Dynamical Processes in Boranes, Borane Complexes, Carboranes, and Related Compounds

HERBERT BEALL and C. HACKETT BUSHWELLER*1

Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609

Received January 4, 1973 (Revised Manuscript Received March 28, 1973)

Contents

1.	Introduction	465
11.	The Tetrahydroborate Ion (BH ₄ ⁻)	466
111.	Amine-Boranes and Aminoboranes	470
IV.	Diboranes and Diborohydrides	471
٧.	Triborane (B ₃ H ₇)	472
VI.	Triborohydride Ion (B ₃ H ₈ ⁻)	473
VII.	Tetraborane Derivatives	475
	A. B_4H_8 , $(N, N, N', N-Tetramethylethylenediamine)$	475
	B. Nonahydrotetraborate (1-) Ion (B ₄ H ₉ -)	475
	C. $F_2XP \cdot B_4H_8$	476
VIII.	Pentaborane Derivatives	477
	A. Octahydropentaborate (1-) Ion (B ₅ H ₈ -)	477
	B. C ₃ B ₅ H ₇	477
	C. CB ₅ H ₇	478
	D. Pentaborane(11) (B_5H_{11})	479
	E. Dodecahydropentaborate (1-) Ion (B₅H ₁₂ -)	479
	F. Pentaborane(9) (B ₅ H ₉)	479
IX.	Hexaborane Derivatives	479
	A. Hexaborane(10) (B ₆ H ₁₀)	479
	B. Nonahydrohexaborate(1-) Ion (B ₆ H ₉ -)	480
	C. Undecahydrohexaborate (1-) Ion (B ₆ H ₁₁ -)	480
	D. μ -[(CH ₃) ₂ B]B ₅ H ₈	481
Χ.	Octaborane Derivatives	482
	A. Octahydrooctaborate (2-) Ion (B ₈ H ₈ ²⁻)	482
	B. Octahydrooctaborate (1-) Ion (B ₈ H ₈ -)	482
	C. Octaborane(12) (B ₈ H ₁₂)	482
XI.	Nonaborane Derivatives	483
V 11	A. B ₉ H ₁₄ ⁻	483
	B. B ₉ H ₁₃ L Compounds	483
	C. Metal Complexes of B ₉ H ₁₄ ⁻ and B ₉ H ₁₂ S ⁻	484
	D. $B_9C_2H_{12}^-$ lons	484
	E. Alkylaluminum and Alkylgallium	484
	Derivatives of (3)-1,2-B ₉ C ₂ H ₁₃	485
XII.	Decaborane Derivatives	485
	A. B ₁₀ H ₁₂ (NCCH ₃) ₂	485
	B. B ₁₀ H ₁₅ ⁻ Ion	485
	C. Metal Complexes of B ₁₀ H ₁₃ ⁻	486
VIII	D. Icosahedral Carboranes	486
AIII.	Undecaborane Derivatives	486
	A. $B_{11}H_{14}^{-1}$ lon	486
	B. B ₁₁ H ₁₃ ²⁻ Ion	486
	C. Metal Complexes of B ₁₁ H ₁₄ ⁻	486
	D. Undecahydroundecaborate $(2-)$ Ion $(B_{11}H_{11}^{2-})$	+00

I. Introduction

The general synthetic utility and unusual bonding associated with boron hydrides and derivatives have prompted a recent intense effort in definitive structure elucidation.

(1) Alfred P. Sloan Research Fellow, 1971–1974; Camille and Henry Dreyfus Teacher-Scholar, 1972-present.

X-Ray diffraction, electron diffraction, nuclear magnetic resonance (nmr) spectroscopy, electron spin resonance (esr) spectroscopy, and dipole moment studies have been applied to the problem.

In several instances, there exists an apparent discrepancy between the structure indicated by the solution nmr spectrum (at room temperature) and the X-ray crystallographic structure. In essentially every case for which the apparent discrepancy exists, the nmr spectrum suggests a greater structural symmetry than that revealed in the crystal structure.2 In attempting to define the source of this apparent discrepancy, variable-temperature nmr (dnmr) spectroscopy has revealed two fundamentally different rate processes which occur in many boron hydrides. In one case, lower temperatures result in elimination of the 10,11B-1H spin-spin coupling (e.g., as observed in the ¹H dnmr spectrum) and an eventual simplification of the spectrum.3 This phenomenon is caused by more rapid ¹¹B and ¹⁰B quadrupolar relaxation at lower temperatures and increasing viscosity inducing more rapid interconversion between respective ¹¹B and ¹⁰B nuclear spin states and effective decoupling of boron from hydrogen. This in situ heteronuclear spin decoupling has been treated theoretically in a quantitative fashion.4 For a nucleus with spin $l > \frac{1}{2}$, interaction of the nuclear quadrupole moment with a fluctuating electric field gradient at the nucleus provides an efficient spin relaxation mechanism under certain conditions. In solution, molecular reorientation (tumbling) occurs rapidly, and interaction of the quadrupolar nucleus with the lattice leads to a rapidly fluctuating electric field gradient at the nucleus. The rate of molecular tumbling is characterized by a correlation time (τ_c) which generally is directly proportional to the viscosity of a solution and inversely proportional to the absolute temperature.⁵ For a quadrupolar nucleus, the nuclear spin-lattice relaxation time (T_1) can be related to τ_c by eq 1.4,5

$$\frac{1}{T_1} = \left(\frac{3}{40}\right) \frac{2l+3}{l^2(2l-1)} (1+\eta^2/3) (e^2 q Q/h)^2 \tau_c \tag{1}$$

I= nuclear spin, eq= electric field gradient at quadrupolar nucleus, eQ= nuclear quadrupole moment, e^2qQ

⁽²⁾ G. R. Eaton and W. N. Lipscomb, "NMR Studies of Boron Hydrides and Related Compounds," W. A. Benjamin, New York, N. Y., 1969.

⁽³⁾ C. H. Bushweller, H. Beall, M. Grace, W. J. Dewkett, and H. S. Bi-lofsky, *J. Amer. Chem. Soc.*, **93**, 2145 (1971), and references therein.

⁽⁴⁾ J. A. Pople, Mol. Phys.. 1, 168 (1958); A. Abragam, "The Principles of Nuclear Magnetism," Oxford University Press, London, 1961; A. Allerhand, J. D. Odom, and R. E. Moll, J. Chem. Phys.. 50, 5037 (1969); see also N. C. Pyper, Mol. Phys.. 21, 977 (1971).

⁽⁵⁾ A. Gierer and K. Wirtz, Z. Naturforsch. A. 8, 532 (1953); N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.. 73, 679 (1948); J. P. Kintzinger and J. M. Lehn, Mol. Phys.. 54, 133 (1968); W. J. Huntress, "Advances in Magnetic Resonance," Vol. 4, J. S. Waugh, Ed., Academic Press, New York, N. Y., 1970, and references therein.

= nuclear quadrupole coupling constant, and η = nuclear asymmetry parameter.

For 11B

$$\frac{1}{T_1} = \left(\frac{1}{10}\right) \frac{e^2 q Q^2}{h} \tau_c$$
 $Q = 0.0355 \times 10^{-24} \text{ cm}^2$

For 10E

$$\frac{1}{T_1} = \left(\frac{3}{200}\right) \frac{e^2 q Q^2}{h} \tau_c$$
 $Q = 0.074 \times 10^{-24} \text{ cm}^2$

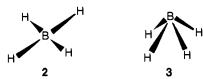
It is clear from eq 1, and specifically for ¹⁰B and ¹¹B, that as au_c increases owing to increasing viscosity, decreasing temperature, or increasing molecular volume,5 T_1 decreases. A decreasing T_1 means decreasing lifetimes for the various ¹¹B $(m_1 = -\frac{3}{2}, -\frac{1}{2}, +\frac{1}{2}, +\frac{3}{2})$ and ${}^{10}B$ ($m_1 = -3, -2, -1, 0, +1, +2, +3$) spin states, i.e., an increasing rate of interconversion between these spin states. If the rate of spin state interconversion in 10B and ¹¹B becomes fast enough, other magnetic nuclei (/ ≠ 0) coupled to ¹⁰B or ¹¹B will experience a single timeaveraged environment due to the various 10B and 11B spin states, and spin-spin coupling will be eliminated. In a large number of diamagnetic boron hydrides4 and other compounds,5 it is usually assumed that quadrupolar coupling as described above is the dominant mechanism for ¹⁰B and ¹¹B spin-lattice relaxation, ⁶ although intramolecular dipole-dipole and other interactions probably make small contributions. The effects of quadrupole-induced spin-lattice relaxation have been demonstrated experimentally by varying the temperature or the viscosity of nmr samples.3,7

The other important effect which may be observed in the dnmr spectrum of a boron hydride is the separation of a time-averaged dnmr resonance at high temperatures into two or more peaks at lower temperatures, indicating the slowing of an intramolecular or intermolecular rate process.⁸

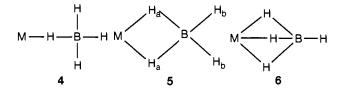
If dnmr spectroscopy is to be used in the structure elucidation of boron hydrides, it is important to realize that both boron quadrupolar relaxation and intramolecular or intermolecular chemical exchange processes can cause dramatic changes in the spectrum, and these two types of effect must be distinguished.

The intent of this report is to review all those papers through 1972 dealing with the observation of quadrupole-induced spin decoupling and nondestructive rate processes in boron hydrides and related compounds. The review will deal primarily with results obtained from dnmr studies.

II. The Tetrahydroborate Ion (BH₄⁻)


In the free, uncomplexed BH_4^- ion, the tetrahedral array of the four protons (1) as demonstrated by infrared

spectroscopic9a and X-ray powder diffraction9b studies


- (6) W. B. Moniz and H. S. Gutowsky, J. Chem. Phys., 38, 1155 (1963).
- (7) T. J. Marks and L. A. Shimp, J. Amer. Chem. Soc., 94, 1542 (1972).
- (8) G. Binsch, *Top. Stereochem.*, **3**, 97 (1968).
- (9) (a) W. C. Price, J. Chem. Phys., 17, 1044 (1949); (b) A. M. Soldate, J. Amer. Chem. Soc., 69, 987 (1947); (c) R. A. Ogg, J. Chem. Phys., 22, 560 (1954); (d) J. N. Shoolery, Discuss, Faraday Soc., 19, 215 (1955); (e) S. G. Shore, C. W. Hickam, and D. Cowles, J. Amer. Chem. Soc., 87, 2755 (1965).

renders all four protons chemically and magnetically equivalent. This equivalence was shown in early nmr studies of NaBH4 in water or deuterium oxide by the observation of a dominant 1:1:1:1 quartet for the 1H spectrum $(J(^{11}B,^{1}H) = 82 \text{ Hz})^{9c-e}$ with the less intense ¹⁰B coupling superimposed and a 1:4:6:4:1 quintet for the ¹¹B spectrum. The sharp lines observed in the ¹H and ¹¹B nmr spectra of uncomplexed BH₄- are also compatible with a small angular dependence of the electric field gradients at the boron nucleus due to $T_{
m d}$ symmetry. This, of course, will lead to a very small or zero quadrupole coupling constant (eq 1) and relatively slow quadrupole relaxation. Thus, spin-spin coupling is observed and the lines are sharp. The observed magnetic equivalence of the four protons in free BH₄- would be consistent also with a square-planar (2) or square-pyramidal (3) geometry, but the angular dependence of the electric field gradients at the boron nucleus would be large. Significantly broadened nmr signals would be expected and are not observed.

The observation of $^{11}B_-^{1}H$ and $^{10}B_-^{1}H$ spin-spin coupling for aqueous NaBH₄ in addition to $^{1}H_-^{2}H$ coupling in randomly deuterated (37% ^{2}H) tetrahydroborate (J ($^{1}H,^{2}H$) = 1.7 Hz) 10 indicates clearly that hydrogen exchange (B-H bond scission) is not occurring at a rate which is rapid on the nmr time scale at room temperature. From the established dependence of spin-spin coupling constants on the magnetogyric ratio, 11 the J ($^{1}H,^{1}H$) in BH₄ is calculated to be $-10.7 \pm 0.3 \ Hz^{10}$ as compared to $-12.4 \ Hz$ in CH₄. 12

Complexation of BH_4 via covalent hydrogen bridge bonds to an electron-deficient species (4, 5, 6) may ef-

M = Cu(I), AI(III), Hf(IV), Zr(IV), etc.

fect two important changes in the behavior of complexed BH_4^- as compared to free BH_4^- . First, the asymmetry associated with complexed BH_4^- will induce a nonzero angular dependence of the electric field gradient at boron (eq 1: $e^2qQ>0$). This should induce more rapid ^{11}B and ^{10}B quadrupolar relaxation and effective decoupling of ^{11}B and ^{10}B from ^{1}H under appropriate conditions. This effect has been demonstrated using nmr spectroscopy repeatedly in a variety of BH_4^- complexes 3,7 and examples will be discussed below. Second, in a complex such as 5, H_a and H_b are in different chemical or magnetic environments and would be expected to possess different ^{1}H nmr chemical shifts and boron-hydrogen spin-spin coupling constants. However, the chemical shifts of H_a

⁽¹⁰⁾ R. E. Mesmer and W. L. Jolly, J. Amer. Chem. Soc., 84, 2039 (1962).

^{(11) (}a) J. A. Pople, W. G. Schneider, and H. J. Bernstein, "High Resolution Nuclear Magnetic Resonance," McGraw-Hill, New York, N. Y., 1959; (b) J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution Nuclear Magnetic resonance Spectroscopy," Vol. 1–2, Pergamon Press, New York, N. Y., 1965.

