THE CHEMISTRY OF URANIUM(V)

JOEL SELBIN AND J. D. ORTEGO

Coates Chemical Laboratories, Louisiana State University, Baton Rouge, Louisiana 70803, and Department of Chemistry, Lamar State College of Technology, Beaumont, Texas 77705

Received December 23, 1968

Contents

I.	Introduction		
II.	Cor	npounds of Uranium(V)	657
	Α.	Halogen Compounds and Halo Complexes	657
	B.	Addition Compounds of Halides	659
	C.	Alkoxides, Halide Alkoxides, and Related	
		Compounds	661
	D.	Oxides and Oxo Compounds	663
III.	Ma	gnetic Susceptibilities and Epr Studies	666
IV.	. Spectral Studies		666
	Α.	Vibrational Spectra	666
	В.	Electronic and Vibronic Spectra	6 67
	C.	Assignment of Bands	669

I. Introduction

The chemistry of uranium is perhaps as well documented as that of any other metallic element. However, the available literature on the chemistry of uranium(V) is meager when compared to the voluminous data collected for the other oxidation states of uranium, namely the III, IV, and VI oxidation states. This paucity of information is not surprising when one considers the strong tendency of U(V) to disproportionate to U(IV) and U(VI), and the great ease and rapidity of oxidation of U(V) to U(VI). The extreme sensitivity of U(V) compounds to atmospheric oxygen and even trace amounts of water vapor require very rigid experimental controls in their study.

Regardless of its great instability, the U(V) species remains both chemically and spectroscopically interesting and important. The ground-state electronic configuration of uranium(V) is [Rn]5f¹, making it isoelectronic with the more common and stable Pa(IV) and Np(VI) species. Absorption spectra in which electron transitions involving the lone f electron are observed should be amenable to relatively simple interpretation. However, it has only been in recent years that the interpretation of 5f¹ spectra has received any attention. The scarcity and instability of compounds is certainly one reason, but perhaps this is also due in part to the increasing amount of investigation of the near-infrared region, for it is here that most of the "f-f" transitions occur with U(V). The presence of the lone outer electron in uranium(V) species suggests electron spin resonance studies. It is somewhat surprising that there have been only four reports in this area.

Most of the compounds of quinquivalent uranium may be considered to contain the covalently bound U(V) species, the next most prevalent species being the oxo anions, UO_3^- , UO_4^{3-} , and $U_2O_6^{2-}$ (and perhaps UO_6^{7-} and $U_2O_7^{4-}$), which are followed in abundance and stability by compounds of the oxo cation species UO_2^+ and UO^{3+} . Our knowledge of these latter two species is extremely limited and a great deal more work needs to be done before these species may even be considered as well characterized. It is one purpose of this short, but comprehensive, review to serve to spur further work in the study of all of these interesting "lone-electron" species of uranium(V).

II. Compounds of Uranium(V)

The syntheses and stabilities of most of the known U(V) compounds will be briefly discussed. For easy reference, the compounds are listed in Tables I through V, along with their colors and melting or boiling points. Abbreviations used are given below.

Ph	=	phenyl
Me	=	methyl
Et	=	ethyl
Pr	=	propyl
i-Pr	=	isopropyl
Bu	=	butyl
i-Bu	=	isobutyl
s-Bu	=	sec-butyl
t-Bu	=	tert-butyl
Am	=	amyl (or pentyl)
aca	=	acetylacetonate ion
bza	=	benzoylacetonate ion
ру	=	pyridine
Meacac	=	methyl acetoacetate
Etacac		ethyl acetoacetate

A. HALOGEN COMPOUNDS AND HALO COMPLEXES

Probably the first reported quinquivalent uranium compounds were $UCl_5 \cdot PCl_5$, prepared by Cronander¹ in 1873, and UCl_5 , discovered by Roscoe² in 1874. Uranium pentachloride has been prepared³ by bringing together UCl_4 and Cl_2 at elevated temperatures

$$2\mathrm{UCl}_4 + \mathrm{Cl}_2 \xrightarrow{520-555^\circ} 2\mathrm{UCl}_5 \tag{1}$$

but the product readily begins to undergo thermal decomposition into UCl_4 and Cl_2 below 100°, and it becomes rapid at 250°.⁴ UCl₅ undergoes thermal disproportionation under high vacuum at 120–150°, with the volatile UCl₆ subliming

$$2\mathrm{UCl}_{\mathfrak{b}} \xrightarrow{120-150^{\circ}} \mathrm{UCl}_{4} + \mathrm{UCl}_{\mathfrak{b}} \uparrow \qquad (2)$$

away from the solid UCl₄. Uranium pentachloride may also be prepared by the reaction of uranium oxides (UO₃ or

⁽¹⁾ A. W. Cronander, Bull. Soc. Chim. Fr., [2] 19, 500 (1873).

⁽²⁾ H. Roscoe, Ber., 7, 1131 (1874).

⁽³⁾ H. G. Reiber, UCRL 44, Report RL-4.6.116, April 23, 1943.

⁽⁴⁾ J. J. Katz and G. T. Seaborg, "The Chemistry of the Actinide Elements," John Wiley and Sons, Inc., New York, N. Y., 1957.

Table I					
Halides and Halo Complexes of Uranium(V)					
Compound	Color	Mp, °C	Ref		
UF ₅	Gray	348	7, 9, 10		
UCl ₅	Brown	(327)	5,6		
UBr₅	Red-brown		11		
CsUCl ₆	Yellow	~ 360	16		
(Me ₂ H ₂ N)UCl ₆	Yellow		16		
Me ₄ NUCl ₆	Yellow	345 mmª	16		
Ph ₄ AsUCl ₆	Yellow	224	15, 16		
Pr₄NUCl ₆	Yellow		17		
RbUCl ₆	Yellow	>280	17		
Et₄NUCl ₆	Yellow		15		
(Me₄N)₃UCl ₈	Yellow	245 mm ^a	16		
$MUF_6 (M = Li)$, Na, K, Rb, Cs,	NH4, Ag, Tl)	18-20, 22, 27, 30		
HUF ₆ · 2.5H₂O	Blue		18		
HUF ₆ ·1.25H ₂ O	Blue		18		
Ph₄AsUF₅			15		
(NH ₃ OH)UF ₆	Blue		26		
NOUF ₆	Greenish white		23, 27		
$N_2H_6(UF_6)_2$	Green-blue		26		
N ₂ H ₆ UF ₇	Yellow		26, 28		
M₃UF ₈	White		18, 22, 29, 31		
$(M = NH_4, Li, I)$	Na, K, Rb, Cs, A	Ag)			
Et ₄ NUBr ₆	Black		14, 15		
Ph₄AsUBr₅	Black		14, 15		
Ph₄AsUI6	Black	<25ª	14, 15		

^a Decomposition point.

 $U_{3}O_{3}$ with organic chlorinating agents, although pure UCl₅ may not be isolated in all cases. The liquid-phase chlorination with carbon tetrachloride involves the following reactions.⁵

$$2UO_{3} + 6CCl_{4} \xrightarrow{250^{\circ}} 2UCl_{5} + 6COCl_{2} + Cl_{2}$$
(3)

$$2U_{3}O_{8} + 16CCl_{4} \xrightarrow{200} 6UCl_{5} + 16COCl_{2} + Cl_{2} \qquad (4)$$

The recent report⁶ of the crystal structure of UCl₅, which forms monoclinic crystals, showed that the structure is based upon a cubic closest packing (ccp) of chlorine atoms, in which the uranium atoms occupy one-fifth of the octahedral holes. Two such octahedra share an edge to form a dimeric U_2Cl_{10} unit. The U-Cl distances to bridging chlorines are 2.67 and 2.70 Å; those to nonbridging chlorine atoms are 2.43, 2.43, 2.44, and 2.44 Å. The uranium atoms in each dimeric unit are shifted about 0.20 Å away from the centers of the octahedra in directions away from one another. The structure is quite different from that of PaCl₅, but similar to that of α -UF₅. The latter is tetragonal⁷ with the F atoms in a quasi-ccp lattice and the U atoms again occupying one-fifth of the octahedral holes, but with the difference that the octahedra in this case share vertices (rather than edges) to form infinite chains.

Uranium pentafluoride was first reported⁸ in 1911, when it was formed by the reaction of anhydrous HF with UCl₅. It may also be obtained⁵ by reacting UCl₆ with anhydrous HF.

$$2\mathrm{UCl}_{\$} + 10\mathrm{HF} \longrightarrow 2\mathrm{UF}_{5} + 10\mathrm{HCl} + \mathrm{Cl}_{2} \tag{5}$$

Still another preparative method⁵ involves the action of F_2 on UF₄.

$$UF_4 + \frac{1}{2}F_2 \xrightarrow{150-250^\circ} UF_5$$
 (6)

The reaction of UF4 with UF6 produces 4.9 the four intermediate fluorides α -IF₅, β -UF₅, U₄F₁₇ (UF_{4.25}), and U₂F₉ $(UF_{4,5})$, the latter two being black and the two UF₅ crystal modifications (both tetragonal, but one I4/m, the other I42d)⁷ being white. The UF₅ products therefore most likely contain only equivalent uranium atoms (all in the V state). whereas the black color of the other two products undoubtedly reflects their mixed oxidation state compositions.

 α -UF₅ has recently¹⁰ been prepared by a new semicontinuous procedure involving a gas-phase reaction of HBr with an excess of UF₈ in an open column operating at 65° and a total pressure of 1 atm.

$$2UF_6 + 2HBr \longrightarrow 2UF_5 + 2HF + Br_2$$
(7)

The product has been characterized¹¹ by its melting point (348°) and heats of fusion (11.9 \pm 4.2 kcal/mole) and vaporization (36.6 \pm 3.0 and 24.7 \pm 3.8 kcal/mole for solid and liquid, respectively).

Hydrolysis of UF⁵ results in violent disproportionation.

$$2UF_{5} + 2H_{2}O \longrightarrow UF_{4} + UO_{2}^{2+} + 2F^{-} + 4HF \qquad (8)$$

Disproportionation is a very common reaction of U(V)compounds and more about this will be said later.

Uranium pentabromide was apparently first prepared in 1954,¹² but it is difficult to obtain it in pure form. It can be stabilized by formation of 1:1 addition compounds with triphenylphosphine oxide (Ph₃PO) or hexamethylphosphoramide (HMPA),¹³ or by the formation of the hexabromouranate(V) anion.14

Uranium pentaiodide has never been isolated, but the UI₆⁻ species has been recently prepared.^{14,15} The complex is extremently unstable and decomposes above about -30° to U(IV) and I₃⁻. The Ph₄As⁺ salt decomposes¹⁵ in a few minutes at 25°.

A number of different salts of the hexachlorouranate(V) anion, UCl6-, have been prepared (Table I), and these are generally more stable than UCl5 itself. The most recent and rapid method^{14,15} of UCl₆⁻ preparation is by oxidation of UCl_{6}^{2-} by Cl_{2} in $CH_{3}NO_{2}$ solution at 80–90°. The $Et_{4}N^{+}$ and Ph₄As⁺ salts have been made in this way, but presumably others could be produced by this procedure. Other salts of the type $MUCl_6$ (where $M = Cs^+$, Me_4N^+ , $Me_2H_2N^+$, or Ph_4N^+ , ¹⁶ or $M = Rb^+$ or Pr_4N^+)¹⁷ have been prepared from

⁽⁵⁾ J. J. Katz and E. Rabinowitch, "The Chemistry of Uranium," NNES Division VIII, Vol. 5, McGraw-Hill Book Co., Inc., New York, N.Y., 1951.

⁽⁶⁾ G. S. Smith, Q. Johnson, and R. E. Elson, Acta Cryst., 22, 300 (1967).

⁽⁷⁾ W. H. Zachariasen, ibid., 2, 296 (1949).

⁽⁸⁾ O. Ruff and H. Heinzelmann, Z. Anorg. Chem., 72, 71 (1911).

⁽⁹⁾ A. V. Grosse, U. S. At. Energy Comm., TID-5290, Book 1, 315 (1958).

⁽¹⁰⁾ A. S. Wolf, W. E. Hobbs, and K. E. Rapp, Inorg. Chem., 4, 755 (1965).

⁽¹¹⁾ A. S. Wolf, J. C. Posey, and K. E. Rapp, ibid., 4, 751 (1965).

