to inaccuracy for small positive values of (W — E), 
an energy range which will be important when the degree of 
tunneling is small. The result when IV < E is 

G ~ tsxp{-fil - (W/E)]) (18) 

where 

/3 = 2-!r
ia(2mE)1/'/h 

The accuracy of this approximate solutions was tested 
in two ways, (a) An exact solution was obtained17 for the 
special case W=E, and it was found that G ca V2, so that 
the approximate treatment is here in error by a factor of 2; 
this is the maximum error that will arise, (b) A comparison 
with the values of G derived from the Eckart barrier for a 
range of values of W showed a maximum difference of the 
same order.15 It was concluded that the equations could be 
used for semiquantitative calculations and should be fairly 
accurate for the relative rates of similar reactions. 

(15) R. P. Bell, Proc. Roy. Soc, A148, 241 (1935). 
(16) L. Pauling and E. B. Wilson, "Introduction to Quantum Me­
chanics," McGraw-Hill Book Co., Inc., New York, N. Y„ 1935, p 198. 
(17) R. P. Bell, Proc. Roy. Soc, A1S8,128 (1937) 
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The tunneling correction to the rates can now be calculated 
by combining eq 18 and 15; the result is 

Q = exp(£/kr) I' (1/kT) e\p[-(W/kT) -

0 + (j3W/E)]dW (19) 

The advantage of the parabolic barrier is now apparent: 
it is that the expression for G is an exponential, which can 
easily be combined with the exponential term in eq 15 to give 
an expression that can be integrated directly. The result comes 
out to 

Q (J3e-a - ae-P) (20) 
/3 - a 

where a = EjVT and /3 = 1^a(ImEf ^Jh. In systems of 
interest to chemical kinetics, a and ft are both in the range 
10-40, so that e~a and e - " are both small. For many systems 
of interest, a < /3 and eq 20 approximates to 

Q = /J/03 - a) or l/fi = l - (a/13) (21) 

The deviation of the rate from the value calculated for zero 
tunnel effect thus depends on a//3, which is 

a/ff = hE^'ll^akTQm)^ (22) 

The deviation thus depends on the mass, the temperature, 
and the factor Ef^/a which is determined by the barrier di­
mensions. This factor El/'/a is related to the curvature of the 
barrier at the top, which we will call c t and is easily shown to 
be 2Eja*. Equation 22 may therefore be rewritten 

a//3 = c^'h/WmT (23) 

This equation shows that the correction to the rate increases 
with increase of the curvature c t and decrease of the mass m. 

The curvature at the top may also be related to a frequency 
vt defined by 

hvt/kT = 2ira//3 or Vi = El/'/To(lm)l/t 

whence 

Vt chllTm 
1A 

(24) 

(24a) 

This is easily shown to be the frequency with which a particle 
of mass m would execute a simple harmonic oscillation in a 
parabolic potential-energy well having the same curvature 
as the barrier—the mirror image of the barrier, so to speak. 
(Motion along the reaction coordinate may be said to cor­
respond to an imaginary frequency, ivt.) The correction to the 
rate evidently increases with increase of vt and decrease of 
the mass. The numerical values of ct and vt are useful as quan­
titative measures of the degree of tunneling. 

Another consequence of the expression 21 for Q is that the 
observed energy of activation, given by eq 3, comes out in 
terms of the barrier height is as 

E0UiIE = 1 - [1/03 - a)] (25) 

It is evident that Eobli is less than E, and that the difference is 
greater the smaller is /3, i.e., the smaller are a and m. The ob­
served A factor in the Arrhenius equation comes out in terms 
of the true A factor as 

Aobti/A = [3/03 - a)] exp[-£/kr03 - a)] (26) 

The exponential term shows that A0b,d is less than A and is 
smaller the smaller are a and m. 

To summarize, the rate, the apparent energy of activation, 
and the A factor all deviate from the values that would be 
calculated if the permeability of the barrier were zero, and the 
deviations increase with decrease of the mass and decrease 
of the barrier width (increase of the curvature at the top). 
These are the features that were pointed out in the Introduc­
tion and illustrated by the Arrhenius plots in Figure 5 and 
the derived plots in Figure 6. 

The treatment was extended in a later paper18 to unsym-
metrical parabolic barriers, corresponding to reactions with a 
finite heat of reaction. The tunneling correction is necessarily 
smaller when there is a large energy difference between the 
initial and final states, since no tunneling can take place from 
systems with energies lower than the higher of these states. 
For small heats of reaction, of the order of 1 kcal mole -1 , 
the effect is not great, but for large heats of reaction it may be­
come important. This is also shown by computations on 
unsymmetrical Eckart barriers.14" The plots in Figures 5 and 
6 were actually calculated for a value of AH = 1 kcal mole - 1 ; 
for Q = O, the results would be practically unchanged when 
la = 1.5 A, but with la = 1.0 A the value of /lDob.dMHob.d, 
for example, would be 50 % higher. 

2. Bell's Later Treatment 

In a more recent treatment,19,20 Bell gives a different solution 
for the permeability of a symmetrical parabolic barrier. In 
place of eq 18, he obtains 

G(W) = [1 + exp03T)]- (17) 

where y = 1 — (W/E). This equation turns out to be exact for 
parabolic barriers.20 It differs in form from the previous 
equation (eq 18). Some values of the permeability calculated 
from it, with various values of /3, are shown in Figure 3b. 
They show that there is a finite probability of penetration of 
the barrier (G > 0) when W < E, and also that there is partial 
"reflection" when W > E. It may be noted that G = Vi at 
W = £, a result that agrees with the value calculated from the 
Eckart barrier." 

The expression for G(W) in eq 27, like the earlier one, has a 
form that allows it to be easily combined with the exponential 
term in eq 15 from which the rate of reaction is calculated. 
One obtains for the tunneling correction factor Q 

Q J» 1 
exp(«7) d7 

+ exp037) 
(28) 

To integrate the equation, we first substitute x = exp(a7), 
so that 

Q " Jo 1 + *"° J0 1 
dx 

+ X' #/<* 

J^ i + *"-
(29) 

The first integral is (ira/;3)/sin (ira/&); the second can be ex­
pressed as a series 

(18) R. P. Bell, Proc. Roy. Soc, A154, 414 (1936). 
(19) R. P. Bell, Trans. Faraday Soc, 54,1 (1959> 
(20) R. P. BeU, ref 2, Chapter 11. 
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G = -
Talfi 

sin 7ra//3 p — a ( 2p — a 

- ... j (31 
3/3 - a 

exp(-2/3) 

This can be simplified when a < /3, which is commonly the 
case in problems of kinetic interest. Then e" <3C e9, and 
exp(a — /3) <JC 1, and all but the first term in (30) can be ne­
glected. (This should, however, be verified in each case; 
in some calculations the second term is not negligible.) The 
result then takes the simple form 

Q = (7ra//?)/sin (va/fi) (31) 

It is convenient to define a quantity u such that 

u = 2™//? = hvt/kT = hlirailmlEf^T (32) 

Then eq 31 may be written very simply as 

Q = |«/sin iu (33) 

Equation 33 differs entirely in form from the previous eq 21, 
but the numerical values calculated from it are often not 
greatly different. A direct comparison of the two treatments 
has been made for one reaction where the results indicate 
appreciable tunneling (see ref 61 and section IV.A.3.a). The 
results agree closely; the largest difference in barrier height is 
less than 0.1 kcal mole-1, and for the barrier width it is 0.05 A. 

A more accurate expression than eq 33, taking into account 
the second term of the series, is (for u < 2 v) 

Q = 
Ju 

sin iu 2v 

( E (2x - u) 
expr *T -Y-

(33a) 

This is accurate enough for any reaction so far studied. It 
may be noted in passing that eq 33 extends the relation 
between penetration of a parabolic barrier and oscillation 
in a parabolic well, since if we replace vt by /v, we obtain 
Q = 1liu/(sinh 1JiU), which is the quantum correction for a real 
harmonic frequency in the transition state.20 

The important general result is that the tunneling correc­
tion depends, as before, on the value of a/0, or of vt (eq 24), 
and therefore on the mass and on the factor E^'/a, which 
depends on the dimensions of the energy barrier. 

We can now derive expressions for the apparent activation 
energy and A factor in terms of «. Using eq 3, we obtain 
from eq 33 

Ecb.i -E= kT(iu cot iu - 1) (34) 

A0UiIA = (£«/sin iu) exp(iu cot iu — 1) (35) 

As in the earlier treatment, Eob^ is less than E, and A00^ is 
less than A, and the differences are greater the larger is a//3, 
i.e., the smaller are m and a. 

The values of .E0W and A00^ vary with temperature and 
with isotopic substitution in the same general way as those 
calculated by the earlier approximate eq 25 and 26 and repre­
sented in Figures 5 and 6. The general consequences in chem­
ical kinetics have already been outlined. The results of detailed 
applications of these equations to various reactions in solution 
will be dealt with in section IV. Earlier calculations were done 
by hand and brain, but more recently computers have been 
used (see ref 66 and 75); this allows many more values of the 
barrier parameters to be tried and improves the accuracy of 
the fit. 

Some comparisons of the quantitative predictions of this 
treatment with those calculated from the one-dimensionaj 
Eckart barrier have been made.21 For the reaction H + Ha, 
the correction factor Q predicted at 5000K is about twice that 
for the Eckart barrier, but at 1000° the two treatments agree.w 

Much the same is true for the reaction between CF3 and CHD» 
(see section III, ref 33). The parabolic barrier would be ex­
pected to overestimate tunneling at low temperatures, where 
most of the protons are of low energy, corresponding to the 
lower part of the barrier where it is narrower than an Eckart 
barrier. The relative figures for a series of related reactions 
should nonetheless be significant. 

A one-dimensional barrier intermediate between the Eckart 
and parabolic barriers has been treated by Christov.21 Men­
tion should also be made of the earliest solution by Wigner" 
of the problem for a parabolic barrier; the result was an 
approximation valid only for very small tunneling corrections, 
but of interest in relation to later work.20 

Values of the computed barrier dimensions for various reac­
tions in solution are collected and discussed in section IV.B. 

