# THE ULTRAVIOLET SPECTRA OF PROTOBERBERINES<sup>1</sup>

M. SHAMMA, M. J. HILLMAN, AND C. D. JONES

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Received December 23, 1968

# Contents

| Ι.   | Introduction                     | 779 |
|------|----------------------------------|-----|
| II.  | Tetrahydroprotoberberines        | 779 |
|      | A. Simple Type                   | 779 |
|      | B. 13-Methyl Substituted         | 779 |
|      | C. 13-Hydroxy Substituted        | 779 |
| III. | Dihydroprotoberberines           | 779 |
| IV.  | Protoberberine Salts             | 780 |
|      | A. Difference between C-9,10 and |     |
|      | C-10,11 Substitution             | 780 |
|      | B. Phenolic Salts                | 781 |
| V.   | Dehydroprotoberberine Salts      | 784 |
| VI.  | Homotetrahydroprotoberberines    | 784 |

# I. Introduction

Although more than 60 naturally occurring protoberberines and tetrahydroprotoberberines are presently known, no systematic study of the ultraviolet spectra of these alkaloids has appeared in the literature. This topic was briefly covered in 1964 as part of a much larger review of the uv spectra of all known alkaloids.<sup>2</sup> Since this time, however, enough new data have appeared to warrant a completely separate treatment of the subject. Several spectral examples will be listed here, and generalizations correlating spectra with structures will then be drawn when warranted. Special attention will be given to differences between 9,10- and 10,11-substituted isomers. Ethanolic solutions were used in all cases except where indicated.

# II. Tetrahydroprotoberberines

## A. SIMPLE TYPE

Tetrahydroprotoberberines absorb in the 282-289-m $\mu$  region, with occasionally a shoulder near 230 m $\mu$  (Table I). There is also substantial absorption around 210 m $\mu$ , but since this band has either not been reliably recorded or else has gone unmentioned, emphasis will here be placed on the 283-289-m $\mu$  absorption. Inevitably, a minimum is present in the 251-254-m $\mu$  range.

The alkaloid capaurine, which has a hydroxy group at C-1 and corresponds to 1-hydroxy-2,3,9,10-tetramethoxytetrahydroprotoberberine, exhibits a slightly different spectrum with  $\lambda_{max}$  276 and 230 (sh) m $\mu$  (log  $\epsilon$  3.45 and 4.7),<sup>8</sup> but 1-methoxycanadine,<sup>4</sup> mecambridine,<sup>5</sup> and caseadine,<sup>6</sup> which are all substituted at C-1, absorb in the usual range.



Tetrahydroprotoberberines substituted at C-2,3,10,11, sometimes called pseudotetrahydroprotoberberines, again have **a** maximum between 282 and 289 m $\mu$ , and cannot readily be differentiated from their C-2,3,9,10 analogs (Table I).

# **B. 13-METHYL SUBSTITUTED**

Tetrahydroprotoberberines with a C-13 methyl group may exist in either of two conformations. If the C-13 methyl group and the C-13a hydrogen are *cis* to each other, the B/C quinolizidine ring system is *cis* fused. When the C-13 methyl and the C-13a hydrogen are *trans*, the quinolizidine ring system is also *trans*.<sup>7</sup> These two groups of tetrahydroprotoberberines show maxima between 282 and 288 m $\mu$ , in analogy with tetrahydroprotoberberines with no C-13 methyl group. Additionally, no differentiation can be made between the C-13 methyl series with substituents at C-2,3,9,10 and the C-2,3,10,11 series (Table II).

#### C. 13-HYDROXY SUBSTITUTED

As expected, C-13 hydroxylated tetrahydroprotoberberines (Table III) have uv spectra very similar to those discussed above. Their maximum absorption falls between 281 and 290 m $\mu$ . Differences in stereochemistry at C-13 and C-13a, as well as in the mode of fusion of the B/C rings, appear to have little bearing on the uv absorption.

## III. Dihydroprotoberberines

The measurement of the uv spectra of dihydroprotoberberines is complicated by the fact that these compounds are difficult to purify, and usually contain some of the corresponding

<sup>(1)</sup> This study was supported by Grant GP-9359 from the National Science Foundation. M. J. H. and C. D. J. are the recipients of Nationa Institutes of Health Fellowships 1-F1-GM-32,921 and 1-F1-GM-33,031 respectively.

<sup>(2)</sup> A. W. Sangster and K. L. Stuart, Chem. Rev., 65, 69 (1965).