⁽¹²⁾ J. Prigent, Compt. Rend., 238, 103 (1954); 239, 424; Ann. Chim. (Paris), 5, 65 (1960). (13) D. Brown, D. G. Holah, and C. E. F. Rickard, Chem. Commun., 651 (1968).

⁽¹⁴⁾ J. L. Ryan, paper presented at the 155th National Meeting of the American Chemical Society, San Francisco, Calif., April 1968.

⁽¹⁵⁾ J. L. Ryan, Battelle Memorial Institute, Richland, Wash., private communication.

⁽¹⁶⁾ K. W. Bagnall, D. Brown, and J. G. H. DuPreez, J. Chem. Soc., 2603 (1964).

⁽¹⁷⁾ J. Selbin, J. D. Ortego, and G. Gritzner, Inorg. Chem., 7, 976 (1968).

thionyl chloride solutions of U(V) by addition of the appropriate chloro salt. All of the compounds are unstable to moisture, undergoing rapid hydrolysis and disproportionation. They are, however, relatively stable toward heat, and some even exhibit sharp melting points (Table I). There is some evidence of a UCl₇²⁻ species¹⁶ and the octachloro compound, (Me₄N)₃UCl₈, has been isolated. ¹⁶

There are similarly a number 18-30 of hexafluorouranate(V) salts as well as a definite heptafluoro salt,^{26, 28} several octafluoro salts, 11, 18, 19, 31 and at least three dodecafluorodiuranium, U₂F₁₂²⁻, salts.³² Crystallographic properties of the hexafluoro salts MUF_6 (M = Li, Na, K, Rb, Cs, and NH_4 .²⁰ and $M = Ag, K, NH_4, Rb$, and $Tl^{21, 22}$ have been measured. The rhombohedral compounds (M = Li, Na, and Cs) are clear blue in color, changing to nearly white as the particle size is reduced. The pseudo-hexagonal compounds (M = K, NH₄, and Rb) came out as pale yellow-green crystals from intense blue HF solutions.²⁰ The NaUF₆ exists in two phases: one rhombohedral, the other cubic.20 All of the foregoing UF_6^- salts are prepared from UF_5 and the appropriate MF salt, usually employing 48% HF or anhydrous HF as the solvent.

A crystal structure determination³³ of CsUF₆ finds it to be rhombohedral (R3) with one formula unit per unit cell. Each U atom has six F neighbors at 2.057 Å which form an octahedron slightly compressed along the three fold axis, in agreement with earlier deductions from epr studies.²⁷

Ammonium hexafluorouranate(V) has recently been prepared³⁰ by the reaction of liquid UF₆ with solid NH₄F at 120° for 49 hr. Moisture decomposes it, but nevertheless its magnetic properties could be measured. It has been found²⁴ to be stable in concentrated (48%) HF solutions. The products formulated as $HUF_{6} \cdot (2.5H_2O)$ and $HUF_{6} \cdot (1.25H_2O)$ are prepared²⁵ by cooling a solution of U(V) saturated with HF, the first compound precipitating at -10° and the second at -80° after additional HF had been added. This apparent resistance to hydrolysis is somewhat surprising, but it does suggest that fluoride ion is quite strongly coordinated. Ryan¹⁵ claims the formation of Ph₄AsUF₆ upon treatment of the corresponding chloro compound with 40% aqueous HF. Also, the addition of excess CsF to a concentrated HF solu-

- (19) R. A. Penneman, G. D. Sturgeon, and L. B. Asprey, *ibid.*, 3, 126 (1964).
- (20) G. D. Sturgeon, R. A. Penneman, F. H. Kruse, and L. B. Asprey, *ibid.*, 4, 748 (1965).
- (21) P. Charpin, Compt. Rend., 260, 1914 (1965).
- (22) R. Bougon and P. Plurien, ibid., 260, 4217 (1965).
- (23) J. R. Geichman, E. A. Smith, S. S. Trond, and P. R. Ogle, Inorg. Chem., 1, 661 (1962).
- (24) G. A. Rampy, GAT-T-697, 11-2-59, Goodyear Atomic Corp., available from U. S. Dept. of Commerce, Office of Technical Services, Washington 25, D. C.
- (25) N. P. Galkin, B. N. Sudarikov, and V. A. Zaitzev, At. Energ. (USSR), 8, 530 (1960); Soviet J. At. Energy, 8, 444 (1961).
- (26) B. Friec and H. H. Hyman, Inorg. Chem., 6, 2233 (1967).
- (27) P. Rigny and P. Plurien, J. Phys. Chem. Solids, 28, 2589 (1967); Chem. Abstr., 68, 6227 (1968).
- (28) B. Frlec, B. Brcic, and J. Slivnik, Nukl. Inst. Jozef Stefan, NIJS Porocilo 207 (1967); Chem. Abstr., 69, 5999 (1968).
- (29) R. A Penneman, L. B. Asprey, and G. D. Sturgeon, J. Am. Chem. Soc., 84, 4608 (1962).
- (30) Nguyen-Nghi A. J. Dianoux, H. Marquet-Ellis, and P. Plurien, Compt. Rend., 260, 1963(1965).
- (31) W. Rudorff and H. Leutner, Ann. Chem., 632, 1 (1960).
- (32) F. Montoloy, S. Maraval, and M. Capestan, Compt. Rend., 266, 787 (1968).
- (33) A. Rosenzweig and D. T. Cromer, Acta Cryst., 23, 865 (1967).

Table II Addition Compounds of Uranium(V) Halides

Compound	Color	Mp, °C	Ref
UCl5 · PCl5	Red-orange	154ª	1, 34
$\mathrm{UCl}_5\cdot\mathrm{SOCl}_2$	Brown		35, 36
UCl ₅ · Ph ₃ PO	Red-orange	120 ^d	37
$UCl_5 \cdot (C_8H_{17})_3PO$	Red-orange oil		37
UCl₅∙TCAC ^b	Red-orange	147°	17
UBr₅·Ph₃PO	Dark red		13
UBr₅∙HMPA ^d	Dark red		13

^a Melting point in evacuated sealed tube. ^b TCAC = trichloroacrylyl chloride, Cl₂C=CClCOCl. ° Melting point in sealed capillary. d HMPA = hexamethylphosphoramide.

tion of the Et₄NUCl₆ salt precipitates CsUF₆, since the Cs⁺ salt is less soluble than the Et_4N^+ salt.

Addition of a 48-50 % solution of UF₅ in HF to a hydrated metal difluoride dissolved in HF of the same concentration at room temperature gave an almost immediate heavy precipitate of $MU_2F_{12} \cdot 4H_2O$ (M = Co, Ni, or Cu).³² The presence of the H₂O was confirmed by ir spectra, but the exact number of water molecules per formula unit requires confirmation. since only F, U(IV), total U, and the M were analyzed.

It has already been mentioned that UBr₆⁻ is more stable than UBr₅, and Ryan^{14,15} has found a very simple procedure for obtaining the hexabromo anion which involves oxidation of UBr₆²⁻ by Br₂ in CH₃NO₂ solutions at 25°. He has prepared the Et₄N⁺ and Ph₄As⁺ salts in this way. Salts of the very unstable black UI6⁻ may be made¹⁵ by condensing anhydrous liquid HI on the chloro salts and allowing the mixture to evaporate slowly, or by reacting $UO_2Cl_4^{2-}$ salts with liquid HI.

B. ADDITION COMPOUNDS OF HALIDES

Only five chloro compounds and two bromo compounds of the general type $UX_5 \cdot L$, where L = some molecule with may or may not be coordinated to the uranium, have been reported. These are summarized in Table II.³⁴⁻³⁷ The first one listed. UCl₅·PCl₅, may be synthesized³⁴ by the reaction

$$UO_{3} + 4PCl_{5} \longrightarrow UCl_{5} \cdot PCl_{5} + 3POCl_{3} + \frac{1}{2}Cl_{2} \qquad (9)$$

When an excess of PCl₅ was used, orange crystalline products were obtained whose formulas corresponded to UCl₅ · PCl₅ and UCl₅·3PCl₅. However, extraction with dry toluene yielded the original UCl₅ · PCl₅. It is not known whether the latter compound exists as $(PCl_4^+)(UCl_6^-)$ in the solid state, but this is very likely, since PCl₅ can hardly coordinate to the U atom. The similar compound, 35, 36 UCl₅. SOCl₂, is believed 38 to exist as $(SOCl^+)(UCl_6^-)$ in the solid. There is very good evidence that the PCl₅ addition compound is ionized in liquid POCl₃ yielding the expected ions.³⁴ UCl₅·PCl₅ reacts readily with H₂O, one-half being reduced to U(IV), the other half oxidized to U(VI) (as UO22+). Phosphates are also

⁽¹⁸⁾ L. B. Asprey and R. A. Penneman, Inorg. Chem., 3, 727 (1964).

⁽³⁴⁾ R. E. Panzer and J. F. Suttle, J. Inorg. Nucl. Chem., 20, 229 (1961). (35) H. Hecht, G. Jander, and H. Schlopmann, Z. Anorg. Chem., 254, 255 (1947).

⁽³⁶⁾ D. C. Bradley, B. N. Chakravarti, and A. K. Chatterjee, J. Inorg. Nucl. Chem., 3, 367 (1957).

⁽³⁷⁾ K. W. Bagnall, D. Brown, and J. G. H. duPreez, J. Chem. Soc., 5217 (1965).
(38) A. E. Comyns, "The Coordination Chemistry of Uranium," A Critical Review, U.K.A.E.A. Report A.E.R.E. 2320, Harwell, England, 1057 1957.

			Mol complexity (degree of	
Compound	Color	Bp (mm) or mp, $^{\circ}C^{\flat}$	polymerization)	Ref
	Al	koxides		
U(OMe)₅	Red	Sub 140-150 (0.01)	3.01	43, 45, 46
U(OEt)5	Brown liq	123 (0.001)	1.90	37, 43, 45
	_	161 (0.05)		46, 49, 52
		180 (0.1)		
U(OPr)₅	Brown liq	162 (0.001)	1.95	43
	-	181 (0.07)		45, 46
U(OPr ⁱ)₅	Brown	320 dec	1.93	37
		150 (0.05)		43, 46
U(OBu) ₅	Brown lig	193 (0.001)	1.94	43
	-	206 (0.15)		45, 46
U(OBu ⁱ)₅	Brown	102	1.97	43
		192 (0.01)		46
U(OBu).	Brown	85	1.85	43
0(020)		175 (0.05)		46
LI(OBu ⁴)	Tan	120 (0,05)	1 35	43 46
U(OAm)	Brown lia	246 (0.05)	1.55	45,46
	brown nq	275 (0.05)	1.54	45, 40 16
$U(OCH_2CH_2FI)_{\delta}$		223 (0.05)	1.70	40
U(OCH P4)		220(0.05)	1.62	40
$U(OCH_2BU')_5$		Sub 160-170 (0.1)	1.61	40
U(OCHEt ₂) ₅		180 (0.1)	1.00	46
U(OCHPrMe)₅		175 (0.1)	1.70	46
U(OCHPr')5		Sub 160 (0.1)	1.58	46
U(OCMe ₃) ₅		120-130 (0.1)	1.35	47
U(OCMe₂Et)₅		Sub 130 (0.05)	1.26	46
U(OCMeEt ₂) ₅		Sub 200 (0.1)	1.09	46
U(OCEt₃)₅		Sub 210 (0.1)	1.00	46
U(OCMe ₂ Pr) ₅		200 (0.1)	1.28	46
U(OCMe ₂ Pr [*]) ₅		Dec		46
U(OCMeEtPr [*])₅		Dec	1.01	46
		150 (0, 1)		16
$U_2(OEt)_5(OBu)_5$		150 (0.1)		40
$U_2(OEt)_4(OBu)_6$		130 (0.1)		40
U(UEL)(UBu)4				40
U(OBu ^t)₅·Bu ^t OH		130 (0.1)		46
U(OBu')₅∙py				46
U(OCH_CH=CH_)		Sub 178 (0.015)		43
U(OCH _a CH _a NEt _a)				43
U(OCH_CH_SCH_CF_)				43
U(OCH CE)	Brown-green lig	125-130 (0,002)		43 44
U(UCH2CI 3)5	Brown-green nd	125-150 (0:002)		
NaU(OEt)6	Green			43
Ca[U(OEt) ₆] ₂	Light green	Sub 200 (0.001)		44
Al[U(OEt)6]₃	Green liq	111-115 (0.0012)		44
	Trialk	ylsilyloxides		
U(OSiMe ₂):	Yellow-brown	140-150 (0.1)	1.77	47
U(OSiMe ₀ Et):	Yellow-brown	155 (0.1)	1.31	47
U(OSiMeEta)	Orange	160 (0 1)	1.13	47
U(OSiFt.).	Green-brown	170 - 180 (0 1)	1.00	47
			1.00	
	Chlorid			51
U(UEI)4CI	Browning or			16
	green nq	143 - 150 (0.003)		40
THOP OF	Doorse and door	140-147 (0.003)		44 51
$U(OEt)_{3}Cl_{2}$	Brown solid or			51
	green syrup			51
$U(OEt)_2Cl_3$	Brown			J1 /2
	or green			45 51
U(OEt)Cl ₄ ·CH ₃ COOEt		106 100 (0.005)		51 AA
U(OPT) ₄ Cl		180-192 (0.095)		44 51
U(OPr')4Cl				JI 51
U(OPr') ₃ Cl ₂				51 51
U(OPr')2Cla				51
U(OPr')Cl ₄ ·CH ₃ COOPr'				51 51
U(OAm)₄Cl				51