Iff. Tunneling in Reactions in the Gas Phase 
Our main topic is reactions in solution, and we shall only 
deal briefly with reactions in the gas phase. Most of the work 
has been concerned with isotope effects. These are often con­
veniently determined by competition methods. The value 
of A°obiilA11O01A, for instance, has been determined for the 
abstraction of H or D by CH3, CD8, or CF3 radicals 
from a variety of molecules including H2, HC4, C2H«, 
CH3COCH8, C2H6OH, and their deuterated analogs. The 
technique is to produce methyl radicals, for example, by 
photolysis of acetone, in a mixture of (say) C2H8 + C2D8, 
and determine by mass spectrometry the relative amounts of 
CH3H and CH3D in the product. Measurements are made 
over a range of temperature and the value of -4D„b.dA4Hob»<j 
obtained. This is commonly slightly greater than unity; 
thus for acetone it is 1.5 ± 0.1, and for ethane it is 3.5 ± 1.5. 
The deviations from unity, though small, are greater than the 
experimental errors and are in the direction expected for 
tunneling.23-27 The largest deviation28 (which, however, 
includes a small secondary isotope effect) is shown by the 
reaction CD3 + CD4 compared with CH3 + CH4; here 
AD

0ui/An
ob,i is about 10, and £D

0bsd — £H°bsd is 3.5 kcal 
mole-1. The corresponding abstraction reactions from N-H 
bonds do not show detectable tunneling effects.29,80 

Interesting evidence is provided by the theoretical treat­
ment of the abstraction reactions of CH3 radicals with ethane 
and acetone, by Johnston and Rapp.10 'n These authors used a 
potential-energy surface of the Sato type and derived values 

(21) S. G. Christov, Ann. Phys., [7] 12, 20 (1963); Proceedings of the 
1st Australian Conference on Electrochemistry, Oxford, Pergamon Press, 
New York, N. Y., 1964, p 723; Discussions Faraday Soc, 39, 60 
(1965). 
(22) E. P. Wigner, Z. Physik. Chem., B19, 903 (1932). 
(23) J. R. McNesby and A. S. Gordon, J. Amer. Chem. Soc, 76, 823, 
1416(1954); 77,4719 (1955); 78, 3570(1956). 
(24) R. Klein, J. R. McNesby, M. D. Scheer, and L. J. Schoen, / . Chem. 
Phys., 30, 58 (1959). 
(25) J. R. McNesby, M. D. Scheer, and R. Klein, ibid., 32,1814 (1960). 
(26) J. R. McNesby, J. Phys. Chem., 64, 1671 (1960). 
(27) P. Gray and A. A. Herod, Trans. Faraday Soc, 64, 1568 (1968). 
(28) G. A. Creak, F. S. Dainton, and K. J. Ivin, ibid., 58, 326 (1962). 
(29) P. Gray and J. Thynne, ibid., 59, 2275 (1963); 60, 1047 (1964). 
(30) P. Gray and J. C. Thynne, Tenth Symposium on Combustion, 
Combustion Institute, 1965, p 435. 
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of fcH/fcD, using the equations of transition-state theory and 
assuming (i) no tunnel effects, (ii) tunneling through a one-
dimensional Eckart barrier, corresponding to a single reac­
tion path, and (iii) tunneling also along other parallel reac­
tion paths near the saddle (see section II.A.3). Figure 9 shows 
the comparison between these calculations and the experi­
mental results23-24'26'31'38 over a wide range of temperature. 
The best agreement is with the full treatment (iii); if tunneling 
is ignored the discrepancy is considerable. The same is true 
for the abstraction reaction of CF8 radicals with CHD3, 
which has been studied over the range from 300 to 1800°. 
If no tunneling correction is applied, the experimental results 
deviate from those calculated from the theoretical Sato po­
tential-energy surface by a factor which increases as the tem­
perature falls, to about 3 at 3000K. According to the authors 
this effect is much too large to be accounted for by any com­
bination of uncertainties in the experiments or the theory." 
The discrepancy is greatly reduced if a correction based on 
Bell's equations is introduced and still more if the many-
path treatment of Johnston and Rapp is used. The authors 
conclude that the isotope effect cannot be understood without 
taking tunneling into account. These comparisons between 
theory and experiment are striking, but it should be remem­
bered that they do not test the equations for tunneling alone, 
but a combination of those equations with particular poten­
tial-energy surfaces. 

Isotope effects in the reactions of halogen atoms with simple 
molecules have been studied in much the same way. The 
reaction Cl + H2 is the rate-determining step of the Nernst 
chain mechanism for the hydrogen-chlorine reaction. It 
was investigated34 by producing chlorine atoms photochem-
ically from Cl2 in the presence of a mixture of hydrogen 
isotopes and determining the isotopic composition of the 
residual hydrogen, either by mass spectrometry (H2, D2, HD) 
or by radiochemical methods (HT, DT, T2). The Arrhenius 
plots over the range —30 to +70° were linear within experi­
mental error, and the isotopic A factor ratios such as Aa/A1' 
were all somewhat greater than unity, showing no detectable 
tunneling effect. Comparison with the predictions of a transi­
tion-state treatment using a Sato-type potential-energy surface 
shows, however, that when all tunneling corrections are 
omitted from the calculations the values for the isotope effect 
are too small; with corrections based on the one-dimensional 
Eckart treatment, the values are too large, but agreement 
within 15% is obtained with the Johnston-Rapp treatment. 
(For the reaction Br + H2, agreement is less satisfactory,35 

and for I + H2 it was found impossible to adjust the Sato 
parameter to give agreement.86) We are again left with rather 
indirect evidence that a tunneling correction is needed in these 
reactions. 

The deuterium isotope effect in the reaction Cl + HCl -*• 
ClH -f- Cl gives somewhat more positive evidence. It was 

(31) E. W. R. Steacie, "Atomic and Free Radical Reactions," 2nd ed, 
Reinhold Publishing Corp., New York, N. Y., 1954. 
32) F. O. Rice and T. A. Vanderslice, / . Amer. Chem. Soc, 80, 291 
1958). 

(33) T. E. Sharp and H. S. Johnston, / . Chem. Phys., 37, 1541 (1962). 
(34) A. Persky and F. S. Klein, ibid., 44, 3617 (1966). 
(35) R. B. Timmons and R. E. Weston, ibid., 41,1654 (1964). 
(36) J. H. Sullivan, ibid., 39,3001 (1963). 

investigated37 by measuring the relative rates of exchange of 
radioactive chlorine in an irradiated isotopic mixture, by a 
competitive method, at 39.3, 95, and 150°. The experimental 
plot of log (&H/£D) against I/T is curved, in the direction 
expected for tunneling, and deviates from the line calculated 
by transition-state theory from a Sato potential-energy surface 
without tunneling. A tunneling correction calculated by the 
method of Johnston and Rapp does not produce agreement, 
but the results are compatible with the simple Eckart treat­
ment. The best agreement, however, is found for the Bell 
parabolic barrier. 

To summarize the evidence from gas-phase reactions, we 
may say that there is little doubt that in several reactions 
kinetic isotope effects occur which are anomalous unless 
tunneling is taken into account, though the effects on ks/k° 
are within a factor of 10 even when the temperature range is 
several hundred degrees. There are a few cases where the 
Arrhenius plot is nonlinear or where AB is less than AD. These 
effects are less striking than those observed for reactions in 
solution (below). This is in part because gas reactions are 
commonly studied at relatively high temperatures, where 
tunneling is expected to be less important because more mole­
cules have energies comparable with the height of the energy 
barrier. 

IV. Tunneling in Reactions in Solution 

A. EXPERIMENTAL WORK AND 
CALCULATIONS 

1. Introduction 

Although the first experimental results to show evidence 
pointing clearly to an important tunneling effect were not 
obtained until 20 years after Bell's calculations, there are 
now about a dozen instances of reactions in solution where 
tunneling seems the likeliest interpretation of the observa­
tions. As compared with the gas phase, the indications for 
reactions in solution are more striking, in that nonlinear 
Arrhenius plots and values of A13JA** much greater than unity 
are observed, and it would be difficult to give an alternative 
interpretation of a considerable body of data. On the other 
hand, no theoretical potential-energy surfaces are available 
for reactions in solution, and consequently no detailed com­
parisons have been made of the various theoretical treatments 
of tunneling. Most of the data have so far been analyzed only 
in terms of Bell's first approximation for a symmetrical para­
bolic barrier. That tunneling must be taken into account 
seems to be established, but the second phase, in which quan­
titative information about energy barriers may be expected, 
is only beginning. Each phase has difficulties to overcome; 
these may now be briefly noticed. 

Alternative explanations of the observations must be ruled 
out before the interpretation in terms of tunneling can be 
regarded as convincing. Deviations from the Arrhenius equa­
tion can arise for various reasons quite unconnected with 
tunneling.88'39 (i) One reason is a change of mechanism at low 

(37) F. S. Klein, A. Persky, and R. E. Weston, ibid., 41, 1799 (1964). 
(38) R. P. Bell, Discussions Faraday Soc, 39,16 (1965). 
(39) J. R. Hulett, Quart. Rev. (London), 18, 227 (1964). 
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temperatures; if there are two concurrent reactions, the one 
with the higher activation energy will become dominant as 
the temperature rises, and the Arrhenius plot will curve in 
the same direction as for tunneling. It is therefore necessary 
to establish in each case that the same reaction is being studied 
over the whole temperature range. 

(ii) Another reason is a change of solvation when the transi­
tion state is formed. This appears to be the interpretation of 
the slight dependence of the enthalpy of activation on tem­
perature which is observed for many reactions in which the 
reactants are markedly less polar than the transition state.89 

Accurate rate measurements give curved Arrhenius plots, 
which can be analyzed in terms of the equation 

log k = -A/T + B)OgT+ C (36) 

which corresponds to a linear dependence of A//* on tem­
perature, implying a constant value ofACp*(=BR). The de­
rived values of ACP* can be interpreted in terms of solvent 
orientation on forming the transition state. For some reac­
tions, the possibility of such an interpretation can be ruled out 
because the effect would be in the wrong direction; for others, 
because it predicts a curvature throughout the temperature 
range and greater at high temperatures (<* r2), whereas the 
observed results follow a linear Arrhenius plot (within experi­
mental error) at higher temperatures with a comparatively 
sharp deviation at the lower end of the range. Nonetheless, the 
form of the plot (and so the values deduced for the barrier 
dimensions) may be affected in this way by solvent reorienta­
tion. 

(iii) A third possibility is that a change in the structure of the 
solvent at low temperatures might affect the Arrhenius plot.39 

In water, for instance, decrease of temperature leads to a more 
ordered structure, and so might lead to a less positive value 
of AS* and a smaller A factor for reactions in which the 
transition state is less polar than the initial state. Such an 
effect, depending mainly on the properties of the solvent, is 
unlikely if different reactions show widely different tunneling 
effects in the same solvent, as is observed for various reac­
tions in water and ethanol. 

