
THE ELECTRON RESONANCE LINE SHAPES OF 
RADICALS IN SOLUTION 

A. HUDSON 

The Chemical Laboratory, The University of Sussex, Brighton, BHl 9QJ, England 

AND G. R. LUCKHURST 

Department of Chemistry, The University, Southampton, S09 5NH, England 

Received May 7, 1968 

Contents 
i. 

ii. 
HI. 

IV. 
V. 

VI. 
VII. 

VIII. 
IX. 
X. 

XI. 

XII. 

Introduction 
Redfield Theory 
The Alternating Line-Width Effect 
A. Theory 
B. cis-trans Isomerism 
C. Restricted Rotations 
D. Ring Inversion 
E. Proton Exchange 
F. Ion Pairs 
G. Polynitro Compounds 
Dynamic Frequency Shifts 
Ligand Exchange 
Electron Transfer 
Asymmetric Line Broadening 
A. Theory 
B. Experimental Tests 
C. The Structure of Liquids 
D. Assignment of Coupling Constants 
E. Sign Determinations 
F. Relative Sign Determinations 
G. Degenerate Transitions 
H. Anisotropy of g Tensors 
I. Quadrupole Relaxation 
Spin-Rotational Interactions 
Higher Spin Multiplicities 
Anisotropic Motion 
A. Anisotropic Diffusion 
B. Partial Orientation 
Spin Exchange 
A. Intramolecular 
B. Intermolecular 
Special Effects. Radicals with Degenerate 

Ground States 

191 
191 
192 
192 
195 
195 
196 
198 
199 
200 
202 
202 
202 
204 
204 
206 
208 
208 
209 
210 
211 
213 
213 
214 
215 
218 
218 
219 
221 
221 
223 

224 

f. Introduction 

An understanding of the factors which can effect the widths of 
hyperfine lines in an electron resonance spectrum is important 
not only as an aid to analysis but because the line widths often 
contain useful chemical information. The basic concepts 
for an interpretation of relaxation in electron resonance were 
first set out in 1948 by Bloembergen, Purcell, and Pound1 

when they developed the theory for the widths of proton 
resonance lines. The subsequent application of their ideas,2 

and other more general theories,3-7 to the investigation of 
the line shapes of electron resonance spectra in solution8-n has 
led to an understanding of a wide range of phenomena. An ac­
count of some of the most useful theoretical techniques has been 
given by Fraenkel12 and some applications have been re­
viewed,1314 but no comprehensive survey has appeared. In this 
review we shall cover all relaxation processes which occur in 
fluid media with particular reference to the chemical informa­
tion which can be obtained and the underlying physical con­
cepts. The survey of the literature is intended to be complete 
to the end of 1967. We shall not consider saturation effects, 
mainly because such studies do not yield additional chemical 
information, although their understanding is of increasing 
importance in ENDOR experiments.15 

Although experimentally one measures hyperfine coupling 
constants in magnetic field units, it should be pointed out that 
these have no precise meaning unless the g factor is also 
quoted. In line-shape studies where time-dependent processes are 
involved, it is natural to work in frequency units, and all cou­
pling constants appearing in this review are in megahertz. 
It is also to be understood that line widths, usually denoted by 
T2

-1, are measured in angular frequency units (radians 
second-1). 

II. Redfield Theory 

The most commonly used form of relaxation theory in mag­
netic resonance is the matrix method developed by Redfield.1'7 

An equivalent formulation due to Bloch5 which uses operator 
techniques has been applied to electron resonance,18 but the 
matrix method provides greater physical insight and is often 
easier to handle.11 The basic theory which aims at develop­
ing a master equation for the time development of the spin 
magnetization in the presence of fluctuating electromagnetic 

(1) N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev., 73> 
679 (1948). 
(2) H. M. McConnell, / . Chem. Phys., 25, 709 (1956). 

(3) R. Kubo and K. Tomita, J. Phys. Soc. Jap., 9, 888 (1954). 
(4) R. K. Wangsness and F. Bloch, Phys. Rev., 89, 728 (1953). 
(5) F. Bloch, ibid., 102, 104 (1956); 105, 1206 (1957). 
(6) A. G. Redfield, IBMJ. Res. Develop., 1, 19 (1957). 
(7) A. G. Redfield, Adcan. Magnetic Resonance, 1, 1 (1965). 
(8) D. Kivelson, J. Chem. Phys., 27, 1087 (1957). 
(9) D. Kivelson, ibid., 33, 1094 (1960). 
(10) M. J. Stephen and G. K. Fraenkel, ibid., 32, 1435 (1960). 
(11) J. H. Freed and G. K. Fraenkel, ibid., 39, 326 (1963). 
(12) G. K. Fraenkel, J. Phys. Chem., 71, 139 (1967). 
(13) C. S. Johnson, Adcan. Magnetic Resonance, 1, 33 (1965). 
(14) D. H. Geske, Progr. Phys. Org. Chem., 4, 125 (1967). 
(15) J. H. Freed, J. Phys. Chem., 71, 38 (1967). 
(16) A. D. McLachlan, Proc. Roy. Soc, A280, 271 (1964). 

191 



192 A. Hudson and G. R. Luckhurst 

interactions is described in a number of texts. We shall sum­
marize in this section the results necessary for applying the 
method to electron resonance and refer to the texts for their 
derivation. "•18 

The line shape is found from the imaginary part of the 
magnetic susceptibility of the spins, x"(w). At high temper­
atures and low microwave power this is proportional to the 
Fourier transform8 

/
CO 

(M1(O)M1(O)C-'"' dt (2.1) 
— CO 

where M1(O is the x magnetization in the Heisenberg repre­
sentation 

Mx(O = eiXtMxe-iXt (2.2) 

and the angular brackets denote an average over the nuclear 
and electron spin states. Classically this corresponds to 
taking the Fourier transform of the autocorrelation function 
of the mean magnetic dipole moment. 

The total Hamiltonian, 3C, may be written 

JC = JC0 + 3C'(0 (2.3) 

where 3C° is time independent and determines the sharp line 
spectrum. 3C'(0 is time dependent with zero time average. 
It is the fluctuations in 3C'(0 which give rise to relaxation. 
Line broadening arises in two ways: the fluctuations induce 
transitions within the spin system and they modulate the trans­
ition frequencies. By a procedure equivalent to second-order, 
time-dependent perturbation theory, it may be shown that 
for rapid fluctuations the matrix elements of M1(O obey a 
linear equation 

^ = £ J W MXV (2.4) 

where K, X, . . . are eigenstates of SC0. There is a separate re­
laxation matrix for each line in the spectrum. It has the 
important property that its eigenvalues multiplied by — 1 are 
the widths of the components of the spectral lines.1' These 
have a Lorentzian shape 

L(oj) = (7Vw)[I + (« - «o)«r,*r> (2.5) 

and have width at half-height 2J2
-1. For the more usually 

measured first-derivative curve, the distance between the two 
extrema is 2T2-

1J'-y/J. The terms in 3C'(0 consist of products 
of spin operators with spatial operators which reflect the lat­
tice motions. The latter are usually treated classically, and 
the matrix elements in eq 2.4 are evaluated in a basis of pure 
spin functions. If we write 

5C'(0 = E ^ A (2-6) 
3 

where the Aq's operate on lattice variables only, the elements of 
R are given by6'7 

*«,xx' = 22>|,S«|X><«/|S.'|X/>7M'(«« - «0 -
Qi' 

EE{ 5 « 'X ' (7 !S 5 |K>(A |S 9 ' | 7> ; ' ' ( « 7 M - w«) + 
7 as' 

*«x<Y|S,|*'><X'|S«'|7>7M'K - ««-)} (2.7) 

(17) A. Abragam, "The Principles of Nuclear Magnetism," Oxford 
University Press, London, 1961. 
(18) C. P. Slichter, "Principles of Magnetic Resonance," Harper and 
Row Publishers, New York, N. Y., 1962. 

The /j8''s are correlation functions defined by 

JtA<») =\ I (A,(t')A,'*0' + 0> cos ut dt (2.8) 
^ J — CO 

whose form depends on the model chosen for the molecular 
motions. The evaluation of eq 2.7 therefore falls into two 
parts. The calculation of the matrix elements of spin oper­
ators Ss within a set of basis functions K,K',... and the solu­
tion of a dynamical problem to determine the correlation func­
tions. Several examples of these procedures will be described in 
later sections. 

It is convenient to distinguish between a number of different 
types of terms in 3C'(0- Firstly there are secular terms which 
commute with 3C° and give onlyy'(O) contributions; secondly 
there are nonsecular terms like S+I- which cause electron spin 
transitions; and thirdly there are pseudosecular terms which 
contain 1+ and I- but not S±, and cause only nuclear spin tran­
sitions. It is often possible to neglect the nonsecular terms, 
but the secular and pseudosecular terms are of comparable 
importance.11 

III. The Alternating Line-Width Effect 

A. THEORY 

The appearance of the electron resonance spectrum of the 
durosemiquinone cation (I) in concentrated sulfuric acid 

OH 

OH 

I 

is markedly temperature dependent.19 The hne positions 
may be analyzed in terms of a 13-line multiplet from the 
methyl protons and a 1:2:1 triplet from the hydroxyl protons, 
but their intensities are anomalous. In the spectra, shown in 
Figure 1, the lines of the methyl proton multiplet marked by * 
and • alternate in width. This effect becomes more apparent 
as the temperature is lowered when the spectrum also shows 
an asymmetric broadening of the type to be discussed in sec­
tion VII. This behavior arises because the molecule is in­
volved in rapid isomerization between cis and trans forms ac­
cording to the scheme shown in Figure 2. The effect of this 
is to modulate the isotropic hyperfine coupling constants of 
the methyl protons in a correlated fashion. 

The term alternating line-width effect has rapidly assumed 
an important place in the vocabulary of electron resonance; 
numerous examples have been reported and will be the subject 
of later discussion. Because the observation of alternating 
line widths implies that a radical is involved in a dynamic situ­
ation, the study of the phenomenon has had far-reaching 
effects in the applications of electron resonance to kinetic 
problems. 

The line-broadening effects of modulating an isotropic hy­
perfine coupling constant may be investigated most rigorously 
using the relaxation matrix theory, provided that the observa­
tions are made in the fast-exchange region. The time-de­
pendent Hamiltonian 

5C'(0 - E(Av(O - a,)/(0-5 (3.1) 

(19) J. R. Bolton and A. Carrington, MoI. Phys., 5, 161 (1962). 
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Figure 1. The electron resonance spectrum of the durosemiquinone cation in concentrated sulfuric acid. 

has secular terms involving I2SZ and nonsecular terms in 
(I+S- + IS+). 

Although there is no inherent difficulty in including the 
latter, their effect is negligible in most cases of interest. The 
nonsecular contribution is smaller than the secular one by a 
factor of [1 + Wo2T2]-1, where wo is the angular Larmor fre­
quency. 

A common situation is one in which two nuclei, or groups 
of equivalent nuclei, interchange their coupling constants. 
This two-site problem occurs, for example, in ring inversions 
(section III.D), intramolecular cation exchange (section 
III.F), and proton-transfer equilibria (section III.E). In the 
fast-exchange region the observed coupling constant is the 
average of those for the two sites 

1 
(«1 + Oi) (3.2) 

and for two nuclei of spin / there are 4 / -f 1 lines. In the 
absence of the nonsecular terms, the relaxation matrix is 
diagonal, and for the hyperfine component with total nuclear 
spin quantum number M = mi + W2 

MO)M' + 2[MO) - /H(O)]W1W2 (3.3) 

The spectral densities ja(w) are the Fourier cosine transforms 
of correlation functions gy(f)- We shall write Jtj for Jv(O). 

Figure 2. The equilibrium scheme for cis-trans isomerism of the 
durosemiquinone cation. 

/'«(«) 
/»cc 

Jo 
gn(t) cos ut dt (3.4) 

where 

gtl(t) = W{(ai(t') - a)(aj(t' + t) - d)) (3.5) 

Their explicit form depends on the dynamical model taken 
for the modulating process. The dependence on the nuclear 
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Table I 

Line Widths from a Modulation of the Isotropic Splittings of Two Nuclei, or Two Completely Equivalent Subgroups of Nuclei 

No. of nuclei I M (M1, M2) 

(±»/i,±V«) 
(± Vb T VO 
( ± l , ± i ) 
(±1,0) 
(±1 , T l ) 
(0,0) 
(±•/„±'/0 
(±Vi,±V0 
<± Vi, TVO 
(±Vi.±V0 
(±Vi, T%) 
(± Vi, TVO 
(±2, ±2) 
(±1,0) 
(±1, Tl) 
(0,0) 
(±'/i, ±V0 
(±Vi,±V0 
(± Vi, T'/O 
(±'A, ±V0 
(±»/i, TVO 
( ± V2, TVO 

ZV 

1 
2 
1 
2 
2 
1 
1 
2 
2 
1 
2 
2 
1 
4 
2 
4 
1 
6 
6 
9 
2 

18 

/> 
1 
2 
1 
2 
3 

1 
2 
3 

4 

1 
4 
6 

1 
6 

15 

20 

r,"1 

ViO'n + y'iO 
V2(ZU - y'iO 

2(yu + / i 0 
Ja 

2(ju - Jw) 
0 

Wn +Jn) 
1MSj11 + 3J12) 
1MSjn - 3/,0 
1MAi + yiO 
9MAi - y'u) 
ViO'n - y'i0 
2C/u + y'i0 

y'n 
2(/ii - y'iO 

0 
ViO'ii + y'iO 
1MSJn + 3/u) 
1MSAi - 3y12) 
1MAi + AO 
'IiUn - y'i0 
1MAi - y'i0 

Tr1 

(Ai = -Ja) 

0 
Ai 

0 
Ai 

4Ai 
0 
0 
Ai 

4y'n 
0 

9/.. 
Ai 

0 
Ai 

4/ii 
0 
0 
y'n 

4A> 
0 
9Ju 
y'n 

± 1 
0 

±2 
± 1 

0 

±3 
±2 
±1 

0 

±2 
±1 

0 
± 3 
± 2 
±1 

0 

D is the degeneracy, and Dk the degeneracy of the fcth component, of a hyperfine line with nuclear spin quantum number M. 

spin quantum number is easily determined. Thus for two 14N 
nuclei the outer M = ±2 lines of the hyperfine quintet are 
broadened by 2[y'u + ju] and both components of the M = 
±1 lines by y'n. The component of the central line with mi = 
W2 = 0 is unbroadened, but the other two components have 
width 2[y'n — y'lj. In the simple example we have outlined, in 
which the radical can exist in two states differing only by an 
interchange of the 14N coupling constants, there is said to be 
complete out-of-phase correlation11 and 

/ U -./12 = 47r2(fli - a 2 ) 2 r / 8 (3.6) 

The widths for this case and for a number of other situations 
are given in Table I. The treatment given here is equally ap­
plicable to groups of equivalent nuclei provided that mx and 
m2 are replaced by Mi and M2, where the latter are eigenvalues 
of J1, and J = 2/< is the sum of the nuclear spin angular 
momenta in the group. The reason for the term "alternating 
line width" is seen most clearly from the results for complete 
out-of-phase correlation. In the case of four equivalent 
protons, the M = ±2 lines and four components of the central 
line are unbroadened. The M = ± 1 lines and two components 
of the central line have widths y'n and 4/n, respectively. 
When y'n is large the quintet collapses to three sharp lines 
with a 1:4:1 intensity pattern. It should be emphasized that 
although the alternation is largest when there is complete 
out-of-phase correlation, it will be observed whenever y'u > 
V2On + A2), provided of course that the line widths are not 
dominated by another mechanism. The advantage of the 
relaxation matrix method is that it facilitates the incorporation 
of a wide range of dynamical models.20 The results for the 
jump models are easily derived from less sophisticated theories. 
In the two site case the fast-exchange broadening for a system 

jumping between two frequencies o>i and co2 with lifetime r 
in each site is21 

Putting 

and 

T2
 1 = (a>i — CO2)2T/8 

Co1 = to + 2w(aiMi + O2M2) 

(3.7) 

(3.8) 

W2 = coo + 27r(aiM2 + O2M1) (3.9) 

Tr1 = 4ir2(fl! - O2)Wi - M2)V/8 (3.10) 

It is clear that hyperfine components with Mi = M2 are un­
broadened. This result is identical with that obtained from 
the relaxation matrix. It is implicit in the secular approach 
that the nuclear spin state does not change during a jump 
and hence each hyperfine component may be treated indi­
vidually. 

It is often possible in systems exhibiting the alternating line-
width phenomenon to follow the changes in the appearance of 
the spectrum into the slow-exchange region. It then consists 
of a superposition of the individual spectra whose time average 
is seen in the fast-exchange region. The slow and intermedi­
ate rates of exchange are not covered by the relaxation matrix 
theory, and the modified Bloch equations21-24 are commonly 
employed in interpreting the observed line shapes. 

The philosophy behind these is well known and is treated 

(20) J. H. Freed and G. K. Fraenkel, / . Cfiem. Phys., 41, 3623 (1964). 

(21) J. A. Pople, W. G. Schneider, and H. J. Bernstein, "High Resolu­
tion Nuclear Magnetic Resonance," McGraw-Hill Book Co., Inc., 
New York, N. Y., 1959, p 222. 
(22) H. S. Gutowsky, D. W. McCaIl, and C. P. SIichter, J. Chem. Phys., 
21, 279 (1953). 
(23) H. M. McConnelI, ibid., 28, 430 (1958). 
(24) A. Carrington, MoI. Phys., S, 425 (1962). 
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in a number of texts. A differential equation is written for 
the magnetization of the electron at each site and is modified 
by the addition of phenomenological exchange terms. The 
absorption line shape is then determined from the imaginary 
part of the net average electron magnetization (G). For two 
sites this takes the form 

/Q\ _ _ ' " l M l f t ( 4 + VlkT + 7)2kT) „ j j . 

2(TlIkVUT + 1?1*??2*) 

and for the four-site scheme24 of Figure 2 

(G4) = -Iu1MtDk X 

(Ti + T2XT3 + T4 + 27374) + (73 + 74X71 + T2 + 27172) 

471T2T3T4 - (Ti + 72XT3 + T 4) 

(3.12) 

Mo and Co1 are constants, Dk is the degeneracy of the nuclear 
spin states referred to by subscript k, and the numerical sub­
scripts refer to individual sites 

Ti = 1 + I?I*T (3.13) 

"On = 7V1 — '(wo — w + 6coj*)> etc. (3.14) 

Tt"1 is the line width in the absence of exchange, coo is the Lar-
mor frequency of the electron in the absence of hyperfine inter­
actions, and Sulk is the shift in resonance frequency in site 1 
due to the nuclear spin state k. 

Using these results it is possible to reconstruct spectra for 
various values of r and by matching these with experimental 
results over a range of temperatures to determine the rate law 
and activation parameters for the dynamic process involved. 
If the slow-exchange region is unobservable, it is not possible 
to reconstruct line shapes in the fast-exchange region without 
guessing the values of the hyperfine splittings of the exchanging 
species. This is a difficult task and would appear to rule out 
a kinetic analysis of the situation. A partial answer to this 
problem is provided by considering the fast-exchange broad-
enings in Table I. It is apparent that in two-jump situations 
the outer lines remain sharp. The outer lines but one are 
broadened, but all components have the same width. These 
lines therefore retain an over-all Lorentzian shape. This is not 
true for the other lines in the spectrum which generally have 
components which broaden at different rates and are no 
longer Lorentzian. It is therefore possible to use the ampli­
tudes of the two outer lines of the multiplet to determine the 
relative broadening due to exchange. For a 1:4:6:4:1 
quintet the broadening of the M = ±1 lines is Tf1 = 
2[A(I)/A(I)]1^ - 1 in relative units. A(M) is the peak-to-
peak amplitude of the first-derivative line with nuclear spin 
quantum number M. The assumption that 

k = T~1 = ro-1 sxp(-AH*/RT) (3.15) 

leads to the result that a plot of In 2[A(2)jA(\)],h - 1 against 
IjT should be linear with slope —AH*/R. It is thus possible 
to determine the activation energy without a knowledge of the 
hyperfine coupling constants of the various species involved. 
Similar results are obtained for a number of three-and four-
site situations. This approach facilitates the measurement of 
activation parameters in systems where the slow exchange re­
gion is experimentally inaccessible. 

B. cis-trans ISOMERISM 

As we have described earlier, the durosemiquinone cation 
exhibits a temperature-dependent line-width alternation in the 
13-line multiplets from the 12 methyl protons when prepared 
in concentrated sulfuric acid.19 This was attributed to an iso­
merism between cis and trans isomers according to the scheme 
of Figure 2. It was not possible to reduce the temperature suffi­
ciently to observe the individual isomers because of the high 
viscosity and freezing point of sulfuric acid. The existence 
of such isomers is, however, well established in radicals such 
as the terephthaldehyde anion26 and various /wra-substituted 
benzaldehyde anions.26'27 More recently the durosemiqui­
none cation has been prepared by the reaction of aluminum 
chloride with duroquinol in nitromethane. The spectra were 
measured from —90 to +10°, and at low temperatures the 
separate cis and trans forms were resolved.28 By calculating 
theoretical spectra using a four-jump model and matching 
these with experiment, the potential barrier to rotation has 
been estimated to be 4.2 ± 0.6 kcal mole-1. A similar in­
vestigation of the hydroquinone cation29 gave a potential barrier 
of ca. 10 kcal mole-1. The higher value in the latter case may 
be a result of decreased steric interactions in the planar con­
formation. 

The four-jump model has also been successfully applied to 
the temperature-dependent changes found in the spectrum of 
the naphthazarin semiquinone cation in concentrated sulfuric 
acid.80 The barrier for isomerism between the cis and trans 
isomers (II and III) is 4 ± 1 kcal mole-1 with a frequency 

factor of 1010 sec-1. The mechanism almost certainly in­
volves the breaking of an intramolecular hydrogen bond. 

C. RESTRICTED ROTATIONS 

The influence of intramolecular steric interactions on the ob­
served values of hyperfine splitting constants is well docu­
mented and has recently been reviewed.14 A clear example 
of the effect of restricted rotation is provided by the tetra-
isopropylnitrobenzene radical anion in acetonitrile.31 It 
exists in two forms differing in the degree of twist of the nitro 
group out of the plane of the benzene ring. The two forms 
have nitrogen coupling constants of 66.1 and 61.6 MHz and 
differ in free energy by about 0.5 kcal mole-1. 

If transitions between conformations occur at a rate com­
parable with the difference in hyperfine splittings, one expects 
to see line-broadening effects. A simple example would be 

(25) A. H. Maki, J. Chem. Phys., 35, 761 (1961). 
(26) A. H. Maki and D. H. Geske, J. Amer. Chem. Soc, 83,1852 (1961). 
(27) E. W. Stone and A. H. Maki, J. Chem. Phys., 38, 1999 (1963). 
(28) P. D. Sullivan, J. Amer. Chem. Soc, 89, 4294 (1967). 
(29) A. B. Barabas, W. F. Forbes, and P. D. Sullivan, Can. J. Chem., 45, 
267 (1967). 
(30) J. R. Bolton, A. Carrington, and P. F. Todd, MoI. Phys., 6, 169 
(1963). 
(31) T. M. McKinney and D. H. Geske, / . Chem. Phys., 44, 2277 (1966). 
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the restricted rotation of a methyl group attached to a ir sys­
tem. The proton coupling constants vary as A + B cos2 6, 
6 being the angle between the C-H bond and the 2pir orbi­
tal containing the unpaired electron. For a freely rotating 
methyl group (cos2 8) = V2 and an interaction of A + (B/2) is 
observed with three equivalent protons. If the methyl group 
is locked in an arbitrary orientation, up to three different 
proton couplings may be apparent. This possibility is rea­
lized in the CH3CHCOOH radical trapped in /-alanine.82 

On lowering the temperature from 2000K, when the methyl 
group is freely rotating, some of the lines broaden, and at 
1000K the methyl group is effectively locked so the three dif­
ferent isotropic proton interactions are resolved. The appli­
cation of a simple jump model gave an activation energy of 
4.8 ± 1 kcal mole-1. 