⁽¹²⁾ M. Karplus, D. H. Anderson, T. C. Farrar, and H. S. Gutowsky, *J. Chem. Phys.*, **27**, 597 (1957).

and H_b and associated spin-spin coupling may be timeaveraged to a single value via rapid intramolecular rearrangement (e.g., eq 2). Slowing this exchange on the ¹H

nmr time scale should produce separate signals for Ha and H_b. The same rationale may be applied to 4 and 6, There is evidence to support slow hydrogen scrambling on the dnmr time scale in the diborohydride ion (7)13

analogous to 4, Efforts to observe slow intramolecular exchange using dnmr spectroscopy in a variety of metal-BH4 complexes have not yet been successful, although clear evidence for terminal and bridging hydrogens obtained from infrared spectroscopy exists for such complexes. The inability of the dnmr method to detect slow BH4 - rearrangement may be due to a very low classical (thermal) barrier to rearrangement or to quantum mechanical proton tunneling¹⁴ of BH₄⁻ or to a combination of both effects. Indeed, lowering the temperature of a dnmr sample in an attempt to slow intramolecular exchange would be expected to increase the fraction of tunneling as compared to an exclusively thermally promoted rearrangement further complicating the situation. 15

A recent X-ray crystallographic study of bis(triphenylphosphine) copper tetrahydroborate (8) indicates a tetra-

$$(C_6H_5)_3P$$
 C_0 H B H

hedral array about copper and boron 16a and clear evidence for hydrogen bridge bonds between copper and boron. If hydrogen scrambling in the BH4 moiety of 8 were slow on the 1H nmr time scale, one would expect to observe different resonances for bridge and terminal protons. Examination of the ¹H dnmr spectrum (60 MHz) of 8 in 50% CDCl₃-50% CH₂Cl₂(v/v) at 20° revealed an almost undetectable signal for BH4 indicating efficient boron quadrupolar relaxation even at this relatively high temperature (Figure 1).3,16b Upon lowering the temperature, the spectrum sharpens significantly (Figure 1) giving at -106° a broad singlet of essentially Lorentzian line shape. Boron-hydrogen spin-spin coupling is almost

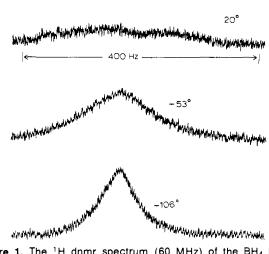


Figure 1. The ¹H dnmr spectrum (60 MHz) of the BH₄ hydrogens of $[(C_6H_5)_3P]_2CuBH_4$ in 50% CDCl₃/50% CH₂Cl₂ (v/v) (see ref 3).

eliminated owing to quadrupolar relaxation. Significant ¹H-P coupling is not evident. These observations are consistent with the magnetic equivalence of all BH4 protons in a static or dynamic form of 8, or, more likely, with rapid intramolecular hydrogen scrambling time-averaging magnetically nonequivalent bridge and terminal protons in 8, The development of superior solvent systems making possible dnmr experiments at much lower temperatures may shed light on the problem.

The unusual covalent character of liquid aluminum borohydride, Al(BH₄)₃, has prompted dnmr studies directed toward structure elucidation. Evidence for two different processes has been obtained. First, examination of the room-temperature ¹H dnmr spectrum of freshly prepared Al(BH₄)₃ reveals a significantly broadened resonance having essentially no fine structure. 17 Irradiation at the ²⁷Al $(I = \frac{5}{2})$ resonant frequency sharpens the spectrum dramatically into a dominant 1:1:1:1 guartet (J (11B,1H) = 89 Hz)17a illustrating magnetically equivalent BH₄ protons. The demonstration of ²⁷Al-¹H coupling speaks for slow ligand dissociation on the dnmr time scale but with all BH4 protons still at least magnetically equivalent. Heating a sample of neat AI(BH₄)3^{17a} or a benzene solution 17b to higher temperatures (60 to 80°) produced a sharpening of the ¹H dnmr spectrum again into a dominant 1:1:1:1 quartet and an apparent loss of ¹H spin-spin coupling to ²⁷Al (Figure 2). This observation is consistent with a rate process involving rapid aluminum-hydrogen bond scission (i.e., ligand exchange) leading to a loss of ²/Al-¹H coupling. However, prolonged heating (ca. 2 hr) of AI(BH₄)₃ at 80° in benzene produced an apparent irreversible structural modification 17b of AI (BH₄)₃ which gives a sharp dominant 1:1:1:1 quartet $(J (^{11}B,^{1}H) = 89 \text{ Hz})$ for the ^{1}H nmr spectrum even at 35°. Further cooling of this modified Al(BH₄)₃ produced a broad continuum for the ¹H dnmr spectrum at ca. -40° (Figure 3), and ²⁷Al irradiation at -80° restored the 1:1:1:1 quartet, indicating the existence of ¹H-²⁷Al spin-spin coupling, *i.e.*, apparently slow aluminum-hydrogen bond scission or ligand exchange, with all BH4 protons again at least magnetically equivalent. These data provide some evidence for a ligand (BH₄) exchange process in the two undefined forms of Al(BH₄)₃, but the question of the equivalent BH₄ protons remains. It may be that another more rapid intramolecu-

(17) (a) R. A. Ogg and J. D. Ray, Discuss. Faraday Soc.. 19, 239 (1955); (b) P. C. Maybury and J. E. Ahnell, Inorg. Chem., 6, 1286

⁽¹³⁾ D. F. Gaines, Inorg. Chem., 2, 523 (1963).

⁽¹⁴⁾ R. A. Ogg, Jr. and J. D. Ray, Discuss. Faraday Soc., 19, 239

⁽¹⁵⁾ J. Brickmann and H. Zimmermann, J. Chem. Phys., 50, 1608 (1969), and references therein.

^{(16) (}a) S. J. Lippard and K. M. Melmed, J. Amer. Chem. Soc., 89, 3929 (1967); (b) M. Grace, H. Beall, and C. H. Bushweller, Chem. Commun., 701 (1970).

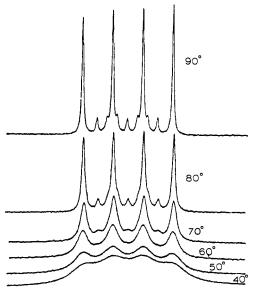


Figure 2. The ¹H dnmr spectrum (60 MHz) of freshly prepared $AI(BH_4)_3$ (J (11B,H) = 89 Hz) (see ref 17b).

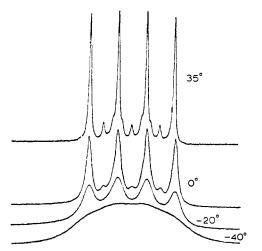


Figure 3, The ¹H dnmr spectrum (60 MHz) of modified AI(BH₄)₃ $(J^{(11}B,H) = 89 \text{ Hz}) \text{ (see ref 17b)}.$

lar exchange process (e.g., eq 2) is rendering all protons equivalent or that quantum mechanical tunneling is at work. 17a In any event, the intramolecular or intermolecular dynamics of AI(BH₄)₃ are not yet unequivocally delin-

In contrast to AI(BH₄)₃, the aluminum borohydridetrimethylamine complex, (CH₃)₃NAI(BH₄)₃, is a crystalline material. A room-temperature X-ray crystallographic study of (CH₃)₃NAI(BH₄)₃ reveals an ethane-like arrangement of the carbon, nitrogen, aluminum, and boron atoms with each boron attached to aluminum via two hydrogen bridge bonds (9)18 with nearly tetrahedral sym-

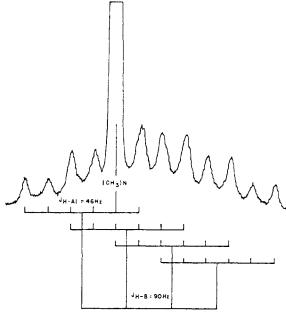


Figure 4, The ¹H nmr spectrum (60 MHz) of (CH₃)₃NAI(BH₄)₃ in benzene at room temperature (see ref 21).

metry about aluminum and nitrogen. At -160°, the crystal structure of $(CH_3)_3NAI(BH_4)_3$ does not possess tetrahedral symmetry about aluminum. 18 It is noteworthy that the nitrogen-aluminum bond length (2.01 Å)18 in (CH₃)₃NAI(BH₄)₃ is substantially shorter than the 2.19 Å in (CH₃)₃NAIH₃. ¹⁹ Cryoscopic measurement²⁰ and solution nmr studies²¹ reveal monomeric behavior for (CH₃)₃NAI(BH₄)₃ as well as slow intermolecular trimethylamine exchange on the nmr time scale at room temperature. The ¹H nmr spectrum (Figure 4) of (CH₃)₃NAI(BH₄)₃ reveals again magnetically equivalent BH₄ protons spin-spin coupled to 11 B ($J_{\rm B,H}=87$ Hz) as well as 27 Al ($J_{A1,H}$ = 46 Hz). Concomitant spin-spin coupling was observed in the 27 Al (J (Al, 11 B) \sim 9 Hz) and ¹¹B spectra. Such observations are consistent with a slowly dissociating or exchanging complex, but the apparent magnetic equivalence of bridging and terminal BH₄ protons remains intriguing. Contrary to AI(BH₄)₃, ^{17a} the various nmr spectra of (CH₃)₃NAI(BH₄)₃ reveal clearly resolved coupling to ²⁷Al at room temperature consistent with a smaller electric field gradient at the ²⁷Al nucleus in $(CH_3)_3NAI(BH_4)_3$ and slower ²⁷Al quadrupolar relaxation.²¹ In a recent report,²² the coalescence of the spin-spin coupling in the ¹H nmr spectrum of $(CH_3)_3NAI(BH_4)_3$ at lower temperatures (-60°) was interpreted as being consistent with slowing the rate of exchange between terminal and bridging BH₄ protons. In light of recent reports^{3,7} and from an examination of the observed line shapes, these spectral changes would seem to be rationalized better in terms of efficient quadrupole induced spin decoupling at low temperature.

Although the structural information which can be derived from the ¹H and ¹¹B nmr spectra of AI(BH₄)₃, 6NH₃ in liquid ammonia is limited, the appearance in the 11B spectrum of a 1:4:6:4:1 quintet at +38.4 ppm (from BF₃,O(C₂H₅)₂) and a 1:1:1:1 quar-

⁽¹⁸⁾ N. A. Bailey, P. H. Bird, and M. G. H. Wallbridge, Inorg. Chem., 7, 1575 (1968).

⁽¹⁹⁾ C. W. Heitsch, C. E. Nordman, and R. W. Parry, Inorg. Chem., 2, 508 (1963).

⁽²⁰⁾ P. H. Bird and M. G. H. Wallbridge, J. Chem. Soc., 3923 (1965).

⁽²¹⁾ P. C. Lauterbur, R. C. Hopkins, R. W. King, O. V. Ziebarth, and C. W. Heitsch, *Inorg. Chem.*, 7, 1025 (1968).

⁽²²⁾ N. A. Bailey, P. H. Bird, N. Davies, and M. G. H. Wallbridge, J. Inorg. Nucl. Chem., 32, 3116 (1970).

tet in the ¹H spectrum ($J_{B,H} = 82 \text{ Hz}$) with no apparent ²⁷Al-¹H coupling is consistent with a "free" or rapidly exchanging BH₄ - group.²³ This behavior is in contrast to (CH₃)₃NAI(BH₄)₃ discussed above.

Examination of the 11B nmr spectrum $HAI[N(CH_3)_2]_2$, $2BH_2N(CH_3)_2$ at 25 and -55° revealed no changes in the 1:2:1 triplet pattern consistent with boron coupling to three equivalent protons and no apparent coupling to Al-H-B or B-H-B brdiging hydrogens.24 This observation is consistent with rapid dissociation of three complexed moieties in HAI[N(CH₃)₃]₂,2BH₂N(CH₃)₂ or with no complexation at all.

In the case of Zr(BH₄)₄, infrared spectra, ^{7,25} X-ray diffraction data²⁶ at -160°, and electron diffraction data on the vapor²⁷ indicate clearly the presence of hydrogen bridges and the possibility of magnetic nonequivalence among the BH₄ protons. The interesting implication derived from the X-ray data²⁶ at -160° and the electron diffraction studies27 is the involvement of three hydrogens of a given BH4 moiety in bridging to zirconium (10).

Although the experimental data regarding the structure of Hf(BH₄)₄ are limited,⁷ it is apparent that it has a structure very similar to Zr(BH₄)₄. A dnmr investigation of Zr(BH₄)₄ and Hf(BH₄)₄ revealed changes in the ¹H dnmr spectrum at low temperatures consistent only with quadrupole-induced spin decoupling (Figure 5)7 and verified by total nmr line-shape techniques. It is apparent from these studies7 that intramolecular scrambling of the BH4 groups is still rapid on the nmr time scale at -80°. Rapid intramolecular scrambling in Zr(BH₄)₄ and Hf(BH₄)₄ at -80° is not surprising in light of the apparently rapid exchange in $[(C_6H_5)_3P]_2CuBH_4$ at $-110^{\circ}.^{16}$ Analogous to the above compounds, $(\pi-C_5H_5)_2Zr(BH_4)_3$ possesses an infrared spectrum indicating bridging and terminal B-H groups, although the ¹H and ¹¹B nmr spectra again reveal all hydrogens to be equivalent, i.e., apparently rapid BH₄ scrambling.²⁸

The infrared spectra of the apparently square-planar trans complexes $(R_3P)_2MH(BH_4)$, in which R = cyclohexyl or isopropyl and M = Pd or Ni, suggest double hydrogen bridges for BH₄. However, the lone hydrogen bonded to the metal shows equivalent spin-spin coupling to all four BH₄ protons²⁹ consistent with all BH₄ hydrogens being equivalent and rearranging rapidly.

(29) M. L. H. Green, H. Munakata, and T. Saito, J. Chem. Soc. A, 469 (1971).

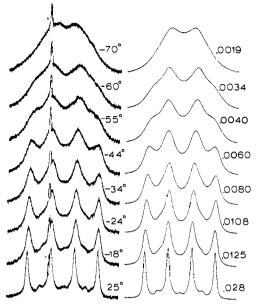
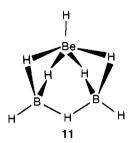



Figure 5. The experimental ¹H dnmr spectrum (90 MHz) of Zr(BH₄)₄ in toluene-d₈ and computed spectra as a function the ¹¹B spin–lattice relaxation time (T_1) (see ref 7).

Electric deflection, 30 dipole moment, 31 and infrared spectroscopic studies32 of gaseous Be(BH4)2 seem to support a structure similar to 11, A recent X-ray crystallo-

graphic study of Be(BH₄)₂ reveals a structure which consists of a helical polymer of BH₄Be and BH₄ units (12).33

Although the above data indicate clearly the presence of different types of hydrogens in Be(BH₄)₂, little dnmr data³⁴ have been forthcoming relating to the static or dynamic structure of Be(BH₄)₂. The ¹H nmr spectrum of CH3BeBH4 dimer (13) in benzene-toluene at room tem-

⁽²³⁾ P. C. Maybury, J. C. Davis, Jr., and R. A. Patz, Inorg. Chem., 8, 160 (1969).

⁽²⁴⁾ J. K. Ruff, Inorg. Chem., 1, 612 (1962).

