The Synthesis and Ion Binding of Synthetic Multidentate Macrocyclic Compounds

JAMES J. CHRISTENSEN,* DELBERT J. EATOUGH, AND REED M. IZATT

Departments of Chemical Engineering and ChemIstry and Contribution No. 43 from the Center for Thermochemical Studies, Brigham Young University, Provo, Utah 84602

Received June 11, 1973

Contents

I. Introduction		- 351
II. List of Compound	ds and Nomenclature	352
III. Synthesis of Free	e Macrocycles	353
A. Cyclic Polyet	thers	353
B. Cyclic Polyar	mines	353
C. Cyclic Polyth	ioethers	366
D. Mixed Donor	[,] Macrocycles	366
IV. Ion Binding Prop	perties	368
A. Cyclic Polyet	thers	368
B. Ćyclic Polyar	mines	368
C. Cyclic Polyth	lioethers	371
D. Mixed Donor	^r Macrocycles	371
V. Thermodynamic	Data	380
VI. Structural Data		382
VII. Kinetic Data		382
VIII. References		382

I. Introduction

Although metal complexes of naturally occurring macrocyclic ligands have been known for over 50 years, e.g., porphyrin and corrin ring derivatives and phthalocyanines, it is only during the past decade that a large number of synthetic macrocyclic compounds capable of binding cations or anions have been prepared and investigated. Many of these synthetic macrocyclic polyethers, polyamines, polythioethers, and other related molecules have been shown to possess very interesting and unusual ion binding properties. These novel macrocycles typically contain central hydrophilic cavities ringed with either electronegative or electropositive binding atoms and exterior flexible frameworks exhibiting hydrophobic behavior. They show a pronounced ability to bind a wide variety of cations or anions and in many cases to undergo marked conformational changes during binding. Their hydrophobic exteriors allow them to solubilize ionic substances in nonagueous solvents and in membrane media. Particularly interesting is the strong affinity shown by the polyethers for alkali and alkaline earth metal ions and their selective binding of certain of these cations resulting in their use as models for carrier molecules in the study of active ion transport phenomena in biological systems. Also the possibility of using synthetic polyamines as models for more intricate biological macrocyclic systems has been recognized and presents intriguing possibilities.

This review deals with the synthesis of multidentate macrocyclic compounds and the chemistry of the reactions of these compounds with cations and anions. Only those macrocyclic compounds which meet the following criteria are included in the review: (1) synthetic in origin, (2) contain multiple donor atoms, and (3) exhibit ion binding properties. Classes of compounds not included are macrocycles of biological origin such as antibiotics (valinomycin, actins, etc.), ferrocenes, and porphyrins. Representative of the macrocyclic compounds reviewed here are those shown in Figure 1. The compounds shown in Figure 1 differ in type and number of ion binding sites and thus generally exhibit quite different affinities for a given ion.

Macrocyclic molecules have been shown to bind with . a wide variety of cations including ammonium ion and in a few specific cases with anions. The factors affecting the formation and thermodynamic stabilities of these ionmacrocycle complexes include (1) the type(s) of binding sites in the ring, (2) the number of binding sites in the ring, (3) the relative sizes of the ion and the macrocyclic cavity, (4) the physical placement of the binding sites, (5) steric hindrance in the ring, (6) the solvent and extent of solvation of the ion and the binding sites, and (7) the electrical charge of the ion. Thus, there exist unusual opportunities for the synthesis of macrocyclic molecules which exhibit a high degree of selectivity in metal binding. For example, certain cyclic polyethers not only strongly bind particular alkali and alkaline earth metals but selectively bind one or more of these ions in preference to the others in each series.

This review covers the literature through December 1972. Section II contains information regarding the method used in this review for classifying the macrocycles according to donor atom together with a table containing both the structures of all macrocycles reviewed and a listing of those ions which have been shown to interact with the respective macrocycles. Section III reviews majer methods of synthesizing the various classes of macrocycles. Section IV deals with the ion binding properties of macrocycles. A table containing the available thermodynamic data (log K, ΔH , ΔS , and ΔC_p) for macrocycle ion binding is included in section V. Sections VI and VII contain pertinent information concerning structure data and kinetic data involving macrocyclic complexes, respectively.

Although no general review article has been published covering all the macrocycles included here, several articles covering various aspects of the chemistry and ion binding of macrocyclic ligands have recently appeared. Christensen and coworkers¹ have discussed for several classes of macrocycles their unique ion binding properties and their present and future areas of application. Pedersen and Frensdorff,² Truter and Pedersen,³ and Izatt and coworkers⁴ have discussed the chemistry of oxygen-containing macrocycles, the structures of various macrocyclic complexes, and the thermodynamics of cation-macrocyclic complexation reactions, respectively. Curtis,⁵ Busch,^{6,7} and Lindoy and Busch⁸ have described in detail the synthesis and properties of nitrogen-containing macrocycles and their complexes, mainly with the first row transition series metal ions.

II. List of Compounds and Nomenclature

A. List of Compounds

The macrocyclic compounds covered in this review are classified and arranged in the text and tables according to the type of donor atoms available for ion binding. Macrocycles containing oxygen donor atoms are listed first followed in order by macrocycles containing nitrogen donor atoms, sulfur donor atoms, and mixed donor atoms. The mixed donor atoms are presented in the following order: nitrogen-oxygen, sulfur-nitrogen, sulfuroxygen, nitrogen-sulfur-oxygen, and others. A total of 221 different macrocycles are included in the review.

Table I contains a compilation of ion binding synthetic multidentate macrocyclic ligands together with the ions bound by each ligand. An ion was included in Table I whenever the data indicated that either the ion reacted with the free macrocycle to form a complex or that the ion was incorporated into the macrocycle during synthesis of the macrocycle. Each parent ligand structure as determined from the ring containing the donor atoms is represented by a structural formula. Specific ligands are indicated by the chemical groups attached to the basic structure and are identified by a number and letter. Thus the structure

is found in the table under the parent structure

with the methyl groups indicated by the listing 2-methyl; 4-methyl; 6-methyl; and 8-methyl and is identified by number 1c. Benzene and other ring structures attached to the basic structure are indicated by naming both the position or positions of attachment and the group attached. Thus 1a has the benzo group indicated by the designation 1,2-benzo.

Double bonds in a structure are designated by the symbol d. Two or more groups attached to the basic structure at the same place are indicated by naming each group separately. For example, the structure 17a

oxygen donor atoms

nitrogen donor atoms

sulfur donor atoms

nitrogen-oxygen donor atoms

sulfur-nitrogen donor atoms

sulfur-oxygen donor atoms

nitrogen-sulfur-oxygen donor atoms Figure 1. Representative synthetic macrocyclic compounds.

is found in Table I under the parent structure

and is designated by the following: d₄; 2-methyl, methyl. Within each main group of macrocyclic compounds in Table I (e.g., macrocycles containing oxygen donor groups), the ligands are listed in order of increasing number of donor groups in the basic structure ring. The metal ion order is that given in ref 121. Charges are given on the metal ions only where multiple valence states are common.

B. Nomenclature

Conventional IUPAC rules for naming organic compounds result in the assignment of unequivocal, but extremely complicated names to macrocyclic compounds.^{2,122} The number-letter designation given in Table I will therefore be used throughout this review for identification of specific compounds.

However, it should be noted that for the cyclic polyethers and related macrocycles a system of ad hoc names has been devised solely for their ready identification $^{122}\ \text{and}\ \text{is used}\ \text{extensively}.$ In this scheme, the use of cumbersome nomenclature is avoided by assigning common names to the polyethers based on the use of the term "crown" to represent the central ring. Several examples illustrating how names are derived from the side ring substituents or replacement donor atoms (if any), the total number of atoms in the polyether ring, the "crown," and the total number of donor atoms in the main ring are given in Table II. It should be kept in mind that these names are simple but not always unambiguous as is readily apparent in the case of the macrocycles asym-dibenzo-22-crown-6 and dithia-15-crown-5 given in Table II. The extension of this naming procedure beyond

cyclic polyethers and certain mixed donor atom macrocycles containing oxygen donors is probably not desirable.

III. Synthesis of Free Macrocycles

Table III is a compilation of references reporting the synthesis of synthetic multidentate macrocyclic ligands. The table follows the order given in Table I in listing the ligands according to the types and number of donor atoms contained in the ring. Some of the ligands in Table III have not been shown to bind metal ions but have been included to give a more complete compilation of synthetic methods. Further information concerning the synthesis of specific macrocycles that bind metal ions can be found in Table I in those references in which an A appears in the "Other information column." Representative synthetic methods for the various classes of macrocycles are given below.

A. Cyclic Polyethers

The first cyclic polyether compound, **6g** (dibenzo-18crown-6), was formed as an unexpected by-product during a preparation of bis[2-(o-hydroxyphenoxy)ethyl] ether from bis(2-chloroethyl) ether and the sodium salt of 2-(o-hydroxyphenoxy)tetrahydropyran which contained a small quantity of catechol.^{122,135,136} Subsequently more than 60 macrocyclic polyethers have been synthesized.

The aromatic crown polyethers are prepared by straightforward condensation methods^{2,122,135,136} exemplified by the stoichiometric equations 1–3, in which U

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

and V represent divalent organic groups, generally of the type $-(CH_2CH_2O)_nCH_2CH_2-$. The condensations are typically run in 2-butanol under reflux for 12 to 24 hr. Method 1 can be used, for example, to prepare 3a, benzo-15crown-5 (n = 3, yield 62%); **1a**, benzo-12-crown-4 (n =2, yield 4%); and **6b**, benzo-18-crown-6 (n = 4, yield 60%). Method 2 gives, for instance, 6g, dibenzo-18crown-6 (n = 1, yield 45%); **10b**, dibenzo-24-crown-8 (n= 2, yield 38%); or 11a, dibenzo-30-crown-10 (n = 3, yield over 6%). The starting material for method 3 is made by attaching a base-stable protecting group, e.g., benzyl or tetrahydropyranyl, to one of the hydroxyls of catechol, condensing 2 mol of this with CI-U-CI, and then removing the protecting groups. Method 3 is most convenient for synthesis of uneven-numbered polyether rings, e.g., 8a, dibenzo-21-crown-7.

Aromatic macrocyclic polyethers containing neutral substituents, such as alkyl or chloro, may be prepared by using suitably substituted aromatic vicinal diols.² Of course, the substituents must be inert toward sodium hydroxide and the open-chain dichloro polyether.

Saturated polyethers are prepared from the corresponding aromatic ones by catalytic hydrogenation, typically in 2-butanol at 100° and 7–10 atm over a ruthenium catalyst.¹³⁵ Recovery of the product is best done by column chromatography on alumina, and the yields are almost quantitative.

B. Cyclic Polyamines

1. Monocyclic

A large variety of cyclic polyamines having three to six functional groups in the ring have been synthesized. However, the majority have four functional groups which are more or less evenly spaced in a ring containing between 12 and 16 atoms. The macrocycles can be synthesized either "free" or bound to a given metal ion.

The preparation of the free macrocycle has certain advantages in many cases. Firstly, purification of the organic product may be more readily accomplished than purification of its complexes, and, secondly, the characterization by such physical techniques as gas-liquid chromatography, mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance spectroscopy also tends to be less involved for the metal-free macrocycle. Further, the various spectra obtained for the free ligand are usually of great assistance in the interpretation of the corresponding metal-complex spectra. However, preparation of the free macrocycle also has the decided disadvantage in that the method usually gives only low yields of the desired products. An example of a metal free synthesis is the preparation of cyclic tetradentate secondary amine, 18a, 1,4,8,11-tetraazacyclotetradecane (cyclam), by refluxing 1,3-bis(2'-aminoethylamino)propane with 1,3-dibromopropane in ethanol for 3 hr, treating the solution with alcoholic potassium hydroxide, and then refluxing for a further 1.5 hr. 137-139 It is then possible to isolate the free ligand by codistillation from the reaction mass with additional unreacted 1,3-bis(2'-aminoethylamino)propane. It is fortuitous that 18a is only slightly soluble

in the entraining linear tetraamine and separates from the distillate as a white crystalline solid. The yield varies from 0 to 3%. A second route to **18a** which provides a more deliberate but far more tedious synthesis of the compound has been published.¹⁴⁰

In general, cyclic polyamines are formed by one of a number of different kinds of condensation reactions in which a transition metal ion functions as a template, holding the condensing molecules in a suitable orientation to facilitate the formation of products.^{5,6,8} This so-called coordination template effect figures heavily in the majority of the syntheses of macrocyclic ligands containing nitrogen binding atoms. An inherent disadvantage of most *in situ* syntheses is that a small excess of one or another of the organic reactants (which are often chelating agents themselves) may lead to contamination of the required product with acyclic impurities. It is also true that in some cases there remains an element of mystery con-

TABLE I. Compilation of Ion Binding Synthetic Multidentate Macrocyclic Ligands and of Ions Bound by Each Ligand