The theory of the line widths in such situations has been 
investigated in terms of classical rotational diffusion and three-
jump models for the motion of the methyl group.88 The 
possibility of quantum mechanical tunneling has also been 
discussed.84'844 For a single methyl group the time-dependent 
Hamiltonian is 

3C(O= 2 > < W - « i ) / W ' S (3.16) 
t - i 

and both the secular and nonsecular contributions to the line 
width have been evaluated. In the secular approximation the 
M — ± 3/2 lines are unaffected and the three components of 
the M = ± l/a lines have width Jn(O). The nonsecular terms 
contribute '/«/u(«) to the outer lines. The M = ±Vs lines 
have nondiagonal relaxation matrices, and the line shape con­
sists of a superposition of two Lorentzian curves of different 
widths. The nonsecular contributions would be important if 
W0T < 1; however, the predicted non-Lorentzian character of 
the M = ± Vs lines has not yet been observed. There are, in 
fact, very few reported examples of the restricted motion of a 
methyl group in solution. 

At —140° the propyl radical shows a 1:3:3:1 quartet 
splitting, but at —180° the pattern has changed and corre­
sponds to a coupling with only two protons.35 The barrier is 
about 3.7 kcal mole-1. The claim that the rotation of the 
1-methyl group in methylated anthrasemiquinones is re­
stricted86 has been challenged.14 

Recently evidence of restricted rotation has been found in a 
number of compounds containing CF3 groups. The radical 
anion of 2-trifiuoromethylnitrobenzene gives a spectrum in 
which the MF = ± V2 lines of the expected fluorine quartet are 
missing.37'8S Similar results are found in the 4-NH2 and 4-OMe 
derivatives, but the broadened MF = ± V2 lines were observed 
in the 4-OH compound.87 The CF3OO radical has been pre­
pared by photolysis of CF3OOCF3 and exhibits hyperfine 

(32) A. Horsfield, J. R. Morton, and D. H. Whiffen, MoI. Phys., S, 115 
(1962). 
(33) J. H. Freed and G. K. Fraenkel, J. Amer. Chem. Soc, 86, 3477 
(1964). 
(34) J. H. Freed, / . Chem. Phys., 43, 1710 (1965). 
(34a) NOTE ADDED IN PROOF. Interesting quantum mechanical effects 
have recently been found in the low-temperature spectra of crystals con­
taining radicals with rotating methyl groups: W. L. Gamble, I. Miya-
gawa, and R. L. Hartman, Phys. Rev. Lett., 20 415(1968); J. W. Wells, 
and H. C. Box, / . Chem. Phys., 48, 2542 (1968). 
(35) R. W. Fessenden and R. H. Schuler, ibid., 39, 2147 (1963). 
(36) R. M. Elofson, K. F. Schulz, B. E. Galbraith, and R. Newton, 
Can. J. Chem., 43, 1553 (1965). 
(37) E. G. Janzen and J. L. Gerlock, J. Amer. Chem. Soc., 89, 4902 
(1967). 
(38) J. W. Rogers and W. H. Watson, / . Phys. Chem., 72, 69 (1968). 

coupling to two types of fluorine atoms in the range —196 to 
_ 170°.89 The barrier for interconversion is 2-3 kcal mole-1. 

The nature of the radical formed by irradiating poly(methyl 
methacrylate) has been the subject of much discussion. The 
spectrum consists of nine lines of alternating intensities. It is 
suggested that the spectrum arose from the radical IV and 
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that the line-width alternation is due to a modulation of the 
methylene proton coupling constants which interchange be­
tween preferred orientations.40 This hypothesis is supported 
by an investigation of the radical V prepared from methacrylic 
acid and hydroxyl radicals using rapid mixing techniques.41'42 

The failure to recognize the existence of an alternating line-
width effect had caused earlier workers to suggest that two 
radicals were present. 

D. RING INVERSION 

The study of the interconversion of conformational isomers 
of cyclic compounds by the measurement of line-width effects 
in nuclear magnetic resonance spectra is well established.43 

As might be expected, similar effects are found in the electron 
resonance spectra of nonrigid cyclic free radicals. 

The cyclohexyl radical exemplifies the sort of information 
obtainable and has been more thoroughly investigated than 
other cyclic radicals in which line-width effects have been ob­
served. Early observations on solids suggested that at 770K 
only two of the four /3 protons had appreciable coupling 
constants.44 A detailed temperature-dependent study of the 
radicals produced by continuous irradiation of cyclohexane 
with 2.8-MeV electrons confirmed this proposition.35'45 At 
— 80° the spectrum of a single form of the radical was ob­
served, with splittings of 110.4 and 14.8 MHz from two equiv­
alent pairs of /3 protons and a 59.6-MHz a-proton hyperfine 
coupling. On raising the temperature, ring inversion inter­
changes pairs of equivalent protons, and in the fast-exchange 
limit a 1:4:6:4:1 quintet splitting from the four /3 protons 
is predicted. At 10°, the highest temperature at which the 
radical was observed, a 1:4:1 pattern is apparent. The alter­
nate lines of the quintet are still broadened and unobservable.46 

The line-width variations between —85 and 0° have been 
interpreted in terms of a two-jump model.45 The Bloch equa­
tions used to calculate theoretical peak heights as a function of 
jumping rate were modified to give Gaussian line shapes be­
cause the measurements were made on solids rather than liq­
uids. The activation energy of 4.9 ± 0.5 kcal mole-1 found for 
ring inversion in cyclohexyl is to be compared with a value of 
10.3 kcal mole-1 for cyclohexane itself.43 It seems probable the 
interconversion is between two chair forms of the radical. An 

(39) N. Vanderkooi and W. B. Fox, / . Chem. Phys., 47, 3634 (1967). 
The radical may be CFsOOO according to R. W. Fessenden, ibid., 
48, 3725 (1968). 
(40) M. C. R. Sytnons, / . Chem. Soc, 1186 (1963). 
(41) H. Fischer, Z. Naturforsch., 19a, 866 (1964). 
(42) H. Fischer, Polymer Lett., 2, 529 (1964). 
(43) J. E. Anderson, Quart. Rev. (London), 19, 426 (1965). 
(44) N. Ya. Cherniak, N. N. Bubnov, L. S. Poliak, Yu. D. Tsvetkov 
and V. V. Voevodskii, Opt. Spectrosk., 6, 360 (1959). 
(45) S. Ogawa and R. W. Fessenden, J. Chem. Phys., 41, 994 (1964). 
(46) M. K. Leung and J. W. Hunt, / . Phys. Chem., 71, 3177 (1967). 
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approximate activation energy of 5-6 kcal mole-1 was ob­
tained by Buben and coworkers who considered the broaden­
ing at a particular temperature and compared the rate con­
stant thus obtained with that for cyclohexane itself.47 

In investigations of the reactions of hydroxyl radicals with 
organic substrates, line-width alternation has been observed 
in radicals formed by hydrogen abstraction from alicyclic 
compounds like piperidine, dioxane, cyclohexanol, and cyclo-
hexylamine, and attributed to the interconversion of chair 
conformations. **•49 The radical VI from dioxane has also been 

O 
seen during the photolysis of acetone containing 10% of the 
ether,60 the central line of the 1:2:1 triplet from the fi protons 
being broadened. Similar effects are found in the electron 
resonance spectra of nitroxide radicals from piperidine and 
morpholine.51 

The temperature dependence of the line broadening in 
morpholine-oxyl is illustrated in Figure 3. At 20° the four /3 
protons give rise to a 1:4:1 splitting of the nitrogen triplet; 
at 60° broad lines are apparent midway between the sharp 
lines. By measuring the relative widths of the M = ±2 and 
M = ± 1 /3 proton lines as a function of temperature, Hudson 
and Hussain have been able to estimate activation energies for 
ring inversion in morpholine-oxyl and piperidine-oxyl of 8.6 
and 5.6 kcal mole-1, respectively.52 
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the system.65 Spectra were recorded over a wide temperature 
range, and it was possible to observe both the slow and fast 
exchange limits, but no kinetic parameters were determined.68 

More recently the temperature dependence of the electron 
resonance spectra of several cycloalkanesemidiones has been 
extensively investigated.56 Cyclohexanesemidione (VII) inter-

o-

0-

SR 

converts between half-chair conformations with AH* = 4.0 
kcal mole-1 and AS* = 1.0 cal deg-1 mole-1. 3,3,5,5-Tetra-
methylcyclohexanesemidione has a AH* of only 2.6 kcal 
mole-1 but AS* = —8 cal deg-1 mole-1. Kinetic data were 
obtained from the line broadening above the coalescence 
temperature, the coalescence temperature, and peak separation 
below the coalescence temperature. The temperature at which 
a degenerate peak splits, because the lifetime of a conforma­
tional state is comparable with the reciprocal of the difference 
in coupling constants, has been widely used in nuclear reso­
nance studies.48 At the coalescence temperature the rate con­
stant is given by 

k = 4TrV^Ia1 - a2\ sec-1 (3.17) 

where ax and a2 are the limiting values of the coupling constants 
in the two forms.57 

The conformational aspects of the extensive work of Rus­
sell's group on semidiones have been reviewed.1458 

There are, as yet, few studies of conformational intercon-
versions in other than six-membered rings. In their investiga­
tion of the cyclopentyl radical, Fessenden and Schuler found 
that at —40° the four /3 protons are completely equivalent.36 

At lower temperatures some broadening of the M = ±1 lines 
was observed, suggesting that the molecule is oscillating be­
tween nonplanar isomers. 

Interesting alternating line widths have been reported in 
the radical ions of 1,2,3,6,7,8-hexahydropyrene (VIII) and 

Figure 3. The electron resonance spectrum of morpholine-oxyl in 
aqueous solution. 

Line broadening due to conformational changes has been 
reported in radicals generated by the action of potassium on 
degassed solutions in dimethoxyethane (DME) of alicyclic 
ketones containing 6 to 12 carbon atoms.68 It was originally 
supposed that the species formed were the alicyclic ketyls. 
However, it seems probable that the radicals observed were 
semidiones54 produced by the presence of traces of oxygen in 

•wn IX 

(47) N. Ya. Buben, Yu. N. Molin, A. I. Pristupa, and V. N. Sham-
shev, Dokl. Akad. Nauk SSSR, 152, 352 (1963). 
(48) W. T. Dixon and R. O. C. Norman, J. Chem. Soc, 4850 (1964). 
(49) T. Shiga, A. Boukhors, and P. Douzou, J. Phys. Chem., 71, 4264 
(1967). 
(50) H. Zeldes and R. Livingston, J. Chem. Phys., 45, 1946 (1966). 
(51) G. Chapelet-Letourneux, H. Lemaire, and A. Rassat, Bull. Soc. 
Chim. Fr., 3283 (1965). 
(52) A. Hudson and H. A. Hussain, / . Chem. Soc, B, 251 (1968). 
(53) J. W. Lown, Can. J. Chem., 43, 2571 (1965); 43, 3294 (1965); J. 
Phys. Chem., 70, 591 (1966). 
(54) G. A. Russell and E. T. Strom, / . Amer. Chem. Soc, 86, 744 (1964). 

4,5,9,10-tetrahydropyrene (IX). de Boer and Praat studied 
both the positive and negative radical ions of VIII. At low 
temperatures both boat and chair conformations are ob­
served.59 As the temperature is raised, the /3 proton coupling 
constants are averaged and the eight nuclei give rise to an 
alternating pattern with sharp components in the ratio 1:8:18: 
8:1. Iwaizumi and Isobe60 have also studied the anion of VIII. 

(55) E. R. Talaty and G. A. Russell, ibid., 87, 4867 (1965). 
(56) G. A. Russell, G. R. Underwood, and D. C. Lini, ibid., 89, 6636 
(1967). 
(57) A. Carrington and A. D. McLachlan, "Introduction to Magnetic 
Resonance," Harper & Row, Publishers, New York, N. Y., 1967, p207. 
(58) G. A. Russell, E. T. Strom, E. R. Talaty, K. Y. Chang, R. D. 
Stephens, and M. C. Young, Rec Chem. Progr., 27, 3 (1966); G. A. 
Russell in "Radical Ions," E. T. Kaiser and L. Kevan, Ed., Interscience 
Publishers, New York, N. Y., 1968, p 87. 
(59) E. de Boer and A. P. Praat, MoI. Phys., 8, 291 (1964). 
(60) M. Iwaizumi and T. Isobe, Bull. Chem. Soc. Jap., 38, 1547 (1965). 
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In tetrahydrofuran (THF) at low temperatures an additional 
feature was observed with an alternation in the widths of the 
hyperfine components of the /3 axial protons.80 This was at­
tributed to the oscillation of an alkali metal counterion be­
tween two sites. No such effect was found in DME (c/. section 
III.F). The radical anion of IX also shows line-width alterna­
tion in the nonet from the methylene protons.60 The inversion 
barrier has been estimated as 4-5 kcal mole-1. The intercon-
version of methylene protons has also been investigated in the 
neutral radical, 1,2,3-trihydropyrenyl (1,9-trimethylenephenal-
enyl).61 

E. PROTON EXCHANGE 

The investigation of rapid processes involving proton transfer 
is of some importance in modern chemistry, and the use of 
electron resonance to study radicals involved in such equilibria 
is an attractive possibility. It is surprising therefore that only a 
few studies have been reported. The systems which have been 
analyzed have often been examined by more than one group 
of investigators. It is possible, by comparing the results of 
independent experiments, to assess the reliability of line-shape 
analysis as a method of obtaining kinetic data. 

The simplest process one might envisage is an exchange of 
a labile proton analogous to the acid-catalyzed exchange of 
the hydroxyl proton in ethanol, the effects of which are well 
known in nuclear resonance. The theory for the effect of the 
exchange of a proton on its hyperfine coupling is a straight­
forward example of a spin jumping with equal probability 
between two sites with different resonance frequencies. An 
incoming proton enters the radical with either a or /3 spin with 
equal probability, thus changing the environment of the odd 
electron between the two states of the hyperfine doublet. 
There is an even chance of an exchanging proton altering the 
spin state which thus has a lifetime twice the lifetime of the 
radical between chemical exchanges. As the latter gets shorter, 
the two lines of the proton doublet broaden and draw together, 
eventually merging and finally sharpening. 

Fischer has prepared the radical • CH2OH by hydrogen ab­
straction from methanol in aqueous solutions using a rapid 
mixing technique.62,62a The observed pH dependence of the OH 
proton splitting was attributed to the reaction 

ROH + H1O
+ = ROH2

+ + H2O 

The rate constant k is computed from the relation 

T"1 = (l/[ROH])(d[ROH]/df) = Zk[H3O
+] (3.18) 

where T is the mean lifetime between chemical exchanges. The 
rate was independent of the concentrations of methanol and 
of the radical, and by measuring the peak separation in the 
slow-exchange region as a function of pH a value of k = 1.76 
X 1081. mole-1 sec-1 was determined at 17°. The same reac­
tion has also been studied in a rapid flow system in which an 
aqueous solution of acetone and methanol was photolyzed in 
the cavity of the electron resonance spectrometer.6* The rate 
constant was determined by noting the pH at which the two 
peaks of the OH doublet coalesced. The values of k at 28° 

(61) F. Gerson, E. Heilbronner, H. A. Reddoch, D. H. Paskovich, and 
N. C. Das, HeIo. Chim. Acta, 50, 813 (1967). 
(62) H. Fischer, MoI. Phys., 9, 149 (1965). 
(62a) NOTE ADDED IN PROOF. K. Poupko and H. Lowenstein / . Chem. 
Soc, A, 949 (1968), have reinvestigated these proton-exchange reac­
tions. Their results are in agreement with those of ref 50, rather than 
ref 62. 

were found to be 3.6 X 107 and 7.2 X 1071. mole-1 sec-1 for 
CH2OH and (CH3)2COH, respectively. The result for CH2OH 
is about a factor of 5 slower than the rate found by Fischer 
although he worked at a lower temperature. He observed 
coalescence at a pH of 1.11 from which we calculate k = 1.54 
X 1081. mole-1 sec-1 which is close to his value from the peak 
separations. The solutions used in the photolysis experiments 
contained 10% acetone which may account for the difference 
in rates. 

The electron resonance spectrum of the biacetylsemidione 
has been the subject of several investigations.63-66 In strongly 
acidic or basic media a seven-line hyperfine pattern is observed 
from the six methyl protons. However, at pH 1-2 the hyperfine 
structure shows a strong alternation in line widths with sharp 
components in the ratio 1:9:9:1. This has been attributed to a 
tautomerism of the monoprotonated /«vw-semidione which 
interchanges the isotropic hyperfine coupling constants of the 
two groups of methyl protons. At pH 3 a spectrum is observed 
with a different coupling to the two methyl groups and a small 
coupling to the OH proton. By treating the tautomerism as a 

CH3VN. ^O CH3S, . yOR 

H0X NCH3 O ^ ^CH, 

two-jump situation67 and using the modified Bloch equations 
to calculate relative peak intensities, it has been demonstrated 
that the rate of the line-broadening process is first order in 
hydrogen ion concentration with a rate constant of 4.53 X 
10* 1. mole-1 sec-1. The same radical has been observed during 
the photolysis of solutions of biacetyl in isopropyl alcohol.68 

The addition of varying amounts of concentrated HCl pro­
duced similar changes to those found in aqueous solu­
tions. 

0- *0H 

®) (@ 
O' -OH 

Figure 4. Proton exchange equilibria involving 1,4-benzosemi-
quinone radicals. 

Similar phenomena have been observed during the oxida­
tion of hydroquinones in rapid flow systems, the equilibria 
involved being summarized in Figure 4. 

In basic solutions the semiquinone anion A is seen with a 

(63) J. R. Steven and J. C. Ward, Chem. Commun., 273 (1965); Aust. J. 
Chem., 20, 2005 (1967). 
(64) G. A. Russell, E. R. Talaty, and M. C. Young, J. Phys. Chem., 70, 
1321 (1966). 
(65) G. A. Russell and R. D. Stephens, ibid., 70, 1320 (1966). 
(66) R. O. C. Norman and R. J. Pritchett, / . Chem. Soc., B, 378 (1967). 
(67) R. J. Pritchett, MoI. Phys., 12, 481 (1967). 
(68) H. Zeldes and R. Livingston, J. Chem. Phys., 47, 1465 (1967). 
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1:4:6:4:1 hyperfine pattern (a = 6.7 MHz). However, as 
the pH is lowered the M = ±1 lines broaden and at pH 
2.2 have almost disappeared, leaving a 1:4:1 pattern of sharp 
lines.6970 At a still lower pH the broadened lines reappear and 
the spectrum is attributed to the cation D. In concentrated 
acid a 1:2:1 triplet is seen from the OH protons. The spectra 
in the range pH 5.4-2.2 which show line-width alternation 
have been computed using the modified Bloch equations and 
the assumption that the intermediates B and C have a coupling 
of 13.4 MHz to the protons ortho to the unprotonated oxygen 
atom, and zero coupling to the meta protons. In this range it 
seems reasonable to neglect species D and one may write 

d[A]/df = -2*A[A][H+] (3.19) 

d[B]/df = dtq/dr = -2*B[B] (3.20) 

K = * B /*A (3.21) 

The spectra were computed for various values of the life­
times of A and B and fitted to the experimental results,70 

giving pkk = -10.6 ± 0.3, pkB = -6.9 ± 0.2, and hence 
pK = 3.7 ± 0.5. 

In an earlier study89 over a more limited pH range, the 
values of pjRTa = —10.2 and pK ~ 4.5 were found in reason­
able agreement with the more detailed investigation. Similar 
results have also been found in an investigation of the cor­
responding equilibria of the catechol semiquinone. 

F. ION PAIRS 

Since the discovery by Adam and Weissman of hyperfine 
coupling from sodium ions in ethereal solutions of the benzo-
phenone ketyl,71 electron resonance has been widely exploited 
in the investigation of ion-pairing phenomena. The structural 
implications of this work have been reviewed.72,7' 

Relaxation processes due to the movement of a cation be­
tween two positions in a negative ion were first reported74,75 in 
studies on pyracene (X). When DME was the solvent, no ion 

association was observed and the splitting pattern arose from 
a set of eight equivalent aliphatic (a) protons and four equiva-

(69) I. Yamakazi and L. H. Piette, / . Amer. Chem. Soc, 87, 986 (1965). 
(70) I. C. P. Smith and A. Carrington, MoI. Phys., 12, 439 (1967). 
(71) F. C. Adam and S. I. Weissman, J. Amer. Chem. Soc, 80, 1518 
(1958). 
(72) M. C. R. Symons, J. Phys. Chem., 71, 172 (1967); J. Burgess and 
M. C. R. Symons, Quart. ReD. (London), 22, 276 (1968). 
(73) N. Hirota, J. Phys. Chem., 71, 127 (1967); in "Radical Ions," ref 
58 p 35. 
(74) E. de Boer and E. L. Mackor, Proc. Chem. Soc, 23 (1963). 
(75) E. de Boer and E. L. Mackor,/. Amer. Chem. Soc, 86, 1513 (1964). 

lent aromatic 03) protons. In 2-MeTHF a quite different 
spectrum was obtained. Not only was a sodium splitting ap­
parent, but at —80° two distinct aliphatic proton coupling 
constants of 19.4 and 17.8 MHz were resolved compared with 
the single a-proton coupling of 18.4 MHz in DME. The change 
in spin density distribution was attributed to the presence 
of a counterion at one of the positions marked A and B in 
X. 

The potassium derivative at —30° in THF gave yet another 
type of spectrum. The nonet from the a protons had alternate 
sharp and broad components. This effect arises because migra­
tion of the cation between A and B modulates the isotropic 
coupling constants of the aliphatic protons. For alternation 
to be observed, the rate constant, k, for the hopping must oc­
cur within the range 105 sec-1 < k < 107 sec-1. 

A subsequent study76 of the behavior of the potassium and 
sodium systems in 2-MeTHF at low temperatures demon­
strated the existence of another dynamic process. The cation 
at A or B oscillates in a potential well and modulates the iso­
tropic splitting factors of the four neighboring protons. The 
spectrum then shows a further characteristic line-width alter­
nation. Similar results have been reported for alkali-metal 
acenaphthene ion pairs where the two sites probably lie 
above and below the naphthalene ring.77 Related phenomena 
have been found in the investigation of ion pairs of the pyra-
zine radical anion with alkali metals,78-80 involving a modula­
tion of the ring proton coupling constants. The kinetics of the 
intramolecular exchange reaction have been studied over a 
wide range of conditions. Activation energies were determined 
both by comparison of observed and calculated spectra, and 
from relative line-breadth measurements in the fast-exchange 
region.80 Good agreement was obtained between the two 
methods. The rate constant for the sodium complex in a 
DME-THF mixture containing 0.72 mole fraction of THF is 
1018-3 exp(—7.4//J71) sec-1. The activation energy is higher in 
mixed solvents and much higher for lithium (15 kcal mole-1). 
No line-width alternation was observed with rubidium or 
cesium.80 

Closely related systems in which ion pairing has been ex­
tensively investigated are those involving semiquinones. 
Line-width alternation has been observed in alkali metal com­
plexes of p-benzosemiquinone in a variety of solvents.81-88 

In the limit of extreme broadening a 1:4:1 pattern is observed 
from the four ring protons.81 Similar effects have been found 
in experiments using duroquinone84 and estimates of the rates 
of cation exchange have been reported.85 It is now agreed that 
a model in which the cation oscillates between two equivalent 
sites is the most probable mechanism.86 ^ 

(76) E. de Boer, Rec. Trav. CMm. Pays-Bas, 84, 609 (1965). 
(77) M. Iwaizumi, M. Suzuki, T. Isobe, and H. Azumi, Bull. Chem. 
Soc. Jap., 40, 2754 (1967). 
(78) N. M. Atherton and A. E. Goggins, MoI. Phys., 8, 99 (1964). 
(79) J. dos Santos-Veiga and A. F. Neiva-Correia, ibid., 9, 395 (1965). 
(80) N. M. Atherton and A. E. Goggins, Trans. Faraday Soc, 61, 1399 
(1965); 62, 1702 (1966). 
(81) E. A. C. Lucken, / . Chem. Soc, 4234 (1964). 
(82) M. P. Khakhar, B. S. Prabhananda, and M. R. Das, / . Chem-
Phys., 45, 2327 (1966); / . Amer. Chem. Soc, 89, 3100 (1967). 
(83) D. H. Chen, E. Warhurst, and A. M. Wilde, Trans. Faraday Soc, 
63, 2561 (1967). 
(84) P. S. GiU and T. E. Gough, Can. J. Chem., 45, 2112 (1967). 
(85) T. E. Gough and M. C. R. Symons, Trans. Faraday Soc, 62, 269 
(1966). 
(86) T. A. Claxton, J. Oakes, and M. C. R. Symons, Nature, 216, 914 
(1967). 
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Alternating line widths are observed when 5,10-dihydro-
silanthrene (XI) is reduced with potassium in THF, and it is 

H 3 C N ^CH3 

COO 
H3C' N CH 3 

I I 

suggested that the counterion oscillates between positions in 
which it is associated with silicon d orbitals.87 

The complex line broadening reported in lithium ion pairs of 
phthalonitrile88 is consistent with a model in which the cation 
associates alternately with each nitrile group, and all three 
pairs of coupling constants are modulated. 