⁽²⁵⁾ B. D. James, R. K. Nanda, and M. G. H. Wallbridge, J. Chem. Soc. A, 182 (1966)

⁽²⁶⁾ P. H. Bird and M. R. Churchill, Chem. Commun., 403 (1967).

⁽²⁷⁾ V. Plato and K. Hedberg, *Inorg. Chem.*, 10, 590 (1971); V. P. Spiridonov and G. I. Mamawa, *J. Struct. Chem.*, 10, 120 (1969).

⁽²⁸⁾ B. D. James, R. K. Nanda, and M. G. H. Wallbridge, J. Chem. Soc. A. 182 (1966)

⁽³⁰⁾ J. W. Nibler and T. Dyke, J. Amer. Chem. Soc., 92, 2922 (1970).

⁽³¹⁾ J. W. Nibler and J. McNabb, Chem. Commun., 134 (1969).

⁽³²⁾ T. H. Cook and G. L. Morgan, J. Amer. Chem. Soc., 92, 6493 (1970); 91, 774 (1969).

⁽³³⁾ D. S. Marynick and W. N. Lipscomb, Inorg. Chem., 11, 820 (1972). (34) T. H. Cook and G. L. Morgan, J. Amer. Chem. Soc., 92, 6487

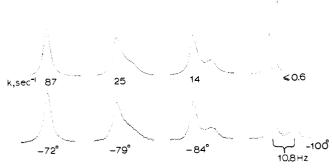


Figure 6. The ¹H dnmr spectrum (60 MHz) of the tert-butyl resonance of (t-C₄H₉) (CH₃)₂NBH₃ in CH₂CHCl (see ref 37).

perature 34 consists of a sharp singlet resonance (au10.11, CH₃) and a 1:1:1:1 quartet (τ 9.20, $J_{\rm B,H}$ = 86.0 Hz, BH₄) with respective relative intensities of 3:4. The 1:1:1:1 quartet observed for the BH4 proton resonance is again consistent with all BH4 hydrogens being equivalent owing to rapid intramolecular exchange or consistent with the unlikely happening of equivalent spinspin coupling of bridge and terminal protons to boron in a static or dynamic system.

III. Amine-Boranes and Aminoboranes

Although recent theoretical calculations concerning the barrier to rotation in H_3N-BH_3 ($\Delta H^* = 3 \text{ kcal/mol}$)³⁵ suggest conformational dynamics similar to ethane (ΔH^* = 3 kcal/mol),³⁶ there exists a dearth of data regarding rotation about nitrogen-boron bonds in amine-boranes or phosphorus-boron bonds in phosphine-boranes. Recent reports indicate that borane complexation of a trialkylamine can affect markedly the conformational dynamics of the central carbon-nitrogen bond as compared to the free amine. For example, examination of the ¹H dnmr spectra of $(t-C_4H_9)(CH_3)_2NBH_3$ and $(t-C_4H_9)(CH_3)_2NBD_3$ in vinyl chloride revealed changes in the spectrum (Figure 6) consistent with slowing tert-butyl rotation (eq 3).37

A total dnmr line-shape analysis of this spectral behavior (Figure 6) gave activation parameters for tert-butyl rotation in $(t-C_4H_9)(CH_3)_2NBH_3$ $(\Delta H^* = 11.2 \pm 0.3 \text{ kcal}/$ mol, $\Delta S^* = 6 \pm 2$ eu, $\Delta G^* = 10.0 \pm 0.1$ kcal/mol at -79°) and also in $(t-C_4H_9)(CH_3)_2NBD_3$ ($\Delta H^*=11.1\pm$ **0.3** kcal/mol, $\Delta S^* = 5 \pm 2$ eu, $\Delta G^* = 10.1 \pm 0.1$ kcal/ mol at -77°) indicating little effect of deuterium on the rate of tert-butyl rotation. However, increased vicinal repulsions in the two amine-boranes lead to a significantly higher barrier to tert-butyl rotation than those observed in a number of uncomplexed tert-butyldialkylamines (ΔH^* $= 6-7 \, \text{kcal/mol}).^{38}$

(35) W. Palke, J. Chem. Phys., 56, 5308 (1972).

(36) K. S. Pitzer, Discuss. Faraday Soc., 10, 66 (1951); D. R. Lide, J. Chem. Phys., 29, 1426 (1958).

(37) C. H. Bushweller, W. J. Dewkett, J. W. O'Neil, and H. Beall, J. Org. Chem., 36, 3782 (1971); Tetrahedron Lett., 4955 (1970).

Optimized orientation of the empty 2p atomic orbital of boron with respect to the lone-pair atomic orbital of nitrogen in aminoborane (H_2N-BH_2) leads to π -bonding between nitrogen and boron (14). The net result of this π -

bonding is a reduced pyramidality at nitrogen (as compared to the free amine) similar to that observed in simple amides such as formamide³⁹ and a situation isoelectronic as well as isosteric with ethylene. Depending on the extent of π -bonding in aminoboranes, there exists a measurable barrier to B-N bond rotation.⁴⁰ In sufficiently asymmetric compounds, cis and trans isomers are observed.41 In the case of (dimethylamino)phenylmethylborane, the barrier to B-N bond rotation was observed to be 26.6 kcal/mol (eq 4).42 For the series 15 and 16, the

$$H_3C$$
 $N \xrightarrow{C} B$
 H_3C
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3

barriers to B-N bond rotation ranged from 10 to 19 kcal/ mol.42,43 Actually, the bulk of the barriers in 15 and 16

were in the range 14-19 kcal/mol with compounds such as 16 (R = t-Bu) at 10 kcal/mol, indicating a destabilization, i.e., twisting, of the approximately planar ground state because of increased steric repulsions involving tert-butyl. In bis(dimethylamino)boranes and in tris(dimethylamino)borane, simple molecular orbital considerations would predict reduced B-N bond orders owing to "competitive" π -bonding³⁹ among multiple B-N(CH₃)₂ moieties (below) and a concomitant lowering of the B-N

$$R \longrightarrow \bar{B} \stackrel{\uparrow}{N(CH_3)_2} \longleftrightarrow R \longrightarrow \bar{B} \stackrel{N(CH_3)_2}{N(CH_3)_2}$$

(38) C. H. Bushweller and W. G. Anderson, Tetrahedron Lett., 129 (1972); C. H. Bushweller, J. W. O'Neil, and H. S. Bilofsky, Tetrahedron, 27, 5761 (1971).

(39) C. H. Bushweller, P. E. Stevenson, J. Golini, and J. W. O'Neil, J. Phys. Chem., 74, (1970), and references therein.

(40) G. E. Ryschkewitsch, W. S. Brey, Jr., and A. Saji, J. Amer. Chem. Soc., **83**, 1010 (1961); W. S. Brey, Jr., M. E. Fuller, II, G. E. Ryschkewitsch, and A. S. Marshall, *Advan. Chem. Ser.*, **No. 42** (1964).

(41) H. T. Baechle and H. J. Becher, Spectrochim. Acta, 21, 579 (1965); H. T. Baechle, H. J. Becher, H. Beyer, W. S. Brey, Jr., J. W. Dawson, M. E. Fuller, II, and K. Niedenzu, *Inorg. Chem.*, 2, 1065 (1963); E. F. Mooney and P. H. Winson, Chem. Commun., 341 (1967).

(42) H. Watanabe, T. Totani, K. Tori, and T. Nakogawa in "Proceedings of the XIIIth Colloque Ampere," L. Van Garven, Ed., North Holland Publishing Co., Amsterdam, 1965.

(43) P. A. Barfield, M. F. Lappert, and J. Lee, *Proc. Chem. Soc.*, 421 (1961); K. Niedenzu, J. W. Dawson, G. A. Neece, W. Sarodny, D. R. Squire, and W. W. Weber, *Inorg. Chem.*, **5**, 2161 (1966).

rotational barrier. Dnmr studies reveal an apparent lowering of the B-N rotational barrier in 17a ($\Delta H^* = 11.1$ kcal/mol) and 17b ($\Delta H^* = 13.7 \text{ kcal/mol})^{44}$ as com-

$$R \longrightarrow B$$
 $N(CH_3)_2$
 $N(CH_3)_2$
17
17a, $R = C_6H_5$
b. $R = N(CH_2)C_6H_5$

pared to the less hindered members of the series 15 and 16, Consistent with the molecular symmetry, tris(dimethylamino)borane exhibited no changes in the dnmr spectrum to -145°, although the barrier to B-N rotation must be similar to that in 17b, Interestingly, the B-N rotational barrier in 18 (ΔH^* = 12.7 kcal/mol) is significantly lower than the C-N barrier in the isoelectronic octamethyloxamidinium bromide (19, $\Delta H^* = 25 \text{ kcal/}$ mol), 44 indicating a substantial difference in π -bonding characteristics between 18 and 19,

$$(CH_3)_2N$$
 $B - B$ $N(CH_3)_2$ $(CH_3)_2N$ $+ C - C + 2Br^{-1}$ $N(CH_3)_2$ $(CH_3)_2N$ $N(CH_3)_2$ $N(CH_3)_2$

IV. Diboranes and Diborohydrides

The dynamical properties of diborane (20) are reasonably well defined. Examination of the ¹¹B dnmr spectrum

of gaseous diborane reveals a triplet of triplets $(J_{B,H \text{ bridge}} = 46 \text{ Hz}; J_{B,H \text{ terminal}} = 135 \text{ Hz})$ which is invariable over a range of temperature and pressure;45 i.e., bridge and terminal hydrogens are exchanging slowly. ¹H nmr data for diborane are entirely consistent with the ¹¹B spectra. ^{45b} However, the ¹¹B dnmr spectrum of diborane in diethyl ether solution at 30° is a broad, non-Lorentzian singlet exhibiting no fine structure (Figure 7) 13 consistent with a rate process which is rapid on the nmr time scale. Indeed, lowering the temperature to about -36° restored the identical triplet of triplet spectrum observed for neat nonexchanging diborane. Warming the diethyl ether solution to about 84° produced a seven-line multiplet consistent with 11B coupled to six equivalent hydrogens and rapid hydrogen scrambling. The seven-line multiplet observed in diethyl ether at 84° (Figure 7) is present at room temperature in an ethylene glycol dimethyl ether solution. All of these spectral data in ether solution are consistent with more rapid hydrogen scrambling as compared to neat diborane. It is apparent that ethers catalyze the intramolecular scrambling in diborane (e.g., eq 5). The observation of the seven-line multiplet in ethylene glycol dimethyl ether at room temperature as compared to 84° in diethyl ether suggests that the more

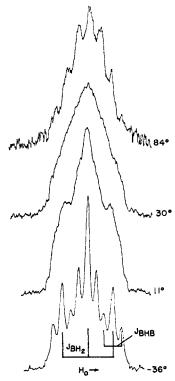


Figure 7, The ^{11}B dnmr spectrum of B_2H_6 in diethyl ether (see ref 13).

basic the ether the more effective the catalysis. The 11B nmr spectra of several neat methyldiboranes also indicate static structures on the nmr time scale at room temperature.46

The ^{11}B dnmr spectrum of μ -dimethylaminodiborane was observed early to be temperature dependent, consistent with a dynamic structure for the molecule.47 However, this early dnmr study47 was not conducted over the whole range of spectral changes. A later report involved a complete study of the $^{11}\mathrm{B}$ dnmr spectrum of $\mu\text{-dimethyla}\text{-}$ minodiborane in ethylene glycol dimethyl ether (Figure 8).48 At -39° , the ¹¹B spectrum is a triplet of doublets consistent with strong coupling of boron to two terminal hydrogens (J = 130 Hz) and weak coupling to one bridging hydrogen (J = 30 Hz). At 83°, the spectrum has changed into a sextet possessing intensities consistent with coupling of boron to five equivalent hydrogens, i.e., rapid hydrogen tautomerism (eq 6). As in the case of diborane, 13 the rate of exchange seems to be a function of the basicity of ethereal solvents. An activation energy for hydrogen exchange in μ -dimethylaminodiborane of 3.7 kcal/mol in ethylene glycol dimethyl ether was calculat-(46) R. E. Williams, H. D. Fisher, and C. D. Wilson, J. Phys. Chem., 64,

⁽⁴⁴⁾ M. J. S. Dewar and P. Rona, J. Amer. Chem. Soc., 91, 2259 (1969).

^{(45) (}a) D. F. Gaines, R. Schaeffer, and F. Tebbe, J. Phys. Chem., 67, 1937 (1963); (b) R. A. Ogg, Jr., J. Chem. Phys., 22, 1933 (1954); J. N. Shoolery, Discuss. Faraday Soc., 19, 215 (1955); W. D. Phillips, H. C. Miller, and E. L. Muetterties, J. Amer. Chem. Soc., 81, 4496 (1959); T. P. Onak, H. Landesman, R. E. Williams, and I. Shapiro, J. Phys. Chem., 23, 1533 (1959) 63, 1533 (1959).

^{1583 (1960).}

⁽⁴⁷⁾ W. D. Phillips, H. C. Miller, and E. L. Muetterties, J. Amer. Chem. Soc., 81, 4496 (1959).

