THE THEORY OF THE HYDROGEN BOND¹⁸

PETER A. KOLLMAN*, 1b AND LELAND C. ALLEN

Department of Chemistry, Princeton University, Princeton, New Jersey 08540

Received April 16, 1971 (Revised Manuscript Received January 13, 1972)

Contents

I.	Intro	oduction	283
	Α.	What Is a Hydrogen Bond?	283
	В.	Theoretical Methods	284
II.	Theo	oretical Predictions of Observable Properties	286
	Α.	Geometry and Energy of Formation	286
		1. Ammonia-Hydrogen Chloride	286
		2. The Water Dimer	286
		3. Water Polymers	287
		4. Hydrogen Fluoride Dimer and Polymers	289
		5. Methanol Dimers and Polymers	289
		6. Strong Hydrogen Bonds	290
		7. Carboxylic Acid Dimers and Polymers	290
		8. Formamide and Other Amide	
		Hydrogen Bonds	290
		9. Formaldehyde Hydrogen Bonding	291
		10. Other Systems	291
		11. Conclusions	291
	В.	Spectroscopic Properties	293
		1. Vibrational Properties of	
		Hydrogen-Bonded Systems	293
		2. Nmr Spectroscopy on	
		Hydrogen-Bonded Systems	296
		3. Electronic Spectral Properties of	
		Hydrogen-Bonded Systems	297
		4. Conclusions	297
Ш.	Mec	hanism of Hydrogen Bonding	297
	А.	Decomposition of the Hydrogen-Bond	
	_	Energy	297
	В.	Is a Hydrogen Bond a Charge-Transfer	
	~	Interaction?	298
	C.	Charge Redistribution and Molecular	••••
	-	Orbital Energy Shifts	299
	ש. ה	what Makes a Hydrogen Bond Unique?	300
	E,	Experimental and Theoretical Correlations	201
	F	IN H BONDS	301
	г.	rulure work needed	301

I. Introduction

The hydrogen bond is an intermediate range intermolecular interaction between an electron-deficient hydrogen and a region of high electron density. Its fundamental role in the structure of DNA²⁸ and the secondary and tertiary structure of proteins^{2b} is well known. Several books³⁻⁶ have been devoted solely to hydrogen bonding. Within the last 10 years numerous review articles7-13 have discussed both the theoretical and experiment aspects of hydrogen bonding.

This work will focus on the theoretical aspects of hydrogen bonding, and we attempt to give a complete review of theoretical developments in recent years. The vast increase in theoretical studies on hydrogen bonding since Bratoz' review¹¹ of the theory has been due to (1) the advent of very high speed computers, which have allowed nonempirical SCF studies to be carried out on ever larger systems, and (2) the development of all-valence-electron semiempirical MO theories, which have made calculations on systems of 50 atoms and 100 valence electrons feasible. During the past few years there also have been many experimental studies on hydrogenbonded systems, and these will be referred to where appropriate; more extensive review articles on experimental spectroscopic studies of hydrogen bonding are already in the literature.^{7,9,10,13}

After brief sections in which we define hydrogen bonding and describe the theoretical methods employed, the remainder of this paper will focus on two issues. First, how well do theoretical studies on specific hydrogen-bonded systems succeed in predicting such experimentally measurable quantities as energy of complex formation, complex geometry, inter- and intramolecular force constants and potential functions, chemical shifts, and electronic transitions? Second, what has been learned recently about the detailed mechanism of hydrogen bonding and the charge redistribution accompanying hydrogen-bond formation?

A. WHAT IS A HYDROGEN BOND?

According to simple valence bond theory, a hydrogen atom should be capable of forming only one chemical bond. In many cases, however, hydrogen is formally two-valent-we

^{*} Address correspondence to this author at School of Pharmacy, De-partment of Pharmaceutical Chemistry, University of California, San Francisco, Calif. 94122. (1) (a) Supported in part by National Science Foundation Grant NSF-GP-8907; (b) National Science Foundation Predoctoral Fellow, 1966-1070

^{1966-1970.}

^{(2) (}a) See, for example, R. E. Marsh in "Structural Chemistry and Molecular Biology," W. H. Freeman, San Francisco, Calif., 1968;
(b) "The Proteins," Vol. I and II, H. Neurath, Ed., Academic Press, New York, N. Y., 1964.

^{(3) &}quot;Hydrogen Bonding," D. Hadzi and W. H. Thompson, Ed., Perga-mon Press, Oxford, 1959.

⁽⁴⁾ G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond," W. H. Freeman, San Francisco, Calif., 1960.

^{(5) &}quot;Vodorondnaya Svyaz," N. D. Sokolov and V. M. Tschulanovskii, Ed., Nauka, Moscow, 1964.

 ⁽⁶⁾ W. C. Hamilton and J. Ibers, "Hydrogen Bonding in Solids,"
 W. A. Benjamin, New York, N. Y., 1968.

⁽⁷⁾ A. S. N. Murthy and C. N. R. Rao, Appl. Spectrosc. Rev. 2, 1 (1968).

⁽⁸⁾ A. S. N. Murthy and C. N. R. Rao, J. Mol. Struct., 6, 253 (1970).

⁽⁹⁾ H. Ratajczak and W. J. Orville-Thomas, ibid., 1, 449 (1968).

⁽¹⁰⁾ J. C. Davis and K. K. Deb, Advan. Magn. Resonance, 4, 201 (1970).

⁽¹¹⁾ S. Bratoz, Advan. Quantum Chem., 3, 209 (1967).

⁽¹²⁾ N. D. Sokolov, Ann. Chim. (Paris), 10, 487 (1965).

⁽¹³⁾ S. H. Lin, "Physical Chemistry—An Advanced Treatise," H. Eyring, D. Henderson, and W. Jost, Ed., Academic Press, New York, N. Y., 1970, p 439.

call this additional bond a "hydrogen bond." There are two main classes: (1) hydrogen bonds which connect atoms of electronegativity higher than hydrogen, such as that which occurs in the water dimer $H_2O \cdots H - OH$; and (2) hydrogen bonds which connect atoms of lower electronegativity, such as B--H-B bonds in the boranes. This latter type of bonding is a subject in itself,14 and it will not be further considered here. The atoms in the periodic table with electronegativity greater than that of hydrogen are C, N, O, F, P, S, Cl, Se, Br, and I; and hydrogen bonds involving all of these elements are known. " π " hydrogen bonds involve an interaction between a partially positive hydrogen and the electrons in a double and triple bond, and these also have been the subject of some investigations.

Atoms with electronegativity greater than hydrogen have the capability of forming $A - H \cdots B$ hydrogen bonds if B has an unshared pair of electrons, but in some cases (e.g., two methyl fluorides forming a C-H \cdots F bond) the interaction is so weak that most chemists would consider that there is no "hydrogen bond" formed. One way to avoid this ambiguity is to add an energy criteria; e.g., to be a "hydrogen bond," the energy of complex formation must be greater than dipolar or London dispersion force energies. Other criteria are structural and spectroscopic. In molecular crystals, experimental evidence for hydrogen bonding is the approach of a hydrogen in one molecule to an electronegative atom (X) in the other molecule significantly closer than the sum of the van der Waals radii of X and H.⁶ An obvious example is ice I, where the nonbonded $H \cdots X$ distance of 1.75 Å is much closer than the sum of van der Waals radii (2.6 Å).

Infrared and Raman spectroscopic evidence for hydrogen bonding is the shift of the A-H stretch in a molecule toward lower frequencies, usually accompanied by broadening and enhanced ir absorption of the transition. Other intramolecular vibrations are also affected by hydrogen bonding, and in recent years the far-infrared has been examined for intermolecular hydrogen-bonding modes. Pimentel's book⁴ contains an extensive discussion of infrared spectroscopic applications to H bonding, and Murthy and Rao⁷ and Ratajczak and Orville-Thomas⁹ review the literature on infrared studies of H bonding between 1959 and 1967.

Nuclear magnetic resonance studies of hydrogen bonding have been reviewed by Murthy and Rao7 as well as Davis and Deb.10 The downfield shift of the X-H proton upon hydrogen bonding is the most often studied, although recent nmr work on the ¹⁷O resonance of water¹⁵ and the N¹⁵ resonance of ammonia¹⁶ indicates that studies of nonproton resonances might provide additional understanding of hydrogen bonding. Electronic transitions are affected by hydrogen bonding; in carbonyls there is a blue shift in the $n-\pi^*$ transition and, usually, a red shift in the π - π * transition. Recent electronic spectral studies of H bonding are found in Murthy and Rao's review. There are many other physical and chemical manifestations of hydrogen bonding, and these are most thoroughly discussed in Pimentel and McClellan's book.⁴

B. THEORETICAL METHODS

Although most of the theoretical approaches to the study of hydrogen bonds have been reviewed by Lin13 as well as Pimentel⁴ and Bratoz,¹¹ it is worthwhile to give a brief description of the principal developments.

The first attempts to understand the hydrogen bond used an electrostatic model. Pauling¹⁷ argued that hydrogen can participate in only one covalent bond, and that a second "hydrogen bond" must be due to an ionic interaction between the partially positive hydrogen and lone pair of the neighboring molecule. Simple electrostatic calculations of the hydrogen-bond energies were carried out by a number of workers (see ref 4 and 11), among them Lennard-Jones and Pople.¹⁸ Using a four-electron point charge model and placing the charges to fit the experimental dipole moment of water, these workers found an H-bond energy of 6 kcal/mol.

Arguments against an exclusively electrostatic model of the hydrogen bond have been given by many authors, but the strongest arguments against the electrostatic model are as follows.¹⁹ (1) There is certainly charge redistribution upon H-bond formation, as evidenced by the infrared spectral intensity changes upon bond formation. (2) At the H-bonded distance between the two fragments, there must be considerable closed-shell (exclusion principle) repulsion between the two fragments. Inclusion of this repulsion energy nullifies the good agreement between the H-bond experimental energy and that calculated by the simple electrostatic models. This is not to say that electrostatic calculations cannot be useful in discussing certain aspects of H bonding; for example, Bader²⁰ was able to rationalize X-H force constant shifts in H-bonded systems with an electrostatic model.

To attempt to estimate all the contributions to the H-bond energy, Coulson and Danielson²¹ and Tsubomura²² developed an empirical valence bond approach to determine the various contributions. A similar model, emphasizing the charge-transfer aspects of H bonding, was developed by Puranik and Kumar²³ and Bratoz¹¹ (the role of charge transfer in H bonds is more explicitly discussed in a later section). The conclusion of the valence bond theories was that at long $A \cdots B$ distances the H-bond energy is mainly electrostatic, but at shorter distances repulsion and delocalization (intra- and intermolecular) come into play. These qualitative, valence-bond-based theories, put forth at a time when more precise, nonempirical calculations could not be carried out, constituted a very important step forward toward rationalization of many of the phenomena associated with H bonding. They did not, however, lend themselves easily to more quantitative calculations or to an understanding of why certain H bonds are stronger than others.

⁽¹⁴⁾ See, for example, W. N. Lipscomb, "Boron Hydrides," W. A. Benjamin, New York, N. Y., 1963.

⁽¹⁵⁾ J. Reuben, J. Amer. Chem. Soc., 91, 5725 (1969).

⁽¹⁶⁾ W. Litchman, M. Alei, and A. Florin, ibid., 91, 6574 (1969).

⁽¹⁷⁾ L. Pauling, Proc. Nat. Acad. Sci., 14, 359 (1928).

⁽¹⁸⁾ J. Lennard-Jones and J. A. Pope, Proc. Roy. Soc., Ser. A, 205, 155 (1951); J. A. Pople, *ibid.*, 205, 163 (1951).

⁽¹⁹⁾ It should be noted that, in disagreement with the view expressed by Pimentel⁴ and Bratoz, ¹¹ the lack of correlation of H-bond energy Pimentel⁴ and Bratoz,¹¹ the lack of correlation of H-bond energy with dipole moment of the proton acceptor is not a conclusive argu-ment against electrostatic theories of the H bond. At the distances where H bonding occurs, the dipole moment approximation is a poor one and higher multipoles must be considered. 1,4-Dioxane forms strong hydrogen bonds because each oxygen is a good source of electron density (despite an average dipole moment of 0.4 D). The fact that amines are better proton acceptors than nitriles can be rationalized by arguing that the electrons in the amine (sp³) lone pair extend further toward the proton donor than those in the nitrile (sp). toward the proton donor than those in the nitrile (sp).

⁽²⁰⁾ R. F. W. Bader, Can. J. Chem., 42, 1822 (1964).

⁽²¹⁾ C. A. Coulson and U. Danielson, Ark. Fys., 8, 205, 239 (1955).

⁽²²⁾ H. Tsubomura, Bull. Chem. Jap., 27, 445 (1954).

⁽²³⁾ P. G. Puranik and V. Kumar, Proc. Indian Acad. Sci., 58, 29, 327 (1963).

A number of the earlier studies on H bonds used an MO approach. Pimentel's model^{23a} was helpful in introducing many chemists to the potential use of molecular orbital theory for the description of hydrogen bonding. However, his model does not distinguish between the very different H-bonding in FHF⁻ and (H₂O)₂. Hofacker²⁴ developed a localized orbital method which expressed the MO's of the complex in terms of the MO's of the fragments plus small perturbation terms. Paolini²⁵ used a three-center, four-electron MO wave function to represent the H bond and postulated that p orbitals on the hydrogen might play a key role in determining the H-bond properties; later studies showed this p-orbital effect to be small.²⁶ A more detailed discussion of the Coulson and Danielson,²¹ Bader,²⁰ and Hofacker²⁴ papers is given by Lin.¹³

In recent years, nonempirical calculations using the valence bond and the molecular orbital methods have been carried out on FHF⁻, the simplest and most strongly bound H-bonded system. In the valence bond calculations, the nonrelativistic Schrödinger equation is solved using a nonorthogonal atomic basis in a multideterminant wave function. Both Bessis and Bratoz²⁷ and Erdahl²⁸ carried out such a calculation on the bifluoride ion and found physically reasonable results. However, this method is very difficult to apply to larger systems in which the number of determinants for a minimal calculation becomes enormous and the resultant wave function difficult to interpret. For example, one of the main questions involves the systematic comparison of the combined and separated species: how many valence bond structures should be employed for the separated fragments $(F^- + HF)$ to yield the proper relative accuracy for a particular set of valence bond structures representing the hydrogen-bonded complex (FHF⁻)? In addition, Kollman and Allen find²⁶ that Erdahl's valence bond results are less successful in predicting R(F-F), the force constants, and $\Delta E(FHF^- \rightarrow FH + F^-)$ than molecular orbital wave functions. The valence bond method yields a more satisfactory dissociation energy for the bifluoride ion separating to $F^- + F + H$ (since the molecular orbital wave function dissociates to $2F^+ + H^+$), but this is not a particularly strong advantage because in H-bonded studies one is mostly interested in predicting the closed-shell dissociation of the complex (FHF⁻ \rightarrow FH + F⁻).

In net, it appears that as a starting point in understanding hydrogen bonds, molecular orbital theory is the most satisfactory approach. Ideally, one needs a multiconfiguration wave function for quantitative accuracy (configuration interaction, molecular orbital minus ionic states,²⁹ or multiconfiguration SCF³⁰), but such calculations have not yet been attempted, and at present one is justified in hoping that most useful information is obtainable at the Hartree-Fock level. One reason for believing this comes from the correct infinite separation behavior of the molecular orbital wave function for most systems of interest, but this fact alone does not eliminate the dispersion energy problem.³¹⁻³³ The second,

- (26) P. A. Kollman and L. C. Allen, J. Amer. Chem. Soc., 92, 6101 (1970).
- (27) G. Bessis and S. Bratoz, J. Chim. Phys., 57, 769 (1960); G. Bessis, Cah. Phys., 127, 105 (1961).
- (28) R. M. Erdahl, Ph.D. Thesis, Princeton University, 1965.
- (29) R. A. Kapral, Ph.D. Thesis, Princeton University, 1967.
- (30) A. C. Wahl and G. Das, Advan. Quantum. Chem., 5, 261 (1970).
- (31) At the distances of hydrogen bonds (~3 Å), the R^{-6} term of the

and most important, reason is that a large amount of existing computational experience has shown conformational energy changes and hydrogen-bond formation energies to be quite well represented within the Hartree–Fock framework.