(iv) It has been pointed out by Hills that a curvature of the 
Arrhenius plot would result if the energy of activation at 
constant volume (A£/v*) were temperature independent, as 
the corresponding quantity for ion migration has been shown 
to be, rather than the enthalpy of activation at constant 
pressure (A//p*) as normally measured.40-44 The relation 
between the two quantities is 

AHx,* = AC/T* + (a7AKT*//3) (37) 

where a and /3 are the coefficients of cubical expansion and 
compressibility; it follows that if AI/T* were independent of 
temperature, AHP* would not be. In general the data for 
calculating A£/v* by eq 37 from the observed values of AHP* 
are not available, since rates at high pressure are needed to 
evaluate AKT*. A recent study44 of the methanolysis of ?-bu-

(40) G. J. Hills, Discussions Faraday Soc, 39,59 (1965). 
(41) E. F. Caldin, ibid., 39, 62 (1965). 
(42) G. Kohnstam, ibid., 39, 217 (1965); Advan. Phys. Org. Chem., S, 
121 (1967). 
(43) G. J. Hills, P. J. Ovenden, and D. R. Whitehouse, ibid., 39, 207 
(1965). 
(44) G. J. Hills and C. A. Viana, Symposium on Equilibria and Reaction 
Kinetics in Hydrogen-Bonded Solvent Systems. Newcastle, England, 
1968. 

tyl chloride, for which AH9* varies with temperature (c/. (iii) 
above), showed that AC/,* was about equally temperature' 
dependent. There is indeed no reason to think that in chemical 
reactions, as distinct from ion migration, A £/,* is a physically 
simpler quantity than AHp* or more directly related to condi­
tions in the gas phase. When the transition complex is formed, 
in reactions where there is a marked change in polarity, there' 
is a change in the orientation of solvent molecules, and con­
sequently a change in volume, in the neighborhood of the 
complex. Under constant-pressure conditions, the structure 
and volume of the bulk of the solvent are unaltered, and the 
over-all result is a change in the volume of the solution. Under 
constant-volume conditions, the local volume change around 
the transition complex must be compensated by an equal and 
opposite volume change in the bulk solvent, brought about 
by a change in the external pressure; thus the structure of the 
bulk solvent is altered, as well as that near the transition 
complex, and the two effects may be difficult to disentangle; 
the value of AC/T* may depend on the properties of the solvent 
at least as much as that of AHP *. 

(v) The possibility that during the process of forming the 
transition complex the reorientation of solvent molecules 
cannot keep pace with the transfer of the proton has been 
raised by Bell38 and Kreevoy.45 It has been noticed that the 
dielectric relaxation time for water, which is in the region 
of 10-11 sec, is probably greater than the time required 
for a proton transfer between two suitably oriented activated 
molecules, which may be estimated as 1O-1MO-1' sec. The 
resulting departure from equilibrium would be greater for 
proton transfer than for deuteron transfer, since the deuteron 
moves more slowly; and it would probably be greater at lower 
temperatures, since the reorientation of solvent molecules 
is slower. Thus both the effects predicted for tunneling 
might be simulated. This possibility of nonequilibrium be­
havior could be important for the general theory of reactions 
in solution; the interpretation of A factors, for instance, 
leans heavily on the view that solvent reorientation controls 
AS* and hence A, and it is important to know whether re­
orientation may lag behind changes in bonding. Unfortu­
nately, it is difficult to make any quantitative estimates, be­
cause of the lack of information about the time required for 
a proton transfer and the times involved in molecular motions 
near a polar transition state. The following considerations 
suggest, however, that nonequilibrium behavior is not the rule, 
(a) In the extreme case, solvent reorientation would become 
rate determining, and the energy of activation would have a 
value of a few kilocalories, comparable with that for vis­
cosity or dielectric relaxation. There are indeed reactions 
where the activation energy has such values, but they are 
either very fast and diffusion controlled46 or else involve the 
solvent as a reagent,47 and this is not true of most of the 
reactions being considered, (b) The dielectric relaxation time-
is that required for a considerable cooperative motion of 
many solvent molecules. It appears that smaller motions can 

(45) M. M. Kreevoy and R. A. Kretchmer, J. Amer. Chem. Soc, 86, 
2435(1964). 
(46) E. F. Caldin, "Fast Reactions in Solution," Blackwell Scientific 
Publications, Chapter 12, 1964. 
(47) H. Beens, K. H. Grellmann, M. Gurr, and A. H. Weller, Discussions 
Faraday Soc, 39, 183 (1965). 
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occur in much shorter times, down to 1O-1' sec.48-60 (c) The 
effects might be expected to depend on the solvent and on 
the extent of reorientation, which is reflected in the value 
of AS*. It would therefore be predicted that a series of reac­
tions in the same solvent with similar values of AS* would 
show similar deviations from the Arrhenius equation (for 
example), and that reactions with a larger AS* would show 
larger deviations. This behavior is not observed (see ref 92). 
Further information on this question, both experimental and 
theoretical, is much to be desired. 

We turn now to the question of the reliance that can be 
placed on the quantitative data derived from experiments. Al­
though the results which follow indicate that there is a consid­
erable tunneling effect in several reactions, the numerical values 
derived for the barrier dimensions must be treated with some 
reserve, for the following reasons, (a) There is first the uncer­
tainty inherent in the choice of the theoretical model. The 
actual potential-energy barrier is presumably more nearly 
bell-shaped than parabolic; the parabolic barrier is therefore 
too narrow at the base, with the result that it overestimates 
tunneling at the lower temperatures where most systems are 
in low-energy states, (b) Again, the model takes no account 
of other factors that may influence the isotope effect, such as 
bending vibrations in the transition state,88 which partly 
compensate the tunneling correction, (c) There are the un­
certainties introduced by approximations. In most of the 
calculations so far carried out, only the first approximation 
has been used (eq 31, 33-35). (d) Moreover, in all the calcu­
lations it has been assumed that the energy barrier is sym­
metrical, corresponding to a negligible heat of reaction. If 
&H° is not zero, the effect of tunneling on the rate is smaller 
(section II, p 142); consequently, if the rate measurements 
are analyzed by means of the equations for symmetrical 
barriers, the values obtained for the curvature of the barrier 
will be too small (i.e., in general the barrier width will be 
too large). Unfortunately the values of AH0 are not known 
for most of the reactions of interest, (e) The energy of activa­
tion is assumed to be attributable entirely to changes in bonds 
involving the proton. If solvation changes, or changes of 
configuration, contribute appreciably to the activation energy, 
the curvature of the barrier will again be underestimated. 

There are thus several factors that may tend to 
reduce the curvature below its true value and so give too 
high a value for the barrier width, thereby partly cancelling 
the effect of the unrealistic shape of the barrier. The net 
effect of these influences cannot yet be estimated. 

Despite all this, the relative values of the barrier dimensions 
derived for a series of related reactions may be expected to be 
significant. It is therefore worthwhile to carry out simple 
calculations on a consistent basis and compare the results. 

The order of presentation in this review is as follows. The 
earlier work, up to 1955, is first summarized in section IV.A.2. 
The first investigation to give a clear indication of tunneling, 
published in 1956, is outlined in section IV.A.3; this work 
was on the isotope effect for a reaction between a ketone and 
a base. Isotope effects are next considered, first those for 

O'5O-

o 

0 4 0 -

0 3 0 -

Figure 10. Plot of log OfcH//fcD) against 1/2" for the reaction of 2-
carbethoxycyclopentanone with fluoride ion in water: circles, 
experimental points; full line, best line by least squares; dashed 
line, slope calculated for /Pobia = ^Hobsd. 

reactions between other ketones and bases, and then those for 
some hydride-ion transfers. Investigations showing deviations 
from linear Arrhenius plots are then dealt with (section 
IV.A.4). This order is not historical, except for the first few 
pages; the treatment is intended to show the present state of 
the evidence rather than the ways in which it was reached. 

2. Earlier Work 

The first definite indication that the tunnel effect was signifi­
cant in controlling the rate of a reaction in solution was pub­
lished in 1956. Before this a number of proton-transfer reac­
tions had been investigated, by measuring either their isotope 
effects or their temperature coefficients down to low tem­
peratures, without any positive indication being observed. 
These investigations may be summarized briefly. 

Rate measurements on proton-transfer reactions at low 
temperatures were first made by Bell and his coworkers, who 
used a cryostat cooled by evaporation of liquid ammonia or 
sulfur dioxide, down to —40°. The bromination of acetone 
catalyzed by hydrogen chloride or bromide in aqueous acetone 
was studied61 from +10 to —40°. The rate of ionization of 
nitroethane in aqueous methanol containing sodium hydrox­
ide was measured52 from +20 to -32°. For both reactions 
the Arrhenius equation was obeyed within experimental error. 
The temperature range was extended by Caldin and his co­
workers by the use of solid carbon dioxide or liquid nitrogen 
as coohng agents. The reactions of ethoxide ion with trinitro-
phenylmethane and with 2,4,6-trinitrotoluene in ethanol-
toluene solution were investigated58'" over the range +20 

(48) J. G. Powles and R. Figgins, MoI. Phys., 10,155 (1966). 
(49) R. A. Dwek and R. E. Richards, Discussions Faraday Soc, 43, 196 
(1967). 
(50) H. G. Hertz, Ber. Bunsenges. Phys. Chem., 71, 103, 979, 999, 1008, 
1032 (1967). 

(51) R. P. BeU and J. K. Thomas, / . Chem. Soc, 1573 (1939). 
(52) R. P. Bell and A. Norris, ibid., 118, 854 (1941). 
(53) E. F. Caldin and J. C. Trickett, Trans. Faraday Soc, 49, 772 
(1953). 
(54) E. F. Caldin and G. Long, Proc Roy. Soc, A228,263 (1955). 
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to —80°; no deviation from the Arrhenius equation was 
observed. 

The deuterium isotope effect for the base-catalyzed decom­
position of nitramide, a reaction which was known to be a 
particularly clean example of general base catalysis,66-68 

was studied by Bell and Caldin.69 The base used was dimethyl-
aniline and the solvent anisole. No anomaly was observed. 

The failure to observe the characteristic effects of tunneling 
in these reactions was put down to the energy barrier being 
too wide for the effects to be detectable. Barrier widths 
of 1.5 A would be enough. Since a barrier a few tenths of an 
angstrom narrower would show appreciable tunneling, the 
investigations were continued, and positive results were even­
tually obtained. 

3. Isotope Effects 

a. The Base-Catalyzed Bromination of 
2-Carbethoxycyclopentanone 

An investigation by Bell, Fendley, and Hulett60 on the 
deuterium isotope effect in the base-catalyzed bromination 
of 2-carbethoxycyclopentanone gave the first clear evidence 
of a detectable tunneling correction to a reaction rate. This 
reaction is a typical ketone halogenation; the reaction is 
catalyzed generally by bases, and the rate-determining step is 
a proton transfer 

y 
C-C(CO8Et)H 

+ X-- HX + R- (38) 

C-C=O 
(RH) 

The solvent used was D2O, containing 0.2 M KBr. Exchange 
between the solvent and the substrate RH is slow, so that it 
was possible to follow the proton-transfer by doing the kinetic 
run immediately after making up a solution, and the deuteron 
transfer after leaving it for a day. The rate was determined 
by adding bromine solution from a microsyringe and measur­
ing the time taken for the free bromine to disappear, by a 
sensitive conductometric method. The temperature was varied 
between 5 and 55°. By this simple technique it was possible to 
determine the rates and Arrhenius parameters for the two 
isotopic reactions, in the same solvent. 

The catalysts used (X-) were fluoride ion and monochloro-
acetate ion; the solvent also acts as a base catalyst. For all 
three, the values of (/JDob»dA4Hob«i) were greater than unity, 
and (ED

ob,i — £Hob.d) greater than 1.1 kcal mole-1 (Table 
I). The largest effect is shown by fluoride catalysis, for which 
the value of (/4r>

<JbBd//4
H

(,bid) is 24 ± 4, a value differing from 
unity by much more than the limits of error. Figure 10 shows 
the experimental data, along with the line calculated on the 
assumption that the value is unity; it is evident that this is 
incompatible with the results. 