 Table III

 Uranium(V) Alkoxides, Halide Alkoxides, and Related Compounds^a

	T	able III (Continued)		
Compound	Color	Bp (mm) or mp, °℃	Mol complexity* (degree of polymerization)	Ref
		Bromide Alkoxides		
U(OEt)₄Br	Brown liq	Dec		49
U(OEt) ₃ Br ₂	Brown liq	Dec		49
U(OEt) ₂ Br ₃	Brown liq			49
U(OEt)Br4 · CH3COOEt	Red-brown liq			49
U(OAm)₄Br	Dark brown liq			49
U(OAm) ₂ Br ₂	Dark brown liq			49
U(OAm)Br ₄ ·CH ₃ COOAm	Dark brown lig			49

^a For the purposes of this table and Table IV, the abbreviations for the alkyl radicals are $Pr^{i} = isopropyl$, $Bu^{i} = isobutyl$, $Bu^{i} = sec$ -butyl, and $Bu^{t} = t$ -butyl. ^b Abbreviations used are: sub = sublimes; dec = decomposes. Numbers standing alone are melting points. ^c The molecular complexity (degree of polymerization) was determined from M_{found}/M_{ould} , where the experimental molecular weight was determined ebullioscopically in benzene.

produced and a mixture of the U(IV) and UO22+ phosphates is actually produced.

 $UCl_5 \cdot SOCl_2$ is obtained either by refluxing UO_3 with excess $SOCl_2$ for 2–3 weeks, followed by removal of excess $SOCl_2$ by distillation,³⁶ or in a much shorter time⁴³ by allowing UO₃ to react with an excess $SOCl_2$ in a sealed tube at 180° .

The two phosphine oxide complexes³⁷ have been prepared by suspending an excess of CsUCl6 in CH2Cl2 to which the appropriate ligand was then added. The precipitated CsCl and unreacted CsUCl₆ were filtered off and the red solution was evaporated to dryness. The desired complex could also be obtained by the addition of isopentane to the red CH_2Cl_2 solution. The compounds seem to be indefinitely stable in a dry, inert atmosphere. Efforts to prepare analogous complexes with Ph₃AsO, pyNO, DMA, dimethyl sulfone, diphenyl sulfone, acetylacetone, and ethyl acetoacetate were not successful. 87

A complex formulated³⁹ as $5UCl_5 \cdot TCAC$, where TCAC =trichloroacrylyl chloride, Cl₂C=CClCOCl, appears to have been incorrectly formulated (or obtained impure) since the 1:1 complex, UCl5 · TCAC, has now been firmly established.17 The latter is an orange-red product in which the oxygen atom of the ligand is coordinated to the U(V) atom. It is prepared by heating together hexachloropropene and a uranium oxide. A strongly exothermic reaction ensues when the boiling point (210°) of the C₃Cl₆ is approached. The reaction mixture must then be cooled if necessary, in order to maintain the temperature at about 100°. After the exothermic reaction has subsided, the now dark red solution is filtered in an inert atmosphere to remove unreacted oxide and UCl₄, which is also formed in this reaction. The deep red solution is allowed to cool whereupon it deposits orange-red UCl₅·TCAC. It should be noted that this is a modification of a procedure that was originally designed 40 to prepare pure UCl4. The compound appears to be indefinitely stable under dry nitrogen, but it decomposes, turning green, within seconds if exposed to the atmosphere.

It has been possible to prepare⁴¹ 1:1 addition compounds

of UCl₅ with several phosphorus and arsenic donor atom ligands, such as Ph₂PCH₂CH₂PPh₂, Ph₃P, Ph₃As, Ph₂AsCH₂-CH₂AsPh₂, simply by adding benzene solutions of these ligands to a benzene solution of the UCl₅·TCAC compound and isolating the green solid which forms immediately. Both optical and esr spectra support the formulations as U(V) compounds. It is likely that this simple procedure will yield a great many complexes of U(V) with other soft base ligands. Even Ph₃Sb and Ph₃Bi have yielded products in an analogous manner, but these have not yet been purified and analyzed.

C. ALKOXIDES, HALIDE ALKOXIDES, AND RELATED COMPOUNDS

This class of compounds is easily the largest group of uranium(V) compounds known, 42-52 as reference to Tables III and IV will quickly reveal. However, it is probably also the most poorly characterized set of compounds since little more than elemental analysis and one or two physical properties are known for the large majority of the compounds. Indeed, the more recent emphasis with these compounds appears to be on simply making more of them rather than on trying to more fully characterize any of them. Clearly more intensive study of these interesting compounds is called for.

The compound types appear to fall into the following categories (Tables III and IV):

⁽³⁹⁾ R. E. Panzer and J. F. Suttle, J. Inorg. Nucl. Chem., 13, 244 (1960).

⁽⁴⁰⁾ J. F. Suttle, Inorg. Syn., 5, 145 (1957).

⁽⁴¹⁾ J. Selbin, N. Ahmad, and M. J. Pribble, Chem. Commun., in press.

⁽⁴²⁾ R. G. Jones, E. Bindschadler, G. Karmas, T. A. Yeoman, and H. Gilman, J. Am. Chem. Soc., 78, 4287 (1956).

⁽⁴³⁾ R. G. Jones, E. Bindschadler, G. Karmas, S. A. Martin, Jr., J. R. Thirtle, T. A. Yeoman, and H. Gilman, ibid., 78, 4289 (1956).

⁽⁴⁴⁾ R. G. Jones, E. Bindschadler, D. Blume, G. Karmas, G. A. Mar-tin, Jr., J. R. Thirtle, and H. Gilman, *ibid.*, 78, 6027 (1956).

⁽⁴⁵⁾ D. C. Bradley and A. K. Chatterjee, J. Inorg. Nucl. Chem., 4, 279 (1957).

⁽⁴⁶⁾ D. C. Bradley, R. N. Kapoor, and B. C. Smith, J. Chem. Soc., 1023 (1963).

⁽⁴⁷⁾ D. C. Bradley, R. N. Kapoor, and B. C. Smith, ibid., 204 (1963).

⁽⁴⁸⁾ A. M. Bhandari and R. N. Kapoor, Can. J. Chem., 44, 1468 (1966).

⁽⁴⁹⁾ A. M. Bhandari and R. N. Kapoor, J. Prakt. Chem., 4, 284 (1967). (50) A. M. Bhandari and R. N. Kapoor, Australian J. Chem., 20, 233 (1967).

⁽⁵¹⁾ A. M. Bhandari and R. N. Kapoor, J. Chem. Soc., 1618 (1967).

⁽⁵²⁾ T. I. Taylor, E. R. Smith, J. L. Jorgensen, H. Mathesen, and J. K. Taylor, U. S. Atomic Energy Commission Document AECD-3144, 1958.

Compound	Color	Bp (mm) or mp, °C	Ref
	Amines		
U(OCH ₂ CF ₃) ₅ ·2Me ₃ N	Green liq	95-100 (0.02)	44
U(OCH ₂ CF ₃) ₅ ·2PrNH ₂	Green liq	105 (0.009)	44
U(OCH ₂ CF ₃) ₅ ·2Pr ⁴ NH ₂	Green liq	100 (0.01)	44
U(OCH ₂ CF ₃) ₅ ·2Pr ₂ NH	Green liq	97 (0.006)	44
U(OCH ₂ CF ₃) ₅ ·3Me ₂ NH	Green liq	95-100 (0.01)	44
$U(OCU_2CF_3)_3 \cdot 3CH_2 - CH_2$	Green liq	125 (0.002)	44
NH			
	β -Diketones		
U(OEt)₄aca	Brown viscous liq	118 (0.55)	50
$U(OEt)_3(aca)_2$	Red-brown	Dec	50
$U(OEt)_2(aca)_3$	Orange-brown	Dec	50
U(OEt)₄bza	Brown viscous liq	110 (0.4)	50
U(OEt) ₃ (bza) ₂	Brown viscous liq	Dec	50
U(OEt) ₂ (bza) ₃	Brown pasty solid	Dec	50
U(OBu ^t) ₄ aca	Orange		50
U(OBu ⁴) ₃ (aca) ₂	Yellow	Sub 195 (0.1)	50
U(OBu ^t) ₂ (aca) ₃	Orange-yellow		50
U(OBu ⁴)₄bza	Brown	Sub 210 (0.4)	50
U(OBu ⁴) ₂ (bza) ₃	Brown	Sub 215 (0.9)	50
	β -Ketoesters		
U(OEt)₄(Meacac)	Brown liq	140 (0.5)	48
U(OEt) ₃ (Meacac) ₂	Brown viscous liq	152 (0.6)	48
U(OEt) ₂ (Meacac) ₃	Brown paste		48
U(OEt) ₄ (Etacac)	Brown paste		48
U(OEt) ₃ (Etacac) ₂	Orange-brown paste		48
U(OEt) ₂ (Etacac) ₃	Orange-brown paste		48

Table IV

^a Abbreviations are the same as for Table III.

- 1. $U(OR)_5$, where R = alkyl, fluoroalkyl, amine alkyl, or sulfide alkyl
- 2. U(OR)_x(OR')_{5-x}, where R and R' = alkyl
- 3. U(OR)₅·L, where L = ligand and R = alkyl
- U(OEt)₆⁻, where compounds with Na⁺, Ca²⁺, and Al³⁺ are known
- 5. U(OSiR_xR'_{3-x})₅, where R and R' = alkyl
- 6. $U(OR)_x X_{5-x}$, where X = Cl or Br, and R = alkyl
- 7. U(OCH₂CF₃)₅ · x amine
- 8. U(OR)_x (β -diketonate ion)_{5-x}
- 9. U(OR)_x (β -ketoester ion)_{5-x}

Several methods are reported^{36, 42, 43} for the preparation of uranium pentaalkoxides, including the following:⁴³

1. Uranium(IV) alkoxides may be oxidized by dry O2

$$UCl_4 + 4NaOR \longrightarrow U(OR)_4 \xrightarrow{(O)} U(OR)_5 \qquad (10)$$

or by $Br_2,$ as for example, in yields approaching 95 % according to

$$U(OEt)_4 + \frac{1}{2}Br_2 \longrightarrow U(OEt)_4Br \xrightarrow{NaOEt} U(OEt)_5 + NaBr \quad (11)$$

2.
$$UCl_4 + ROH + NH_3 \longrightarrow U(OR)_4 \longrightarrow U(OR)_5$$
 (12)

3.
$$UCl_{5} + ROH + NH_{3} \longrightarrow U(OR)_{5}$$
 (13)

4. Perhaps the best method for most alkoxides involves an exchange of alkoxide groups

 $U(OEt)_{5} + 5ROH \longrightarrow 5EtOH + U(OR)_{5}$ (14)

in which the ethanol is then removed by distillation from the equilibrium mixture.