Before proceeding further, it is useful to give a brief account of how a molecular orbital wave function is constructed. To carry out an ab initio molecular orbital calculation, one begins with the exact nonrelativistic Hamiltonian (assuming clamped nuclei in the well-known Born-Oppenheimer approximation) and attempts to solve the time-independent Schrödinger equation for the electronic ground state, assuming a single determinantal form of the wave function. The orthogonal molecular orbitals which make up the determinant are usually constructed as linear combinations of nonorthogonal atomic orbitals, and these coefficients are selfconsistently optimized (Roothaan scheme, see ref 34, 35). Results show that neglect of relativistic effects (for low-Zatoms) and nuclear electronic coupling does not significantly affect the predictive ability of the theory. There are, however, two main problems associated with ab initio molecular orbital calculations. First, there is the instantaneous electron-electron correlation problem noted above. Second, with the Roothaan scheme there is obviously a wide latitude in the choice of atomic-like orbitals to be employed as a basis set. One can use atomic orbitals of near-Hartree-Fock quality or a much cruder representation. Unfortunately, the ability of the wave function to predict molecular properties does not improve monotonically with improvement in the atomic basis used. An excellent example of this is the dipole moment of H₂O; a single Slater orbital basis (E = -75.500 au)³⁶ predicts a dipole moment of 1.82 D; a near-Hartree-Fock atomic basis $(E = -76.002 \text{ au})^{37}$ predicts 2.57 D; and the best extended basis (E = -76.059 au)³⁸ predicts 1.99 D. The experimental dipole moment is 1.85 D, and one must carry out a configuration interaction calculation to lower the best extended basis result toward the experimental value.³⁹ For the tabulation of earlier molecular orbital calculations, see a compendium by Krauss;⁴⁰ an article by Allen⁴¹ reviews more recent work.

In recent years there has been much progress toward the development of satisfactory semiempirical molecular orbital methods. These methods may be divided into two classes. (1) In one-electron theory, commonly known as extended Hückel theory,⁴² the diagonal elements of the Hamiltonian are evaluated empirically, and the off-diagonal elements are an average of the diagonal elements weighted by the overlap

(34) C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).

- (37) J. F. Harrison, J. Chem. Phys., 47, 2990 (1967).
- (38) D. Neumann and J. W. Moskowitz, *ibid.*, 49, 2056 (1968).
- (39) S. Aung, R. M. Pitzer, and S. I. Chang, ibid., 49, 2071 (1968).
- (40) M. Krauss, Nat. Bur. Stand. (U. S.), Tech. Note, No. 438 (1967).
- (41) L. C. Allen, Annu. Rev. Phys. Chem., 20, 315 (1969).
- (42) R. Hoffmann, J. Chem. Phys., 39, 1397 (1963).

⁽²³a) G. C. Pimentel, J. Chem. Phys., 19, 446 (1951).

⁽²⁴⁾ L. Hofacker, Z. Naturforsch. A, 13, 1044 (1958).

⁽²⁵⁾ L. Paolini, J. Chem. Phys., 30, 1045 (1959).

dispersion energy is not a good approximation, and one must consider higher terms in the general dispersion energy expansion.³² Another unanswered question is whether the correlation energy contribution to the intermolecular energy corresponds exactly to the dispersion energy. Margenau and Kestner³³ show that dispersion effects are not contained in the single determinant energy.

⁽³²⁾ J. O. Hirschfelder and W. J. Meath, Advan. Chem. Phys., 12, 1 (1967).

⁽³³⁾ H. Margenau and N. R. Kestner, "The Theory of Intermolecular Forces," Pergamon Press, Oxford, 1969.

⁽³⁵⁾ F. Pilar, "Elementary Quantum Chemistry," McGraw-Hill, New York, N. Y., 1968, p 341 ff.

⁽³⁶⁾ J. Del Bene and J. Pople, J. Chem. Phys., 52, 4858 (1970); Chem. Phys. Lett., 4, 426 (1969).

between the different AO's. Molecular orbitals and their associated one-electron energies are found by diagonalizing the Hamiltonian matrix, and the electrons are placed in these orbitals. The total energy E_t is taken to be the sum of the oneelectron energies of the occupied orbitals. (2) Two-electron theory, in which electron-electron repulsion is considered, has been developed by Klopman⁴³ and Pople, et al.,⁴⁴ as well as several others. These two-electron theories have many forms (e.g., CNDO,⁴⁴ MINDO,⁴⁶ and INDO⁴⁶), and they differ in relatively subtle ways. The two main common features are (a) neglect of differential overlap (NDO) ($\varphi_i \cdot \varphi_i$ = 0 for $i \neq j$) and (b) neglect of all three- and four-center electron repulsion integrals. (The schemes differ in their choice of certain parameters and in the detailed places where neglect of differential overlap is introduced: CNDO \equiv complete neglect of differential overlap; NDDO \equiv neglect of diatomic differential overlap.) The most commonly used is CNDO/2,47 and this method approximates the one-center terms by the Mulliken electronegativity, sets the two-center attraction terms equal to the core charge of the nucleus times the electron repulsion integral between the valence s orbitals on the two centers, and evaluates the nonzero two-electron repulsion integrals using the valence shell s orbitals. As noted by Pople, the use of s orbitals only to represent all forms of the retained two-electron integrals ensures the rotational invariance of the calculation.

II. Theoretical Predictions of **Observable Properties**

A. GEOMETRY AND ENERGY OF FORMATION

The majority of the spectroscopic studies on hydrogen bonding have determined the enthalpy and entropy changes which accompany hydrogen-bond formation. Many of the experimental studies have been carried out in inert solvents, where the energy of complex formation is different from the gasphase value, but not enough quantitative data exist to allow for a precise estimate of the difference between a gas-phase and solution dimerization energy.48,49 Theoretical molecular orbital calculations should give one an estimate of the gasphase dimerization energy and complex geometry, and a case study of theoretical calculations on different systems is presented below.

1. Ammonia-Hydrogen Chloride

The first ab initio molecular orbital calculation on a neutral hydrogen-bonded dimer was carried out by Clementi.⁵⁰ Clementi examined the potential surface for the NH₃-HCl dimer, assuming an H-Cl approach along the lone-pair direction of ammonia (along the C_3 axis), varying both the N-Cl and the H-Cl distance independently. By using reasonable esti-

- (48) See R. S. Mulliken and W. B. Person, "Molecular Complexes," Wiley, New York, N. Y., 1969, p 92.
- (49) S. D. Christian, personal communication.
- (50) (a) E. Clementi, J. Chem. Phys., 46, 3851 (1967); (b) ibid., 47, 2323 (1967); (c) E. Clementi and J. N. Gayles, ibid., 47, 3837 (1967).

mates for the intermolecular vibration frequencies, thermodynamic parameters for complex formation were derived and the existence of gas-phase NH₄Cl predicted. Recently a gasphase complex has been experimentally detected by Goldfinger,⁵¹ but no detailed structure has been measured. No activation energy was found for the reaction $NH_3 + HCl$ \rightarrow NH₄Cl. Of interest is the fact that in the gas-phase species the four hydrogens are not equivalent distances from the nitrogen, with the hydrogen forming the H bond 1.22 Å from the nitrogen and the other hydrogens 1.01 Å from N. Thus, unlike crystalline NH_4Cl , where NH_4^+ has tetrahedral symmetry and the ions are separated and stabilized by the Madelung energy term, Clementi's calculations on gas-phase NH₄Cl indicate that the molecule can be thought of as somewhere between H₃N and HCl, with the H-Cl distance significantly elongated (from 1.32 Å in isolated HCl to 1.62 Å in the complex), and hydrogen bonding between NH₄⁺ and Cl⁻, in which the N-H bond pointing toward the chloride is significantly longer than the other three N-H bonds.

2. The Water Dimer

To this date no less than six ab initio calculations on the water dimer have been reported in the literature. The first calculation by Morokuma and Pederson,⁵² using a limited Gaussian basis set (5 s Gaussians and 3p on oxygen, and 3 s functions on hydrogen) found the linear (single hydrogen-bonded) configuration to be most stable, followed in stabilization by the bifurcated and cyclic structures (Figure 1). The dimerization energy was, however, considerably overestimated (12.6 kcal/ mol). Second virial coefficient data imply a dimerization energy of 5.0 kcal/mol.⁵³ The next reported work by Kollman and Allen, using a contracted near-Hartree-Fock atomic basis set, confirmed the earlier result that a linear dimer was more stable than the bifurcated and cyclic structures (despite the two hydrogen bonds in these structures) and found a dimerization energy of 5.3 kcal/mol.54

Earlier ir spectroscopy work on water dimers in inert matrices was interpreted in favor of a cyclic dimer,⁵⁵ but the most recent investigation clearly favors a linear dimer.⁵⁶ Solution studies (in CCl₄) have been interpreted in terms of cyclic dimers,57 but this interpretation has been questioned.58 Subsequent calculations on the linear configuration by Morokuma and Winick⁵⁹ with a single Slater basis set and a complete geometry search by Del Bene and Pople³⁶ using a similar basis found reasonable dimerization energies for the linear structure of 6.56 and 6.1 kcal/mol. Calculations with very accurate basis sets (including d polarization functions on oxygen and p functions on hydrogen) by Hankins, et al.,60 and Diercksen⁶¹ find dimerization energies of 4.7–4.8 kcal/mol.

- (52) K. Morokuma and L. Pederson, ibid., 48, 3275 (1968).
- (53) J. A. Rowlinson, Trans. Faraday Soc., 47, 120 (1951).
- (54) P. A. Kollman and L. C. Allen, J. Chem. Phys., 51, 3286 (1969).
- (55) M. Van Thiel, E. D. Becker, and G. Pimentel, ibid., 27, 486 (1957).
- (56) A. Tusi and E. Nixon, ibid., 52, 1521 (1970).
- (57) L. B. Magnusson, J. Phys. Chem., 74, 4221 (1970).

- (59) K. Morokuma and J. Winick, J. Chem. Phys., 52, 1301 (1970).
- (60) D. Hankins, J. Moskowitz, and F. Stillinger, Chem. Phys. Lett., 4, 581 (1970); D. Hankins, Ph.D. Thesis, New York University, 1970; D. Hankins, J. Moskowitz, and F. Stillinger, J. Chem. Phys., 53, 4544 (1970).
- (61) G. Diercksen, Chem. Phys. Lett., 4, 373 (1970).

⁽⁴³⁾ G. Klopman, J. Amer. Chem. Soc., 86, 4550 (1964).

⁽⁴⁴⁾ J. A. Pople, D. P. Santry, and G. A. Segal, J. Chem. Phys., 43, S129, S136 (1965).

⁽⁴⁵⁾ M. J. S. Dewar and G. Klopman, J. Amer. Chem. Soc., 89, 3089 (1967).

⁽⁴⁶⁾ J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys., 47, 2027 (1967).

⁽⁴⁷⁾ J. A. Pople and G. A. Segal, ibid., 44, 3289 (1966).

⁽⁵¹⁾ P. Goldfinger and G. Verhaegen, ibid., 50, 1467 (1969).

⁽⁵⁸⁾ P. A. Kollman and A. D. Buckingham, Mol. Phys., 21, 567 (1971).

Besides the energies of formation, some geometrical parameters are of interest. The angle θ in the linear dimer was predicted to be near 0° by Morokuma and Pederson, 25° by Kollman and Allen, 40° by Diercksen and Hankins, et al., and 57° by Morokuma and Winick and Del Bene and Pople. The fact that this angle is nonzero seems to support the localized orbital picture of an O-H bond approaching a lone pair of electrons (rather than between the two lone pairs in the $\theta = 0$ direction). However, it should be noted that the difference in energy between the $\theta = 0$ and minimum energy configurations is quite small, and if the dipole moment of the hydrogen donor (e.g., HCN) were larger, the $\theta = 0$ configuration could be favored. The smaller basis set calculations of Pederson and Morokuma, Morokuma and Winick, and Del Bene and Pople all predict O-O distances near the ice I distance of 2.76 Å, whereas the larger basis calculations find R(O-O) = 3.0 Å. Bollander *et al.*, ⁶² predict R = 2.9 Å using semiempirical statistical mechanical arguments. Tursi and Nixon's⁵⁶ infrared experiments on the water dimer in inert gas matrices seem to indicate a longer O-O distance than in ice I (less red shift of the O-H stretch), but at this point no really definitive experimental value of the correct O-O distance in the dimer is available. A summary of the water dimer results is presented in Table I.

Table I

Water Dimer Calculations

	Basis set	Dimerization energy	R(O-O), Å	θ, deg
1.	(5,3,3) Gaussian ⁵²	12.6	2.68	0
2.	Hartree–Fock AO contracted			
	Gaussian ⁵⁴	5.3	3.00	25
3.	Hartree-Fock AO "split out"			
	Gaussian ⁵⁴	7.9	2.85	25
4.	Single Slater basis ⁵⁹	6.55	2.76	57
5.	Gaussian fit to			
	Slater 36	6.1	2.73	57
6.	Extended basis with polarization			
	function ^{60,61}	4.7	3.00	40
7.	CNDO (exptl mon-			
	omer geometry)65.66	5.9	2.53	0
8.	CNDO (CNDO optimized geom-			
	etries)66	8.4	2.53	0

In addition to the *ab initio* results, numerous semiempirical calculations on the water dimer have appeared in the literature. An iterative extended Hückel calculation by Rein and Harris finds no dimerization energy for linear $(H_2O)_2$;⁶³ Murthy and Rao, using ordinary extended Hückel theory, have found a double minimum potential for the linear dimer (with $H_3O + OH^-$ more stable than the nonionic configuration). They do not report the monomer energies.⁶⁴

Figure 1. Linear: H_1 and H_2 are in the xy plane; H_4 and H_3 are in the xz plane. Bifurcated: H_1 and H_2 are in the xy plane; H_3 and H_4 are in the xz plane. Cyclic: All the atoms are in the xz plane.

A number of papers appearing in the literature have used CNDO/2 to calculate the water dimerization energy. Murthy and Rao⁶⁴ find a ΔE of 6.3 kcal/mol for the linear dimer, using monomer distances fixed at the experimental value [R(O-H)]= 0.96 Å and $\theta(HOH) = 107^{\circ}$]. Hoyland and Kier⁶⁵ and Kollman and Allen⁶⁶ examined the three basic configurations of the water dimer, finding the linear structure to be the most stable. Kollman and Allen also found that the predicted hydrogen-bond energy was very sensitive to O-H bond length. Optimizing the O-H bond length for both monomer and dimer yielded a value of 8.4 kcal/mol [in contrast to the 5.9 kcal/mol found when R(O-H) was fixed at 0.957 Å]. In the CNDO/2 calculations (where searches were done) an angle of $\theta = 0$ was found for the linear dimer, and $R(O \cdots O)$ was considerably underestimated (calculated to be 2.53 Å). An NDDO calculation⁶⁷ predicts both the cyclic and linear water dimers to have a ΔE of 76 kcal/mol.

3. Water Polymers

Theoretical studies on water polymers have fallen into two groups: first, those calculations which attempt to give insight into the structure of ordinary water polymers; and, second, those which attempt to explain the phenomenon of "anomalous water."

The *ab initio* results of Hankins, *et al.*,⁶⁰ and Del Bene and Pople³⁶ give interesting new insight into the "nonadditivity" of hydrogen bonds. These authors examined the energy of three linear trimers, represented schematically by (1) O— HOH—O, (2) O—H…O…H—O, and (3) O—H…O— H…O. The stabilization energy/H bond of the first two, where the central water is functioning as a double hydrogen donor or a double hydrogen acceptor, is actually less than the stabilization in the dimer, whereas the structure (3) has a greater per-H-bond stability than that of the dimer.

⁽⁶²⁾ R. W. Bollander, J. L. Cassner, and J. T. Zung, J. Chem. Phys., 50, 4402 (1969).

⁽⁶³⁾ R. Rein and F. Harris, J. Mol. Struct., 2, 103 (1968).

⁽⁶⁴⁾ A. S. N. Murthy and C. N. R. Rao, Chem. Phys. Lett., 2, 123 (1968).

⁽⁶⁵⁾ J. R. Hoyland and L. B. Kier, Theor. Chim. Acta, 15, 1 (1969).

⁽⁶⁶⁾ P. A. Kollman and L. C. Allen, J. Amer. Chem. Soc., 92, 753 (1970).

⁽⁶⁷⁾ M. Weissman, L. Blum, and M. Cohan, Chem. Phys. Lett., 1, 95 (1967).