(55) J. N. Brpnsted, Chem. Rev., 5, 322 (1928). 
(56) J. N. Brpnsted and H. C. Duus, Z. Physik. Chem., 117, 299 (1929) 
(57) J. N. Brpnsted and J. E. Vance, ibid., A163,240 (1933). 
(58) J. N. Brpnsted, A. L. Nicholson, and A. Delbanco, ibid., A169, 379 
(1934). 
(59) R. P. Bell and E. F. Caldin, Trans. Faraday Soc, 47, 50 (1951). 
460) R. P. Bell, J. A. Fendley, and J. R. Hulett, Proc. Roy. Soc, A235 
(53 (1956). 

The theoretical equations for a symmetrical parabolic 
barrier (eq 33-35) were fitted to the results. There are three 
unknowns: the width of the parabola, la; the height for pro­
ton transfer, EH; and that for deuteron transfer, ED. (ED 

will in general differ from £H, by an amount that will depend 
on the zero-point energy in the transition complex but will 
lie between 0 and about 1.1 kcal mole-1, the difference of zero-
point energies of C-H and C-D bonds.) The experimental 
results provide three independent quantities, such as /4D

0b.d/ 
A obad, E obsd, and £D„bad, so the values of a, En, and E° can 
be determined. The results are given in Table I. 

Table I 
Arrhenius Parameters and Barrier Dimensions for the Base-Catalyzed 

Bromination of 2-Carbethoxycyclopentanone in D2O" 

D1O 

Log (^D
0b.dMHob.d) 0.36 ± 0.05 

C obtd — -C oUd 

Es 

ED 

E oU&IE 
E obtilE 

1.21 ± 0 . 0 8 
13.16(13.2) 
13.54 (13.6) 

0.90 
0.96 

CH1ClCOO-

0.46 ± 0.06 
1.45 ± 0.08 
12.53 (12.5) 
12.95 (12.9) 

0.88 
0.95 

F-

1.38 ± 0 . 0 7 
2.44 ± 0.10 
18.0(18.0) 
18.Og (18.0) 

0.81 
0.94 

a 0.631(0.604) 0.584(0.563) 0.587(0.583) 

• E in kcal mole-1; a in A. £H, £D, and a are calculated61 from 
Bell's 1959 equations;19 the values in brackets are from his 1935 
equations."'60 

Several points call for comment, (i) The observed energy of 
activation, which is a measure of the average excess energy 
of the reacting systems, is 80-90 % of the height of the energy 
barrier; this indicates that the tunneling correction is not so 
large that the approximate formulas should not be used, (ii) 
The effect of the tunneling correction on the rate constant, 
which may be calculated from eq 21 or 33, is consider­
able; the rate is larger than it would be on the classical 
model, by a factor of up to 6. The value of fcH/£D depends as 
much upon the different tunneling factors for H and D as upon 
the difference of zero-point energies, (iii) The values for the 
barrier width are of the order to be expected. For D2O, for 
example, if we take the van der Waals radii of carbon and 
oxygen as 2.0 and 1.5 A, the distance of closest approach of 
the centers without reaction is 3.5 A; with the usual bond 
lengths, the distance over which the proton is transferred is 
about 1.3 A. (iv) The barrier width found for F - is slightly 
greater than for monochloroacetate, so the larger tunnel 
effect for F - must be attributed to the larger value for the 
barrier height, which leads to a greater curvature of the barrier 
and hence to a higher permeability, (v) For fluoride catalysis 
E° - EH is zero (±0.2 kcal mole-1). This implies that the 
difference of zero-point energies for H and D in the transition 
complex is much the same as that in the initial state. This 
zero-point energy could not, of course, be due to a sym­
metrical stretching vibration, but it could be due to an un-
symmetrical stretching vibration; or, alternatively, it could 
be due to a bending vibration, with a frequency of 1200-1600 
cm-1 (comparable with that for the ion HF2

-), indicating a 
considerable "stiffness" in the transition complex. Such results 
are of the greatest interest for our knowledge of energy barriers 
and of the structures of transition complexes. 

The Arrhenius plot for the fluoride-catalyzed proton trans-
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fer should deviate from linearity at a temperature not much 
below 0°, according to a calculation made from the para­
bolic-barrier model with the above dimensions. The tempera­
ture at which £H

ob,d/£H falls to V2 can be estimated by consid­
ering the special case18 a = /3, for which Eobli/E = V»8/(/3 + 
1). For reactions of practical interest 0 2> 1, so the condition 
for Eob.i/E = 1A is a = 0, whence T = hEl,,j2Tlak(2m)l,\ 
For fluoride ion the data in Table I give T = - 20 °. To work at 
this temperature, Hulett61 used a 5.2 M aqueous solution of 
sodium bromide and was able to measure rates of reaction 
from +25 to —20°. The Arrhenius plot showed a curvature 
in the expected direction; the rate constant at —20° was 75% 
above the value corresponding to a linear plot. However, this 
result is less impressive as a confirmation of the isotope work 
than it appears at first sight. In a solution as concentrated as 
5.2 M, in which the ratio of H2O molecules to ions is only 
about 5, we should expect large kinetic salt effects and 
much ion pairing. The salt concentration has a marked influ­
ence on the rates of such reactions and the Arrhenius param­
eters.62 Moreover, a curved Arrhenius plot that cannot be 
attributed to tunneling was obtained by Hulett63 for a related 
reaction in a concentrated aqueous solution. He measured the 
rate of bromination of acetone in the presence of hydroxide, 
where the rate-determining step is the proton transfer from 
acetone to OH-, and used 6.7 M sodium perchlorate in order 
to work over a temperature range down to —25°. He found 
that the Arrhenius plot was curved not only for proton transfer 
but for deuteron transfer as well. This result he ascribed to a 
medium effect, specific to hydroxide ion in water. Later work 
by Jones64 on the reaction of acetone with OH - in concentrated 
salt solutions showed that the tritium isotope effect (kT/ks) 
varied with concentration, in a way that might be explained 
by ion pairing; it was suggested that this might account for 
the nonlinear Arrhenius plot. These anomalies may be peculiar 
to reactions of hydroxide ions, but they suggest that further 
elucidation of salt effects is needed before reliance can be 
placed on the curved Arrhenius plot for the reaction of fluoride 
ion with 2-carbethoxycyclopentanone. 

There is no doubt, however, about the cogency of the evi­
dence from the isotope effect. It is of interest that in 1959 this 
was the only proton-transfer reaction for which there was 
good evidence for tunneling. All the rest of the present con­
siderable body of evidence, considered below, has been 
published in the last 10 years. 

b. The Deuterium and Tritium Isotope Effects in the 
Reactions of Hydroxide Ion with Acetone and 

Diisopropyl Ketone in Water 

Measurements of the deuterium and tritium isotope effects 
in the reaction of acetone with OH" were made by Jones,65 

at concentrations where the complications mentioned above 

(61) J. R. Hulett, Proc. Roy. Soc, A251, 274 (1959). 
(62) J. R. Hulett, Trans. Faraday Soc, 59,1815 (1963). 
(63) J. R. Hulett,/. Chem.Soc, 1166(1965). 
(64) J. R. Jones and S. C. Subba Rao, Trans. Faraday Soc, 63, 111 
(1967). 
(65) J. R. Jones, ibid., 61, 95 (1965). 

Table II 
Tritium Isotope Effect and Barrier Dimensions for the Reactions of 

OH - with o- and p-Methoxyacetophenone in Water" 

E obtd 

•£• obid 

E ob«d — E obsd 
Log (3^Tob.dMHob.d) 
3/1 „b»dA4 obid 

ET 

EH 

la 

phenone 

15.5 ± 0.3 
11.86 ± 0 . 0 8 
3.6 ± 0 . 4 
1.5 ± 0 . 2 6 

32 
15.5 
14.1 
1.270 

phenone 

17.1 ± 0 . 3 
13.8 ± 0 . 6 
3.3 ± 0 . 9 
1.1 ± 0 . 6 

12 
17.1 
15.9 

1.216 

° Em kcal mole-1; a in A. 

should not be relevant. The Arrhenius parameters, recalculated 
from Jones' results,66 give a large difference of activation en­
ergies (fsD<,b.d — £Hob.d = 2.4 ±0 .3 kcal mole-1) and a value 
for log C4D

ob.d//lHobSd) of 0.8 ± 0.2, corresponding to a value of 
/4Dob.dA4Hobsd of about 6. These values indicate an appreciable 
tunneling effect. Application of Bell's equations for a sym­
metrical parabolic barrier gives the best fit with barrier heights 
£ H = 13.6 and E° = 14.7 kcal mole-1, and width 2a = 1.260 
A. The results with tritium appear difficult to interpret6' 
(see also ref 8) and were not analyzed. 

For diisopropyl ketone, CO(CHMe2)2, the position is less 
clear. The tritium isotope effect67 indicates a value of ^4T

0b.d/ 
^Hob»d close to unity, indicating that the tunnel effect is small, 
although the Arrhenius plot for the proton transfer88 over 
the range 0-50° showed a deviation from linearity in the right 
direction. The plot can, however, be regarded as being made 
up of two straight lines meeting at about 30°, whereas the 
theoretical equations give a smooth curve.66 It seems possible 
that the change in slope may be due to a change in mechanism; 
further work is needed to decide this. 

c. The Tritium Isotope Effect in the Reactions 
of Hydroxide Ion with Substituted 

Acetophenones in Water 

Acetophenone and its substituted derivatives react with OH -

in the same way as acetone. Jones and his colleagues have 
measured the rates of the proton-transfer reactions by bromi­
nation and those of the triton-transfer reactions by detritia-
tion.69 A considerable tunnel effect is shown by the reactions 
of 0-methylacetophenone, where the ratio of the A factors is 
around 30; and of p-methoxyacetophenone, where it is about 
12. (A statistical factor of 3 is introduced, since in the experi­
ments there are three ionizable protons but only one ionizable 
triton per molecule; thus the relevant ratio is 3/4T

ob,dA4Hob.d.) 
The best values of the Arrhenius parameters and parabolic-
barrier dimensions66 are shown in Table II. 