Basic structure	Attached groups ^a	No.	lons bound by ligand	Other information ^b	Ref
3 4	1,2-Benzo	1a		A	122
	1,2-Benzo; 5,6-benzo	1b		А	122
	2-Methyl; 4-methyl; 6-methyl; 8-	1c	Na, K		9
ه م م	methyl		Na		180
8 7	1,2-Cyclohexyl	1d		А	122
			Li, Na, K, Rb		177
^	1 2-Benzo: 3 4-benzo	22	li	Δ	122
2-0 2-3	1,2-Denzo, 3,4-Denzo	La		~	165
5	1 2-Butylbenzo: 3 4-butylbenzo	2h	114	۸	100
		20		B	160
\checkmark			li Na K Rh	U	177
	1.2-Cyclohexyl: 3.4-cyclohexyl	20		Δ	122
			Na, K	<i>/ \</i>	180
	1.2-Butylcyclohexyl: 3.4-butylcy-	2d		Δ	122
	clohexyl		Li, Na, K	В	160
7	1 2 Bopzo	20	No	<u> </u>	122
	1,2-Del120	Ja	Na K NH. Cs Ba Art	~	162
			No. K		103
2					10
1-9-9-1			N, KD Li Na K Ph Ca	٨	12
			LI, NA, N, ND, US	A	202
			Na		203
	1.2 Putulbanza	26		٨	109
	1,2-Bulyidenzo	30	LI, Na, K	A	1220
	1,2-Naprillo	3C 24	No	A	122
	1,2-Cyclonexyl	30		A	122
			LI, NA, R, US		1704
	1.2 Rutulovalabovul	3-	Na, K	^	1/9*
	1,2-Butyleyclonexyl	se	n Li Na K. Ca	A	160
	1.2 Decelvi	26	LI, NA, K, US	^	100
	1,2-Decaly	21 2-		A ^	122
	1,2-Denzo, 3,4-Denzo	აყ	K	~	162
	1.2 Vinvibenza (polymor)	26	ĸ	٨	103
	1,2-VIIIyibenzo (polyiner)	οn	Li Na K Bh Ca	A ^	10
	1.2 Ovelebovuli 2.4 ovelebovul	:	LI, NA, K, KD, US	~	125
	1,2-Cyclonexyl, 3,4-cyclonexyl	21		~	120
	1,2-4-Methylbenzo	3J	Na, K	٨	9 14
	100 674	_		~	14
3 4 5	1,2-Benzo; 6,/-Denzo	4a	Na		165
2,-0 0-6				A	122
./ >7	1,2-Cyclonexyl; 6,7-cyclonexyl	46		A	135
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3,4,5-Naphthyl	4c	Na, K, Sr, Ba, Ag⁺	A	135
$\sim$					
$\sim$	1 2-Benzo: 3 4-benzo	5a		Δ	122
J J J	1,2 86120, 3,7 86120	vu	li Na K Rb		177
		6		A D	100
		ьа		А, В	122
2-0 05	1 2 Ranna	. Ch	Na, K, CS, NH ₄ , Ag	^	100
	1,2-Benzo	6D	K K Os	A	162
			N, US		105
	1.2. Overlahavul	6.	LI, NA, K, KD, CS	•	122
	1,2-Cyclonexyl	PC.	NH4, Ba	A	122
	124 Mothylbonzo	64	LI, NA, N, US, NH4, DA, Ag		14
	1,2-4-Wethylbenzo	60 60	K Sr	Δ	122
	1,2-ref Butylovclobexvl	66	K, 51 K	Δ	122
	1 2-Benzo: 5 6-benzo	60	Na	~	169
	1,2-Denzo, 3,0-Denzo	vy	li Na K Rh Cs NH, RNH,	AB	122
			$Ag^+$ Mg Ca Ba Cd, $Hg^{2+}$ .	Α, Β	
			Pb ²⁺		
			Na, K, Cs		180
			κ		10
			Rb		15
			Rb		166
			Na, K		200

Basi <b>c</b> structure	Attached groups ^a	No.	lons bound by ligand	Other information ^b	Ref
		6g	Li, Na, K, Rb, Cs, NH ₄ , RNH ₃ , Ca, Sr ²⁺ , Ba, Cd, Hg ²⁺ , Pb ²⁺ , La ³⁺ , Ce ³⁺ , Tl ⁺	A	136
			Na	С	16
			Na, K	0	17
			к		18
			Na, K, Rb, Cs, TI ⁺		19
			Na		204
			K, Rb, Cs		163
			Li, Na, K, Cs		160
			Na, K		177
	1.2 Ovelebovyk 5.6 ovelebovyk	<b>C</b> 1-		0	11
	1,2-Cyclonexyl, 5,6-Cyclonexyl	01		B	20
			K Rh Cs	В	162
			Li. Na. K. Cs	в	165
			Na. K. Cs. NH₄	A	122
			Te ³⁺ , V ³⁺ , Fe ³⁺ , Co ²⁺ , Zn ²⁺	В	167
			K, Rb, Cs		163
			Li, Na, K, Cs, NH₄, Ag+		180
			Li, Na, K, Rb, Cs		178
			Na, K		177
			Na, K, Rb, Cs		174
			LI, Na, K, RD, CS, NH₄, RNH₃, Ca, Ba, Ag ⁺ , Cd, Hg ⁺ , Sr, La ³⁺ , Hg ² , ⁺ Pb ²⁺ , Tl ⁺ , Ce ³⁺		136
			Ва		202
			Na, K, Cs		200
			Li, Na, K, Cs, Rb, NH₄		22
			Na, K		18
			Na, K, Cs		1/
			Na, K, KD, CS, TI⁺ Na, K		19
			Na K		170
			K Rb Cs NH, Sr Ba Ag+		161
			Na. K. Rb. Cs. NH $_4$ , Sr. Ba. Ag ⁺		10
			Li, Na, K, Cs		160
	1,2-Benzo; 5,6-cyclohexyl	6i		А	135
	1,2-Benzo; 3,4-benzo	6j		A	122
	1,2-Methylbenzo; 5,6-methylbenzo	6k		В	165
			Ва		164
			Na, K	-	9
	1,2-Butylbenzo; 5,6-butylbenzo	61	ĸ	A	122
	1.2 and Butyleveloberade E.C.	<b>6</b>	Cs	•	103
	hutvlevelobexvl	om		A	122
	Butyleyclonexyl		Li Na K Ce NH.		180
			Li Na K Rb NH, Ca		23
	1,2-Benzo; 3,4-benzo; 7,8-benzo	6n		А	122
	· · · · · · · · · · · · · · · · ·	•	Li, Na, K, Rb		177
	1,2-2,3-Naphtho	60		А	122
	1,2–2,3-Naphtho; 5,6–2,3-naphtho	6р		А	122
	1,2-Vinylbenzo (polymer)	6q	Li, Na, K, Rb, Cs		12
2 3	1,2-Benzo; 3,4-benzo	7a	К	А	122
	1,2-Benzo; 3,4-benzo; 5,6-benzo	7b		A	122
<u> </u>	12. Benzo: 3 A.benzo	80	KCa	Δ	125
<ul> <li>" \</li> </ul>	1.2-Benzo: 3.4-benzo: 5-penta-	oa Rh	1, 05	Ā	135
$r^{\circ}$ $d_{3}$	methylene			~	100
	1,2-Benzo; 3,4-benzo; 5-oxygen	8c	Na, K, Cs, NH₄	А	135
Zaa gut					

Basic structure	Attached groups ^a	No.	lons bound by ligand	Other information ^b	Ref
		9a	K, Cs		180
² /	1,2-Benzo; 3,4-benzo	9b	<u> </u>	Α	1220
₄لے مک			US Na K. Co		103
$\langle \cdot \cdot \rangle$	1.2-Cyclobexyl: 3.4-cyclobexyl	96	Na, K, CS	Δ	122
	1,2 Official of the official o		Li, Na, K, Cs	7	160
65			Cs		180
			Li, Na, K, Rb		177
	1,2-Benzo; 3,4-benzo; 5,6-benzo	9d		А	122
34		10a	K, Cs		180
$\sim$ $\sim$	1,2-Benzo; 5,6-benzo	10b	ĸ	A	122°
2 \$ \$ 15			Cs K Co		163
			K, US K		168
5	1.2-Cyclohexyl: 5.6-cyclohexyl	10c		Α	122
$\sim 2$	_,, _,, ., ., ., .,		Li, Na, K, Cs		160
8 7			Cs		180
			Na, K		179
			Li, Na, K, Rb		177
	1,2-Benzo; 3,4-benzo; 5,6-benzo;	10 <b>d</b>		A	122 -
	/,8-Denzo	100		٨	122
	1,2-2,3-Naphtho, 5,0-2,3-naphtho	110	K	A A	122
	1,2-Benzo; 3,4-benzo	11a	n Na K	A	122
			K Rb		100
א ≪			Na. K. Rb. Cs. NH₄. TI+	С	24
			K	-	205
$\sqrt{3}$			К		169
- -	1,2-Cyclohexyl; 3,4-cyclohexyl	11b		A	122
			Li, Na, K, Rb		177
	1,2-Benzo; 3,4-benzo	12a		А	122
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			к		180
\sim	1,2-Cyclohexyl; 3,4-cyclohexyl	126		A	122
/(CH_)	(n,m) = (4,6), (5,6), (6,6), (7,6), (8,6),	13a-q		А	10
	(9,6), (10,6), (13,6), (4,4), (5,4),	•			
HN NH	(6,4), (7,4), (8,4), (9,4), (10,4),				
(CH ₂)	(6,2), (10,2)				
	(n,m) = (3,3)	13r	Ni		181
(CH ₂)k	(k,l,m) = (7,7,7), (8,8,8), (9,9,9),	14a-g		A, B	142
N (CH_), N	(10,10,10), (6,6,8), (6,8,10), (8,8,10)			В, С	25
		14a-d	CI, Br, I		185
					~
34	1,2-Benzo; 3,4-benzo; 5,6-benzo	15a	Ni	A D	26
				A, D A B	20
IL N J5			Ni	Α, Ο	28
6			Co ³⁺	A. B	29
			Co ³⁺		30
1 2		16a	Co ³⁺ , Rh ³⁺	A, B	31
Ń Ń	1-CH2-benzo; 2-CH2-benzo; 3-CH2-	16b	Ni	А, В	32
N N	benzo; 4-CH2-benzo				
4 4 3			NI		c
1 d 3 3	a ₄ ; 2-methyl, methyl	17a 17⊾		A	5 C
	u ₄ , 1-metriyi, 5-metriyi	1/0	Ni	A. B	33
			Ni	A	34
			Ni	A	35
			Ni	А, В	36
	d₄; 1-methyl; 3-trifluoromethyl	17c	Ni	A	35
	البطام محمد فالمبط	17-4		А, В	30 6
	04; 1-ethyl; 2-methyl	1/0	Ni	ΔR	33
	d₄: 1-propyl: 2-ethyl	17e	Ni	Α, Ο	6
		•	Ni	А, В	33

Basic stru c ture	Attached groups ^a	No.	lo n s bound by ligand	information ^b	Ref
	d₄; 1-methyl, methyl; 3-methyl	17f	Ni, Cu ²⁺		6
			Ni, Cu ²⁺	A, B	33
			Ní, Cu ²⁺	А, В	37
			Ni	A	5
	did i a santhulu 2 mathul	17		A	38
	dz; dz; 1-metnyl; 3-metnyl	1/g 175		A	39
	$a_3; a_4; 1$ -metnyl, 3-metnyl	1/n 17o		А, В	39
	a1; a3, a4; 1-metnyl; 3-metnyl	1/C	NI ²⁺	А, В	40
2		18a	Co ³⁺	A, C	138
			Cr ³⁺	А, В	41
d, d ₃			Ni ²⁺ , Ni ³⁺	А	42
			Ni ²⁺	В	43
			Ni ²⁺		213
l ₉ d ₅ 5			Co ³⁺	A, C	44
			Co ³⁺	В, С	45
			Co ³⁺	С	139
			Co ³⁺	А, В	46
7			Co ³⁺	А, В	137
			Ni ²⁺	А, В	47
	1-Methyl; 3-methyl, methyl;	18b	Ni ²⁺	А, В	48
	6-methyl; 8-methyl, methyl		Rh³+	А, В	49
			Cu ²⁺	A	50°
			Co ³⁺	A, B	1257
			Co ³⁺	A, B	52
			Cu+, Cu ²⁺ , Cu ³⁺	A. B	53
			Ni ²⁺	A. B	54
			Ní+, Ní ²⁺ , Ní ³⁺	A. B	181
			Fe^{2+} , Co^{2+} , Co^{3+} , Ni^{2+} , Cu^{2+}	A	34
			Co^{3+}	AB	55
			Co ³⁺	A. B	56
			Ni ²⁺	7, 0	6
			Ni^{2+} Cu ²⁺	A R	57
			Ni ²⁺	Α, Β	210
			N_{12}^{+} C_{12}^{+}	в	50
			0.12+	D	102
				è	50
					09
				в, с	00
				в, с	01
			NI ^{®+}	в	62
			Co ³⁺	A, C	63
			Fe ²⁺	A	64
			Co^+, Co^{2+}, Co^{3+}	А, В	65
			Co ³⁺	A, C	66
			Ni ³⁺	А	42
	1-Methyl, methyl; 3-methyl;	18c	N i ³⁺	A	42
	6-methyl; 8-methyl, methyl		Ni ²⁺	A	67
	1		Ni+, Ni²+, Ni³+	А, В	181
			Co ³⁺	А, В	52
	1-Methyl, methyl; 3-methyl, methyl; 6-methyl, methyl; 8- mathyl	18d	Ni²+	А, В	68
	1-Methyl; 3-methyl, methyl; 4-methyl; 6-methyl; 8-methyl;	18e	Ni ²⁺	A, C	34
	methyl: 9-methyl				
	d ₃ : 1-methyl: 3-methyl	18f	Ni ²⁺	A. C	34
	d ₁ : d ₅ : 1-methyl: 3-methyl, methyl:	18a	Ni ²⁺ , Cu ²⁺	., -	6
	6-methyl: 8-methyl, methyl	3	Ni^{2+} , Cu^{2+}	Δ	5
			Ni^{2+} Cu^{2+}	AB	69
			Ni ⁺ . Ni ²⁺ . Ni ³⁺	., -	181
			Cu ⁺ . Cu ²⁺ . Cu ³⁺	A. B	53
			Co^{2+} Co^{3+} Ni^{2+} Cu^{2+} $7n^{2+}$	A B	70
			$C11^{2+}$	Δ	50
			Ni ²⁺	R	71
			Co3+		۲۱ ۲۱
			Co ³⁺	D, C D (C	60 61
			C_{0}^{+}		25
			Co³+	А, В	00
					12
	•		INI*', UU*'		1