Peter A. Koliman and Leland C. Allen

Earlier, electrostatic calculations by Weissman, et al.,67 and CNDO/2 calculations by Hoyland and Kier⁶⁵ had led to the same conclusions on the relative stability of the three trimer structures. However, Hankins, et al., point out that a simple electrostatic model (assigning point multipoles and polarizabilities to each water molecule) cannot explain the large differences in the nonadditivity V(1,2,3) of the three trimer interactions. The total energy of a particular orientation of the trimer can be expressed as E(1,2,3) = 3E(1) + 3E(1)V(1,2) + V(1,3) + V(2,3) + V(1,2,3), where E(1) is the isolated water energy and V(1,2) the hydrogen-bond energy of molecules 1 and 2 in the absence of molecule 3. The nonadditivity energies V(1,2,3) for tetrahedral coordination at R(O-O)= 2.76 Å are -1.36 kcal/mol for the sequential trimer (3), 0.87 kcal/mol for the double hydrogen donor (1), and 0.35 kcal/mol for the double hydrogen acceptor (2). Even though E(1,2,3) for the trimer still has its minimum at 3.0 Å, Hankins, et al., point out that, in tetrahedral clusters, the fact that the ratio of sequential:double donor:double acceptor trimers is 4:1:1 and that the large nonadditivity V(1,2,3) of the sequential trimer is greater at shorter O-O distances rationalizes the observed ice and water O-O separation of 2.76 Å. Although the evidence is indirect (it could be argued that the inclusion of dispersion energies, left out in the SCF calculation, would cause the O-O distance to be reduced), their explanation is reasonable. Ideally, one would like to examine a tetrahedrally coordinated pentamer with their basis set but this would involve 150 contracted functions, a hefty task, for any available computer.

Del Bene and Pople³⁶ also examined higher polymers of water and concluded that cyclic systems should be found in the structure of liquid water. These authors as well as Hoyland and Kier⁶⁵ and Kollman and Allen⁶⁶ (the latter two using the CNDO/2 semiempirical method) carried out calculations on the tetrahedrally coordinated pentamer and found that the stability/H bond was very similar to the dimer stabilization. CNDO/2 results on a variety of cyclic structures of water polymers were very similar to Del Bene and Pople's STO-4G results (Table II) in terms of the stabilization energy found

Table II

Comparison of *Ab Initio* STO-4G Calculations with CNDO/2 Results on Water Polymers

	STO-4G ^a		CN	DO/2 ^b
	bond	R(O-O)	bond	R(O-O)
(H ₂ O) ₂	6.1	2.76	8.4	2.53
$(H_2O)_4$	9.4	2.47	9.5	2.45
$(H_2O)_6$ $(H_2O)_6$ symmetric	12	2.44	10.8	2.45
hydrogens	10–11	~2.3	10.4	2.32

^a References 36 and 82. ^b Reference 68.

and O–O distance at the minimum energy; clearly the stabilization is exaggerated in these calculations. The CNDO/2 studies indicate that infinite $OH \cdots OH \cdots OH$ sequentially H-bonded polymers should have an H-bond energy similar to the cyclic polymers.⁶⁵

In view of these results, what can one say about the structure of liquid and solid water? Even though one should not accept the absolute value of the stabilization predicted for cyclic hexamers, the qualitative feature of additional stability for a cyclic structure should still be valid. In liquid water, the O-H stretches of the hydrogens in the cyclic structures would be shifted further downfield than those outside the cycle or those involved in O···HOH···O, cyclic, and bifurcated H bonds (the latter two dimer structures have slightly lower stability than the linear dimer but appear to be stable enough to contribute to water structure; Kollman and Allen⁵⁴ find stabilization energies of 5.3, 4.4, and 4.0 kcal/mol for linear, bifurcated, and cyclic structures). Concerning the theories of liquid water,69 the most recent ir70 and Raman71 evidence seems to support a two-state model (on the time scale of vibrational spectroscopy), but it is still not really clear to what these two states correspond. They have been interpreted as representing "H-bonded" and "non-H-bonded" species with an energy difference of 2-3 kcal/mol. Unfortunately, the crudeness of CNDO/2 force constants precludes any quantitative force constant predictions for various types of clusters by that method. Extensive potential surfaces for dimers and trimers such as those carried out by Del Bene and Pople should, however, provide better potentials for Monte Carlo calculations on liquid water.72

The question of "anomalous water" has been, of course, the source of much controversy and excitement during the last 2 years, and the investigation of this phenomenon has produced an important new chapter in the history of chemistry. Because the problem is ultimately concerned with the potential existence of a new type of hydrogen bond, and because the experimental studies have been plagued by impurities and small amounts of material, theory has had a key role to play. It is not unexpected that a number of those theoreticians active in the theory of ordinary hydrogen bonds participated in the polywater problem, but the manner of their participation has been unusual—it is only rarely that both theoreticians and experimentalists have simultaneously been involved during that phase of research when the existence as well as the properties of a new material have been in question.

Approximately 25 theoretical papers have been published on this subject. Both semiempirical and *ab initio* methods are represented; ref 73 gives a detailed analysis and comparison of this work. One model was developed which for a time was able to compatibly interrelate all of the existing 20–25 different pieces of experimental data. Subsequent molecular weight measurements by Derjaguin, *et al.*,⁷⁴ and further high-accuracy *ab initio* calculations, however, invalidated this model. The fact that a model encompassing such a vast array of diverse experiments could be constructed from a simple structural hypothesis and that this model was then disproved is strong circumstantial evidence that a new type of hydrogen bond does not exist for water even in a low-lying metastable state.

(72) A. Ben Naim and F. Stillinger, ibid., submitted for publication.

⁽⁶⁹⁾ For a more extensive discussion on this subject, see D. Eisenberg and W. Kauzmann, "The Structure and Properties of Water," Clarendon Press, Oxford, 1969.

⁽⁷⁰⁾ W. A. Senior and R. E. Verrall, J. Phys. Chem., 73, 4242 (1969).

⁽⁷¹⁾ G. Walrafen, J. Chem. Phys., 47, 114 (1967); 50, 560 (1969).

⁽⁷³⁾ L. C. Allen and P. A. Kollman, J. Colloid Interface Sci., 36, 461 (1971).

⁽⁷⁴⁾ B. V. Derjaguin and N. V. Churayev, ibid., 36, 415 (1971).

Experimentally, the question of polywater's existence has not been finally resolved, although many of the early investigators who felt that a new material was a good probability do not now feel this way. The general interest in polywater lent a perhaps excessive credibility to some very tentative experimental work.⁷⁵ In particular the "sweat" hypothesis has been conclusively disproved by several careful studies.⁷⁶ The problem of the amount and kind of impurities remains unanswered and the subject of wide disagreement among those who have disbelieved as well as believed in a new water allotrope.

In summary, one can say that among those who actively participated in elucidating this phenomenon, the scientific method has worked well. Faced with a genuine potential for the most important new chemistry in several decades, along with very difficult experimental and theoretical problems, a negative conclusion has been reasonably well established in a remarkably short time. In addition, theory and experiment have shared a close and fruitful partnership.

4. Hydrogen Fluoride Dimer and Polymers

Unlike water, hydrogen fluoride has a well-characterized gasphase polymer, the cyclic hexamer. Janzen and Bartell have found,⁷⁷ using electron diffraction, that the cyclic hexamer is a puckered ring $[\theta(FFF) = 104^{\circ} \text{ and } R(F-F) = 2.53 \text{ Å}]$. Franck and Meyer⁷⁸ and Smith⁷⁹ have carried out extensive ir studies on HF vapor and explain their results by proposing an equilibrium between monomer, dimer, tetramer, and hexamer species. Franck and Meyer concluded that an H-bond energy of 7 kcal/mol (no nonlinear effect) is compatible with the results of their experiments.

Theoretical calculations on the HF dimer have been carried out by Kollman and Allen⁸⁰ (ab initio), Diercksen and Kraemers⁸¹ (ab initio), Hoyland and Kier,⁶⁵ and Kollman and Allen⁶⁶ (CNDO/2). All the calculations find a near linear HF dimer to be the most stable $[\theta(\text{HFH}) = 140-160^{\circ}]$, but an extremely shallow potential for bending the external hydrogen in $H-F\cdots H-F$. The contracted Hartree-Fock atomic basis⁸⁰ finds a dimerization energy of 4.6 kcal/mol, and an extensive basis (including p and d polarization functions) also predicts 4.6 kcal/mol.81 The CNDO/2 studies (using experimental monomer geometries) find a dimerization energy of 6.6-6.9 kcal/mol, but complete optimization of monomer and dimer geometries yields an energy dimerization of 9 kcal/mol. As in the case of the water dimer. the CNDO/2 studies greatly underestimate R(F-F) in the dimer (R = 2.45 Å) although no experimental value is available. The ab initio studies find F-F distances of 2.8880 and and 2.85⁸¹ Å.

Ab initio calculations⁷² using near-Hartree-Fock atomic bases predict an energy of formation for HF cyclic tetramers and hexamers from the monomers to be 20 and 33 kcal/mol,

respectively, with R(F-F) for the hexamer predicted to be 2.74 Å. A more complete optimization of the F-H distance in the hexamer would increase the stabilization and decrease the F-F distance. In contrast to what Janzen and Bartell's experiments seem to indicate, a planar sp² structure is predicted to be more stable than a chair sp³ structure by 4.8 kcal/ hexamer.

CNDO/2 calculations have been carried out on HF polymers by Hoyland and Kier⁶⁵ and Kollman and Allen.⁶⁶ The former authors, using the experimental geometry for HF (0.91 Å), computed the energy for the linear trimer, tetramer, and hexamer and cyclic planar hexamer, with the most stable structure being the cyclic hexamer (with an energy of formation of 56 kcal/mol of hexamers predicted). Kollman and Allen carried out a geometry search for the most stable linear and cyclic structure and found the most stable linear structure to be the pentamer and the most stable cyclic structure to be the planar hexamer. A complete geometry search on the cyclic HF hexamer⁶⁸ predicts a symmetrically bonded structure [R(F-F) = 2.25 Å] to be the absolute minimum energy, with an energy of formation of 100 kcal/mol relative to six HF.

5. Methanol Dimers and Polymers

Earlier matrix isolation work on the methanol dimer concluded that the minimum energy configuration was a cyclic structure,⁸² but more recent calculations by Murthy, et al.,⁸³ and Hoyland and Kier,65 as well as experimental work by Bellamy and Pace,⁸⁴ support the view that the methanol dimer is linear instead of cyclic. Experiments by Weltner and Pitzer on gas-phase methanol⁸⁵ and recent studies of methanol in various inert solvents⁸⁶ support a monomer-tetramer equilibrium (with some presence of dimer and trimer not ruled out). Murthy, et al., studied methanol cyclic dimers and the linear dimer and trimer by CNDO/2 and EHT molecular orbital methods. The extended Hückel theory calculations predicted a 1.3-kcal/mol stabilization for the linear dimer and 0 for the cyclic; the corresponding values for CNDO/2 were 6.46 and 1.70 kcal/mol. The linear trimer had a greater energy of stabilization than two dimers. Hoyland and Kier examined the cyclic tetramer of methanol by CNDO/2 and found its energy of formation to be 23.9 kcal/mol, surprisingly less than four times the dimerization energy of methanol. It is possible, however, that the authors' use of the experimental monomer geometry (rather than the CNDO/2 optimized) as well as incomplete geometry optimization in the tetramer caused this lower stabilization energy. Allen and Kollman found cyclic hexamers of methanol stable by 10 kcal/H bond with respect to six monomers.68

The theoretical results on methanol give strong support to a linear rather than a cyclic methanol dimer. There has been some controversy in the literature on this point, and the ir work by Bellamy and Pace is the most elegant experimental proof for a linear dimer and trimer.

It is of interest at this point to review theoretical evidence for methanol, water, and hydrogen fluoride polymers. The

⁽⁷⁵⁾ TIME Magazine, 46 (Oct 19, 1970).

⁽⁷⁶⁾ See articles in Polywater Symposium issue of J. Colloid Interface Sci., 36 (4), (1971).

⁽⁷⁷⁾ J. Janzen and L. S. Bartell, J. Chem. Phys., 50, 3611 (1969).

⁽⁷⁸⁾ E. U. Franck and F. Meyer, Z. Electrochem., 63, 577 (1959).

 ⁽⁷⁹⁾ D. W. Smith, J. Chem. Phys., 28, 1040 (1958); J. Mol. Spectrosc.,
 3, 473 (1959).

⁽⁸⁰⁾ P. A. Kollman and L. C. Allen, J. Chem. Phys., 52, 5085 (1970).

⁽⁸¹⁾ G. H. F. Diercksen and W. P. Kraemers, Chem. Phys. Lett., 6, 419 (1970).

⁽⁸²⁾ M. Van Thiel, E. D. Becker, and G. C. Pimentel, J. Chem. Phys., 27, 95 (1957).

⁽⁸³⁾ A. S. N. Murthy, R. E. Davis, and C. N. R. Rao, Theor. Chim. Acta, 13, 81 (1968).

⁽⁸⁴⁾ L. J. Bellamy and R. J. Pace, Spectrochim. Acta, 22, 525, 535 (1966).

⁽⁸⁵⁾ R. Weltner and K. Petzer, J. Amer. Chem. Soc., 73, 2606 (1951).

⁽⁸⁶⁾ W. Dixon, J. Phys. Chem., 74, 1396 (1970).

experimental results that methanol forms a cyclic tetramer and HF a cyclic hexamer support the theoretical result that cyclic structures are unusually stable. In view of these facts, it is surprising that water polymers, whose energies of formation are predicted to be greater than those of HF^{72.87} and comparable to those of methanol polymers,⁸³ should not be observable in the gas phase. This is probably due to the extensive H bonding of water liquid causing lower vapor pressures of water than HF and methanol. According to Eisenberg and Kauzmann⁶⁹ there is "no *direct* evidence for H bonds between water molecules in the vapor phase."

6. Strong Hydrogen Bonds

We will define strong hydrogen bonds as those in which there are significant structural changes in both members of the H-bonded complex. For example, $(HF)_2$ is a weak H bond because in its minimum energy structure, both HF monomers have a very similar structure to isolated monomeric HF. $HF_2^$ is a "strong" hydrogen bond because the minimum energy structure is very different from that of $HF + F^-$.

The simplest strong hydrogen-bonded system is the bifluoride ion, HF_2^- . This system has been examined theoretically by valence bond theory (Bessis and Bratoz²⁷ and Erdahl²⁸), by *ab initio* molecular orbital calculations (Clementi,⁸⁸ Mc-Lean and Yoshimine,⁸⁹ Noble and Kortzeborn,⁹⁰ and Kollman and Allen²⁶) and by CNDO/2 molecular orbital studies (Allen and Kollman⁶⁸). The molecular orbital calculations all predict the experimental geometry within 2%; the predicted energy for the reaction $HF(g) + F^-(g) \rightarrow HF_2^-(g)$ varies from 28 kcal/mol (lowest energy SCF by McLean and Yoshimine) to 100 kcal/mol (CNDO/2). The experimental estimates for this reaction vary from 37 to 58 kcal/mol.⁹¹ The valence bond calculations are in poorer agreement with the experimental value of the minimum energy geometry but give reasonable energies of reaction.

Ab initio calculations on $H_5O_2^{+26,92}$ and CNDO/2 calculations on various hydrated anions $O_nH_{2n-1}^{-}$ and $O_nH_{n+1}^{+}$ give good agreement with experimentally available geometries.^{93,94} The energy of formation of $H_5O_2^{+}$ from H_2O and H_3O^{+} (36 kcal/mol) is well reproduced by *ab initio* calculations, but the CNDO/2 studies significantly exaggerate the energies of formation of the various hydronium ion species. The CNDO/2 results indicate that, in both the positive and negative hydrated ions, chain structures are favored over cyclic ones.

Hoyland and Kier's CNDO/2 calculations⁶⁵ on the interaction of NH_{4^+} and $MeNH_{3^+}$ with water yield hydrogenbond energies in good agreement with experiment, but once again part of this agreement may be due to the use of experimental rather than CNDO/2 optimized geometries at each stage of the reaction.