⁽⁴⁸⁾ D. F. Gaines and R. Schaeffer, J. Amer. Chem. Soc., 86, 1505

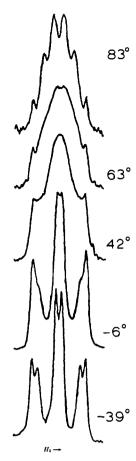


Figure 8, The $^{11}\mathrm{B}$ dnmr spectrum of $\mu\text{-dimethylaminodiborane}$ in ethylene glycol dimethyl ether (see ref 48).

ed from the nmr line-shape changes using an approximate method. This compares with 4.8 kcal/mol for diborane in diethyl ether using essentially the same approximate nmr line-shape method.45a However, these activation energies must be viewed with discretion owing to their approximate nature and the possibility of significant systematic errors in the analysis.8

As predicted from topological theory, 49 the diborohydride ion should have the structure 21, The 11B nmr

spectrum of a 1:1 sodium borohydride-sodium diborohydride mixture in ethylene glycol dimethyl ether at 30° shows the BH₄- quintet and a broad 1:3:3:1 quartet for B_2H_7 — (Figure 9).^{13,50} The broadened 1:3:3:1 guartet observed for B2H7- is consistent with coupling of boron to three equivalent terminal hydrogens (J = 102Hz) and weak, unresolved coupling to the bridge hydrogen (21); i.e., hydrogen tautomerism is slow on the nmr time scale in B2H7 - under these conditions. If one thinks

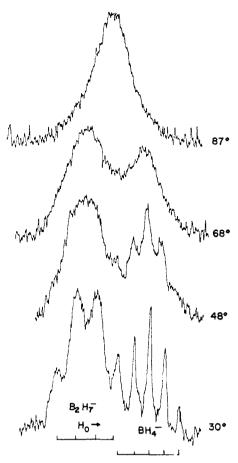


Figure 9, The ¹¹B dnmr spectrum of 1:1 sodium borohydridesodium diborohydride in ethylene glycol dimethyl ether (see ref

of B₂H₇⁻ as a complex between BH₃ and BH₄⁻, the static behavior of B2H7- is in marked contrast to a host of other metal tetrahydroborate complexes discussed above. Upon warming the 1:1 sodium borohydride:sodium diborohydride solution, the BH_4^- and $B_2H_7^-$ ¹¹B resonances coalesced consistent with an increasing rate of intermolecular scrambling between BH₄- and B₂H₇-(Figure 9). In contrast, the intermolecular exchange between $B_2H_7^-$ and B_2H_6 is apparently rapid even at room temperature. 13 Recently, $CH_3P(C_6H_5)_3B_2H_7$ was prepared.51 The 1H nmr spectrum of the B2H7 protons in $CH_3P(C_6H_5)_3B_2H_7$ at 33° consists of a 1:1:1:1 quartet $(J_{\rm H,B}$ = 106 Hz; τ 8.9) and a broad unresolved resonance at τ 14.5 of relative intensities 6:1. $^{1}H-^{1}H$ spinspin coupling between terminal and bridging hydrogens (J = 5.6 Hz) is also observed. The ¹¹B nmr spectrum at 33° reveals a broadened 1:3:3:1 quartet $(J (^{11}B,H) =$ 106 Hz). All of these observations are consistent again with a static, single hydrogen-bridged B₂H₇⁻.

V. Triborane (B_3H_7)

The X-ray crystallographic structure of H₃NB₃H₇ reveals an interesting asymmetric molecular geometry (22).52 However, the solution nmr spectra of a number of appropriate static B₃H₇ adducts are more consistent with a structure of greater symmetry (23) or with a very rapid torsional motion of the BH₂L moiety (eq 7) on the nmr time scale. It is also conceivable that the BH2L group is rotat-

⁽⁴⁹⁾ R. E. Dickerson and W. N. Lipscomb, J. Chem. Phys., 27, 212

⁽⁵⁰⁾ B. J. Duke, O. W. Howarth, and J. G. Kenworthy, Nature (London), 202, 81 (1964).

⁽⁵¹⁾ R. K. Hertz, H. D. Johnson, II. and S. G. Shore, Abstracts, 164th National Meeting of the American Chemical Society, New York, N. Y., Aug 27-Sept 1, 1972, No. INOR-142.

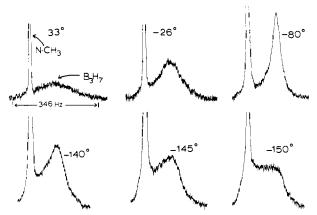
⁽⁵²⁾ C. E. Nordman and C. Riemann, J. Amer. Chem. Soc., 81, 3538

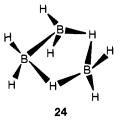
ing completely and rapidly about an axis passing through the boron bonded to L and the bridging hydrogen. Since this kind of rotation has sixfold character, the barrier would be expected to be very low.

The rate of intramolecular hydrogen tautomerism as well as the rate of ligand dissociation in Lewis base B₃H₇ adducts (23) is a significant function of the Lewis basicity of L (23). The ^{11}B nmr spectrum of $(C_2H_5)_2O_7B_3H_7$ consists of one diffuse symmetrical octet ($J_{
m B,H}$ \sim 30 Hz) with relative peak intensities consistent with coupling to seven effectively equivalent hydrogens; i.e., rapid hydrogen exchange and ligand dissociation are occurring (e.g., eq 8).47,53 Similar observations are made for the

THF, B₃H₇ adduct.⁵⁴ In contrast to ether, B₃H₇ adducts, the ¹¹B nmr spectrum of (CH₃)₃N₂B₃H₇ consists of two closely spaced octets with the relative intensities of the low- to high-field octet being 2:1.53 The observation of two 11B signals supports a model in which ligand exchange is slow on the nmr time scale consistent with (CH₃)₃N being a stronger Lewis base than (C₂H₅)₂O. However, the fact that both 11B resonances are octets (i.e., boron is coupled to seven magnetically equivalent hydrogens) speaks for rapid B₃H₇ hydrogen tautomerism in (CH₃)₃N₂B₃H₇. These data suggest that Lewis base exchange and B3H7 hydrogen scrambling are not necessarily coupled rate processes and that one process may occur at a substantially different rate than the other. Very few attempts have been made to observe slow B3H7 scrambling using the dnmr method. In one report concerning the 1H dnmr spectrum of $(C_6H_5CH_2)_2CH_3N_1B_3H_7$ in vinyl chloride,55 the broad unresolved B3H7 protons singlet sharpened dramatically at low temperatures (Figure 10) into a relatively sharp singlet due to efficient quadrupole induced spin decoupling. The singlet observed at -80° (Figure 10) for the B_3H_7 protons is consistent with rapid hydrogen scrambling at this temperature. However, at lower temperatures, the B₃H₇ resonance undergoes significant differential broadening as compared to the N-CH₃ resonance and gives a flat-topped peak at -150° (Figure 10). This spectral behavior is rationalized on the

(55) W. J. Dewkett, H. Beall, and C. H. Bushweller, Inorg. Nucl. Chem. Lett., 7, 633 (1971).




Figure 10, The ¹H dnmr spectrum of the CH₃ and B₃H₇ protons of (C₆H₅CH₂)₂CH₃NB₃H₇ in CH₂CHCl (see ref 55).

basis of slowing B3H7 proton exchange and represents a low barrier to hydrogen tautomerism of approximately 6 kcal/mol.

Examination of the ¹¹B nmr spectra from -40 to 30° of the series $F_2XP_1B_3H_7$ (X = H, F, Cl, Br, N(CH₃)₂) as well as OCB₃H₇ revealed static B₃H₇ systems.⁵⁶ In general, the ¹¹B nmr spectra of F₂XP, B₃H₇ gave a broad lowfield triplet of relative intensity 2, assigned to the H₂BHBH₂ portion of the complex and a four-line multiplet at higher field of relative intensity 1 due to H2B-PXF2 displaying coupling of boron to phosphorus and the two terminal hydrogens. The 11B spectrum of OC, B3H7 gives an expected low-field triplet and higher field triplet of relative intensities 2:1, again consistent with a static system. There have been no reports of attempts to measure the rate of B3H7 hydrogen scrambling in F2PX,B3H7 or OCB₃H₇ using the dnmr method above room temperature. It is evident from the above static B₃H₇ systems that the symmetry in solution is either that associated with 23 or that rapid torsional motion (eq 7) or essentially free rotation of BH₂L is occurring.

VI. Triborohydride Ion ($B_3H_8^-$)

Early 11B and 1H solution nmr strudies of noncomplexed B₃H₈⁻ salts, e.g., NaB₃H₈, revealed single ¹¹B or ¹H resonances exhibiting coupling consistent with all borons and hydrogens being equivalent, i.e., rapid intramolecular exchange.47,57 The observation of boron-hydrogen spin-spin coupling for NaB3H8 under conditions of rapid hydrogen tautomerism led to the postulation of an intramolecular dynamical model in which electron pair bonding remains essentially invariant and internal rearrangement occurs.53b An X-ray crystallographic study of $[(H_3N)_2BH_2]^+B_3H_8^-$ revealed the "free" $B_3H_8^-$ ion to have the geometry 24 with the B-B bond distance 1.80

(56) R. T. Paine and R. W. Parry, *Inorg. Chem.*, 11, 268 (1972); E. R. Lory and D. M. Ritter, *ibid.*, 10, 939 (1971).

(57) (a) A. D. Norman and R. Schaeffer, *J. Phys. Chem.*, **70**, 1662 (1966); (b) B. M. Graybill, A. R. Pitochelli, and M. F. Hawthorne, *Inorg. Chem.*, **1**, 626 (1962); W. V. Hough, L. J. Edwards, and A. D. McElroy. J. Amer. Chem. Soc., 78, 689 (1956).

^{(53) (}a) R. E. Williams, J. Inorg. Nucl. Chem., 20, 198 (1961); (b) W. N. Lipscomb, Advan. Inorg. Chem. Radiochem., 1, 132 (1959); (c) W. N. Lipscomb, "Boron Hydrides," W. A. Benjamin, New York, N. Y.,

⁽⁵⁴⁾ M. A. Ring, E. F. Witucki, and R. C. Greenough, Inorg. Chem., 6, 395 (1967).

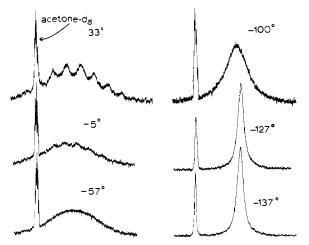


Figure 11. The ¹H dnmr spectrum (60 MHz) of TIB₃H₈ in 50% $CD_3OD-50\% CD_3COCD_3 (v/v) (J(^{11}B,^{1}H) = 33 Hz)$ (see ref 3).

Å, an apex boron-hydrogen bridge bond of 1.5 Å, and base boron-bridge hydrogen bond of 1.2 Å and overall C_{2v} symmetry.⁵⁸ A more recent X-ray crystallographic study of $[(C_6H_5)_3P]_2CuB_3H_8$ gave the structure 25 for the case of a complexed B₃H₈⁻ ion,⁵⁹ A recent nonempirical molecular orbital (NEMO) calculation suggests that a somewhat less symmetric structure is preferred for the free B₃H₈⁻ ion.⁶⁰

$$P(C_6H_5)_3$$
 CU
 H
 B
 H
 H
 H
 H

Several recent dnmr studies of various B3H8- salts have revealed changes in the 1H dnmr spectrum at low temperatures consistent with both quadrupole-induced spin decoupling and variable rates of $B_3H_8^-$ internal exchange depending on structure. The ¹H dnmr spectrum of TIB₃H₈ in 50% CD₃OD-50% CD₃COCD₃ (v/v) at 33° consists of a ten-line multiplet (two outer peaks lost in noise) revealing coupling to three equivalent 11B nuclei (/ = $\frac{3}{2}$; $J_{H,B}$ = 33 Hz)⁶¹ with smaller ¹⁰B coupling in the background and consistent with rapid scrambling of B₃H₈ hydrogens (Figure 11). Upon lowering the temperature, the spin-spin coupling pattern coalesced and the B3H8 spectrum sharpened into a singlet resonance at about -127°. Essentially identical behavior is observed for (CH₃)₄NB₃H₈,61,62 The loss of 10,11B-1H spin-spin coupling in TIB₃H₈ and (CH₃)₄NB₃H₈ at lower temperatures is completely consistent with more efficient boron quadrupole relaxation effectively decoupling boron from hydrogen. In addition, the observation of a singlet B₃H₈ resonance at -137° (Figure 11) is best rationalized on the basis of fast B3H8 scrambling or "pseudorotation" (eq

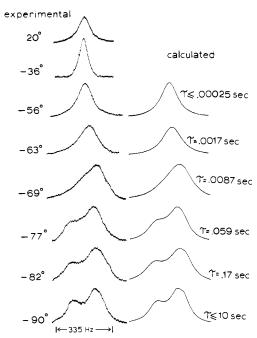


Figure 12, Experimental and theoretical ¹H dnmr spectrum of $[(\tilde{C}_6H_5)_3P]_2CuB_3H_8$. τ = lifetime of a proton at any site in B_3H_8 moiety (see ref 3).

9)53b at this very low temperature. It is interesting to note

also that the quintet due to CD2HCOCD3 in the TIB3H8 dnmr sample (Figure 11) collapses to a singlet at low temperatures, consistent with more efficient deuteron (/ = 1) quadrupole relaxation.

In contrast to TIB₃H₈ and (CH₃)₄NB₃H₈, the ¹H dnmr spectrum of $[(C_6H_5)_3P]_2CuB_3H_8$ (25) in 50%. CDCl₃-50% CD2Cl2 at 20° is a broad singlet with no fine structure (Figure 12). 61 Upon lowering the temperature, the B_3H_8 resonance sharpens to some extent (quadrupole-induced decoupling), then broadens in an asymmetric fashion and separates into several resonances at -90° (Figure 12). This behavior is best rationalized in terms of slowing B₃H₈ pseudorotation at low temperatures (eq 10) and a static B_3H_8 system at -97° . A ^{31}P dnmr study of [(p-

⁽⁵⁸⁾ C. R. Peters and C. E. Nordman, J. Amer. Chem. Soc., 82, 5758

⁽⁵⁹⁾ S. J. Lippard and K. M. Melmed, Inorg. Chem., 8, 2755 (1969).

⁽⁶⁰⁾ P. E. Stevenson, J. Amer. Chem. Soc., 95, 54 (1973).

⁽⁶¹⁾ C. H. Bushweller, H. Beall, M. Grace, W. J. Dewkett, and H. S. Bilofsky, J. Amer. Chem. Soc., **93**, 2145 (1971); H. Beall, C. H. Bushweller, W. J. Dewkett, and M. Grace, *ibid.*, **92**, 3484 (1970).

⁽⁶²⁾ D. Marynick and T. Onak, J. Chem. Soc. A, 1160 (1970).