<sup>(3)</sup> T. Kametani, M. Ihara, K. Fukumoto, H. Yagi, H. Shimanouchi, and Y. Sasada, *Tetrahedron Letters*, 4251 (1968).

<sup>(4)</sup> M. Ohta, H. Tani, S. Morozumi, and S. Kodaira, Chem. Pharm. Bull. Japan, 12, 1080 (1964).
(5) S. Pfeifer and I. Mann, Tetrahedron Letters, 83 (1967).

<sup>(6)</sup> C. Y. Chen, D. B. MacLean, and R. H. F. Manske, *ibid.*, 349 (1968).

<sup>(7)</sup> M. Shamma, J. A. Weiss, and C. D. Jones, *Tetrahedron*, in press.

|                                                                         |                                                              | Simp                                                                | Ta<br>le Tetrahy            | <i>able I</i><br>droprotoberb | erinesª     |                           |                                             |                        |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|-------------------------------|-------------|---------------------------|---------------------------------------------|------------------------|--|
| $\sim$ Substituents $\sim$ $\lambda_{max}, m\mu$                        |                                                              |                                                                     |                             |                               |             |                           |                                             | $\lambda_{\min}, m\mu$ |  |
| Tetrahydroprotoberberines                                               | <i>C-1</i>                                                   | <u> </u>                                                            | <u> </u>                    | <u> </u>                      | <u> </u>    | <i>C-II</i>               | ( <i>log ε</i> )                            | ( <i>log</i> є)        |  |
| Canadine (tetrahydroberberine) <sup>b</sup>                             |                                                              | 0-С                                                                 | H₂O                         | <b>OCH</b> ₃                  | OCH3        |                           | 284 (3.71)                                  | 252 (2.76)             |  |
| Tetrahydropalmatine <sup>c</sup>                                        |                                                              | OCH <sup>3</sup> OCH <sup>3</sup> OCH <sup>3</sup> OCH <sup>3</sup> |                             | 281 (3.75),<br>230 sh (4.25)* | 251 (2.90)* |                           |                                             |                        |  |
| Stepholidine <sup>4</sup>                                               |                                                              | ОН                                                                  | OCH <sub>3</sub>            | OCH3                          | OH          |                           | 287 (3.79)                                  |                        |  |
| Isocorypalmine <sup>e</sup>                                             |                                                              | OH                                                                  | OCH <sub>3</sub>            | OCH3                          | OCH3        |                           | 282 (3.79),<br>230 sh (4.4)                 | 252 (2.85)*            |  |
| Alkaloid HF-1/                                                          |                                                              | <b>OCH</b> ₃                                                        | OH                          | OH                            | OCH₃        |                           | 282 (3.81)                                  | 252 (2.9)              |  |
| Nandinine <sup>9</sup>                                                  | dinine <sup>o</sup> O-CH <sub>2</sub> -O OH OCH <sub>3</sub> |                                                                     | 286 (3.80),<br>230 sh (4.1) | 252 (2.3)                     |             |                           |                                             |                        |  |
| Tetrahydrocoptisine (stylopine) <sup>k</sup>                            |                                                              | 0-CH <sub>2</sub> -O 0-CH                                           |                             | <b>I</b> <sub>2</sub> -O      |             | 289 (3.89),<br>237 (3.85) | 252 (2.70)*                                 |                        |  |
| Scoulerine                                                              |                                                              | ОН                                                                  | OCH₃                        | OH                            | OCH3        |                           | 283 (3.85)<br>230 (4.20)*                   | 252 (3.15)*            |  |
| Tetrahydrothalifendine <sup>3</sup>                                     |                                                              | 0-C                                                                 | H <sub>2</sub> O            | OCH₃                          | OH          |                           | 282 (3.77)                                  | 252                    |  |
| Capaurine <sup>k</sup>                                                  | ОН                                                           | OCH3                                                                | OCH₃                        | OCH <sub>3</sub>              | OCH₃        |                           | 276 (3.45),<br>230 sh (4.7)*                | 252 (2.8)*             |  |
| 1-Methoxycanadine <sup>1</sup>                                          | OCH3                                                         | <b>O-C</b>                                                          | H <sub>2</sub> O            | OCH₃                          | OCH3        |                           | 283.5 (3.47)                                |                        |  |