7. Carboxylic Acid Dimers and Polymers

Carboxylic acids are one of the few sources of unequivocal hydrogen-bond gas-phase structural data. Both microwave95 and electron diffraction⁹⁶ studies on various carboxylic acids in the gas phase confirm the cyclic structure of the dimer. In $(RCOOH)_2$, the substituent R does not affect the enthalpy of dimerization greatly (the enthalpy of dimerization is 14 kcal/mol for the formic acid dimer and 15.8 kcal/mol for the mixed formic-trifluoroacetic acid dimer). CNDO/2 studies by Schuster and Funck,97 Murthy, et al.,83 and Hoyland and Kier⁶⁵ correctly predict the cyclic dimer to be more stable than the linear; the first two papers note that the stabilization per H bond is similar in one of the linear dimers to the cyclic; this fact rationalizes the infinite linear chain crystal structure of formic acid. Schuster and Funck also determined the H-bond energy using CNDO optimized geometries for both monomer and dimer and found that the energy per H bond was 17 kcal/mol (in contrast to the experimental value of 8 kcal/mol). No one has attempted to rationalize the experimental structural difference between formic and acetic acids98 (formic is cyclic in the gas and infinite H-bonded linear in the solid; acetic is cyclic in both phases), but it is likely that the effects are too subtle to be treated by semiempirical MO theory. Recently, Clementi has carried out an ab initio study of the formic acid dimer and has found a dimerization energy in very good agreement with experiment.99

8. Formamide and Other Amide Hydrogen Bonds

A number of laboratories have examined hydrogen bonding between amides in hopes of elucidating peptide structure. A small basis set ab initio calculation by Dreyfus, et al., 100 on the cyclic formamide dimer finds dimerization energies of 14 and 19 kcal/mol with two different basis sets. Only the X-ray geometry determined dimer was considered, so it is likely that a geometry optimization would further overestimate the dimerization energy. Dreyfus and Pullman¹⁰¹ also examined linear dimers of formamide, finding an H-bond energy of 8 kcal/mol. Three groups have made semiempirical MO investigation of amides. (1) CNDO/2 studies have been carried out by Pullman and Berthod¹⁰² on the cyclic dimer of formamide. (2) Momany, et al., 103 have carried out very extensive CNDO/2 calculations on dimers of formamide and N-methylacetamide. Their dimerization energies for linear and cyclic dimers of formamide were reasonable, but they found a huge (40 kcal/mol) stabilization when two parallel plate formamides were brought together. (3) Murthy, et al., 104

- (96) J. Karle and L. O. Brockway, J. Amer. Chem. Soc., 66, 574 (1944).
- (97) P. Schuster and Th. Funck, *Chem. Phys. Lett.*, 2, 587 (1968).
 (98) R. Jacobsen and Y. Mikawa, *Spectrochim. Acta*, 25, 839 (1969).
- (99) E. Clementi, J. Mehl, and W. von Niessen, J. Chem. Phys., 54,
- (199) E. Clementi, J. Ment, and W. Von Messell, J. Chem. 1 Mys., 5-508 (1971).

(101) M. Dreyfus and A. Pullman, ibid., 19, 20 (1970).

(103) F. A. Momany, R. F. McGuire, J. F. Yan, and H. A. Scheraga, J. Phys. Chem., 74, 2424 (1970).

⁽⁸⁷⁾ J. Del Bene and J. A. Pople, J. Chem. Phys., 55, 2296 (1971).

⁽⁸⁸⁾ E. Clementi and A. D. McLean, ibid., 36, 745 (1962).

⁽⁸⁹⁾ A. D. McLean and M. Yoshimine, *IBM J. Res. Develop.*, **11**, 169 (1967), Tables of Linear Molecules.

⁽⁹⁰⁾ P. Noble and R. Kortzeborn, J. Chem. Phys., 52, 5375 (1970).

⁽⁹¹⁾ T. C. Waddington, *Trans. Faraday Soc.*, 54, 25 (1958), finds a ΔH of 58 kcal/mol. References 79 and 28 also quote a value (37 kcal/mol) reported by S. A. Harrell and D. H. McDaniel [*J. Amer. Chem. Soc.*, 56, 4497 (1964)], who argue that the enthalpy of the gas-phase reaction should be very similar to that for (CH₃)₄NF(s) + HF(g) \rightarrow (CH₃)₄-NHF₂(s) because the lattice energy of TMA fluoride is within 1–2 kcal of that of TMA bifluoride.

⁽⁹²⁾ W. Kraemers and G. Diercksen, *Chem. Phys. Lett.*, **5**, 463 (1970), $[H_6O_2^+]$; **5**, 570 (1970), [FHOH⁻].

⁽⁹³⁾ M. de Paz, S. Ehrenson, and L. Friedman, J. Chem. Phys., 52, 3362 (1970).

⁽⁹⁴⁾ J. Daly and R. E. Burton, Trans. Faraday Soc., 66, 2408 (1970).

⁽⁹⁵⁾ C. C. Costain and G. P. Srivastava, J. Chem. Phys., 41, 1620 (1964).

⁽¹⁰⁰⁾ M. Dreyfus, B. Maigret, and A. Pullman, Theor. Chim. Acta, 17, 109 (1970).

⁽¹⁰²⁾ A. Pullman and H. Berthod, ibid., 10, 461 (1968).

⁽¹⁰⁴⁾ A. S. N. Murthy, K. G. Rao, and C. N. R. Rao, J. Amer. Chem. Soc., 92, 3544 (1970).

also compared CNDO/2 and EHT predictions for internal rotation, protonation, and hydrogen bonding of amides and found that CNDO/2 gave reasonable dimerization energies whereas EHT did not. They found no difference in the dimerization energy of linear formamide and N-methylacetamide.

9. Formaldehyde Hydrogen Bonding

Molecular orbital studies of hydrogen bonding to the formaldehyde molecule have been examined by Morokuma (ab initio)105 and Schuster.106 Morokuma studied the H2CO-H2O and H₂CO-2H₂O complexes using a single Slater basis set and found that in the dimer the minimum energy $C - O \cdots H$ angle is near 120° and the energy of dimerization is 3.5 kcal/ mol. He also examined the possibilities of π hydrogen bonding and found a very small interaction energy (0.05 kcal/mol) when the water hydrogen approached the π electrons in the center of the C-O bond, 0.5 kcal/mol when the hydrogen approached the π electrons on the oxygen. The energy of C- $H \cdots O$ hydrogen bond in formaldehyde-water was found to be 0.61 kcal/mol. The C— $H \cdots O$ bond in the formaldehyde dimer would be even weaker since water is a better proton acceptor than formaldehyde. Schuster examined the complexes formaldehyde-water and formaldehyde-HF by CN-DO/2 and INDO molecular orbital methods and found far greater stabilization energies than Morokuma. He also found π hydrogen bonds of comparable strength 107 to the σ (a very different conclusion from Morokuma), probably owing to a failure of CNDO/2 in this case.

10. Other Systems

There have been a number of other systems studied by molecular orbital techniques, and the energy and geometry of formation found in these studies are given in Table III.¹⁰⁸⁻¹²⁴ An interesting electrostatic calculation on the dimer of HCN and the solid HCN was carried out by Rae,¹²⁵ who used a monopole-dipole representation of the exact charge distribution of the HCN monomer, bond polarizabilities, and dis-

- (106) P. Schuster, Int. J. Quantum. Chem., 3, 851 (1969).
- (107) P. Schuster, Theor. Chim. Acta, 19, 212 (1970).
- (108) P. Schuster, Chem. Phys. Lett., 3, 433 (1969).
- (109) A. Ockvirk, A. Azman, and D. Hadzi, Theor. Chim. Acta, 10, 187 (1968).
- (110) H. Preuss and G. Diercksen, Int. J. Quantum Chem., 1, 631 (1967).
- (111) H. Preuss and G. Diercksen, ibid., 1, 637 (1967).
- (112) H. Preuss and G. Diercksen, Arb. Ber. Inst. Theor. Phys. Chem., Stuttgart, No. 13 (1969).
- (113) H. Preuss and G. Diercksen, Int. J. Quantum Chem., 1, 641 (1967).
- (114) A. Azman, B. Borstnick, and J. Koller, Theor. Chim. Acta, 13, 262 (1969).
- (115) B. J. McAloon and B. C. Webster, *ibid.*, 15, 385 (1969).
- (116) V. Nicely and J. Dye, J. Chem. Phys., 52, 4798 (1970).
- (117) W. de Jeu, J. Phys. Chem., 74, 822 (1970).
- (118) K. Morokuma, H. Kato, T. Yonezawa, and K. Fukni, Bull. Chem. Soc. Jap., 38, 1263 (1965).
 (119) P. Kollman and L. C. Allen, J. Amer. Chem. Soc., 93, 4991
- (1971).
- (120) P. Kollman, J. Liebman, and L. C. Allen, ibid., 92, 1142 (1970).
- (121) A. Imamura, F. Fujita, and C. Nagata, Bull. Chem. Soc. Jap., 42, 3118 (1969).
- (122) J. R. Sabin, Int. J. Quantum. Chem., 2, 23 (1968).
- (123) J. R. Sabin, *ibid.*, 2, 31 (1968).
- (124) See ref 8 for a number of other semiempirical calculations on H-bonded systems.
- (125) A. I. M. Rae, Mol. Phys., 16, 257 (1969).

persion energies and an empirical repulsion formula to compute the lattice parameters of solid HCN, finding good agreement with experiment. His potential overestimated the dimerization energy of HCN by 50%. The hydrogen bond in the HCN dimer is long (3.2 Å), and an electrostatic model should work better in estimating its energy than most other, shorter bonds, where considerable charge transfer terms may play a role.

11. Conclusions

It appears that one can have reasonable confidence in the energy and geometry of dimerization found by accurate ab initio calculations. There is still a significant variation of dimerization energy with basis set size, but the following general statements can be made: very accurate (d polarization functions and an extended and flexible s and p basis on the nonhydrogenic atoms and p polarization with an extensive s basis on hydrogen) ab initio calculations have computed dimerization energies in very good agreement with experiment; accurate (use of a double- ζ atomic basis set) calculations also give good agreement with experiment when contracted, but less agreement when more coefficients are allowed to vary; single Slater basis sets (or Gaussian fits to Slaters) give reasonable agreement with experiment for dimers, but badly exaggerate the H-bond energy in polymers; small Gaussian bases give much too large H-bond energies when allowed many SCF determined coefficients; more contracted bases give more reasonable results. The prescription is: use the most extensive basis possible if computer time is available; if not, use a highly contracted basis which well represents the monomer geometry, multipole moment, and polarizability. In any case, the uncertainties in many experimental gas-phase dimerization energies as well as the need to estimate the zeropoint energy and correlation energy corrections make an exact agreement between experiment and molecular orbital dimerization energy not a reasonable goal. Further progress toward estimating correlation effects, which should be small, might be made by carrying out calculations on FHF⁻ and (HF)₂ to greater accuracy. Zero-point energy corrections^{50c} in NH₃HCl lower the dimerization energy by 5 kcal/mol. However, this dimer is unusually strongly bound; the difference in zero-point energy between (H₂O)₂ and 2H₂O can be estimated from Del Bene and Pople³⁶ as well as Morokuma and Winick's⁵⁹ force constants for the water dimer to be 1.5 kcal/mol, which is 25% of the dimerization energy (this is most probably an upper bound to the change in zero-point energy in the water dimer). The more weakly bound dimers would have a smaller zero-point energy correction. It has been noted that energy differences for reactions involving closedshell species should be much less affected by correlation energy effects than dissociation to atoms. However, a correlation energy difference of 1–2 kcal/mol [compared to that found] in calculating the HF dissociation energy to H and F atoms (70 kcal/mol)] would be significant in view of the smallness of hydrogen-bond energies. In some cases, since the zeropoint energy and correlation corrections would be of opposite sign, they might exactly cancel and the molecular orbital energy difference predict the experimental dissociation energy.

Both Kollman and Allen⁸⁰ and Diercksen and Kraemers⁸¹ predict a greater dimerization energy for water than for HF, in contrast to what is currently experimentally accepted. Since the uncertainties in the experimental results are large, the true situation is not known at present. Evidence from ir spec-

⁽¹⁰⁵⁾ K. Morokuma, J. Chem. Phys., 55, 1236 (1971).

Table III ¹²⁴						
System	Method	Results	Ref			
OH O CH ₃ C=CHCCH ₃	CNDO/2	The proton well is a double minimum. Replacing H with Li yields a minimum energy structure with C_{2v} sym- metry in agreement with experiment. Also Be complexes found a geometry in agreement with experiment.	108			
$(HCOOH)_2$ and $(CF_3COOH)_2$	CNDO/2 (modified)	Parameterization such that delocalization effects and energy are far too large	109			
LiH ₂ -	Small basis ab initio	Metastable LiH_2^- with a potential barrier of 0.15 au to decomposition to Li^- and H_2	110			
Li_2H^+	Small basis ab initio	Stable by 59 kcal over Li ⁺ and LiH	111			
$F^{-}(H_2O)_n$	Small basis ab initio	$n = 1, 2, 4$; average ΔE /bond = 2 eV; $R(O-F) = 2.33$ Å	112			
Li ₂ H ⁻	Small basis ab initio	Stable by 7 kcal over LiH and Li-	113			
HF_2^- and $H_2F_3^-$	CNDO/2 and INDO	Nuclear spin coupling constants predicted for HF_2^- and $H_2F_3^-$	114			
H ₂ CO···HOH	CNDO/2	Energy and geometry of complex formation. Linear H bond (approaching an sp ² lone pair) found to have a dimerization energy of 5-7 kcal/mol	106			
Hydrated electron dimer	EHT	A model calculation for the hydrated and ammoniated electron in $(H_2O)_2$ and $(NH_3)_2$	115			
$Li(NH_3)$ and $Li(NH_3)_2$	Hartree-Fock AO and extended basis	Mechanism for ammoniated electron. $Li(NH_3)_2$ unstable with respect to $LiNH_3 + NH_3$ even though $LiNH_3$ is stabilized over Li and NH_3 by 18 kcal/mol	116			
(CH ₃) ₂ CO···HOH	CNDO/2 and EHT	Evaluate nmr shifts expected in this complex	117			
(HCOOH) ₂ and intramolecular H bonding in <i>o</i> -cresol	EHT	Too small stabilization (3.8 kcal) in formic acid dimer; charge redistribution in intramolecular H-bonding complex	118			
$(NH_3)_2$, (NH_3H_2O) , (NH_3HF)	Hartree-Fock AO	Reasonable ΔE of formation of various dimers. Attempt to generalize about nature of H bond in first-row dimers	119			
LiFHF and (LiF) ₂	Hartree-Fock AO	Comparison of lithium bonding with hydrogen bonding	120			
Glycine- H_2O interaction	CNDO/2	Rationalization for zwitteronic structure of glycine in H_2O	121			
Pyridinium-pyridine interaction	EHT	Proton potential function as a function of heavy atom distances	122			
Pyridine-pyrrole	EHT	Proton potential function as a function of heavy atom distances	123			

troscopy indicates that the HF dimer has a much smaller $\Delta E/H$ -bond energy than the hexamer¹²⁶ which would support the theoretical result noted above.

Of the semiempirical methods used to study hydrogen bonding, CNDO/2 is far superior to EHT and NDDO. Murthy, et al., have examined various molecules by EHT and find no (or very little) stabilization in dimer formation. NDDO has the opposite weakness; it greatly exaggerates the energy of hydrogen-bond formation and predicts the cyclic dimer of water to be equal in stability to the linear. Comparison of CNDO/2 with ab initio calculations on dimers reveals that the CNDO/2 finds reasonable energies of dimerization in most cases, but these energies are often very dependent on the monomer geometry chosen (in contrast to the ab initio results). This is due to the fact that the difference in bond length between calculated and experimental in ab initio is small (2%), whereas CNDO/2 overestimates the bond lengths by 10%. In HF polymers CNDO/2 exaggerates the H-bond energy considerably. The energy of dimer formation calculated by CNDO/2 is greatly exaggerated when one examines $\pi-\pi$ interactions. Momany, et al.,'s results¹⁰³ on the formamide dimer, Hoyland and Kier's result that a cyclic dimer of HCN is predicted to have a stabilization energy of 50 kcal/ mol, and Kollman's results¹²⁷ on H₂CO-HF and H₂CO-H₂O, where the most stable hydrogen-bonded configuration finds the hydrogen from HF approaching the positive carbon in formaldehyde, show this defect. These results are in line with NDO studies on carbonium ions, where the relative stabilities of protonated acetylene and the vinyl cation and protonated ethylene and the ethyl cation are opposite to *ab initio* results.¹²⁸

No *ab initio* calculations have been carried out on hydrogen-bonded systems where CNDO/2 fails. However, in agreement with the carbonium ion results, the fact that CNDO/2 neglects three- and four-center repulsions causes those geometrical configurations which allow more atoms to get closer together to be favored. It appears that any NDO scheme may have this defect, so it is not clear that one could reparameterize to remove this defect. Since we know that CNDO/2 overestimates the stability of multiply connected systems, we can have more confidence in CNDO/2 results which predict a linear dimer to be more stable than a cyclic (*e.g.*, water and methanol dimers).

Is there a lone-pair directionality in hydrogen bonding? This question is the subject of a review by Donahue,¹²⁹ so it deserves some comment. A number of the molecular orbital studies have attempted to give some insight into the problem. The results on the water dimer indicate that the favored configuration of a point dipole model (bifurcated structure) is not the lowest in energy. Would a lone-pair dipole model predict the geometry of the water dimer? It would predict a

⁽¹²⁶⁾ P. V. Huong and M. Couzi, J. Chim. Phys., 66, 1309 (1969).