CH₃C₆H₅)₃P]₂CuB₃H₈ in CH₂Cl₂ revealed a transition of the spectrum from a singlet resonance at ca. -80° to an AB spectrum ($\Delta \nu_{\rm AB}$ = 2.0 ppm; $J_{\rm P,P}$ = 91 Hz) at -120°, consistent with slowing an exchange process which equilibrates phosphine environments,63 i.e., exchange between axial and equatorial triphenylphosphines in 25, Below -20°, addition of excess tri-p-tolylphosphine to the sample of [(p-CH₃C₆H₅)₃P]₂CuB₃H₈ resulted in the observation of two separate 31P signals due to free and complexed ligand supporting the unimolecularity of the rate process slowed below -80°. However, above -20°, the 31P resonances of free and complexed ligands coalesce to a single signal providing evidence for an additional intermolecular exchange. Analogous behavior was observed in the ${}^{1}H$ dnmr spectrum of $[(C_6H_5O)_3P]_2$ -CuB₃H₈ (Figure 13), although the spectral transitions consistent with slowing B3H8 pseudorotation occur at higher temperatures than for [(C₆H₅)₃P]₂CuB₃H₈, indicating a somewhat slower rate of scrambling in $[(C_6H_5O)_3P]_2$ -CuB₃H₈.64 Changes in the ¹H dnmr spectrum of the aromatic protons of [(C₆H₅O)₃P]₂CuB₃H₈ also occur consistent with exchange of the triphenyl phosphite ligands between axial and equatorial sites.64 The 11B nmr spectra of $(OC)_4MB_3H_8^-$ ion (26, M = Cr, Mo, W) in CH_3CN at room temperature consist of two broadened signals at

23.0 and 61.3 ppm (relative to B(OCH₃)₃) of relative intensity 1:2.65 These spectra are clearly consistent with slow B₃H₈ pseudorotation on the nmr time scale at room temperature and represent a more static B₃H₈ system than in the (triarylphosphine)₂CuB₃H₈. TlB₃H₈, or (CH₃)₄NB₃H₈. However, it is clear that complexation of B₃H₈- by a metal via hydrogen bridge bonds slows the rate of B₃H₈ pseudorotation as compared with free B₃H₈⁻; *l.e.*, the complexed metal acts as a "lock" on the pseudorotatory process. The apparently slower rate of B_3H_8 pseudorotation in $[(C_6H_5O)_3P]_2CuB_3H_8$ and (OC)₄MB₃H₈ as compared to [(C₆H₅)₃P]₂CuB₃H₈ attests to the different electronic characters of $(C_6H_5O)_3P$ and (C₆H₅)₃P as well as the different bonding characteristics of various metals.

Although there are data concerning the rate of B3H8 pseudorotation as a function of different ligands and metals, an extensive, systematic experimental and theoretical study is still in order to provide an incisive depiction of the important factors in the dynamics of the B₃H₈ sys-

VII. Tetraborane Derivatives

A, B₄H₈. (N,N,N',N'-Tetramethylethylenediamine)

When the 1:1 addition product of B₅H₉ and N, N, N', N'-tetramethylethylenediamine (TMED) is allowed

(63) E. L. Muetterties, W. G. Peet, P. A. Wegner, and C. W. Alegranti, Inorg. Chem., 9, 2447 (1970).

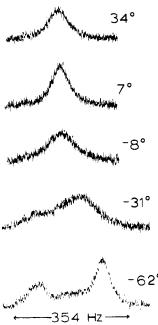


Figure 13, The 1H dnmr spectrum of the B3H8 protons of $[(C_6H_5O)_3P]_2CuB_3H_8$ in 50% CDCl₃-50% CD₂Cl₂ (v/v) (see ref

to react with methanol, hydrogen gas is evolved, and a new compound which was definitively characterized to be B₄H₈, TMED is formed (eq 11).66 Of the various structur-

$$B_4H_8$$
'TMED + B(OCH₃)₃ + 2H₂ (11)

al possibilities that were considered, structure 27 was favored.66

The ¹¹B nmr spectrum of B₄H₈, TMED showed two broad resonances of relative intensities 1:3. Since there are no equivalent boron atoms in the proposed structure (27), accidental peak overlap or boron atom equilibration must be assumed. The ¹H nmr spectrum at room temperature of the B₄H₈ portion of the molecule is comprised of a very broad resonance which collapsed to a single sharp peak upon irradiation at the 11B frequency. Proton tautomerism is almost assured in this molecule, no matter what the structure. An X-ray study of B4H8, TMED would be illuminating.

B. Nonahydrotetraborate (1 –) Ion (B_4H_9 –)

The anion B₄H₉⁻ has been prepared in the unsymmetrical cleavage of B₅H₁₁ by ammonia (eq 12)⁶⁷ and by

(64) H. Beall, C. H. Bushweller, and M. Grace, Inorg. Nucl. Chem. Lett., 7,641 (1971)

(65) F. Klanberg and L. J. Guggenberger, Chem. Commun., 1293

(66) N. E. Miller, H. C. Miller, and E. L. Muetterties, Inorg. Chem., 3, 866 (1964).

(67) (a) G. Kodama, J. Amer. Chem. Soc., 92, 3482 (1970); (b) G. Kodama, J. E. Dunning, and R. W. Parry, J. Amer. Chem. Soc., 93, 3372 (1971).

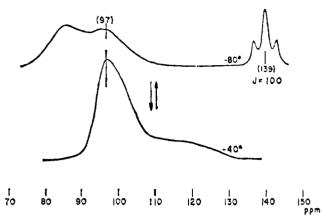


Figure 14, The ^{11}B nmr spectrum of the system $[BH_2(NH_3)_2]^+[B_4H_9^-]$ taken at two temperatures at 32.1 MHz. The change between -40 and -80° is reversible. The solvent is diethyl ether and the standard for chemical shift is $B(CH_3)_3$ (see ref 67b).

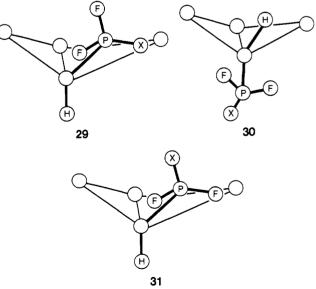
$$B_5H_{11} + 2NH_3 \longrightarrow [H_2B(NH_3)_2]^{\dagger}[B_4H_9]^{\dagger}$$
 (12)

the deprotonation of B_4H_{10} by ammonia⁶⁸ and methyllithium.⁶⁹ Structural data for this ion agree with Lipscomb's prediction^{53b,c} (28). The ¹¹B nmr spectrum of the $B_4H_9^-$

ion has been found to be strongly temperature dependent. $^{67b-69}$ At -45° , the 11 B nmr spectrum of KB $_4$ H $_9$ in ether⁶⁸ consists of a triplet of relative intensity 1.0 (53.2 ppm relative to $BF_3 \cdot O(C_2H_5)_2$, J = 96 Hz) and two broad resonances at 9.7 and 0.4 ppm with a combined relative intensity of 2.8. The triplet may be assigned to B(1), the resonance at 9.7 ppm to B(2,4) and that at 0.4 ppm to B(3). When the nmr sample is warmed to 0° , the triplet (53.2 ppm) broadens and disappears with a concomitant broadening and disappearance of the resonance at 0.4 ppm. The resonance at 9.7 ppm becomes sharper as the temperature increases. Above 0° a new resonance appears which sharpens to a doublet (26.5 ppm, J = 105 Hz) at room temperature. This doublet has an intensity equal to the resonance at 9.7 ppm and a weighted average chemical shift of the low-temperature resonances at 53.2 and 0.4 ppm. Thus, the doublet at 26.5 ppm can be attributed to B(1) and B(3) which have become equivalent on the dnmr time scale due to rapid proton exchange (eq 13). The doublet multiplicity of the

(68) H. D. Johnson, II, and S. G. Shore, *J. Amer. Chem. Soc.*, **92**, 7586 (1970).

(69) A. C. Bond and M. L. Pinsky, *J. Amer. Chem. Soc.*, **92**, 7585


room-temperature time-averaged B(1) and B(3) resonances at 26.5 ppm ($J=105~{\rm Hz}$) is also consistent with one *nonexchanging* hydrogen on each boron. The magnitude of the coupling constant suggests strongly that the static hydrogens are terminal in nature.

At -80° , the ^{11}B nmr spectrum of $[H_2B(NH_3)_2]^+[B_4H_9]^-$ (Figure 14) consists of two broad overlapping resonances at 86 and 97 ppm in addition to a well-defined triplet at 139 ppm (J ($^{11}B,^{1}H$) = 100 Hz). The triplet is most reasonably assigned to B(1) of $B_4H_9^-$ (28) which is bonded to two terminal and no bridge hydrogen atoms. The resonance due to the $[H_2B(NH_3)_2]^+$ cation is expected at about 102 ppm 70 and is concealed under the peak at 97 ppm. The two broad resonances can be attributed to B(2,4) and B(3) of $B_4H_9^-$ (28).

When the sample is warmed to -40° , the triplet at 139 ppm and the peak at 86 ppm disappear while the peak at 97 ppm becomes sharper and a very broad band centered at 110–120 ppm develops. In light of the previous dnmr spectral data on KB_4H_9 , 68 the behavior in $[H_2B(NH_3)_2]^+[B_4H_9]^-$ may be again attributed to a rapid tautomerism which equilibrates B(1) and B(3) on the nmr time scale (eq 13). Thus, in the -40° spectrum the very broad band most likely represents the spectroscopically equivalent B(1) and B(3), and the peak at 97 ppm represents B(2,4) of $B_4H_9^-$.

C. F2XP·B4H8

The ¹⁹F dnmr spectrum of $F_2XP \cdot B_4H_8$ is temperature dependent for those cases where X is $(CH_3)_2N$, F, Cl, Br, or I, but not when X is $H.^{71}$ An X-ray crystal study of $(CH_3)_2NF_2P \cdot B_4H_8^{72}$ has shown its structure to be that of isomer **29**, The temperature dependence of the ¹⁹F dnmr spectrum of $F_2XP \cdot B_4H_8$ has been explained ^{71a} in terms of the existence in solution of two distinct isomers at low temperature which interconvert rapidly when the temperature is raised. Isomers **29** and **30** have been suggested ^{71a} as those involved in this interconversion. The compound $F_2HP \cdot B_4H_8$ shows evidence for only one isomer in the ¹⁹F nmr and no temperature dependence. Concerning the **29** \rightleftharpoons **31** equilibration, it is apparent that rota-

(70) (a) T. P. Onak and I. Shapiro, J. Chem. Phys., **32**, 952 (1960); (b) C. W. Heitsch, *Inorg. Chem.*, **4**, 1019 (1965).

(71) (a) R. T. Paine and R. W. Parry, *Inorg. Chem.*, 11, 1237 (1972); (b) L. F. Centofanti, G. Kodama, and R. W. Parry, *Inorg. Chem.*, 8, 2072 (1969).

(72) M. D. LaPrade and C. E. Nordman, Inorg. Chem., 8, 1669 (1969).

tion about the B-P bond at the temperatures observed (-40 to +40°) is either very slow or very fast on the nmr time scale. Consideration of steric effects would make the latter seem more likely.

VIII. Pentaborane Derivatives

A. Octahydropentaborate (1-) Ion (B_5H_8-)

A proton can be removed from B₅H₉ by the action of a strong base, 73 and experimental evidence 73a verifies that the proton removed comes from a bridge position as predicted by Lipscomb^{53c,74} (eq 14).

H

$$\begin{array}{c}
H
\\
H
\\
H
\end{array}$$
 $\begin{array}{c}
H
\\
H
\end{array}$
 $\begin{array}{$

The ¹¹B dnmr spectrum of LiB₅H₈ shows a strong temperature dependence (Figure 15).75a At ambient temperature, this spectrum consists of two doublets, the smaller of which is upfield and can be assigned to the apical boron atom and the larger to the four basal borons. Since all four basal boron atoms are not equivalent in the presumed structure (eq 14) of this ion, it is likely that proton exchange is occurring. When the solution is cooled, the larger downfield doublet collapses to a significantly broadened singlet resonance and the smaller upfield doublet becomes sharper. The behavior of the downfield resonance can be attributed to decrease in the 11B quadrupole relaxation time or to slowing of the proton exchange. The reason for the sharpening of the upfield doublet is not known with certainty. It has been postulated 75b that this sharpening is the result of decoupling of the basal borons from the apex as a result of spin relaxation induced by the basal boron quadrupoles.

A mechanism for tautomerism in B₅H₈⁻ in which only bridge hydrogen atoms migrate and terminal and bridge hydrogen atoms do not exchange has been favored.75a This mechanistic preference is based on the observed doublet in the 11B nmr spectrum for the basal borons indicating coupling to only one terminal proton. If terminal and bridge hydrogen atoms were exchanging, coupling of the basal borons to all basal protons would be expected. However, coupling to bridge protons may be relatively small and not resolved. In the B₃H₈- case discussed previously, terminal and bridge protons are postulated to exchange, 53b, c, 61 and, in fact, time-averaged coupling between ¹¹B and all eight protons is observed. ^{61,62} A mechanism for such exchange in B₆H₁₀ (to be discussed) has been proposed 53b,c which is applicable also

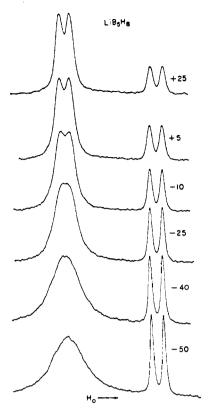
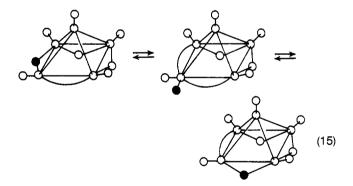



Figure 15, The 32.1-MHz ^{11}B nmr spectra of LiB₅H₈ in $(C_2H_5)_2O$, 1.5 M, at several temperatures (see ref 75).

to $B_5H_8^-$ and $B_6H_9^-$. Applying this mechanism to B₅H₈⁻, a proton shifts from a bridge position to a position in a BH₂ group (eq 15). In such a mechanism, bridge and terminal protons need not exchange.⁷⁵

B, C₃B₅H₇

The structure is not known with certainty for the unusual three-carbon carborane C₃B₅H₇,⁷⁶ but by analogy with the known structures of the isolectronic $B_BH_B^{2-77}$ and C2B6H878 it is reasonable that the carbon and boron atoms in C3B5H7 should be located at the apices of a dodecahedron of approximately D_{2d} symmetry (32). In

(76) M. L. Thompson and R. N. Grimes, J. Amer. Chem. Soc., 93, 6677

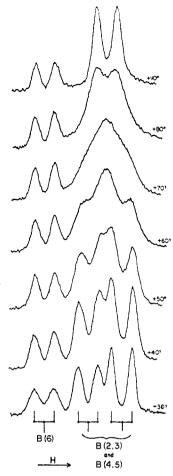
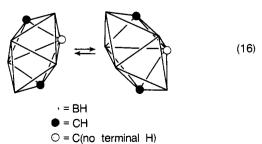
(77) F. Klanberg, D. R. Eaton, L. J. Guggenberger, and E. L. Muetterties, Inorg. Chem., 6, 1271 (1967).

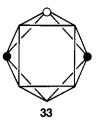
(78) H. Hart and W. N. Lipscomb, Inorg. Chem., 7, 1070 (1968).

^{(73) (}a) D. F. Gaines and T. V. Iorns, *J. Amer. Chem. Soc.*, **89**, 3375 (1967); (b) T. Onak, G. B. Dunks, I. W. Searcy, and J. Spielman, *Inorg. Chem.*, **6**, 1465 (1967); (c) R. A. Geanangel, and S. G. Shore, *J. Amer.* Chem. Soc., 89, 6771 (1967).