(66) E. F. Caldin and G. Tomalin, ibid., 64, 2823 (1968). 
(67) J. R. Jones, ibid., 61, 2456 (1965). 
(68) J. R. Hulett, J. Chem. Soc, 430 (1965). 
(69) J. R. Jones, R. E. Marks, and S. C. Subba Rao, Trans. Faraday 
Soc, 63, 993 (1967). 
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d. The Deuterium and Tritium Isotope Effects in the 
Reactions of Pyridine Bases with 2-Nitropropane in 

r-Butyl Alcohol-Water 

The rate-determining step in the iodination of 2-nitropropane 
catalyzed by pyridine bases70 is the proton transfer 

(CH3)aCHN02 + py • (CH3)S1C-NO2- + pyH+ 

The deuterium isotope effect was measured for a series of 
bases in aqueous ?-butyl alcohol, in which the reaction is un­
complicated, by Lewis and Funderburk.71 The value ofkB/kD 

at 25° is about 10 for pyridine and for various substituted 
pyridines, so long as one of the hydrogen atoms adjacent to 
the nitrogen atom remained unsubstituted; but for 2,6-di-
methylpyridine and 2,4,6-trimethylpyridine it rises to 24, a 
value well above the limit set by classical theory. The cor­
responding value of the tritium isotope effect ka/kT was later 
shown8'72 to be 78 ± 4, a value in accord with Swain's equa­
tion.7 Lewis notes that this agreement tells against the hypothe­
sis that the large deuterium isotope effect is due to some 
mechanistic complication resulting in an addition of several 
normal isotope effects. The temperature coefficient of &H/ftD 

was measured for the reaction with 2,4,6-trimethylpyridine 
over a rather small range (20-32°); the value of £D

0b,d — 
£Hobsd is 3.0 kcal mole-1 and that of log (/lH„bsdA4Dob.d) 
is —0.16, whence ^DobsdA4Hobsd is about 7. These values 
indicate a considerable tunneling correction. The computed 
best values of the parabolic-barrier dimensions66,78 are ED = 
17.6 kcal mole-1, £ H = 16.3 kcal mole-1, and 2a = 1.14 A. 

It was this work that first suggested that tunneling might be 
exceptionally prominent in sterically hindered reactions. The 
two bases for which the isotope effects are unusually large are 
the only two of the series which are 2,6-substituted, so that 
access to the nitrogen is hindered. That this steric hindrance is 
enough to alter the rates of proton-transfer reactions con­
siderably is shown by the Br0nsted plot; the rates for these 
two bases are about one-fifth as fast as would be expected from 
those for other bases. We can understand, moreover, how 
tunneling might be favored in such reactions. Steric hindrance 
implies that there is repulsion between the incoming molecule 
and the methyl groups adjacent to the nitrogen atom to which 
the proton migrates. Consequently the potential-energy barrier 
will have a contribution from steric repulsion energy, as well 
as from the energy required to stretch the C-H bond. At short 
interatomic distances the repulsive energy between atoms rises 
rapidly as the distance decreases. The barrier will therefore be 
exceptionally steep near the top. The curvature at the top will 
be unusually large, and this will be reflected in a high tunneling 
factor (cf. section ILB). 

e. The Deuterium and Tritium Isotope Effects in the 
Reaction of Ethoxide Ion with 

l-Bromo-2-phenylpropane (PhMeCHCH2Br) in Ethanol 

l-Bromo-2-phenylpropane when treated with sodium ethoxide 
in ethanol undergoes an elimination reaction whose rate-

(70) E. S. Lewis and J. D. Allen, J. Amer. Chem. Soc, 86, 2022 (1964). 
(71) E. S. Lewis and L. H. Funderburk, ibid., 89, 2322 (1967). 
(72) Dr. R. E. Davis reports (personal communication) that this value 
was not confirmed in experiments by a competitive method. Such 
methods, however, are less suitable the larger the rate ratio. Bell and 
Goodall97 found that in water at 25 ° the ratio kH/kD is 19.5, comparable 
with Lewis and Funderburk's value. 
(73) R. M. Hyde, personal communication. 

determining step is a proton transfer from the 2-carbon atom. 

PhMeCHCH2Br + OEt" —> PhMeC=CH2 + Br- + EtOH 

The rates of this reaction and of the corresponding deuteron 
transfer were measured74 over a temperature range from 5 to 
55°. The value of knjk° at 25° is about 7 and increases as the 
temperature falls. The Arrhenius parameters give E\hti — 
£Hob.d = 1.77 ± 0.12 kcal mole-1 and ^D„bsd/^

Hob8d = 2.53 ± 
0.3. These values indicate an appreciable degree of tunneling. 
When Bell's equations for a symmetrical parabolic barrier 
are applied to them, the barrier width (to which the calcula­
tions are most sensitive) comes out as 1.589 A. (This is notably 
larger than for the reactions previously considered, which were 
all in aqueous solution; cf. section IV.B.) The difference in 
barrier heights E° — EK is 0.90 kcal mole-1, comparable with 
the difference in zero-point energy of the C-H and C-D bonds. 

The tritium isotope effect was later investigated by Shiner 
and Martin,75 who used a competitive method in which kT 

was compared with k°. The Arrhenius parameters gave 
£Tobed - £DobSd = 0.68 ± 0.025 kcal mole-1 and ^T„bad//4Dob.d 
= 1.19 ± 0.04. These values are much closer to the classical 
values (0 and 1) than are those for the deuterium isotope 
effect, but the deviations are outside the experimental error 
and are the first experimental indication that deuterium can 
show an appreciable tunnel effect in chemical kinetics, though 
a much smaller one than H. When the parabolic-barrier model 
was applied, the results were in excellent agreement with 
those from the deuterium isotope effect; in particular the value 
of the barrier width came out to almost the same value, 1.592 
A. The results are summarized in Table III. 

Table III 

Deuterium and Tritium Isotope Effects and Barrier Dimensions 
for the Reaction of Ethoxide Ion with 

l-Bromo-2-phenylpropane in Ethanol0 

From H-D 
effect 

From D-T 
effect 

E-H 

*-* obsd 

E* obsd 
-£ obsd 

obsd -^ obsd 

L o g ( ^ D o b s d / ^ H o b s d ) 

A obBi/A obsd 

L O g ( ^ T o b s d / ^ D o b s d ) 

A obsdM obsd 

2a 

20,655 ± 74 
1,766 ± 115 

0.4035 ± 0.05 
2.53 ± 0.3 

23,003 
22,099 
1.589 

679.4 ± 25 

0.0744 ± 0.014 
1.19 ± 0.04 

23,447 
22,961 

1.592 

" Ein cal mole-1; a in A. 

This was the earliest work in which the tritium and deu­
terium isotope effects were determined for the same reaction, 
and the two values for the tunneling corrections could be 
compared. Although the tunneling factors are not among 
the largest known, the agreement between the independent 
values for the barrier dimensions is striking. 

(74) V. J. Shiner and M. L. Smith, J. Amer. Chem, Soc, 83, 593 (1961) . 
(75) V. J. Shiner and B. Martin, Pure Appl Chem., 8, 371 (1964). 
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f. The Deuterium Isotope Effect in the Reaction of 
Ethoxide Ion with 4-Nitrobenzyl Cyanide in 

Ethanol-Ether 

4-Nitrobenzyl cyanide reacts with sodium ethoxide in ethanol, 
producing a red color, which is discharged by weak acids 
such as phenols. Evidence from kinetics76 and from nmr 
spectroscopy77 indicates that these reactions are proton trans­
fers. 

OEt-
NOjC6H4CH8CN =?=^ [NO2CeH4CHCN]-

HA 

The rates of reaction of NO2C6H4CH2CN and NO2C8H4-
CD2CN with ethoxide ion have been measured78 over a range 
of temperatures from —60° downwards; the reactions were 
rather fast and the rates were measured in a stopped-flow 
apparatus (see ref 89). The Arrhenius plots are slightly com­
plicated at the higher temperatures, apparently because of a 
preliminary complex formation, but over a 30 "-range they 
are linear. 

The ratio &H/&D rises rapidly as the temperature falls, from 
10 at -60° to 28 at -90°. (This must include a secondary 
isotope effect, but the correction for this is unlikely to 
exceed a few per cent.) The difference in activation energies 
£Dob»d — -EHobsd is 1.85 ± 0.2 kcal mole-1, and the ratio 4̂D

0b.d/ 
/4Hob.d is about 5. These values suggest that there is an appre­
ciable tunneling correction. The equations for a symmetrical 
parabolic barrier give 1.63 A for the barrier width, comparable 
with that found for the reaction of ethoxide ion with 1-bromo-
2-phenylpropane in ethanol. This is confirmed by an investiga­
tion79 of the proton-transfer reaction at temperatures down 
to 124°, when deviations from a linear Arrhenius plot are 
observed, as described later in section IV.A.4. 

g. The Deuterium Isotope Effect in the Reaction of 
Allylmercuric Iodide with Hydrogen Ion in Water 

Allylmercuric iodide reacts with aqueous acid in the presence 
of traces of iodide ion; the rate is independent of the iodide 
concentration, and the rate-determining step appears to be the 
proton transfer from solvated H+ to the y-carbon. 

CH2=CHCHjHgI + H+ + I" —> CH1CH=CH, + HgI2 

The primary isotope effect has been studied by a competition 
method.80 From the value of /4D

0b.dA4Hob«i, the barrier width 
calculated for a symmetrical parabolic barrier is about 1.3 A. 
This is quite similar to the values found for other reactions 
involving the transition C - - H O -»• CH---O in water, 
although the neighboring group is quite different. 

h. The Deuterium Isotope Effect in the Reaction of 
f-Butoxide with Bromobifluorenyl in f-Butyl Alcohol 

When 9-bromo-9,9'-bifluorenyl is treated with potassium t-
butoxide in f-butyl alcohol, abstraction of HBr occurs at a 

(76) E. F. Caldiii and E. Harbron,/. Chem. Soc, 2314(1962). 
(77) M. R. Crampton, ibid., B, 85 (1967). 
(78) E. F. Caldin and G. Tomalin, Trans. Faraday Soc, 64, 2814 (1968). 
(79) E. F. Caldin, M. Kasparian, and G. Tomalin, ibid., 64, 2823 (1968). 
(80) M. M. Kreevoy and P. Steinwand, Discussions Faraday Soc, 39, 
57 (1965). 

rate which appears to be controlled by a proton transfer.81 

The ratio knjkD is about 8; measurements at two temperatures 
(30and40°)give£D„b.d - £Hob.d^2.6kcalmole-1and,4D

ob,d/ 
AB

ob,d ^ 10. These values suggest that tunneling is important, 
but measurements over a wider range of temperatures are 
desirable. 

i. The Deuterium Isotope Effect in the Reaction of 
Leuco Crystal Violet with Chloranil in Acetonitrile 

We turn now to an example of hydride-ion transfer. This 
has become of special interest in view of Lewis' suggestion 
that repulsion will favor a large tunneling correction by 
producing a steep potential-energy barrier; the hydride ion 
H - with its two electrons will encounter repulsion forces 
which are absent in the transfer of H+ which has no elec­
trons.82'88 The reaction on which the most complete results 
are available is the oxidation of 4,4',4"-tris(dimethylamino)-
triphenylmethane (leuco crystal violet) by tetrachloropara-
benzoquinone (chloranil).8,84 

The isotope effect was studied in acetonitrile, in which 
solvent the kinetics are uncomplicated.8 The deuterium 
isotope effect was measured from 10 to 35°. At 25°, kB/kD 

has the fairly large value of 11.7; the temperature coefficient 
gives £Dob»d — £Hob»d = 3.36 kcal mole-1 and /4D

0b«i//iHobid = 
24 ± 10. These are large effects, comparable with those shown 
by the reaction of 2-carbethoxycyclopentanone with fluoride 
ion (section IV.A.3.a), and clearly indicate tunneling. The 
value of the barrier width computed for a symmetrical para­
bolic barrier is 0.97 A. Moreover the tritium isotope 
effect at 35.5° gives kB/kT = 20.4 ± 1.3, whereas the Swain 
equation (with r = 1.442) predicts from the deuterium isotope 
effect the value 27.3; the deviation is significant and is at­
tributable to the neglect of tunneling in the derivation of the 
Swain equation. 