| Mecambridine (oreophiline) <sup>m</sup><br>(in methanol)                | OCH₃                                                         | <b>0-C</b>                                                          | H <sub>2</sub> O            | CH₂OH                         | OCH₃        | OCH₃                      | 286 (3.74)                                  | 254 (2.89)             |  |
| Caseadine <sup>n</sup>                                                  | ОН                                                           | OCH₃                                                                |                             |                               | OCH3        | OCH3                      | 286 (3.74),<br>208 sh (4.08),<br>206 (4.82) |                        |  |
| Norcoralydine                                                           |                                                              | OCH₃                                                                | OCH2                        |                               | OCH₃        | OCH₃                      | 287 (3.90)                                  |                        |  |
| 2,10-Dihydroxy-3,10-dimethoxy-<br>tetrahydroprotoberberine <sup>p</sup> |                                                              | OH                                                                  | OCH3                        |                               | OH          | OCH3                      | 289 (3.75)                                  |                        |  |
| Descretine <sup>o</sup>                                                 |                                                              | OCH₃                                                                | ОН                          |                               | OCH3        | OCH₃                      | 282 (3.77),<br>228 sh (4.25)                |                        |  |
| Demethylcoreximine <sup>p</sup>                                         |                                                              | OH                                                                  | OCH3                        |                               | OH          | OH                        | 289 (3.92)                                  |                        |  |
| Pseudoepitetrahydro-<br>berberine <sup>q</sup>                          |                                                              | OCH3                                                                | OCH₃                        |                               | 0-CI        | H₂O                       | 288 (3.65),<br>225 sh (4.09)                | 254 (2.67)             |  |
| Coreximine                                                              |                                                              | ОН                                                                  | OCH3                        |                               | OCH3        | ОН                        | 286 (3.99),<br>225 sh (4.25)*               | 252 (2.95)*            |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $225 \text{ sn}(4.25)^{+}$                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| <sup>a</sup> Where only volume and spectrum n umber are indicated in the footnotes, the reference is either                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to J. Holubeck and O. Strouf, "Spectra                |
| Data and Physical Constants of Alkaloids," Vol. I, Publishing House of the Czechoslovak Acaden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ny of Sciences, Prague, 1965, or to Vol.              |
| II by the same authors and publishing house, which appeared in 1966. All values accompanied by an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sterisk (*) in Tables I-VI were obtained              |
| directly from spectral graphs. <sup>6</sup> I. Sallay and R. H. Ayers, Tetrahedron, 19, 1397 (1963). <sup>c</sup> Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I, Spectrum No. 264. d M. P. Cava, K.                 |
| Nomura, S. K. Talapatra, M. J. Mitchell, R. H. Schlessinger, K. T. Buck, J. L. Beal, B. Douglas,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , R. F. Raffauf, and J. A. Weisbach, J.               |
| Org. Chem., 33, 2785 (1968). Volume I, Spectrum No. 147. / Volume II, Spectrum No. 343. Volume II, Spec | ume II, Spectrum No. 369. h Volume I,                 |
| Spectrum No. 260. Volume II, Spectrum No. 244. M. Shamma and M. A. Podczasy, unpublished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d results. k Volume I, Spectrum No. 41.               |
| Also T. Kametani, M. Ihara, K. Fukumoto, H. Yagi, H. Shimanouchi, and Y. Sasada, Tetrahedron I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Letters, 4251 (1968). <sup>1</sup> M. Ohta, H. Tani,  |
| S. Morozumi, and S. Kodaira, Chem. Pharm. Bull. (Tokyo), 12, 1080 (1964). * S. Pfeifer and I. Mann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n, Tetrahedron Letters, 83 (1967). <sup>n</sup> C. Y. |
| Chen, D. B. MacLean, and R. H. F. Manske, ibid., 349 (1968). º J. Schmutz, Helv. Chim. Acta, 42,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 335 (1959). <sup>p</sup> T. Kametani, I. Noguchi,     |
| S. Nakamura, and Y. Konno, J. Pharm. Soc. Japan, 87, 168 (1967). <sup>a</sup> The synthesis of this compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d by M.S. and C.D.J. will be reported at              |
| a later date. <sup>7</sup> Volume I, Spectrum No. 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |

tetrahydroprotoberberines. There is always a peak between 360 and 375 m $\mu$  due to the stilbenoid system, and when a C-13 methyl group is present, a hypsochromic shift of about 5-8 m $\mu$  is evident for this long-wavelength band (Table IV).