Another sort of line broadening found in the investigation 
of ion pairs involves metal hyperfine structure. In an attempt 
to explain the temperature variation of the latter in some 
anion radicals, Hirota and Kreilick proposed a model in which 
two ion pairs with different alkali metal coupling constants 
are in rapid equilibria.89'90 If the metal splittings in the two 
forms are a A and OB. and PA and PB are the fractions of A and 
B, then the observed splitting is 

a = PA.aA + pB«B = (a A + Ka3)Kl + K) (3.22) 

where K = PA/PB, and the broadening due to fast exchange 
is21 

r r i = (coA - WB)2O + JO^A2PB2TA (3.23) 

COA and COB are the resonant frequencies of the two forms and 
TA the lifetime of A. 

Tight ion pairs with large metal splittings are favored at 
high temperatures and loose ion pairs are favored at low 
temperatures. It follows from the line-width expression that 
the line broadening should depend on the nuclear quantum 
number of the cation. For Na or Li (/ = '/a). peaks with M = 
± s/2 should broaden more rapidly than those with M = ± V2. 
The broadening is proportional to M2 if the differences be­
tween the g factors and the other hyperfine couplings of the 
two species are small compared with the change in metal hy­
perfine coupling. The model has been applied to sodium an­
thracene and sodium 2,6-di-/-butylnaphthalene anion radicals 
in a variety of solvents91 and to acenaphfhene-sodium ion 
pairs in THF.92 

An asymmetrical line-width variation is found in the metal 
ion quartets of lithium naphthalene in tetrahydropyran and 
2-MeTHF and has been discussed93 in terms of a modulation 
of both the lithium splitting and the a-proton coupling con­
stant. This leads to a cross term in MaMu in the expression 

(87) E. G. Janzen and J. B. Pickett, / . Amer. Chem. Soc, 89, 3649 
1967). 
(88) K. Nakamura and Y. Deguchi, Bull. Chem. Soc Jap., 40, 705 
(1967). 
(89) J. Gendell, J. H. Freed, and G. K. Fraenkel, J. Chem. Phys., 37, 
2832 (1962). 
(90) N. Hirota and R. Kreilick, J. Amer. Chem. Soc, 88, 614 (1966). 
(91) A. Crowley, N. Hirota, and R. Kreilick / . Chem. Phys., 46, 4815 
(1967). 
(92) A. M. Hermann, A. Rembaum, and W. R. Carper, / . Phys. Chem., 
71, 2661 (1967). 
(93) P. B. Ayscough and F. P. Sargent, J. Chem. Soc, B, 900 (1966). 

for the line broadening. The lithium-naphthalene system has 
also been investigated by Atherton.94 

The Li and Na ion pairs of 4-cyanopyridine in DME show 
an asymmetric line-width dependence on the alkali metal 
nuclear spin quantum number, suggesting an exchange 
between different species.95 The potassium ion pair showed no 
resolvable metal structure, but the spectrum was temperature 
dependent and could be analyzed as a superposition of two 
species in equilibrium. The equilibrium constant is 4.3 at 25° 
with an enthalpy difference of 3.5 kcal mole-1 between the 
two forms.95 

G. POLYNITRO COMPOUNDS 

Because they readily form stable anions the aromatic nitro 
compounds have been extensively studied in solution. In this 
section we consider those aspects of the many investigations 
in the literature relevant to alternating line widths. Early 
work established that, with the exception of 1,2-dinitroben-
zene, alkali metal reduction of di- and trinitrobenzenes in 
ether solvents gave spectra characterized by a single large 
nitrogen hyperfine interaction.96-98 Thus the sodium salt of 
1,3-dinitrobenzene had nitrogen coupling constants of 25.2 
and 0.81 MHz at 0° in DME, whereas the anion of 1,2-dini-
trobenzene appeared to have two equivalent 14N interactions. 
The observations were interpreted by postulating tight ion 
pairing with one of the nitro groups in the radical anion. 
This behavior is to be contrasted with that in solvents such as 
acetonitrile when electrolytic reduction of the dinitro com­
pound gives a radical with a symmetrical spin distribution. 
The effect of the solvent was clearly demonstrated by Blan-
damer, et a/.,99 who prepared the sodium salt of 1,3-dinitro­
benzene in DME and observed a large coupling to one 14N 
nucleus. On removing the DME and adding acetonitrile, a 
spectrum with two equivalent 14N nuclei was obtained. 

Ion pairing of the dinitrobenzene radical anions with all 
of the alkali metals has been extensively investigated.100-107 

The perturbing effect of the counterion increases in the series 
Cs -»• Li, and the spectra have been discussed in terms of 
intramolecular cation exchange. For 1,2-dinitrobenzene the 
exchange is fast, and at room temperature the spectrum may 
be analyzed in terms of splittings from two equivalent nitrogen 
nuclei, two pairs of equivalent protons, and an alkali metal 
cation. On lowering the temperature a complicated line-width 
alternation is observed. Rates of intramolecular cation ex­
change have been estimated by a comparison of experimental 
and computer-simulated spectra.108 In contrast 1,3-dinitro-

(94) N. M. Atherton, Chem. Commun., 254 (1966). 
(95) R. F. Adams, N. M. Atherton, A. E. Goggins, and C. M. Goold, 
Chem. Phys. Lett., 1, 48 (1967). 
(96) R. L. Ward, / . Chem. Phys., 32, 410 (1960). 
(97) R. L. Ward, J. Amer. Chem. Soc, 83, 1296 (1961). 
(98) R. L. Ward, J. Chem. Phys., 36, 1405 (1962). 
(99) M. J. Blandamer, T. E. Gough, J. M. Gross, and M. C. R. Symons, 
J. Chem. Soc, 536 (1964). 
(100) J. M. Gross and M. C. R. Symons, MoI. Phys., 9, 287 (1965). 
(101) M. J. Blandamer, J. M. Gross, and M. C. R. Symons, Nature, 205, 
591 (1965). 
(102) J. M. Gross and M. C. R. Symons, Trans. Faraday Soc, 63, 2117 
(1967). 
(103) T. A. Claxton, W. M. Fox, and M. C. R. Symons, ibid., 63, 2570 
(1967). 
(104) C. Ling and J. Gendell, / . Chem. Phys., 46, 400 (1967). 
(105) J. Gendell, ibid., 46, 4152 (1967). 
(106) C. Ling and J. Gendell, ibid., 47, 3475 (1967). 
(107) R. F. Adams and N. M. Atherton, Trans. Faraday Soc, 64, 7 
(1968). 
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benzene generally gives spectra in the slow-exchange region 
with two different 14N coupling constants. 

The radical anion of 1,4-dinitrobenzene shows fast-exchange 
spectra when prepared in methanol but the addition of diox-
ane, or similar solvents, produces an alternating line-width 
effect.100-102 This could be due to asymmetric solvation as no 
alkali metal structure is observed. However, no alternation is 
observed in solvent mixtures which are not expected to favor 
ion pairing, and it is suggested that solvent-separated ion pairs 
are involved.102 

The syw-trinitrobenzene anion and several related com­
pounds have been investigated in dimethylformamide (DMF), 
dimethyl sulfoxide (DMSO), and acetonitrile.108 Interactions 
with various monovalent and divalent cations produced line-
width alternation in the 1:3:6:7:6:3:1 septet expected for a 
coupling with three equivalent 14N nuclei. The situation is 
similar to that in the trinitromethyl dianion which we discuss 
later. The two outer lines and one component of the central 
line remain sharp, giving a 1:1:1 pattern in the limit of ex­
treme broadening. 

Electrolytic reduction of 1,3-dinitrobenzene in DMF at 
— 50° gives an electron resonance spectrum109'110 in which the 
M N = ±1 lines are considerably broader than those with 
A/N = ±2. This behavior is not found in the radical anions of 
1,2- and 1,4-dinitrobenzene measured under the same con­
ditions, although as we shall discuss in section VII.F a 
strong asymmetric effect is observed.111 It is suggested that 
the modulation of the 14N coupling constants is caused by the 
formation of fluctuating solvent complexes with the nitro 
groups. Detailed line-width measurements have been reported 
for this system.112 A strong alternation is found when 1,3-
dinitrobenzene is electrolytically reduced in DMF-ethanol 
mixtures at room temperature.113 The M N = ±1 lines 
broaden as the amount of alcohol is increased and disappear 
when it reaches a concentration of 50%. Only one 14N coupling 
is observed when the same compound is reduced with sodium 
dithionite in 40% aqueous alkaline acetone.113 

In the compounds we have dealt with up to now the nitro 
groups have been sterically unhindered. One of the earliest 
examples in which line-width alternation was reported was the 
dinitrodurene anion.114'115 It was suggested that a modulation 
of the 14N isotropic hyperfine coupling constants occurred 
through internal rotations of the nitro groups relative to the 
plane of the benzene ring.114 Similar effects are found in sev­
eral other sterically hindered polynitro compounds.116117 The 
dinitrodurenes and mesitylenes have recently been the subject 
of detailed investigations in which second-order frequency 
shifts have been used to clarify the mechanism involved.118'119 

We defer discussion of these until section IV. 

(108) S. H. Glarum and J. H. Marshall, J. Chem. Phys., 41, 2182 (1964). 
(109) J. H. Freed, P. H. Rieger, and G. K. Fraenkel, ibid.,31, 1881 
(1962). 
(110) P. H. Rieger and G. K. Fraenkel, ibid., 39, 609 (1963). 
(111) J. H. Freed and G. K. Fraenkel, ibid., 40, 1815 (1964). 
(112) J. H. Freed and G. K. Fraenkel, ibid., 41, 699 (1964). 
(113) C. J. W. Gutch and W. A. Waters, Chem. Commun., 39 (1966). 
(114) J. H. Freed and G. K. Fraenkel, J. Chem. Phys., 37, 1156 (1962). 
(115) J. H. Freed, I. Bernal, and G. K. Fraenkel, Bull. Am. Phys. Soc, 
7, 44 (1962). 
(116) I. Bernal and G. K. Fraenkel, / . Amer. Chem. Soc., 86, 1671 
(1964). 
(117) R. D. Allendoerfer and P. H. Rieger, ibid., 88, 3711 (1966). 
(118) R. J. Faber and G. K. Fraenkel, / . Chem. Phys., 47, 2462 (1967)-
(119) R. D. Allendoerfer and P. H. Rieger, ibid., 46, 3410 (1967). 

Line-width alternation in the trinitromethyl dianion» 
C(NO2V-, is one of the few examples of a three-site situation 
which have been reported.120-122 At room temperature the 
hyperfine pattern shown in Figure 5 consists of the seven lines 
expected, but they are all of similar amplitude. On cooling 
the aqueous solution the line broadening becomes more pro­
nounced and, as in the case of syw-trinitrobenzene, only three 
sharp components are observed. These observations are readily 
understood in terms of a simple jump model in which the 
molecule moves at random between three states, in each of 
which one 14N coupling constant, O1, is different from the other 
two, a2. 

2Os=USS 

Figure 5. The electron resonance spectrum of the trinitromethyl 
radical dianion in aqueous solution. 

As in the two-jump model of section III.A, the broadening 
may be derived by considering the frequencies seen by a par­
ticular nuclear spin state jwiw2w3). These may be written 

Co1 = wo + 27TJa1Wi + 02(W2 + w3)| 

W2 = wo + 2XfOf1W2 + O2(W1 + W3)} (3.24) 

Co3 = coo + 2IrJa1W3 + O2(W1 + W2)} 

In the fast-exchange region the broadening due to exchange 
between three sites takes the form 

TT1 = 1^ !(CO1 - CO2)
2 + (co2 - CO3)

2 + (co3 - coO2} (3.25) 

which for the model proposed becomes 

Tr1 = 8X=(O1 - O2)
2 X 

{(«1 - W2)
2 + (w2 - W3)

2 + (w3 - Wi)2}r/27 (3.26) 

It is clear that only those hyperfine components with W1 = 
w2 = w3 remain unaffected by the dynamic process. A consid­
eration of the broadening for each of the 27 possible nuclear 
spin states involved shows that all components of the M = ± 2 
lines have the same width. These lines therefore retain an over­
all Lorentzian shape, and by measuring their amplitude rela-

(120) C. Lagercrantz, Acta Chem. Scand., 18, 382, 1384 (1964). 
(121) C. Lagercrantz, K. Torssell, and S. Wold, Arkiv Kemi, 25, 567 
(1966). 
(122) A. Hudson, C. Lagercrantz, and G. R. Luckhurst, MoI. Phys., 11. 
321 (1966). 



202 A. Hudson and G. R. Luckhurst 

tive to the unbroadened M = ± 3 lines as a function of tem­
perature it is possible to study the kinetics of the jump pro­
cess. An activation energy of 6.55 kcal mole-1 has been re­
ported.122 It would seem that restricted rotation of the nitro 
groups is the most likely cause of the observed phenomena. 
In a series of radicals RC(N02)2

2~, alternation was observed121 

only when R = H2NCOCH=CH, most probably because of 
a hindered rotation of the nitro groups caused by intramolecu­
lar hydrogen bonding. 

IV. Dynamic Frequency Shifts 

As we have shown, the line broadening from the modulation 
of an isotropic coupling constant depends on the product of a 
correlation time and the mean-square deviation of the hyper-
fine interaction (cf. eq 3.6). If the slow-exchange region is 
inaccessible, the observation of line-width alternation gives no 
information about the relative magnitude of these two quan­
tities, and it is often difficult to decide between a number of 
alternative mechanisms which might be operative. It has been 
shown12'123 that in certain cases an accurate measurement of 
the second-order frequency shifts of hyperfine lines can resolve 
the dilemma. 

In the derivation of eq 2.4 using second-order perturbation 
theory, a number of small imaginary terms are omitted. This 
is justifiable in nuclear resonance, to which theory was first 
applied, because the frequency shifts they produce are less 
than the line widths. Strictly speaking the relaxation matrix 
should be written 

*„,<xv = *«'xx'w + «««'xx'W (4.1) 

where •R„'xx'(r) is given by eq 2.7. Both Rir) and R^ are 
Hermitian and are generally real. The terms in i?(,) involve 
Fourier sine transforms, analogous to the cosine transfrom in 
eq 2.8. The complete matrix is therefore symmetric, but neither 
Hermitian nor real. The effect of the complex terms in eq 4.1 
is most readily seen by considering a situation in which 3C°, 
R{r\ and R{i) are simultaneously diagonal. The width of the 
transition between the states K and K' is then —i?„'„'(r>, 
and the resonance is shifted to (&v« - /?«K'«*'(,)). The fre­
quency shifts are of most interest when there is a large alter­
nating line-width effect because they are measurable for the 
sharp components, although they are still small compared with 
the widths of the broadened components. 

The theory has been applied to the sterically hindered radi­
cal anions of dinitromesitylene and dinitrodurene,119 and 
to 1,3-dinitrobenzene and several of its derivatives.118 All the 
situations were adequately described by a two-jump model 
except that of the 3,5-dinitrobenzoate radical anion.118 

For two equivalent 14N nuclei the theory12123 predicts that 
the difference between the separations of the low-field and 
center lines and the high-field and center lines is 2(a2)/#o, 
where 

<a2) = <«>2 + ((day) (4.2) 

and #o is the value of the external field at the central line. 
The line broadening depends on ((Sa)2)r. Since (a) is measured 
from the spectrum, it is possible to determine ((Sa)2) = 
1Z1(Oi — O2)

2 and hence r. For the dinitrodurene anion in­
stantaneous values of ax and a2 are close to 2(a) and zero and 
T = 0.6 X 10"10 sec. This is strong evidence foi the restricted 

(123) G. K. Fraenkel, / . Chem. Phys., 42, 4275 (1965). 

rotation model in which only one nitro group is coplanar with 
the ring at a given time. 

The magnitude of the second-order frequency shifts is 
quite small (10-50 mG), and considerable care is necessary to 
measure them accurately. However, the stability of modern 
spectrometers is such that their determination is likely to be­
come much more common in the future. Unfortunately, the 
shifts are not likely to be so useful for protons128 or other 
nuclei of spin V2 as for nuclei of spin 1. 

V. Ligand Exchange 
Five-coordinate vanadyl acetylacetonate is known to form ad-
ducts with heterocyclic bases, and the equilibrium 

k, 
VO(acac)2 + pyridine ^ VO(acac)2 • pyridine 

Ab 

has been investigated by electron resonance.124 Both the g and 
hyperfine tensors are modulated, and from the line broadening 
the rate constants kt and kh were found to be 1.0 X 109 mole-1 

sec-1 and 1.3 X 10' sec-1, respectively. These results were 
obtained from the modified Bloch equations for a system 
jumping between two nonequivalent sites. It is clear that in any 
process in which an isotropic coupling is modulated, the com­
ponents of the corresponding anisotropic tensor also fluctuate. 
In a transition metal ion these anisotropics coupled with the 
Brownian motion are a dominant line-broadening mecha­
nism. Furthermore, the rotational correlation time will be 
different for the coordinated and uncoordinated species. It 
has been shown126 that it is valid to use the fast-exchange limit 
of the modified Bloch equations only when the rotational cor­
relation times are short compared with the lifetimes of the 
individual complexes. 

Vf. Electron Transfer 
The kinetics of electron transfer between a neutral molecule 
and its radical anion were first investigated by electron 
resonance126 as early as 1954, but subsequent developments 
were slow to emerge, and it is only recently that the field has 
begun to expand rapidly. The subject has been reviewed by 
Weissman127 and by Johnson.13 

The theory of electron transfer is a straightforward example 
of a jump process involving many sites. Consider an electron 
transferring between molecules which have n equivalent pro­
tons. Before transfer it is associated with one of 2" possible 
nuclear spin states and jumps into one of 2" sites on the other 
molecule. If it becomes associated with a nuclear spin state 
which belongs to a different hyperfine line, its resonance fre­
quency is modulated. The problem is essentially an (n + 1) 
site situation with the sites possessing a binomial distribution 
of relative populations. Only the secular parts of the isotropic 
hyperfine interaction are important, and the process is ade­
quately described by Anderson's stochastic theory128-132 or 
the modified Bloch equations.2223 

(124) F. A. Walker, R. L. Carlin,and P. H. Rieger, ibid., 45,4181 (1966). 
(125) N. M. Atherton and G. R. Luckhurst, MoI. Phys., 13, 145 (1967). 
(126) R. L. Ward and S. I. Weissman, / . Amer. Chem. Soc, 76, 3612 
(1954). 
(127) S. I. Weissman, Z. Electrochem., 64, 47 (1960). 
(128) P. W. Anderson, J. Phys. Soc. Jap., 9, 316 (1954). 
(129) R. A. Sack, MoI. Phys., 1, 163 (1958). 
(130) R. Kubo, / . Phys. Soc. Jap., 9 935 (1954). 
(131) R. Kubo, Nuovo Cimento, Suppl., 6, 1063 (1957). 
(132) R. Kubo in "Fluctuation, Relaxation and Resonance in Magnetic 
Systems," D. ter Haar, Ed., Oliver and Boyd, Edinburgh and London, 
1.962, p 23. 
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In the former the line shape, /(a>), is determined by inverting 
a complex matrix and for n sites 

/(a) ec -ReW-U(Sl - o>) + Tr]-1I (6.1) 

where o> is u times the unit matrix, W is a vector with its n 
components proportional to the occupation probabilities of 
the sites in equilibrium, 1 is a unit vector, and Ci is a diagonal 
matrix with elements u}. The elements of x are 

Tjk = P Jk (6.2) 

and Plk is the probability per unit time of a Markovian-type 
transition from the/th to the fcth site. For example,133 for a 
1:2:1 triplet with spacing lira centered on co = 0 

/(«) « Re[\,2,\] X 

/(« — 2 TO) — — 

4T 

4r 

4r 

2r 

2T 

2T 

2 
4r 

2 
47 

j(w + 2ra) - — 
47 

(6.3) 

Because of the difficulties of inverting large matrices, almost 
all of the work so far reported has been concerned with the 
limits of fast or slow exchange when the theoretical line shapes 
are more readily determined. 

For slow exchange rates the application of perturbation 
theory to (6.1) shows that each line retains a Lorentzian shape 
and is broadened by (1 — P()/T, P( being the fraction of nuclear 
spin states associated with the ith line.134 The outer lines of 
the hyperfine pattern broaden most rapidly, and in the case of 
the 1:2:1 triplet their width due to exchange is 3/V compared 
with 1IiT for the central line, as may be seen by expanding 
(6.3) in powers of 1/r. These predictions rest on the assump­
tion that the rate is independent of nuclear spin state, a hy­
pothesis which is supported by measurements on various lines 
of the naphthalene anion broadened by exchange with neutral 
naphthalene.136 

The rate constants are easily determined from measurements 
of peak-to-peak intensities, A(R), in the first-derivative spec­
trum as a function of the concentration of the diamagnetic 
form, R. The width, Av, may be written as13,127 

Av = An + AVE. (6.4) 

where the subscript 0 refers to the situation when no diamag­
netic form is present, and 

\A(R)J Av, 
(6.5) 

The lifetime between exchanges, T, found fromAVR is related to 
the rate constant by 7 - 1 = k[R]. 

It is only recently that the fast-exchange limit has been used 
to measure rates of electron transfer. In this region the spec­
trum collapses to a single Lorentzian line whose width depends 

(133) Reference 17, p 506. 
(134) L. H. Piette and W. A. Anderson, J. Chem. Phys., 30, 899 (1959). 
(135) P. J. Zandstra and S. I. Weissman, ibid., 35, 757 (1961). 

on the second moment V (in MHz2) of the electron resonance 
spectrum in the absence of exchange.134,136 The second-order 
rate constant may be written 

k = 5.71 X 107V/Aff0[R] (6.6) 

where AHa is the line width in MHz measured as the separa­
tion between extrema in the first-derivative spectrum. 

The computational difficulties involved in the intermediate 
exchange region may be overcome by using high-speed com­
puters. It has been suggested that the density matrix theories of 
Kaplan137'138 and Alexander139' 14° are most suitable for use in 
these calculations.141,142 The equation of motion of the density 
matrix is modified by the addition of terms allowing for ex­
change and by phenomenological terms to account for the 
line width in the absence of exchange 

p = i[p, 3C] + p(exchange) + p(J-rl) (6.7) 

The line shape is found from the imaginary part of the sum of 
the off-diagonal elements of p, which for the n site problem 
takes the convenient form141 

where 

2>« = r-ic2>*]n + 7-1^F*]-1 

k k 

«*[/(W - W*) — Ti 1 — T 1 I - 1 

(6.8) 

This formalism, which is mathematically equivalent to the 
stochastic theories, has been used to investigate the line shapes 
of the biphenyl-biphenylide exchange reaction and should 
facilitate experiments over a wider range of conditions than 
was formerly possible. 