j . The Oxidation of l-Phenyl-2,2,2-trifiuoroethanol by 
Alkaline Permanganate in Water 

The stoichiometric equation for this reaction is 

PhCHOHCF, + 2MnO4
- + 2OH" —>• 

PhCOCF3 + 2MnO4
2- + 2H2O 

The mechanism is not entirely clear, but the rate-determining 
step is probably either a hydride-ion transfer from (PhCHO-
CFg)- to MnO4

-, as suggested by Stewart and van den Lin­
den,85-87 or a proton transfer to water with a simultaneous 
electron transfer to MnO4

- as favored by Hulett.88 The isotope 

(81) D. BetheU and A. F. Cockerill, / . Chem. Soc, B, 917 (1966). 
(82) M. F. Hawthorne and E. S. Lewis, / . Amer. Chem. Soc, 80, 4296 
(1958). 
(83) C. G. Swain, R. A. Wiles, and R. F. W. Bader, ibid., 83, 1945 
(1961). 
(84) C. D. Ritchie, W. F. Sager, and E. S. Lewis, ibid., 84, 2349 (1962). 
(85) R. Stewart and R. van den Linden, Discussions Faraday Soc, 29, 
211 (1960). 
(86) R. Stewart, "Oxidation Mechanisms," W. A. Benjamin, Inc., New 
York, N. Y„ 1964, Chapter V. 
(87) W. A. Waters, "Mechanisms of Oxidation of Organic Com­
pounds," Methuen, London, 1964, pp 116-118. 
(88) J. R. Hulett, Discussions Faraday Soc, 39, 58 (1965). 
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Figure 11. Deviations from linear Arrhenius plots for reactions of 
trinitrobenzyl anion with undissociated acids: 0,HFjV)CH3CO2H; 
A, CHJCICO 2 H. Rates were measured with a stopped-flow ap­
paratus for HF at 25, 7, and 0°, for CH3CO2H at 20°, and for 
CH2CICO2H at 20 °; otherwise by conventional spectrophotometry 

Table IV 

Deviations from Linear Arrhenius Plots for Reactions of 
Trinitrobenzyl Anion with Undissociated Acids" 

the 

Temp, • Log k (obsd) — log k (Arrh) 
0 C HF CH3COiH CHtClCO1H 

25 
20 
7 
0 

-50 
-60 
-70 
-80 
-90 
-100 
-105 
-110 
-114 

0.000 ± 0.012 

+0. 
-0. 
+0. 
+0. 
+0. 
+0. 
+0. 

004 ± 
001 ± 
064 ± 
016 ± 
170 ± 
225 ± 
345 ± 

0.020 
0.015 
0.024 
0.038 
0.026 
0.020 
0.059 

-0.006 ±0 .035 0.000 ±0 .013 

+0.012 ± 0.012 
+0.000 ± 0.004 
-0.002 ±0 .007 +0.001 ±0 .014 

-0.005 ±0 .010 +0.004 ±0 .008 
+0.033 ± 0.010 

-0.002 ±0.006 
+0 .109± 0.006 
+0.161 ±0.005 +0.052 ±0 .011 

• Solvent: ethanol + 1% toluene by volume. Experimental un­
certainties are standard deviations by least squares. Some tempera­
tures are slightly rounded. 

effect88 is considerable, though not outside the classical limit; 
at pH 13, knlk° at 25° is 16. The temperature coefficient is 
not known with any precision; rates at pH 13 were measured 
at three temperatures (12.65, 25, and 38.0°) but the Arrhenius 
plots are not linear. Taking the least-squares best lines, 
Hulett87 found £ " « - En

oM = 2.3 kcal mole"1 and /*D„b,d/ 
4̂Hob»d = 3.0. On fitting Bell's equations for a symmetrical 

parabolic barrier to these results, he found En = 11.42 kcal 
mole"1, E° = 12.73 kcal mole"1, and 2« = 1.106 A. This 
barrier width is comparable with that for the reaction of 2-
nitropropane with 2,6-substituted pyridines, which is the 
smallest yet reported and has been interpreted in terms of a 
steep-sided potential-energy curve due to steric repulsion. 
If the present reaction does indeed involve the transfer of a 
H - ion, which unlike H + will be subject to repulsion, its 
small barrier width could be given a similar interpretation. 
The tritium isotope8 at 25° is kH/kT = 57.1 ± 0.24; this is 
in agreement with the value (55.5) predicted by substituting 
the value of kn/kD in the Swain equation. 

It may be remarked that reactions whose rate-determining 
steps are thought to involve proton transfer as well as H -

transfer do not show evidence for tunneling,8 no doubt because 
the effective mass is too large. 

4. Nonlinear Arrhenius Plots 

a. Introduction 

Although Arrhenius plots may deviate from linearity for 
other reasons besides tunneling,89 there are cases where the 
alternative reasons are unlikely, and the deviations are 
probably due to the tunnel corrections. These investigations 
require rate measurements to be made over a long temperature 
range in which the rate constant may vary by a factor of 106. 
To measure such a range of rates may require more than one 
technique. In the examples to be considered, measurements 
at the higher temperatures were obtained by the stopped-flow 
method (ref 46, Chapter 3); many of them were made in an 
apparatus89 that could if necessary be used down to —120°. 
At the lower temperatures, fast observation may not be 
necessary and the essential is a good cryostat.90 

b. Reactions of the Trinitrobenzyl Anion with 
Undissociated Acids in Ethanol 

When 2,4,6-trinitrotoluene (TNT) is treated with sodium 
ethoxide in ethanol, it gives a deep red solution containing 
the trinitrobenzyl anion C6H2(NO2)SCH2

-. The reaction is 
reversed by weak acids, and it is possible to determine the 
rate constants for the undissociated acids HA. These rate 
constants obey the Brpnsted relation,54 indicating that the 
rate-determining step is a proton transfer; this is confirmed91 

by the isotope effect for the forward reaction (ka/kD ^ 12 at 
— 30°). The scheme is thus 

OEt-
CH2(NOs)3CH3 ^ = i C6H2(NOs)3CH,-

HA 

The solvent used is ethanol, to which is added 1 % of toluene 
by volume to keep the TNT in solution; the rate is not 
sensitive to the toluene content. 

The acids that have been studied are hydrofluoric,92 

acetic,93 and monochloroacetic.98 The rate for monochlor-
acetic acid shows only a small deviation even at —114°; 
that for acetic shows appreciable deviation below —90°, 
rising to 45% at —114°; and that for hyrofluoric shows devi­
ations below - 2 0 ° , rising to over 100% at - 9 0 ° . These 
deviations are illustrated in Figure 11, which shows the data 
collected in Table IV. The Arrhenius plot for the reaction of 
acetic acid is shown in Figure 12; the deviations from it, 
with their experimental uncertainties, are shown in Figure 13. 

The barrier dimensions calculated from the deviations 

(89) C. R. Allen, A. J. W. Brook, and E. F. Caldin, Trans. Faraday Soc, 
56,789(1960). 
(90) E. F. Caldin and R. A. Jackson, / . Chem. Soc, 2410 (1960). 
(91) J. A. Blake, M. J. B. Evans, and K. E. Russell, Can. J. Chem., 44, 
119(1966). 
(92) E. F. Caldin and M. Kasparian, Discussions Faraday Soc, 39, 
25 (1965). 
(93) E. F. Caldin and E. Harbron,/. Chem. Soc, 3454(1962). 
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Figure 12. Arrhenius plot for the reaction between acetic acid and 
the trinitrobenzyl anion [C6H2(NOs)3CH2]

- in ethanol from —50 
to —114°. The straight line is the best line through the points 
from — 50 to —90°. The standard deviations are too small to show 
on this scale. There is also a point for +20° which lies well on the 
line but is omitted so as to permit a scale large enough to show the 
divergence at low temperatures. 

Table V 

Arrhenius Activation Energies for Reactions of Trinitrobenzyl Anion 
with Acids, and Barrier Dimensions Calculated for a Symmetrical 

Parabolic Barrier0 

F H 
JZ- obsd 

EE 

Ta 
E ob»d/-E 

aE in kcal mole -

HF 

11.1 ± 0 . 1 
11.7 
1.48 
0.95 

1J a in A. 

CH3COiH 

9.38 ± 0 . 0 3 
10.1 
1.66 
0.93 

CH2CICO2H 

8.23 ± 0 . 0 1 
8.86 
1.66 
0.93 

with hydrofluoric66 and acetic93 acids, assuming symmetrical 
parabolic barriers, are given in Table V. For monochloroacetic 
acid, the deviations are too small to give independent values, 
but the results are in agreement with the assumptions that 
the values of a and £H

0bsd/£H are the same as for acetic acid. 
Comparisons will be made later; here we will only note that 
the barrier width is decidedly larger than for the reactions in 
aqueous solution discussed above, and comparable with that 
for the reaction of ethoxide ion with 2-bromo-l-phenyl-
propane in ethanol. 

Alternative explanations of these curved Arrhenius plots 
must be considered.92,93 (i) A change in the over-all mechanism 
of reaction is unlikely. The rate laws are the same at all 
temperatures; the original TNT is quantitatively regener­
ated at the end of the reaction, and absorption spectra give 
no indication of any new species at low temperatures, (ii) The 
possibility that variations in the activation energy are at­
tributable to changes in solvation on forming the transition 
complex must be considered (c/. above, p 145). It leads to 
eq 36; this cannot be fitted to the experimental data, which 
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Figure 13. Deviations from linear Arrhenius plot, corresponding 
to Figure 12. The short vertical lines represent the experimental 
values of [log &2(obsd) — log £2(Arrh)l, with their standard devia­
tions. The curves are calculated values of [log ki — log Ar2(ArTh)I 
for various assumed values of the barrier height (ER) and width 
(2a), for a symmetrical parabolic barrier. Full curve, EB = 10.05 
kcal mole-1, a = 0.84 A; - - -, £ H = 10.10 kcal:mole-1, a = 0.83 
A; —-, EB = lO.lOkcal mole"1, a = 0.81 A. 

show much too sharp a change at low temperatures. Moreover, 
for acetic acid the entropy of activation (—16.5 cal deg - 1 

mole-1) indicates an increase of solvent orientation on forma­
tion of the transition complex, which would lead to a AC5^ 
giving a curvature of the Arrhenius plot in the wrong direc­
tion, (iii) Any interpretation based on a change in the struc­
ture of the solvent at low temperatures seems to be excluded 
by the fact that the deviations occur at widely different tem­
peratures for the three acids, as shown in Figure 11. (iv) There 
is always the possibility that a reaction may proceed through 
alternative transition states, with different activation energies; 
one of these transition states might involve only the two 
reactant molecules, the other a bridging solvent molecule as 
well.94 This hypothesis would be difficult to test, and has not 
been disproved. The interpretation of the curved Arrhenius 
plots in terms of tunneling, however, is self-consistent and 
not unreasonable. Unfortunately it is impossible to determine 
the deuterium isotope effect for these reactions in the same 
solvent, because of rapid exchange between the acid and 
ethanol. Such a check is possible for the reaction to be men­
tioned next. 

c. The Reaction of Ethoxide Ion with 
4-Nitrobenzyl Cyanide in Ethanol-Ether 

It has already been mentioned (p 150) that the isotope 
effect in this reaction indicates a considerable tunneling 
correction for the proton-transfer rate. The reaction also 
exhibits deviations from a linear Arrhenius plot at low tem­
peratures.79 The Arrhenius plot is linear within experimental 
error from — 70 to — 100 °, but at — 120 ° there is an appreciable 
deviation and at —124° it amounts to 100% in the rate. 
(Ethanol-ether (20/80 v/v) had to be used as solvent rather 
than pure ethanol in order to decrease the freezing point 
and increase the fluidity at low temperatures.) 