The alkaloid lambertine actually corresponds to dihydroberberine.<sup>8</sup> The spectrum of the compound has been reported to consist of only a single band at 285 m $\mu$  (4.45).<sup>8</sup> This value is inconsistent with the values obtained by Takemoto and Kondo for synthetic dihydroberberine.<sup>9</sup> It is possible, therefore, that the spectral measurement for naturally occurring lambertine was done on an impure sample.

The spectra of two dihydroprotoberberine N-metho salts have been recorded (Table IV), and as expected these differ substantially from the spectra of the free bases. Maxima appear near 250 and 355 m $\mu$ , and minima are present around 270 and 315 m $\mu$ .

# **IV. Protoberberine Salts**

## A. DIFFERENCES BETWEEN C-9,10 AND C-10,11 SUBSTITUTION

A drastic alteration of the spectrum occurs when changing from 9,10 to 10,11 substitution for the protoberberine salts (Table V). The 9,10-substituted salts show a minimum at 301– 310 m $\mu$ , while their 10,11 counterparts show strong absorption in this region in the form of a peak or a shoulder.

Since tetrahydroprotoberberines can be easily oxidized with either iodine or mercuric acetate to the corresponding quaternary salts, it follows that uv spectroscopy can assist in the establishment of the ring D substitution pattern for the tetrahydroprotoberberine bases.

<sup>(8)</sup> R. Chatterjee and P. C. Maiti, J. Indian Chem. Soc., 32, 609 (1955); Chem. Abstr., 50, 5993 (1956).

<sup>(9)</sup> T. Takemoto and Y. Kondo, J. Pharm. Soc. Japan, 82, 1408 (1962).

| Base                                                                                                                                      | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\lambda_{\max}, m\mu \ (log \ \epsilon)$ | $\lambda_{\min}, m\mu$<br>(log $\epsilon$ ) |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|
| Corydaline                                                                                                                                | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> CH <sub>3</sub> O<br>CH <sub>3</sub> | 282, 230 sh (3.76, 4.30)*                 | 252 (3.0)*                                  |
| Corybulbine                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 282, 230 sh (3.76, 4.25)*                 | 252 (3.10)*                                 |
| Isocorybulbine <sup>₄</sup>                                                                                                               | CH <sub>3</sub> O<br>HO<br>CH <sub>3</sub> CH <sub>3</sub><br>CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 283, 225 sh (3.80, 4.25)*                 | 252 (3.10)*                                 |
| Thalictricavine <sup>4</sup>                                                                                                              | HO<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 287, 230 sh (3.6, 4.2)*                   | 254 (2.9)                                   |
| Base II.                                                                                                                                  | CH <sub>4</sub> O<br>CH <sub>4</sub> O<br>CH <sub>4</sub> O<br>CH <sub>4</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 283, 230 <sup>*</sup> sh (3.7, 4.1)*      | 254 (3.2)                                   |
| Thalictrifoline <sup>e.g</sup>                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 283, 235 sh (3.7, 4.15)*                  | 254 (3.3)                                   |
| (±)-α-13-Methyl-2,3-<br>dimethoxy-10,11-methylene-<br>dioxy-5,6-13,β13a-tetrahydro-<br>8H-dibenzo[a,g]quinolizine/                        | CH <sub>4</sub> O<br>CH <sub>4</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 287, 230 sh (3.84, 4.5)                   | 254 (2.70)                                  |
| $(\pm)$ -β-13-Methyl-2,3-<br>dimethoxy-10,11-methylene-<br>dioxy-5,6,13,β13a-tetrahydro-<br>8H-dibenzo[ <i>a</i> , <i>g</i> ]quinolizine/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>288, 230 (3.81, 4.4)                 | 254 (2.74)                                  |

 Table 11<sup>a</sup>

 13-Methyltetrahydroprotoberberines

<sup>o</sup> See footnote *a*, Table I. <sup>b</sup> Volume I, Spectrum No. 73. <sup>e</sup> Volume I, Spectrum No. 71. <sup>d</sup> Volume I, Spectrum No. 145. <sup>e</sup> H. Taguchi and I. Imaseki, *J. Pharm. Soc. Japan*, 84, 955 (1964). <sup>f</sup> The synthesis of this compound by M. S. and C. D. J. will be reported at a later date. <sup>e</sup> No absolute configuration implied.



The quaternary alkaloid worenine presents an interesting problem. It had originally been formulated as I, but this structure was then assigned to corysamine which is a different material from worenine.<sup>10, 11</sup> It follows that worenine might instead be formulated as II. Unfortunately, no uv spectrum of worenine is recorded in the literature, and no sample of the alkaloid is available to verify such a hypothesis.