Typical electron-transfer rates determined by electron reso­
nance lie in the range 107-1091. mole-1 sec-1. A selection of 
results are collected together in Table n.148-lS6 

In the fast-exchange region the sodium ketyl of benzophe-
none gives a four-line spectrum, thus retaining the alkali metal 
hyperfine structure.71 This requires that the nuclear spin 
state of the counterion be preserved and indicates that an 
atom transfer is taking place. Similar effects are found with 
other ketyls.143 

(136) R. Chang and C. S. Johnson, Jr., J. Amer. Chem. Soc, 88, 2338 
(1966). 
(137) J. I. Kaplan, J. Chem. Phys., 28, 278 (1958). 
(138) J. I. Kaplan, ibid., 29, 462 (1958). 
(139) S. Alexander, ibid., 37, 967, 974 (1962). 
(140) C. S. Johnson, Jr., ibid., 41, 3277 (1964). 
(141) J. R. Norris, Chem. Phys. Lett., 1, 333 (1967). 
(142) R. F. Adams and N. M. Atherton, ibid., 1, 351 (1967). 
(143) N. Hirota and S. I. Weissman, J. Amer. Chem. Soc, 86, 2537 
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(144) G. Malinoski and W. H. Bruning, ibid., 89, 5063 (1967). 
(145) P. Ludwig and R. N. Adams, / . Chem. Phys., 37, 828 (1962). 
(146) J. W. Eastman, G. M. Androes, and M. Calvin, Nature, 193, 1067 
(1962). 
(147) J. W. Lown, Proc. Chem. Soc, 283 (1963). 
(148) T. A. Miller and R. N. Adams, J. Amer. Chem. Soc, 88, 5713 
(1966). 
(149) T. Layloff, T. A. Miller, R. N. Adams, H. FaIs, A. Horsfield, 
and W. Proctor, Nature, 205, 382 (1965). 
(150) T. A. Miller, R. N. Adams, and P. M. Richards, / . Chem. Phys., 
44, 4022 (1966). 
(151) W. D. Phillips, J. C. Rowell, and S. I. Weissman, ibid., 33, 626 
(1960). 
(152) M. T. Jones and S. I. Weissman, J. Amer. Chem. Soc, 84,4269 
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(153) R. L. Ward and S. I. Weissman, ibid., 79, 2086 (1957). 
(154) J. C. Danner and T. R. Tuttle, ibid., 85, 4052 (1963). 
(155) R. Chang and C. S. Johnson, Jr., J. Chem. Phys., 46, 2314 (1967). 
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Table II 

Typical Electron-Transfer Rates Determined by Electron Resonance 

System 

Na+ xanthone_/xanthone 
Na+ benzophenone~/benzophenone 
Benzene~/benzene 
Benzonitrile "/benzonitrile 
Fluoranil "/fluoranil 
(C6H6)3C-/(C6H6)SC+ 

Benzoquinone_/benzoquinone 
Nitrobenzene~/nitrobenzene 
p-Dinitrobenzene~/p-dinitrobenzene 
TCNE-/TCNE 
Tris-p-nitrophenylmethyl/methide 
Naphthalene~/naphthalene 
Na+ naphthalene~/naphthalene 
Naphthalene~/naphthalene 
Stilbene~//ra«5-stilbene 

Solvent 

THF 
DME 

2:1THF/DME 
DMF 

9:1 THF/CH3CN 
3:7TFA°/HA& 

DMF 
DMF 
DMF 
THF 
DME, K 

2-MeTHF 
2-MeTHF 

THF 
DME, Na 

Temp, 
0C 

25 
25 
18 

RT 
- 7 5 

25 
RT 
RT 
RT 
RT 
25 

- 2 3 
21 
13 
16 

k (I. mole'1 sec1) 
X 70-« 

4.48 ± 0.34 
1.10 ± 0.04 
0.77 ± 0.08 
2J.0 

~l | .0 
1.3 
3.8 
0.3 
5.9 ± 0.4 
2.1 
5.99 ± 0.81 
0.028 ± 0.007 
0.045 ± 0.001 
0.38 
0.21 ± 0.01 

AH*, 
kcal mole'1 

4.3 ± 0.2 
6.3 ± 0.2 
2.8 ± 0.6 

1.99 ± 0.07 
12.8 ± 3.2 
12.4 ± 3.6 
13.2 ± 1.5 
2.6 ± 0.3 

Ref 

143 
143 
144 
145 
146 
147 
148 
148 
149,150 
151 
152 
153 
153 
154 
155 

" TFA = trifluoroacetic acid. 6 HA = acetic acid. ' RT = room temperature. 

Intramolecular electron transfer has been studied in the radi­
cal anions of paracyclophanes163 and in a series of bis(4-nitro-
phenyl) anions164 (02N-C6H4-)2X where X = CH2, S, O, 
CH2CH2. Interactions are seen with nuclei in one or both rings 
depending on the rate of exchange, and at intermediate rates 
alternating line widths are observed. 

VII. Asymmetric Line Broadening 

A. THEORY 

Because of their stability transition metal ions were among the 
first paramagnetic species to be studied in solution by electron 
resonance. The vanadyl ion (VO2+) contains a single d elec­
tron, and since the nuclear spin of vanadium is '/2, the electron 
resonance spectrum of an aqueous solution of VO2+ shown in 
Figure 6 contains just eight lines.166'l6a Although the integrated 
intensities of the lines are identical, it is immediately obvious 
that their widths vary considerably. Similar asymmetric line-
width variations have been observed in spectra of other tran­
sition metal ions, including copper(II)167 and niobium(IV)168 

complexes. The resulting asymmetry is particularly marked for 
planar copper complexes such as copper «-propylacetylace-
tonate whose spectrum is shown in Figure 7. It is now well 
established that these line-width variations are caused by 
the anisotropies in the g and hyperfine tensors coupled to the 
Brownian motion of the complex as was first suggested by 
McConnell.2 Since his early treatment, there have been devel­
opments in the general theory of magnetic relaxation which 
make it possible to apply more rigorous methods to the prob­
lem. 

In order to illustrate the techniques for handling modula­
tion by molecular rotations, we shall consider the line widths 
resulting from the isotropic rotation of a radical possessing 

(163) S. I. Weissman, ibid., 80, 6462 (1958). 
(164) J. E. Harriman and A. H. Maki, J. Chem. Phys., 39, 778 (1963). 
(165) N. S. Garifianov and B. M. Kozyrev, Dokl. Aktxd. Nauk SSSR, 
98, 929 (1954). 
(166) G. E. Pake and R. H. Sands, Phys. Rec, 98 (A), 226 (1955). 
(167) B. R. McGarvey, J. Phys. Chem., 60, 71 (1956). 
(168) M. Lardon and H. H. Giinthard, J. Chem. Phys., 44, 2010 
(1966). 

In a solution in which ion pairing is important the two 
processes 

R- + R ^ = i R + R- (i) 
R-M+ + R = F ^ R + R-M+ (ii) 

may both occur simultaneously. Observations on the naph-
thalene-naphthalenide system in both the slow-156 and fast-
exchange136 regions indicate that (i) is generally faster than 
(ii). 

The measurement of electron exchange rates in the sys­
tem 

2COT- =̂ =̂ COT + COT2" 

(COT = cyclooctatetraene) demonstrates that transfer is more 
rapid between COT- and COT2- and supports the assumption 
of planar structures for the anion and dianion.157-160 The 
influence of ion pairing on the activation parameters for elec­
tron transfer has been reported.169 

The effects of optical activity upon rates of electron transfer 
have been investigated. Line-breadth measurements made in 
ethereal solutions of the neutral molecule l-(a-naphthyl)-
1-pheny!ethane and its radical anion, using both the pure 
rfenantiomer and racemic mixtures, indicate statistically signifi­
cant differences in rates and activation parameters.161 In DME 
at 25°,/W = (0.68 ±0.07) X 108andA:«= (1.10±0.34) X 108 

mole"1 sec-1; AHM* = 1.6 ± 0.5 andA#di* = 0.6 ± 0.5 kcal 
mole-1. Measurements on optically active hexahelicene in the 
fast-exchange region give similar differences in rates.162 For 
the potassium salt in THF at 23 °,kad = (1.2 ± 0.3) X 1010and 
kdi = (3.0 ± 0.3) X 1010 mole-1 sec-1. It is possible that the 
difference in rates is directly related to the asymmetry in the 
x-electron distribution. 

(156) P. J. Zandstra and S. I. Weissman, J. Amer. Chem. Soc, 84, 4408 
(1962). 
(157) T. J. Katz and H. L. Strauss, / . Chem. Phys., 32, 1873 (1960). 
(158) H. L. Strauss, T. J. Katz, and G. K. Fraenkel, J. Amer. Chem. 
Soc, 85, 2360 (1963). 
(159) F. J. Smentowski and G. R. Stevenson, ibid., 89, 5120 (1967). 
(160) R. D. Allendoerfer and P. H. Rieger, ibid., 87, 2336 (1965). 
(161) W. Bruning and S. I. Weissman, ibid., 88, 373 (1966). 
(162) R. Chang and S. I. Weissman, ibid., 89, 5968 (1967). 
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ploys familiar techniques, but it does contain several unsatis­
factory features which are removed by writing 3C'(0, or indeed 
any spin-Hamiltonian, as171 

K\t) = £ ( - i ) " J v <2'm)r, ( 2 , M ) 7 I ( 2 , - O T ) (7.6) 

200gauss 

Figure 6. The electron resonance spectrum of an aqueous solution 
of vanadyl sulfate. 

100 g a u s s 

Figure 7. The electron resonance spectrum of copper n-propyl-
acetylacetonate in chloroform. 

an anisotropic g tensor and a single magnetic nucleus of spin / 
with an anisotropic hyperfine tensor. The static spin-Hamil­
tonian is 

3C0 = fflSflS, + ah S (7.1) 

while the dynamic perturbation is 

3C'(0 = PHagapXtySp + IaAa0'(i)S0 (7.2) 

where a, 13, ... form a space fixed axis system and the tensor 
convention is assumed.169 The anisotropic tensors ga$' and 

Aap', given by 

gap' = g*$ ~ gSctP 

and 
Aap' = Aa$ - aS, 0*0 

(7.3) 

(7.4) 

fluctuate in time because of the molecular motion, but we can 
remove this by transforming to a molecule fixed axis system 
a, b, ..., using direction cosines to obtain 

3 C ' ( 0 = Plaolezgab'HaSe + U a W (7.5) 

Indeed, one may care to think of a second-rank Cartesian 
tensor as being defined by this behavior.170 

This particular form of the analysis is useful in that it em-

(169) A. Carrington and H. C. Longuet-Higgins, MoI. Phys., 5, 447 
(1962). 
(170) D. M. Brink and G. R. Satchler, "Angular Momentum," Oxford 
University Press, London, 1962, Chapter IV. 

The only real difference between eq 7.2 and 7.6 is that (7.2) 
employs Cartesian operators while (7.6) uses irreducible spher­
ical tensor operators which we shall specify later. The opera­
tors Tj2, ~ m) are for a space-fixed axis system, and so the coeffi­
cients FM

<2,m)are time dependent as are g' and Aap'. The rank 
of the irreducible tensor is 2 (the first number in the super­
script) because we are only concerned with the anisotropic 
coupling of the spins by a second-rank tensor (ga$ and Aa$). 
A particular component is denoted by the letter in the super­
script and can take the values 0, ±1 , and ±2. The different 
types of interaction, in our case the Zeeman and hyperfine 
couplings, are represented by the subscript fi. 

As before, it is convenient to transform the coefficients from 
a space-fixed to a molecular axis system, but now we use Wig-
ner rotation matrices £)n,m

(2)(afiy) since the irreducible tensors 
transform according to 

(2,OT) = E^"2'"'sB JV (7.7) 

where the prime denotes the new axis system related to the old 
by the Euler angles a, /3, and y (cf. ref 170, p 51, and ref 171, 
p 77). The dynamic perturbation can now be written as 

rc'w = E(-Jr^ '"'"'3WW11 
(2 , -OT) (7.8) 

The element of the relaxation matrix,./?, depends on sums of 
Fourier transforms of the matrix elements ([3C'(0J«X][3C'*('' + 
OL'x'X where \K), |K), [X), and JA') are eigenfunctions of 3CG. 
Substitution of eq 7.8 for the dynamic perturbation gives 

{W(t%>.W*(t' + t)]K>y) = 

£(-ir+ m '<£W2 )(>')2V,m '< 2 )*( ' ' + t))Ff 
/»,n) F11^ iG.n')* X 

m,m ,n,n 

[r„(a,-m>].xprv(2,~m%W (7.9) 
Provided the motion of the system is restricted to molecular 
rotation, the time dependence is contained entirely in the 
Wigner rotation matrices and the correlation function is 

g(t',t) = <SW»(02V,OT<(2)*('' + 0) (7.10) 

The perturbation is said to be stationary if g depends on t' and 
(t' + t) only through their difference t, and we further assume 
that g decays exponentially with time, that is 

<aw2>(Oav,m<<2)*(?' +1)) = 
<2W2,2V,m'(2,*)e~(/TR (7.11) 

where m is the Debye correlation time for the rotation. The 
ensemble average denoted by angular brackets in eq 7.11 can 
be replaced by the spatial average (V8""2)/£>rc,m(2,(a/37)-
£V,m'(2)*(«/3y) sin /3 d/3dad7, but this is simply the ortho­
gonality relationship for the rotation matrices (cf. ref 170, p 
122) which states 

f£>n,m
(i)(a3y)£>„,,m.^*(al3y) sin /3 d/3dadT = 

(87r2/5)6wSM- (7.12) 

(171) M. E. Rose, "Elementary Theory of Angular Momentum," John 
Wiley and Sons, Inc., New York, N. Y., 1957, p 80. 
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The appearance of the 5 functions is extremely important, for 
it shows that cross-terms between different components (m) 
of the spherical tensors do not make any contribution to the 
relaxation matrix. The result reduces considerably the labor 
involved in calculating R, for the summation in eq 7.9 is now 
restricted to m, n, n, and n'. 

To proceed further we must have explicit forms for the 
operators r„<2,m), and these are given by 

3"(2,0) - (r { r0(i)r0(2) - J[r+(i)r_(2) + r_(i)r+(2)] 

rc».±» = T -2{T±(\)T0(2) + r„(i)r±(2)} (7.13) 

7-(2,±2) = ir±(l)T±(2) 

where 
7(1,0 = Tz 

2"(LiI) = 
V 2 

± /T,) = T 
VT~ 

(7.14) 

The numbers 1 and 2 in parentheses denote a particular spin 
operator, e.g., S or /. The components of the second rank ten­
sor as defined here differ by a constant factor of Vs from those 
used by Freed and Fraenkel.n 

The irreducible tensors F11
 ,(2,ra) can be related to the com­

ponents of the appropriate Cartesian tensor by a rather similar 
procedure. It would be preferable, however, to use the com­
ponents of the Cartesian tensor itself, as opposed to their 
linear combinations, since they are the quantities determined 
experimentally. Examination of eq 7.9 shows that this is pos­
sible, for we can extract part of the summation which depends 
explicitly on n and hence Fj-2'n). The quantity which concerns 
us is E»(»» 1 »" , »«.» ( I ) ^" ' / " i f / I 2 ' * , ^ l ! ! , * ) *. and since the 
value of 2Dn,m

<2>25„,m
<2)* is independent of both m and n (cf. 

eq 7.12), we are left with X)nF/'2'*>/y (2'n)*. But this is simply 
the scalar or inner product of two second-rank tensors /u and 
n' and is equal to F^'^F^'^'K We shall denote this inner 
product of two second-rank tensors by ( F ' w -.F'^). 

Now that we have arrived at a particularly useful form for 
writing the perturbation, we have virtually solved the prob­
lem. Strictly the functions | K) should be eigenfunctions of 3C° 
given in eq 7.1; however, it is convenient to take them to be 
simple product functions \±ljz,m) when calculating RKK>,KK'. 
The approximation implies that the Zeeman splitting is much 
greater than the hyperfine interaction and so will be valid for 
the majority of free radicals, but may not be valid for transi­
tion metal ions. After calculation for all the contributions to 
the single element of R, the line width is found to be 

TrKm) = A + Bm + Cm* 

where m is the nuclear quantum number and 

* = 2^f)f,-o 

(7.15) 

/ ( / + I)(A': A') 

(7.16) 

In eq 7.16 /0 and Ji stand for the spectral densities /(0) and 
y(coe) defined as TEZ(H-CO8

2TR2) where «„ is the electron reso­
nance frequency. 

Equation 7.16 was obtained by making one further assump­
tion, namely that the spectral density, J(a), produced by the 
pseudosecular terms (/±Sa) in 3C'(t) can be replaced by 7(0) 
because ah^* is normally much less than one. Indeed, since 
eq 7.15 and 7.16 were derived using Redfield theory, they will 
only be valid if AW2TR

2 « 1 where Aw is a measure of the an-
isotropy. 

An equation of the same form as (7.15) was first derived by 
McConnell using an approximate form of time-dependent 
perturbation theory; consequently his formulas for the con­
stants A, B, and C are not precise.2 Carrington and Longuet-
Higgins169 have also tackled the rotational problem, but the 
perturbation theory which they employed did not permit them 
to allow for the important nuclear relaxation. Therefore, only 
their result for coefficient B is correct. Kivelson9 was the first 
to obtain 7.16 although unfortunately his notation differs con­
siderably from ours. 

B. EXPERIMENTAL TESTS 

Because eq 7.15 predicts a linear and quadratic dependence on 
the nuclear quantum number, m, for the line widths, it is 
clearly in accord with the line-width variations shown in Fig­
ures 6 and 7. In the case of the vanadyl ion the spectrum is 
approximately symmetric showing the dominance of the COT2 

term, whereas the spectrum of the copper complex shows a 
marked asymmetry implying that the cross term, Bm, is 
dominant. These observations suggest that 2T(A':A') > 
(j3H/h)(g':A') for the vanadyl ion while the reverse is true for 
the copper chelate and indeed measurement of the appropriate 
g and hyperfine tensors has shown this to be the case.172 -17' 

Rogers and Pake made the first attempt to test eq 7.15 and 
7.16 for the vanadyl ion in aqueous solutions.174 Although the 
g and hyperfine tensors necessary to calculate the line widths 
are available for VO2+, eq 7.16 still contains an arbitrary pa­
rameter, the rotational correlation time. They therefore tested 
the predicted dependence of the line widths on the static field 
H by measuring the line widths at both X- (9 GHz) and Q-
band (35 GHz) frequencies. The line widths obtained at 
X-band were used to obtain the constants in the equation 

TrKm) = Y + A'H2 + B'Hm + Cm* (7.17) 

where Y was intended to account for all other relaxation pro­
cesses and was assumed to be independent of both the mag­
netic field and the nuclear quantum number. The TrHfri} at 
the Q band calculated from the coefficients Y, A', B', and C 
obtained at the X band were in remarkable agreement with the 
experimental results, thus providing good evidence for the 
proposed relaxation mechanism. 

The most convincing quantitative text of the theory has been 
provided by Wilson and Kivelson,m who have made accurate 
measurements of the widths of the eight lines in the spectrum 
of vanadyl acetylacetonate dissolved in toluene as a function of 
temperature. Because the isotropic vanadium hyperfine split­
ting is 298 MHz, two of the earlier assumptions are no longer 

(172) D. Kivelson and S. K. Lee, J. Chem. Phys., 41, 1896 (1964). 
(173) A. H. Maki and B. R. McGarvey, ibid., 29, 31 (1958). 
(174) R. N. Rogers and G. E. Pake, ibid., 33, 1107 (1960). 
(175) R. Wilson and D. Kivelson, ibid., 44, 154 (1966). 
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valid. The first is relatively easy to correct for and concerns the 
actual value of Hin the formulas for A and B. When the hyper-
fine splitting is small, the value of H at any particular line is 
virtually the same as the value Ho at the center of the spectrum, 
but when a is large we must replace H by Fo[I - (amh/gffHo)]. 
The correction produces additional contributions to B of order 
a/Ho and to C of order a1 which are readily calculated. Un­
fortunately, it is much more tedious to correct for the 
second assumption. Since a is no longer small compared with 
g(3H/h, the nonsecular terms must be retained in 3C°, and the 
simple spin functions J ± 72,»») are no longer eigenfunctions of 
5C°. It is necessary to take them to second order in ah/gfiH to 
obtain the improved functions 

|"72,w"> = \'hM + ^\-lh,m+ 1) 

|«_i/2 ,w») = I -72,m) + «.] %m - 1) 

These functions are then used to calculate the single R matrix 
element for the nondegenerate transition |"7s,'«") "*""*" 
I" — 72,m"). The calculation shows that the line width also de­
pends on m* and is now given by 

(7.18) 

TrKm) ^ A + Bm + Cm* + Dm3 (7.19) 

Although the coefficients are rather complicated functions176 

of the inner products (g':g'), (g':A'), and {A':A'), they still 
contain a single unknown, namely the rotational correlation 
time TR. If the temperature dependence of rR was known, we 
could calculate the temperature dependence of the coefficients 
in (7.19) and compare them with experiment. According to 
Bloembergen, Purcell, and Pound,1 the rotational correlation 
time is given by 

TR = Airr3r]/3kT (7.20) 

where 17 is the bulk viscosity of the solvent at absolute temper­
ature T and r is the molecular radius. This equation also con­
tains an arbitrary parameter, r, but now this is temperature 
independent, and by using the line-width coefficients at 
one temperature to calculate a value of r, it is possible to cal­
culate the values of the line-width coefficients at all other tem­
peratures. Wilson and Kivelson176 adopted this procedure 
when analyzing their results for vanadyl acetylacetonate in 
toluene and found good agreement with the theoretical values 
of B and C by taking the molecular radius as 3.28 A. The sort 
of agreement which they obtained is demonstrated in Figure 8, 
which shows the experimental values of B and C for vanadyl 
acetylacetonate dissolved in o-terphenyl plotted as a function 
of temperature; the full curves were calculated using r = 3.04 
A.176 Unfortunately, the magnitude of D is subject to a large 
experimental error, and it is not possible to make a meaningful 
comparison with theory. 

Although the results for B, C, and D are in agreement with 
theory, the experimental value of A was always greater than 
the theoretical value. Further, the difference, known as the 
residua] line width, was found to increase with decreasing rj/T 
and to be independent of the microwave frequency. It is now 
known that the residual line width is caused by spin-rotational 
relaxation which we shall discuss in section VIII. 

An alternative, though less usual, method of changing the 
solvent viscosity is to increase the pressure; the viscosity of 
methylcyclohexane177 increases from 0.73 X 1O-2P (poise) at 

80 

Temperature ! 'C) 

100 120 140 

Figure 8. Temperature variation of the line-width coefficients B 
and C for vanadyl acetylacetonate in o-terphenyl. 

atmospheric pressure to about 5.6 P at 104 kg cm-2. The relax­
ation theory could therefore be tested by measuring line widths 
as a function of pressure, and experiments have been made 
with di-f-butyl nitroxide dissolved in methylcyclohexane.178 

The line-width coefficients B and C when plotted as a function 
of pressure are readily related through Bridgman's results177 

to viscosity. The anisotropic g and hyperfine tensors were ob­
tained from the powder spectrum of the radical in a frozen 
glass of toluene and methylcyclohexane. Unfortunately, it was 
wrongly assumed that the g tensor had cylindrical symmetry in 
contrast to single crystal data for related nitroxide radicals179 

which have gx' = 0.0030, gy' = 0.0002, g,' = -0.0032. Use 
of the wrong g tensor leads to good agreement for the pressure 
dependence of B, while that of C is good up to 2.5 P, but then 
the experimental coefficient increases more rapidly than pre­
dicted. The close correlation between theory and experiment 
is not too surprising, because the theory contains an adjust­
able parameter r, 

Redfield's theory is equivalent to second-order time-de­
pendent perturbation theory, and so should only be valid 
when the matrix elements of 3C'(0 are small compared with 
those of 3C°. It is not clear, however, just how large the pertur­
bation may be before the theory breaks down. The greatest 
anisotropy for vanadyl acetylacetonate is in the hyperfine 
tensor, which is roughly 3 % of the Zeeman splitting. On the 
other hand, the anisotropy in the g tensor is most pronounced 
for copper acetylacetonate, being roughly 9 % of the isotropic 
g factor. Precise line-width measurements on this complex 
should then allow one to test the relaxation theory for a large 
perturbation. 

Because natural copper consists of two isotopes, 63Cu and 
65Cu, in the ratio 7:3 with the same nuclear spin but different 

(176) G. R. Luckhurst and J. N. Ockwell, MoI. Phys., in press. 
(177) P. W. Bridgman, "The Physics of High Pressures," G. Bell and 
Sons Ltd., London, 1952. 

(178) N. Edelstein, A. Kwok, and A. H. Maki, J. Chem. Phys., 41, 179 
(1964). 
(179) O. H. Griffith, D. W. Cornell, and H. M. McConnell, ibid., 43, 
2909 (1965). 
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magnetic moments, Wilson and Kivelson180 were forced to 
use a sample enriched with 63Cu for their line-width measure­
ments. They analyzed the line-width coefficients, B and C, 
using the technique developed for vanadyl acetylacetonate and 
again found good agreement with the theoretical values. This 
result is important, for it not only confirms the earlier results 
for vanadyl acetylacetonate, but shows that the perturbation 
expansion, used by Redfield, must converge rather rapidly. 

Prior to Wilson and Kivelson's results for copper (63Cu) 
acetylacetonate, Gibson181 had made similar measurements 
using copper dithiocarbamates. Unfortunately, his complexes 
were not isotopically enriched and so the line widths, which 
were obtained as a function of temperature, are difficult to 
analyze, although it is clear that the values calculated from the 
equations given by McConnell2 and Kivelson9 are too small. 

We have been entirely concerned with nondegenerate tran­
sitions and have found that, where it is possible to make mean­
ingful comparisons, the theoretical results are in quantitative 
agreement with experiment. 