The curvature of the plot at the lowest temperature is ex-

(94) E. Gnrawald and M. Cocivera, Discussions Faraday Soc, 39, 105-
(1965). 
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ceptionally sharp. Consequently the theoretical equations 
for a parabolic barrier cannot be fitted to the experimental 
results for this reaction quite so well as for the reactions of 
the trinitrobenzyl anion. The values found for the barrier 
dimensions are nevertheless equally well defined and agree 
well with those derived from the isotope effect.78 The values 
are summarized in Table VI. 

Table VI 
Comparison of Barrier Dimensions Calculated from the Isotope Effect 
and for the Arrhenius Plot for the Reaction of Ethoxide Ion with 

4-Nitrobenzyl Cyanide in Ethanol-Ether 

Isotope effect Arrhenius plot 

£H, kcal mole-1 

la, A 
10.3 ± 0.1 

1.632± 0.01 
10.7 ± 0 . 1 

1.622 ±0.01 

The agreement between the two independent values of the 
barrier width 2a is satisfactory. This agreement supports the 
interpretation of the nonlinear Arrhenius plot in terms of 
tunneling. This reaction appears to be the first for which the 
two methods of detecting tunneling have been applied to 
the same reaction in the same medium. 

B. GENERAL DISCUSSION OF EXPERIMENTAL 
WORK ON TUNNELING IN SOLUTION 

/ . Comparison of Barrier Dimensions 

Table VII shows most of the reliable data so far available 
on the dimensions of the energy barriers in proton-transfer 

reactions. They have all been obtained by applying Bell's 
equations,19 usually in the first-term approximation, for 
tunneling through one-dimensional symmetrical parabolic 
barriers. In general the fit of the equations to the experimental 
data is such that the value of the barrier height can be given 
to ±0.1 kcal mole-1, and the width 2a to ±0.01 A. The reac­
tions so far studied involve only small tunneling corrections, 
giving rise to values of £H

0bsd/£H between 0.75 and 1. The 
curvature at the top of the barrier is therefore the quantity 
that determines the tunneling correction; it maybe expressed 
as the frequency vt (eq 24), and values of this are given in 
Table VII. 

The values of the barrier dimensions are subject to the 
various uncertainties already mentioned (p 146). The effective 
barrier width is probably larger than la, but it is impossible 
to give a precise expression. The barrier height will be af­
fected if there are appreciable contributions to the energy of 
activation from solvation changes, or if the reaction involves 
changes of configuration consequent upon electronic reor­
ganization. The calculations refer to a symmetrical energy 
barrier for which AH° = 0; some of the values might well 
be changed if the enthalpy change in reaction were taken into 
account. 

It seems worthwhile, in spite of these uncertainties, to 
attempt some comparisons between the reactions 1-14 in 
Table VII and to hazard some tentative generalizations on 
the factors that favor tunneling. Valid comparisons might 
be expected particularly for closely related pairs of reactions 
such as 2 and 3, which differ only in the base, involving the 
transfers CH- • -O and CH- • -F respectively; or between 9 
and 10, which differ only in the acid, involving the transfers 

Table VII 
Tunneling in H-Transfer Reactions. Computed Dimensions of Energy Barriers" 

Reaction* 

1. 2-CCP + D2O 
2. 2-CCP + 

CHjClCO2-
3. 2-CCP + F -
4. Acetone + OH -

5. p-MOAP + OH-
6. o-MAP + OH-
7. Me2NO2CH + B 

8. CH2BrCMePhH + 
O E r 

9. TNT anion + 
HOAc 

10. TNT anion + HF 
11. 4-NBC + OEt-

12. 4-NBC + OEt-

13. CH2=CHCH2HgI 
+ H+ 

14. (P-Me2NC6Hi)3CH 
+ CA 

Ref 

60 
60 

60 
65 
64 
69 
8,71 

75 

93 

92 
79 

78 

80 

8 

Type 

C H - O 
C H - O 

C H - F 
C H - O 
C H - O 
C H - O 
C H - O 

C H - O 

C - H O 

C - H F 
C H - O 

C H - O 

C - H O 

C H - O 

Solvent 

D2O 
D2O 

D2O 
H2O 
H2O 
H2O 

/-BuOH-
H2O 

EtOH 

EtOH 

EtOH 
EtOH-
Et2O 

EtOH-
Et2O 

H2O 

MeCN 

Method 

H, D 
H, D 

H, D 
H1D 
H, T 
H, T 
H, D 

H, D, T 

Arrh 

Arrh 
Arrh 

H, D 

H, D 

H 1 D 

2a 

1.26 
1.17 

1.17 
1.26' 
1.22" 
1.27« 
1.14 

1.59 

1.66 

1.48' 
1.62= 

1.63 

1.3 

0.97 

EH 

13.16 
12.53 

18.O1 

13.6 
15.9 
14.1 
16.3 

22.1 

10.1 

11.7 
10.7 

10.3 

£ D 

13.55 
12.95 

18.07 

14.7 

17.6 

23.0 

11.3 

ET 

17.1 
15.5 

23.4 

Ct 

66.1 
73.5 

104 
68.5 
86.0 
69.9 

100 

69.9 

29.3 

42.6 
32.5 

30.9 

51.6 

"t 

878 
924 

1106 
894 

1001 
908 
965 

908 

585 

717 
616 

600 

1150 

E obsd/ 
£ H 

0.90 
0.88 

0.81 
0.91 
0.87 
0.84 
0.88 

0.95 

0.93 

0.95 
0.86 

0.89 

0.72 

« Calculated values from Bell's equations for symmetrical parabolic barriers. £H
0b»d = Arrhenius activation energy for H transfer, derived 

from linear part of Arrhenius plot, in kcal mole-1. E*, ED, ET = heights calculated for energy barriers for H, D, and T transfer, in kcal mole-1. 
2a = width of parabolic energy barrier at base, in A. ct = curvature of parabola at apex 2£H/a2 in kcal mole-1 A-2. vt = frequency cor­
responding to barrier dimensions = c'/>/2™'/> (see text). ° 2-CCP = 2-carbethoxycyclopentanone. p-MOAP = p-methoxyacetophenone. 
o-MAP = o-methylacetophenone. B = 2,4,6-collidine. TNT = 2,4,6-trinitrotoluene. 4-NBC = 4-nitrobenzyl cyanide. CA = chloranil. 
'Recalculated; ref 66. 
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C- • HO and C- • -HF. The factors that might be expected 
to be relevant are (i) the atoms between which the proton is 
transferred; (ii) the charges on these atoms; (iii) the elec­
tronic properties of the groups attached to these atoms; 
(iv) steric and repulsion factors; and (v) the medium. 

When we examine the data, two major factors stand out: 
the effects of steric hindrance, or more generally repulsion 
energy, and that of the solvent. Other influences appear to be 
comparatively small. 

a. The Atoms between Which the Proton is Transferred 

We might have expected, on the simple potential-energy 
picture of proton transfer, that these atoms would be the 
most important influence on the barrier width, since their 
repulsions will determine the minimum van der Waals dis­
tance of approach in a nonreactive collision (AH • • • B) 
and the bond lengths A-H and H-B+ will then fix the distance 
that the proton has to travel in the reaction. Examination of 
Table VII shows, however, that other factors are also involved. 
For reactions of the type CH • • • O and CH • • • F, the dis­
tances so calculated are nearly the same (1.35 and 1.34 A), 
but the calculated curvatures are seen to be larger for the 
CH- • -F reactions (compare reaction 2 with 3, or 9 with 10). 
The curvature varies considerably for a given type of reac­
tion; moreover, for reactions of type CH- • -O it varies more 
than threefold, and more than twofold for reactions of type 
CH---ForC-- -HF. 

b. The Charges on the Atoms 

A comparison of reactions 1 and 2 may indicate the effect of 
the charge on the oxygen atom when the other conditions 
are as similar as possible. The curvature is slightly larger for 
reaction 2 than for reaction 1, possibly because of the extra 
attraction of the negatively charged oxygen of the anion 
for the proton. 

c. The Electronic Properties of the Neighboring Groups 

The groups attached to the atoms between which the proton 
is transferred might affect the barrier width in several ways. 
As donors or acceptors of electrons, they will decrease or in­
crease the strength of any hydrogen bond that may be formed 
before the proton transfer occurs, and will also affect the 
repulsion between the two reactants; and if conjugation can 
occur, it will alter the distribution of charge and the ef­
fective charge on the carbon atom, and so affect the repulsive 
forces. However, if we compare the pair of reactions 2 and 9 
(type CHO) with the related pair 3 and 10 (type CHF), the 
predicted effects are the reverse of those observed; in reac­
tions 9 and 10 the carbon atom is conjugated with C6H2CH2-
(N02)3

_, whereas in reactions 2 and 3 it is conjugated with 
C=O whose effect should be weaker, yet the curvature is 
markedly larger (by a factor >2) for reactions 2 and 3. It is 
clear that these factors are not the dominant ones. 

d. Steric and Repulsion Factors 

We have noticed in section IV. A that in the reactions of 2-
nitropropane the largest effects occur with 2,6-substituted pyri­
dines, such as reaction 7 in Table VH, where steric hindrance 
implies a considerable repulsion contribution to the potential 
energy, and hence a steep-sided barrier with a high curvature, 
which will favor tunneling. The value of the barrier width is 
the smallest and the curvature the largest yet reported. An­

other considerable effect is seen in reaction 14, where the 
rate-determining step is the transfer of H - , again involving, 
unusual repulsion forces. Both experimentally and theoreti­
cally this repulsion factor appears to be important. It is not 
the whole story; examination of models does not suggest that 
steric hindrance will be much greater for reactions 9 and 10 
than for 2 and 3, as would follow from the values of the 
curvature if it were the only relevant factor. This brings us to 
the other main influence, that of the solvent. 

e. The Solvent 

There is a clear-cut difference between the values of the barrier 
width for reactions in alcoholic solutions and those in aqueous 
solutions; the first have high values (1.48-1.66 A) and the 
second low values (1.08-1.26 A). This difference appears 
also in the curvatures, except for reaction 8; for alcoholic solu­
tions the figures are 30 to 43, as against 66 to 104 for aqueous 
solutions. The high and low values do not correlate with 
the type of reaction (CHO or CHF). The number of reactions 
is small, so the correlation with solvent may be fortuitous, 
but it can hardly be ignored. A possible reason92 for it is 
that solvating ethanol molecules are more bulky than water 
molecules, so that the effective barrier width is larger. An­
other possibility is that solvent water molecules participate 
in the reaction, as has been shown to occur in some proton 
transfers,94'95 whereas this is less likely for alcohol molecules. 