# **B. PHENOLIC SALTS**

The phenolic protoberberines columbamine and jatrorrhizine iodide deserve special attention. Although dilute ethanolic solutions of these alkaloids are both yellow under neutral

<sup>(10)</sup> Z. Kitasato, J. Pharm. Soc. Japan, No. 542, 48 (1927).

<sup>(11)</sup> C. Tani and N. Takao, ibid., 82, 599 (1962).

| Base                                                                                                                                                           | Structure                                                                                                                                                                      | $\lambda_{\max}, m\mu \ (log \ \epsilon)$ | $\lambda_{\min}, m\mu \\ (log \epsilon)$ |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|--|
| Ophiocarpine <sup>b.c</sup>                                                                                                                                    | COCH <sub>3</sub>                                                                                                                                                              | <b>290</b> , 230 (3.78, 4.25)*            | 252 (2.95)*                              |  |
| 13-Epiophiocarpine                                                                                                                                             | HO CH <sub>3</sub><br>CH <sub>3</sub> O CH <sub>3</sub>                                                                                                                        | 286 (3.76)                                |                                          |  |
| <ul> <li>(-)-β-13-Hydroxy-2,3-<br/>methoxylenedioxy-1,9,10-<br/>trimethoxy-5,6,13,α13a-<br/>tetrahydro-8H-dibenzo-<br/>[a,g]quinolizine<sup>a</sup></li> </ul> | CH <sub>3</sub> 0<br>CH <sub>3</sub> 0<br>HO<br>CH <sub>3</sub> 0<br>HO<br>CH <sub>4</sub> 0<br>CH <sub>4</sub> 0<br>CH <sub>4</sub> 0<br>CH <sub>4</sub> 0<br>CH <sub>4</sub> | 281.5 (3.47)                              |                                          |  |
| <ul> <li>(-)-α-13-Hydroxy-2,3-<br/>methylenedioxy-1,9,10-<br/>trimethoxy-5,6,13,α13a-<br/>tetrahydro-8H-dibenzo-<br/>[a,g]quinolizine<sup>a</sup></li> </ul>   | HO CCH <sub>3</sub>                                                                                                                                                            | 282 (3.51)                                |                                          |  |

# Table III<sup>a</sup> 13-Hydroxytetrahydroprotoberberines

<sup>e</sup> See footnote a, Table I. <sup>b</sup> Volume I, Spectrum No. 200. <sup>e</sup> M. Ohta, H. Tani, and S. Morozumi, *Chem. Pharm. Bull.* (Tokyo), 12, 1072 (1964). <sup>d</sup> Reference 4.

| Table IV       Dihydroprotoberberines                             |                                                                                                                                                                         |                                                                               |                                                |  |  |  |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|--|--|--|--|--|
| Base                                                              | Structure                                                                                                                                                               | $\lambda_{\max}, m\mu \ (log \ \epsilon)$                                     | $\lambda_{\min}, m\mu \ (log \ \epsilon)$      |  |  |  |  |  |
| Dihydroberberine*                                                 | COCH.                                                                                                                                                                   | 368, 280<br>(4.25, 4.10)                                                      | 305 (3.70)                                     |  |  |  |  |  |
| 13-Methyldihydro-<br>berberine⁴                                   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> | 360, 280<br>(4.5, 4.0)                                                        | 305 (3.8)                                      |  |  |  |  |  |
| Dihydropseudoepi-<br>berberine <sup>3</sup>                       | CH <sub>4</sub> O<br>CH <sub>4</sub> O<br>CH <sub>4</sub> O                                                                                                             | 375, 280, 260<br>(4.2, -, -)                                                  | _                                              |  |  |  |  |  |
| 13-Methyldihydro-<br>pseudoepiberberine <sup>b</sup>              | CH40<br>CH40<br>CH4                                                                                                                                                     | 370, 283, 262<br>(4.1, -, -)                                                  | _                                              |  |  |  |  |  |
| Dihydroberberine<br>methochloride<br>(in water)                   | CH4<br>CH4<br>CH4<br>CH4<br>CH4                                                                                                                                         | 350, 250–240<br>(4.39, 3.97)                                                  | 362, 300–320, 270<br>(3.31, 3.97, 3.34)        |  |  |  |  |  |
| Dihydrocoptisine<br>methochloride<br>("Substance R") <sup>d</sup> |                                                                                                                                                                         | 375, 357, 343 sh,<br>306, 255, 215<br>(4.33, 4.38, 4.26,<br>3.88, 3.84, 4.42) | 367, 314, 274, 244<br>(4.30, 3.85, 3.41, 3.81) |  |  |  |  |  |

<sup>a</sup> Reference 9. <sup>b</sup> The synthesis of this compound by M. S. and C.D. J. will be reported at a later date. <sup>e</sup> P. B. Russell, J. Am. Chem. Soc., 78, 3115 (1956). <sup>d</sup> A. Klasek, V. Simanek, and F. Santavy, Tetrahedron Letters, 4549 (1968).