C. THE STRUCTURE OF LIQUIDS 

One of the more obvious, although less exploited, use of line-
width variations is the measurement of rotational correlation 
times which could provide an insight into the structure of 
liquids. Wilson and Kivelson182 have measured the electron 
resonance spectrum of vanadyl acetylacetonate, a particularly 
convenient probe, in a number of solvents at various tempera­
tures. Analysis of the line widths yields the parameters B and 
C which allow one to calculate TE. By using the viscosity of the 
solvent, the radius r of the complex can be calculated from m; 
measurements at different temperatures provide a comforting 
check on the determination. According to the simple theory, 
which leads to eq 7.20, the value of r should be independent of 
the solvent, but examination of the results in Table III shows 
this is not so. Clearly if the complex is strongly solvated, its 
effective volume will be greater than if it were not. We might 
view chloroform as an extreme case; it is an excellent solvent 
for the complexes, presumably because of hydrogen bonding. 
The radius of the hydrogen-bonded species will be larger than 
the unsolvated complex, and this is reflected in the larger value 
of r found in this solvent. However, because of solvent ex­
change, r may be intermediate in size between that of the sol­
vated and hydrogen-bonded complex. 

A similar study180 has been made for copper acetylacetonate, 
but for only two solvents. The values for the radius, also 
given in Table III, appear to be in accord with simple ideas 
concerning the similarity of the two complexes. 

Comparable line-width measurements have been made176 

to help determine the structure of fluid o-terphenyl. The vis­
cosity of this compound has been measured; a plot of In JJ 
against IjT, which is linear for the majority of liquids, shows 
a marked departure from linearity.183 The deviation from 
linearity has been attributed184 to the formation of compact 
clusters of molecules which increase the measured viscosity r\ 
compared with the intrinsic viscosity r]S of the surrounding 
fluid. The two quantities are related by the equation 

Table 111 

(180) R. Wilson and D. Kivelson, J. Chem. Phys., 44, 4445 (1966). 
(181) J. F. Gibson, Trans. Faraday Soc, 60, 2105 (1964). 
(182) R. Wilson and D. Kivelson, J. Chem. Phys., 44, 4440 (1966). 
(183) E. McLaughlin and A. R. Ubbelohde, Trans. Faraday Soc, S3, 
628 (1957). 
(184) E. McLaughlin and A. R. Ubbelohde, ibid., 54, 1804 (1958). 

Solvent 

Chloroform 
Acetophenone 
Carbon disulfide 
Toluene 
Nitrobenzene 
Benzene 
Diphenylmethane 

Vanadyl 
acetylacetonate 

3.55 
3.40 
3.34 
3.28 
3.26 
3.22 
2.98 

Copper 
acetylacetonate 

3.65 

3.19 

•q = J78(I + 2.50 + 702 •••) (7.21) 

where 0 is the volume fraction of clusters. Unfortunately, the 
line-width coefficients do not provide any evidence for the ex­
istence of clusters, for the theoretical curves for the tempera­
ture dependence of B and C calculated from t) and r = 3.04 A 
are in excellent agreement with experiment (c/. Figure 8). 
The value of r is close to that found in diphenylmethane, a 
similar solvent. On the other hand, if clusters did exist, the 
paramagnetic probe would be expected to reside in the sur­
rounding fluid. Calculations of B and C using J/S do not pre­
dict the correct temperature dependence for these line-width 
coefficients. 

D. ASSIGNMENT OF COUPLING CONSTANTS 

One of the problems in interpreting solution electron reso­
nance spectra is the assignment of coupling constants to par­
ticular nuclei in the radical. For example, the spectrum of the 
nitrobenzene anion in aqueous solution contains two 1:2:1 
triplet splittings of 9.49 and 3.16 MHz, and it is not immedi­
ately apparent which should be associated with the ortho 
protons and which with the meta. A possible solution to the 
problem is to resort to molecular orbital theory and compute 
the 7r-spin density, p(i), at the two positions and use McCon-
nell's relationship186 

7 « ) = QP w (7.22) 

where Q is approximately constant and equal to about —70 
MHz, to calculate the proton coupling constants a(i). Al­
though both molecular orbital theory and eq 7.22 are approxi­
mate, they are sufficiently accurate to permit assignments when 
the coupling constants differ by several megahertz. There is 
also a chemical solution to the problem, and this involves 
specific deuteration of the radical. If a single proton is replaced 
by a deuteron (of spin 1), a doublet splitting will be replaced 
by a triplet, and further since the nuclear g factor of the proton 
is 6.514 times that of the deuteron, the triplet splitting is only 
0.154 that of the replaced proton. The reduced coupling must 
therefore be associated with the proton replaced by the deu­
teron. 

Similar techniques can also be applied to carbon-13, but 
now the hyperfine splittings depend not only on the spin density 
at the carbon atom, i, in question (referred to as the local spin 
density) but also on the spin density on the adjacent carbon 
atom, / The coupling constant is therefore given by 

a.w = Q'pM + Q"Y,P O) (7.23) 

(185) H. M. McConnell and D. B. Chesnut, J. Chem. Phys., 28, 107 
(1958). 
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where Q" is -39.0 MHz and Q' is 99.8 MHz if there are two 
adjacent carbon atoms, and 85.8 MHz if there are three.186 

Again the calculations may be used with confidence when the 
couplings constants are markedly different. If this is not so, 
then one may make the assignment by enriching a particular 
position with carbon-13 and observing which pairs of satellites 
increase in intensity. 

Bolton and Fraenkel187 have suggested an alternative solu­
tion to the problem based on the observation of line-width 
variations among the various carbon-13 satellites. The tech­
nique depends on the fact that the line width predicted by eq 
7.15 and 7.16 will be greater the larger the value of the aniso­
tropic hyperfine tensor. However, the magnitude of this tensor 
depends largely on the local spin density and not on the neigh­
boring spin density. Thus, the broader carbon-13 lines can be 
assigned to the positions of high local spin density. 

To examine the problem more rigorously, we require theo­
retical expressions for the components of the anisotropic hy­
perfine tensor produced by the dipolar interactions of a nu­
cleus, i, with an electron in a 2p orbital on atomy. These have 
been provided by McConnell and Strathdee,l88 and the results 
for the principal components are 

AJ = P- Q 

A1x' = -IP (7.24) 

AJ = P + Q 

where the z axis is parallel to the symmetry axis of the 2p orbi­
tal, x is along the internuclear axis of nuclei i and j , and y is 
orthogonal to both x and z. P and Q are given by 

^ P ^ l ^ L 9 / 

10a + 17 + - + - V2 a \ 
a a2/ ) 

(7.25) 

Q = ^ { ^ - («• + * ' + 6« + 
r,,3 1.2a2 V 

9 + - + — )e-2a\ 
a lay ) 

where a is Zyw/1.038, Z1 being the effective nuclear charge, 
ri3 is the internuclear separation, and yt is the magnetogyric 
ratio for nucleus i. 

The anisotropic hyperfine tensor for a nucleus in a particu­
lar radical is caused by the sum of many such contributions, 
one for every nucleus in the r system. It is convenient to 
divide the contributions into those coming from neighboring 
atoms and that from the local spin density. The local con­
tribution may be found using the limiting forms of eq 7.25, 
i.e. 

AJ = pWg|/3|Y.Z,-3/4.441 (7.26) 

AJ = AJ = -p«>ff| /31 T,Zi
3/8.882 

The numerical values calculated using these equations may be 
unrealistic since they depend on Slater orbitals which are poor 
in the vicinity of the nucleus, and the values calculated from 

(186) M. Karplus and G. K. Fraenkel, / . Chem. Phys., 35,1312(1961). 
(187) J. R. Bolton and G. K. Fraenkel, ibid., 41, 944 (1964). 
(188) H. M. McConnell and J. Strathdee, MoI. Phys., 2, 129 (1959). 

Hartree-Fock self-consistent-field wave functions are to be 
preferred.189 However, the important point is that because of 
the 1/>«S dependence, the neighbor contribution to the aniso­
tropic hyperfine tensor is relatively small even when the ratio 
of local to neighbor spin density is small.187 

The technique has been successfully applied to the assign­
ment of carbon-13 splittings in the anthracene anion187'190 

and to the ring carbon-13 splittings of the p-xylene anion 
where the 18.2 MHz splitting was assigned to the 2 position 
and the 14.6 MHz splitting to the 1 position.187 The latter 
assignment is in agreement with an earlier analysis191 based 
on the relative intensity of the lines, for the line from posi­
tions 2, 3, 5, and 6 should be twice as intense as that from 
positions 1 and 4. Similar problems arise in the assignment of 
fluorine hyperfine splittings for fluorine has spin V2, and the 
splittings can often be confused with those from the same 
number of protons. For example, the spectrum of the anion of 
3,5-difluoronitrobenzene contains two 1:2:1 triplet splittings 
of 7.67 and 9.15 MHz. Because the local spin density must be 
zero for aromatic protons, but not for fluorine nuclei, we 
expect the fluorine lines to be wider than the proton lines. On 
the basis of this analysis, the 7.67 MHz splitting was attributed 
to fluorine.192 

E. SIGN DETERMINATIONS 

The separations between the lines in an electron resonance 
spectrum yield only the magnitudes of the isotropic coupling 
constants and not their signs. Knowledge of the sign of the 
hyperfine interaction is important, both as an aid to the cor­
rect assignment of the splitting and for a test of theoretical 
ideas concerning the hyperfine interaction. Although deter­
mination of the total hyperfine tensor from a single-crystal 
study yields the sign, the instability of most radicals and spec­
tral complexity precludes them from this technique. Fortu­
nately observation of line-width variations can often lead to 
sign determination. 

Rather than deal with the problem generally, we shall illus­
trate the principles by considering a specific example, namely 
the sign of the nitrogen hyperfine coupling in the nitrobenzene 
anion. The spectrum of the nitrobenzene anion, and indeed 
most of its derivatives,193'194 exhibits a large triplet splitting 
with the high-field line broader than the central and low-field 
lines which have about the same width. In contrast proton 
lines with the same nitrogen quantum number do not show 
any marked variation in width, and for the purpose of this 
discussion we shall ignore the proton hyperfine structure. If 
second-order effects are small, the value of the field, H(m), at 
which a hyperfine line with nitrogen quantum number m 
occurs, is given by 

H(m) = H0 - "— (7.27) 

where HQ is the value of the field at the center of the spectrum, 

(189) J. R. Morton, J. R. Rowlands, and D. H. Whiffen, Report BP 13, 
National Physics Laboratory, 1961. 
(190) J. R. Bolton and G. K. Fraenkel, J. Chem. Phys., 40, 3307 (1964). 
(191) J. R. Bolton and A. Carrington, MoI. Phys., 4, 497 (1961). 
(192) M. Kaplan, J. R. Bolton, and G. K. Fraenkel, / . Chem. Phys., 42, 
955 (1965). 
(193) P. B. Ayscough, F. P. Sargent, and R. Wilson, / . Chem. Soc, 5418 
(1963). 
(194) P. L. Nordio, M. V. Pavan. and C. Corvaja, Trans. Faraday Soc, 
60, 1985 (1964). 
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(whlgfi). When oN is positive, lines with a negative quantum 
number will occur at high field, while those with a positive 
value of m will be at low field; the situation is reversed when 
aN is negative. Clearly we cannot label the lines correctly 
until we know the sign of aN, and to eliminate this difficulty 
when referring to specific lines in a spectrum, Freed and 
Fraenkel111 have defined spectral index numbers, m, denoted 
by a tilde over the quantum number such that m is positive on 
the high field of the spectrum and negative on the low-field 
side. Thus, if the coupling constant is negative, m is equal to 
m, but when a is positive, in is minus m. In the spectrum of 
nitrobenzene anion the high-field line corresponds to TO = 1 
and the low-field line to TO = — 1. 

Clearly, knowledge of the sign of the quantum number m 
for either the high- or low-field line would give us the sign of 
aN. This information is contained in the line widths as a glance 
at the theoretical values for the nitrobenzene anion, given in 

Table IV, shows. Experimentally the high-field line (TO = 1) 
is the widest, and so if B is positive aN will be negative, whereas 
if B is negative aN will be positive. Now the sign of B is given 
by the inner product (g': A') in eq 7.16. 

The main contribution to the nitrogen anisotropic hyperfine 
tensor comes from the local spin density, and so to a good 
approximation the tensor will be cylindrically symmetric 
about an axis (1) perpendicular to the molecular plane. The 
inner product can now be written as 

(g':A') = | v t t ' (7.28) 

Equation 7.26 shows that provided the spin density at the 
nitrogen is positive, A1' will also be positive, and it simply 
remains to find the sign of gi'. Theoretical studies show that 
for hydrocarbon radicals the component of the g tensor per­
pendicular to the molecular plane is close to the free-spin 
value.196,196 Since the isotropic g factor is usually greater 
than the free spin value, ^1' is negative and is predicted to be 
negative for oxygen-containing radicals such as the nitro­
benzene anion. The coefficient B is also negative, and therefore 
the isotropic nitrogen coupling constant must be positive in 
agreement with theory. If we were not so confident about the 
sign of the spin density on the nitrogen, we could only use the 
line-width results to show that the product pNaN was posi­
tive. 

This technique was first used to determine the sign of the 
carbon-13 splitting of the a position in the naphthalene 
anion.197 The coupling is positive in agreement with the value 
calculated from eq 7.23 and the Huckel spin densities. Sim­
ilarly, the hyperfine splitting of the central carbon atom in 
triphenylmethyl is positive.19S This result is in complete agree­
ment with theory and corrects the anomalous sign obtained 
from a single-crystal determination of the carbon-13 hyper­
fine tensor.199 

The spin density distribution obtained from hyperfine cou­
pling constants is often compared with that calculated using 
various forms of molecular orbital theory. The agreement can 
usually be improved by varying certain Coulomb (a) and 

(195) H. M. McConnell and R. E. Robertson, / . Phys. Chem., 61, 1018 
(1957). 
(196) A. J. Stone, MoI. Phys., 6, 509 (1963). 
(197) E. de Boer and E. L. Mackor, J. Chem. Phys., 38, 1450 (1963). 
(198) H. van Willigen and S. I. Weissman, ibid., 44, 420 (1966). 
(199) F. C. Adam and S. I. Weissman, J. Amer. Chem. Soc, 80, 2057 
(1958). 

Table IV 

in o N < 0 aN > 0 

1 A +B + C A-B-VC 
Q A A 

-1 A - B + C A + B + C 

resonance (B) integrals, but this can only be done with any 
meaning when there are more spin densities than unknown 
integrals. An extreme example is provided by the 1,4-benzo-
quinone anion which shows the expected quintet hyperfine 
pattern with a proton coupling constant of 6.64 MHz. Since 
the spin density is known only for the 2, 3, 5, and 6 positions, 
it is not possible to obtain the best values for a0 and /3co. 
However, the problem can be solved by measuring the two 
carbon-13 splittings which in aqueous solution are O1

0 = 1.12 
MHz and a2

c =1.67 MHz.200 The spin density at position 1 
can then be calculated from eq 7.23, and since the total spin 
density must equal 1, the spin density on the oxygen can be 
calculated. To obtain an unambiguous result it is necessary to 
know the signs of the two carbon-13 splittings, and these were 
obtained from line-width variations among the carbon-13 
satellites; in fact they are both negative. 

An alternative solution would have involved measurement 
of the oxygen-17 coupling constant, but the low natural abun­
dance of 17O (0.037 %) precludes the use of unenriched samples. 
The availability of 17O is increasing, and two groups of workers 
have reported values of the oxygen-17 hyperfine splitting in 
the 1,4-benzoquinone anion.201,202 The spin of 17O is 6/s ar>d 
the lines with TO = 6/s are wider than those with m = — 6A-
Because the magnetogyric ratio for oxygen-17 is negative, the 
theoretical value for the line-width coefficient B L positive 
and so the hyperfine splitting must be negative. The oxygen 
spin density is certainly positive and the sign of a° simply 
reflects the negative sign of the magnetogyric ratio implying 
that the mechanism for the hyperfine interaction is analogous 
to that for carbon-13. 

F. RELATIVE SIGN DETERMINATIONS 

When a radical contains several magnetic nuclei with aniso­
tropic hyperfine tensors, the perturbing Hamiltonian given in 
eq 7.2 must be modified. Provided the electron resonance 
transitions are nondegenerate, calculation of the line width 
presents few problems and for n nuclei 

n 
T2

-1OnIm2- • -OTn) = A + 53-B,/n,- + 
i = l 

Y1CwS + S£,,m.m/ (7.29) 

where the coefficients Bt and C( are identical with those in eq 
7.16. The coefficient Eti is the result of the cross term between 
the different hyperfine tensors and is 

E» = 04<'>':^'>'/4/o + ^) (7.30) 

In many cases it is possible to calculate the sign of the inner 

(200) M. R. Das and G. K. Fraenkel, / . Chem. Phys., 42, 1350 (1965). 
(201) W. M. Gulick and D. H. Geske, J. Amer. Chem. Soc, 88, 4119 
(1966). 
(202) B. L. Silver, Z. Luz, and C. Eden, J. Chem. Phys., 44, 4258 (1966). 
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product (A^':AU)') and hence the sign of Etj. Armed with 
this information we can proceed to determine the relative 
signs of am and au) from the observed line widths. 

It is helpful to illustrate this point by considering the elec­
tron resonance spectrum of the 4-fluoronitrobenzene anion in 
aqueous solution shown in Figure 9. The spectrum exhibits a 
large nitrogen triplet of 40.40 MHz and a doublet due to the 
fluorine of 22.51 MHz, together with two proton triplets. 
Fortunately the line-width variations are restricted to the 
nitrogen and fluorine lines, so permitting us to neglect the 
proton structure.193'203 Because no pair of lines differ by 
just EN.FWNWF, we cannot use the simple device introduced in 
section VILE. Instead we write eq 7.29 in terms of the spectral 
index numbers, mt. The coefficients C4 are unaffected by this 
change, but now 

Bi = uBi (7.31) 

(7.32) 

where ê  is — 1 if the hyperfine splitting is positive and +1 if 
a(i) is negative. Experimentally Et,j, which is the only quantity 
one can calculate from the line widths, is found to be posi­
tive203 and it simply remains to calculate the sign of (A*': 
AF'). Because of the local spin density on both the nitrogen 
and fluorine, both anisotropic hyperfine tensors are expected 
to possess cylindrical symmetry about an axis (1) perpendicu­
lar to the molecular plane.203 Thus the inner product is given 
by 

(A*': A*') = - > N ' . * F ' (7.33) 

and since molecular orbital calculations show that both the 
fluorine and nitrogen spin densities are positive, £y must also 
be positive. We conclude therefore that the nitrogen and 
fluorine coupling constants must be the same sign; in fact, the 
nitrogen splitting is positive and so aF is also positive. Again 
when the signs of the spin densities are not so certain, such an 
analysis only yields the sign of (aNpx)(aFpF). 

Except in extremely viscous solvents the three nitro­
gen hyperfine lines obtained for the peroxylamine disulfonate 
radical dianion have equal widths.204 However, when the radi­
cal is enriched with oxygen-17 and the spectrum is measured 
in aqueous solution, line-width variations are observed among 
the 17O satellites.206 Further, lines with the same oxygen quan­
tum number but different nitrogen quantum numbers have 
different widths, implying that the cross term Eo,N is not zero. 
Line-width measurements show that E0,N is positive. Both 
hyperfine tensors should be axially symmetric about the 2p 
orbitals containing the unpaired electron, and so the inner 
product (A0' :AN) will be given by an equation analogous to 
(7.33). Since the oxygen magnetogyric ratio is negative, E0,s 
will also be negative, and so the oxygen and nitrogen coupling 
constants must have opposite signs. The nitrogen splitting is 
undoubtedly positive, and so that of oxygen must be negative 
in agreement with theoretical concepts. However, an at­
tempt205 was made to derive the sign of the nitrogen splitting 
from previous line-width variations204 using the following un­
justified argument. As with most nitroxides the m = 1 line is 

10 gauss 

Figure 9. The electron resonance spectrum of the 4-fluoronitro­
benzene radical anion in aqueous solution at room temperature. 

wider than the other two components,178'206 and to use this 
information to determine the sign of aN, we require g / 
where as before axis 1 is parallel to the 2p orbital. There are 
no theoretical estimates of gi' available, and so it was cor­
rectly argued that the similar structures of peroxylamine di­
sulfonate and organic nitroxides means they have the same 
sign for g/. Several organic nitroxides have now been studied 
in single crystals and glasses,179 and gi' is negative, and there­
fore aN must be positive. However, the single-crystal studies 
also yield the nitrogen hyperfine tensor from which one can ob­
tain directly the sign of the isotropic splitting thus making the 
use of line-width variations superfluous.203 

Often a particular hyperfine line is the sum of several de­
generate transitions. When the widths of the component 
Lorentzian lines differ markedly from one another, it is very 
difficult to extract useful information from the line shape. 
However, under certain conditions we can define an average 
line width, which will be given by equations analogous to eq 
7.16, 7.29, and 7.30, as we shall see in section VILG. When 
these conditions hold, it is possible to use the line-width 
variations to determine the signs and relative signs of coupling 
constants. Asymmetric line-width variations have now been 
studied in many radicals, and the signs of the coupling con­
stants are given in Table V.111'112'192' 2^7-210 

G. DEGENERATE TRANSITIONS 

According to Redfield the line shape of a nondegenerate 
transition is Lorentzian with the width given by the single 
element of the relaxation matrix RKK>KK' multiplied by — 1. 
When the spectrum contains degenerate transitions, the line 
is a sum of Lorentzians with widths given by the eigenvalues 
of the relaxation matrix and with strengths which are related 
to the squares of the matrix elements (K \SX\K'). In general, 
a sum of Lorentzians with different widths does not produce 
a Lorentzian line shape.17 The application of Redfield's 
theory to electron resonance leads therefore to a result in 
marked contrast to that obtained by Kivelson9 who, using 
Kubo and Tomita's theory,3 showed that all lines should 

(203) A. Carrington, A. Hudson, and G. R. Luckhurst, Proc. Roy. Soc, 
A284, 582 (1965). 
(204) J. G. Powles and M. H. Mosley, Proc. Phys. Soc, 77, 729 (1961). 
(205) Z. Luz, B. L. Silver, and C. Eden, /. Chem. Phys., 44, 4421 (1966). 

(206) R. Briere, H. Lemaire, and A. Rassat, Bull. Soc. Chim. Fr., 3273 
(1965). 
(207) E. de Boer and E. L. Mackor, MoI. Phys., 5, 493 (1962). 
(208) P. T. Cottrell and P. H. Rieger, ibid., 12, 149 (1967). 
(209) B. L. Barton and G. K. Fraenkel, J. Chem. Phys., 41, 695 (1964). 
(210) A. Carrington, P. F. Todd, and J. dos Santos-Veiga, MoI. Phys!, 
6, 101 (1963). 



212 A. Hudson and G. R. Luckhurst 

Table V 

Signs of Hyperfine Splittings 

Radical Sign Ref 

Pyracene cation The aromatic and aliphatic pro- 207 
tons have opposite signs 

1,4-Dinitrobenzene The nitrogen splitting has an op- 111 
anion posite sign to that of the proton 

and is therefore positive 
2,6-Dinitrophenolate Both aN and a4

H are positive 112 
dianion 

3,5-Difluoronitro- aNpN and aTpF are both positive; aF 192 
benzene anion is probably negative 

5-Nitropyrimidine a5
N is positive as well as the prod- 208 

anion uct aiNpiN 

Dihydropyrazine The nitrogen splitting is positive 209 
cation whereas the NH proton splitting 

is negative 
1,4-Dicyanotetrazine The ring nitrogen has a positive 210 

coupling constant 

be Lorentzian. The observation of alternating line widths 
discussed in section III demonstrates, quite clearly, that in 
general a resonance line is a sum of Lorentzians with different 
widths. 

When the dominant relaxation mechanism is the coupling 
of the anisotropic g and hyperfine tensors to the molecular 
motion, the differences in the component line widths may be 
small and the subsequent departure from a Lorentzian can be 
quite subtle. For example, in Figure 10 the curve labeled "a" 
is the sum of two Lorentzians of equal intensity with one 
having a width twice that of the other, whereas curve b is a 
single Lorentzian computed with a line width taken directly 
from curve a. Clearly the difference between curves a and b 
is extremely small. When attempting to distinguish between 
such curves, it is helpful to define a shape factor, St, for line i 
by 

St = (AiID^1Bi (7.34) 

where A{ is the amplitude of the line, Dt is its degeneracy, and 
5t is the separation between the derivative extrema.211 The 
line-shape factor is important because it is related to the 
shape function, gt, which for a particular shape is 

s< = r "(-£[*'(*0*« - ft'(*0-iJ1 ' (7-35> 
A, ( Di ) 

where A< is a parameter which measures the width of the line, 
h is the integrated intensity, and xt is the reduced variable 
(H — H0{)/At. In the spectrum of a free radical the ratios 
I1/Dt and 5t/A< are constant for the various hyperfine lines, and 
the relative shape factors defined with respect to the central 
line depend only on the shapes of the lines. Clearly, if the 
hyperfine lines have the same form, the relative shape factors 
will all be unity. When all the lines do have the same shape, the 
line-width theory can be simplified by taking an average over 
the eigenvalues of the relaxation matrix to give the width. 
Such a procedure is particularly important if the line-width 
analysis is to be used to obtain quantitative information, for 
example, the components of the g tensor. 