⁽⁷⁴⁾ W. N. Lipscomb, J. Phys. Chem., 62, 381 (1958).

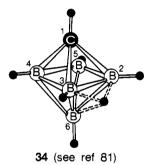
^{(75) (}a) H. D. Johnson, II, R. A. Geanangel, and S. G. Shore, *Inorg. Chem.*, **9**, 908 (1970); (b) J. B. Leach and T. Onak, *J. Magn. Reso*nance, 4, 30 (1971).


Figure 16. Temperature-dependent boron-11 nmr spectra of CB₅H₇ (see ref 81).

possible structures employing this framework geometry, there would be B-H groups at five apices, C-H groups at two apices, and a carbon atom without a terminal hydrogen atom at one apex.

Both the ¹H and ¹¹B nmr spectra of C₃B₅H₇ have been reported.76 The 11B nmr spectrum contains three doublets in the ratio 2:2:1, indicating only three spectroscopically distinguishable BH groups. This result is in agreement with the ¹H nmr spectrum which in addition to a single C-H group resonance contains three quartets, indicating coupling of 11B to three magnetically distinct groups of protons. There is no way to reconcile these nmr results (i.e., only one CH environment and only three BH environments) with a rigid structure based on a D_{2d} dodecahedron unless considerable accidental overlap of peaks is assumed. However, a model employing a rapid tautomerism between two dodecahedral structures (eq 16) is also consistent with the observed nmr spectra.76


The time-averaged geometry in this case will be that of a D_{4d} square antiprism (33).

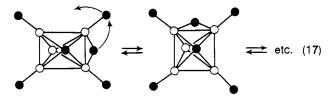
C₃B₅H₇ is an example of a possible tautomerism involving the movement of cage atoms (C and B) rather than migration of hydrogen atoms. Other possible examples will be discussed.

C, CB₅H₇

Pyrolysis⁷⁹ or electric discharge⁸⁰ of 1-methylpentaborane yields the carborane CB₅H₇ (34)⁷⁹ for which spec-

tral data support the structure of a distorted octahedron. This structure is unusual in having a closed cage geometry but bearing a bridging hydrogen atom. The ¹¹B dnmr spectra of CB5H7 (Figure 16) and also of 1-CH3CB5H6 have been found to be temperature dependent.81 At lower temperatures the 11B nmr spectrum of CB5H7 (Figure 16) shows three doublets consistent with the structure 34, As the temperature is raised, two of these doublets coalesce into a single doublet and the spectrum at 100° is consistent with a structure in which the bridge hydrogen atom is moving rapidly around the octahedron so as to render the equatorial boron atoms B(2,3,4,5) spectroscopically equivalent. Temperature independence of the ¹H nmr spectrum of the bridge region at the ¹¹B nmr spectrum coalescence temperature has been offered as evidence against intermolecular exchange.81

A mechanism for intramolecular exchange has been suggested81 in which the exchanging bridge proton between B(2) and B(3) occupies a bridging position between B(3) and B(6) in an unstable intermediate or transition state in moving to the analogous position between B(3) and B(4). In this mechanism bridging and terminal protons would not exchange. It has been further pointed out81 that this kind of mechanism would be served by a static structure in which the bridging proton occupies a location reasonably close to B(6) and more in the octahedral face formed by B(2,3,6) than in the equatorial plane determined by B(2,3,4,5). This postulated structure which is indicated in 34 has the bridging proton bonded to three boron atoms by a four-center bond in a manner which may be similar to that of the "anomalous" hydrogen of $B_5H_{11.}^{53c}$

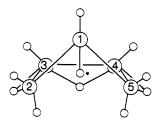

An alternative mechanism for tautomerism in CB5H7 involves a bridge proton-terminal proton exchange (eq

⁽⁷⁹⁾ T. Onak, P. Mattshei and E. Groszek, J. Chem. Soc. A, 1990

⁽⁸⁰⁾ T. Onak, R. Drake, and G. B. Dunks, J. Amer. Chem. Soc., 87, 2505 (1965).

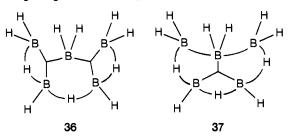
⁽⁸¹⁾ E. Groszek, J. B. Leach, G. T. F. Wong, C. Ungerman, and T. Onak, Inorg Chem., 10, 2770 (1971).

17) similar to that proposed for $B_3H_8^{-.53b,c}$ For this



mechanism a static structure in which the bridge proton is near the equatorial plane (34) is more probable since this will minimize the movement required of the hydrogen atoms. However, under conditions of rapid exchange, time-averaged coupling between the equatorial boron atoms B(2,3,4,5) and all five equatorial protons would lead to a sextet for the ¹¹B(2,3,4,5) resonance. Since a doublet is observed, this mechanism does not seem like-

The coalescence temperature of the ¹¹B nmr spectrum (Figure 16) of CB_5H_7 is 70 \pm 10° and that of the 1-methyl derivative CH₃CB₅H₆ is about 50° lower. Estimated values of ΔG^* for these compounds are 14 \pm 0.5 kcal and 12 \pm 1 kcal, respectively. The lowering of the barrier to exchange in the methyl derivative has been postulated81 as being the result of increased electron density at B(6) transmitted through the cage from the methyl group. This would allow a greater degree of bonding of the bridging proton to B(6) and allow a less obstructed pathway about the octahedron in terms of the first mechanism given above. Further work on the structure and means of tautomerism of CB5H7 and its derivatives is warranted.


D. Pentaborane (11) (B_5H_{11})

The crystal structure82 of B5H11 (35) almost certainly establishes the molecular symmetry as Cs, and the bond-

35 ★ = anomalous proton

ing can be topologically53c represented by one of the two following diagrams (36, 37). Of these, 36 is favored by

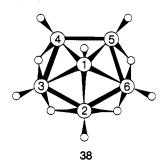
recent SCF calculations.83 In the solid-state structure, B(1) is bonded to two terminal protons, although one of these protons (the "anomalous" proton) is close enough to B(2) and B(5) (1.77 \pm 0.19 and 1.68 \pm 0.19 Å) for some interaction. The ¹¹B nmr spectrum⁸⁴ shows the res-

onance of B(1) split only into a doublet. It is conceivable that this apparent coupling of B(1) could be the result of a slight change in structure and equilibration when in solution (eq 18). However, it is more likely that the bonding

of the "anomalous" proton is of sufficient bridge nature that its coupling to B(1) is not observed. SCF calculations85a and 1H nmr spectral studies85b both show that the properties of the "anomalous" proton are intermediate between those of bridge and terminal protons.

E. Dodecahydropentaborate (1-) Ion $(B_5H_{12}-)$

Treatment of KB4H9 with diborane leads to the preparation of KB₅H₁₂.86 The ¹¹B nmr spectrum of this ion86 consists of two apparent singlets in the area ratio of 3.9:1.0, suggesting a square-pyramidal arrangement of boron atoms and a C₄ axis of symmetry. There is no obvious way that this degree of symmetry can be achieved without rapid equilibration in solution.


F. Pentaborane (9) (B₅H₉)

Quadrupole-induced spin relaxation has recently been observed for the basal boron atoms of B5H987 and for some B₅H₉ derivatives. ^{75b,88}

IX. Hexaborane Derivatives

A. Hexaborane (10) (B_6H_{10})

At room temperature, the ¹¹B nmr spectrum⁸⁹ of B₆H₁₀ shows only two doublets of relative areas 5:1. Since the crystal structure (38)90 has boron atoms in four different

environments, rapid exchange of bridge protons around the base of the pentagonal pyramid rendering all five basal boron atom equivalent on the nmr time scale is

(85) (a) E. Switkes, I. R. Epstein, J. A. Tossell, R. M. Stevens, and W. N. Lipscomb, J. Amer. Chem. Soc., 92, 3837 (1970); (b) T. Onak and J. B. Leach, J. Amer. Chem. Soc., 92, 3513 (1970).

(86) H. D. Johnson and S. G. Shore, J. Amer. Chem. Soc., 93, 3798

(87) D. W. Lowman, P. D. Ellis, and J. D. Odom, J. Mag. Resonance, 8, 289 (1972).

(88) (a) T. C. Geisler and A. D. Norman, Inorg. Chem., 11, 2549 (1972); (b) T. C. Geisler and A. D. Norman, ibid., 9, 2167 (1970).

(89) R. E. Williams, S. G. Gibbins, and I. Shapiro, J. Chem. Phys., 30, 320 (1959).

(90) (a) R. E. Dickerson, P. J. Wheatley, P. A. Howell, and W. N. Lipscomb, J. Chem. Phys., 27, 200 (1957); (b) K. Eriks, W. N. Lipscomb, and R. Schaeffer, ibid., 22, 754 (1954); (c) F. L. Hirshfeld, K. Eriks, R. E. Dickerson, E. L. Lippert, Jr., and W. N. Lipscomb, ibid., 28, 56 (1958).

⁽⁸²⁾ L. Lavine and W. N. Lipscomb, J. Chem. Phys., 22, 614 (1954).

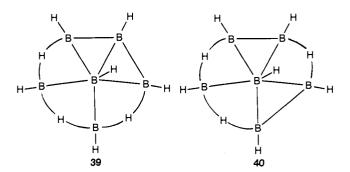
⁽⁸³⁾ E. Switkes, W. N. Lipscomb, and M. D. Newton, J. Amer. Chem. Soc., 92, 3847 (1970).

⁽⁸⁴⁾ R. Schaeffer, J. N. Shoolery, and R. Jones, J. Amer. Chem. Soc., 79, 4606 (1957).

likely. Variable-temperature ¹H and ¹¹B nmr experiments ^{91a} have shown that the exchange can be slowed at about -110°. Recent published studies91b have extended and modified this earlier work and give a limiting ¹H nmr spectrum (11B decoupled) which consists of resonances for three types of basal terminal hydrogen atoms, two types of bridge hydrogen atoms, and the apical terminal hydrogen atom. These results are in full agreement with the crystal structure (38). The ¹¹B nmr spectrum at about -110° is made up of a broad resonance of area 4, a doublet of area 1 which is assignable to the unique basal boron atom B(2), and the upfield doublet of area 1 which can be assigned to the apex boron atom B(1).

In an earlier variable-temperature ¹¹B nmr study⁹² in which the minimum reported temperature was -70°, coalescence of the downfield doublet of the basal boron atoms was observed, whereas the upfield doublet was temperature independent. This situation is similar to that observed for the B₅H₈⁻ ion and can be attributed to quadrupole-induced spin relaxation or slowing of the proton

There is much evidence which shows unquestionably that proton exchange in B₆H₁₀ does not involve scrambling of bridge and terminal hydrogen atoms. As with $B_5H_8^-$ discussed previously, if all basal boron atoms were exchanging, coupling would be expected between all basal boron atoms and all basal hydrogen atoms. Instead the ¹¹B nmr spectrum shows only a doublet indicative of coupling to one terminal proton only. The 100-MHz ^{1}H nmr spectrum 92 of $B_{6}H_{10}$ consists of a downfield guartet arising from the basal terminal protons and an upfield guartet from the apical proton superimposed over the bridge resonance. Separate bridge and terminal resonances would not be observed if these protons were exchanging rapidly on the nmr time scale. Furthermore, it has been shown by nmr93 that when B2D6 is allowed to react with B₆H₁₀ only the basal terminal hydrogen atoms of the B₆H₁₀ exchange for deuterium.


Thus, it appears certain that the mechanism for tautomerism in B_6H_{10} is that originally predicted 53c in which the process passes a stage containing a BH2 group (eq 19) and in which terminal and bridge protons are always segregated. The mechanistic details are the same as those proposed for $B_5H_8^-$ (eq 15).

B. Nonahydrohexaborate(1 –) Ion (B_6H_9 –)

Reaction of B₆H₁₀ with LiCH₃, NaH, or KH at low temperature leads to the preparation of the ion B₆H₉- (eq 20).94 It has been shown94 that the proton removed

$$B_6H_{10} + MB \longrightarrow MB_6H_9 + HB$$
 (20)
 $MB = LiCH_3$, NaH, KH

comes from a bridge position. Early predictions^{53c} of the structure of a possible B₆H₉ ion included one or two BH₂ groups, but these are not supported by the ¹¹B nmr spectrum of the ion which is qualitatively identical94 with that of B_6H_{10} . It is likely that the structure of B_6H_9 is simply that resulting from the removal of a bridge proton from B_6H_{10} without further rearrangement (39 or 40).

Since either of these and any other reasonable B₆H₉structure has boron atoms in more than two environments, proton exchange is likely. Again, as in B₅H₈⁻ and B_6H_{10} , the observations of a doublet for the basal boron atoms in the 11B nmr spectrum mitigate against exchange between bridge and terminal protons.

The ¹¹B dnmr spectral behavior of B₆H₉ - is remarkably similar⁷⁵ to that of B₅H₈ and B₆H₁₀ with coalescence of the larger downfield doublet at low temperature (Figure 17).

The uncertainty of the structure of B₆H₉- renders extensive diścussion of the mechanism of likely proton exchange unwarranted. However, it seems possible that an intermediate structure containing a BH2 group occurs in a situation similar to those postulated for B₅H₈⁻ (eq 15) and B_6H_{10} (eq 19).

C. Undecahydrohexaborate (1-) lon $(B_6H_{11}-)$

Reaction of B₅H₈ with B₂H₆ results in addition of BH₃ to $B_5H_8^-$ and formation of the new anion $B_6H_{11}^-$ (eq 21).86 A structure (41) for B_6H_{11} has been proposed,86

$$LiB_5H_8 + \frac{1}{2}B_2H_6 \frac{-78^{\circ}}{(CH_2)_2O} + LiB_6H_{11}$$
 (21)

in which the BH3 group has entered the vacant bridge site in the base of the B₅H₈ - unit. The ¹¹B nmr spectrum of LiB₆H₁₁ (Figure 18)⁸⁶ is interpretable as consisting of

^{(91) (}a) J. C. Carter and N. L. H. Mock, personal communication; (b) V. T. Brice, H. D. Johnson, II, and S. G. Shore, *J. Chem. Soc., Chem.* Commun., 1128 (1972).

⁽⁹²⁾ J. D. Odom and R. Schaeffer, Inorg. Chem., 9, 2157 (1970).

⁽⁹³⁾ J. C. Carter and N. L. H. Mock, J. Amer. Chem. Soc., 91, 5891

⁽⁹⁴⁾ H. D. Johnson, II, S. G. Shore, N. L. Mock, and J. C. Carter, J. Amer. Chem. Soc., 91, 2131 (1969).