Basic structure	Attached groups ^a	No.	lons bound by liga n d	Other information ^b	, Ref
		18g	Ni ²⁺ , Cu ²⁺		58
		•	Ni ²⁺	Α	38
			Ni ²⁺	A. B	73
			$F_{\Theta^{2+}} F_{\Theta^{3+}}$	B	74
			Ee^{2+} Co ²⁺ Co ³⁺ Ni ²⁺ Cu ²⁺	Δ	3/
			Zn ²⁺	~	54
			Cu ²⁺	С	59
			Co ³⁺	A R	51
			N12+		75
			NI 12+	А, В	211
					211
			Co ³⁺	A, C	66
			Ni ²⁺ , Cu ²⁺	А, В	76
	d1; d6; 1-ethyl; 3-methyl, ethyl;	18h	Cu ²⁺		6
	6-ethyl; 8-methyl, ethyl		Ni ²⁺	А	5
			Cu ²⁺	A. B	7 6
			Ni ²⁺ Cu ²⁺	B.	58
	d : d : 1 mothyl: 2 mothyl, mothyl	10;	Ni^{2+} Ou^{2+}	5	50
	G ₁ , G ₆ , 1-methyl, 5-methyl, methyl,	191			0
	5-methyl, 6-methyl; 8-methyl,		NI ²⁺	A	5
	methyl; 10-methyl		Ni ²⁺ , Cu ²⁺	В	58
			Ni ²⁺ , Cu ²⁺	В	214
	d1; d6; 1-methyl; 3-methyl, methyl;	18j	Co ²⁺ , Co ³⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺ ,	A	5
	4-methyl; 6-methyl, 8-methyl,		Pb ²⁺		
	methyl: 9-methyl		Ni ²⁺	А	33
			Co ²⁺ Ni ²⁺		34
	d.: d.: 1 mothyl: 2 methyl, mothyl:	106	Cu^{2+}		76
	5-methyl; 6-methyl; 8-methyl,	TOK	Curr	Α, Β	70
	methyl; 9-methyl				
	d₀; d₁₀; 9-methyl; 10-methyl	181	Co ³⁺	A, C	63
	d1; ds; 1-methyl; 3-methyl;	18m	Ni ²⁺	А	38
	6-methyl, methyl; 8-methyl				
	d.: d.: 1-mothyl: 3-methyl, methyl:	.19m	NII+ NII2+ NII3+	ΔB	181
	G mothyl, mothyl, 9 mothyl	1011	N1794	A, D	72
	o-metnyi, metnyi; 8-metnyi			А, В	/3
			Ni ²⁺	А, В	/5
			Ni ²⁺		77
			Co ³⁺		206
			Co ²⁺	A, B	78
			Ni ²⁺	·	216
			Ni ²⁺		211
			NI:2+		212
	al a di a				212
	d_1 ; d_8 ; 1-methyl; 3-methyl, methyl;	180	N1 ²⁺	A	5
	6-methyl; 8-methyl, methyl		Ni ²⁺		212
			Ni ²⁺	В	71
			Co ³⁺	A, C	63
	d ₁ : d ₈ : 1-methyl: 3-methyl, methyl:	18p	Cu ²⁺	A	5
	6-methyl; 8-methyl, methyl; 10-				
	didita mathuli 2 mathuli mathuli	10	Ea2+ Ca2+ Ni2+ 7-2+	^	F
	5-methyl; 6-methyl; 8-methyl; 8-methyl;	78 d	re*', ∪0*', ΝΙ⁴™, ∠Π*'	~	U
	10-methyl				
	d3; d6; 1,2-benzo; 7,8-benzo	18r	Co ²⁺ , Ni ²⁺ , Cu ²⁺	A, B	215
	d ₃ ; d ₅ ; 1.2-benzo: 4.5-benzo: 7.8-	18s	Co ²⁺ . Ni ²⁺	A. B	215
	benzo		,		
	det det det 1-methylt 3-methyl	19+	N i2+	ΔR	40
	d_2 , d_3 , d_{10} , 1-methyl, 5-methyl	10.	Co ³⁺		63
	$a_4, a_5, a_9, a_{10}, 4$ -metnyl; 5-metnyl;	180	Cost	A, C	03
	9-metnyi; 10-metnyi				007
	d1; d4; d5; d8; 1-methyl; 3-methyl,	18v	Ni ²⁺		207
	methyl; 6-methyl, methyl; 8-		Ni ²⁺	А, В	79
	methyl			i.	
	d1; d4; d6; d9; 1-methyl; 3-methyl,	18w	Ni ²⁺	A, B	79
	methyl; 6-methyl; 8-methyl,				
	methyl				
	d ₂ ; d ₃ ; d ₆ ; d ₇ ; 4,5-benzo; 9,10-benzo	18x	Co ²⁺ , Ni ²⁺ , Cu ²⁺	А, В	80
	d ₂ ; d ₃ ; d ₆ ; d-: 2-COCH ₃ . 3-methvl:	18y	Ni ²⁺		6
	4.5-benzo: 6-methyl: 7-COCH				
	9 10-benzo				
	de de de de 22-ovoovolobovonos	19-	Ni ²⁺ Cu ²⁺	Δ	81
	6.7 oxocyclobayana	104		A '	01
	o,/-oxocycionexane				

Basic structure	Attached groups ^a	No.	lons bound by ligand	Other information ^b	Ref
	d ₁ ; d ₃ ; 1-methyl; 2-methyl, methyl;	19a	Ni ²⁺	A	5
$\left[d_1 + d_2 \right]^2$	3-methyl; 4-methyl, methyl	106	Ni ²⁺	A	38
Ń Ń	3-methyl: 4-methyl: methyl;	190	N12+, CU2+	A	5
\rangle	5-methyl, 4-methyl, methyl				
$\begin{bmatrix} N & N \\ d_4 & d_3 \end{bmatrix}_3$					
$\begin{bmatrix} 2 \\ d_1 \\ d_2 \end{bmatrix}^3$	1-Methyl, methyl; 3-methyl, methyl; 7-methyl, methyl; 9-methyl	20a	Ni ²⁺	А, В	65
$\frac{12}{d_8} N \qquad N = \frac{1}{d_3} 4$	2,3-Benzo; 5,6-benzo; 8,9-benzo; 11,12-benzo	20b	Ni²+ Ni²+		6 82
dy de			Ni ²⁺	А, В	83
	d_1 ; d_5 ; 1-methyl; 3-methyl, methyl;	20c	Ni ²⁺ , Cu ²⁺		6
9 06 05 7	7-methyl; 9-methyl, methyl		Ni^{2+}, Cu^{2+}	A	69
8			N12+	A	5
-			Fe ²⁺	B	20 84
	d.: d.: 2.3-benzo: 4-methoxide:	20d	Ni^{2+} , Cu^{2+}	U	82
	5,6-benzo; 8,9-benzo; 10-meth- oxide; 11,12-benzo		Ni ²⁺	А, В	120
	d1; d5; 2,3-benzo; 4-ethoxide; 5,6-	20e	Ni ²⁺		6
	benzo; 8,9-benzo; 10-ethoxide; 11,12-benzo		Ni ²⁺	А, В	120
	d₂: d₄; d₅; 1-methyl, methyl; 3- methyl; 7-methyl, methyl; 9- methyl	20f	Ni ²⁺	Α, Β	85
	d ₂ ; d ₄ ; d ₆ ; d ₈ ; 1-methyl, methyl; 3-	20g	Ni ²⁺	A, B	85
	methyl; 7-methyl, methyl; 9-methyl		Fe ²⁺	В	84
	d ₂ ; d ₄ ; d ₆ ; d ₈ ; 1,2-benzo; 4,5-benzo;	20h	Ni ²⁺		6
	7,8-benzo; 10,11-benzo		Co^{2+} , Ni ²⁺ , Cu ²⁺		7
			Ni ²⁺ , Cu ²⁺		26
					80 97
			Co^{3+} Ni ²⁺ Cu ²⁺	А, В	88
			Co ²⁺ , Co ³⁺ , Ni ⁺ , Ni ²⁺ , Cu ⁺ , Cu ²⁺		82
			Ni ²⁺		209
			Co ³⁺	A, B	89
			Cu ²⁺ , Cu ³⁺	А, В	83
					90
	d2; d4; d6; d3; 1,2-benzo; 4,5-benzo; 6-NH2; 7,8-benzo; 10,11-benzo; 12-NH2	201	N1 ²⁺	А, В	197
	d ₂ ; d ₄ ; d ₆ ; d ₃ ; 1,2-benzo; 4,5-benzo; 6-N(CH ₃) ₂ ; 7,8-benzo; 10,11- benzo; 12-N(CH ₃) ₂	20j	Ni ²⁺ , Cu ²⁺	А, В	197
	d ₂ ; d ₄ ; d ₆ ; d ₈ ; 1,2-benzo; 4,5-benzo; 6-N(C ₂ H ₃) ₂ ; 7,8-benzo; 10,11- benzo; 12-N(C ₂ H ₃) ₂	20k	Ni ²⁺	А, В	197
	d ₂ ; d ₄ ; d ₆ ; d ₈ ; 1,2-benzo; 4,5-benzo; 6-N(CH ₃)CH ₂ CH ₂ NH(CH ₃); 7,8- benzo; 10,11-benzo; 12- N(CH ₃)CH ₂ CH ₂ NH(CH ₃)	201	Ni ²⁺	А, В	197
	d ₂ ; d ₄ ; d ₈ ; d ₃ ; 1,2-benzo; 4,5-benzo; 6-N(CH ₃)CH ₂ CH ₂ N(CH ₃) ₂ ; 7,8- benzo; 10,11-benzo; 12-N(CH) ₃ - CH ₂ CH ₂ N(CH ₂) ₂	20 m	Ni ²⁺	А, В	197
	d ₂ : d ₄ ; d ₆ ; d ₈ : 1,2-benzo; 4,5-benzo; 6-NHCH ₂ CH ₂ CH ₂ NH ₂ ; 7,8- benzo; 10,11-benzo; 12- NHCH ₂ CH ₂ CH ₂ NH ₂ .	20n	Ni ²⁺	А, В	197
	d ₂ ; d ₄ ; d ₆ ; d ₈ ; 1,2-benzo; 4,5-benzo; 6-NH(CH ₂) ₃ NH ₂ ; 7,8-benzo; 10,11- benzo; 12-NH(CH ₂) ₃ NH ₂	200	Ni ²⁺	A, B	197