(211) J. Gendell, J. H. Freed, and G. K. Fraenkel, /. Chem. Phys., 41, 
949 (1964). 

Figure 10. First derivative Lorentzian line shapes: (a) a superposi­
tion of two curves with widths in the ratio of 2:1; (b) a single 
Lorentzian with a width taken directly from (a). 

The tetracyanoethylene anion provides an example of a 
spectrum whose line widths cannot be analyzed using the 
average line-width approximation. The spectrum in aqueous 
solution does not exhibit any line-width variations, but by 
using a mixture of absolute ethanol and glycerine the rota­
tional correlation time was increased sufficiently to produce 
an asymmetric broadening. Because of the low intensity of 
the outside nitrogen lines and overlap with carbon-13 satellites, 
the relative shape factors could only be obtained for lines 
M = ±2, and M= ± 1 ; the results are given in Table VI 
together with the relative line widths.211 The different 
shapes of the various nitrogen hyperfine lines are immediately 
apparent from Table VI. The theoretical values of the 
relative widths and shape factors were calculated from 
sums of Lorentzians whose widths were obtained from the 
full relaxation matrix. The excellent agreement with the ex­
perimental results was obtained by treating the products of the 
tensor invariants and rotational correlation time as adjustable 
parameters when fitting the relative widths.211 

Table Vl 

Relative widths Relative shape factors 
M 

- 2 
- 1 

1 
2 

Exptl 

1.895 
1.210 
1.376 
2.213 

Theoret 

1.942 
1.215 
1.385 
2.265 

Exptl 

1.140 
1.062 
1.073 
1.140 

Theoret 

1.100 
1.037 
1.055 
1.110 

This procedure for analyzing the line shapes, although cor­
rect, is often tedious, but fortunately when the widths of the 
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component lines are similar, the over-all line shape is Lorent-
zian212 with a width 

(TT1) = E^.'r«~7X>< (7.36) 
i i 

where Wf corresponds to the intensity of transition / and 
T24

-^s are the eigenvalues of the relaxation matrix. Equation 
7.36 may also be written as 

(Tr1) = ~ £ r „ - i (7.37) 
D i 

where D is the degeneracy of the line, and the summation is 
over all components taken to have the same intensity.11 Cal­
culation of the widths of the individual degenerate transitions 
is a difficult task; fortunately, the relaxation matrix is often 
diagonal in a particular set of basis functions. This particular 
problem in relaxation theory has been discussed in great detail 
by Freed and Fraenkel.11 Although the averaging technique 
has been used in the majority of line-width studies involving 
degenerate transitions, it should be emphasized that strictly 
it can only be applied quantitatively when the relative line-
shape factors have been shown to be unity. 

H . A N I S O T R O P Y O F g T E N S O R S 

The components of the g tensor for a paramagnetic species 
can be obtained by growing a magnetically dilute single crystal 
and studying the angular dependence of the electron resonance 
spectrum. For various reasons this technique is not often used 
for organic free radicals and attention has been focused on 
other methods. Clearly, if the solution electron resonance 
spectrum exhibits an asymmetric broadening effect, the line-
width coefficients can yield the components of the anisotropic 
g tensor, gap'. Examination of eq 7.16 shows that the cross 
term B depends on ga/3' together with Aafi' and TR. Provided 
eq 7.25 can be confidently used to calculate Aa3' we can ob­
tain the rotational correlation time from the pure dipolar term 
C. Because there are other relaxation processes which are in­
dependent of the nuclear quantum numbers, the coefficient A 
in the line-width expressions cannot be used to obtain equa­
tions for gaB'. Even if the hyperfine and g tensors have the 
same principal axis system, there is still insufficient information 
to calculate all the components gaB'. Since the anisotropic g 
tensor is traceless, we require at least two B cross terms; when 
this information is available we can use the dipolar cross 
term, Etj, and the two pure dipolar terms, Ct, to obtain the 
best value of TR with which to calculate gap'. 

Surprisingly this important technique has been used for a 
relatively small number of radicals with the results given in 
Table VII; axis 1 is perpendicular to the molecular plane, axis 
2 passes through carbon atoms 1 and 4 in the radical, and 
axis 3 is orthogonal to 1 and 2. Inspection of the inner product 
(g' :A') for a hyperfine tensor possessing cylindrical symmetry 
about axis 1 shows that (g':A') is just '!tgi'Ai', and so the 
line-width variations yield just one component of the g tensor. 
This is why the line widths for the fluoronitrobenzene and 
1,4-benzoquinone (17O) anions gave only the component per­
pendicular to the molecular plane. These results are in good 
agreement with the theory of g factors which predicts that the 
component perpendicular to the molecular plane is close to 
the free-spin value. Indeed, Schreurs and Fraenkel's results213 

(212) D. Kivelson, J. Chem. Phys., 41, 1904 (1964). 
(213) J. W. H. Schreurs and G. K. Fraenkel, ibid., 34, 756 (1961). 

Table VIl 

g Tensors Determined from Line-Width Measurements 

Radical g gl' X 10s gz' X 10s g,' X W3 Ref 

1,4-Benzoquinone 
anion 

1,4-Benzoquinone 
(O ") anion 

1,4-Dinitrobenzene 
anion 

2-Fluoronitrobenzene 
anion 

3-Fluoronitrobenzene 
anion 

4-Fluoronitrobenzene 
anion 

2.0046 

2.0051 

2.0047 

2.0046 

2.0047 

- 2 . 3 

- 1 . 9 

- 2 . 1 

- 1 . 3 

- 1 . 8 

- 1 . 5 

for the proton line widths of 1,4-benzoquinone anion were 
analyzed by assuming that gi = 2.0023. 

I. Q U A D R U P O L E RELAXATION 

The widths of the nuclear magnetic resonance lines for nuclei 
with spins greater than Vs are often extremely broad, and this 
has been attributed to nuclear relaxation by the quadrupole 
tensor coupled to the Brownian motion. The phenomenon is 
well understood (ref 17, p 346) and in many ways is similar 
to relaxation by the zero-field splitting tensor in molecules con­
taining several unpaired electrons, a problem which we discuss 
in section IX. In electron resonance, quadrupole relaxation 
appears to be relatively unimportant, mainly because the 
quadrupole tensor of most covalently bonded nuclei is small 
in comparison to the anisotropic g and hyperfine tensors. For 
example, in the tetracyanoethylene anion the contribution of 
the quadrupole tensor to the line width is only 0.16 times that 
of the anisotropic hyperfine tensor.211 

The only reported example, for which quadrupole relaxa­
tion is important, is the 1-iodofluorenone iminoxy radical,214 

XII, presumably because of the large iodine quadrupole 

2H 

moment. The spin of iodine is 6/« a n d the spectrum of XII 
consists of a sextet splitting of 38.0 MHz and a dominant 
nitrogen triplet of 98 MHz characteristic of iminoxy radi­
cals.216 The line widths in a variety of solvents are extremely 
broad, although the iodine lines with mi = ± V2 are sharper 
than the remainder. In principle we can allow for the quad­
rupole relaxation by adding the term IaQagIa, where QaB is 
the quadrupole tensor, to the perturbation given by eq 7.2. 
In practice, because of the structure of iminoxy radicals, the 
anisotropies in the nitrogen and iodine hyperfine tensors as 
well as the g tensor are expected to be small compared with the 
quadrupole tensor. The time-dependent perturbation can 
therefore be taken as 

(214) B. C. Gilbert and R. O. C. Norman, J. Chem. Soc, B, 981 (1967); 
H. Sillescu, MoI. Phys., 14, 381 (1968). 
(215) R. O. C. Norman and B. C. Gilbert, J. Phys. Chem., 71, 14 (1967). 
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TC'(O = ^ ( - i ) m e c ,m,(07" r&.-m) (7.38) 

where Ti2~m)'s are the irreducible tensor operators for the 
nuclear spins. The line width resulting from such a modulation 
is readily found to be 

TrHm) = (-^0~- {A/ + Wd + 1) - 1 + 2m*\ - Im*}j9 

(7.39) 

where / is the nuclear spin and J0 is the rotational correlation 
time describing the molecular motion.318 Equation 7.39 is 
often written in terms of the nuclear quadrupole moment, Q, 
and the derivatives, Ka)3, of the electric potential 

Qa1 • » 

eQVao (7.40) 
1(21 - 1) 

In the principal axis system x, y, z, it is customary to write 

eq = V., (7.41) 

y xx ~~ 'W 

V V11 
(7.42) 

where q is the field gradient at the nucleus and 17 is called 
the asymmetry parameter. Kivelson9 was the first to derive an 
expression for the quadrupole line width, although his equa­
tion differs by numerical factors from (7.39). 

Since the spin of 127Z is hU, the widths of the lines are 

TrK^h) = (Q- QVo 

TrK±'h) = 1.53(Q: QVo 

Trl(±lk)= 1.20(Q: QVo 

(7.43) 

According to the theory then the sharpest lines should be 
those with Wi = ±6/2 in agreement with experiment. The 
line widths of XII have recently been the subject of a detailed 
investigation.21411 Quadrupole relaxation is expected to be re­
latively unimportant for the other halogens, because typical 
values of e *q Q are much smaller than that for iodine (cf. ref 
18, p 175). 

Vfff. Spin-Rotational Interactions 

As we have described, investigations of a number of radicals 
have demonstrated that the dependence of the width of a line 
on the nuclear quantum numbers of the states involved in the 
transition may generally be explained in terms of relaxation 
brought about by the anisotropics of the g tensor and the 
hyperfine interaction tensors. It was apparent, however, that 
there remained a residual broadening of each line which 
could not be accounted for by such mechanisms. In many cases 
the residual width can be accounted for in terms of spin-ro­
tational interactions. 

When a molecule rotates, its motion sets up magnetic fields, 
proportional to the rotational angular momentum / , which 
couple with the electron and nuclear spins. The interaction 
energy of an electron spin is represented by SaCapJp, where 
Ca/s is the spin-rotational interaction tensor. Because of 
molecular collisions and intermolecular interactions, both 
C and J may be time dependent. The spin thus experiences a 
fluctuating magnetic field which can produce relaxation. 

The theory of such effects was first developed for nuclear 

magnetic resonance, and Hubbard's classical theory218 has 
been applied to electron resonance.217 For molecules with 
axial symmetry, the contribution to the line width may be 
written 

Tr1 = ( 4Tr ) - 1 ^vW[CC x
2 + C}?)lcT/v] (8.1) 

where r is the molecular radius, S is the moment of inertia, 
rj is the viscosity, and C\\ and Cx. are the components of C 
parallel and perpendicular to the molecular symmetry axis. 
The significant feature is that the broadening is proportional 
to (Th), and therefore increases with increasing temperatures, 
and is independent of the applied field. 

The spin-rotational tensor is not known in most cases of 
interest, but it may be related to the g tensor of the unpaired 
electron by the approximate expression218219 

where 

C = 2A-Ag 

A&* = &,„ ~ 2.00235a/3 

(8.2) 

(8.3) 

and A is the rotational constant tensor for the rigid molecule. 
The broadening is therefore greatest when there are large g 
shifts, but not necessarily anisotropics. 

Spin-rotational broadening has also been discussed by 
Nyberg, who derives the line width using Bloch's equation5 for 
the density matrix.220 The problem is rather similar to that of 
an anisotropic g tensor discussed in section VILA. The time-
dependent Hamiltonian is written in the form 

3C'(0 = CJ(OS + JJf)COfMSn (8.4) 

where 6 = 7s7>(C) and cafi(t) = Ca?(t) - e8a$. J(t) varies 
randomly in time because of collisions and c(t) fluctuates be­
cause of the molecular tumbling. In general two correlation 
times are required to describe the statistical-properties of the 
molecular motion, but these are related in the Einstein-Debye 
theory of Brownian motion. The extension to a nonaxial spin-
rotational interaction is straightforward and 

-1 = \dW(C:Q-
9 TR 

(8.5) 

Nyberg includes the case of paramagnetic species with multi­
plicities greater than two and discusses a wide range of ex­
perimental results for transition metal ions and organic free 
radicals.220 The theory has also been extended to include the 
effects of anisotropic rotational diffusion.221 

In a series of papers on the line widths of vanadyl and 
copper acetylacetonates, Wilson and Kivelson have made ex­
tensive studies of the residual broadening as a function of tem­
perature, viscosity, solvent, and applied field.176'180'182 It is 
linear in (Xh) and field independent in agreement with the 
spin-rotational mechanism. 

Spin-rotation relaxation also makes an important contribu­
tion to the line widths of copper(II) ions in aqueous solution. 
The spectrum of copper sulfate consists of a single line whose 
width increases with increasing temperature. This effect was 

(216) P. S. Hubbard, Phys. Ren., 131, 1155 (1963). 
(217) P. W. Atkins and D. Kivelson, J. Chem. Phys., 44, 169 (1966). 
(218) R. F. Curl, / . Chem. Phys., 37, 779 (1962). 
(219) R. F. Curl, MoI. Phys., 9, 585 (1965). 
(220) G. Nyberg, ibid., 12, 69 (1967). 
(221) P. W. Atkins, ibid., 12, 133 (1967). 
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first attributed to fluctuations within the solvent sheath,222 

but it is now known to be due to spin-rotational relaxation.22' 
Above 0° an aqueous solution of copper nitrate yields a single 
line, but at —10° copper hyperfine structure is apparent, 
and it is possible to obtain the hyperfine coupling con­
stant. Using this value the line shape at higher temperatures 
can be fitted by spectrum simulation, and hence the widths of 
the component hyperfine lines can be determined. The aniso­
tropic g and hyperfine tensors were measured from the spec­
trum of the complex in a glycerine-water glass, but were then 
scaled in order to obtain a correlation time of 6.4 X 10-11 sec 
from both the line-width coefficients B and C228 The residual 
line width was calculated in the normal way and was found to 
be given by 

rrKresidual) = 2.04 X 1O4I(Th) + 0.23T*] (8.6) 

where the term in T2 was added to account for Van Vleck 
relaxation.224 The coefficient of the spin-rotation term Tjij cor­
responds to the reasonable value of 3.17 A for the effective 
radius of the copper complex. It is suprising, perhaps, to find 
that the coefficient of T1 is in good agreement with the coeffi­
cient obtained by extrapolation from 200K.225 

Copper(II) ions complexed with ethylenediamine have also 
been studied in aqueous solution226 and dissolved in pure 
ethylenediamine.227 In both cases the single electron resonance 
line was measured as a function of temperature, and the com­
ponent line widths were obtained by computer simulation of 
the spectrum. For this complex the residual line width is 
found to be in good agreement with that predicted for spin-
rotational relaxation, and there is no need to introduce the 
Van Vleck process. 

The observation that the electron resonance line widths of 
chlorine dioxide in solution were anomalously broad, led to 
the conjecture that a spin-rotational mechanism was in­
volved.228 An investigation of the spectrum from 25 to —180° 
in the solvents CCl4, CCl3F, CCl2F2, CClF3, and CF4 indicated 
that the line widths were linear in (T/r)) as required.229 The 
spin-rotation interaction is stronger in ClO2 than in any other 
known polyatomic radical, stable in solution, and has the 
advantage that the interaction tensor is known from micro­
wave spectroscopy. The viscosity dependence in aqueous 
glycerol solutions at 25° is in agreement with the rotational-
diffusion model we have been considering.280 However, in 
paraffin solutions, where there is a small solvent-solute inter­
action, it is found that the line widths are linearly proportional 
to temperature, but essentially independent of viscosity.280 

This result may be accounted for in terms of a random-jump 
model.281 It is assumed that the molecule hops at random be­
tween uncorrelated orientations relative to a randomly rotat­
ing cage of solvent molecules. During the jump the molecule 
occupies a rotational eigenstate and the electron spin experi-

(222) S. Fujiwara and H. Hayashi, / . Chem. Phys., 43, 23 (1965). 
(223) W. B. Lewis, M. Alei, Jr., and L. O. Morgan, ibid., 44, 2409 
(1966). 
(224) J. H. Van Vleck, Phys. Rev., 57, 426 (1940). 
(225) J. C. GiU, Proc. Phys. Soc, A85, 119 (1965). 
(226) W. B. Lewis, M. Alei, Jr., and L. O. Morgan, / . Chem. Phys., 45, 
4003 (1966). 
(227) M. Alei, Jr., W. B. Lewis, A. B. Denison, and L. O. Morgan, ibid., 
47, 1062(1967). 
(228) P. W. Atkins, A. Horsfield, and M. C. R. Symons, / . Chem. Soc, 
5220 (1964). 
(229) N. Vanderkooi and T. R. Poole, Inorg. Chem., 5, 1351 (1966). 
(230) J. Q. Adams, / . Chem. Phys., 45, 4167 (1966). 
(231) R. J. C. Brown, H. S. Gutowsky, and K. Shimomura, ibid., 38,76 
(1963). 

ences a magnetic field. Adams estimates that this mechanism 
gives a line width contribution for ClO2 of 

T2-I = kT.2((^.r)).v)(A2/r) (8.7) 
o 

where ({Har
2))„ is the average magnetic field arising from the 

spin-rotational interaction, r is the average time between 
jumps, and A is the average time spent in a rotational eigen­
state. The temperature variation is essentially dependent on r. 
The assumption that T = TO exp(E/RT), where E is the activa­
tion energy for escape into a rotational eigenstate, gives E ^ 
900 cal/mole for n-pentane and E ~ 1100 cal/mole for n-hep-
tane. These values give a linear variation with temperature 
over the range in which measurements were made. To obtain 
accurate line widths second derivative spectra were employed 
and compared with computer simulations. The problem is 
complicated by the presence of two isotopes of chlorine. 

The isoelectronic radical SO2
- has line widths an order of 

magnitude less than ClO2 in aqueous solution, presumably be­
cause the charge on the former causes a strong quenching of 
molecular rotation.282 

IX. Higher Spin Multiplicities 
Because of their stability, transition metal ions may be studied 
in magnetically dilute single crystals, although it may be nec­
essary to lower the sample temperature in order to obtain 
sharp lines. Such experiments can provide a considerable 
amount of structural information, for example, the g, hyper­
fine, and quadrupole tensors, and in addition the zero-field 
splitting tensor when the ion possesses more than one unpaired 
electron. There would therefore seem to be little need to study 
the line positions of the solution spectra of transition metal 
complexes, since they are determined only by the isotropic g 
factor and hyperfine splittings. However, by measuring the 
widths of the lines one might hope to learn something about 
the dynamics of the solvent sphere surrounding the metal ion 
and the rate of ligand exchange. Whereas the line widths for 
complexes containing a single unpaired electron are deter­
mined by the anisotropies in the g and hyperfine tensors cou­
pled to the Brownian motion, an entirely different relaxation 
process can occur for ions with higher multiplicities. 

In these species the degeneracy of the spin multiplet is 
partially lifted, even in the absence of a magnetic field, by the 
combined effect of spin-orbit and spin-spin interactions. 
McGarvey2 8 8 •2 3 3a was the first to realize that the resulting zero-
field splitting tensor, when coupled to the Brownian motion, 
would provide a powerful relaxation process. Indeed, the 
fluctuating force is often so strong that the extreme line width 
makes it impossible to observe a resonance and is one of the 
reasons for the failure to detect a photoexcited triplet state in 
solution.234 Certain transition metal ions do give measurable 
spectra, and the line widths of various chromium(III), iron-
(III), and manganese(II) complexes are in qualitative agree­
ment with McGarvey's results,283 which are an extension of 
McConnell's treatment of doublet states.2 Subsequently more 
rigorous techniques have been employed.I6'235 

(232) P. W. Atkins and M. C. R. Symons, "The Structure of Inorganic 
Radicals," Elsevier Publishing Co., Amsterdam, 1967, p 146. 
(233) B. R. McGarvey,/. Phys. Chem., 61, 1232 (1957). 
(233a) NOTE ADDED IN PROOF. W. B. Lewis and L. O. Morgan, Transi­
tion Metal Chem., 4 33 (1968), discuss the electron resonance spectra of 
complex ions in solution. 
(234) S. I. Weissman, / . Chem. Phys., 29, 1189 (1958). 
(235) A. Carrington and G. R. Luckhurst, MoI. Phys., 8, 125 (1964). 
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If the coupling to the nuclear spins is ignored, the static 
Hamiltonian is 

3C° = gPHS, (9.1) 

and relaxation effects are provided by the dynamic perturba­
tion 

3C'(0 = £( - l ) m Z>' MT>n,m^T r&.-m) (9.2) 

where D{2,n) is the zero-field splitting tensor in a molecule 
fixed axis system. T{2,~m\ the irreducible tensor operator for 
the dipolar coupling, is given by eq 7.14 in which /is replaced 
by S, and 3Dn,m

(2) is the Wigner rotation matrix. In general, 
the degeneracy of the resonance line is equal to the number of 
unpaired electrons in the complex, which in turn is equal to 
the order of the relaxation matrix. The basis set for construct­
ing the relaxation matrix is formed from the eigenfunctions of 
X0, namely|ms). The results will be given for the triplet, quar­
tet, and sextet states. 

Although no transition metal complex in a triplet state has 
been observed in solution, the theory is appropriate for certain 
stable biradicals such as bisgalvinoxyl286 and the nitroxide 
biradicals discussed in section XI.A. Solution spectra have 
been observed from the thermally excited triplet state of the 
coronene dianion, and its zero-field splitting has been esti­
mated from the width of the single broad line.287 The triplet 
problem is isomathematical with quadrupole relaxation for a 
nucleus with spin 1 (ref 17, p 313) and also with dipolar relaxa­
tion for two nuclei of spin Va (ref 17, p 289). The result is that 
the resonance line is the sum of two Lorentzians correspond­
ing to the |0) •*-*• |l) and | —1) -«-*• |0) transitions which 
have equal widths given by 

T2-
1 = ^ p { 3/0 + SJi + > , } (9.3) 

J2 is just the spectral density TR/(1 + 4we
2TR2). The electron 

resonance line shape of a triplet in solution should remain 
Lorentzian irrespective of the rotational correlation time, pro­
vided the fluctuations are sufficiently fast that Redfield theory 
is valid. 

This is not the case for the quartet state and here the spec­
trum is the sum of three transitions, namely | 8/2) "*—*- 11A). 
I Va) •«-»• I - 1A), and I - Va) *-*" I - Va) with widths 

(T2-
1) v „ - v . - Vs(D-.D)[J1 + /,} (9.4) 

(TV1)**,*'/. = Vs(DiD)[J0 + J1) (9.5> 

The relaxation matrix is not diagonal, and the results for the 
line widths are obtained from its eigenvalues. The relative 
strengths are 2/6 for the | Va) •*-> \ - Va) and 8/6 for the | ± Va) 
•«—*• I ± Va) transitions. 

Examination of eq 9.4 and 9.5 shows that the transitions 
only have the same line width when W8TR < 1 and 

JQ — J1 — J2 (9.6) 

Otherwise the lines have different widths, and indeed whereas 
the widths (r2

_1)±V!.±'/2 always increase with increasing 
TR, (7a~ 1 VI 1 -VJ should increase, pass through a maximum, 
and then decrease.285 Since the intensities of electron resonance 

(236) E. A. Chandross, J. Amer. Chem. Soc, 86, 1263 (1964). 
(237) M. Glasbeek, J. D. W. van Voorst, and G. J. Hoijtink, J. Chem. 
Phys., 45. 1852 (1966). 

lines are often used to determine the concentrations of transi­
tion metal complexes,288 it is clearly of some importance to 
know whether all of the transitions contribute to the signal or 
not. Experiments in aqueous solution suggest that in this sol­
vent all of the transitions do contribute to the resonance line 
for chromiurn(III) and manganese(II) complexes.286 

The relaxation matrix for a sextet state tumbling in solu­
tion is18 

(2 
<1 
<0 
(-1 
("2 

|2> |1) |0> |-1) |-2) 
A D E O O 
D B O F O 
E O C O E 
O F O B D 
0 0 E D A 

(9.7) 

where the symbols |2), |l), . . . represent the transitions 
I'ti-+ I Va), I 8 A ) ^ I Va) etc., and 

A= - (^){24/o + 48Z1 + 28/2} 

B=- ( ^ J j G / o + 36J1 + 46/2} 

C= - (^j[WJ1 + 56J2) (9.8) 

D = (D -.D)^j1 

12 
E = (D:D)~y--J2 

F = (DiD)3Jj2 

In general three different values of T2
-1 are obtained. How­

ever, when the molecular motion is so rapid that eq 9.6 holds, 
diagonalization shows that the resonance signal of a sextet 
state tumbling rapidly in solution is Lorentzian16'239 with a 
single value of T2-' equal to 8 2/s(Z): D)J0. 