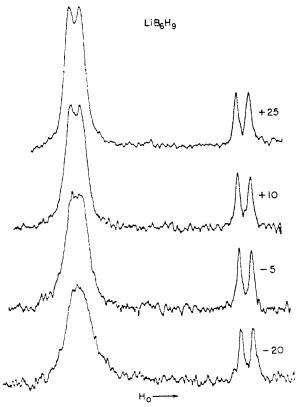


Figure 17. The 32.1-MHz ^{11}B nmr spectra of LiB₆H₉ in $(C_2H_5)_2O$, 0.7 M, at several temperatures (see ref 75).

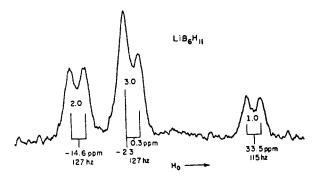
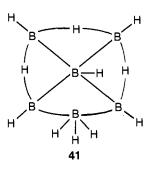
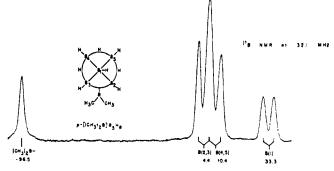




Figure 18. Boron-11 nmr spectrum (32.1 MHz) of LiB6H11 at -20° . Chemical shifts are relative to BF₃, O(C₂H₅)₂ (see ref

(from low to high field) a doublet of weight 2, a singlet of weight 1 superimposed on a doublet of weight 2, and a doublet of weight 1. The upfield doublet is most reasonably assigned to the apex B-H unit and the singlet to the added BH3 group. The lack of resolvable spin coupling in this singlet resonance has been attributed to either a rapid tautomerism which scrambles the terminal hydrogen atoms in the BH₃ group, presumably, with the bridge hydrogen atoms, or to thermal decoupling.86

Figure 19. The ^{11}B nmr spectrum (32.1 MHz) of [(CH₃)₂B]B₅H₈. Chemical shifts (ppm) are relative BF₃·O(C₂H₅)₂ \pm 0.5. Observed coupling constants (Hz \pm are B(2,3)-H, 170; B(4,5)-H, 202; B(1)-H, 181 (see ref 95).

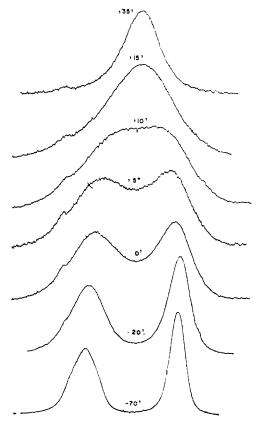


Figure 20. The temperature dependence of the 100-MHz ¹H nmr spectrum of μ -dimethylborylpentaborane(9). The peak separation at -70° is 19.3 Hz (see ref 95).

D, μ -[(CH₃)₂B]B₅H₈

The anion B₅H₈⁻ reacts readily with dimethylboron chloride to form a bridge-substituted pentaborane(9) derivative (eq 22).95 The 11B nmr spectrum (Figure 19) of

$$LiB_5H_8 + (CH_3)_2BCI \longrightarrow \mu - [(CH_3)_2B]B_5H_8 + LiCI$$
 (22)

 $\mu\text{-}[(CH_3)_2B]B_5H_8$ is consistent with the proposed structure (Figure 19). The singlet must be attributed to the bridging (CH₃)₂B group, and its position at very low field is rationalized on the basis that this boron atom is essentially sp² hybridized.⁹⁵

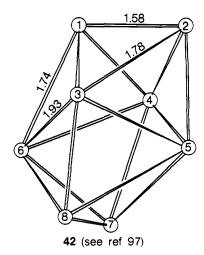
Of particular interest with regard to this compound is the temperature dependence of the ¹H nmr spectrum of the methyl protons (Figure 20).95 The single resonance which is observed above room temperature broadens and

(95) D. F. Gaines and T. V. Iorns, J. Amer. Chem. Soc., 92, 4571 (1970).

then separates into two peaks when the temperature is lowered. These two peaks have the same area but quite different widths at half-height. Two different interpretations of the nature of this dynamic process can be envisioned. One involves static structures in which one of the methyl groups occupies a bridging position and the other a terminal position (eq 23). Static structures of this kind, however, would result in nonequivalence of B(2) and B(3) and of B(4) and B(5) which should be observed in a variable-temperature ¹¹B nmr experiment.

A much more attractive explanation of the dynamic process in μ -[(CH₃)₂B]B₅H₈ involves rotation of the entire (CH₃)₂B group about the axis of the sp²-hybridized orbital which bonds it to the pentaborane(9) framework. In this process (eq 24) the static structure will possess a

plane of symmetry. The difference in widths at half-height of the two methyl groups at low temperature has been interpreted95 as being the result in a difference in quadrupolar environment and different degrees of quadrupoleinduced spin decoupling.


A structurally analogous situation results when phosphine derivatives of the type R2PCI are allowed to react with LiB₅H₈.⁹⁶ By this type of reaction μ -[(CH₃)₂P]B₅H₈ can be formed in which the expected structure is that given in eq 24 with substitution of the bridging B by P. However, rapid equilibration of the (CH₃)₂P group does not occur at room temperature, and resonances for CH₃ groups in two different environments were observed by ¹H nmr.⁹⁶ The similar CH₃CF₃PCI reaction led to formation of two isomers as would be reasonably expected.96

X. Octaborane Derivatives

A. Octahydrooctaborate (2 –) Ion ($B_8H_8^{2-}$)

A single-crystal X-ray structure determination of the tetraammine zinc(II) salt of B₈H₈²⁻ has shown that the configuration of the eight boron atoms is essentially that of a dodecahedron, point symmetry D_{2d} (42).97 In this structure there are two groups of equivalent boron atoms, B(1,2,7,8) and B(3,4,5,6). However, in solution the ¹¹B nmr spectrum of the B₈H₈²⁻ ion consists of a single dou-

(96) A. B. Burg and H. Heinen, Inorg. Chem., 7, 1021 (1968). (97) F. Klanberg, D. R. Eaton, L. J. Guggenberger, and E. L. Muetterties, Inorg. Chem., 6, 1271 (1967).

blet $(J(^{11}B,H) = 128 \text{ Hz}).^{97}$ This result can be explained in terms of accidental peak overlap or difference of structure in solution because of solvation effects. Rapid tautomerism in solution is an attractive possibility and may involve the same geometric pathway as that proposed for the isoelectronic C₃B₅H₇ (eq 16) having the D_{4d} square antiprism (33) as the time-averaged geometry.

B. Octahydrooctaborate (1-) Ion (B_8H_8-)

An intermediate in the preparation of $B_8H_8{}^{2-}$ is the radical anion B₈H₈-.97 The esr spectrum of this anion has been recorded and found to be very complex with more than 300 lines. A theoretical esr spectrum in agreement with the observed spectrum was calculated assuming that all boron atoms and all hydrogen atoms are equivalent and that the single unpaired electron is equally shared by all eight BH groups. If the structure of B₈H₈is that of a D_{2d} dodecahedron, the esr spectrum is explainable in terms of rapid tautomerism on the esr time scale or in terms of very similar hyperfine coupling constants for boron and hydrogen atoms in different environments in the dodecahedron.

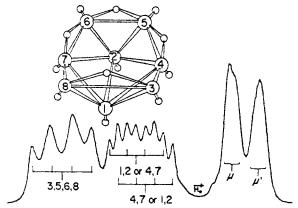
C. Octaborane (12) (B_8H_{12})

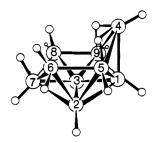
The X-ray crystal structure 98 (see structure in Figure 21) of B₈H₁₂ includes boron atoms in five different environments B(3,8), B(1), B(2), B(4,7), and B(5,6). The 70.6-MHz ¹¹B nmr spectrum of B₈H₁₂ (Figure 22)⁹⁹ gives evidence of boron atoms in only three different environments and this result may be explained in terms of extensive accidental overlap of resonances or tautomerism in solution (eq 25). If this tautomerism is rapid on the nmr

time scale, the number of spectroscopically distinguishable groups of boron atoms will be reduced to three, B(1,2), B(4,7), and B(3,5,6,8). In an earlier low-field ¹¹B

(98) (a) R. E. Enrione, F. P. Boer, and W. N. Lipscomb, J. Amer. Chem. Soc., 86, 1451 (1964); (b) R. E. Enrione, F. P. Boer, and W. N. Lipscomb, Inorg. Chem., 3, 1659 (1964).

(99) R. R. Rietz, R. Schaeffer, and L. G. Sneddon, Inorg. Chem., 11, 1242 (1972).




Figure 21. Structure and 220-MHz proton nmr spectrum of octaborane (12) at -20° (see ref 99).

nmr spectrum, 100 the doublets assigned to B(1,2) and B(4,7) overlapped to form a single doublet, and this was interpreted 101 in terms of an averaged structure of C_{4v} symmetry resulting from eight tautomers. However, the 220-MHz ¹H nmr spectrum (Figure 21)⁹⁹ shows two different bridge proton environments, giving the two upfield resonances in Figure 21, whereas the C4v averaged structure would show only one. Temperature independence of the ¹H nmr spectrum of B₈H₁₂⁹⁹ at temperatures down to -31° is evidence for a dynamic process occurring rapidly on the nmr time scale at this tempera-

XI. Nonaborane Derivatives

A, B₉H₁₄-

An X-ray crystal study of CsB₉H₁₄ gives the structure in 43 for the anion B₉H₁₄-. 102 The most highly resolved

43 (see ref 102)

¹¹B nmr spectrum (Figure 23) consists of three doublets of equal weight of which two overlap. 102 This spectrum would be consistent with a structure having a threefold rotation axis and only one terminal hydrogen atom bonded to each boron atom. A system which is equilibrating rapidly on the nmr time scale could have a static structure as shown in 43 with rapid exchange between the two bridge protons and the upward pointing terminal protons. There would then be boron atoms in only three environments: B(1,2,3), B(4,6,8), and B(5,7,9). Indeed, the ¹H nmr spectrum of CsB₉H₁₄ consists of a broad upfield singlet of relative intensity five indicating five magnetically equivalent or rapidly exchanging bridging protons and three overlapping 1:1:1:1 quartets which can be attributed to the nine nonexchanging terminal protons. Isotope studies103 have shown that five protons will rapidly exchange for deuterium in weak base and that the broad

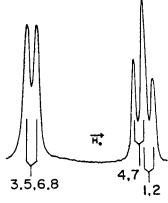


Figure 22. The 70.6-MHz boron-11 nmr spectrum of octaborane(12) at -23° (see ref 99).

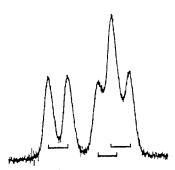
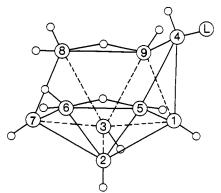



Figure 23. The 28.87-MHz ^{11}B nmr spectrum of $\text{CsB}_9\text{H}_{14}$ (in Me_2SO) (see ref 102).

upfield singlet is not present in the ¹H nmr spectrum of the exchanged sample.

B, B₉H₁₃L Compounds

Although the B_9H_{13} -Lewis base compounds have a boron cage which is isoelectronic with B9H14-, the single-crystal X-ray study of B₉H₁₃, NCCH₃¹⁰⁴ showed that this compound (44) was not isostructural with B9H14-

44 (see ref 105)

owing to differing placement of bridge protons. Of the various 11B nmr spectra of B9H13L compounds that have been reported, 104-106 there has not been evidence of spectroscopic threefold symmetry as exists in B₉H₁₄-, indicating that intermolecular exchange of L is slow on the nmr time scale. However, peak assignments in the (104) F. E. Wang, P. G. Simpson, and W. N. Lipscomb, J. Chem. Phys., 35, 1335 (1961).

(105) G. M. Bodner, F. R. Scholer, L. J. Todd, L. E. Senor, and J. C. Carter, Inorg. Chem., 10, 942 (1971).

(106) (a) B. M. Graybill, A. R. Pitochelli, and M. F. Hawthorne, *Inorg. Chem.*, 1, 626 (1962); (b) E. L. Muetterties and F. Klanberg, *ibid.*, 5, 315 (1966); (c) E. L. Muetterties and V. D. Aftandilian, *ibid.*, 1, 731 (1962); (d) H. Schroeder, *ibid.*, 2, 390 (1963); (e) F. E. Wang, P. G. Simpson, and W. N. Lipscomb, *J. Amer. Chem. Soc.*, 83, 491 (1961).

⁽¹⁰⁰⁾ J. Dobson and R. Schaeffer, Inorg. Chem., 7, 402 (1968).

⁽¹⁰¹⁾ R. E. Williams, Inorg. Chem., 10, 210 (1971).

⁽¹⁰²⁾ N. N. Greenwood, H. J. Gysling, J. A. McGinnety, and J. D. Owen, Chem. Commun., 505 (1970).

⁽¹⁰³⁾ P. C. Keller, Inorg. Chem., 9, 75 (1970).

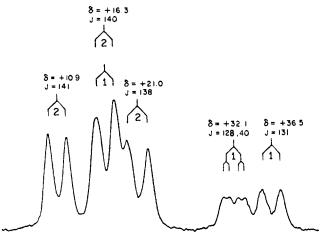


Figure 24. The 60-MHz ¹¹B nmr spectrum of (CH₃)₃NH-(3)- $1.2-B_9C_2H_{12}$ in acetone (see ref 109).

80.2-MHz ¹¹B nmr spectrum of $B_9H_{13}[S(C_2H_5)_2]$ attributes an apparent doublet to the B(6,8) group. 105 This is analogous to the doublets that are observed in the 11B nmr spectrum of $B_9H_{14}^-$ for B(6,7,8) which are bonded to two terminal protons in the solid-state structure. 102 Therefore, rapid exchange of the bridge hydrogen atoms and the upward pointing terminal hydrogen atoms of B(6,8) in $B_9H_{13}[S(C_2H_5)_2]$ seems likely.