⁽¹²⁷⁾ P. Kollman, unpublished results.

⁽¹²⁸⁾ R. Sustmann, J. E. Williams, M. J. S. Dewar, L. C. Allen, and P. v. R. Schleyer, J. Amer. Chem. Soc., 91, 5350 (1969).

⁽¹²⁹⁾ J. Donahue in ref 2a, p 443.

linear structures with θ near 54° to be most stable, which is close to the results of the most accurate dimer calculation. However, in a localized orbital picture of the water monomer, one finds a lone-pair-lone-pair angle of 140°, so that one might expect θ to be much larger. The difference in energy between the $\theta = 40^{\circ}$ and $\theta = 0^{\circ}$ linear structure (the latter representing an approach between the lone pairs) found by Hankins, et al., is only 0.3 kcal/mol, a very small amount. These authors also note that when they move the external hydrogen of the proton donor molecule into the same plane as the hydrogens of the H acceptor water molecule (which should not affect any "lone-pair" directionality), the difference in energy between the $\theta = 40^{\circ}$ and the $\theta = 0^{\circ}$ (approach between the lone pairs) is less than 0.1 kcal/mol. Kollman and Allen made a similar observation in (HF), where a "lonepair'' configuration $[\theta(HFH) = 120^{\circ}]$ is higher in energy than a $\theta(FHF) = 180^{\circ}$ configuration by only 0.6 kcal/mol (the minimum energy angle is 160°). When nitrogen is an sp³ lonepair donor, all simple models correctly favor that a hydrogen donor should approach along the lone-pair axis. No ab initio studies have examined the size of the force constant for moving off this line, but Schuster's CNDO/2 results¹⁰⁷ clearly show that this force constant should be much higher than the corresponding one for O and F sp³ electron donors.

What about carbonyl donors? Both Morokuma and Dreyfus and Pullman have studied dimers with a carbonyl group as the base, and both find that the difference in energy between the favored lone-pair direction ($\theta = 60^{\circ}$) and the approach between the lone pairs is 1.5 kcal/mol, significantly greater than that found in the sp³ donors. Morokuma's INDO results and Schuster's CNDO/2 studies find a far smaller (0.6 kcal/mol) difference between lone-pair and dipole favored directions. Neither of these figures is very large when one considers the packing of large molecular crystals, so the wide variety of angles observed by Donahue on different carbonyl donors is not surprising.

The directionality of sp-hybridized electron donors (e.g., nitriles) has not been studied theoretically, but it is likely that the force constant for bending off the $N \cdots H$ —X line would be higher than the corresponding angle in sp³- and sp²-hybridized systems.

In summary, theoretical studies imply that H bonds tend to favor those directions predicted by simple hybridization arguments. However, in the case of sp³ O and electron donors, the potential curve for bending off the "ideal" hybrid line is quite small ($\sim 0.1-0.5 \text{ kcal}/50^\circ$ bend); in sp² donors the energy differences are about 1.5 kcal/mol between the lonepair and dipole favored direction. Recently, Kollman has attempted to rationalize these trends in terms of the symmetry of the molecular orbitals of the donor and acceptor.¹³⁰

B. SPECTROSCOPIC PROPERTIES

1. Vibrational Properties of Hydrogen-Bonded Systems

a. Vibrational Transitions

The method most commonly used to identify the presence of hydrogen bonding is infrared spectroscopy. A number of theoretical studies have attempted to examine the X-H stretching force constant change upon hydrogen-bond formation. Kollman and Allen have computed the infrared properties expected for $(H_2O)_2$, $(HF)_2$, and $H_2O-HF^{s_0}$ and have found a small increase in the X-H bond length as well as a very small decrease in the X-H force constant. (Morokuma and Winick found similar results for the water dimer.⁵⁹) The decrease in the X-H bond force constant for water and HF dimers is much less than those found in liquid H_2O and HF, but this may be due to the closer $X \cdots X$ distance and different environment of the H bonds in the liquid (it is speculated that most of the large shifts observed in the liquid are due to favorable triplet configurations). The relatively small shifts found theoretically are, however, compatible with the matrix dimer work of Tursi and Nixon.⁵⁶ Dreyfus and Pullman found similar force constant changes in the linear formamide dimer.¹⁰¹

The $O \cdots O$ stretching force constant for the water dimer has been shown to be compatible with that found experimentally in ice; 59 very similar $X \cdots Y$ force constants are found in H₂O-HF and the HF dimer.⁸⁰ The hydrogen-bond bending force constant has been of interest to a number of workers. Kollman and Allen⁸⁰ have noted that the force constant for the bend in (HF)₂ is compatible with Pople's H-bond bending force constant¹⁸ used to fit the experimental radial distribution function in water. They find that in the hydrogen fluoride dimer one can bend the H bond up to 20° with little energy loss; Dreyfus and Pullman find a similar flexibility in the formamide dimer.¹⁰¹ Del Bene and Pople,³⁶ however, have examined all the intermolecular force constants in the water dimer and find the potential curves much steeper for movement of the proton donor molecule than the acceptor. In particular, their force constant for H-bond bending in the water dimer is considerably greater than Kollman and Allen's for the HF dimer. (This may be just a result of the greater $H \cdots H$ intermolecular repulsions in the water dimer when the H bond is bent.)

b. Infrared Intensities

Of special interest is the intensity increase observed in the X-H stretching region in hydrogen-bonded systems. Kollman and Allen⁵⁴ find relative intensity increases of 8 and 20 $\left[\left|\partial \mu / \partial r\right|^2_{dimer} / \left|\partial \mu / \partial r\right|^2_{monomer}\right]$ for the linear water dimer at R(O-O) = 2.75 and 3.00 Å. Van Thiel's matrix isolation experiments⁵⁵ indicated an intensity ratio of 12, but the more recent studies of Tursi and Nixon⁵⁶ find a much smaller ratio. Kollman and Allen⁸⁰ find a much smaller intensity ratio in systems where H-F is the proton donor; Drevfus and Pullman¹⁰¹ find an intensity ratio of 11 in the formamide dimer. Quantitative comparison of these molecular orbital studies with experiment is difficult because one does not really know what the normal modes of the dimer structure are, but it appears that order-of-magnitude intensity enhancements do not require large amounts of charge transferred in hydrogen bonding; this is contrary to previous conclusions. 4, 11

Van Thiel, *et al.*,⁵⁵ observed a decrease in ir intensity of the bending mode of the water dimer in a rare gas matrix. Using Kollman and Allen's wave function,⁵⁴ one computes an intensity ratio $[|\partial \mu / \partial \theta|^2_{dimer} / |\partial \mu / \partial \theta|^2_{monomer}]$ of 0.1, which is in qualitative agreement with experiment but unreasonably small (an estimate based on Van Thiel's spectra indicates that the ratio is of the order of 0.7).

c. Anharmonicity Effects in H-Bonded Systems

The change in anharmonicity in certain normal modes upon

⁽¹³⁰⁾ P. A. Kollman, J. Amer. Chem. Soc., 94, 1837 (1972).

hydrogen bonding has been a subject of experimental and theoretical interest. A set of papers by Sandorfy¹³¹ has shown that in weak hydrogen bonds there is a decrease in anharmonicity upon H-bond formation; in strong and moderate hydrogen bonds, the anharmonicity greatly increases. Fifer and Schiffer¹³² have shown that in crystalline water hydrates such as CuCl₂·2H₂O, the anharmonicity increases owing to stronger hydrogen bonding $(O-H\cdots Cl^-)$ is stronger than $O-H\cdots O$). The qualitative conclusions of molecular orbital theory are consistent with the above results. The O-H stretch in the weak dimer (H₂O)_{2^{54,59}} is still very similar to that in the water monomer, and one needs a large quartic force constant to fit the proton potential function in the strongly H-bonded HF2^{-.26,90} In view of the well-known defects in molecular orbital calculations (overestimation of bond force constants in diatomics) and the very small perturbations observed in the water dimer spectrum, a detailed quantitative study of anharmonicity in H-bonded systems by molecular orbital calculations does not seem feasible or worthwhile.

d. Breadth of H-Bonded Ir Bands

The extreme breadth of the X-H stretching region when an X-H...Y hydrogen bond is formed has been explained by (a) Fermi resonance, (b) existence of different H-bonded molecular species, (c) sum and difference bands with the $X \cdots Y$ stretch (which has a frequency of 100-200 cm⁻¹), (d) anharmonicity changes upon H-bond formation, and (e) predissociation. A recent experimental study by Hall and Wood¹⁸³ gives good evidence that in phenol-pyridine systems the structure of the X-H stretch is due to overtone and combination bands of the proton donor, some of which are enhanced by Fermi resonance with the O-H stretch in these systems. Walrafen's recent Raman studies71 on liquid water give an example where explanation b (different H-bonded species) may play a role in causing a broad O-H band. Whether one considers liquid water as two states or many, it is likely that there are hydrogen bonds of varying strength (and thus varying O-H frequencies) in water. Van Thiel, et al., 55,82 pointed out that the narrow O-H stretching band of the water and methanol dimer in rare gas matrices is due to the absence of intermolecular coupling in these isolated dimers; Salthouse and Waddington have shown that the broadness of the asymmetric stretch in the bifluoride ion is due to intermolecular coupling between different FHF⁻ in the crystal.¹³⁴ Bertie and Millen135 observed the X-H bands in HCl-ether complexes and explained the broad H-Cl stretching region in terms of coupling between the H-Cl and O···Cl vibrations (the latter having a force constant of 0.12×10^5 dyn/cm). All of the above explanations appear quite reasonable in the specific cases they have been applied to, so it is likely that in general no one of the above effects will completely explain the structure of the X-H stretch in different systems. It seems that the narrowness of the O-H stretching bands in simple Hbonded dimers at low temperature in rare gas matrices shows that the broadness of the O-H stretching bands is not intrinsic to the H bond but is caused by excitation of other modes (vibrational and rotational) of the overall complex.

e. Model Calculations

A number of model calculations have been carried out on hydrogen-bonded systems in an attempt to explain the intensity changes, spectral shifts, breadth, and temperature dependence of the infrared spectrum. Marechal and Witowski136,137 and Singh and Wood138 examine an interaction between the X-H stretch and the $X \cdots Y$ stretch of a hydrogenbonded system, with the vibrational states of the complex designated by a quantum number for each mode. The former two authors studied the carboxylic acid system (two H bonds) and Singh and Wood solved the vibrational Hamiltonian (symmetric and asymmetric stretch) in a single H-bonded $A - H \cdots B$ structure. Marechal and Witowski are able to get a good fit to the experimental spectrum for the carboxylic acid dimer (and the deuterated dimer).137 This success with the carboxylic acid spectrum, as well as the known experimental fact that in liquid water much of the breadth of the stretching mode is due to coupling between the stretches on different water molecules^{1 39} (HO in D₂O has a far narrower O-H stretching band), is strong support that vibrational coupling plays a major role in causing a broad O-H stretching band. Recently, Robertson¹⁴⁰ has examined the role of predissociation as a potential cause of the broadness of the X-H stretching band. He concluded that for the types of A-H and A...B potentials likely in H-bonded systems, a predissociation mechanism (transition from an A-H...B vibrationally excited to an A-H molecule in its vibrational ground state and a B molecule infinitely separated from it) is unlikely to be an important source of line broadening. Robertson agreed with Marechal and Witowski's view that coupling between the A-H and A···B modes was the main source of the broadening of the A-H band in systems (such as the ones that Millen considered¹³⁵) where Fermi resonance is not important. His attempt to quantitatively explain the HCl band in HCl-ether complexes was hampered by (1) the fact that the dependence of the H-Cl potential as a function of $O \cdots Cl$ distance is now known, and (2) the difficulty in considering the effect of low frequency intermolecular bending motions and rotational modes of the complex on the overall spectrum.

f. Semiempirical Calculations on Vibrational Properties

Examinations of X-H force constants, intensity enhancements, and $X \cdots Y$ force constants predicted in H-bonded systems by CNDO/2 show that the force constants found are similar to the results of *ab initio* calculations,⁶⁶ but that the intensity enhancements predicted by semiempirical results are too large (Table IV).

g. Strong H Bonds and the Proton Potential Function

In theoretical studies of typical "weak" H-bonded dimers

⁽¹³¹⁾ C. Berthomieu and C. Sandorfy, J. Mol. Spectrosc., 15, 15 (1965); G. Durocher and C. Sandorfy, *ibid.*, 15, 22 (1965); A. Foldes and C. Sandorfy, *ibid.*, 20, 262 (1966).

⁽¹³²⁾ R. A. Fifer and J. Schiffer, J. Chem. Phys., 52, 2664 (1970).

⁽¹³³⁾ A. Hall and J. L. Wood, Spectrochim. Acta, Part A, 23, 1257 (1967).

⁽¹³⁴⁾ J. A. Salthouse and T. C. Waddington, J. Chem. Phys., 48, 5274 (1968).

⁽¹³⁵⁾ J. E. Bertie and D. J. Millen, J. Chem. Soc., 497 (1965).

⁽¹³⁶⁾ A. Witowski, J. Chem. Phys., 47, 3645 (1967).

⁽¹³⁷⁾ Y. Marechal and A. Witowski, ibid., 48, 3697 (1968).

⁽¹³⁸⁾ J. Singh and A.Wood, *ibid.*, 48, 4567 (1968).

⁽¹³⁹⁾ M. Haurie and A. Novak, J. Chim. Phys., 62, 137, 146 (1965).

⁽¹⁴⁰⁾ G. Robertson, Ph.D. Thesis, Oxford University, 1970.

Infrared Data by	Ab Initio and	CNDO/2 Calcu	lations
	X-H K_d;mer/ K_monomer	$\begin{array}{c c} I \ stretch \\ \hline \\ \partial r \\ 2^{d}; mer / \\ \hline \\ \partial \mu / \\ \partial r \\ 2^{monomer} \end{array}$	<i>x</i> ···×X force constant (10 ⁵ dyn/ cm)
$(H_2O)_2$, <i>ab inito^a</i> $(H_2O)_2$, CNDO/	0.96	8.2	0.18
2^b	1.02	16	
(HF)2, ab initioª (HF)2, CNDO/	1.00	1.9	0.26
2 ^b	1.10	180	

Table IV

^a Reference 54 and 88. ^b Reference 66.

such as (HF)₂ and NH₃HF, no double minimum potential well is found for the proton at the minimum energy $X \cdots Y$ distance, although at larger $X \cdots Y$ separations a second, higher energy minimum appears. These results are found in both semiempirical and ab initio molecular orbital calculations.99,119,134,135,141,142 One of the main defects with extended Hückel theory is that it predicts a double minimum potential well at the minimum energy $O \cdots O$ distance for the water dimer and finds a lower energy for the H₃O⁺OH⁻ well than the H₂OHOH structure.¹⁴³ Bell and Barrow¹⁴⁴ gave experimental evidence for the existence of a double minimum potential in weak H-bonded complexes involving ethanol as proton donor. Their proposal was based on a solvent-dependent second absorption in the O-H overtone region of ethanol. However, there are other explanations for this second peak, for example, that it is due to $2\gamma_{\rm b}+\gamma_{\rm s}$, which interacts more strongly with $2\gamma_s$, the stronger the hydrogen bond. Based on the theoretical dimer results, one is tempted to conclude that in weak H-bonded dimers in the gas phase, there is only one proton minimum at the minimum energy $X \cdots Y$ separation. However, more extensive configuration interaction results on, for example, (HF)2 are needed to substantiate this conclusion.

The potential surface for the bifluoride has been theoretically examined by McLean, Erdahl, Noble, and Kortzeborn and Kollman and Allen. Ibers'¹⁴⁵ best fit to the experimental ir and Raman data used a potential of the form $V = \frac{1}{2}k_sQ_s^2$ $+ \frac{1}{2}k_aQ_a^2 + aQ_a^4 + bQ_a^2Q_s$, where Q_a is the "normal coordinate" for the asymmetric stretch and Q_s the "normal

- (143) H. Baba, A. Matsuyama, and H. Kokubun, Spectrochim. Acta, Part A, 25, 1709 (1969).
- (144) C. Bell and G. Barrow, J. Chem. Phys., 31, 300 (1959).
- (145) J. A. Ibers, *ibid.*, 41, 25 (1964); 48, 539 (1968).

coordinate" for the symmetric stretch. The force constants derived from the theoretical studies¹⁴⁶ are not particularly encouraging; the lowest energy SCF calculation (McLean and Yoshimine⁸⁹) gives qualitatively reasonable force constants, but the next lowest energy work (Noble and Kortzeborn⁹⁰) found much poorer agreement; Kollman and Allen²⁶ actually fit the force constants best. Erdahl's valence bond results²⁸ were in poorer agreement with experiment than Kollman and Allen's SCF calculation.