When the arrangement of the ligands about the transition 
metal ion possesses cubic symmetry, the zero-field splitting 
vanishes and the first nonzero spin-spin interaction contains 
quartic terms.285'240The perturbation is then 

3C'(0 = £(-l)"F(4 'B)2)„,„<4)r (4W4,-m) (9.9) 

where the irreducible operators Ti4'~m) are constructed from 
j,(2,-m) u s j n g ciebsch-Gordon coefficients. Bloembergen and 
Morgan240 have used a technique described by Abragam and 
Pound,241 in order to estimate the importance of relaxation by 
quartic terms. By comparison of their calculation with the 
frequency dependence of the proton relaxation times of aq­
ueous manganese solutions, it was concluded that the hexa-
decapole interaction was not the most significant mechanism. 
The principal mode of relaxation was attributed to fluctuations 
in the arrangement of the six water molecules in the solvent 
sheath which destroy the cubic symmetry, so inducing a zero-
field splitting and providing a time-dependent perturbation. 

(238) H. C. Mishra and M. C. R. Symons, J. Chem. Soc, 4490 (1963). 
(239) B. B. Garrett and L. O. Morgan, / . Chem. Phys., 44, 890 (1966). 
(240) N. Bloembergen and L. O. Morgan, ibid., 34, 842 (1961). 
(241) A. Abragam and R. V. Pound, Phys. Rev., 92, 943 (1953). 
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The spin operators in the perturbation take the same form as 
those in eq 9.2, but now the coefficients are time dependent 
because of solvent fluctuations. In calculating the matrix 
elements of R, the spectral densities J0, Ju and J2 are replaced 
by Z0, Zi, and Z2, where239 

Zn = v ' 2 (9.10) 
h\\ + W2W8

2T2) 

T is the correlation time characteristic of the motion, and C2 

is the trace of the perturbing Hamiltonian. The problem of 
ligand fluctuations and exchange has also been studied by AT-
tshuler and Valiev.242 

The spectrum of manganese(II) in aqueous solution has been 
measured many times since its first observation.248 It contains 
six hyperfine lines with different widths, although not because 
of a relaxation effect. The manganese hyperfine splitting is 
large, and the nonsecular parts of the hyperfine interaction 
mix states with different m, values. As a result the five com­
ponents of a particular hyperfine line do not occur at the same 
field. Examination of the eigenvalues of the spin Hamiltonian 
taken to fourth order244a shows that the spread of resonant 
field values produces asymmetric inhomogeneous broadening 
of the manganese hyperfine lines. The spectrum of hydrated 
manganese(II) has been measured as a function of temperature 
and microwave frequency244*3 in an attempt to test a theory de­
veloped earlier240 for spin lattice relaxation. By assuming T2 « 
Ti, a fit to experiment was obtained for an exponential temper­
ature dependence of the correlation time. 

A potentially more significant test was provided by the 
measurement of the spectrum of manganese(II) perchlorate 
dissolved in water, dimethylformamide, diethylformamide, 
and dimethyl sulfoxide as a function of temperature.289 Line-
width measurements were restricted to the fourth line (mi = 
+ VO in the spectrum since this is least dependent upon in-
homogeneous broadening. Whereas for aqueous solutions the 
line width decreases with increasing temperature, in the or­
ganic solvents the width first decreases but then increases. Al­
though the latter behavior may be a result of ligand ex­
change,239 it is thought that spin-rotational relaxation is more 
important.220 The relaxation theory for solvent fluctuations 
was developed in some detail. The line widths were not ob­
tained by taking the eigenvalues of the relaxation matrix, but 
for the transition j/c) •*—*• |/c + 1) were calculated from2440 

fT.n V [(S - X)(S + X + !)]'/'„ 
U2 )«,«+i - ZJ iTT; vc L TTviV» x'x+1'*'*+1 

\=-s[(S - K)(S + K + I)] / 2 

(9.11) 

a result which was derived using arguments developed for spin 
V2 systems.231 In the limit of fast exchange the derived com­
ponent widths are 

(242) S. A. Al'tshuler and K. A. Valiev, Son. Phys. JETP, 35, 661 
(1959). 
(243) M. Tinkham, R. Weinstein, and A. F. Kip, Phys. Rev., 84, 848 
(1951). 
(244) (a) F. K. Hurd, M. Sachs, and W. D. Hershberger, ibid., 93, 373 
(1954); (b) A. W. Nolle and L. O. Morgan, J. Chem. Phys., 36, 378 
(1962). 
(244c) NOTE ADDED IN PROOF. The derivation238 of eq 9.11 assumes a 
1:1 correspondence between the line widths and the degenerate transi­
tions and can lead to erroneous results. This point, together with a re­
consideration of the theory of the line widths of 6S state ions, is dis­
cussed in a forthcoming publication by the authors: A. Hudson and 
G. R. Luckhurst, MoI. Phys., in press. 

(Ti Oi'A,±'A = 2.633Zo 

(Tf 1 J i .A i v, = 2.312Z0 (9.12) 

The prediction of unequal component line widths was tested 
by computer simulation of the first and fourth lines in the 
spectrum assuming a sum of five transitions with widths given 
by eq 9.12. The agreement between the theoretical and experi­
mental line shapes was reasonable, but as section VII.G 
showed, subtle differences in shape are not easily determined. 
The temperature dependence of Z0 was taken to be that of 
AH0, the peak-to-peak line width, minus a correction (of 1.6 
G) for the inhomogeneous broadening. To test the theory 
further, the temperature dependence of the correlation time, 
T, in eq 9.10 was required, and this was equated with that of 
the structural correlation time246 given by 

T cc nMlpT (9.13) 

where M is the molecular weight of the solvent of density p. 
At low temperatures the plots of T against AH, for organic 
solvents are linear, but at higher temperatures the line widths 
increase, whereas for water the plot is linear over the whole 
temperature range. The theory employed in this analysis 
attributes the time dependence entirely to solvent fluctuations, 
but in principle the rotation of the complex should also be 
important and could be allowed for using the theory devel­
oped for ligand exchange.125 More recently measurements have 
been made on the species Mn(CH3CNV+, MnCU2-, and 
MnBr4

2- in acetonitrile solutions. Computed spectra using 
component widths in the ratios given by eq 9.12 gave better 
agreement with experiment than the assumption of an over-all 
Lorentzian shape.246 

Although a complete analysis is still required for relaxation 
processes in the manganese system, it is interesting to observe 
the effects of adding anions on the line width. At temperatures 
below 100°, the line widths are independent of the chloride 
ion concentrations.247'248 The line-width variations were 
originally ascribed to spin relaxation of a single manganese 
ion,247 but later measurements show that ligand exchange is 
responsible.248 In fact, three types of manganese ion can be 
distinguished: (a) a solvated ion (Mn2+), (b) manganese with 
a chloride ion in the second coordination sphere (Mn2+-
H2OCl-), and (c) one with a chloride in the first coordination 
sphere (Mn2+Cl-). 

kab 
Mn 2 + + Cl" ^ t Mn2 +H2OCl - (9.14) 

ha 

Mn2 +HjOCl- 3 F = ^ Mn2 +Cl" (9.15) 
kcb 

The relaxation times for the three ions differ because of the 
lower symmetry of the chloride complexes resulting in a zero-
field splitting. The line shape for such a system can be derived 
using the modified Bloch equations.22,23 and some of the as­
pects of the theory have been considered when both the cation 

(245) J. Frenkel, "Kinetic Theory of Liquids," Dover Publications 
Inc., New York, N. Y., 1955, p 188. 
(246) S. I. Chan, B. M. Fung, and H. Lutje, J. Chem. Phys., 47, 2121 
(1967). 
(247) V. I. Avvakumov, N. S. Garifyanov, B. M. Kozyrev, and P. G 
Tishkov, Zh. Eksp. Teor. FIz., 37, 1564 (1959); Sov. Phys. JETP, 37, 
1110(1960). 
(248) R. G. Hayes and R. J. Myers, J. Chem. Phys., 40, 877 (1964). 
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and anion are paramagnetic, the results being in reasonable 
agreement with experiment."9 The general solution using the 
Bloch equations is extremely complex for the manganese sys­
tem, and we must be content with certain limiting forms. For 
example, if only equilibrium 9.14 is involved and the rate of 
exchange is fast, the well-known result for the average line 
width is 

(F2-1) = />„7V ! + ^ r 2 6 - 1 (9.16) 

where pa and pb are the mole fractions of species a and b. 
Further if pa > pb and T2a > T21,, as expected, then 

(7V-1) - 7 V 1 = /7.-[Cl-Xr2 6-1 - J V 1 ) (9.17) 
Kba 

The excess line width, (T2-
1) - T2n'

1, is obtained by sub­
tracting the line width for a manganese perchlorate solution 
from that for a solution containing chloride ions. Experimen­
tally the excess line width is proportional to the concentration 
of chloride ions. A plot of In {((TV1) - 7V1MCl-]} against 
l / r °K yields an activation energy of 9.4 kcal mole -1. This 
value is felt to be rather high and is said to indicate participa­
tion of the first coordination sphere complex in the equilibrium 
scheme248 when under certain conditions 

<^l^£! = PMkbc-(1 +
 kfVA (9.i8) 

[Cl-] Ar6. ( \ ka/ ) 
Unfortunately, the presence of so many unknowns precludes an 
accurate evaluation of any of the rate constants, although 
kbe is about 1.5 X 10s sec - 1 at 25° with an activation energy 
of about 6 kcal mole -1. Analogous effects are observed on 
addition of sulfate ions, but now the excess line width is not 
proportional to the sulfate concentration, and no rate informa­
tion can be extracted.248 

Ferric chloride is another sextet state, but the width of its 
single electron resonance line is so large that it cannot be seen 
in solution. However, in organic solvents, such as acetonitrile 
and acetone, iron trichloride is in equilibrium with the tetra-
chloroferrate anion. 

FeCl, ^=Ss FeCIr + FeCl1
+ 

Whereas the low symmetry of FeCl3 and FeCl2
+ implies a large 

zero-field splitting, and hence wide electron resonance lines, 
the tetrahedral environment260 in FeCl4

- produces a narrow 
line. Indeed, the intensity of the electron resonance signal is 
proportional to the concentration of FeCl4

- determined op­
tically.261 As the temperature of the sample is increased, the 
line width decreases, a result which might be caused by the 
increase in the concentration of the tetrachloroferrate ion as 
well as by a decrease in the rotational correlation time. 

X. Anisotropic Motion 

A. A N I S O T R O P I C DIFFUSION 

The assumption of isotropic rotational diffusion describable 
by a single correlation time TR is central to the evaluation of 
the spectral densities given in section VII. Clearly if the radical 
shows a marked departure from spherical symmetry, as for 
example vanadyl acetylacetonate, then reorientation about 

(249) R. G. Pearson and T. Buch, / . Chem. Phys., 36, 1277 (1962). 
(250) L. A. Woodward and M. J. Taylor, J. Chem. Soc, 4473 (1960). 
(251) T. B. Swanson and V. W. Laurie, / . Phys. Chem., 69, 244 (1965). 

one axis may be easier than about the other two. The rotational 
correlation times will then be anisotropic, and this should be 
reflected in the line widths. The general theory of anisotropic 
diffusion has been developed by Perrin252 in connection with 
dielectric relaxation and also by Favro.258 The formulas con­
tained in these papers have been applied to relaxation in 
nuclear resonance and used to analyze experimental relaxation 
times.264 Freed265 has removed the assumption of isotropic 
rotational diffusion from the earlier treatments of electron 
resonance line widths. 

Essentially the problem is to calculate SD„',m'(2,*(fi) given 
in eq 7.10, where the time in the parentheses is replaced by the 
value of the Euler angles, O, at time t' + t. In fact 

SD»'.m'(»*(n) = fdQP(U0\ Q;r)3Vifl/»*(ff) (10.1) 

where P(%\Q;t)is the probability that the value of the rotation 
matrix at time / (t' being set equal to zero) is 2V,m<(2)*(ft) given 
an initial value of 2V,m<(2)*(Oo). For anisotropic rotations 
the probability can be written as253 

P(fio|Q;0 = E ^ W M ^ e - ^ (10.2) 
i 

where the functions <j>t correspond to a complete set of rigid 
rotor wave functions with eigenvalues E1. Substitution of eq 
10.2 into 10.1 gives the required value for £>n<,m<(10*(£2) and 
hence the correlation functions and spectral densities. 

The results for the general problem are rather cumbersome, 
and it is helpful to consider the case of a symmetric top mole­
cule when the rotor wave functions can be written in terms of 
Wigner rotation matrices (ref 171, p 55) 

*jc,jf(»(n) = ( - ^ " " ( j ^ ) W*(2>(n) (io.3) 

where K and M are the rotational quantum numbers. The 
eigenvalues are written in terms of the diffusion tensor (R and 
are 

E*,k = 6(Ri + ((R3 - (R1)Ts:2 (10.4) 

where 1,2, 3 are the principal axes of (R. In order to appreciate 
the physical significance of the diffusion tensor, it may help to 
note that when the motion is isotropic 1/6(R is TR. Substitution 
of eq 10.3 and 10.2 into 10.1 together with the orthonormality 
relationship for the Wigner rotation matrices (c/. eq 7.12) 
gives 

SV,m<(2>*(0 = 3V.m<(2,*(n) = E2V, m ' ( 2 ) *(Oo)e - ^ ' i 
n' 

(10.5) 

The correlation function is therefore a sum of exponential 
terms, with each product of the irreducible tensors decaying 
with its own correlation time E2^'1, thus emphasizing the 
advantage of writing the interaction tensors in terms of their 
irreducible components. The line-width coefficients are sums 
of products of the tensor components with certain correlation 
times, ^«F ; i '

(2 '")F /1 '(2 ' ' , )*£2,n-1, and the summations can no 
longer be collapsed to give the tensor invariant. 

(252) F. Perrin, J. Phys. Radium, 5, 497 (1934); 7, 1 (1936). 
(253) L. D. Favro, Phys. Rec, 119, 53 (1960). 
(254) H. G. Hertz, "Progress in NMR Spectroscopy," Vol. 3, J. W. 
Emsley, J. Feeney, and L. H. Sutcliffe, Ed., Pergamon Press, London, 
1967, p 159. 
(255) J. H. Freed, / . Chem. Phys., 41, 2077 (1964). 
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Under certain conditions the line widths will depend on a 
single correlation time. If the principal axis systems of the 
diffusion, g and hyperfine tensors, coincide and the interaction 
tensors are cylindrically symmetric, all but FM'(2'0) vanish. For 
a symmetric top molecule the line-width coefficients given in 
eq 7.15 will still hold although rE is replaced by 1/6(Ri where 
axis 1 is perpendicular to the symmetry axis. The equations for 
the line-width coefficients are still valid even if the molecule 
undergoes asymmetric rotational diffusion although rR is now 
a complicated function of all three principal components of (ft. 
Even though vanadyl acetylacetonate cannot rotate isotropi-
cally, the experimental line widths are in excellent agreement 
with the assumption of a single correlation time;175 this is 
because the complex fulfills the conditions which we have just 
discussed.176 

The line-width theory involving anisotropic diffusion has 
been applied256 to line-width measurements for the 1,4-dini-
trobenzene anion. The assumption of isotropic motion and 
theoretical values for the anisotropic hyperfine tensors had 
given three values for m, from different line-width coefficients 
of 2.01 X 10-10, <0.35 X 10-10, and 1.36 X lO"10 sec. The 
discrepancy was tentatively attributed to fluctuations in the 
isotropic hyperfine splittings. If, however, the line widths 
are analyzed assuming anisotropic motion, then two elements 
of the diffusion tensor are found to be negative, a physically 
unacceptable result. It is not surprising that inclusion of fluc­
tuations of the isotropic hyperfine splittings does produce re­
alistic values of (R.255 

Anisotropic diffusion is said to be important in understand­
ing the widths of the hyperfine lines in the spectra of 4-sub-
stituted nitrobenzene anions.266 However, examination of the 
line-width analysis shows this claim to be unjustified. Experi­
mentally it is easier to measure line heights as opposed to line 
widths, and so the heights of the major nitrogen lines (mN = 
± 1) relative to the central component mN = 0 were measured 
as a function of temperature and found to decrease with de­
creasing temperature. Provided the widths of the component 
transitions for the degenerate transitions are not too different, 
the ratios of the heights are, it is argued,256 proportional to the 
squares of the ratios of sums of certain line-width coefficients. 
(There would seem to be a misprint in eq 2 of ref 256, for this 
implies the height of a line is inversely proportional to the 
square root of its width.) In the limit of rapid motion all of 
these coefficients are proportional to TR, and so the ratio of 
the heights should be independent of temperature. There are 
two flaws in this argument: the first is that the spin-rotational 
contribution with its inverse dependence on m is neglected, 
and secondly it is not obvious that the rotation is rapid and 
part of the temperature dependence could come from terms in 
Ji. 

The same anions have also been studied by Allendoerfer 
and Rieger257 who obtained the more meaningful line-width 
parameters at a single temperature. The dipolar cross term 
between the nitrogen and meta protons was found to be larger 
than that between the nitrogen and the ortho protons in con­
tradiction to the theoretical values. 

Although the calculated hyperfine tensors may be in­
accurate, anisotropic diffusion could conceivably be respon­
sible for the discrepancy. 

B. PARTIAL ORIENTATION 

Although electron resonance has provided little evidence for 
the existence of anisotropic diffusion, it is well known258 that 
in the nematic mesophase of a liquid crystal259 not all orienta­
tions are equally probable. Application of a magnetic field 
greater than 1000 G to a fluid nematic mesophase, for example, 
/>-azoxyanisole, aligns the molecules with their long axes 
parallel to the magnetic field. Addition of a paramagnetic 
species to this solvent results in partial alignment of the solute 
and, because of the presence of anisotropic magnetic interac­
tions, a drastic change in the isotropic electron resonance 
spectrum. To obtain the static spin-Hamiltonian which de­
scribes the partially oriented radical, we must take a time or 
ensemble average of the perturbation SC'(J), which vanishes 
when the motion is isotropic, and add it to SC0. The starting 
point is eq 7.8 for the second-rank anisotropic interactions. 
The Wigner rotation matrix can be written as 

2D„,„<2>(a/3y) = ein"dn,J»(J3)eimy (10.6) 

but because of the axial symmetry about the magnetic field, 
all values of y are equally probable and the average of SD will 
vanish unless m is zero. The average of SC' can now be written 
as 

or by using the relationship between the spherical harmonics 
and 3 W 2 ) a s 2 6 ° 

* ^ u.n 
<2->r2„*03a)7y2'« (10.8) 

If the nonsecular terms in J/2 '0 ' are neglected, the effect of 
partial alignment is to change the g factor to 

8=g + x f e B - D y ' ^ J V W (10.9) 

and a particular hyperfine splitting to 

* t J n 

The alignment of a solute can also be described by an ordering 
matrix,261 0a6, defined in terms of the direction cosines of a 
molecular axis system with respect to the magnetic field 

6ai = (3I20U - Sab)!2 (10.11) 

The symbol 0 is used to denote the ordering matrix in prefer­
ence to S used in nuclear magnetic resonance to avoid confu­
sion with the electron spin operator.262 The summations in eq 
10.9 and 10.10 are now replaced by 2/3(0:g') and 2/3(0M')> 
respectively.263 The magnitude of the observed hyperfine split­
tings will depend as the relative signs of a and (0:A'). For 
example, the isotropic vanadium splitting is negative whereas 
(Q:A') is positive for vanadyl tetraphenylacetylacetonate 

(256) F. Millet and J. E. Harriman, / . Chem. Phys., 44, 1945 (1966). 
(257) R. D. Allendoerfer and P. H. Rieger, ibid., 46, 3266 (1967). 

(258) A. Carrington and G. R. Luckhurst, MoI. Phys., 8, 401 (1964). 
(259) G. W. Gray, "Molecular Structure and the Properties of Liquid 
Crystals," Academic Press, New York, N. Y., 1962. 
(260) S. H. Glarum and J. H. Marshall, J. Chem. Phys., 44, 2884 (1966). 
(261) A. Saupe, Z. Naturforsch., 19a, 161 (1964). 
(262) G. R. Luckhurst and E. G. Rosantsev, Izv. Akad. Nauk. SSSR, 
Ser. Khim., 8, 1708 (1968). 
(263) G. R. Luckhurst, MoI. Cryst. 2, 363 (1967). 
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dissolved in p-azoxyanisole. The hyperfine spacing below the 
nematic-isotropic transition point (135°) is therefore smaller 
than the isotropic spacing, as shown in Figure 11. 

Closer examination of the spectra in Figure 11 reveals an 
unusual line-width variation,264 for the lines at the end of the 
anisotropic spectra are sharper than those in the center, the 
reverse of the situation found for isotropic fluids. The domi­
nant relaxation process is still the anisotropy in the g and 
hyperfine tensors coupled to the molecular motion, but this is 
no longer isotropic in the sense that the probabilities for vari­
ous orientations are not identical. The time-dependent Hamil-
tonian for the problem is obtained by taking eq 10.7 from eq 
7.8 and the single element of the R matrix calculated in the 
usual way. This procedure is rather complex and can be con­
siderably simplified by neglecting those terms, FM'(2'±1J and 
/r(i'(2,±2)j resulting from the small departure from axial sym­
metry of the g and hyperfine tensors. "8 In this way the orienta­
tion of the complex can be defined by a single parameter /3, 
the angle between the magnetic field and the symmetry axis 
of the complex. After evaluating the appropriate matrix ele­
ments and correlation functions for the time dependence of /3, 
the line widths are found to be given by eq 7.15 but with 

g'u*A\i*H* 
(4Z0(O) + 3Z1(W8)J + 

(10.12) 

16 

B = ^ i i ^ { 4 / o ( 0 ) + 3Z1(CO6)J 

C = ^ {8Z0(O) + 3Z1(CO8) - 3Z1(O) -
O 

Zo(COe) - 3Z2(CO6)) 

The spectral densities should not be confused with those en­
countered for isotropic motion; they are264 

Zo(co) = -9(cos4/3 - (cos2 /3}2}Z(«) 

Z1(W) = ^(cos2 /3 - cos4 /3)Z(co) (10.13) 

Z2(Co) - -<(1 - cos2 /3)2>Z(co) j 

where the angular brackets denote an average over all orienta­
tions and Z(co) = r/(l + co2r2). The motion is therefore as­
sumed to be characterized by a single correlation time r. 
The expressions in (10.12) can be simplified by noting that 
the viscosity of/>-azoxyanisole265 is very similar to that of tol­
uene at —60° and suggests that the nonsecular contributions 
to the line width are negligible. "5 The sign of the C coefficient, 
which must be negative to explain the line-width variations, 
will be determined by the relative magnitudes of the secular 
term, Z0, and the pseudosecular, Z1. To evaluate the formulas 
for Z0 and Z1 given in eq 10.13, we require the probability dis­
tribution function, and this has been taken to be266 

(264) S. H. Glarum and J. H. Marshall, J. Chem. Phys., 46, 55 (1967). 
(265) R. S. Porter, E. M. Barrall, and J. F. Johnson, ibid., 45, 1452 
(1966). 
(266) W. Maier and A. Saupe, Z. Naturforsch., 14a, 882 (1959). 

Figure 11. The electron resonance spectrum of vanadyl phenyl-
acetylacetonate in the nematic mesophase of />-azoxyanisole. 

Piff) cc exp(-Xcos2/3) (10.14) 

Evaluation of the spectral densities using this distribution 
function shows that for high degrees of alignment C goes 
through zero and then becomes negative and finally becomes 
zero again on complete alignment.264 The predicted value for 
the degree of alignment when C changes sign is in good agree­
ment with the value calculated from the observed splitting 
and the anisotropic hyperfine tensor. When allowance is made 
for the nonsecular terms in X0, the formula for B is modified, 
as in the isotropic problem, and B is also predicted to change 
sign; again the value at which this change occurs is in good 
agreement with theory. Clearly, precise line-width studies in 
liquid-crystal solvents are capable of yielding valuable infor­
mation concerning both the static and dynamic structure of the 
nematic mesophase. 