C, Metal Complexes of B₉H₁₄⁻ and B₉H₁₂S⁻

Derivatives of the general type $L_nMB_9H_{14}$ and L_nMB₉H₁₂S have been prepared where L is a triarylphosphine or -arsine, n = 2, 3, or 4, and M is copper, silver, or gold. 63,107 Only L4Cu+ salts of B9H14- and B9H12Ssalts could be isolated, but the 31P nmr spectra of these salts below -100° showed resonances for the L₄Cu-borane and L₃Cu-borane species.⁶³ The equilibrium between these species at low temperature could be shifted essentially completely to the L₄Cu-borane by addition of excess L. Above -95°, L exchange between L₄Cu-borane and L₃Cu-borane is sufficiently fast on the nmr time scale to give only a single ³¹P nmr resonance. ⁶³

Compounds of the type L₄Ag-borane showed coupling between 31P and 107Ag as well as 109Ag below about -50°. This coupling disappears at higher temperatures indicating rapid intermolecular exchange of L on the nmr time scale 63

The ³¹P nmr spectra of L₄AuB₉H₁₄ complexes gave evidence for rapid intermolecular exchange of L.63

$D_{1} B_{9}C_{2}H_{12}^{-1} Ions$

Base degradation of the icosahedral carboranes 1,2- $B_{10}C_2H_{12}$ (o-carborane) and 1,7- $B_{10}C_2H_{12}$ (m-carborane) yields two monoanions, $(3)-1,2-B_9C_2H_{12}^-$ and (3)-1,7-B₉C₂H₁₂-, respectively. 108 It is generally assumed that in each of these ions the boron-carbon skeleton is as shown in 45, In each case B(3) has been removed from the parent carborane and each remaining boron and carbon atom is bonded to one terminal proton. The carbon atoms occupy positions 1 and 2 in (3)-1,2-B $_9$ C $_2$ H $_{12}^-$ and 1 and 7 in (3)-1,7- $B_9C_2H_{12}$ -. In both ions the 12th proton is presumed to be situated somewhere in the open face of the heavy atom skeleton and the relative simplicity of (107) F. Klanberg, E. L. Muetterties, and L. J. Guggenberger, Inorg. Chem., 7, 2272 (1968).

(108) (a) R. A. Weisboeck and M. F. Hawthorne, J. Amer. Chem. Soc., 86, 1642 (1964); (b) M. F. Hawthorne, D. C. Young, P. M. Garrett, P. A. Owen, S. G. Schwerin, F. N. Tebbe, and P. A. Wegner, *ibid.*, 90, 862 (1968).

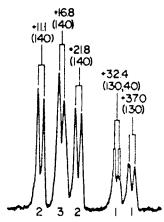
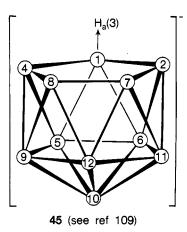
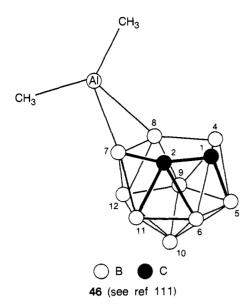
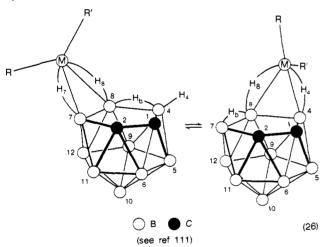



Figure 25, The 80.5-MHz ¹¹B nmr spectrum of $(CH_3)_3NH$ -(3)- $1,7-B_9C_2H_{12}$ in CH₃CN (see ref 109).


the ¹¹B nmr spectra^{108b, 109} (Figures 24 and 25) of these ions indicates that this proton is located on the molecular mirror plane at least on the nmr time scale. In both cases, studies have shown 109 that replacement of the 12th proton by deuterium causes collapse of fine structure in the ¹¹B resonances centered at δ +32.1 for (3)- $1,2-B_9C_2H_{12}^-$ (Figure 24) and δ 22.4 for (3)-1,7-B₉C₂H₁₂ - (Figure 25). This fine structure results from a ¹¹B, ¹H coupling constant of about 40 Hz, indicative of bridge bonding for the 12th hydrogen atom. These results argue for a static structure for $(3)-1,7-B_9C_2H_{12}^-$ in which the 12th hydrogen atom bridges between B(4) and B(8). For $(3)-1,2-B_9C_2H_{12}^-$, two reasonable possibilities exist: (1) a static structure in which the 12th proton is bridge bonded to three boron atoms B(4,8,7) or (2) the more likely case where this proton is rapidly exchanging between the B(4,8) bridge position and the B(7,8) bridge position. A variable-temperature study would be very useful in this case.

E. Alkylaluminum and Alkylgallium Derivatives of (3)-1,2-B₉C₂H₁₃

Triethylaluminum, trimethylaluminum, and triethylgallium all react with (3)-1,2-B₉C₂H₁₃ to liberate 1 mol of ethane or methane and yield compounds of the type B₉C₂H₁₂MR₂. ¹¹⁰ An X-ray diffraction study ¹¹⁰ of $B_9C_2H_{12}AI(CH_3)_2$ gave the structure 46 but did not locate the 12 hydrogen atoms. Geometric considerations indicated that two of these hydrogen atoms occupy bridging positions between B(7) and Al and between B(8) and Al.


(110) M. R. Churchill, A. H. Reis, Jr., D. A. T. Young, G. R. Willey, and M. F. Hawthorne, *Chem. Commun.*, 298 (1971).

⁽¹⁰⁹⁾ D. V. Howe, C. J. Jones, R. J. Wiersema, and M. F. Hawthorne, Inorg. Chem., 10, 2516 (1971).

A broad band of weight one in the 250-MHz ¹H nmr spectrum gave evidence for one bridging hydrogen atom located in the general vicinity of the open face of boroncarbon cage. The other nine hydrogen atoms would be expected to have normal terminal bonding to B(4,5,6,9,10,11,12) and C(1,2).

All of these $B_9C_2H_{12}MR_2$ compounds had ^{11}B nmr spectra which showed temperature dependence (Figure 26) which was attributed to tautomerism in solution (e.g., eq 26).111 The higher temperature spectrum of

 $B_9C_2H_{12}AI(CH_3)_2$ is consistent with a time-averaged structure having C_{2v} symmetry. In particular, the resonance at 28.6 ppm having a small observed coupling constant (58 Hz) can be assigned to B(8), the one boron atom in the structure bonded at all times to a bridge proton. A value for $\Delta G^* = 10.6 \pm 0.5 \text{ kcal/mol was calculat-}$ ed for the tautomerism based on the observed 11B chemical shifts and the observed coalescence temperature of $-22 \pm 5^{\circ}.111$

The tautomerism process proposed for these molecules also exchanges the alkyl groups on the aluminum or gallium atoms, and evidence for the slowing of this exchange was observed in the variable-temperature 1H nmr. Thus when $B_9C_2H_{12}AI(CH_3)_2$ was cooled to -84° the methyl resonance split into two separate signals at $\boldsymbol{\tau}$ 10.20 and 10.26. This corresponds to ΔG^* = 10.0 \pm 0.5 kcal/mol for methyl exchange which is in excellent agreement with the 11B nmr result.

(111) D. A. T. Young, R. J. Wiersema, and M. F. Hawthorne, *J. Amer. Chem.* Soc., **93**, 5687 (1971).

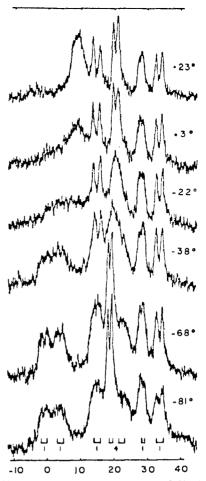


Figure 26, 11B nmr spectra (80 MHz) of B₉C₂H₁₂AI(CH₃)₂ solution; temperatures and chemical shifts in part per million from $BF_3 \cdot O(C_2H_5)_2$ are indicated (see ref 111).

XII. Decaborane Derivatives

A, B₁₀H₁₂(NCCH₃)₂

It has been stated¹¹² that when B₁₀H₁₂(NCCH₃)₂ is dissolved in dimethylformamide, the 11B nmr spectrum is quite different from the "normal" 11B nmr spectrum with acetonitrile as solvent. 112 Tautomerism in solution has been suggested53a as an explanation for this behavior, but experimental details are lacking.

B, B₁₀H₁₅ - Ion

The ^{11}B nmr spectra of $B_{10}H_{15}^{-113}$ and acidified B₁₀H₁₄²⁻ (presumably the same species) 113 are remarkably simple and consist of only three peaks. Fast proton exchange may explain the simplicity of these spectra.

C. Metal Complexes of B₁₀H₁₃⁻

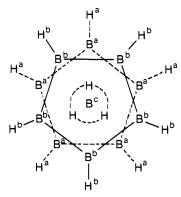
Below about -90°, the 31P nmr spectrum of $L_2CuB_{10}H_{13}$ (L = triarylphosphine) showed an AB pattern indicative of two different phosphorus environments. 63 This behavior is similar to that of the analogous B_3H_8 compound discussed previously, but is not structurally definitive owing to the much greater complexity of the B₁₀H₁₃⁻ ion. Above -90°, this AB pattern merged into a single peak, indicating rapid ligand exchange on the nmr

(112) R. J. Pace, J. Williams, and R. L. Williams, J. Chem. Soc., 2196 (1961).

(113) (a) J. A. Dupont and M. F. Hawthorne, Chem. Ind. (London), 405 (1962); R. Schaeffer and F. Tebbe, Inorg. Chem., 3, 1638 (1964); (c) J. Q. Chambers, A. D. Norman, M. R. Bickell, and S. H. Cadle, J. Amer. Chem. Soc., 90, 6056 (1968); (d) E. L. Muetterties, Inorg. Chem., 2,

time scale. 63 Above -80° , rapid exchange between $L_2CuB_{10}H_{13}$ and free L was shown to occur by the appearance of only one phosphorus resonance when equimolar amounts of $L_2CuB_{10}H_{13}$ and L were mixed.

When solutions of $L_4AgB_{10}H_{13}$ were warmed above about -40° , coupling between ^{107}Ag or ^{109}Ag and ^{31}P disappeared, showing that rapid intermolecular exchange of L was occurring. 63


D. Icosahedral Carboranes

Quadrupole-induced spin relaxation has been shown to occur in $1.2\text{-B}_{10}\text{C}_2\text{H}_{12}$ (o-carborane) and $1.7\text{-B}_{10}\text{C}_2\text{H}_{12}$ (m-carborane) and in the halogenated derivatives of these compounds.¹¹⁴ In all cases observed, all of the protons on a specific compound have approximately the same chemical shift.

XIII. Undecaborane Derivatives

A. B₁₁H₁₄ - Ion

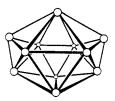
The $B_{11}H_{14}^-$ ion has been predicted¹¹⁵ to have a boron skeleton which is an icosahedron with one vertex removed, one terminal hydrogen atom per boron atom, and an H_3 group at the open face of the icosahedron perpendicular to the axis of the molecule (47). Both the ¹H

47 (see ref 116)

and ^{11}B nmr spectra of $\text{B}_{11}\text{H}_{14}^-$ have been described. 116 The ^{11}B spectrum is simply a symmetrical doublet ($J=130\,\text{Hz}$) which collapses to a singlet on ^{1}H irradiation. This indicates a minimum of one boron environment with coupling of each boron atom to a single terminal proton. The ^{11}B -decoupled ^{1}H nmr spectrum, however, shows two overlapping resonances which total to a weight of 11. (probably, five plus six) and an upfield resonance of weight three which is, most likely, the H_3 group at the open face of the boron cage. These data support time-averaged symmetric structure probably containing a C_5 axis. This situation would require rapid rotation of the H_3 group (47). Consistent with the above suggestion, it has

been shown¹¹⁷ that all of the protons in $B_{11}H_{14}^-$ will exchange for deuterium in D_2O and that the H_3 group will do so most rapidly.

B, B₁₁H₁₃²- Ion


Reaction of $B_{11}H_{14}^-$ with strong base has been shown to yield the ion $B_{11}H_{13}^{2-}$.¹¹⁶ The ¹¹B nmr spectrum of the ion consists of two doublets of relative weight 10:1.¹¹⁸ Rapid proton exchange may account for this simple spectrum.

C. Metal Complexes of B₁₁H₁₄-

Metal complexes of the type $L_4MB_{11}H_{14}^-$ have been prepared, where L is a triarylphosphine and M is copper, silver, or gold.⁶³ These have been shown to undergo exchange phenomena which are the same as those for the analogous $B_9H_{14}^-$ derivatives.⁶³

D. Undecahydroundecaborate (2-) Ion $(B_{11}H_{11}^{2-})$

The 11 B nmr spectrum of $B_{11}H_{11}^{2-}$ was originally reported to consist of two doublets in the ratio of $10:1,^{117}$ but more recent work has determined that the smaller of these is, probably, the result of $B_{10}H_{10}^{2-}$ contamination. 118 The proposed structure 119 of the isoelectronic $B_{9}C_{2}H_{11}$ is that of a octadecahedron (48), and $B_{11}H_{11}^{2-}$

48 (see ref 117)

would reasonably be expected to be isostructural. In the octadecahedron structure, a decaborane (14) framework is capped by an 11th vertex, and such a geometry would be expected to give rise to more than just the one ¹¹B resonance observed. Accidental overlap of chemical shifts or rapid polyhedral rearrangement would account for the observed spectrum.

Acknowledgment. Both authors are grateful for support received from Public Health Service Research Grant No. CA12025-01 of the National Cancer Institute during the preparation of this review. In addition H. B. acknowledges the Petroleum Research Fund, administered by the American Chemical Society, and C. H. B. acknowledges National Science Foundation Grant No. GP18197.

⁽¹¹⁴⁾ H. Beall, C. H. Bushweller, and A. T. Elvin, 164th National Meeting of the American Chemical Society, Aug 1972, No. INOR-144.

⁽¹¹⁵⁾ E. B. Moore, Jr., L. L. Lohr, Jr., and W. N. Lipscomb, *J. Chem. Phys.*, **35**, 1329 (1961).

⁽¹¹⁶⁾ V. D. Aftandilian, H. C. Miller, G. W. Parshall and E. L. Muetterties, *Inorg. Chem.*, 1, 734 (1962).

⁽¹¹⁷⁾ F. Klanberg and E. L. Muetterties Inorg. Chem., 5, 1955 (1966).

⁽¹¹⁸⁾ R. L. Middaugh and R. J. Wiersema, *Inorg. Chem.*, 10, 423 (1971).

^{(119) (}a) T. E. Berry, F. N. Tebbe, and M. F. Hawthorne, *Tetrahedron Lett.*, 715 (1965); (b) C. Tsai and W. E. Streib, *J. Amer. Chem. Soc.*, 88, 4513 (1966).