Basic structure	Attached groups ^a	No.	lons bound by ligand	Other information ^b	Ref
	d ₂ ; d ₄ ; d ₆ ; d ₈ ; 1,2-benzo; 4,5-benzo; 6-O(CH ₂) ₅ OH; 7,8-benzo; 10,11- benzo: 12-O(CH ₂)-OH	20p	Ni ²⁺	А, В	197
	d₂; d₄; d₅; d₅; 1,2-0cH₂);0H d₂; d₄; d₅; d₅; 1,2-benzo; 4,5-benzo; 6-O(CH₃)₂; 7,8-benzo; 10,11- benzo; 12-O(CH₂);0H	20q	Cu ²⁺	А, В	197
\wedge		21a	Fe ²⁺	В	84
	1-Methyl; 2-methyl	21b	N i ²⁺		6
$\left[\begin{array}{c} N \\ d \end{array} \right]^{2}$			Co ³⁺	A, B	91 02
N N			Ni ²⁺	А, Б	92 93
ds. N			Ni ²⁺	А, В	94
			Ni ²⁺		217
	d ₂ ; 1-methyl; 2-methyl	21c	N i ²⁺	A	93
	d1; d2; 1-methyl; 2-methyl	21 d	Co ²⁺ , Ni ²⁺ , Cu ²⁺		6 05
			Ni ²⁺	А, В А. В	96
			Co ²⁺	A, B	97
,			Ni ²⁺		208
			Cu ²⁺	А, В	92
		21.0	Ni ²⁺	٨	93
0 <i>r</i>	a_1 ; a_2 ; a_3 ; 1-methyl; 2-methyl	220	N12+	~	55
0 0	d1; d2; d3; d4; 1-methyl; 2-methyl; 3-methyl; 4-methyl	ZZa	N I ²⁺		D
3 B	d1; d2; d3; d4; 1-methyl; 2-methyl; 3-fluoride, fluoride; 4-methyl;	23a	Ni²+ Ni²⁺	A	6 98
2 m N 4	5-methyl; 6-fluoride, fluoride		Ni ²⁺		7
	d₁; d₂; d₃; d₄; 1-methyl; 2-methyl; 3-ethyl, ethyl; 4-methyl; 5- methyl; 6-ethyl, ethyl	23b	Ní²+	А	99
$\dot{\sim}$.	d ₁ ; d ₂ ; d ₃ ; d ₄ ; 1,2-benzo; 3,4-benzo;	24a	Nì ²⁺ , Cu ²⁺	А, В	197
$7 \underbrace{d_4}_{6} \underbrace{N}_{1} \underbrace{N}_{1} \underbrace{N}_{1} \underbrace{d_2}_{1} \underbrace{3}_{1} \underbrace{d_4}_{1} \underbrace{N}_{1} \underbrace{N}_{1} \underbrace{d_2}_{1} \underbrace{3}_{1} \underbrace{3}_{1} \underbrace{d_4}_{1} \underbrace{N}_{1} \underbrace{N}_{1} \underbrace{d_4}_{1} \underbrace{N}_{1} \underbrace{N}_{1} \underbrace{d_4}_{1} \underbrace{N}_{1} \underbrace{N}_{1} \underbrace{d_4}_{1} \underbrace{N}_{1} \underbrace$	3,6-benzo; 7,8-benzo; 9-metnyi		NI*', CU*'		198
\bigcirc	d1; d2; 1-methyl; 2-methyl	25a	Mn ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ Fe ³⁺		6 7
1 N 2			Fe ³⁺		100
			Fe ³⁺	A, B	101
			Fe ³⁺ Fe ³⁺	А, В	102 103
	d1; d2: 1,2-benzo; 3,4-benzo; 5,6- benzo; 7,8-benzo	26a	Fe ²⁺ , Zn ²⁺	Α, Β	196
N N J 5					

Basic structure	Attached groups ^a	No.	lons bound by ligand	Other information	^b Ref
	d ₁ ; d ₂ ; 1,2-benzo; 3,4-benzo; 5,6- benzo; 7,8-benzo	27a	Fe ²⁺ , Zn ²⁺	Α, Β	196
d_1 d_2 d_3 d_4	d1; d2; 1-methyl; 2-methyl	28a	Co ²⁺ , Ni ²⁺ , Cu ²⁺ Fe ³⁺ Fe ³⁺ Fe ³⁺	А, В	6 7 101 103
		29a	Co²+, Ni²+, Cu²+, Zn²+, Cd²+	В	104
		30a	Cu ²⁺	A	105
NPN PPN PN N	1-NMe, NMe; 2-NMe, NMe; 3-NMe, NMe; 4-NMe, NMe, 5-NMe, NMe; 6-NMe, NMe	31a	Cu ²⁺		215
6^{P} $N \xrightarrow{P} N$ P^{4} 5^{P} $N \xrightarrow{P} N$ N N N N N N N N N		32a	Fe²+, Co²+, Ni²+, Zn²+	А, В	183
		33a	Co³+ Co²+, Co³+	A, B	184 106
	1-Methyl	34a 34b	Co ²⁺ , Ni ²⁺ , Cu ²⁺ Co ²⁺ , Ni ²⁺ , Cu ⁺ , Cu ²⁺ Co ²⁺ , Ni ²⁺ , Cu ⁺ , Cu ²⁺	B A, B A, B	104 107 107
	1-Methyl	35a	Cu ²⁺	A	108

`

Basic structure	Attached groups ^a	No.	lons bound by ligand	Other information ^b	Ref
		36a	Mn²+, Ni²+, Cu²+, Hg²+, Pb²+ Mn²+, Ni²+, Cu²+, Hg²+, Pb²+	А, В	6 109
		37a	Ni ²⁺ , Cu ²⁺ , Au ³⁺	А, В	110
		38a	Ni ²⁺ Sn ^{₄+} Li, Na, K, Be, Mg, Ca, La, Ti, Zr, Hf, Th, V, Cr, U, Mn, Fe, Co, Ni Pu Pb Pd Oc Pt Cu Ag	A A, B	6 111 141
		39a	Au, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb Ni ²⁺	А, В	112
		40a	Ni ²⁺	А, В	147
		41a	Ni ²⁺	А, В	147
		42a 43a	Ni ²⁺ Ni ²⁺	A, B A	147 145
		44a	Ni ²⁺ Ni ²⁺	A, B A, B	144 144
	3,4-Benzo; 7,8-benzo d1; d2; 1-phenyl; 2-phenyl; 3,4- benzo; 5-phenyl; 6-phenyl; 7,8-	45a 45b	Ni ²⁺	A, B A	113 186
5 5 5 5 5 5 5 5 5 5	Denzo	46a	Co ²⁺ , Ni ²⁺	A, B	148
$ \begin{array}{c} $		47a	Ni ²⁺ , Pd ²⁺		146

Basic structure	Attached groups ^a	No.	lons bound by ligand	Other information ^b .	Re
	2 2 Benzo: 45 honzo	48a	K, Ag ⁺		180
	2,3-Benzo, 4,5-Benzo 1-n-C ₈ H ₁₇ ; 2,3-benzo; 4,5-benzo	48D 48C	ĸĸ		180
3					
	d1; d2; 1,2-benzo; 3,4-benzo	49a	Ni ²⁺	А	188
3-0_N ^{d2} ²			Ni ²⁺		187
N N		50a	Κ. Ασ+	А	151 180
-0 0 3			K, Rb, Cu ²⁺	А	14
2 N 4	1,2-Benzo; 4,5-benzo	50b	K		18
\checkmark \checkmark	3-Methyl, 6-methyl 3,6-C ₈ H ₁₆	50c 50d	Na, K, Ba Na, K, Ba		11 11
		51a	H, Li	A, B, C	11
\sim		52a	Li, Na, K, Rb, Cs, Mg, Ca, Sr, E	a	19
			Li, Na, K, Ca, Sr		19
		53a	Li, Na, K, Rb, Cs, Mg, Ca, Sr, E	Ba	19
Vo N			Li, Na, K, Rb, Cs, Ca, Sr, Ba		19
		54a	Na, K, Cs		19
			Rb		19
	'		Na, K, Rb, Ca, Sr, Ba, Tl ⁺ Li, Na, K, Rb, Cs, Ca, Sr, Ba	В, С В	19 19
			Sr	A, B	14
			Li, Na, K, Rb, Cs, Mg, Ca, Sr, E	Ba	19
			Na, K, Ba Li, Na, K, Rb, Cs, Ca, Sr, Ba		19
	1,2-Benzo 1,2-Benzo; 3,4-benzo	54b 54c	Na, K, Ba Na, K, Ba		11 11
-0-0-0-		55a		A	14
∧ o∕ o∕ N			Na, K, Rb, Cs, Mg, Ca, Sr, E Na, K, Rb, Cs, Ca, Sr, Ba,	Sa	19
			Ва		19
		56a	li Na K. Rh. Ce. Mor. Ca. Sr. E	A	14
			Li, Na, K, Rb, Cs, Ca, Sr, Ba		19
\sim		57a		A	14
$\sqrt{\sqrt{2}}$			LI, Na, K, Rb, Cs, Mg, Ca, Sr, E Li, Na, K, Rb, Cs, Ca, Sr	3a	19 19
		-			
2 N d, 34	d1; d2; 1,2-benzo; 3,4-benzo; 5,6-benzo; 7,8-benzo	58a	NI ²⁺	А, В	19
0 N- Nd2 >5					

da _____

5

0 6

Basic structure	Attached groups ^a	No.	lons bound by ligand	Other information ^b	Ref
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		59a	Na, K, Cd	A	118
N/o/o/N	1-Methyl; 2-methyl 1-Tosylate; 2-tosylate	59b 59c	K, Ag Ag	A A	118 118
<u> </u>					
		60a	Na, K, Rb, Cs, Ca, Sr, Ba, La, Ag+, TI+, Pb²+	A	119
N N					
		61a	К	A	118
	1-Methyl; 2-methyl; 3-methyl; 4- methyl		К	A	118
	d1; d2; 1,2-benzo; 3-methyl; 4-	62a	Ni ²⁺		7
s s	methyl di: di: 1.2-benzo: 3-methyl: 4-ethyl	62b	Ni ²⁺ Ni ²⁺	А, В	154 6
	- 1, - 2, - , - , - , - , - , - , , , , , ,		Ni ²⁺	A, B	154
4~3	d1; d2; 1,2-benzo; 3-methyl; 4-pentyl	62c	Ni ²⁺	В, С А, В	155
S S	d1; 1,2-benzo; 3-methyl; 4-methyl, methyl	63a	Ni ²⁺		6^
$ \begin{array}{c} \frac{di}{4} \\ \frac{3}{3} \end{array} $		64a	Co ²⁺ , Ni ²⁺	A	151 152
	d1; d2; 1-methyl; 2-ethyl	65a	N i ²⁺		6
s s					
8 5 5	d ₁ ; d ₂ ; 1,2-benzo; 3,4-benzo; 5,6- benzo; 7,8-benzo	66a	Co ²⁺ , Ni ²⁺ Co ²⁺ , Ni ²⁺	A	153 156
2 N ^d , 3 -5 N-	d1; d2; 1,2-benzo; 3,4-benzo; 5,6- benzo; 7,8-benzo	67a	Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Zn ²⁺	А, В	196
S N 8 7 7 Nd2 6					
	d₁; d₂; d₃; d₄; 1,2-benzo; 3,4-benzo; 5,6-benzo: 7.8-benzo	68a	Ni ²⁺ , Cu ²⁺ Ni ²⁺ , Cu ²⁺	A, B	197 198
					_ • •

Basic structure	Attached groups ^a	No.	lons bound by ligand	Other information ⁵	Ref
	1,2-4-Methylbenzo	69a	K, Ag	А, В	199
	1,2-4-Methylbenzo	70a	K, Ag	А, В	199
	1,2-Benzo; 3,4-benzo	71a	K, Ag	А, В	199
	5,6-Benzo 1,2-Benzo; 3,4-benzo	72a 72b 72c	K, Ag K, Ag K, Ag	•	180 199 199
	1,2-Methylbenzo; 3,4-methylbenzo	73a 73b	Na, K, Ag Na, K, Ag	A, B A, B A, B	148 199 199
		74a	Co²+, Ni²+		148
		75a	Na, K, Rb, Ba, Pb²,+ Ag+, Tl+	А, В	151
		76a	Li, Na, Co²+, Ag+	А, В	151

^a Numbers designate where group is attached to basic structure; i.e., d designates a double bond. ^b Other pertinent information contained in reference concerning complex and/or macrocycle are designated as follows: A, synthesis; B, spectra; C, kinetic. ^c See also ref 4. ^d See also ref 15. ^e See also ref 84. ^f See also ref 51. ^g See also ref 44. ^h See also ref 20.

cerning the actual sequence of reactions and the exact nature of the metal ion effects.

Typical of macrocycles prepared by condensation in the presence of transition metal salts are those formed by reaction of certain metal-amine complexes with aliphatic carbonyl compounds.^{5,8} For example, with acetone as the carbonyl compound and diaminoethane as the amine complex, a cyclic complex characterized by the formula given by I where n = 2, is obtained (the



both of the diaminoethane residues by 1,3-diaminopropane residues or by cyclization of triethylenetetramine complexes by a single amine-imine bridge. The ring substituents can be changed by replacement of acetone by some other aliphatic carbonyl compound. The macrocyclic complexes formed have two imine and two secondary amine donor groups, but it is possible to vary the unsaturation of the macrocycle from the tetraimine to the tetraamine by oxidation or reduction, respectively. The direct condensation between metal-amine complexes and carbonyl compounds is satisfactory only for nickel(II) and copper(II), but by isolation of some of the macrocycles from the nickel(II) complexes it has been possible to prepare complexes of other metal ions. Several reviews and papers have been published describing the synthesis of cyclic polyamines. 5-8.141

macrocycle ring size can be changed by replacing one or

## 2. Bicyclic

methyl side groups are not indicated in the formula). This reaction provides a covnvenient route to complexes of macrocyclic ligands with four nitrogen donor atoms. The

Simmons and Park¹⁴² have made a series of macrobicyclic diamines of type **14a-g.** 1, (k + 2)-Diazacycloal-

TABLE II. Some Representative Cyclic Polyethers Together with Their Crown Names

Compound	Crown name
	12-Crown-4
	Cyclohexyl-12-crown-4
	18-Crown-6
	Dibenzo-18-crown-6
	asym∙Dibenzo-22-crown-6
	Dithi <b>a</b> -15-crown-5

kanes (II) were prepared by the procedure of Stetter and Marx¹⁴³ and converted by an extension of the same method to the crystalline 1, (k + 2)-diazabicyclo[k.l.m]al-kanes (III).