Analogous line-width effects have been observed in the elec­
tron resonance spectrum of carbazole-oxyl in p-azoxyanis-
ole.267 Just below the nematic-isotropic transition point the 
spectrum exhibits pronounced asymmetric broadening which 
decreases as the temperature is decreased until, in the super­
cooled mesophase at 100°, the three nitrogen lines have the 
same width. The observation, of decreasing line width with 
increasing alignment, can be readily understood using the 
theory just developed, which is based implicitly on the distor­
tion theory,268 but they were interpreted267 using the swarm 
theory.269 This pictures the nematic mesophase as swarms or 
clusters in which the long axes of the molecules are parallel 
and the swarms are surrounded by an isotropic fluid. In a 
strong magnetic field the clusters are aligned parallel to the 
field, and any solute partitioned between the clusters and iso­
tropic liquid will also be aligned. The system is in a state of 
flux, and exchange between the clusters and the surrounding 
fluid modulates the g and hyperfine interactions, thus leading 
to line broadening, which decreases with increasing align­
ment. 267 This model alone cannot account for the negative sign 
of the C coefficient for the vanadyl complex, and it is necessary 
to consider relaxation caused by librations of the complex 
within a cluster. The librations will modulate the pseudosecu­
lar terms and give a negative contribution to C. 

(267) H. R. FaUe and G. R. Luckhurst, MoI. Phys., 12, 493 (1967). 
(268) H. Zocher, Trans. Faraday Soc, 29, 945 (1933). 
(269) E. Bose, Z. Physik, 10, 32 (1909). 
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The spectra of biradicals dissolved in liquid crystals have 
also been observed,270 and here the degeneracy of the |l) •*—*• 
10) and |0) •«—»• | — 1) transitions is split by the partially averaged 
zero-field splitting tensor. Application of the theory developed 
in section XI to partially aligned triplets would predict that 
each line should have the same width. Experimentally the 
spectrum of tetramethyl 2,2,6,6-piperidinol-l-oxyl-4-tere-
phthalate consists of three doublets, and the lines of each 
doublet have different widths.270 The motion in the liquid 
crystal modulates both the zero-field splitting and the aniso­
tropic nitrogen tensor and the presence of a cross term be­
tween these interactions leads to the unequal widths for the 
components of the doublet.262 Similar effects have been ob­
served for the nitroxide triradical discussed in section XLA 
when the components of the 1:2:1 triplets produced by the 
unaveraged zero-field splitting have different widths.262 

Xf. Spin Exchange 

A. I N T R A M O L E C U L A R 

One of the more interesting advances in electron resonance is 
provided by the chemist's ability to link together virtually any 
number of nitroxide radicals to form a stable polyradical.w 1_27 4 

The electron resonance spectrum of the polyradical is de­
termined not only by the interaction of the electrons with the 
nitrogen nuclei, but by the scalar interaction of the electrons 
with each other.275 The spin-Hamiltonian271'2^ for a nitroxide 
biradical such as bis(2,2,6,6-tetramethyl-4-piperidinol-l-oxyl) 
succinate (XIII) is 

3C° = gpH(Szw + S/2 ' ) + 0 ( / / " S / 1 ' + 7,<»S,<») -f 

JSW -SW (11.1) 

where J is the exchange integral. Because the hyperfine interac-

O O 

M Il Il 
^ k C CH, CH, C , V 

TTTT 

tion does not commute with the exchange term, the eigenvalues 
and eigenfunctions of 3C° depend on the relative magnitudes of 
J and a. When J <5C a the biradical behaves as two independent 
monoradicals, and the electron resonance spectrum consists of 
just three lines separated by a, the nitrogen hyperfine coupling 
constant. At the other extreme, if J » a the singlet, J0)E, and 
the triplet, | l)A , |0)A, and | — 1)A, electronic spin functions are 
eigenfunctions of 3C° to zeroth order in Jja, while the eigen­
values to first order are 

(270) H. R. FaUe, G. R. Luckhurst, H. Lemaire, Y. Marechal, A. Ras-
sat, and P. Rey, MoI. Phys., 11, 49 (1966). 
(271) R. Briere, R. M. Dupeyre, H. Lemaire, C. Morat, A. Rassat, and 
P. Rey, Bull. Soc. Chim. Fr., 3290 (1965). 
(272) R. M. Dupeyre, H. Lemaire, and A. Rassat, J. Amer. Chem. Soc, 
87, 3771 (1965). 
(273) A. L. Buchachenko, V. A. Golubev, A. A. Medzhidov, and E. G. 
Rosantsev, Teor. Eksp. Khim., 1, 249 (1965). 
(274) A. L. Buchachenko, V. A. Golubev, M. B. Neiman, and E. G. 
Rosantsev, Dokl. Akad. Nauk. SSSR, 163,1416 (1965); Chem. Abstr., 
63, 17354a (1965). 
(275) C. P. Slichter, Phys. Rev., 99, 479 (1955). 
(276) D. C. Reitz and S. I. Weissman, J. Chem. Phys., 33, 700 (1960). 

£ | l ) A | w i , w 2 > = g/3H + -(Wi + W2) + -
2 4 

£J0)A |wi,w2) = (11.2) 

£ | - l ) A | w i , w 2 ) = -g/3H 

for the triplet functions and 

-(Wl + W2) + -

£|0)B , I WI5W2) = — 
37 

(11.3) 

for the singlet, where we have used simple product functions 
for the nuclear spin basis. It is easily shown that the allowed 
electron resonance transitions occur at g/3H + aM/2, where M 
is the total nuclear quantum number. For the case of two 14N 
nuclei a five-line hyperfine pattern with intensities 1:2:3:2:1 
and separation a/2 is predicted and indeed observed.271'272 

Figure 12 shows the spectrum of the nitroxide biradical XIII 
dissolved in benzene, and although the spectrum does contain 
five lines implying J^a, the widths of the lines clearly alter­
nate; similar effects have been observed in other biradicals.273 

This alternation is caused by modulation of the exchange 
energy,277 and to calculate its effect we take the time-dependent 
perturbation to be 

3C'(0 = (J(t) - J)SW-S^ (11.4) 

where the average value of J in 3C° is now denoted by J. If this 
perturbation is used to calculate the elements of the relaxation 
matrix, together with spin functions (11.2) and (11.3), then no 
broadening is predicted because the transition frequencies 
calculated with these functions are independent of / . In fact, 
the levels |0)A and |0)E are mixed by the hyperfine interaction, 
and the corrected first-order functions are 

|"0")A |wiW2) = {|0>A + e|0)E}|wiW2) (11.5) 

|"0")E |wiW2) = {|0)E - e|0)A}|wiW2> (11.6) 

where e is aAm/2j with Aw = W1 — w2. Clearly levels with 
Wi = w2 should not be broadened; in fact, the line widths are 
given by 

4/2 (11.7) 

/

CO 

(J(O) — J)(J(t) — J) 
— CO 

cos Jt dr. The widths of the hyperfine components calculated 
from eq 11.7 are given in Table VIII. Modulation of/, pre­
sumably by conformational changes, thus results in line-width 
alternation independently of the form of the spectral density 
J(J).™ 

It is tempting to consider whether line-width measurements 
could yield information concerning the various conformations 
accessible to these nonrigid biradicals. Since the biradical can 
adopt many conformations, it is reasonable to assume expon­
ential decay which gives 

KJ) = J2 

1 + J2T2 (11.8) 

(277) G. R. Luckhurst, MoI. Phys., 10, 543 (1966). 
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IO g a u s s 

Figure 12. The electron resonance spectrum of bis(2,2,6,6-tetra-
methyl-4-piperidinol-l-oxyl) succinate in benzene. 

for the spectral density. Since J is only of the order of 400 
MHz, J2r2 might be less than unity, in which case 

a\mx - m2)%Pr/J2) (11.9) 

Even with these assumptions the line-width expression con­
tains three unknown parameters, and attempts to measure the 
activation energy for the modulation process must fail because 
the temperature dependences of J1 and J2 are unknown. 
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The situation is not quite so intractable when the exchange 
interaction is of the same order as the hyperfine coupling, for 
under these conditions the magnitude of J may be determined 
from the spectrum. Indeed, the near-equality of J and a mixes 
the triplet and singlet levels, and it is convenient to take the 
eigenfunctions to be of the form 

\0)v = cos <P\0)A + sin p|0)E 

10)_p = sin <p\0)A - cos <p\0)E (11.10) 

where tan 2^ = aAm/J. The transition frequencies are 
then 

co = gfiH + -(W1 + OT2) + J 
/sin2 

V 
p i 

c o s •* <p/ 

abm . „ 
T sin 2<p 

4 
(11.11) 

and the widths are found to be 

T2-
1 (cos4 <p\. 

• 4 V 

sin4 <p/ 

M ) + 5 ^ X M (11.12) 

where Au is J cos 2<p + aAm sin 2<p, and the width predicted 
by the upper value in the bracket is for the line which occurs at 
the frequency obtained by taking the upper values in eq 
ll.ll.278 Measurement of a and J gives <p which could then 

Figure 13. The electron resonance spectrum of the triradical XIV in 
mesitylene. 

be used in conjunction with the line widths to obtain the spec­
tral densities y'(0) and ./(Aw). The temperature dependence of 
these could then yield information concerning the relative 
motion of the ends of the biradical. Although the line-width 
variations predicted by eq 11.12 have been observed, no de­
tailed analysis has been published.278 

In view of the many biradicals which exhibit line-width vari­
ations caused by modulation of/, we expect this to be an im­
portant relaxation process for polyradicals. Indeed the line 
widths in the spectrum of the triradical XIV do alternate as can 

O 
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<W° 

•V-v 'S 
&-̂  

cf0 

i 
O 

v ° 
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be seen from Figure 13, and furthermore the broadening de­
creases with increasing temperature.274'279 The effect of modu­
lation of the exchange interaction between the three unpaired 
electrons on the line width can be understood using exactly 
the same procedure as for the biradical problem. The static 
spin-Hamiltonian is now 

3 3 3 

» = 1 i = l i>j=l 

(11.13) 

and the dynamic perturbation is 

3C'« = E(JWO- J)5<'»-S«' 
t>y = i 

(11.14) 

(278) S. H. Glarum and J. H. Marshall, / . Chem. Phys., 47,1374 (1967). (279) A. Hudson and G. R. Luckhurst, MoI. Phys., 13, 409 (1967). 
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The appropriate electron spin functions are a quartet (A) and 
two doublet (E) states. As before transitions with mi = m2 = 
m% are not broadened by modulation of J, and these are the 
three lines observed at room temperature. All other doublet 
state transitions are broadened in zeroth order and are never 
seen. On the other hand, broadening of the quartet state tran­
sitions occurs through the first-order admixture by the hyper-
fine interaction of the E into the A state. The line widths are 
then a2/J* less than for the doublets and are observed at high 
temperatures. The detailed line-width analysis279 has confirmed 
the previous identification of the radical based largely on its 
mode of synthesis.274 

B. INTERMOLECULAR 

When measuring the spectrum of a radical in solution it is 
important, as every electron resonance spectroscopist knows, 
to work at low radical concentrations, and sometimes at low 
temperatures, in order to obtain sharp lines. If the radical 
concentration is progressively increased, the individual hyper-
fine lines begin to broaden until they collapse to a single line 
whose width decreases with further increase in concentra­
tion.280 Similar effects are also produced by increasing the 
temperature of the sample. This phenomenon, known as con­
centration broadening, is consistent with relaxation by inter-
molecular spin exchange as first suggested by Pake and 
Tuttle.281 Their model for the relaxation process is as follows. 
In dilute solutions radicals rarely collide, but as the concentra­
tion increases the probability of collisions also increases. Dur­
ing a collision the electrons experience a strong scalar coupling 
analogous to that discussed for biradicals in section XI.A. 
The effect of the perturbation J(t) S^S^ is to induce spin 
exchange during a collision and therefore limits the lifetime of 
a particular state leading to line broadening. 

The line width resulting from spin exchange has been cal­
culated using various techniques3'9'128'282 including the Bloch 
equations.288 The natural way of treating the problem would 
be to use the density matrix formalism discussed in section 
Vi. 284,285 The r a t e equation for the elements of the density 
matrix for a single radical is 

Pi = (rr2pD - Px)Ir + r[pi,3Ci] (11.15) 

where r is the time between collisions, 3Ci is the spin-Hamil-
tonian for the radical including the radiofrequency field, and 
7V2 indicates a trace over the states of radical 2 in the joint 
density matrix, pD, for the two colliding radicals. The rate 
equation for pD is 

PD = (Pl X P2 - PD)/TD + i'[pD,3CD] (11.16) 

where TD is the lifetime of the dimer and 3CD is the sum of 3Ci 
and 3C2 together with the electron spin interaction /S(1),St2> 
but neglecting the radiofrequency field. We are therefore 
assuming that the exchange integral takes the value J during 
a collision, and is zero at all other times. This treatment of the 
problem is very similar to that used to explain relaxation effects 
resulting from triplet exciton collisions in crystals. ̂ 6 

(280) K. H. Hausser, Z. Naturforsch., 14a, 425 (1959). 
(281) G. E. Pake and T. R. Tuttle, Jr., Phys. Rev. Lett., 3, 423 (1959). 
(282) J. D. Currin, Phys. Rev., 126, 1995 (1962). 
(283) M. T. Jones, / . Chem. Phys., 38, 2892 (1963). 
(284) C. S. Johnson, Jr., MoI. Phys., 12, 25 (1967). 
(285) J. H. Freed, J. Chem. Phys., 45, 3452 (1966). 
(286) R. M. Lynden-Bell, MoI. Phys., 8, 71 (1964). 

In the absence of magnetic nuclei, spin exchange will only 
result in relaxation when the g factors for the colliding species 
are different. Under these conditions the exchange frequency 
is predicted to be field dependent,287 although this dependence 
has yet to be observed. The next simplest problem involves 
exchange between radicals containing a single magnetic nu­
cleus of spin Vs. Using simple product spin functions together 
together with eq 11.15 and 11.16, the widths of the two lines 
in the slow-exchange region (a ~S> WlIr) are 

T2-I = W/2r (11.17) 

where W is 1AK-^D)V[I + C/TD)2]}. This result was de­
rived by assuming that the hyperfine interaction, a, is much 
less than J, and also that the product ar-a is less than 1. This 
result differs by W from the line broadening caused by slow 
electron transfer (c/. section VI) and emphasizes that W is just 
the probability of spin exchange during a collision. In a strong 
collision when 72T2D ~2> 1 and spin exchange occurs many 
times throughout the lifetime of the dimer, W is just l/2. In 
the fast-exchange limit (a <5C W\2r), the width of the collapsed 
line is 

Trx = TTWT/W (11.18) 

Equation 11.18 is also analogous to that obtained for fast 
electron transfer in which the electron resonance frequency is 
modulated between w0 + a/2 and w0 — a/2. The line width re­
sulting from this perturbation can be calculated using eq 3.7, 
but now the value of r is the time between effective collisions, 
2rjW. The factor of 2 arises because the rate of collisions be­
tween radicals having different proton spin orientations is half 
the bimolecular collision frequency. These formulas are readily 
extended to radicals containing a single magnetic nucleus of 
spin / by calculating the fraction of effective collisions, and the 
extension to many magnetic nuclei is straightforward although 
tedious.284 

To make any test or use of these results we require an expres­
sion for the time interval between radical collisions. For an 
ideal solution245 

r = (AWzJVR)rd (11.19) 

where NB and NR are the number of moles of solvent and radi­
cal, respectively, per unit volume, z is the number of new 
neighbors encountered with each step, and rd

- 1 is the hopping 
frequency. According to the Stokes-Einstein equation 

where r is the effective hydrodynamic radius for translation 
(not to be confused with r for rotation) and X is the jump length 
for the random walk. At a given viscosity and temperature, 
the line broadening should be proportional to the radical 
concentration in the low-exchange region whereas the width 
of the collapsed line is inversely proportional to concentration. 
Several experimental studies have shown that this behavior is 
indeed observed. 

Jones283 has measured the line widths of peroxylamine 
disulfonate in aqueous solution and finds that they are pro­
portional to the concentration up to 1O-1 M. He implicitly 

(287) H. Shimizu, / . Chem. Phys., 42, 3599 (1965). 
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assumes that every collision results in spin exchange (J2TD2 ^> 
1) and so eq 11.17 for a spin of 1 is 

T2-I = l/3r (11.21) 

which is written as 

T2-
1 = kNn/NB (11.22) 

and he finds A: to be 1.5 X 109I. mole-1 sec-1. Electron ex­
change also reduces the coupling constant,283 and it is com­
forting to find that k calculated from the change in a is also 
about 1091. mole-1 sec-1. Because of the limited solubility of 
peroxylamine disulfonate, the measurements could not be 
extended to the fast-exchange region. This is also true for the 
naphthalenide radical dissolved in tetrahydrofuran.154 The 
line width in the slow-exchange region is linear in concentra­
tion and yields rate constants of 2.8 X 1091. mole-1 sec-1 at 
20° and 1.1 X 1091. mole-1 sec-1 at -60°. The effects of spin 
exchange have also been investigated for solutions of the bi-
phenyl negative ion.m 

The radical di-f-butyl nitroxide is extremely soluble in di-
methylformamide, and the line widths have been measured 
over the complete range of exchange rates.159 For slow ex­
change the widths of the three hyperfine components were 
linear in the radical concentration with k equal to 3.7 X 1091. 
mole-1 sec-1. The line shown in Figure 1 of ref 150 does in fact 
pass through the origin because a constant factor has been sub­
tracted from the line width in an attempt to allow for unre­
solved hyperfine structure.289 At about 0.06 Mconcentration of 
radical the three nitrogen hyperfine lines collapsed to a single 
line whose width decreased linearly with increasing concentra­
tion up to 0.3 M. The width of the single line can be found 
from eq 3.25 by assuming that the electron takes stochasti­
cally the values w0, w0 + a, and «0 — a which gives 

Tr1 = 4Aa2T (11.23) 

The experimental slope gives a value of k = 3.8 X 109 1. 
mole-1 sec-1 in excellent but possibly fortuitous agreement 
with the slow-exchange result. Further, the k calculated from 
the Smoluchowski equation for diffusion290 is 4.1 X 109 1. 
mole-1 sec-1, justifying the assumption that exchange does 
indeed occur at every effective collision. 

At concentrations greater than 0.6 M, the line width begins 
to increase with increasing concentrations.150 This increase is 
attributed to dipole-dipole relaxation caused by fluctuating 
local fields produced by neighboring radicals. Dipole-dipole 
broadening is said to be important in the spectra of manga-
nese(II) ions both in aqueous solutions291 and ionic melts.292 

Miller and Adams148 have extended their earlier measure­
ments of bimolecular rate constants for electron exchange to 
the 1,4-benzoquinone anion, its tetramethyl derivative, and 
the nitrobenzene anion. The results for the charged species are 
about half that for neutral di-?-butyl nitroxide as expected. 
Whereas the rate constants for electron exchange are roughly 
constant, those for electron transfer vary markedly from one 
molecule to the next, presumably because of the geometrical 
requirements of electron transfer. 

(288) J. G. Powles and M. H. Mosley, Proc. Phys. Soc, 78, 370 (1961). 
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(291) C. C. Hinckley and L. O. Morgan, / . Chem. Phys., 44, 898 (1966). 
(292) L. Yarmus, M. Kukk, and B. R. Sundheim, ibid., 40, 33 (1964). 

An alternative test of the theory is provided by the viscosity 
dependence of the line width, Tf Xe), due to exchange, for 
according to eq 11.17,11.19, and 11.20, T2

-:(e) is proportional 
to T\t] in the slow-exchange region. The line widths of di-/-
butyl nitroxide have been measured in propane and «-pentane 
as a function of temperature293 and pressure294 and attempts 
made to obtain Tf Xe) from these. Whereas Plachy and Kivel-
son293correctedfor(l) solvent vaporization,(2)spin-rotational 
relaxation, (3) unresolved hyperfine structure, and (4) the onset 
of strong spin exchange, Edelstein, et al., only made the first 
correction.294 However, the important point of both studies is 
that for low values of T/rj the line width due to exchange is 
linear in Tjrj, but at higher values the width tends to a limiting 
value. This behavior is attributed by Edelstein, et al., to a 
dependence of Won viscosity,294 and they argue 

W = -[I - exp(-/rD)] (11.24) 

Because rD also depends on T\i), they are able to fit their re­
sults, but the theoretical form of W does not agree with (11.24). 
On the other hand, Plachy and Kivelson293 retain the theoreti­
cal form for W and suggest that the jump length X will be 
density dependent. According to the hole theory of liquids, the 
dependence is 

XXT) = \O°PL(0)/PL(T) (11.25) 

where 0 refers to the solvent melting point. This function ac­
counts for the experimental observations and would seem to 
be the more reasonable. According to the detailed analysis J is 
104 MHz and Zis about 2.5, showing that a radical encounters 
two or three new neighbors per jump. 

Xff. Special Effects. Radicals with 
De generate Ground States 

In dilute solutions where intermolecular effects are negligible, 
the line widths of most free radicals are almost entirely ac­
counted for by the effects of anisotropic g and hyperfine ten­
sors and by spin-rotational interactions. In certain highly sym­
metrical molecules, the line widths are not satisfactorily ex­
plained by these mechanisms. A well-known example is the 
spectrum of the benzene radical anion which has unusually 
broad lines.295'296 A further characteristic property is that 
spin-lattice relaxation is enhanced compared with less sym­
metrical species, and the spectrum is not easily saturated. 
This type of behavior has been reported in a variety of highly 
symmetrical radicals including the coronene and triphenylene 
anions,296 C6H6

+,297C6Me6
+,298'299 C8H8

-,158 C6(CFa)6
-,300 the 

coronene cation,301 and C7H7.
302 The observed g factors are 

often anomalous.308 

The fact that all these species have an orbitally degenerate 
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ground state means that there is a possibility of a dynamic 
Jahn-Teller effect being operative. The vibronic problem in 
the benzene anion has been studied theoretically.304 The vi­
bronic ground state is doubly degenerate, and solvent interac­
tions could lead to a time-dependent oscillation of the electron 
spin distribution relative to the molecular framework. How­
ever, a rapid exchange between distorted forms would lead to 
correlated fluctuations in the isotropic hyperfine interactions 
and an alternation in the line width from one hyperfine line to 
the next.305 Experimentally it is found that all of the seven 
lines in the spectrum of CBH6

- have the same width; this implies 
that for any switching process r < 1O-9 sec, and it cannot be 
the dominant mechanism. 

The vibronic degeneracy also leads to an increased spin-
orbit interaction, and when modulated by solvent collisions 
this could explain the enhanced spin-lattice relaxation.306 A 
variety of similar "electric field fluctuation" mechanisms have 
been considered.807 These are analogous to the mechanisms 
responsible for spin relaxation in crystals.308 The crystal or 
molecular binding fields are modulated by molecular vibra­
tions and collisions with solvent molecules and interact with 
the spin through spin-orbit coupling. These are all probably 
negligible at X band apart from the so-called Orbach pro-

(304) H. M. McConnell and A. D. McLachlan, J. Chem. Phys., 34, 1 
(1961 
(305) J. H. Freed, ibid., 43, 1427 (1965). 
(306) H. M. McConnell, ibid., 34, 13 (1961). 
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(308) K. W. H. Stevens, Kept. Progr. Phys., 30, 189 (1967). 

cess, which is relevant when the system has a low-lying excited 
state.809 Solvent motion and spin-orbit coupling change both 
the spin and electronic states simultaneously.309,310 This 
mechanism seems the most likely cause of the anomalous line 
broadening in the benzene and coronene anions, and in aque­
ous solutions OfCu2+. The possibility that collisions in solu­
tion modulate the hyperfine couphng constants by changing 
the vibrational state has been considered.311 Vibrational fluc­
tuations in the isotropic hyperfine interaction in NO2 probably 
give a contribution comparable to that from the g and hyper­
fine tensors.812 However, the dominant mechanism is a spin-
rotational interaction.220-312 

A recent study of the 1,4-benzosemiquinone radical anion 
in the Zeeman region313 has demonstrated the probable im­
portance of Van Vleck second-order Raman processes in de­
termining the line widths of low-field solution electron reso­
nance spectra. Similar considerations apply to an early low-
field investigation of the peroxylamine disulfonate ion814 for 
which the field-independent contribution to the transition 
probabilities is807 about 2 X 104 sec-1. Further low-field 
studies are required to fully elucidate the importance of these 
mechanisms. 
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