5. A novel preparation of $U(OR)_5$ compounds has also been accomplished by the following route, discovered by accident³⁸

$$(C_{5}H_{5}N)_{2}UOCl_{5} + 5NH_{8} + 3ROH \longrightarrow UO(OR)_{8} + 5NH_{4}Cl + 2C_{5}H_{5}N \quad (15)$$

$$n \mathrm{UO}(\mathrm{OR})_{\mathfrak{z}} \xrightarrow{\mathrm{heat}} \mathrm{U}(\mathrm{OR})_{\mathfrak{z}} + \mathrm{U}_{n-1}\mathrm{O}_{n}(\mathrm{OR})_{\mathfrak{z}n-\mathfrak{z}}$$
 (16)

The starting material had been obtained as the product of the treatment of $UCl_5 \cdot SOCl_2$ with pyridine in an alcoholic solution, instead of the intended product $(C_6H_6N)UCl_6$.

As a group, the alkoxides may be distilled or sublimed under reduced pressure, most are resistant to thermal decomposition, but all undergo very rapid hydrolysis. They are generally soluble in common organic solvents, and, for many, the molecular weights have been determined ebullioscopically in benzene. These molecular weights have suggested that many of the pentaalkoxides are dimers, although $U(OMe)_5$ appears clearly to be a trimer and $U(OEt)_5$ appears just as clearly to be a monomer (Table III). Certain other compounds exhibit molecular weight data which suggests only partial dimerization.

Chloride^{44,51} and bromide⁴⁹ alkoxides, of general formula $U(OR)_{5-n}X_n$, are prepared by treating the pentaalkoxides with varying quantities of acetyl halide in dry benzene.

$$U(OR)_{\delta} + nMeCOX \longrightarrow U(OR)_{\delta-\delta}X_n + nMeCO_2R$$

The reactions are exothermic and yield products which are brown viscous liquids or dark brown solids. However, these materials have been poorly characterized.

 β -Diketones⁵⁰ and β -keto esters⁴⁸ react readily with uranium(V) pentaethoxide, forming derivatives of the general type U(OEt)₅₋₂L₂ (where L = aca, bza, Meacac, or Etacac; x = 1, 2, or 3). The compounds are prepared by dissolving the U(OEt)₅ in benzene, to which are added varying molar ratios of the organic reactant. The reactions are exothermic and yield brown viscous liquids or dark brown solids (Table IV). The β -diketone compounds will exchange their ethoxy groups with *t*-butoxy groups when they are refluxed with *t*-butyl alcohol. The apparent coordination numbers seem to be 5, 6, 7, and 8 (Table IV), and so electronic absorption spectra should prove very interesting. The effect of the various symmetries on the uranium 5f electronic energy levels should yield important information, particularly for testing existing theories of electronic structure of 5f ions.

Amine complexes⁴⁴ of U(OCH₂CH₃)₅ (Table IV), of general formula U(OCH₂CF₃)₅ $\cdot xL$ (where L = amine ligand, x = 2 or 3), likewise appear to display coordination numbers of 7 and 8, and deserve to be studied in much greater detail than they have been.

Unfortunately, for all of the aforementioned compounds, only elemental analysis is offered as proof of the oxidation state of the uranium. So, additional work just substantiating the oxidation state of the metal would appear to be the first order of business in subsequent studies on these compounds.

D. OXIDES AND OXO COMPOUNDS

The first report in the general available literature of the pure pentavalent oxide, U_2O_5 , appears to be that⁵³ from the Institure for Atomic Research at Iowa State College, where a great deal of contract work for the Manhattan Project was being performed. In the paper cited,⁵³ it is reported that R. Raeuchle prepared the first U_2O_5 , but there is no mention of how, and that O. Johnson prepared single crystals of U_2O_5 by thermal decomposition of UO_2Cl_2 at 900°. The crystals were reported to be orthorhombic, a = 8.27 Å, b = 31.65 Å, c =6.72, with 16 U_2O_5 per unit cell. The X-ray density was given as 8.35 g/cc. Furthermore, it was believed that in the uraniumoxygen system there is a two-phase region⁵⁴ between $UO_{2.3}$ and U_2O_5 , and a one-phase region from U_2O_5 to UO_3 in which the various structures continuously transform from one to another.⁵³

A more thorough study of U_2O_5 has recently been made⁵⁵ including the conditions for its synthesis, composition, structure, and thermal resistance. Violet hexagonal crystals have been made⁵⁵ by dissolution of U_3O_3 in 10–15% H₂SO₄, but α -UO₃ (at 80°) or amorphous UO₃ (at 0°) may be substituted^{56,57} for the U₃O₈. If the temperature goes above 160°, the product⁵⁴ is UO₂. Air oxidation⁵⁴ of the U₂O₅ at room temperature gives U₅O₁₃, whereas at 250° the U₂O₅ decomposes into U₃O₈ and U₄O₉. Magnetic properties (*vide infra*) have been investigated⁵⁷ and suggest the presence of UO₂⁺ in U₂O₅

- (55) E. U. Kuz'micheva, O. N. Rozanova, L. M. Kovba, and E. A. Ippolitova, Vestn. Mosk. Univ., Ser. II: Khim., 20, 39 (1965); Chem. Abstr., 63, 6583 (1965).
- (56) J. M. Leroy and G. Tridot, Compt. Rend., Ser. C, 262, 114 (1966).
- (57) J. M. Leroy and G. Tridot ibid., 262, 1376 (1966).

 $(UO_2^{+}O_{0.5}^{2-})$. Other stoichiometric oxides which might contain some U(V) are $U_3O_{8,5}^{54,57,58}$ $U_5O_{13,57}$ and $U_4O_{9,57}$ Various higher oxides, with compositions between UO_2 and UO_3 , presumably containing some U(V), have been obtained from time to time, but their characterizations have usually been ambiguous (see, for example, ref 59 and 60).

In the Introduction it was indicated that most of the oxo compounds may be classified as derivatives of the following two cationic and three anionic species: UO_{3^+} , UO_{2^+} , UO_{3^-} , $UO_{4^{3^-}}$, and $U_2O_{6^{2^-}}$. The few known compounds of the monoxo and dioxo species are listed in Table V, 58-63 as well as the more numerous anionic oxo compounds. 58, 64-74

Uranium(V) oxochloride may be prepared⁶¹ by heating together UCl₄ and UO₂Cl₂. A more recent preparative method which claims⁶² to produce a pure product is outlined in the following reactions,

$$M_0Cl_5 + UO_3 \longrightarrow UO_2Cl_2 + M_0OCl_3$$
$$UO_2Cl_2 + M_0OCl_3 \longrightarrow UOCl_3 + M_0O_2Cl_2$$
(17)

The reaction in eq 17 is carried out around 200° for 5–6 hr in a closed evacuated ampoule. The MoO₂Cl₂ evaporates and condenses in the cooler part of the ampoule, leaving behind a residue of pure UOCl₃. UOBr₃ has been prepared⁶⁴ by heating UO₃ with CBr₄ at 110° in a dry nitrogen atmosphere. (If the reaction is carried out at 130° in a sealed tube, UBr₅ is produced instead.⁶⁵) Both UOBr₃ and UBr₅ are readily decomposed in oxygen-containing solvents,⁶⁵ but they appear to decompose much more slowly in CHCl₃ or CHBr₃. This has allowed some of the UOBr₃ optical spectral bands to be detected.⁶⁵

The green salt, $(pyH)_2UOCl_5$, was formed by treatment of $UCl_5 \cdot SOCl_2$ with pyridine in an alcoholic solution. ³⁶ R_2UOCl_5 salts ($R = Et_4N^+$ or Ph_4As^+) should soon be reported, as well as the $(Et_4N)_4UOBr_5$ salt, ¹⁵ along with some spectral data (ir and visible–uv) for these compounds. The $(Et_4N)_2UOCl_5$ salt seems to be stable toward atmospheric oxidation, but not toward high humidity.

The preparation of a stable (to 500°) brown powder believed to be UO₂Br, perhaps the only compound of UO₂⁺ to be isolated as a pure solid thus far, is reported to result from the following reaction.⁶⁶

$$UO_{a} + 2HBr \xrightarrow{250^{\circ}} UO_{2}Br + \frac{1}{2}Br_{2} + H_{2}O \qquad (18)$$

(58) S. Kemmler-Sack, E. Strumpp, W. Rüdorff, and H. Erfurth, Z. Anorg. Allgem. Chem., 292, 287 (1967).

(59) E. J. Kuz'micheva, K. M. Dunaeva, L. M. Kovba, and E. A. Ippolitova, Radiokhimiya, 7, 78 (1965); Chem. Abstr., 63, 10789b (1965).

- (60) M. L. Atlas, J. Phys. Chem. Solids, 29, 1349 (1968).
- (61) K.-P. K'uo, Hua Hsiieh T'ung Pao, (5) 9 (1959); Chem. Abstr., 54, 21669 (1960).
- (62) I. A. Glukhov, S. S. Eliseev, and E. E. Vozhdaeva, Zh. Neorg. Khim., 1e (4), 919 (1968); Chem. Abstr., 69, 7916 (1968).
- (63) S. S. Eliseev, Dokl. Akad. Nauk Tadzh. SSR, 11 (3), 25 (1968); Chem. Abstr., 69, 6000 (1968).
- (64) J. Prigent, Compt. Rend., 236, 710 (1953).
- (65) G. Kaufman and R. Rohmer, Bull. Soc. Chem. Fr., 1969 (1961).
- (66) J. C. Levet, Compt. Rend., 260, 4775 (1965).
- (67) R. Scholder and L. Brixner, Z. Naturforsch., 10b, 178 (1955).
- (68) W. Rüdorff and H. Erfurth, *ibid.*, 21b, 85 (1966).
- (69) S. Kemmler-Sack, ibid., 23b, 1260 (1968).
- (70) W. Rüdorff and H. Leutner, Z. Anorg. Allgem. Chem., 292, 193 (1957).
- (71) S. Kemmler-Sack and W. Rüdorff, ibid., 354, 255 (1967).
- (72) W. Rüdorff, H. Erfurth, and S. Kemmler-Sack, *ibid.*, 354 273, (1967).
- (73) R. Brochu and J. Lucas, Bull. Soc. Chim. Fr., 4765 (1967).
- (74) E. J. Felten, E. F. Juenke, and S. F. Bartram, J. Inorg. Nucl. Chem., 24, 839 (1962).

⁽⁵³⁾ R. E. Rundle, N. C. Baenziger, A. S. Wilson, and R. A. McDonald, J. Am. Chem. Soc., 70, 99 (1948).

⁽⁵⁴⁾ J. K. Dawson and M. W. Lister, J. Chem. Soc., 2181 (1950).

Oxides and Oxo Compounds			
Compound (color)	Ref	Compound (color)	Ref
U ₂ O ₅ (violet or black)	53–57	UO ₂ + derivatives	
UO ₂ oxides		UO2Br (brown)	66
LiUO ₃ (brown-violet)	58, 70-71		
NaUO₃ (red-brown)	68	UO_2^+ in various solutions	75-105
KUO₃ (brown)			
RbUO₃ (bright brown)			
$Ba(UO_3)_2$ (olive green)	67	UO ³⁺ derivatives	
$U_2O_6^{2-}$ oxides		UOCl ₃	5, 61-63
With Co ²⁺ , Ni ²⁺ , Mg ²⁺ ,	58, 71, 73	UOBr ₃ (red-brown)	62 64
Cd ²⁺ , Na ⁺ , K ⁺ , Ca ²⁺ ,		UOCl ₃ ·EtOH (brown)	36
Sr ²⁺ , Ba ²⁺		(pyH) ₂ UOCl ₅ (green)	36
And 0.15 $Li_2O \cdot U_2O_5$		R ₂ UOCl ₅	15
$0.50 \operatorname{Li}_2 O \cdot U_2 O_5$		$(\mathbf{R} = \mathbf{Et}_4\mathbf{N}^+, \mathbf{Ph}_4\mathbf{As}^+)$	
		$(Et_4N)_2UOBr_5$ (green)	15
UO ₄ ³⁻ oxides		Miscellaneous species	
With Cr(III), Fe(III),		Li7UO8, Sr2InUO6	58
Sc(III)	57-58	$Pb_2U_2O_7, \alpha$ - U_3O_8	58
Nd(III), Sm(III),		$Ba_2U_2O_7$	69
Eu(III)	72, 74		
Gd(III), Yb(III),			
Bi(III)	68		
Li ⁺ , Ca ²⁺ , Ba ²⁺	67		

Table V

The ir spectrum is not unlike that of UO_2^{2+} compounds, as would be expected, showing band maxima at 940, 890, and 850 cm⁻¹.