Overall yield based on amines of type II, which were prepared in 50–70% yields, were 20 to 75%. They found that, as originally made, the lone pairs, or the protons in the protonated form, were on the outside and called this the *out–out* form. When the hydrochlorides are left in solution, there is a drastic change in the proton nmr signal, attributed to a change in the formation of the ligand at the nitrogen atoms resulting in the protons being on the inside of the cavity to give the *in–in* form.

### C. Cyclic Polythioethers

Rosen and Busch^{8,144,145} have used the reaction sequence in Scheme I to prepare the quadridentate macrocycles **43a** and **44a**. The final ring-closing step gave a 38% yield. Initially the corresponding yield of **43a**, the sulfur analog of cyclam, was 7.5%, although the reaction





was performed at moderate dilution. Subsequently this yield was improved by diluting threefold the alcohol solution used in the original preparation.

Four other sulfur-containing macrocycles have been synthesized^{146,147} by procedures similar to Scheme I. Black and McLean¹⁴⁸ report the synthesis of an 18-membered ring, **46a**, by reaction of 1,2-dibromoethane with the disodium salt of 3-thiapentane-1,5-dithiol in ethanol at high dilution with a yield of 31%.



## **D. Mixed Donor Macrocycles**

### 1. Nitrogen–Oxygen

A series of mono- and bicyclic macrocycles containing both nitrogen and oxygen atoms has been synthesized by Dietrich, Lehn, and Sauvage.¹⁴⁹⁻¹⁵¹ The procedure used is outlined in Scheme II for the synthesis of **50a** and **54a**.

Starting from the required dioxa diamine and dicarboxylic acid dichloride the macrocyclic diamine is obtained in 75% yield by condensation under high dilution conditions followed by reduction (lithium aluminum hydride or diborane) of the diamides obtained. Condensation (high



TABLE III. Compilation of Reference Reporting Synthesis	s
of Synthetic Multidentate Macrocyclic Ligands	

Number of donor atoms	References
	Oxygen Donor Atoms
2	123–126
3	113, 122, 125
4	122-128
5	12-14, 122, 135 122 125 128 135 136
7	122, 135
8	122, 135
10	122
16 20	122
20	
2	Nitrogen Donor Atoms
3	26. 27. 29
4	5, 31–42, 44, 46–48, 50–57, 63–70, 73, 75, 76, 78–81, 83, 85, 87, 89, 91–99, 120, 120, 120, 127, 128, 181, 107, 214, 215
5	101. 102
6	101, 105, 196
7	107, 108
8	109–112, 141
3	Sulfur Donor Atoms 147
4	113, 131, 132, 144, 145, 147, 186
8	135, 148
Ŭ	Mixed Donor Atoms
1–5	180
2-2	188
2-3	115
2-4	149, 151
2-5	149
2-7	149
2-8	149
2-9	149
6-3	183
	Sulfur Nitrogon
1-4	197
2-2	154
2-4	196
4-2	151, 156 151
0-2	
1_2	Sulfur-Oxygen
1-2	157
1-4	157
1-7	199
2-1 2-2	15/ 157
2-3	157, 199
2-4	157, 199
3-1	157
4-2	148, 157, 199
1 0 1	Nitrogen-Sulfur-Oxygen
1-2-1 2-2-2	148 151
2-2-4	151
2-4-2	151

dilution) of 50a with the acid chloride followed by reduction (diborane) of the intermediate diamide led to the macrobicyclic diamine **54a** in 25% yield from the starting materials.

## 2. Sulfur-Nitrogen

Dietrich, Lehn, and Sauvage,¹⁵¹ using the procedure outlined in Scheme II but with sulfur replacing the oxygen atoms, synthesized a mono-



and a bicyclic thia macrocyclic diamine.



Compound **64a** has also been prepared in 8% yield by the reaction of the disodium salt of ethane-1,2-dithiol and di(2-bromoethyl)amine in ethanol at high dilution.^{148,152} Busch and coworkers^{8,153-156} have synthesized several sulfur-nitrogen containing macrocycles by *in situ* methods where a metal ion is present, yielding the metal complex directly.

### 3. Sulfur-Oxygen

A tetrathioether, 73a, has been synthesized¹⁴⁸ by reaction of 1,2-dibromoethane with the disodium salt of 3-



oxapentane-1,5-dithiol in ethanol at high dilution with a yield of 7%. Bradshaw, *et al.*,¹⁵⁷ have prepared 11 different thioethers in a manner similar to that reported by Dann, Chiesa, and Gates,¹⁵⁸ in which the appropriate oligo ethylene glycol dichloride was allowed to react with a dithiol or sodium sulfide. Yields were generally low (5–30%) owing to extensive polymer formation.

## 4. Nitrogen-Sulfur-Oxygen

Monocyclic and bicyclic macrocycles as typified by the following two structures were synthesized  151  by the



method described in Scheme II. Starting with the required dithia diamine and dicarboxylic acid dichloride, the monocyclic compounds were obtained in 55% yield. Subsequent condensation with the required diacid dichloride followed by reduction of the intermediate diamides led to the bicyclic macrocycle with an overall yield of about

TABLE IV.	Diameters of	Selected	Cations	and	Cyclic
Polyether	Cavities ^{160,163}				

Cation	lonic diameter, Å	Polyether	Diameter of cavity, Å
Lithium	1.20	All 14-crown-4	1.2-1.5
Sodium	1.90	All 15-crown-5	1.7-2.2
Potassium	2.66	All 18-crown-6	2.6-3.2
Ammonium	2.84	All 21-crown-7	3.4-4.3
Rubidium	2,96		
Cesium	3.34		
Silver	2.52		
Barium	2.70		

20%. Macrocycle **74a** has been prepared by the reaction of the disodium salt of 3-oxapentane-1,5-dithiol with di(2-bromoethyl) amine in ethanol at high dilution.^{148,159}



## IV. Ion Binding Properties

#### A. Cyclic Polyethers

The cyclic polyethers have been found to form primarily 1:1 metal:polyether complexes with a large array of metal ions.^{122,135,160-162} However, depending on the ratio of the diameter of the cavity and metal ion diameter, 1:2 and 2:3 complexes are also formed.¹⁶³

The 1:1 complexes are generally assumed to consist of the metal ion bound in the cavity of the polyether ring (ref 122, 135, 160, 164, 165). This "metal in the hole" picture has been substantiated by X-ray crystallographic studies of several metal-cyclic polyether complexes (see section VI for table giving structures of metal-cyclic polyether complexes). However, caution should be used in determining the composition of the complex in solution from the crystal composition. The first cyclic polyether complex to be investigated by X-ray crystal structure analysis¹⁶⁶ had a 2:3 crystal stoichiometric composition of two ribidium thiocyanate units to three polyethers 6g (dibenzo-18-crown-6), but the complex was found to have 1:1 structure. An extra uncoordinated molecule of ligand was present in the crystal for every two molecules of the complex.

The fact that a metal ion forms a 1:1 complex with a cyclic polyether does not always indicate that the metal ion is located in the cavity of the polyether. The metal ion may have directed valencies which preclude bonding to all the oxygen atoms or it may be too large or too small to fit "exactly" in the hole. Apparently, the former is the case for the solid complex of cobalt dichloride and the cyclic polyether 6h (dicyclohexyl-18-crown-6), where, based on infrared and magnetic moment data,167 two possible structures were postulated: a sandwich-type structure with two cobalt ions located between two cyclic polyether molecules, IV, and a chain-type polymer with an alternating array of cobalt cations and cyclic polyether molecules, V. These structures are possible only if each cyclic polyether contributes three oxygen atoms to each cobalt ion to form an octahedral complex. In the absence of X-ray crystallographic data, it cannot be predicted which, if either, of these structures is correct.

There is also structural evidence indicating that in many cases the relative sizes of the polyether cavity and



the metal ion control the stoichiometry of the resulting complex. The ionic diameters of some cations and the estimated sizes of the holes of selected cyclic polyethers are given in Table IV. The alkali metal-thiocyanate complexes of the cyclic polyethers 6g (dibenzo-18-crown-6) were found¹⁶³ to have, for a given metal, the following metal/polyether ion ratios: potassium, 1:1; rubidium, 1:1 and 1:2; and cesium, 1:2 and 2:3. A "sandwich" structure, in which the metal ion is located between two cyclic polyether molecules, was suggested as the most probable one for the 1:2 complex. A "club sandwich" structure was postulated for the 2:3 complex where three polyether molecules are arranged flatwise in three tiers, each separated from the next by a metal ion. Rough approximations of these structures are depicted in Figure 2a (sandwich complex) and Figure 2b (club sandwich complex).

Similarly, where the metal ion was larger than the hole in the ring, other cyclic polyethers have been found^{163,168} to give 1:2 and 2:3 complexes with various metal ions. Thus, it seems evident that the relative sizes of the hole and the metal ion have much to do with determining the stoichiometry of the complex. However, it has also been found that silver forms a 1:1 complex with the cyclic polyether **3a** (benzo-15-crown-5), yet the silver ion diameter is larger than the diameter of the hole in the cyclic polyether (Table IV) and that potassium forms a 1:1 complex with **11a** (dibenzo-30-crown-10), in which the ligand is wrapped around the metal.¹⁶⁹ This indicates that relative size is not the only factor influencing the configuration of the complexes.

One of the most interesting features of the cyclic polyethers is the ability of these compounds to selectively bind various cations. Solvent extraction studies¹⁶⁰ indicate preferential metal ion binding of alkali metal ions by cyclic polyethers as shown in Table V.

The most extensive work has been reported for the reaction of mono- and bivalent cations with the two isomers of the ligand **6**h (dicyclohexyl-18-crown-6) in aque-

Alkali metal ion	Cyclic polyether ^a	Ligand no. ^b	Approx ratio ^c	Ref
Lithium	Bis(tert-butylcyclo- hexyl)-14-crown-4	2d	0.89	170
Sodium	tert-Butylcyclohexyl- 15-crown-5	3e	0.97	170
Potassium	Dicyclohexyl-18- crown-6	6h	0.90	170
Rubidium	asym-Dicyclohexyl-21- crown-7	9c	0.77	160
Cesium	Dicyclohexyl-24- crown-8	10c	0.83	160

^a Which shows a preference for a given alkali metal ion over other alkali metal ions. ^b See Table I. ^c Of metal ion diameter to hole diameter. See Table IV for diameters of metal ions and polyether cavities.

ous solution.^{161,162} The results are shown in Figure 3 for monovalent and bivalent cations, the optimum being at a somewhat smaller cation size in the case of the divalent cations. Also, 6h was shown to be extremely selective toward certain cations. For example, the difference in stability constants between the Ca2+ and Pb2+ complexes of 6h is about 105. In addition, 6h has no measurable affinity for  $Cd^{2+}$  or  $Zn^{2+}$ , but high affinity for  $Hg^{2+}$ . The stability sequence for the alkali metal ion complexes with **6h** was found to be potassium > rubidium > cesium  $\simeq$  sodium > lithium, which is essentially the same as the permeability sequence of the alkali metal ions in the presence of certain antibiotics for the transport of metal ions through natural and synthetic membranes and also the same as the binding sequence of metals ions by certain antibiotics.171-179

Frensdorff¹⁸⁰ has investigated the relationship between ring size and cation size by determining  $\log K$  values for the reaction in methanol of several cyclic polyethers with Na⁺, K⁺, and Cs⁺. The log K values are plotted in Figure 4 where several trends are evident. The relationship between ring size and cation size changes from Na $^+$  > K⁺ for **2c** (dicyclohexyl-14-crown-4) to Na⁺  $\sim$  K⁺ >Cs^+ for 3d (cyclohexyl-15-crown-5) to K^+  $\sim$  Cs^+ >Na⁺ for **9b** (dibenzo-21-crown-7), and to  $Cs^+ > K^+$  for 10b (dibenzo-34-crown-8). It is evident that the change from preferred complexing with Na⁺ to that with Cs⁺ is very much dependent on the size of the cyclic polyether cavity. Values for ionic diameters of the alkali metal ions and ligand hole sizes are given in Table IV. For a given ring size, there is close correspondence between the cation diameter for which maximum stability is found and the macrocycle hole diameter.

Izatt, et al.,⁴ have discussed the variations in ion binding properties with respect to cation size and charge, ligand cavity size, donor atom number and type, and ring type and conformation.

## **B.** Cyclic Polyamines

#### 1. Monocyclic

The majority of the monocyclic complexes have structures similar to VI where four more or less equivalent ni-







Figure 2. Possible structures of metal-cyclic polyether compounds.



Figure 3. Relation between magnitude of binding constant and metal ion radius for the cyclic polyether 6h (dicyclohexyl-18-crown-6) in aqueous solution. Diameter of cavity is approximately 3.0 Å (Table IV).



Figure 4. Log K values for the reaction in methanol of several cyclic polyethers of varying ring sizes and number of donor atoms with Na. K, and Cs.

 TABLE VI. Log K Values for the Formation of Several

 1:1 Cu²⁺-Tetramine Complexes

Ligand	Log K	Temp, °C
Macrocyclic		
18b (blue)	20	25
<b>18b</b> (red)	28	25
Noncyclic		
$N[(CH_2)_3NH_2]_3$	13.1	25
$NH_2(CH_2)_3NH(CH_2)_2NH(CH_2)_3NH_2$	17.3	20
$N[(CH_2)_2NH_2]_3$	18.8	20
$NH_2(CH_2)_2NH(CH_2)_2NH(CH_2)_2NH_2$	20.1	25
$NH_2(CH_2)_2NH(CH_2)_3NH(CH_2)_2NH_2$	23.9	25

trogen atoms are coordinated in a single plane about the metal ion while two variable ionic groups are bound in the axial sites above and below that plane.