#### **Ultraviolet Spectra of Protoberberines**

|                                    |                  |                   |                  |                   | Prote             | oberberin |                 |                                             |                                           |
|------------------------------------|------------------|-------------------|------------------|-------------------|-------------------|-----------|-----------------|---------------------------------------------|-------------------------------------------|
| <u>.</u>                           | Substituents     |                   |                  |                   |                   | <u> </u>  |                 |                                             | <b>.</b>                                  |
| Salt                               | <i>C-2</i>       | <u> </u>          | <u>C-9</u>       | <u>C-10</u>       | <i>C-11</i>       | C-13      | <i>C-5</i>      | $\lambda_{\max}, \ m\mu \ (log \ \epsilon)$ | $\lambda_{\min}, m\mu \ (log \ \epsilon)$ |
| Columbamine iodide <sup>a</sup>    | ОН               | OCH:              | OCH:             | OCH3              |                   |           |                 | 438, 352, 268*                              | 388, 304, 248                             |
|                                    |                  |                   |                  |                   |                   |           |                 | (3.7, 4.4, 4.4)                             | (3.4, 3.8, 4.3)                           |
| Jatrorrhizine iodide <sup>a</sup>  | OCH3             | OH                | OCH3             | OCH:              |                   |           |                 | 442, 347, 266*                              | 388, 301, 248                             |
|                                    |                  |                   |                  |                   |                   |           |                 | (3.7, 4.4, 4.4)                             | (3.4, 3.8, 4.3)                           |
| Berberine iodide <sup>b</sup>      | 00               | CH₂−O             | OCH3             | OCH3              |                   |           |                 | 423, 345, 263                               | 370, 305, 250                             |
|                                    |                  |                   |                  |                   |                   |           |                 | (3.7, 4.4, 4.4)                             | (3.7, 3.8, 4.1)                           |
| Palmatine iodide                   | OCH:             | OCH3              | OCH₃             | OCH3              |                   |           |                 | 425, 355, 265*                              | 380, 305, 250                             |
|                                    |                  |                   |                  |                   |                   |           | (4.0, 4.5, 4.4) | (3.0, 4.4, 4.3)                             |                                           |
| Coptisine chloride <sup>d</sup>    | 0-C              | H₁-O              | <b>O-C</b>       | H <sub>2</sub> O  |                   |           |                 | 357, 265, 241, 225*                         | <b>390, 310, 252*</b>                     |
|                                    |                  |                   |                  |                   |                   |           |                 | (4.4, 4.4, 4.36, 4.4)                       | (3.1, 3.7, 4.3)                           |
| Thalifendine chloride*             | 0-C              | H₂O               | OCH₃             | ОН                |                   |           |                 | 348, 269, 231                               |                                           |
|                                    |                  |                   |                  |                   |                   |           |                 | (4.1, 4.2, 4.2)                             |                                           |
| Berberastine chloride <sup>b</sup> | 0-C              | H₂–O              | OCH3             | OCH:              |                   |           | OH              | 424, 344, 265, 228                          | 377, 302.5, 250, 212                      |
|                                    |                  |                   |                  |                   |                   |           |                 | (4.63, 4.41, 4.35, 3.71)                    |                                           |
| Thalidastine chloride/             | 0-C              | H₂–O              | OCH3             | OH                |                   |           | OH              | 348, 269, 233                               |                                           |
|                                    |                  |                   |                  |                   |                   |           |                 | (4.1, 4.2, 4.2)                             |                                           |
| Dehydrothalictrifoline             | OCH <sub>3</sub> | OCH₃              | 0-C              | H <sub>2</sub> -O |                   | CH3       |                 | 445, 350, 260                               | 385, 310, 250*                            |
| iodide <sup>o</sup>                |                  |                   |                  |                   |                   |           |                 | (3.7, 4.3, 4.4)                             | (3.3, 3.8, 4.3)                           |
| Dehydrothalictricavine             | 0-C              | H₂–O              | OCH <sub>3</sub> | OCH3              |                   | CH:       |                 | 340, 260*                                   | 305, 250*                                 |
| iodide <sup>*</sup>                |                  |                   |                  |                   |                   |           |                 | (4.4, 4.5)                                  | (3.9, 4.3)                                |
| Corysamine chloride <sup>d</sup>   | 0-C              | H <sub>2</sub> –O | 0-C              | H2-O              |                   | CH:       |                 | 345, 275*                                   | 380, 310, 252*                            |
|                                    |                  |                   |                  |                   |                   |           |                 | (4.6, 4.7)                                  | (3.6, 3.3, 4.25)                          |
| Pseudoepiberberine                 | OCH:             | OCH3              |                  | 0-С               | H <sub>2</sub> -O |           |                 | 365, 338, 310 sh, 287, 262, 238             | 332, 270, 247                             |
| iodide                             |                  |                   |                  |                   |                   |           |                 | (3.8, 4.2, 4.4, 4.4, 4.3, 4.3)              | (4.1, 4.2, 4.2)                           |
| Pseudopalmatine                    | OCH,             | OCH:              |                  | OCH3              | OCH3              |           |                 | 375, 345, 310 sh, 287, 265*                 | 365, 335, 270, 250*                       |
| iodide                             |                  |                   |                  |                   |                   |           |                 | (4.0, 4.3, 4.5, 4.7, 4.3)                   | (3.9, 4.3, 4.3, 4.1)                      |
| 13-Methylpseudoepi-                | OCH3             | OCH:              |                  | 0-С               | H;-O              | CH3       |                 | 365, 338 sh, 305 sh, 287, 260, 218          | 270, 247                                  |
| berberine iodide                   |                  |                   |                  |                   |                   |           |                 | (3.8, 4.1, 4.4, 4.5, 4.4, 4.4)              | (4,3,4,2)                                 |