The dioxuroanium(V) species, UO_2^+ , has been obtained many times in solution,⁷⁵⁻¹⁰⁵ even though this oxidation state

- (76) W. E. Harris and I. M. Kolthoff, J. Am. Chem. Soc., 67, 1481 (1945).
- (77) I. M. Kolthoff and W. E. Harris, ibid., 68, 1175 (1946).
- (78) W. E. Harris and I. M. Kolthoff, ibid., 69, 446 (1947).
- (79) H. G. Heal, Nature, 157, 225 (1946).
- (80) H. G. Heal, Trans. Faraday Soc., 45, 1 (1949).
- (81) H. G. Heal and J. G. N. Thomas, ibid., 45, 11 (1949).
- (82) E. S. Kritchevsky and J. C. Hindman, J. Am. Chem. Soc., 71, 2096 (1949)
- (83) D. M. H. Kern and E. F. Orlemann, ibid., 71, 2102 (1949).
- (84) K. A. Kraus, F. Nelson, and G. L. Johnson, ibid., 71, 2510 (1949).
- (85) K. A. Kraus and F. Nelson, ibid., 71, 2517 (1949).
- (86) F. Nelson and K. A. Kraus, ibid., 73, 2157 (1951).
- (87) F. R. Duke and R. C. Pinkerton, ibid., 73, 2361 (1951).
- (88) W. M. Latimer, "Oxidation Potentials," 2nd ed, Prentice-Hall, Inc., New York, N. Y., 1952, p 304.
- (89) L. J. Heidt and K. A. Moon, J. Am. Chem. Soc., 75, 5803 (1953).
- (90) J. Koryta and J. Koutecky, Collection Czech. Chem. Commun., 20, 423 (1955). (91) H. Imai, Bull. Chem. Soc. Jap., 30, 873 (1957).
- (92) D. J. McEwen and T. DeVries, Can. J. Chem., 35, 1225 (1957).
- (93) M. D. Adams, D. A. Wenz, and R. K. Steunenberg, J, Phys. Chem., 67, 1939 (1963).
- (94) D. A. Wenz, M. D. Adams, and R. K. Steunenberg, Inorg. Nucl. Chem., 3, 989 (1964).
- (95) A. Sokkowska, Nukleonica, 10, 229 (1965).
- (96) A. Sokkowska and J. Minczewski, ibid., 10, 311 (1965).
- (97) B. Kastening, Collection Czech. Chem. Commun., 30, 4033 (1965).
- (98) P. W. Carr and L. Meites, J. Electroanal. Chem., 12, 373 (1966).
- (99) B. McDuffie and C. N. Reilley, Anal. Chem., 38, 1881 (1966).
- (100) M. Michlmayr, G. Gritzner, and V. Gutmann, Inorg. Nucl. Chem. Lett., 2, 227 (1966).
- (101) V. Zutic and M. Branica, J. Polarogr. Soc., 13, 9 (1967).
- (102) A. Sobkowska, Chem. Anal. (Warsaw), 12, 487 (1967); Chem-Abstr., 68, 5435 (1968).
- (103) J. Hala, Collection Czech. Chem. Commun., 32, 2565 (1967).
- (104) V. T. Athavale and C. S. P. Iyer, J. Electroanal. Chem., 16, 583 (1968).
- (105) G. Gritzner and J. Selbin, J. Inorg. Nucl. Chem., 30, 1799 (1968).

is the least stable one under these conditions. Numerous studies of UO_2^+ have dealt with (a) its production, either in polarographic investigations,75-84,86,87,90-92,95,96,100-105 by controlled-potential electrolysis, 81,83,84,91,92,96, 100, 101, 105 or by means;^{\$5,86,93,94} (b) chemical its disproportionation, \$1,83,84,86,87,90,91,95-99,102,104,105 (c) its redox potential relative to the IV and VI oxidation states;^{81,83-85,88} (d) its equilibrium with the VI oxidation state;86,94 and (e) its role as an intermediate^{89, 97} in certain reactions of U(VI).

From the numerous polarographic studies, all but two^{100, 105} of which have been carried out in aqueous systems, the conclusion is that the one-electron reduction of UO_2^{2+} results in the formation of UO_2^+ . The reversible nature of the reduction is strong evidence for the identical degree of oxygenation in both the U(VI) and U(V) species. Supporting evidence⁸³ for UO2⁺ as the species in solution comes from the constancy of the E° value (at -0.062 V vs. nhe) in the range 0.01-0.05 M HClO₄, when the ionic strength is fixed at 0.5 M with NaClO₄-HClO₄. Additional confirmation of the formula comes from analogy with the Np(V) and Am(V) ions which have been assigned formulas NpO₂⁺ and AmO₂⁺ from both ir and X-ray crystallographic studies.⁴ Detailed studies of the chemistry of aqueous U(V) solutions were first carried out 20 years ago.84-86 Millimolar solutions of UO2+ can be obtained (a) by electrolytic reduction⁸⁴ of UO_2^{2+} , (b) by reduction of UO_2^{2+} with zinc analgam or hydrogen,⁸⁴ (c) by dissolving⁸⁵ UCl₅, or (d) by mixing certain U(IV) and U(VI) solutions;34 but the most satisfactory method seems to be (a), and it is the one used most commonly. The UO_2^+ species is comparatively stable in only a narrow pH range $(2.0-4.0)^{84-85}$ where the disproportionation into U⁴⁺ and UO_2^{2+} is quite slow. However, the hydrolytic behavior of UO_2^+ is difficult to study because of this narrow range.

An estimate⁸⁴ of the acid hydrolysis of UO₂⁺, by comparison with the pK values of ca. 8.9 and 9.7 for Np(V) and Pu(V), respectively, places the pK of UO_2^+ at ca. 8, indicating that at a pH somewhat above 8 negative species (e.g., $UO_2(OH)_2$) would be formed.

⁽⁷⁵⁾ P. Herasymenko, Trans. Faraday Soc., 24, 267 (1928).

665

The following formal oxidation-reduction potentials^{8,2,8,58} for uranium in 1 M HClO₄ at 25° do not apply at infinite dilution in the strict thermodynamic sense, since the requisite experimental data have either not been obtained or cannot be obtained, but the relationships are useful nevertheless.

Complexing anions usually strongly affect potential values, but in the case of the $UO_2^+|UO_2^{2+}$ couple only weak complexing by Cl⁻ has been found.⁸² Potentials are also affected by reversibility, and experimentally it is found that the U³⁺| U⁴⁺ and the $UO_2^+|UO_2^{2+}$ couples are reversible and attain their final potentials rapidly, whereas the U⁴⁺|UO₂+ and U⁴⁺|UO₂²⁺ couples are irreversible. Obviously one criterion for the reversibility of a couple is that no strong metal–oxygen bonds be created or broken during redox.

The most thoroughly studied reaction of UO_2^+ is its disproportionation into U(VI) and U(IV). Almost all papers which deal with UO_2^+ are concerned at least partially with this reaction for obvious reasons. The equilibrium constant for the reaction

$$2UO_2^+ + 4H_3O^+ = UO_2^{2+} + U^{4+} + 6H_2O$$
(19)

has been determined⁸⁶ to be $(1.7 \pm 0.3) \times 10^{6}$. A mechanism of disproportionation which involves proton transfer⁸¹

$$UO_{2}^{+} + H^{+} = UOOH^{2+}$$
$$UO_{2}^{+} + UOOH^{2+} \longrightarrow UO_{2}^{2+} + UOOH^{+} \text{ (rate limiting)} \quad (20)$$
$$UOOH^{+} \longrightarrow \text{stable U(IV) species}$$

has been questioned by workers⁸⁷ who studied the reaction in D_2O in order to ascertain the role of the proton in the mechanism. The deuterated intermediate (UOOD²⁺) would be expected to decrease the reaction rate, but this was not observed, making the foregoing mechanism highly improbable. A more acceptable mechanism involving OH radical transfer has been proposed⁹¹ on the basis of studies of the effect of hydrogen ion concentration^{83,91} (increasing rate with increasing concentration), the effect of chloride ion concentration^{90–91} (increasing rate with increasing concentration), and the effect of other anions⁹¹ (NO₃⁻, ClO₄⁻, Br⁻, and I⁻).

$$UO_{2^{+}} + H^{+} = UOOH^{2^{+}}$$

 $UO_{2^{+}} + UOOH^{2^{+}} = HOUO_{2^{+}} + UO^{2^{+}}$ (21)

The two species on the right side of the rate-determining step would rapidly revert, respectively, to UO_2^{2+} (by loss of OH⁻ to the acid medium) and whatever stable U(IV) species exists in the given medium (perhaps UOH³⁺(aq)).

More recent disproportionation studies have been made by twin-electrode thin layer electrochemistry,⁹⁹ and by automatic amperometric titration of U(VI) with Cr(II).⁹⁸ Other studies have found the rate of disproportionation to be (a) increased with increasing hydrogen ion concentration^{83,91,96,101} (providing no organic acid is present⁹⁶); (b) increased with increasing pH of organic acids (*e.g.*, acetic, ascorbic, lactic, or tartaric) present;^{95–96,101} (c) increased with increasing organic acid concentration^{9,5–96,101} (the rate being second order in U(V) and first order in organic anion); (d) increased with decreasing pK of the organic acid;⁹⁸ and (e) slightly decreased in the presence of hydrazine¹⁰³ ($E_{1/2}$ for the U(VI) to U(V) reduction shifting from -0.175 to -0.160 V with increasing N_2H_4 indicating weak but definite complexing by the base). The foregoing results (b–d) suggest that anions and not undissociated organic acid molecules participate in the disproportionation reaction by UO_2^+ complexing of these anions.

In chloride melts (*e.g.*, LiCl-KCl eutectic at 650°) UO_2^+ is believed⁹³⁻⁹⁴ produced by the reaction

$$Cl^{-} + UO_{2}^{2+} = \frac{1}{2}Cl_{2} + UO_{2}^{+}$$
 (22)

for which the equilibrium constant has been determined⁹⁴ as

$$K_{\rm eq} = \frac{[{\rm UO}_2^+]^2}{[{\rm UO}_2^2^+]^2} P_{\rm Cl_2} = 1.2 \pm 0.6 \times 10^{-6} \, {\rm atm}$$
 (23)

The optical spectrum for UO_2^+ has been obtained (vide infra) in such melts. Upon raising the temperature of the melt to 750° the further reaction sets in.

$$Cl^{-} + UO_{2}^{+} = UO_{2} + \frac{1}{2}Cl_{2}$$
 (24)

Finally the UO_2^+ species has been studied in dimethyl sulfoxide,¹⁰⁵ in which it is formed reversibly at the dme at a half-wave potential of -0.54 V (vs. sce) with LiClO₄ supporting electrolyte (and -0.53 V with *n*-Bu₄NClO₄). Controlled-potential electrolysis in this solvent (carried out at -0.7 V) produced millimolar amounts of UO_2^+ which could be studied spectrally (vide infra) since the half-life of the species was estimated to be about 1 hr under these conditions.

The uranium(V) anionic oxo compounds or oxides, known only in the solid state, appear to fall into one of the following stoichiometric categories (see Table V): UO_3^- , $U_2O_6^{2-}$, UO_4^{3-} , UO_6^{7-} , and $U_2O_7^{4-}$. Characterization of the solids usually has been by magnetic susceptibility measurements (*vide infra*), but at least for FeUO₄ and CrUO₄ we have reflectance spectra⁷² as well.

Uranium(V) oxides of the general formula MUO₃ (M = Li⁺, Na⁺, K⁺, Rb⁺) are prepared⁶²⁻⁶³ by heating M₂UO₄ with UO₂ at 650–750°. Ba(UO₃)₂ has been prepared by reaction of BaUO₃ with UO₃ at 550° in a N₂ atmosphere.⁶⁷ At 1000° the compound disproportionates into BaUO₄ and UO₂. The UO₃⁻ compounds are relatively stable, aqueous suspensions showing no alkaline reaction. It should be noted that the U(VI) analog, Na₂UO₄, reacts with water to form Na₂U₂O₇ and Na⁺, OH⁻. Furthermore, the compounds do not react with hydrochloric or sulfuric acids, although nitric acid readily destroys them.