X-Ray crystallographic analysis on several macrocycles containing four and five nitrogen atoms indicates that the metal ion is located in the cavity of the ring (see section VI for table giving structures of metal-cyclic polyamine complexes). The complexes of only a small number of metal ions, mostly first row transition metal ions in their usual oxidation states, have been studied in any detail.8 Examples of pentadentate, sexadentate, and higher polydentate macrocycles are rare, and such ligands have been used to prepare only a relatively small number of metal complexes. Relatively little has been done to measure metal binding constants in the cases of these macrocycles or to investigate the various factors which affect these constants. This is due partially to the covalent bonding between the nitrogen atoms and the metal ion which because of the template effect results in a macrocycle being synthesized with a strongly bonded metal ion in the cavity. The complexes are in general remarkably inert to dissociation, and in many cases it is not possible to obtain the metal free macrocycle. It has been suggested that because of the high stability of the complexes it might be possible to trap some of the more uncommon oxidation states of the transition metals by reduction or oxidation of the complexes containing the metals in their normal oxidation states.¹⁸¹ In some cases, the free macrocycle can be obtained by introduction of a stronger metal binding molecule. For example, 18b, L, can be readily removed intact from nickel(II) ion by the action of aqueous cyanide ion.6

$$Ni(L)^{2+} + 4CN^{-} \longrightarrow Ni(CN)_{4}^{2-} + L$$
 (4)

This reaction also establishes the binding constant for the nickel macrocycle complex to be less than that for the  $Ni(CN)_4^{2-}$  complex which has a log K value of 30.1.

The binding constants for the red and blue forms of the copper(II) complex of the macrocycle **18b** have been measured and compared with similar constants for copper binding with noncyclic nitrogen-containing molecules.¹⁸² These results are given in Table VI and indicate the high stability of the red form of macrocycle **18b**.

The effect of increased stability of a metal complex coordinated to a tetramine macrocyclic ligand over that of similar noncyclic tetramine ligands has been called the macrocyclic effect.¹⁸² Aside from the above study, little has been reported with respect to the effect of the various factors which determine the thermodynamic stability of the complexes formed between metals and cyclic polyamines.

#### 2. Bicyclic

Several macrobicyclic complexes of the general type shown by **32a** have been synthesized containing completely encapsulated metal ions.^{183,184} Rigid cage struc-



tures are characteristic of this class of complexes with the complexes having a 1:1 metal to ligand ratio. The metal free ligand was not obtained and no metal binding constants have been reported.



Macrobicyclic diamines with bridgehead nitrogen atoms have been reported¹⁸⁵ to exhibit an unprecedented ion pairing phenomenon. These macrocycles can exist in the three configurations illustrated in Scheme III.25,142 Nmr studies indicate that the out-out isomer (Scheme III, k = l = m = 9, **14c**) dissolved in 50% deuteriotrifluoroacetic acid was slowly converted to the in-in isomer until an equilibrium condition was reached which gave an equilibrium constant, K = in-in/out-out, equal to 0.41. Also, halide ions react with the in-in form to produce a new cation consistent with the encapsulation of the halide ions in the molecular cavity of the bicyclic amine.185 This process, which involves the diffusion of halide ions into the cavity of a bicyclic amine, has been defined as katapinosis, and the resulting ion pairs have been termed katapinate ions. The katapinate ion formed by the encapsulation of chloride ion by the macrobicyclic diamine has the structure VII. The binding constants for halide ion en-



capsulation by these macrocyclic compounds are given in section V. It was postulated¹⁸⁵ that the stability of the complexes must be in part due to the high positive potential of the hole with respect to anions and from hydrogen bonding within the cavity. It was found that for chloride ions the encapsulated chloride ion exchanged rapidly with the external chloride ion.

#### C. Cyclic Polythioethers

Metal chelates, primarily nickel(II) and cobalt(III), of several cyclic polythioethers containing three, four, six, and eight sulfur atoms have been reported.146-148,186 The metal free cyclic polythioether ligand can usually be obtained from the complexes by reaction with water or ethanol to liberate the free ligand. The configuration of the metal ion-ligand complex is a function of the ring size and number of sulfur groups. A tridentate macrocycle, 40a, with nickel(II). gave a complex with a 2:1 ligand/ metal ratio, indicating the formation of a sandwich-type structure with the metal ion located between the two ligands.147 Tetradentate macrocycles were found to contain the metal ion in the plane of the ring for ring size over 14 members^{144,145} but to form complexes with 3:2 ligand/ metal ratios for ring sizes of 13 members or less. Sexadentate ligands having 18 and 20 member rings were found¹⁴⁸ to have four of the sulfur atoms in a plane with the metal ion with the other two sulfur atoms occupying positions above and below the plane (octahedral geometry). An octadentate thioether was found to yield nickel-(11) complexes in which the ligand was able to circumscribe completely two metal ions.146 Spectral evidence indicates that each nickel(II) ion is located in a plane of the four sulfur atoms coordinated to it. With palladium(II) and platinum(II), however, the complexes formed had a metal to ligand ratio of 4:1, indicating that two sulfur atoms bind with each metal ion.

## **D. Mixed Donor Macrocycles**

- 1. Nitrogen-Oxygen Donor Groups
- a. Monocyclic

Several macrocycles and metal complexes containing both nitrogen and oxygen donor groups have been reported.^{180,187-189} The complexes formed with various metal ions were all 1:1 metal/ligand with the metal ion located in the cavity of the macrocycle.

The effect of substituting nitrogen for oxygen on the metal binding properties of the cyclic polyethers **6a** (18crown-6) and **6g** (dibenzo-18-crown-6) with potassium and silver ions has been studied,¹⁸⁰ and the results are shown in Table VII. Complexing of potassium is weakened appreciably as nitrogen is substituted in the ring, the stability constant falling in the order of decreasing electronegativity of the substituted group, O > NR > NH. The effects on silver(I) complexing were exactly the opposite with the stability increasing with substitution. It was concluded that only electrostatic bonding exists in the potassium complexes whereas the silver(I) complexes have both electrostatic and covalent bonding.¹⁸⁰

#### b. Bicyclic

Several polyoxa macrobicyclic diamines represented by the structure VIII, where m = n = p = 1; m = n = 1,



p = 2: m = 1, n = p = 2; and m = n = p = 2 have recently been reported.^{149-151,190,191} These compounds are able to form metal ion complexes in which the metal

TABLE VII. Equilibrium Constants for the Interaction of Potassium and Silver(I) with Mixed Dentate Macrocycles at 25°



Ligand no.	Ligand type	A	В	K in Methanol	K Ag(I) in water
6a	1	0	0	6.10	1.60
6b	2	0	0	5.00	
48c	2	ΝR ^α	0	4.10	
48a	1	NH	0	3.90	3.3
48b	2	NH	0	3.20	
50a	1	NH	NH	2.04	7.8
50 b	2	NH	NH	1.63	

^{*a*} R = n-octyl.

ion is located within the central cavity of the macrocycle. The crystal structure of several metal complexes of 54a^{192,193} and of one metal complex of 55a¹⁹⁴ have been determined by X-ray crystallography. In all cases it was found that the metal ion was located in the cavity of the macromolecule and that the two nitrogen atoms participated with the oxygen atoms in bonding to the metal atom. Binding constants for the formation of several metal complexes of 52a-57a have been measured  $^{150,\,191,\,195}$  and are given in section V. The complexes all showed 1:1 stoichiometry with the metal positioned in the center of the ligand cavity. These macrocycles demonstrate a very strong tendency to form remarkably stable complexes with, and to differentiate between, various metal ions.

The aqueous stability constants for the bicyclic ployoxa amines with a given metal ion are two or more decades above the constants for similar cyclic polyether derivatives.¹⁹¹ Higher metal ion selectivity compared with monocyclic ligands was also found.¹⁹¹

#### 2. Sulfur–Nitrogen Donor Groups

Metal complexes of mainly nickel(II) and cobalt(II) with macrocyclic ligands containing two sulfur and two nitrogen donors, 6,7,154,155 four sulfur and two nitrogen donors, 151-153, 156 two sulfur and four nitrogen donors, 196 and one sulfur and four nitrogen donors^{197,198} have been synthesized, and in some cases the metal-free ligand has also been obtained. The metal complexes of ligands of the type 66a (four sulfur and two nitrogen donors) have four sulfur atoms lying in an equatorial plane with the two nitrogen atoms occupying trans positions.152,153 However, the metal complexes of a ligand having two sulfur and four nitrogen donors (67a) have the metal located in the cavity octahedrally bound by the six donor atoms¹⁹⁶ (two sulfur atoms and two nitrogen atoms lying in an equatorial plane with two nitrogen atoms occupying trans positions). Apparently no metal binding constants have been reported for this class of macrocycles.

#### 3. Sulfur-Oxygen

Macrocyclic polyether sulfides containing two to four sulfur atoms and two to four oxygen atoms have been found to form 1:1 complexes with alkali, alkaline earth, and silver cations.^{180,199,200}

TABLE VIII. Log K, $\Delta H$ , $\Delta S$ , and $\Delta C_p$ Values for the Interaction of lons with Synthetic Multidentate Macrocyclic Comp
-----------------------------------------------------------------------------------------------------------------------------------------------

					Δ <b>S</b> ,	$\Delta C_{p},$				
<b>.</b>			Δ <b>Н</b> ,		(mol	(mol	Temp,	Supporting		5.4
Cation	Log K	Method ^a	kcal/mol	Method ^a	deg)	deg)		electrolyte/solvent	μ	Ref
					Oxy	ygen Do	onor Ato	ms		
Na ⁺	1.41	Р				LC, IVI +	25	- MeOH	10-4-10-2	180
114	1,41	•		2a,	MF+L	= MLF	(F == fl)	Jorenyl ion)	10 10	100
Na ⁺	2.176	S						Tetrahydrofuran		165
		_			2	2 <b>c,</b> M +	L == MI	-		
Na+ K+	2.18	Р					25	MeOH	$10^{-4} - 10^{-2}$ $10^{-4} - 10^{-2}$	180
N'	1.30	P			;	8a. M·∔	 == MI	Meon	10 *-10 *	180
Na ⁺	0.72	С	-1.77	С	2.6	, in 1	25	- 20/80 wt % MeOH/H₂O	0	10
	1.17	С	-2.63	С	3.5		25	40/60 wt % MeOH/H2O	0	10
	1.64	С	-3.78	С	5.2		25	60/40 wt % MeOH/H₂O	0	10
	1.99	C	3.82	С	3.7		25	70/30 wt % MeOH/H ₂ O	0	10
<b>1</b> /+	2.26	C		C	17.6		25	80/20 wt % MeOH/H₂O	0	10
N'	1.22	c		C	0.5		25 25	20/80 wt % MeOH/H ₂ O	0	10
	2.54	Ċ	-3.52	č	-0.2		25	60/40 wt % MeOH/H₂O	0	10
	2.93	Ċ		Ċ	1.1		25	70/30 wt % MeOH/H₂O	0	10
	2.82	С	10.20	С	21.3		25	80/20 wt % MeOH/H ₂ O	0	10
	0.97	Р					25	50/50 vol % tetrahydrofuran/ H₂O		11
Rb+	0.46	Р					25	50/50 vol % tetrahydrofuran/		11
					3	3 <b>d,</b> M +	L == MI			
Li ⁺	<1.0	Р					25	H ₂ O	10-4-10-2	180
Na+	<0.3	Р					25	H₂O	$10^{-4} - 10^{-2}$	180
	3.71	P					25	MeOH	10-4-10-2	180
K+	0.6	Р					25	H₂O MaOU	$10^{-4} - 10^{-2}$	180
Ce+	3.58	P					25 25	MeOH	10 *-10 *	180
03	2,70	I			30	d.ML+	- L == M		10 -10 -	100
K+	1.88	Р				-, ,	25	MeOH	10-4-10-2	180
Cs+	1.91	Р					25	MeOH	10	180
				3	ij, FML =	= FLM (	F == fluc	renyl ion)		
Na+	0.284	S					25	Tetrahydropyran		14
	0.255	5		21		EMI	25 (E fl)			14
Na ⁺	3.964	S		5],			25	Tetrahydrofuran		14
	0.001	U		3j.	FM + L	= FLM	(F = flu	Jorenyl ion)		
Na+	4.217	S		•			25	Tetrahydrofuran		14
				3 <b>j</b> , F	FML + L	= FLM	L (F 💳 f	luorenyl ion)		
Na+	0.447	S					25	Tetrahydropyran		14
<b>K</b> +	0.544	S					25	Tetrahydrofuran		14
N,	5.250	3		4a.	FM + I	= FI M	(F = f)	Jorenyl ion)		14
Na ⁺	3.845	S		, u,			25	Tetrahydrofuran		165
					6	5a, M +	L == MI	-		
Na ⁺	<0.3	Р					25	H ₂ O	10-4-10-2	180
K+	4.32	Р					25	MeOH	10-4-10-2 10-4-10-2	180
ĸŦ	2.06	Р D					20 25	⊓₂∪ MeOH	10-4-10-2	180
Cs+	0.10	P					25 25	HaO	10-4-10-2	180
03	4.62	P					25	MeOH	10-4-10-2	180
NH₄ ⁺	1.1	Р					25	H₂O	$10^{-4} - 10^{-2}$	180
Ag ⁺	1.6	Р					25	H ₂ O	$10^{-4} - 10^{-2}$	180
0.1	1 20				6	a, ML +	-L == M		10-4 10-2	190
Us⊤	1.30	٢			(	6 <b>c,</b> M +	25 L == MI		TOTO .	100
Li+	<0.7	Р					25	H ₂ O	$10^{-4} - 10^{-2}$	180
Na ⁺	0.8	Р					25	H ₂ O	10-4-10-2	180
	4.09	Р					25	MeOH	10-4-10-2	180
К+	1.90	۲ D					25	H₂O MeOH	10  4−10  2	180
Cs+	0.89 D 8	Р					25	H ₂ O	10-4-10-2	180
00	4.30	P					25 -	MeOH	10-4-10-2	180
NH₄ ⁺	1.1	Р					25	H ₂ O	10-4-10-2	180
$Ag^+$	1.7-1.9	Р					25	H ₂ O	10-4-10-2	180