Kollman and Allen²⁶ and Kraemers and Diercksen⁹² have examined the proton potential well in H₅O₂⁺. Unlike HF₂⁻ which has a relatively steep single proton well at the minimum energy F-F distance of 2.26 Å, $H_5O_2^+$ has an extremely shallow proton well at the minimum energy O-O distance of 2.38 Å (the energy varies only 0.04 kcal/mol when the proton is moved from the center of the O-O bond to a position 0.15 A from the center of the bond). In addition, Kollman and Allen found that the potential could not be fit with the fourparameter function which gave qualitative agreement with experiment for HF2^{-, 26} The double well for proton motion found when the O-O distance was 2.48 Å had an energy barrier of only 300 cm⁻¹, so that the proton well was still in effectively a single well at this geometry. One would expect, however, that at distances greater than 2.5 Å the proton would become localized in one of the wells, and one would have an asymmetric hydrogen bond. This is what is observed experimentally; at distances greater than 2.5 Å the H bonds are usually asymmetric.⁶ A manifestation of this is the very large isotope effect in crystals of HCrO₂, which has a symmetric proton well with O-O distance 2.48 Å. In DCrO₂, on the other hand, the deuterium is in an asymmetric proton well, with the O-O distance 2.54 Å. Rundle has given a qualitative rationalization of this.147 This unusual isotope effect manifests itself in other systems as well.148 The calculations of Kollman and Allen,²⁵ Kraemers and Diercksen,⁹² and de Paz, et al.,⁹³ provide a qualitative rationalization of the unusual proton mobilities in H2O. The CNDO/2 studies of de Paz, et al., show an interesting difference between positive hydrated ions (H_{2n+1} - O_n^+) and negative hydrated ions $(H_{2n-1}O_n^-)$. In the positive series all the protons in the cluster are nearly equally positive, with the plus charge distributed evenly among the fragments. In the negative series the central protons are quite positive, whereas the external hydrogens have a slight negative charge. Thus, de Paz, et al., view these species as OHgroups held together by protons.

Schuster¹⁰⁸ has studied the enol form of acetylacetone by CNDO/2 and has found good structural agreement with experimental X-ray, nmr, and ir data. The H-bonded proton in acetylacetone is in a double well, although the energy barrier is less than 200 cm⁻¹. In the excited triplet state Rauh¹⁴⁹ finds an even shallower proton potential well.

Model calculations on proton transfer reactions have been carried out by Pshenichov and Sokolov¹⁵⁰ and Fischer, *et al.*¹⁵¹ The former authors considered proton transfer reactions

(149) D. Rauh, personal communication.

⁽¹⁴¹⁾ At long enough $X \cdots Y$ separations, every $X - H \cdots Y$ system will have a double minimum proton potential function. But in view of the calculations carried out by Kollman and Allen¹²⁷ and de la Vega,¹⁴² it appears that at the minimum $X \cdots Y$ separation in the gas phase, only one proton well exists. The best experimental evidence for a double minimum well in singly H-bonded systems is Baba, *et al.*'s,¹⁴³ study of trinitrophenol-triethylamine H bonds. It may be, however, that solvent effects play a crucial role in stabilizing the ionic structure and that a gas-phase study (or accurate theoretical calculation) would find only a single well plus an inflection point. (Baba, *et al.*,'s extrapolation to dielectric constant unity implies a finite, but shallow, second minimum for the ionic form.) Definitive gas-phase work or a more precise understanding of solvent effects is required to make any meaningful comparisons of theoretical and experimental proton potential functions in neutral $X - H \cdots Y$ systems. CNDO/2 studies on a number of neutral dimers have found single minimum proton potential functions at the minimum energy $X \cdots Y$ distance with the exception of the pyridinemethanol dimer.⁸ There is no experimental evidence on whether this double well is real or spurious.

⁽¹⁴²⁾ Y. Fang and J. R. de la Vega, Chem. Phys. Lett., 6, 117 (1970).

⁽¹⁴⁶⁾ The force constants based on the McLean and Yoshimine⁸⁹ energies were determined by Noble and Kortzeborn.⁹⁰

⁽¹⁴⁷⁾ R. E. Rundle, J. Phys. Chem. Solids, 25, 487 (1964).

⁽¹⁴⁸⁾ S. J. Chan, L. Lin, D. Clutter, and P. Dea, Proc. Nat. Acad. Sci. U. S., 65, 1129 (1970).

⁽¹⁵⁰⁾ E. A. Pshenichov and N. D. Sokolov, Int. J. Quantum. Chem., 1, 855 (1967).

⁽¹⁵¹⁾ S. F. Fischer, G. L. Hofacker, and M. A. Ratner, J. Chem. Phys., 52, 1934 (1970).

of the form $AH + B \rightarrow A^- + BH^+$, $A^- + BH \rightarrow AH + B^-$, and $AH^+ + B \rightarrow A + BH^+$. They noted that the first reaction was unlikely except in polar media (see above) and derived kinetic rate constants for proton transfer in the case of ionic reactants. Fischer, *et al.*, used a quasi-particle model to predict absorption spectra for ionic defects (*e.g.*, H_3O^+ in H_2O) in hydrogen-bonded solids. Singh and Wood's calculations¹³⁸ may be of great use in rationalizing much of the vibrational and isotope effects in H bonds because they present a solution to the $A-H\cdots B$ two vibrational mode Schrödinger equation for various potential parameters. The strange nature of the potential in $H_3O_2^+$,²⁶ however, may make this case difficult to rationalize with a single $A-H\cdots B$ fragment, and one needs a quasi-particle or nuclear dispersion force model¹⁵² to proceed further.

h. Other H-Bond Potential Functions

Models for the proton potential function to apply to spectroscopic results have been discussed in a previous section; here we are concerned with attempts to represent the energetics of the H bond in terms of analytical functions of the intermolecular separation. Lippincott and Schroeder¹⁵³ have proposed a function which represents the H-bond potential energy as a function of $R(X \cdots Y)$ and R(X - H). Others have modified this function to include H-bond bending¹⁵⁴ and isotope effects¹⁵⁵ among other things.

Even though these functions give qualitative agreement with many of the experimental properties of H bonds, they are empirical functions and not useful for understanding the underlying principles of hydrogen bonding. The need for an adequate analytical potential function for hydrogen bonding in applications is great; examples of areas where such a function is useful are the stereochemistry of biopolymers¹⁵⁶ and the interpretation of second dielectric virial coefficients.¹⁵⁷

2. Nmr Spectroscopy on Hydrogen-Bonded Systems

Nmr is a very common tool for the study of hydrogen bonding, but very few theoretical studies on chemical shifts of Hbonded systems have been published. This is because, even for smaller molecules, the paramagnetic contribution to the chemical shift is large and usually requires some knowledge of excited states. It is interesting to note that in liquid HF,¹⁵⁸ H₂O,¹⁵ and NH₃¹⁶ both the proton and ¹⁹F (¹⁷O, ¹⁵N) resonances are shifted downfield upon hydrogen bonding. Thus simple shielding-deshielding ideas do not work even qualitatively to explain both proton and ¹⁹F resonances. Recent solutions of the perturbed Hartree–Fock equations to determine proton chemical shifts in NH₃ and H₂O among others give relatively poor agreement with experiment.¹⁵⁹ The agreement is worse if there is more than one "heavy" center in the

(156) D. Poland and H. A. Scheraga, Biochemistry, 6, 3791 (1967).

molecule¹⁶⁰. de Jeu,¹¹⁷ using a more semiempirical approach to the problem, has examined the hydrogen bonding and protonation of acetone in sulfuric acid-water solutions by iterative extended Hückel theory and CNDO/2. He used the spin coupling theory of Pople and Santry¹⁶¹ and estimated the paramagnetic contribution to the chemical shift with the formula of Karplus and Das.¹⁶² Although some qualitative trends were reproduced, agreement between theory and experiment was far from satisfactory. It appears that SCF calculations will be of little predictive value in predicting the chemical shift and coupling constant changes which accompany H-bond formation, but it would certainly be of interest to see whether an *ab initio* calculation can do a significantly better job than the semiempirical methods. There are a large number of contributions to the chemical shift change which accompanies intermolecular interaction, and it is unlikely that unique hydrogen-bonding contribution can be separated from the other terms, 163 since each of them is of necessity somewhat parameterized.

All the MO studies on H-bonded systems (see section III.C) indicate that the proton loses charge on H-bonding, so it is clear that a decrease in the diamagnetic shielding is an important contribution to the downfield shift observed in hydrogen bonding studied with proton nmr. The magnitude of this charge loss ($\sim^{1}/_{20}$ electron) would predict a shift of \sim^{1} ppm, so it is likely that electric field effects are important.¹⁶³

The change in field gradients at protons involved in Hbond formation can be determined by nmr. Weissman,¹⁶⁴ using an approximate MO wave function, has noted that much lower field gradient at the deuteron in ice than in gasphase water is due more to a lengthening of the O-D bond in ice than the H-bonding effect of the nearby water. By using the wave functions reported in ref 50, we have computed the field gradient at the deuteron in the water monomer [R(O-H)= 0.96 Å], the water dimer [R(O-O) = 2.75, with H bonding toward the lone pair and r(O-H) = 0.96 Å], and the water dimer [same dimer orientation with r(O-H) = 1.01 Å]. The calculated values are compared with Weissman's and experimental deuteron quadrupole coupling observed in solid-state nmr in Table V. Our calculations support Weissman's inter-

Table V

Deuteron Coupling Constants in Water and Ice

	Water monomer r(O-H) = 0.96 Å		Wa din r(O-1 0.9	nter ner H) = 6 Å	Water dimer r(O-H) = 1.01 Å	
	q^a	n ^b	q	n	q	n
Kollman ^d Weissman ^e Experiment ^e	0.587 0.592 0.479	0.10 0.08 <0.12	0.537 0.528	0.10 (0.08)	0.364 0.361 0.330°	0.11 (0.08) 0.1

^a Value of q_{zz} (largest component) in principal axis system; the z axis turns out to be nearly along the O-D bond. ^b Asymmetry parameter $q_{\alpha\alpha} - q_{\beta\beta}/q_{\gamma\gamma}$, where $|q_{\gamma\gamma}| \ge |q_{\beta\beta}| \ge |q_{\alpha\alpha}|$. ^c Value found in ice I. ^d Reference 54. ^e Reference 164.

- (161) J. A. Pople and D. P. Santry, Mol. Phys., 8, 1 (1964); 9, 311 (1965).
- (162) M. Karplus and G. Das, J. Chem. Phys., 34, 1683 (1961).
- (163) See, for example, W. T. Raynes, A. D. Buckingham, and H. J. Bernstein, *ibid.*, **36**, 3481 (1962).

⁽¹⁵²⁾ G. Zundel, "Hydration and Intermolecular Interaction," Academic Press, New York, N. Y., 1969.

⁽¹⁵³⁾ E. R. Lippincott and R. Schroeder, J. Chem. Phys., 23, 603, 1099 (1955).

⁽¹⁵⁴⁾ R. Chidambaram and S. K. Sikka, Chem. Phys. Lett., 2, 162 (1968).

⁽¹⁵⁵⁾ C. Reid, J. Chem. Phys., 30, 182 (1959).

⁽¹⁵⁷⁾ H. Sutter and R. H. Cole, J. Chem. Phys., 52, 132 (1970).

⁽¹⁵⁸⁾ D. K. Hindermann and C. D. Cornwell, *ibid.*, 48, 2017 (1968). (159) G. P. Arrighini, M. Maestro, and R. Moccia, *ibid.*, 52, 6411 (1970).

⁽¹⁶⁰⁾ W. N. Lipscomb, Advan. Magn. Resonance, 2, 137 (1966).

⁽¹⁶⁴⁾ N. Weissman, ibid., 44, 422 (1966).

pretation. An examination (by Kern and Karplus¹⁶⁵) of the deuteron quadrupole coupling constant expected for DF₂⁻ found a value of $q \sim 0.15$ au $[eQq/h \sim 100 \text{ cps}]$ for the best basis set reported by Clementi and McLean for FHF⁻.¹⁶⁶ A calculation of the field gradient at the deuteron using the wave function of Kollman and Allen²⁶ yields values of q = 0.165 au (no p polarization functions) and q = 0.102 au (with p polarization functions). To the authors' knowledge, no experimental value is available.

In Davis and Deb's review, ¹⁰ both the methods and results on recent nmr studies of H bonding are discussed. The experimental solution studies are most useful when combined with ir results on the same system. However, as Davis and Deb note, the fact that in nmr studies one sees only an average signal considering different possible interactions and proton exchange processes leaves a wide "gap" between a theoretical dimer study and a solution nmr signal. Clearly more gas-phase experimental studies are desirable, but in many systems (*e.g.*, steam), the concentration of the dimer at reasonable temperatures and pressures is so low that it will be difficult to detect, and, as noted above, it will be difficult to separate out the component of the chemical shift due to hydrogen bonding.

3. Electronic Spectral Properties of Hydrogen-Bonded Systems

Hydrogen bonding usually causes significant perturbations on the electronic transitions of the system, and the most commonly studied effects are the blue shift of the $n-\pi^*$ transition (the hydrogen bond is stronger in the ground than in the excited state) and the shift (either blue or red) in the π - π^* transition of the system. Most of the reported theoretical studies on the π - π * transition of such systems have used π electron theory, modifying the core parameters to take into account the presence of the hydrogen bond. Bratoz¹¹ concluded that the charge-transfer model (where the change in core parameter takes into account the electron repulsion changes brought about by charge transfer) is more successful in explaining $\pi - \pi^*$ electronic transition shifts than the simple electrostatic model, but both models are too highly parameterized to give much physical insight into the problem. It is quite clear that an ab initio SCF-MO (including configuration interaction) on a small model system such as $H_2CO \cdots HF$ might answer such questions as (1) what is the detailed electronic redistribution in the excited $\pi - \pi^*$ and $n-\pi^*$ states and how do substituent effects change the relative energies and charge distributions of these states, (2) how can one rationalize observed electronic shifts in terms of this detailed charge redistribution, and (3) could the large intensity change in the electronic band be explained in terms of transition dipole changes upon H-bond formation? Some of these problems are now being studied by Morokuma.¹⁶⁷ de Jeu¹⁶⁸ has carried out some CNDO/2 studies on H₂CO···HOH and finds that the H bond is only slightly weaker in the $n-\pi^*$ triplet state of formaldehyde than in the ground state. He also finds a blue shift for the $n-\pi^*$ transition upon H-bond formation of 0.06 eV. The reader is referred to the Bratoz review for a more detailed discussion of H bonds in excited states.

4. Conclusions

Molecular orbital studies on infrared, nmr, and electronic spectral properties of H-bonded systems can at best be of a semiquantitative nature since the properties predicted by these methods for monomers are usually only accurate to 10-20%. The calculations of spectral properties can be of most use in the case of weak dimers where the experimental studies are difficult. It is important, however, that molecular orbital studies give the right qualitative behavior for force constants in H-bonded systems and also predict some constants (such as H-bond bending) difficult to determine experimentally.

Model potential functions¹³⁶⁻¹³⁸ are of use in understanding some H-bond vibrational properties, but continue to be hampered by lack of precise *a priori* knowledge of the potential functions involved.

III. Mechanism of Hydrogen Bonding

A. DECOMPOSITION OF THE HYDROGEN-BOND ENERGY

It is well established that charge cloud repulsion and electrostatic and charge redistribution (polarization + charge transfer) are all major contributors to the hydrogen-bond energy. Thus one would hope that precise knowledge of each of the terms in different H-bonded systems would give one a greater understanding of the hydrogen bond.