The oxides produced when trivalent cations are employed in the following reaction are of the general type MUO_4 (M = Se, Y, Nd, Sm, Eu, Gd, Yb).⁷²

$$M_2O_3 + UO_2 + UO_3 \longrightarrow 2MUO_4$$
 (25)

The reaction is carried out at 1000° and the products are blue-black to black and are oxidized when dissolved in acids. When M = Bi(III), Cr(III), or Fe(III), the UO₃ in eq 25 is replaced^{68,74} by U₃O₈.

The hexaoxodiuranate(V) compounds (MU_2O_6) were first produced in 1952¹⁰⁶ by thermal decomposition of the so-called "diuranates," or $U_2O_7^{2-}$ compounds. Only the M = Mg and Ca compounds had formulas close to the correct stoichiometry required for a pure U(V) compound. A number of these compounds were then made in 1967^{58,71,73} (Table V), generally by thermal decomposition under vacuum or by reduction under NH₃ at 600° of the diuranates(VI).

⁽¹⁰⁶⁾ H. R. Hoekstra and J. J. Katz, J. Am. Chem. Soc., 74, 1683 (1952).

 Table VI

 Magnetic Data for Some Uranium(V) Compounds^a

Compound	Temp, °K	$\chi_{\rm M^{corr}} \times 10^6$	$\mu_{\rm eff}, BM$	Ref
UCl ₅ ^b	398	634	1.42	107
	293	672	1.26	
	193	837	1.14	
$\mathrm{UCl}_5\cdot\mathrm{SOCl}_2$	293	704	1.29	107
	193	889	1.17	
	77	1714	1.03	
CsUCl6°	308	775.5	1.71^{d}	16°
	203	9 77 .8		
	100	1521		
UCl ₅ · Ph ₃ PO	305	98 2.6	2.13 ^e	3.7
	230	1130		
	153	1142		
UCl5 · TCAC	300	743	1.54	17
NH₄UF₅	93–2 00		1.74 ⁷	30
	200-300		2.25^{f}	
$N_2H_6UF_7$			1.67 ^g	28
Na₃UF ₈	293		1.86	31
	195		1.74	
U_2O_5			1.47	57
α -U₃O 8	295	731	1.32	54, 57-58
	168	1021	1.18	
	83	1585	1.03	
LiUO3 ^h	480	535	1.44	58, 68
	373	623	1.37	108
	293	701	1.28	
MgU₂O₅'	373	851	1.60	58
	195	1239	1.39	
	78	2180	1.17	
$CaU_2O_6{}^i$	292	1120	1.79	57, 73
	190	1426	1.82	
	88	2078	1.68	
LaUO₄ ^k	473	669	1.60	58
-	373	751	1.50	
	195	1050	1.28	

^a For many of the listed compounds there are more temperaturedependent data than are given in this table. No more than three temperatures are quoted here. ^b In CCl₄ solutions UCl₅ is diamagnetic 107 and presumably dimeric, U2Cl10. ° Data are given 16 also for the UCl6⁻ salts with the following cations: Me2H2N⁺, Me4N⁺, and Ph₄As⁺. ^d The large value of the Weiss constant, -161° , indicates that this moment has little significance. The same is true of the other salts referred to in footnote c. • The large Weiss constant, -270° , probably renders this value meaningless. / The Weiss constant is -129° for the lower temperatures and -353° for the higher temperatures, making the 2.25 value meaningless. ^o Weiss constant is 111°. h There are also data for the Na+, K+, Rb+ salts.58, 107 i The data for the Cd2+ compound have also been obtained.58 i The data for the Sr²⁺ and Ba²⁺ compounds have also been obtained.⁷⁸ * Data are also available for the Y³⁺, Sc³⁺, and Bi³⁺ compounds,^{58,68} as well as for the Li₃UO₄ compound.⁵⁸ There are also data⁵⁸ for the following unusual oxides: Li7UO5, Pb2U2O7, and Sr2InUO5, and for⁵⁷ Ca₂U₂O₇.

In spite of the relatively large number of oxides known, there is really very little information about them available beyond their magnetic susceptibilities. These are discussed next.

III. Magnetic Susceptibilities and Epr Studies

The lone outer electron of U(V) should render its compounds interesting for all magnetic measurements. Some of the

available¹⁰⁷ magnetic susceptibility data are given in Table VI, and references to all such data are contained in the table and its footnotes. Most of our knowledge of the magnetic behavior of uranium(V) compounds is consistent with what is expected for an ion with a 5f1 ground-state configuration which is perturbed by spin-orbit coupling and octahedral (or cubic) fields. Although temperature-dependent studies have revealed Curie-Weiss behavior in most cases (exceptions occur, for example, in the oxides⁷¹⁻⁷² and in the MU_2O_6 , M = Ca, Sr, Ba, compounds⁷³), the Weiss constants are generally quite large. Magnetic data have been used to deduce the presence of UO_2^+ in U_2O_5 (written as $UO_2^+O_{0.5}^{2-}$ in ref 57) and in^{57,73} MU₂O₆ (for example, written as $Ca^{2+}(UO_2^+)_2O_2^{2-}$ in ref 57). The magnetic properties of α -U₃O₈ are in accord with its formulation⁷⁰ as $U_2O_5 \cdot UO_3$, in which the uranium is in the V and VI oxidation states rather than the IV and VI states. This substantiates earlier findings^{54, 108} that U₃O₈ is composed of U(V) and U(VI) in the molar ratio of 2:1.

There have been very few reports of electron spin resonance data of pure uranium(V) compounds.^{17,109,110} Crude measurements¹⁷ on powdered samples of UCl₅ · TCAC, UCl₅ · SO-Cl₂, UCl₅ · PCl₅, RbUCl₆, and Pr₄NUCl₆ have yielded average g values of \sim 1.1 with the sign undetermined. This value may be compared with the value of \sim 1.25 reported¹¹¹ for U(V) ions in a matrix of ThO₂. The g value is expected to be negative, since g = -1.14 for Pa(IV)¹¹² and g = -0.60 for Np(IV),¹¹³ and since Karraker¹¹⁴ has calculated a g value for UCl₅·SOCl₂ of -1.18.

Paramagnetic resonance spectra of powdered MUF₆ samples²⁷ (M = Li, Na, Cs) were recorded at a 3-cm wavelength at 77°K. The three compounds gave an asymmetric line in a field of about 9000 G, the line shape being in agreement with an axial symmetry of the g tensor. Axially distorted UF₆⁻ octahedra are deduced, in agreement with the actual X-ray structure.³³ The g_0 values are given²⁷ as -0.768, -0.748, and -0.709 for the Li⁺, Na⁺, and Cs⁺ salts, respectively. Curiously, no signals were obtained with the corresponding K⁺, NH₄⁺, Rb⁺, Ag⁺, or Tl⁺ salts. U(V) esr signals have also been obtained for UF₅ powder,¹¹⁰ for single crystals of the general formula MUF₆,^{109–110} and for single crystals of NaSbF₆ doped with U(V).¹¹⁰ The g values fall in the vicinity of -0.7, and some of the spectra are reported¹¹⁰ to exhibit splitting.

IV. Spectral Studies

A. VIBRATIONAL SPECTRA

Uranium(V)-chlorine stretching frequencies have been assigned for several compounds, and these are given in Table VII. They are seen to fall around 300 cm^{-1} or approximately

⁽¹⁰⁷⁾ W. Rüdorff and W. Menzer, Z. Anorg. Allgem. Chem., 292, 197 (1957). (108) H. Haraldsen and R. Bakken, Naturwissenschaften, 28, 127

⁽¹⁰⁸⁾ H. Haraldsen and R. Bakken, Naturwissenschaften, 28, 127 (1940).

⁽¹⁰⁹⁾ M. Drifford, P. Rigny, and P. Plurien, Phys. Letters, A27, 620 (1968).

⁽¹¹⁰⁾ J. A. Arshem and G. D. Sturgeon, paper presented at the 1968 Midwest Regional American Chemical Society Meeting, Manhattan, Kan.

⁽¹¹¹⁾ P. M. Llewellyn, unpublished work, quoted in W. Low, "Paramagnetic Resonance in Solid State Physics," Academic Press, New York, N. Y., 1960, Supplement 2.

⁽¹¹²⁾ J. D. Axe, H. J. Stapleton, and C. D. Jeffries, Phys. Rev., 121, 1630 (1961).

⁽¹¹³⁾ C. H. Hutchinson, Jr., and B. Weinstock, J. Chem. Phys., 32, 56 (1960).

⁽¹¹⁴⁾ D. G. Karraker, Inorg. Chem., 3, 1618 (1964).

50 cm⁻¹ higher than those reported 115,116 for the U(IV) compound (Et₄N)₂UCl₆.

The P==O frequencies of UCl₅· Ph₃PO and UCl₅· (C₈H₁₇)₈PO are lowered 217 and 161 cm⁻¹, respectively, from the free ligand values.⁸⁷ These large shifts, reflecting a decrease in the P==O bond strength, indicate a large decrease in the $p\pi$ -d π bonding in the phosphine oxide molecule and suggest strong U(V)-oxygen bonding. The shifts are large compared to those found in other transition metal-phosphine oxide complexes, but they are comparable to that found ^{117,118} in UCl₄· 2Ph₃PO.

Infrared data were used¹⁷ to determine the mode of coordination of the ligand to the metal in the UCl₅·TCAC complex. The C=O stretching frequency for the complexed acid chloride was found to be 200 cm⁻¹ lower than that of the free ligand (1760 vs. 1560 cm⁻¹), strongly suggesting coordination via the oxygen atom.

A report¹¹⁴ of no ir bands for solid $UCl_5 \cdot SOCl_2$ in the NaCl region seems very strange since the S=O frequency should appear in this range. The ir spectrum¹¹⁴ of $U(OEt)_5$ showed bands at 2990, 2880, 2720, 1455, 1375, 1350, 1130, 1100, 1052, 908, and 875 cm⁻¹. All of these bands can be assigned to vibrational modes of the ethoxy ion except the last two. Since these are near, but lower than the UO_2^{2+} adsorption frequencies, they might arise from U-O stretching modes. It seems clear, however, that much more work is necessary to allow unambiguous band assignments to be made.

Assignment has been made²⁶ of the 628-cm⁻¹ band in the Raman spectra of CsUF₆, (NH₃OH)UF₆, and N₂H₆UF₇, as the principal symmetric vibration (A_{1g}) of the UF₆⁻ ion. This value is considerably higher than the 506 cm⁻¹ assigned for this same mode from vibronic spectral studies¹¹⁹ of UF₆⁻. However, this latter assignment is almost surely incorrect. Using their¹¹⁹ data a better assignment for ν_1 (A_{1g}) would be either 609 (5196–4587) cm⁻¹ or 612 (7540–6928) cm⁻¹. Either of these values is in far better agreement with both the Raman data and the ν_1 value for UF₆ (*vide infra*). The infrared-active mode ν_3 (T_{1u}) (of the octahedral UF₆⁻) has been assigned at 503 cm⁻¹ (for CsUF₆)¹¹⁹ or at 526 cm⁻¹ (for N₂H₆(UF₆)₂ and (NH₃OH)UF₆)²⁶ or at 551 cm⁻¹ (for NOUF₆).²³ The latter compound also exhibits bands at 2333 cm⁻¹ (due to NO⁺) and 509 cm⁻¹ (a U–F mode).

The ir bands found⁶⁶ for UO₂Br are at 940, 890, and 850 cm⁻¹. These are undoubtedly due to U-O vibrations (the U-Br vibration would be expected below 300 cm⁻¹), but their exact assignment has not been made.

Ryan¹⁵ has measured the far-infrared spectra of CsUF₆, Et₄NUCl₆, and Et₄NUBr₆ and in addition has measured the electronic spectra from which he is able to deduce the corresponding vibronic levels. The data are collected in Table VIII. Similar, but less complete information is available for several other UCl₆⁻ salts,¹⁷ and this will be detailed later.