Cation	Log K	Methodª	∆H, kcal/mol	Method ^a	∆ <b>S,</b> cal/ (mol deg)	∆C _p , cal/ (mol deg)	Temp, °C	Supporting electrolyte/solvent	μ	Ref
					6	c, M +	L == ML	-2		
Cs+	1.52	Р					25	МеОН	10-4-10-2	180
	•			6 <b>c</b>	I, FML ==	= FLM (	F = fluc	prenyl ion)		
K+	-0.260	S					25	Tetrahydropyran		14
	-0.032	S	-3.0	Т	-10.4		25	Tetrahydrofuran		14
					6	<b>ig</b> , M +	- L == M	L		
Na+	3.18	Con					0	N,N-Dimethylformamide	10-3	16
	5.17	Con					10	Acetonitrile	<0.004 M	17
	4 60	0					10	MaOH	(NaBPh ₄ )	17
	4.02	Con					10	Meon	< 0.004 M	17
	2 97	Con					15	N N-Dimethylformamide	10-3	16
	5.04	Con					25	Acetonitrile	< 0.004 M	17
	0101	0011							(NaBPh₄)	
	4.36	Р					25	MeOH	10-4-10-2	180
	4.16	Con					25	MeOH	<0.004 M	17
									(NaCl)	
	2.69	Con					30	N,N-Dimethylformamide	10-3	16
	2.58	Con					40	N,N-Dimethylformamide	10-3	16
			6	Т	7		10–40	N,N-Dimethylformamide	10-3	16
					I	6g, M ⊣	⊢ L == M	L		
	5.04	Con					10	Acetonitrile	<0.004 M	17
							25	A	(KBPh₄)	17
K ⁺	4.83	Con					25	Acetonitrile		17
	2 5	0	5 5	0	6 0		25	Dimothyl culfoyido	(KBPn₄) 0	10
	2.0			C	-0.9		25		0 10	190
	4 57	Con					25	MeOH	< 0.004 M (KCI)	100
	1.87	P					25	50 vol % tetrahvdrofuran		11
								50 vol % H₂O		_
	5.04	Pol						0.2 M tetramethylammonium		19
								chloride in H <u></u>		
Cs+	3,55	Р					25	МеОН	10-4-10-2	180
Rb+	1,35	Р					25	50 vol % tetrahydrofuran		11
								50 vol % H2O		
					69	g, ML -	⊢ L ≕ M	$L_2$		
Cs+	2.92	Р					25	MeOH	10-4-10-2	180
		_			6h (Iso	omer A	), M + L	_ == ML		100
Li+	0.6	Р					25	H ₂ O	$10^{-4} - 10^{-2}$	180
ina '	1.5-1.8	P					20		10 *=10 *	100
K+	4.08	г С	1 14	C	4 8		10	H.O	0	10 161
r.	2.15	C C		c	-3.8	20	25	H ₂ O	0	10 161 162
	2.18	P	0.00	Ũ	0.0	20	25	H ₂ O	10-4-10-2	180
		P	-10.12	С			25	Acetone	≈0	22
	6.01	Р					25	MeOH	$10^{-4} - 10^{-2}$	180
	1,91	С	-3.58	C	-2.7		40	H₂O	0	10, 161
Rb+	1.61	С	-3.43	С	-4.8		10	H₂O	0	10,161
	1.52	С	3.33	С	4.2	5	25	H₂O	0	10, 161, 162
	1.40	С	-3.29	C	4.1		40	H₄O	0	10, 161
Cs+	1.00	C	2.40	C	3.9	•	10	H₂O	0	10, 161
	0.96	C	2.41	C	3./	U	25	H ₂ O	U 10-4 10-2	10, 161, 162
	1.25	P					20	H⊴O MaOH	10 -10 -2	180
	4.01	Ċ	2 38	C	-32		20 40		10	10 161
NH.÷	1.33	č	2.16	č	-1.2		25	H ₂ O	0	10, 161
4	1.4	P	2.20	-	2.2		25	H ₂ O	10-4-10-2	180
Ba ²⁺	3.84	C		С	0.0		10		0	10, 161
	3.57	С	4.92	С	-0.2	4	25		0	10, 161
	3.47	С	-4.85	С	0.4		40		0	10, 161
Sr ²⁺	3.43	С	-3.68	C	2.7		10		0	10, 161
	3.24	C	-3.68	ç	2.5	0	25		0	10, 161
A+	3.16	C	3.70	С	2.6		40		U 10-4 10-9	10, 161
Ag	2.3	۲			Eh (la-	mar 1	25 ب MI	I MI	10 10 *	100
Ce+	0 50	P			011 (150	mer A)	, IVIL + 25		10-4-10-2	180
0.3	0.09	1					25	moorr	10 10	100

			Δ <b>Η</b> .		Δ <b>S</b> , cal/ (mol	∆C _p , cal/ (mol	Temp.	Supporting		
Cation	Log K	Method ^a	kcal/mol	Methodª	deg)	deg)	°C	electrolyte/solvent	μ	Ref
				6h (İsor	ner A), F	ML ==	FLM (F	= fluorenyl ion)		
K+	0.255	S	-3.9	Т			25	Tetrahydrofuran		14
					6h (Iso	mer B)	). M + L	. == ML		
Na ⁺	1.7	С	2.5	С	0.6		25	Dimethyl sulfoxide	0	10. 161
	~4.5	č	~-8.6	č			25	EtOH	0	10, 161
			5.6	С	-1.9		25	МеОН	0	10, 161
	1.2-1.6	Р					25	H ₂ O	10-4-10-2	180
	3.68	Ρ					25	MeOH	10-4-10-2	180
K+	1.79	С	5.78	С	-12.2		10	H₂O	0	10, 161
	1.63	С	5.07	С	9.6	53	25	H ₂ O	0	10, 161, 162
	2.7	C	7.7	C	13.5		25	Dimethyl sulfoxide	0	10, 161
	>0.0	C	~-12.6	C	10 F		25	LTOH Machine	0	10, 161
	1 78	P		C			20	H O	0 10-4-10-2	10, 101
	1.70	Г		C			25	Acetone		22
	5.38	Р	11.00	U			25	MeOH	10-4-10-2	180
	1.54	Ċ	-4.19	С	6.5		40	H ₂ O	0	10, 161
Rb+	0.95	Ċ	-4.6	č	-11.9		10	H ₂ O	0	10, 161
	0.87	С	-3.97	С	9.3	44	25	H ₂ O	0	10, 161
	0.86	С	3.30	С	6.6		40	H ₂ O	0	10,161
Cs+	3.49	Р					25	MeOH	10-4-10-2	180
NH₄ ⁺	0.80	С	3.41	С	-7.8		25	H₂O	0	10, 161
	0,80	Р		-			25	H ₂ O	10-4-10-2	180
Ba²+	3.44	С	6.82	C	8.3		10	H ₂ O	0	10, 161
	3.2/	C	6.20	C	5.8	35	25	H ₂ O	0	10, 161
C -2+	3.12				4.2		40		0	10, 101
SI**	2.60	č	3.40	c c	1.5	17	25	H ₂ O	0	10, 101
	2.04	c	2 91	C C	2 4	1/	23 40	H ₂ O	0	10, 161
Ag+	1.59	č	-2.09	č	0.3		-10 25	H ₂ O	0	10, 161
	· 1.8	P		-			25	H₂O	10-4-10-2	180
					Ch (lass					
		_			on (Isor	ner b),			10-4 10-2	190
Cs+	0.9	Р					25	H ₂ O	10-*-10 -	180
				<b>6h</b> (Ison	ner B), F	ML 💳	FLM (F :	= fluorenyl ion)		
K+	-0.097	S	-3.1	Т	-10.7		25	Tetrahydrofuran		14
				6h (M	ixture Is	omers	A + B),	M + L == ML		
L i+			3 87	C (in			25	Acetone	Low	22
			$\sim 0$	č			25	Dimethyl sulfoxide	Low	22
			~0	c			25	Tetrahydrofuran	Low	22
Na ⁺			-6.43	С			25	Nal in acetone	Low	22
			5.99	С			25	NaB(C ₆ H ₅ ) ₄ in acetone	Low	22
	5.20	Con					25	Acetonitrile	<0.004 M	17
									(NaBPh₄)	22
			0.48	C ·			25	Nal in dimethyl sulfoxide	Low	22
	4.05	Con					25	MeOH	< 0.004  m	17
			1 70	0			25	NaB(C-H-) in tetrahydrofuran		22
			4.78	(Method 1)			20	Nab(C6115)4 In tettanyororuran	LOW	
			5 03	Civiletinou I)			25	NaB(C _e H _s ) ₄ in tetrahydrofuran	Low	22
			0.00	(Method 2)			20			
	4.21	Pol						0.2 м tetramethylammonium chloride in H ₂ O		19
K+			-9.71	С			25	KI in acetone	Low	22
			-9.29	С			25	KB(C₀H₅)₄ in acetone	Low	22
	5.63	Con					25	Acetonitrile	<0.004 M (KBPh₃)	17
			-7.53	С			25	KNO₃ in dimethyl sulfoxide	Low	22
			7.45	С			25	KB(C₅H₅)₄ in dimethyl sulf-	Low	22
				-				oxide	1	22
			7.39	C			25	KI in dimethyl sulfoxide	LOW	22
	ב כב	Cor	6.52	C			25 25	Ki in almetnyi sulloxide M⊳OH	< 0.004 M (KCI)	17
	5.35	Pol					23	0.2 м tetramethylammonium chloride in H ₂ O	< 0.00+ m (ICO)	19

0.45			Δ <b>Η</b> ,		∆\$, cal/ (mol	∆C _p , cal/ (mol	Temp,	Supporting		
Rh ⁺	LOG K	Pol	kcai/moi		ueg)	ueg)		0.2 M tetramethylammonium	μ	10
лл,	4.43							chloride in H ₂ O		13
Cs+		_	8.40	С			25	CsB(C₀H₅)₄ in acetone	Low	22
	4.26	Con					25	Acetonitrile	<0.004 M (CsBPh₄)	17
		•	6.94	С			25	CsI in dimethyl sulfoxide	Low	22
	3.85 4.25	Con Pol					25	MeOH 0.2 M tetramethylammonium chloride in H ₂ O	<0.004 M (CsCl)	17 19
NH₄ ⁺			-9.98	С			25	NH₄I in acetone	Low	22
,⊤I+	5.20	Pol	4.15	С			25	NH₄I in dimethyl sulfoxide 0.2 M tetramethylammonium	Low	22 19
						6m. M -	+ L == M	L Chionae in H ₂ O		
Li+	<0.6	Con					25	H ₂ O	10-4-10-2	23
Na ⁺	1.42	Con					25	H₂O	10-4-10-2	23
K+	2.08	Con					25	H ₂ O	$10^{-4} - 10^{-2}$	23
Cs-	0.9	Con					25	H₂O	10-4-10-2	23
Rb+	1.53	Con					25	H₂O	10-4-10-2	23
NH₄+	1.28	Con				••••	25	H₂O	10-4-10-2	23
14-	4 41	<b>D</b>				9a, M -	-L≕M	L	10-4 10-9	100
K ⁺ Cs+	4.41 5.02	۲ D					20 25	MaOH	10  -10  10-4-10-2	100
CS'	5.02	۲				9 <b>b</b> M ⊣	M		10 -10 -	100
Na ⁺	2 40	Р				<b>30,</b> W 7	25	MeOH	10-4-10-2	180
K+	4.30	P					25	MeOH	$10^{-4} - 10^{-2}$	180
Cs ⁺	4.20	P					25	MeOH	10-4-10-2	180
-						9b, ML -	+ L ≕ M	L ₂		
Cs⊤	1.9	Р				9c. M ⊣	25 - L == M	MeOH L	10-4-10-2	180
Cs+	1.9	Р					25	H₂O	$10^{-4} - 10^{-2}$	180
						<b>10a,</b> M -	+ L ≕ M	1L		
K+	3.48	Р		,			25	MeOH	$10^{-4} - 10^{-2}$	180
Cs+	4.15	Р					25	MeOH	$10^{-4} - 10^{-2}$	180
						10 <b>b,</b> M ·	+ L ≕ M	1L		
K+	3.49	P					25	MeOH	$10^{-4} - 10^{-2}$	180
Cs+	3.78	Р				10. 14	25	МеОН	$10^{-4} - 10^{-2}$	180
0.0+	1 0	-				10 <b>C,</b> M -	+ L ≕ №		10-4 10-2	100
Cs	1.9	Р				11a M.	25 N		10 *-10 *	190
Nat	2 0	D				114, 11	+ L == ₩ 25	MeOH	10-4-10-2	180
IN A	2.0	S S	4	т			25	MeOH	10 -=10 0 15 м (LiCl)	24
К÷	4 60	P					25	MeOH	$10^{-4} - 10^{-2}$	180
IX I	4,568	S		т			25	MeOH	0.15 M (LiCI)	24
	1.35	P					25	50 vol % tetrahydrofuran 50 vol % H₂O		11
Rb+	4.643	S		т			25	MeOH	0.15 м (LiCl)	24
	1.56	P					25	50 vol % tetrahydrofuran 50 vol % H ₂ O		11
Cs+	4.230	S		т			25	MeOH	0.15 м (LiCl)	24
NH₄+	2.431	S	5.5	Т			25	MeOH	0.15 M (LiCI)	24
TI⁺	4.505	S	-11	Т			25	MeOH	0.015 M (tetra- butylammo- nium per- chlorate	24
	2.00	-				12a, M	+ L <u>≕</u> N		10-4 10-3	100
<b>∧</b> ⁻	3.90 0.071	٢			N 1	itrogen [ 4 <b>a,</b> out-	20 Donor At out = ir 23	oms i-in 50% trifluoroacetic acid	10 10 - 4	142
	>2				1	.4 <b>b,</b> out-	out = ir 23	50% trifluoroacetic acid		142
	0 600	D-m-			14c,	Halide –	- L = Ha	alide(L)		10F
Br	0.002	Pmr					23 23	50% aq trifluoroacetic acid		185