Table V

<sup>e</sup> Reference 12. <sup>b</sup> M. M. Nijland, *Pharm. Weekblad*, 98, 301 (1963). <sup>e</sup> W. Wiegrebe, *Arch. Pharm.*, 301, 25 (1968). <sup>d</sup> Reference 11. <sup>e</sup> M. Shamma, M. A. Greenberg, and B. S. Dudock, *Tetrahedron Letters*, 3595 (1965). <sup>f</sup> M. Shamma and B. S. Dudock, *ibid.*, 3825 (1965). <sup>e</sup> H. Taguchi and I. Imaseki, *J. Pharm. Soc. Japan*, 84, 955 (1964). <sup>h</sup> Reference 9. <sup>i</sup> The synthesis of this compound by M. S. and C. D. J. will be reported at a later date.

| Salt                                                                                | C-2        | C-3              | Substituent<br>C-9 | s    | C-11 | $\lambda_{\max}, m\mu \ (log \ \epsilon)$                                  | $\lambda_{\min}, m\mu \ (log \ \epsilon)$ |
|-------------------------------------------------------------------------------------|------------|------------------|--------------------|------|------|----------------------------------------------------------------------------|-------------------------------------------|
| Dehydropalmatrubine<br>bromide <sup>a</sup>                                         | OCH₃       | OCH3             | ОН                 | OCH, |      | 477, 354, 281, 248                                                         | 412, 337, 263                             |
| Dehydropalmatine<br>bromide <sup>a</sup>                                            | OCH:       | OCH:             | OCH;               | OCH: |      | 464, 355, 328, 285, 246                                                    | 404, 344, 306, 268                        |
| Dehydroberberubine<br>bromide <sup>a</sup>                                          | 0-CI       | H <sub>2</sub> O | ОН                 | OCH: |      | 470, 352, 281, 249                                                         | 415, 334, 268                             |
| Deoxythalidastine<br>chloride <sup>b</sup>                                          | 0-CI       | H₂O              | OCH3               | ОН   |      | 463, 348, 308,<br>378, 270, 247<br>(3.68, 3.71, 4.08,<br>4.18, 4.18, 4.24) |                                           |
| Dehydroberberine<br>chloride <sup>a</sup>                                           | 0-CI       | H₂-O             | OCH:               | OCH: |      | 460, 348, 310, 278, 246                                                    | 405, 332, 290.5, 257                      |
| 2,3-Dimethoxy-9,10-<br>methylenedioxybenz[a]-<br>acridizinium chloride <sup>c</sup> | OCH:       | OCH:             | 0-C                | H₁–O |      | 492, 358, 327, 275, 248                                                    | 417, 340, 304, 262                        |
| Dehydrocoptisine<br>chloride <sup>e</sup>                                           | 0-C        | H <sub>2</sub> O | 0-C                | H₂-O |      | 490, 356, 317, 248                                                         | 418, 337, 294, 264                        |
| 10,11:2,3-Bismethylene-<br>dioxybenz[a]acridizinium<br>chloride <sup>d</sup>        | 0-C        | H₂-O             |                    | 0-C  | H₂O  | 417, 332, 317, 306, 282                                                    | 368, 326, 312, 292, 254                   |
| Dehydropseudoberberine<br>chloride <sup>d</sup>                                     | <b>O-C</b> | H₂-O             |                    | OCH3 | OCH3 | 422, 326, 312, 302,<br>278, 235                                            | 376, 320, 306, 290, 262                   |
| Dehydropseudoepi-<br>berberine chloride                                             | OCH3       | OCH₃             |                    | 0-C  | H₂-O | 413, 322, 309, 276                                                         | 367, 317, 285, 250                        |
| Dehydronorcoralydine<br>chloride <sup>e</sup>                                       | OCH3       | OCH:             |                    | OCH: | OCH3 | 417, 322, 309, 278                                                         | 370, 318, 286, 250                        |