B. ELECTRONIC AND VIBRONIC SPECTRA

Absorption spectra of the lanthanides and actinides in the visible and near-infrared regions of the spectrum are characterized by the presence of several very sharp bands of relatively

Table	V 1 1
-------	--------------

Uranium(V)-Chlorine Vibrational Frequencies (cm⁻¹)

Compound	$\nu_{3} (T_{1u})$	Ref
CsUCl ₆	303	16
Ph ₄ AsUCl ₆	306	16
(Me ₄ N) ₃ UCl ₈	310	16
Me ₄ NUCl ₆	310	16
UCl₅ · Ph₃PO	285	37
$UCl_{5} \cdot (C_{8}H_{17})_{3}PO$	304	37
UCl₅ · TCAC	320	17
Pr ₄ NUCl ₆	315	17

	7	`able	V	Ш
--	---	-------	---	---

Vibrational Data¹⁵ (in cm⁻¹) for Some UX₆⁻ Salts^a

CsL	/F.	Et ₄ NUCl ₆		Et_4NU	Br6
Obsd in far-ir	Obsd in vi- bronic	Obsd in far-ir	Obsd in vi- bronic	Obsd in far-ir	Obsd in vi- bronic
490	490	310 (262, 218)	309	214 (186)	217
~ 165	(170)	122	122	(92)	(92)
\sim 140	145		96	87	85
62		65	(65)	68	
		56		62	61
			26	47	(48)
					24

^a Shoulders are in parentheses.

low intensity. The observed spectra for these metal ions have been ascribed to transitions arising within the manifold of 4f or 5f electronic levels, respectively. The intensities of the 5f electronic bands have been found to be approximately an order magnitude greater than those of the 4f electrons. Perhaps the most intriguing area of uranium(V) chemistry involves the study of f-f transitions in the near-ir region. It might be noted that Laporte-allowed $5f \rightarrow 6d$ transitions have generally not been investigated (only Riesfeld and Crosby¹¹⁹ having examined spectra out to 50,000 cm⁻¹), but these surely would occur in the ultraviolet region and be of much greater intensity than the Laporte-forbidden f-f transitions.

The near-ir electronic spectra of U(V) compounds should lend themselves most easily to theoretical interpretation (vide infra) because of the presence of but a single 5f electron. Of course, the dioxo species, UO2+, is perhaps best considered a molecule ion which has heavy intermixing of oxygen and uranium orbitals, and the picture then is not quite so simple. In this connection it is pertinent to mention that there have been only three papers which report spectral information on UO_2^+ , two of them⁹³⁻⁹⁴ dealing with spectra obtained in molten salt solvents and one¹⁰⁵ dealing with a room-temperature spectrum in which the solvent is dimethyl sulfoxide (DMSO). (Brief mention¹²⁰ of a supposed portion of the UO_2^+ spectrum in 0.1 *M* HClO₄ appears to be incorrect in light of more certain^{93, 94, 105} spectral data on UO_2^+ .) The spectra of molten salt solutions containing the UO₂⁺ species are remarkably similar to that of UO_2^+ in DMSO (see Figure 1). The most prominent band of UO₂⁺ in DMSO¹⁰⁵ is located at 6620 cm⁻¹ ($\epsilon \sim$ 90) with two other less intense maxima at 12,940 and 15,680 cm⁻¹. In the molten chloride solvents⁹³⁻⁹⁴ (LiCl-KCl eutectic at 650 or 750° or 70 mole % LiCl-30

⁽¹¹⁵⁾ D. M. Adams, H. A. Gebbie, and R. D. Peacock, Nature, 199, 278 (1963).

⁽¹¹⁶⁾ L. A. Woodward and M. J. Ware, Spectrochim. Acta, A24, 921 (1968).

⁽¹¹⁷⁾ K. W. Bagnall, D. Brown, and J. G. H. DuPreez, unpublished observations.
(118) P. Gans, Doctoral Thesis, University of London, 1963.

⁽¹¹⁹⁾ M. J. Reisfeld and G. A. Crosby, Inorg. Chem., 4, 65 (1965).

⁽¹²⁰⁾ T. W. Newton and F. B. Baker, ibid., 4, 1166 (1965).

Figure 1. Near-infrared and visible electronic absorption spectrum of UO_2^+ in dimethyl sulfoxide¹⁰⁵ at 25° (—), and LiCl-KCl eutectic⁹⁴ at 650° (- -).

Figure 2. Schematic energy level splittings for a $5f^1$ system. The first splitting represents the result of spin-orbit interaction and the second splitting the result of an O_h crystal field.

mole % KCl at 650°), the corresponding values are 6530, 12,500, and 16,000 cm⁻¹. In addition, however, two weak absorption bands are present in the molten salt spectra at 6210 and 6000 cm⁻¹. The much higher temperature at which these latter spectra are obtained could account for the additional bands. Reflectance spectral data⁷⁰ for the U(V) oxides FeUO₄ and CrUO₄ also show a prominent band near 7000 cm⁻¹. McGlynn and Smith¹²¹ have calculated the ${}^{2}F_{7/2} \leftarrow {}^{2}F_{5/2}$ transition in UO₂⁺ to be at 6752 cm⁻¹, in excellent agreement with the experimentally prominent peaks determined after their calculation had been reported.

The remaining (quite limited) number of papers which contain electronic spectral information on U(V) deal with this species in an octahedral (or nearly so) environment. The electronic configuration [Rn]5f¹ allows only the ${}^{2}F_{s/2,7/2}$ term level which is split by spin-orbit coupling into two levels and in which according to Hund's rule, the ${}^{2}F_{s/2}$, component will possess the lower energy. The low-energy absorption spectrum of the *free ion* should therefore be a single line corresponding to the ${}^{2}F_{1/2} \leftarrow {}^{2}F_{s/2}$ transition. However, the crystal field of a

Figure 3. Crystal field effects on the energy levels of a lone 5f electron. The free ion levels are at the extreme left and the levels in a strong O_h field are on the extreme right.

complexed U(V) will further split the foregoing degenerate levels. It is therefore of interest to determine how the free ion ${}^{2}F_{7/2}$ and ${}^{2}F_{6/2}$ levels, which are six- and eightfold degenerate, respectively, are split by an octahedral crystal field. This may be accomplished by using relatively simple group theoretical methods, as outlined, for example, by Cotton.¹²²

Since J is half-integral for the 5f¹ system, it is necessary to use the "double group" representation O_h for octahedral symmetry. First, the characters for the new operations of the double group must be obtained for the reducible representations $\Gamma_{s/s}$ and $\Gamma_{7/s}$. Next, the irreducible states which belong to these reducible representations are found. These irreducible states will be the levels which arise from the splitting of the ${}^2F_{s/s}$ and ${}^2F_{7/s}$ terms in O_h symmetry. The results are as follows.

$$\Gamma_{5/_{3}} \longrightarrow \Gamma_{7} + \Gamma_{8}$$
$$\Gamma_{7/_{2}} \longrightarrow \Gamma_{6} + \Gamma_{7}' + \Gamma_{8}'$$

The Γ_7 , Γ_7' , and Γ_6 levels are doubly degenerate (Kramer's doublets), whereas the Γ_8 and Γ_8' levels are quadruply degenerate. An energy level diagram may then be drawn to illustrate these levels, but the actual ordering of the various levels must be determined by solving the appropriate wave equations. Calculations by Goodman^{123, 124} and others, 27, 113, 125, 126 usually for the case of the isoelectronic Np(VI), have produced the relative ordering which is pictured in Figure 2. In Figure 3, a schematic diagram by Goodman¹²³ is shown that illustrates the changes in the energy levels on going from the field free ion (where i-i coupling holds) to the strong crystal field limit (where L-S coupling is approximated). The energy levels for the actinides $5f^n$ ions normally lie in the region of intermediate coupling where both spin-orbit coupling and crystal field effects are important and observed. (Note that interelectron repulsion is not involved in the 5f¹ systems.)

(125) J. C. Eisenstein and M. H. L. Pryce, Proc. Roy. Soc. (London), A255, 181 (1960).

(121) S. P. McGlynn and J. K. Smith, J. Mol. Spectry., 6, 188 (1961).

⁽¹²²⁾ F. A. Cotton, "Chemical Applications of Group Theory," John Wiley and Sons, Inc., New York, N. Y., 1963.

⁽¹²³⁾ G. L. Goodman, Ph.D. Thesis, Harvard University, 1959.

⁽¹²⁴⁾ G. L. Goodman and M. Fred, J. Chem. Phys., 30, 849 (1959).

⁽¹²⁶⁾ J. D. Axe, Ph.D. Thesis, University of California (Berkeley), 1960, UCRL-9293.

Hence, we should predict at least four low-energy transitions to be possible in the U(V) species, namely, $\Gamma_8 \leftarrow \Gamma_7$, $\Gamma_7' \leftarrow \Gamma_7$, $\Gamma_8' \leftarrow \Gamma_7$, and $\Gamma_6 \leftarrow \Gamma_7$, in which the lone 5f electron resides in the lowest doublet Γ_7 level in the ground state. Experimentally, however, not just four bands, but rather at least four groups of bands are generally observed (see Figures 4 and 5). These additional bands are mainly the result of different vibronic transitions, but also, of course, they might arise from further removal of the non-Kramer degeneracies which reside in both Γ_8 and Γ_8' levels. This latter situation (degeneracy removal) can arise with the lowering of the symmetry of the complex below O_h, for example, to the important (for known U(V) complexes) C_{4v} symmetry.

For an octahedral U(V) molecule the following normal vibrational modes arise.

infrared-active:
$$2T_{1u} (\nu_3 \text{ and } \nu_4)$$

Raman-active: $A_{1g} (\nu_1); E_g (\nu_2); T_{2g} (\nu_5)$
inactive: $T_{2u} (\nu_6)$

Before we proceed to a consideration of the actual electronic spectral data and the assignment of bands, it would be helpful to summarize some of the pertinent theoretical predictions which have been put forth by several authors.^{114, 127}

(1) The doublet levels (Γ_7 , Γ_7' , Γ_6) arising from Kramer's degeneracy are predicted to be stabilized by spin-orbit coupling and would be unaffected by Jahn-Teller distortions.

(2) Jahn–Teller effects are important in the behavior of the quadruply degenerate Γ_8 levels. These levels are predicted to split into two doublets when the octahedron distorts. Rough calculations by Eisenstein and Pryce¹²⁵ indicate that the splitting would be of considerable magnitude. The Γ_8 levels may also interact with the vibration modes to produce weak, broad absorption bands.

(3) Vibrational selection rules indicate that the totally symmetric vibrational mode, A_{1g} , can couple with the electronic transitions to produce bands of greatly diminished intensity.

(4) The *odd* vibrational modes of the molecule are predicted to couple most strongly with the electronic transitions.

(5) For a $0 \rightarrow 0$ transition of frequency ν_0 and vibrational frequency ν , bands of frequency $(\nu_0 + \nu)$ and $(\nu_0 - \nu)$ should be obtained whose intensities are approximately in the ratio of $\exp(h\nu/kT)$:1.

Optical and paramagnetic resonance spectra of the more stable $5f^1$ systems, Pa(IV) and Np(VI), have been more frequently measured and interpreted^{112,113,125,126,120-130} than for U(V). In Tables IX and X are collected the available electronic spectral data for the non-oxo uranium(V) compounds.

C. ASSIGNMENT OF BANDS

The assignments of the electronic transitions, made in Tables IX and X, merit some discussion.

1. The $\Gamma_7 \rightarrow \Gamma_8$ Transition

Figure 4. Near-infrared and visible electronic absorption spectra of (a) $UCl_5 \cdot SOCl_2$ in CCl_4 ,¹⁷ and (b) $[U(OEt)_5]_2$ in CCl_4 .¹¹⁴

This lowest energy transition is predicted to produce weak broad absorption bands. As can be seen from the data collected in Tables IX and X, there is often a doublet observed in this region. The energy separation between the two bands is very close to the value of the highest infrared-active stretching mode, ν_{ϑ} . For example, this separation is $\sim 510 \text{ cm}^{-1}$ in CsUF₆;¹¹⁶ $\sim 500 \text{ cm}^{-1}$ in Ph₄AsUF₆;¹⁵ $\sim 300 \text{ cm}^{-1}$ in UCl₅. TCAC;¹⁷ and $\sim 275 \text{ cm}^{-1}$ in U(OEt)₅.¹¹⁴ Whether the pure electronic transition (0 \rightarrow 0) is the more intense of the two bands (always the lower of the two in energy) with the less intense band (separated by ν_{ϑ}) being vibronic is not certain, but this does seem to be a reasonable and more defensible assignment.