Coulson and Danielson²¹ and Tsubomura²² attempted to compute the different contributions to the H-bond energy (as well as dispersion) as follows. The four electrons involved in the hydrogen bond were allowed to be distributed over three basis orbitals, x, h, y, one centered on X, H, and Y in an X—H···Y bond (the effect of changes in hybridization of the basis orbital on X and Y was considered). The total wave function constructed was

where

$$X_{1} = N(|x_{\alpha}h_{\beta}y_{\alpha}y_{\beta}| - |x_{\alpha}h_{\beta}y_{\alpha}y_{\beta}|)$$

$$X_{2} = |x_{\alpha}x_{\beta}y_{\alpha}y_{\beta}|$$

$$X_{3} = N(|x_{\alpha}x_{\beta}y_{\alpha}y_{\beta}| - |x_{\alpha}x_{\beta}y_{\beta}y_{\alpha}|)$$

 $\Phi = C_1 X_1 + C_2 X_2 + C_3 X_3$

where the vertical rules indicate a determinantal form for the wave function and the subscripts represent the electron spin. The chemical structures represented by X1, X2, and X3 are X— $H \cdots Y$, X⁻ $H^+ \cdots Y$, and X⁻H— Y^+ , respectively. A stabilization due to a change in the coefficients C_1 and C_2 upon H-bond formation (relative to their values in the free molecule) represents the polarization energy of the hydrogen bond, and a nonzero value of C_3 is an indication of a chargetransfer contribution. The 3×3 Hamiltonian matrix is constructed with appropriate estimates of the covalent bond energy, short-range repulsion, ionization potential of Y and electron affinity of X and the polarization energy. The offdiagonal elements were estimated in such a way that the 2 \times 2 secular equation (considering only structures 1 and 2 in the absence of the proton acceptor molecule) gives the exact O-H bond energy. The basic conclusions of the valence

⁽¹⁶⁵⁾ C. Kern and M. Karplus, J. Chem. Phys., 42, 1062 (1965).

⁽¹⁶⁶⁾ E. Clementi and A. D. McLean, ibid., 36, 745 (1962).

⁽¹⁶⁷⁾ K. Morokuma, personal communication, Oct 1970.

⁽¹⁶⁸⁾ W. de Jeu, Chem. Phys. Lett., 7, 153 (1970).

bond theory are: (1) the contribution to the H-bond energy of electrostatic, repulsion, and dispersion and charge transfer are of the same order of magnitude, and all absolute values are close to the total hydrogen-bond energy; (2) the contribution of C_3 to the overall wave function is a very strong function of R(X-Y) and R(X-H); and (3) for long bonds, the H bond is essentially electrostatic.

Recently, Duijneveldt, *et al.*,¹⁶⁹ in a series of papers has attempted to calculate directly some of the contributions to the hydrogen-bond energy using the intermediate overlap perturbation formalism developed by Murrell, *et al.*¹⁷⁰ Variations in the ionic character of the A–H bond and the hybridization of the B lone pair allow Duijneveldt to compare the properties of different hydrogen-bonded systems. Although the H-bond energies he computes are not in especially good agreement with more accurate calculations, he is able to rationalize the trends in first-row dimer H bonds (NH₃, H₂O, HF). The main weakness of this approach is that it uses a three-center, four-electron model, which is a great oversimplification of the problem.

One would also like to decompose the energies calculated by the ab initio molecular orbital approaches into the different contributions, and such decompositions have been carried out by Kollman and Allen,¹⁷¹ Dreyfus and Pullman,¹⁰¹ and Morokuma.¹⁰⁵ Kollman and Allen have divided the Hbond energy into two contributions: (a) the electrostatic and exchange repulsion energy, which is the energy of the complex with the monomer charge distributions the same as those at infinite separation, and (b) the polarization plus charge-transfer energy, which is the energy difference between the SCF converged solution for the complex and the energy found in (a). They also empirically estimated the dispersion energy. Dreyfus and Pullman further divided term a into electrostatic and exchange contributions by considering the difference in energy between (1) a completely antisymmetrized wave function at the dimer internuclear distance (electrostatic + exchange) and (2) the wave function which is antisymmetrized among the individual monomers but not between the monomers (only electrostatic energy). Morokuma's energy decomposition is the most complete in that he further subdivided the charge redistribution energy into charge transfer and polarization by finding the SCF converged solutions of wave functions 1 and 2. Kollman and Allen show, on the basis of their decomposition, that the nonlinear configuration of $(HF)_2$ is due to the charge redistribution term. Dreyfus and Pullman's calculation indicates that the electrostatic energy is significant (~2 kcal/mol) at $R(N \cdots O) = 5$ Å, but exchange terms only are nonnegligible at distances shorter than 3.75 Å. Morokuma notes that the key difference between σ and π H bonds is the larger electrostatic contribution to the former. The results of the energy decomposition studies are summarized in Table VI. While the above decompositions give interesting insight into certain H-bond properties, the various energy components are clearly more sensitive to basis set (and $X \cdots Y$ distance) than the H-bond energy. Thus a decomposition study with a much more flexible basis set is in order (e.g., that of ref 60).

B. IS A HYDROGEN BOND A CHARGE-TRANSFER INTERACTION?

The role of charge transfer in hydrogen bonding is a much discussed question. As noted previously, the charge-transfer model attempts to rationalize all the "nonclassical electrostatics" aspects of hydrogen bonding in terms of an electron transfer from the proton acceptor molecule to the proton donor molecule. This model is appealing in a sense because it makes hydrogen bonding a subcategory of a more general class of compounds (all donor-acceptor complexes). However, the correlation between ionization potential of the base and K or ΔH of H-bond formation is quite limited.¹⁷³ The dipole enhancement upon H-bond formation can only be partially explained by charge transfer, and, in the infrared X-H stretch intensity enhancement, charge transfer is clearly not the only mechanism. Table VII records the intensity enhancements predicted for (H₂O)₂, (HF)₂, H₂OHF, and HFHOH assuming that the charge transferred is from one heavy atom to the other. The net enhancement found is listed in the next column. It is clear that charge transfer can explain some, but not the majority, of the observed enhancement. Dreyfus and Pullman conclude that of the 11.5 intensity enhancement in formamide, 3.5 is due to the charge-transfer effect. The most important experimental argument against using a chargetransfer model for hydrogen bonding is that there is very little evidence for charge-transfer bands in hydrogen bonding.²

One could not argue that "charge transfer" plays no role in hydrogen bonding, only that the qualitative phenomena associated with H bonding can be explained without invoking a large charge-transfer contribution. Hanna's work on electron donor-acceptor systems such as benzene- I_2 pursues a similar line of thought. Although the systems Hanna¹⁷⁴ chooses probably have a larger charge-transfer contribution than most H bonds, he shows that classical electrostatic effects are not negligible in those systems more traditionally called charge-transfer complexes. Mulliken,¹⁷⁵ however, argues that although electrostatic effects are important, the chargetransfer contribution is the organizing principle for most electron donor-acceptor complexes. It is our feeling that those systems which have an *experimentally* well-defined CT spectra can be treated with a charge-transfer model (with appropriate allowance for other effects); those that do not have a charge-transfer spectrum should not be examined with a charge-transfer model.

A more fundamental reason against using a two-determinant charge-transfer model to understand hydrogen bonding is that as the hydrogen bond gets stronger, the amount of "charge transferred" does not increase. [This is in contrast to charge-transfer interactions $\psi_t = a\varphi(A-B) + b\varphi(A^+B^-)$, where the stronger the complex, the larger b is.] An excellent example of this is Clementi's study⁵⁰ of the NH₃HCl reaction. At first, as one brings NH₃ closer to HCl (keeping the intramolecular distances fixed), charge is transferred from the NH₃ to the HCl. Eventually, however, the H–Cl bond length-

⁽¹⁶⁹⁾ F. B. van Duijneveldt and J. N. Murrell, J. Chem. Phys., 46, 1759 (1967); F. B. van Duijneveldt, *ibid.*, 49, 1424 (1968); J. G. C. M. van Duijneveldt-van de Rijdt and F. B. van Duijneveldt, *Chem. Phys.*, Lett., 2, 565 (1968); *Theor. Chim. Acta*, 19, 83 (1970); J. Amer. Chem. Soc., 93, 5644 (1971).

⁽¹⁷⁰⁾ J. N. Murrell and G. Shaw, J. Chem. Phys., 46, 1768 (1967); J. N. Murrell, Chem. Brit., 5, 107 (1969).

⁽¹⁷¹⁾ P. A. Kollman and L. C. Allen, Theor. Chim. Acta, 18, 399 (1970).

⁽¹⁷²⁾ C. A. Coulson, Research (London), 10, 149 (1957).

⁽¹⁷³⁾ See, for example, M. D. Johnston, F. P. Gasparro, and I. D. Kuntz, J. Amer. Chem. Soc., 91, 5715 (1969), for some exceptions.

⁽¹⁷⁴⁾ M. W. Hanna, *ibid.*, **90**, 285 (1968); M. W. Hanna and D. E. Williams, *ibid.*, **90**, 5358 (1968).

⁽¹⁷⁵⁾ R. S. Mulliken and W. B. Person, *ibid.*, 91, 3409 (1969).

Decomposition of H-Bond Energies (kcal/mol) ^a								
System	(I) Electrostatic	(2) Exchange	(I) + (2)	(3) Charge Transfer	(4) Polarization ^b	(3) + (4)	D ispersion ^c	
$(H_2O)_2^d$ $R = 2.8 \text{ Å}$ $\theta = 50^\circ$			4.50			3.05	1.54	
$(\mathbf{H}_{2}\mathbf{O})_{2}^{\bullet}$ $R = 2.76 \text{ Å}$ $\theta = 57^{\circ}$	8	-9.86	-1.86	8.16	0.25	8.41		
$(HF)_{2^{n}}$ $R = 2.8 \text{ Å}$ $\theta = 60^{\circ}$			5.25			1.49	1.53	
H ₂ CO-H ₂ O ^o (minimum energy geometry)	4.64	-6.71	-2.07	5.34	0.18	5.52		
Formamide linear dimer (minimum energy geometry)	10	-7	3.0			5.0		
$(H_2O)_2^g$	6	-8.4	-2.4			8	3	
H_2O as proton ^h donor [$R(H \cdots X)$ = 1.85 Å]	13	-11.8	1.2	2.22	0.70	2.92	1.66	

Table VI

^a Stabilization is a positive quantity; destabilization is negative. ^b Polarization refers to charge redistribution within the fragments (as opposed to charge transfer). ^c Dispersion energy – long-range van der Waals attraction. ^d Reference 171. ^e Reference 105. ^f Reference 101. ^g Reference 171.

Table VII

Comparison of Ir Intensity Enhancements Found and Those Expected on the Basis of Charge Transfer

System	$ \partial \mu \ \partial r ^{2}_{\mathrm{d;mer}} / \partial \mu \ \partial r ^{2}_{\mathrm{d;mer}} / \partial \mu $	$[\partial \mu / \partial r + CT]^{2}_{monomer} / \partial \mu / \partial r ^{2}_{monomer}$
$(H_2O)_2, R(O \cdots O) = 2.75 \text{ Å}^a$	20	4.1
$(\mathrm{H}_{2}\mathrm{O})_{2}, R(\mathrm{O}\cdots\mathrm{O}) = 3.00 \mathrm{\AA^{a}}$	8.2	2.0
$(\mathrm{HF})_2, R(\mathrm{F}\cdots\mathrm{F}) = 2.88 \mathrm{\AA}^b$	1.9	1.5
$H_2OHF, R(O \cdots F) = 2.65 \text{ Å}^b$	5.0	2.1
HFHOH, $R(O \cdots F) = 3.10 \text{ Å}^b$	4.5	1.2
Formamide dimer, $R = 2.85 \text{ Å}^{\circ}$	11.5	3.5

^a Reference 54. ^b Reference 80. ^c Reference 101.

ens, and at the minimum energy position, the H is roughly halfway between the electron donor (NH_3) and the electron acceptor (Cl). If one divides up this hydrogen's electrons and gives roughly half to Cl and half to NH_3 , one sees that the electron-acceptor fragment (Cl) has actually less charge than it began with. This separation of charge is, of course, somewhat artificial, but the fundamental difference between H bonds and charge-transfer complexes can be stated as follows. In charge-transfer complexes, the amount of charge transferred increases monotonically with increase in strength of the complex; in H bonds, this is not the case.

Clementi has examined the H₃NHCl system in detail.⁵⁰ He finds that the H₃ group acts as a donor of π electrons; the nitrogen acts both as acceptor of π electrons from the ammonia hydrogens and donates σ electrons to the chlorine *via* the chlorine hydrogen. The chlorine is mainly a σ acceptor. This description of the H₃NHCl complex is much more satisfactory than a simple two-determinant analysis.

C. CHARGE REDISTRIBUTION AND MOLECULAR ORBITAL ENERGY SHIFTS

Virtually all of the workers who studied energies and geometries of H-bonded systems performed population analyses on both the complexes and the isolated monomers. Certain interesting generalizations emerge from these results.

(1) The hydrogen in the H bond loses electrons upon hydrogen bonding.

(2) The electronegative atoms gain electrons; more electrons are gained by the electronegative atom on the proton donor molecule.

(3) The largest loss of electrons occurs at the hydrogens (or carbon) immediately attached to the proton acceptor molecule.

(4) All hydrogens attached to the electronegative atom of the proton donor molecule (away from the hydrogen bond, e.g., $H-X-H\cdots Y$) gain electrons upon H-bond formation.

(5) The charge changes on the atoms immediately attached to the three-center hydrogen bond are of the same magnitude as those in the bond.

(6) In the reaction between, *e.g.*, $H_3N \cdots HCl^{50}$ or $H_3N \cdots HF$,¹¹⁹ varying both the X-Y and X-H distance, the electronic effect is a transfer of charge from the hydrogens on the nitrogen to the chlorine, with the hydrogen on the chlorine losing charge and the nitrogen staying nearly neutral (at first, gaining a small amount of charge).

(7) In linear polymers (water trimer⁶⁵ and HF linear hexamer⁶⁰) the charge shifts indicate that there is little excess charge on the middle molecules, with the charge transfer from one end molecule to the molecule on the other end. For example, in linear $(HF)_6$, the total charges in

$$F - H \cdots F - H$$

	<u> </u>	Common pr	rotein donor—		<u></u>	-Common pro	tein acceptor—	
	System	ΔE	Charge shift	Charge transfer	System	ΔE	Charge shift	Charge transfer
- NH ₃	HFHNH₂	1.3	0.0165	0.0005	H₃NHF	11.7	0.0448	0.0313
	H_2OHNH_2	2.3	0.0280	0.0017	H₃NHOH	5.8	0.0422	0.0100
	H ₃ NHNH ₂	2.7	0.0331	0.0036	H ₃ NHNH ₂	2.7	0.0331	0.0036
H₂O	HFHOH	3.0	0.0231	0.0016	H₂OHF	9.4	0.0433	0.0218
	H₂OHOH	5.3	0.0391	0.0064	H ₂ OHOH	5.3	0.0391	0.0064
	H₃NHOH	5.8	0.0422	0.0100	H_2OHNH_2	2.3	0.0280	0.0017
HF	HFHF	4.6	0.0270	0.0040	HFHF	4.6	0.0133	0.0040
	H ₂ OHF	9.4	0.0443	0.0176	HFHOH	3.0	0.0083	0.0016
	H₃NHF	11.7	0.0448	0.0313	HFNH₂	1.3	0.0042	0.0005

Table VIII ^a						
Charge	Redistribution :	in	Hydrogen-Bonded	Systems		

^a Reference 119.

are 10.039, 10.005, 10.001, 9.999, 9.996, and 9.962. In the H_2O linear duodecamer [all R(O-O) = 2.53 Å], the charges are 10.054, 10.002, 9.998, 9.999, 10.006, 10.001, 10.000, 10.001, 10.000, 9.998, 9.994, and 9.947.¹⁷⁶

Kollman and Allen (KA)80 and Dreyfus and Pullman (DP)¹⁰¹ have also examined complete charge-density difference maps for the dimers $(H_2O)_2$, $(HF)_2$, H_2OHF , and formamide. The density differences near the atoms are in good agreement with the Mulliken atomic populations, but the overlap regions are much more interpretable in charge density maps. The most significant result of these is that in the $H \cdots Y$ region of H bonding there is a charge decrease upon complex formation. DP have shown that this effect is partially, but not all, due to exchange repulsion. Coulomb repulsion must also play a role. This effect clearly demonstrates the difference between hydrogen bonding and ordinary covalent bonds; in the latter (e.g., H_2) the region in the "bond" gains electrons when the two centers come together. A very important generalization is number four. The fact that, upon dimer formation, the charge shifts are as follows

rationalizes why an $(O \cdots HOH \cdots O)$ triplet is less stable than the $(OH \cdots OH \cdots O)$;³⁶ in the $(O \cdots HOH \cdots O)$ configuration the third water is donating a pair of electrons to a hydrogen which already has *more electrons* than in the water monomer. (See Table VIII for some results on *charge shift* and *charge transfer* in H-bonded systems.)

D. WHAT MAKES A HYDROGEN BOND UNIQUE?

Both Coulson¹⁷² and Murrell¹⁷⁰ conclude that what makes an H bond different from other short-range intermolecular interactions is the smallness of the exchange repulsion.