The difference between the barrier widths for C • • • HO 
and C- • -HF reactions in ethanol (9 and 10) may be due to 
the hydrogen-bonding properties of fluorine. There is no 
direct evidence for hydrogen bonds involving carbon and 
fluorine, but HF is known to form strong hydrogen bonds, 
and CH-O and CH-N hydrogen bonds are well estab­
lished in chloroform solutions and HCN, respectively.98 

Hydrogen bonding of CH to the anions may thus occur in 
ethanolic solution, and more strongly with fluorine than with 
oxygen, with a consequent shortening of the CH-F distance 
relative to the CH-O distance. In water, with its higher di­
electric constant, this hydrogen bonding would be expected to 
be weaker and its effect on the barrier width less marked. 

2. Isotope Effects on the Heights of Energy 
Barriers and the Symmetry of 
Transition Complexes 

An interesting example of the use of the information on 
barrier heights which we owe to investigations on tunneling 
concerns the correlation of isotope effects with the symmetry 
of transition states. The following is taken mostly from a 
recent paper.66 

The values found for En, E°, and ET (Table VII) represent 
the heights of the energy barriers, taking account of zero-
point energies in the initial and transition states. If the isotope 
effect arose entirely from differences in the initial states of 
the bonds broken, we should expect (£D — £H) to be equal 
to the difference of the zero-point energies (zpe) in the initial 
states, ACp.11"*, which is 1.1 to 1.2 kcal mole"1 for a C-H 
bond. Inspection of Table VII shows that this is not the case 
for several of the reactions. This implies that for these reac-

(95) W. J. Albery, Progr. Reaction Kinetics, 4, 353 (1967). 
(96) G. Pimentel and A. L. McClellan, "The Hydrogen Bond," Rein-
hold Publishing Corp., New York, N. Y., 1960, Chapter 6. 
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Table VIlI 

Barrier Heights and pK Differences for the Ionization of Some C-H Bonds" 

— Reaction1'-
Acid (SH) 

2-CCP 
2-CCP 
2-CCP 
Acetone 
p-MOAP 
o-MAP 
2-Nitropropane 
4-NBC 

• ED and £ H in kcal mole-1. b 

(£T _ £H). 

Base (B) 

D2O 
CH2ClCO2-
F-
OH-
OH-
OH-
B 
OEr 

Medium 

D2O 
D2O 
D2O 
H2O 
H2O 
H2O 

/-BuOH-H2O 
EtOH-Et2O 

See Table VII for abbreviations.« 

pK(SH) 

10.52« 
10.52« 
10.52« 
19.00 
20.1 
19.9 
7.74 

14.0 

pK(BH) 

-1 .70 
3.20 
3.62 

15.74 
15.74 
15.74 
7.43 

19.1 

Solvent isotope effect neglected. 

ApK' 

11.74 
6.84 
6.42 
3.74 
4.54 

4.34 

0.31 
- 5 . 4 

* Values of (E* -

(ED - En) 

0.28 

0.42 
0.O6 

1.1 
1.0'' 
0.9* 
1.2 
1.0 

£H) estimated from 

tions there is a difference between the zero-point energies in 
the transition states for the two isotopes, AEzpe *, which partly 
cancels AEipt

lntt according to the equation 

(EP - Es) A£,p. in i t - AE11 

It has been shown by Bell and Goodall97 that, for a series 
of similar proton-transfer reactions in water, the isotope 
effect on the rate (fcH/fcD) is correlated with the pK of the 
reaction and passes through a maximum when the pK is zero. 
This corresponds to the theoretical treatment of West-
heimer,98 which predicts that the isotope effect will be a 
maximum when the transition state is symmetrical; there will 
then be no zero-point energy for the stretching vibration in 
the transition state, and hence a maximum value of (E° — 
£ H ) ; also the free-energy change in the reaction, and so the 
value of ApK, which is a rough measure of the departure of 
the transition state from symmetry, will be approximately 
zero. In Table VIII are summarized all the known values 
of (£ D — EH) for proton transfers involving the breaking 
of C-H bonds in compounds whose pK's are reliably known 
in aqueous solution." Since the value of pK is partly deter­
mined by statistical factors, we give the statistically corrected 
quantity ApK' = ApK + log OSHI?B//>BH?S), where p and q 
represent the number of equivalent protons and basic sites, 
respectively." A plot of (ED — EH) against ApK' is shown in 
Figure 14. A smooth curve can be drawn through most of 
the points, with a maximum around ApK' = 0. It is note­
worthy that the point representing the reaction of 2-nitro-
propane with 2,4,6-trimethylpyridine lies quite well on the 
curve, whereas the corresponding point for log (ks/k°) was 
anomalous in lying well off Bell and Goodall's plot; this can 
be understood, since among the reactions considered by them 
it was the only one to exhibit tunneling, whose effects are 
removed when we consider the true barrier heights, as in 
Figure 14. 

For several reactions the value of E° — En is about 1.1 kcal 
mole -1 , which is close to the theoretical maximum calculated 
on the assumption that the stretching frequency of the C-H or 
C-D bond in the initial state is the important factor. This 

(97) R. P. Bell and D. M. Goodall, Proc. Roy. Soc, A294, 273 (1966). 
(98) F. H. Westheimer, Chem. Rev., 61, 265 (1961). 
(99) The table is taken from ref 66, with the exception of a new experi­
mental value for the pK of o-methylacetophenone, for which I am in­
debted to a personal communication from Dr. J. R. Jones. 

EQEH 

Figure 14. Plot of ED — Es, calculated for various reactions on the 
assumption of a symmetrical parabolic barrier, against ApK'. 

suggests that in these reactions the zero-point energies of the 
bending vibrations in the transition state approximately 
cancel those of the bending vibration involving H or D in 
the initial state. For the other reactions, the correlation shown 
in Figure 14 suggests that these zero-point energies (reflected 
in the values of ED and Ea) increase with the departure of 
the transition state from symmetry (represented by ApK'), as 
would be expected from the theoretical picture. 

One point lies well off the curve; the reaction concerned is 
the fluoride-catalyzed bromination of 2-carbethoxycyclopenta-
none. The deviation could be attributed to an unusually large 
value of A2?,pe*, which could arise either because the C- • -H 
• • F transition state is more unsymmetrical than would be 
expected from the pK of the reaction, or because the transition 
state has a high bending vibration frequency as well as a 
stretching frequency, or for both reasons. Both effects may be 
related to the strong hydrogen bonds formed by fluorine/0,96 

3. Very Fast Proton-Transfer Reactions 

In all the reactions so far considered, the proton is trans­
ferred to or from a carbon atom. Such reactions proceed at 
moderate rates, whereas proton-transfer reactions involving 
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only oxygen or nitrogen acids {e.g., ROH or R3NH+) are 
very fast; their rates approach the diffusion-controlled value, 
corresponding to reaction at every encounter. There is good 
evidence that in water such proton transfers take place 
through a hydrogen-bonded system, such as OH- • -O. The 
O atoms are then much closer than in a van der Waals en­
counter, and the potential-energy barrier is therefore much 
narrower than for nonhydrogen-bonding systems such as 
carbon acids; it could be as thin as 0.5 A. The height of the 
barrier is not known with any accuracy; it will be reduced by 
the hydrogen bonding, but probably not to zero. (If the re-
actants are linked by one or more water molecules, the barrier 
height may be reduced because of the cooperative movement 
of protons along the hydrogen-bonded chain; but there are 
instances where it is known that no water molecules intervene, 
either through nmr investigations such as those of Grunwald 
on aqueous amines,100 or because the reaction occurs in a 
nonhydrogen-bonding solvent such as chlorobenzene,101 and 
here the barriers are probably appreciable.) The very high 
rate would then be unexpected, unless it is due to tunneling, 
as was suggested by Eigen.102 The tunneling correction for so 
thin a barrier can be large; calculations by Grunwald103 sug­
gest that the rate could reach the diffusion-controlled value 
even if the height of the energy barrier were around 10 kcal 
mole-1. Confirmation of this suggestion must await firmer 
estimates of the heights of these barriers. 

V. Conclusion 
Quantum-mechanical tunneling in H+-transfer reactions, which 
for 20 years eluded experimentalists, now appears to be past 
the stage of discovery. It would be difficult to think of an 
alternative explanation that would cover all the evidence 
presented above, such as the high values of Au/Au and of 
Aj/AH, or the agreement of the deductions from H transfer 
and T transfer where these have both been studied, or the 
agreement in the one available instance between the barrier 
dimensions calculated from isotope effects and from the 
Arrhenius plot. The tunnel effect is by now the likeliest inter-

(100) E. Grunwald, A. Loewenstein, and S. Meiboom, / . Chem. Phys., 
27, 630 (1957). 
(101) E. F. Caldin and J. E. Crooks, / . Chem. Soc, 959 (1967). 
(102) M. Eigen, Angew. Chem. Intern. Ed. Engl, 3, 1 (1964). 
(103) E. Grunwald, Progr. Phys. Org. Chem., 3, 317 (1965). 

pretation of the evidence on several reactions. It remains true 
that such reactions appear to be exceptional and that in 
most proton-transfer reactions the tunneling corrections can 
probably be ignored. 

The next phase should be that of systematic study. This pre­
supposes some hypotheses about which systems are likely to be 
worth investigating. At present the suppositions that seem 
plausible are that tunneling is favored by a high contribution 
to the activation energy from repulsion, whether in sterically 
hindered reactions or in hydride-ion transfer, since this pro­
duces a step barrier; by small barrier widths as in H transfers 
along hydrogen bonds; by a symmetrical energy barrier, cor­
responding to a low enthalpy of reaction; and by some effect, 
not yet understood, of water as solvent. Much more experi­
mental work is needed, especially on related series of reactions 
and on solvent effects. Computations from Bell's theoretical 
equations have usually been confined to the first approxima­
tion; they should be carried to a higher accuracy and should 
also be extended to take account of the enthalpies of reaction; 
experimental work to determine these enthalpies is needed as 
well. 

The object of work in this field, apart from confirming the 
importance of tunneling corrections in such reactions, is to 
enlarge our knowledge of the shapes and dimensions of energy 
barriers, and so improve our picture of transition states. We 
have seen (p 154) that the correction of the observed energy of 
activation to the true barrier height by means of the tunneling 
correction can lead to interesting results. The barrier width is a 
more elusive quantity, partly because of our ignorance of 
barrier shapes; but the discussion above shows that a start has 
been made, and we may expect that as results on more systems 
become available a clearer picture of the entire energy profile 
will emerge. There are very few sources of information on 
barrier dimensions, and the contribution of work on tunneling 
seems likely to be of importance. 
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