2. The $\Gamma_7 \rightarrow \Gamma_7'$ Transition

In the optical spectra of all U(V) compounds there is a very characteristic band which appears somewhere in the 6000–7000-cm⁻¹ region (including such species as (UO_2^+) , 91,92,103 (UO_4^{3-}) , 70 (UOCl₅²⁻ and UOBr₅²⁻)¹⁵). In many cases a cluster of sharp, narrow spikes are observed in this region. The most intense, usually central peak in this cluster is most likely the pure electronic transition, although one report¹¹⁸ does not make this interpretation. (We believe they should have, however.) Because of the very sharp discrete bands one may obtain

⁽¹²⁷⁾ C. J. Ballhausen, "Introduction to Ligand Field Theory," Mc-Graw-Hill Book Co., Inc., New York, N. Y., 1962, Chapter 8. (128) J. D. Axe, R. Kyl, and H. J. Stableton, J. Chem. Phys., 32, 1261

^{(1960).} (129) L. B. Asprey, F. H. Kruse, and R. A. Penneman, *Inorg. Chem.*, 6, 544 (1967), and references therein.

⁽¹³⁰⁾ T. Mitsuji, Bull. Chem. Soc. Jap., 40, 2091 (1967), and references therein.

		<i></i>		CsUCl6° in		
RbUCl ₆ in SOCl ₂ ^a	$[Me_4N]UCl_6$ in SOCl ₂ ^b	POCl ₃	MeCN	MeNO ₂	$5 M Ph_2CO-CH_2Cl_2$	Assignment
3,800 br	3,275					$\Gamma_7 \rightarrow \Gamma_8$
6,485 sh						
6,680 sh		6,650	6,685	6,660	6,680	
6,702 s	6,710	6,750	6,775	6,750	6,750	
6,794 vs	6,805	6,815	6,860	6,840	6,835	
6,890 s						$\Gamma_7 \rightarrow \Gamma_7'$
6,920 m	6,905 vs		7,015	7,080	7,015	
7,110		7,100				
9,905 br	9,900	9,930	10,125	9,940	9,955	$\Gamma_7 \rightarrow \Gamma_8'$
10,440 br	10,420	10,460	10,685	10,470	10,480	
11,520 s	11,480	11,510	11,830	11,585	11,590	
11,805 sh			-		-	$\Gamma_7 \rightarrow \Gamma_6$

Table X

Table IX	
Visible and Near-Infrared Bands (in cm^{-1}) for UCk ⁻ in Different Salts and in Different Med	iя

^a Data from ref 17, in which there is also a similar set of data for Pr₄NUCl₆, ^b Data from ref 16. ^c Data from ref 37.

Visible and Near-Infrared Bands (in cm^{-1}) for Several U(V) Compounds in Various Media						
IICla in		UCL. TCACa in				
SiCl ₄	CCl ₄	<i>CS</i> ₂	SOCI2	SOCl _{2^b}	CCl4°	Assignment
4,360 s	4,405 s	4,184 s	4,184 s			
4,510 m			4,237 sh	4,300 s (4195)	4,350 s (4350)	$\Gamma_7 \rightarrow \Gamma_8$
			4,407 m			
		4,464 m	4,479 m			
			4,545 sh			
6,560 w	6,550 w	4,635 w	6,451 w	6,420 w	6,560 w (6580)	
6,650 s	6,600 w, 6,650 s	6,663 m	6,680 m	6,640 m, 6660 m	6,650 s (6640)	
6,710 m	6,700 m	6,700 m		(6676)		$\Gamma_7 \rightarrow \Gamma'$
6,750 w	6,750 w	6,757 s	6,784 s	6,750 s	6,710 m (6730)	
		6,831 m	6,863 sh	6,820 m	6,750 sh	
6,870 w	6,880 w	6,850 m	6,877 m	6,840 m (6850)	6,800	
		7,097 w	7,102 w	7,080 w (7220)		
8,930 s	8 ,94 0 s	9,381 br	9, <i>5</i> 92 br	9,320 m (9325)	8,940 s (8930)	$\Gamma_7 \rightarrow \Gamma_8'$
9,690 m	9,660 m	10,277 br	10,417 br	10,370 m (10,360)	9,700 m (9710)	
11,920 s	11,930 s	11,710 s	11,751 s	11,750 s (11,710)	11,780 s (11800)	$\Gamma_7 \rightarrow \Gamma_6$
12,220 sh	12,220 sh	11,961 sh	11,990 sh	12,020 sh		
(Me_N) UC	7/8 ^d	$[U(OEt)_5]_2^f$ in	ı UC	l5• P h3 PO 9 in	$UCl_{5} \cdot (C_{8}H_{17})_{3}$ -	
in SOCl ₂	CsUF6° in Nujol	ĊĆĨ₄	CH_2Cl_2	MeCN	PO ⁹ in CH ₂ Cl ₂	Assignment
	5,102					
	5,624	5,405				$\Gamma_7 \rightarrow \Gamma_8$
	6,126	5,680				
6,715	6,930		6,710	6,665	6,670	
6,810	7,249	6,620	6,800	6,765	6,775	
6,910	7,399 vs	6,935	6,880	6,860	6,860	$\Gamma_7 \rightarrow \Gamma_7'$
9,935	7,540		7,110	7,090	7,110	
10,450	7,912					
11,480				10.000	10, 100	/
	13,055	10,200	10,130	10,090	10,100	$\Gamma_7 \rightarrow \Gamma_8'$
	13,200	11,690	10,695	10,610	10,670	
	14,400	14,490	11,850	11,780	11,850	$\Gamma_7 \rightarrow \Gamma_6$

^a Reference 17. UCl₆ is probably a dimer, U₂Cl₁₀, in these solvents. UCl₅ · TCAC was also run¹⁷ in C₆H₆ and CCl₄. ^b Reference 17. Values in parentheses from ref 114. ^d Reference 16. The assignments for this apparently eight-co-ordinated U(V) have not been suggested by anyone yet. ^e Reference 118. A few other bands are in the 298 °K spectrum and many other bands in the 75 °K spectrum. The 503-cm⁻¹ band is the ν_8 ir mode and the intense bands at 36,000, 40,000, and 44,000 cm⁻¹ must be due to 5f \rightarrow 6d transitions. The K⁺, Rb⁺, and NH₄⁺ salts are reported^{19, 20} to exhibit a narrow and strong peak at 7040 cm⁻¹, and the Li⁺, Na⁺, and Cs⁺ salts a group of bands with the most prominent at 7350 cm⁻¹. Reference 122 reports the peaks for the former three salts at 7048, 7055, and 7048 cm⁻¹, respectively, and indicates that there are other weaker and broader bands at higher energies. ^f Reference 114. ^g Reference 37.

Vibrational Frequencies (cm ⁻¹) of Octahedral Uranium Species ^a							
Designation	UF_{6}^{b}	UF_6 [_]	·	UCl6-	·	UCl ₆ ²⁻	UBr_6^-
$A_{1g}(\nu_1)$	668	609 (or 612)		300		299	
$T_{1u}(\nu_3)$	626	503 (490)	490	312 (315)	309	262	217 (214)
$T_{1u}(\nu_4)$	189	150 (165, 140)	170, 145	121 (122)	122	144	85 (87)
$T_{2g}(\nu_{5})$	202	145					
$T_{2u}(\nu_{6})$	144	100		92	96	86	61, 68
Ref	131, 132	119	15	17	15	116	15

Table XI

^a Values in parentheses are from far-ir spectra; others are from vibronic spectra. ^b These data are from ir¹⁸¹ and Raman¹⁸² data.

here, it is possible to make assignments of vibrational modes, of octahedral UX_{6}^{-} species in particular, from the vibronic spectra. Table XI lists the vibrational modes of various octahedral uranium hexahalo species which have been assigned from vibronic spectra, including comparison data for $UF_{6}^{131,132}$ and some unpublished ¹⁵ far-ir data.

As already pointed out above, the odd vibrational modes $(\nu_3, \nu_4, \text{ and } \nu_6)$ are expected to couple most strongly with the electronic transitions. The T_{2u} (v_6) mode involves only angle deformations whereas ν_3 and ν_4 both involve uranium-halogen bond stretching. The values for the highest ir-active stretching mode (ν_3) in the series UF₆⁻, UCl₆⁻, UBr₆⁻, are 503, 312, 217 cm⁻¹, respectively, consistent with the expected decrease in U-X bond strength in the order $F^- > Cl^- > Br^-$. The same effect is deduced from the ν_4 values. A comparison of the ν_3 values for UCl6⁻ and UCl6²⁻, which are 312 and 262 cm⁻¹, respectively, illustrate the weakening in the U-Cl covalent bond strength expected upon introduction of another nonbonding or slightly antibonding electron into the uranium orbitals. Raman spectral data, not yet available for any solid U(V) species, would greatly assist in the complete elucidation of vibrational band assignments.

3. The $\Gamma_7 \rightarrow \Gamma_8'$ Transition

The next electronic level of interest is the quartet Γ_8' . It has been predicted that the quartet should split into two Kramer's doublets upon any distortion of the octahedral symmetry. Indeed the spectra of UCl₆⁻ salts exhibit two bands of roughly equal intensity and shape around 10,000 cm⁻¹ (see Table IX and Figure 4). The spectra of UF₆⁻ and UBr₆⁻ also exhibit the same type bands, but at slightly different energies.^{15, 118} The doublet is also found in other U(V) spectra as well (Table X). It is surely more than mere coincidence that the splitting for all salts of UCl₆⁻ in various media is about 540 ± 20 cm⁻¹, whereas it is much higher in all of the lower symmetry species. In the latter (see Table X) the splittings apparent in the Γ_8' level range from 720 to 1050 cm⁻¹, values which almost surely reflect the higher distortions from regular octahedral symmetry. It is indeed tempting to suggest that the magnitude of

Table XII

Spin–Orbit Co	oupling (Constants for	r 5f1	Systems
---------------	-----------	---------------	-------	---------

Compound	ξ, cm^{-1}	Ref
CsUF ₆	1955	119
	1770	27
NH₄UF₅ and KUF₅	2013	122
RbUF ₆	2015	122
LiUF ₆	1810	27
NaUF ₆	1825	27
$UCl_5 \cdot SOCl_2$	1900	114
$[U(OEt)_5]_2$	1905	114
Cs ₂ PaCl ₆	1490	126
NpF_{6}	2405	125
Np(VI)	2450	113

this splitting measures the magnitude of the geometrical distortion.

4. The $\Gamma_7 \rightarrow \Gamma_6$ Transition

The electronic f level predicted to lie highest in energy is Γ_{6} . Solid-state visible-ir spectra of salts of the three UX_{6}^{-} anions are very similar in that the highest energy peak is split into a doublet and shows in addition a weak shoulder on the blue side.¹⁵ Solution spectra^{17, 37} of UCl_{6}^{-} exhibit the blue shoulder but the peak is not split, although it does show dissymmetry. These transitions in the UX_{6}^{-} salts occur in the 11–15,000cm⁻¹ region. The cause of the splitting and origin of the shoulder is not known, but coupling of the symmetric vibrational mode, A_{1g} , with the electronic transition is a strong possibility for explaining the presence of the weak blue shoulder.

Obviously a great deal of work is needed in the area of spectral studies, and publication of Ryan's¹⁵ excellent work in this area will hopefully serve to stimulate some of the necessary interest.

Finally, it might be of interest to mention that there have been several calculations of spin-orbit coupling constants (ξ) and the values are recorded in Table XII, along with values for Pa(IV) and Np(VI) compounds. If a linear interpolation of the ξ values between the latter two species is made, it yields about 1950 cm⁻¹, which is quite close to the known U(V) values.

⁽¹³¹⁾ J. Gaunt, Trans. Faraday Soc., 49, 1122 (1953).

⁽¹³²⁾ H. H. Claassen, B. Weinstock, and J. G. Malm, J. Chem. Phys., 25, 426 (1956).