Kollman, et al., ¹²⁰ have attempted to throw some light on this question by carrying out ab initio calculations on $LiF\cdots LiF$, $LiF\cdots HF$, $HF\cdots LiF$, and $HF\cdots HF$. The infrared properties in lithium-bonded systems were similar to those in the H-bonded systems, but the *charge redistribution* accompanying lithium-bond formation was different from that in hydrogen bonds. For example, the lithium gains charge (in the Mulliken population analysis) on lithium-bond formation. This gain in charge occurs because lithium has much more accessible empty π orbitals than hydrogen.

Although Kollman, *et al.*,¹²⁰ did not decompose the total energy into components, it is clear from the monomer charge distributions (LiF has a large dipole moment), the charge redistributions observed in Li-bond formation (greater than the corresponding H bonds), and the presence of a filled inner shell on lithium that the electrostatic, exchange repulsion and delocalization are all larger in magnitude than in the H-bond case. Thus, it is not really satisfying to say that the hydrogen bond is unique because of its small exchange repulsion, since a large exchange repulsion could be compensated by even larger electrostatic and charge redistribution energies (as in the Li bond).

A less general comparison of lithium bonding and hydrogen bonding is as follows. The minium energy structure of $(LiF)_2$ is cyclic

$$\begin{bmatrix} \mathbf{L}\mathbf{i} & \mathbf{F} \\ | & \cdots & | \\ \mathbf{F} & \mathbf{L}\mathbf{i} \end{bmatrix}$$

whereas that of $(HF)_2$ is linear $HF \cdots HF$. This is because the bond in LiF is ionic enough that the greater electrostatic attraction and smaller charge cloud repulsion in a configuration such as $(\pm \mp)$ make up for the less charge redistribution energy (delocalization) (compared to $+ - \cdots + -$). In $(HF)_2$, one does not gain enough electrostatic energy in the cyclic structure to make up for the greater delocalization energy of the linear dimer. Thus, one could say that the main difference between hydrogen and lithium bonding is the greater relative importance of charge redistribution energy in hydrogen bonding.

Molecular orbital energy shifts demonstrate a difference between H bonds and covalent bonds. In the former, the proton donor levels increase in energy and the proton acceptor levels decrease; in the covalent bonds, both sets of orbitals usually increase upon bond formation. Kollman, *et al.*,¹²⁰ have noted the correlation between size of MO energy shifts and hydrogen-bond energy (Table IX).

Molecular Orbital Energy Shifts upon H-Bond Formation

System	kcal/ mol	$\begin{array}{c} Av \ \Delta E \\ donor \end{array}$	At ΔE acceptor	$ \Delta E $
NH ₃ HF	11.7	-0.045	+0.076	0.0605
NH ₃ HOH	5.9	-0.023	+0.043	0.033
NH_3HNH_2	2.7	-0.012	+0.031	0.0215
H₂OHF	9.4	-0.043	+0.057	0.050
H ₂ OHOH	5.3	-0.026	+0.040	0.033
H_2OHNH_2	2.3	-0.010	+0.024	0.017
HFHF	4.6	-0.040	+0.036	0.038
HFHOH	3.0	-0.024	+0.024	0.024
$HFHNH_2$	1.3	-0.012	+0.017	0.0145
LiFHF	24.8	-0.066	+0.145	0,1015
HFLiF	13.5	-0.0105	+0.040	0.0694

E. EXPERIMENTAL AND THEORETICAL CORRELATIONS IN H BONDS

Dominating most of the spectroscopic H-bond literature are the efforts to critically examine correlations between the experimentally determined properties: ΔH , ΔG , $\Delta \nu_{OH}$, ν (O-O stretch), R(O-O) (in crystals), base strengths, Hammett σ constants among others. The most widely discussed correlation is that of Badger and Bauer,177 who proposed a linear relation between ΔH and $\Delta \nu$. There has been much discussion in the literature about whether there is a general $\Delta v - \Delta H$ relationship, and Drago has given a semiempirical argument rationalizing one,¹⁷⁸ but it appears at present to be unlikely (see Arnett et al., 179 for references). The best least-squares linear relation for hydrogen bonds with phenol as proton donor is $\Delta H \,(\text{kcal/mol}) = 0.0103 \Delta \nu_{OH} \,(\text{cm}^{-1}) + 3.08.^7$ There is a relatively large average difference of 0.84 kcal/mol between the data and the calculated ΔH ; also, this relationship breaks down for hydrogen bonds weaker than 3 kcal/mol. A change in proton donor would certainly cause larger deviations from the above relationship. It is also worth noting that in the H-bonded complexes of phenol with cyclohexyl-X (X = F, Cl, Br, and I), the $\Delta \nu_{OH}$ decrease¹⁸⁰ down the periodic table, while $|\Delta H|$ increases.

Another important correlation has been the relation between $\Delta\nu(OH)$ and $R(X \cdots Y)$ for hydrogen bonds in solids. Pimentel and Sederholm¹⁸¹ and more recently Bellamy, *et al.*,¹³² among others have examined this relationship. For all but the weakest hydrogen bonds, the relationship $\Delta\nu = K(R - r)$ is valid, where $\Delta\nu$ is the observed shift, *r* is the $X \cdots Y$ distance, and *K* and *R* are constants which are different for different (X, Y) combinations.

Many of the other experimental correlations are discussed extensively in Pimentel's⁴ book. Most of these correlations and linear relationships are valid within the limits that the systems considered are closely related.

Kollman and Allen¹¹⁹ have examined the first-row hydrogen bonds (H-H···Y) where $X = H_2N$, OH, and F, and Y = NH_3 , OH_2 , and FH. They conclude that the distance $X \cdots Y$ is primarily a function of the degree of positive charge on the hydrogen in the H bond; *i.e.*, $R(N-H\cdots Y)$ is approximately 3.4 Å no matter what Y is (see Table X). However, once the minimum energy $X \cdots Y$ distance is reached, the Y lone-pair charge distribution is the determining factor in the charge shifts and the H-bond energy. This analysis of the importance of the positive character of the hydrogen and the "extent" of the lone pair on the proton acceptor are, interestingly enough, similar to the two main parameters in Duijneveldt's papers (K, ionicity of X-H bond, and X_s , degree of hybridization). However, one should not fall into the trap of drawing general conclusions from this limited sample; ab initio studies of sp², sp, and π proton acceptors as well as C-H, Cl-H, and HS-H proton donors are still very much needed to determine completely general aspects of H bonding.

One can make this limitation of Kollman and Allen's and Duijneveldt's studies more explicit by noting that $H_3N\cdots HCl$ has a stronger hydrogen bond than $H_3N\cdots HF$. This is due to the fact that HCl has a weaker covalent bond and a greater polarizability than HF. Because or the lower covalent bond dissociation energy, the ammonia lone pair can more easily lengthen the H–Cl bond (and give it more ionic character), as well as interacting more strongly with HCl through a dipole– polarizability mechanism.

Also, amines typically form stronger H bonds than phosphines,⁷ despite the lower ionization potential and greater "p" character and "extent" of the latter lone pair. Thus, when one compares the first- and second-row electron pair donors, there are three factors one must consider in an attempt to understand the relative strengths of different H bonds: (1) the amount of excess negative charge on the electron pair donor atom, (2) the density of charge on the electron pair donor atom (the phosphorus lone pair is more diffuse than nitrogen's), and (3) the ability of the lone-pair donor to draw charge away from the atoms bonded to it (as the nitrogen pulled charge from the amonia hydrogens in $H_3N\cdots$ HCl). From the above, it is clear that the correlations developed for "firstrow" H bonds must be modified to understand other H-bonded systems.

It must be emphasized that the ability of proton donors and acceptors to form hydrogen bonds $(X-H\cdots Y)$ is more closely related to their respective acidity or basicity than to the electronegativities of X and Y. There has been some confusion in the past¹⁸³ on this point, so it deserves emphasis.

F. FUTURE WORK NEEDED

The ability to carry out *ab initio* calculations on larger systems and the development of all-valence-electron, semiempirical theories has enabled one to learn a significant amount about the energy and geometry of complex formation. The CNDO/2 method appears to be the most appropriate semiempirical method for study of hydrogen bonding but has some significant defects [*e.g.*, (HCN)₂]. Vibrational spectroscopic results derived from potential curves are in qualitative agreement with experiments; CNDO/2 particularly overemphasizes the ir intensity enhancements expected in hydrogen bonding. There are not many precise molecular orbital studies

⁽¹⁷⁷⁾ R. M. Badger and S. H. Bauer, J. Chem. Phys., 5, 839 (1937).

⁽¹⁷⁸⁾ K. Purcell and R. Drago, J. Amer. Chem. Soc., 89, 2874 (1967).

⁽¹⁷⁹⁾ E. M. Arnett, L. Joris, E. Mitchell, T. S. S. R. Murty, T. M. Gorrie, and P. v. R. Schleyer, *ibid.*, 92, 2365 (1970).

⁽¹⁸⁰⁾ R. West, D. Powell, L. Whately, M. Lee, and P. v. R. Schleyer, *ibid.*, 84, 3221 (1962).

⁽¹⁸¹⁾ G. C. Pimentel and C. H. Sederholm, J. Chem. Phys., 24, 639 (1956).

⁽¹⁸²⁾ L. J. Bellamy and A. J. Owen, Spectrochim. Acta, Part A, 25, 321 (1969); L. J. Bellamy and R. J. Pace, ibid., 25, 319 (1969).

⁽¹⁸³⁾ Reference 13, p. 213.

	Common proton donor			Common proton acceptor		
	System	R (Å)	$\Delta E(kcal)$	System	R (Å)	$\Delta E (kcal)$
NH ₃	HFHNH ₂	3.45	1.3	H ₃ NHF	2.75	11.7
	H_2OHNH_2	3.41	2.3	H₃NHOH	3.12	5.8
	H_3NHNH_2	3.49	2.7	H_3NHNH_2	3.49	2.7
H₂O	HFHOH	3,08	3.0	H₂OHF	2.72	9.4
	H ₂ OHOH	3.00	5.3	H₂OHOH	3.00	5.3
	H₃NHOH	3.12	5.8	H_2OHNH_2	3.41	2.3
HF	HFHF	2.88	4.6	HFHF	2.88	4.6
	H₂OHF	2.72	9.4	HFHOH	3.08	3.0
	H₃NHF	2.75	11.7	HFHNH₂	3,45	1.3

 Table X¹¹⁹

 Heavy-Atom Distances in Hydrogen-Bonded Systems

on nmr or electronic spectral properties of H bonding; it certainly would be of interest to see how charge distribution and potential curves of H-bonded systems change in the electronically excited state. Theoretical calculations have given detailed information about the charge shifts in hydrogen bonding and allow some general conclusions about the nature of H bonding, as well as allowing us to understand better the mechanism of proton transfer in aqueous solutions, and some progress has been made recently in understanding the mechanism of hydrogen bonding with both LCAO-MO and intermolecular perturbation theory approaches, but much remains to be done. In particular, the ionic character of the X-H bond and lone-pair character which are good organizing principles for first-row hydrogen bonding do not explain the relative bond strengths of NH₃HF and NH₃HCl dimers.

There are many areas for further theoretical work in hydrogen bonding. A quantitative understanding of the detailed fine structure of the X-H stretching region of certain compounds is an important issue; Marechal's formalism for (HCOOH)₂ could be applied to other systems to see how general the two normal mode "coupling" model is. Further decomposition of the delocalization energy might help to give more quantitative information about the amount of charge transfer and charge delocalization in hydrogen-bonded systems. Van Duijneveldt's model should be extended to allow study of substituent effects on the three-atom fragment, as well as parameterizing the method in light of ab initio molecular orbital calculations. Further *ab initio* studies on π H bonds, carbonyl hydrogen bonds, and non-first-row hydrogen bonds are of interest, as well as configuration interaction calculations on the smallest H bonds (HF)₂ and FHF⁻. Finally, the unusual isotopic effect in HCrO₂ crystal is not at present clearly understood; that problem is certainly worthy of a theoretician's efforts.

Another area of interest, which has not been discussed in this paper, is the development of a model which treats both H bonding and boron hydride bonding. On the same footing, Pimentel's three-center molecular orbital model predicts a bonding, nonbonding, and antibonding MO for H-bonded systems. In electron-rich H bonds, the first two MO's are filled; in boron hydrides, only the bonding orbital is filled. However, there are two recent pieces of evidence, one theoretical (an *ab initio* calculation on FHF neutral⁹⁰) and one experimental (a study of the bonding in $B_2H_7^{-184}$ which indicate that this model is faulty. There clearly are many issues yet unresolved in hydrogen bonding, but the past 5 years have seen significant theoretical progress toward an overall understanding. Lest one become too enthralled with "progress" though, it is worth quoting from the Latimer and Rodebush¹⁸⁵ paper published in 1920 which proposed the hydrogen bond: "Let us compare again the compounds ammonia, water and hydrogen chloride. Ammonia adds a hydrogen readily but has little tendency to give one up. Hydrogen chloride, on the other hand, has just the opposite tendencies. Water occupies an intermediate position.... Then, in terms of Lewis theory, a free pair of electrons on one water molecule might be able to exert sufficient force on a hydrogen held by a pair of electrons on another water to bind the two molecules together. Structurally, this may be represented as

The liquid may be made up of large aggregates of molecules, continually breaking up and reforming under the influence of thermal agitation...the hydrogen nucleus held between two octets constitutes a weak "bond"...gradations (should) exist all the way from ammonium chloride, where the hydrogen is definitely transferred from the chlorine to NH_3 to the case of association of water, where the hydrogen is still held quite firmly to the original water molecule." These comments made 50 years ago show a remarkable insight into the structure of water as well as appreciation for the key factors in H bonding (ability of the two molecules to accept and give up a proton).

NOTE ADDED IN PROOF. Because of the time elapsed between the submission of this article and publication, there have been quite a number of interesting papers published recently, a few of which will be mentioned here.

Pimentel and McClellan (Annu. Rev. Phys. Chem., 22, 347 (1971)) have published a general review of hydrogen bonding, emphasizing spectroscopic studies and biological applications. The similarity of the $X \cdots X$ force constant in HCl_2^- , HBr_2^- , HCl_2 , and HBr_2 seems to indicate that the electron has been removed from a nonbonding orbital, in agreement with the predictions of Pimentel's MO theory,⁴ but in disagreement with SCF studies on HF_2^- and HF_2 .⁹⁰ It may be, however, that the electronegativity of the halogen is a crucial factor in how "nonbonding" this orbital is and that the "electrostatic" con-

⁽¹⁸⁴⁾ W. G. Evans, C. E. Holloway, K. Sukumarabandhu, and D. H. McDaniel, Inorg. Chem., 7, 1746 (1968).

⁽¹⁸⁵⁾ W. M. Latimer and W. H. Rodebush, J. Amer. Chem. Soc., 42, 1419 (1920).

tribution to the H-bond energy is only very important in HF_2^- and HF_2 . Clearly more work is needed to resolve this r_2 point.

Other general reviews which have been published are those of Hadzi (*Chimia*, **26**, 7 (1972)) on ir studies of strong H-bonds and a very interesting historical account of H-bond studies by Huggins (*Angew. Chem., Int. Ed. Engl.*, **10**, 147 (1971)).

Ion hydration has been a subject of considerable theoretical interest, with studies by Newton and Ehrenson (*J. Amer. Chem. Soc.*, **93**, 4971 (1971)), Schuster (*Theor. Chim. Acta*, **24**, 191 (1972)), and Dierchsen (*ibid.*, **23**, 387 (1972)) among recent publications. Newton and Ehrenson found, in contrast to earlier CNDO conclusions, 93 that H_3O^+ retains its properties even in $H_9O_4^+$, which contains an H_3O^+ unit functioning as a proton acceptor to three water molecules.

H-Bonding involving HCN (Johansson and Kollman,

Theor. Chim. Acta, in press), intramolecular H-bonding (Johansson and Kollman, unpublished results), and second-row H-bonding (Sabin, J. Amer. Chem. Soc., 93, 3613 (1971)) have been the subject of recent *ab initio* work.

One piece of recent experimental structural work is quite relevant to the theoretical studies examined above. Klemperer's work on the HF dimer (J. Chem. Phys., 56, 2442 (1972)) supported theoretical predictions^{80,81} on the structure (linear, $R(F-F) \sim 2.8$ Å) of the dimer. This work lends calculations to successfully make H-bond structure predictions and also reinforces the fact that H-bonded dimers appear to have considerably greater X...X distances (R(F-F) = 2.5 Å in crystalline HF) than higher polymers.¹³⁰

Marechal (*Chem. Phys. Lett.*, **13**, 237 (1972)) has continued his analysis of ir in H-bonded systems using the coupled mode model he developed previously.