 Table VI

 Dehydroprotoberberine Salts

<sup>a</sup> Reference 15. <sup>b</sup> Reference 13. <sup>c</sup> Reference 16. <sup>d</sup> Reference 17.

conditions, they show different color changes upon the addition of base. Columbamine is unaffected by the addition of sodium bicarbonate, and becomes tan in the presence of sodium hydroxide. Jatrorrhizine becomes deep red in the presence of sodium hydroxide or even sodium bicarbonate. Jatrorrhizine is therefore more easily converted to the corresponding zwitterion, and one of the canonical contributors to this species is the highly conjugated but neutral quinonoid structure III. By contrast, only dipolar forms of the columbamine zwitterion can be drawn.<sup>12</sup>

## V. Dehydroprotoberberine Salts

Dehydroprotoberberine salts, as exemplified by structure IV, have not been isolated from natural sources, but can be readily obtained through the dehydration of naturally occurring 5-hydroxylated protoberberine salts such as berberastine<sup>18</sup> and thalidastine.<sup>14</sup> Alternatively, they are available synthetically through preparative routes developed by Bradsher and Dutta.<sup>15–17</sup>

There is a substantial difference between the spectra of 9,10- and 10,11-substituted dehydroprotoberberine salts as shown in Table VI, even though extinction coefficients are often not available. In particular, 2,3,9,10-substituted salts always exhibit a maximum in the 248–258-m $\mu$  range. On the other hand, dehydroprotoberberines with substituents at 2,3,10,11 show a maximum between 322 and 332 m $\mu$ . Additionally, in the 2,3,9,10 series, a  $\lambda_{\min}$  is present between 404 and 418 m $\mu$ , whereas the 2,3,10,11-substituted compounds show a  $\lambda_{\max}$  between 413 and 422 m $\mu$ . These facts can be turned to advantage in the structural elucidation of 5-hydroxyprotoberberine salts (*e.g.*, berberastine or thalidastine) which

- (13) M. Shamma and B. S. Dudock, Tetrahedron Letters, 3825 (1965).
- (14) M. M. Nijland, Pharm. Weekblad, 98, 301, (1963).
- (15) N. L. Dutta and C. K. Bradsher, J. Org. Chem., 27, 2213 (1962).
- (16) C. K. Bradsher and N. L. Dutta, ibid., 26, 2231 (1961).
- (17) C. K. Bradsher and N. L. Dutta, J. Am. Chem. Soc., 82, 1145 (1960).

can be easily dehydrated to dehydro salts. 18,14

## VI. Homotetrahydroprotoberberines

Homotetrahydroprotoberberines are derivatives of phenylethyltetrahydroisoquinoline. They have as yet to be isolated from natural sources, but so far three of them have been prepared in the laboratory. Their spectra bear a pronounced similarity to those of the tetrahydroprotoberberines.<sup>18</sup>



(18) A. Brossi, A. I. Rachlin, S. Teitel, M. Shamma, and M. J. Hillman, *Experientia*, 24, 766 (1968).

<sup>(12)</sup> M. P. Cava, T. A. Reed, and J. L. Beal, Lloydia, 28, 73 (1965).