.

,

		,	۵ <b>H</b> .	۵ <b>\$,</b> ۵ cal/ ca (mol (n	C _p , al/ nol Temp.	Supporting		
Cation	Log K	Methoda	kcal/mol Method	[∞] deg) d	eg) °C	electrolyte/solvent	μ	Ref
				<b>14c,</b> o	ut-out = ir	n-in		
	0.383			14 d o	23 ut-out <del>=</del> in	50% aq trifluoroacetic acid		142
	0.518			140,0	23	50% aq trifluoracetic acid		142
	3.80			146, 0	23	50% aq trifluoroacetic acid		142
	0,155			141, 01	ut-out ≡ In 23	50% aq trifluoro <b>a</b> cetic acid		142
	0.176			<b>14g,</b> o	ut-out = ir 23	n-in 50% ag trifluoroacetic acid		142
			<b>18</b> a, cis-[	M(H ₄ L)(H ₂ O) ₂ ]	$a^{3+} = \operatorname{cis-}[M($	$H_{3}L)(H_{2}O)_{2}]^{2+} + H^{+}$		
Co ³⁺	4.9	P			25 20	0.5 M NaClO₄ in H₂O H₂O	0.1	45 41
01	5.0		<b>18a,</b> trans-[	[M(H ₄ L)(H ₂ O) ₂ ]	$ ^{3+} = trans-[$	$M(H_3L)(H_2O)_2]^{2+} + H^+$	0.1	41
Co ³⁺	2.9	Р			25	0.5 M NaClO₄ in H₂O	0.1	45
Cre	3.05	٢	18a, cis-	[M(H ₃ L)(H ₂ O) ₂	20 $^{2+} = cis - [M($	H₂O (H₂L)(H₂O)』]+ + H+	0.1	41
Co ³⁺	8.0	Р	,		25	0.5 M NaClO₄ in H₂O		45
Cr³+	7.0	Р	19- 4		20 1°+ tr 1		0.1	41
Co ³⁺	7.2	Р	18a, trans-	[IVI(H ₃ L)(H ₂ U) ₂	]*' = trans-[ 25	0.5 M NaClO₄ in H₀O		45
Cr ³⁺	6.6	Р			20	H ₂ O	0.1	41
11+	10.6	Sal		<b>18b</b> (Meso Is	somer), M -	+ L ≕ ML		102
H	12.6	501 P			25 25			182
				18b (Meso Isc	omer), ML -	$+ M = M_2L$		
H+	10.4	Р			25	H₂O		182
	10.7	۲		18b (Meso Iso	25 mer), M _e L -	$H_2 O = M_2 I_2$		00
H+	0.8	Р			25	H ₂ O		182
	2.7	Р			25	H₂O		56
н+	~^	(est)		18D (Meso Iso	imer), ivi₃L · 25	$+ M = M_4 L$ $+ H_0 O$		182
	2.3	P			25	H ₂ O		56
	0.040	6	18b	(Meso Isome	er), ML ²⁺ +	$CN^- = MLCN^+$	0	50
Cu	2.949	3		<b>18b</b> (Meso Is	somer). M -	+ L == ML	0	38
Cu ²⁺	20	S			25	H ₂ O (blue complex)	0.1 м (HCI)	182
	28	S		19h (Decomio	25	H₂O (red complex)	0.1 м (HCl)	182
H+	>11	Р		TOD (Macennic	25	$H_2O$		56
	-		18	<b>3b</b> (Racemic I	somer), ML	$+ M = M_2L$		
H+	10.5	Р	10	h (Pacamia l	25 Comor) M I			56
H+	2.2	Р	10		25	$H_2O$		56
			18	<b>3b</b> (Racemic is	somer), M₃l	$L + M = M_4L$		
H+	<2	Р		19a Mi	25	H ₂ O MLI+		56
Cu ²⁺	0.892	S		109, 101	25	H ₂ O	1	50
				18g, ML ²⁺	- + CN- =	MLCN+		
Cu ²⁺	2.681	S			22 22	H₂O H₂O	0	58 58
	1.550	U		18g, ML ²⁺ -	+ SCN⁻ ≕ I	MLSCN+	•	
Cu²+	0.778	S		10- 1410-	25	H₂O MLC O	1	50
$C11^{2+}$	1 491	s		18 <b>g</b> , MIL ²⁺	+ 52032- == 25		1	50
	21.02			18h, ML ²⁺	+ CN⁻ ==	MLCN+		_
Cu ²⁺	2.415	S		10/ MIS-	22	H₂O MI CN+	0	58
Cu ²⁺	2.477	s		101, IVIL* '		H ₂ O	0	58
				Sulfu	r Donor Ato	oms Mult		
Ni ²⁺	3,602			43a, MI	└┭┿┍══	Nitromethane		144, 145
,	0.002			<b>43a,</b> M	LI+ + I- =	MLI ₂		
Ni ²⁺	1.223					Nitromethane		144, 145

					∆ <b>S,</b> cal/	$\Delta C_{p}, cal/$	_			
Cation	Log K	Methodª	∆H, kcal/mol	Methodª	(mol deg)	(mol deg)	°C	Supporting electrolyte/solvent	μ	Ref
				Mix	ed Dor	or Atom	ns:Oxyg + L == №	en-Nitrogen IL		
K+	3 90	Р				lou, m	25	MeOH	10-4-10-2	180
Δα+	3.50	P				· ·	25	H ₁ O	10-4-10-2	180
AB.	5.5	I				48b. M -	+ I == N	11	10 10	100
K+	3 20	P				100, 111	25	MeOH	10-4-10-2	180
IX .	5.20					48c. M -	+ I ≕ N		10 10	100
K+	4 10	Р				,	25	MeOH	$10^{-4} - 10^{-2}$	180
IX .	7,10	•				50a. M -	+ L == N	1L		
K+	2 04	Р				••••,	25	MeOH	10-4-10-2	180
Δσ+	7 8	P					25	H ₂ O	$10^{-4} - 10^{-2}$	180
						50b. M -	+ L == N	1L -		
K+	1.63	Р				,	25	MeOH	10-4-10-2	180
						50c, M -	+ L == №	1L		
Na ⁺	3.26	Р				-	25	95.5% MeOH		114
								4.5% H₂O		
<b>К</b> .+	4.38	Р					25	95.5% MeOH		114
								4.5% H₂O		
Ba ²⁺	6.67	Р					25	95.5% MeOH		114
								4.5% H₂O		
						50d, M -	+ L == N	1L		
Na÷	3.0	Р					25	95.5% MeOH		114
								4.5% H₂O		
K+	4.35	Р					25	95.5% MeOH		114
								4.5% H₂O		
Ba ²⁺	<2.0	Р					25	95.5% MeOH		114
								4.5% H₂O		
						52a, M -	+ L ≕ N	1L		
Li⁺	4.30	Р	-4.6	С	4		25	$48 imes10^{-2}$ MNMe $_4$ Br in H $_2$ C	с С	191, 195
Na+	2.70	Р	4.7	С	4		25	$4$ –8 $ imes$ 10 ^{–2} м NMe $_4$ Br in H $_2$ C	)	195
	2.80	Р					25	$4$ –8 $ imes$ 10 ^{–2} $ imes$ NMe $_4$ Br in H $_2$ C	)	191
	2.55	P(sie) [,]					25	$4$ –8 $ imes$ 10 $^{-2}$ м NMe $_4$ Br in H $_2$ C	)	191
	2.7	P					25	4-8 $ imes$ 10 $^{-2}$ м NMe $_4$ Br in Me	он	191
K+	<2.0	Р					25	$4$ –8 $ imes$ $10^{-2}$ м NMe $_4$ Br in H $_2$ C	)	191
	<1.0	P(sie)⁵					25	$4$ –8 $ imes$ $10^{-2}$ м NMe $_4$ Br in H $_2$ (	)	191,195
Rb+	<2.0	Р					25	$4$ –8 $ imes$ $10^{-2}$ м NMe $_4$ Br in H $_2$ (	)	191
Cs+	<2.0	Р					25	$4$ –8 $ imes$ 10 $^{-2}$ м NMe $_4$ Br in H $_2$ (	)	191
Ca²+	2.80	Р	0	С	13		25	4–8 $ imes$ 10 ^{–2} м NMe ₄ Br in H $_2$ C	)	191, 195
Ba²+	<2.0	Р					25	$4-8  imes 10^{-2}$ M NMe ₄ Br in H ₂ (	2	191
Sr ²⁺	<2.0	Р					25	$4-8 \times 10^{-2}$ м NMe ₄ Br in H ₂ (	2	191, 195
						<b>53a,</b> M⊸	+ L ≕ N		_	101 105
Li⁺	2.50	Р	0.4	С	13		25	$4-8 \times 10^{-2}$ M NMe ₄ Br in H ₂ C	)	191, 195
Na+	5.40	Р	3.2	C	14		25	$4-8 \times 10^{-2}$ M NMe ₄ Br in H ₂ C	)	191
	5.30	P .	4.7	С	8		25	$4-8 \times 10^{-2}$ M NMe ₄ Br in H ₂ C	) 	195
	>9.0	P(sie)⁵		•			25	$4-8 \times 10^{-2}$ M NMe ₄ Br in Me	он	191
K≁	3.95	P	5.9	С	2		25	$4-8 \times 10^{-2}$ M NMe ₄ Br in H ₂ C	)	191, 195
	3.9	P(sie) [»]		•			25	$4-8 \times 10^{-2}$ M NMe ₄ Br in H ₂ (	5	191
Rb™	2.55	Р	3.2	С	1		25	$4-8 \times 10^{-2}$ M NIVIE4 Br in H ₂ (	J	191, 195
Cs-	<2.0	Р		0	00		25	$4-8 \times 10^{-2}$ M NIVIE ₄ Br in H ₂ (	)	191
Ca₂−	6.95	Р	1./	C	26		25	$4-8 \times 10^{-2}$ M NWe ₄ Br in H ₂	)	191
	6.95	Р	2.7	C	23		25	$4-8 \times 10^{-2}$ M NWe ₄ Br in H ₂ (	J	195
Mg ²⁺	<2.0	Р		0	10		25	4-8 X 10 ⁻² M NWe4Br In H ₂ (	J	101 105
Ba ²⁺	6.30	Р	5.1	C	12		25	$4-8 \times 10^{-2}$ M NMe ₄ Br In H ₂	J	191, 195
Sr ²⁺	7.35	Р	5.0	C	17	E4- 14	25	$4-8 \times 10^{-2}$ M NWe ₄ Br In H ₂	J	191, 195
	•	-				54 <b>a</b> , W	+ L = r			150
LIT	$\sim_0$	P					20	$H_2 \cup$	<u>^</u>	101 105
NI - ÷	< 2.0	P					20		J	191, 195
ina.	3.0	P	5 0	C	_ >		20	4-8 × 10-2 M NMo. Rr in U	0	191 195
	3.5U 2.70	۲ D(cia)b	-0.8				25	$4-8 \times 10^{-2}$ M NMo. Rr in U	0	191
		r(sie)″ P/ci≏\b					25	$4-8 \times 10^{-2} \text{ M NMe}. \text{Rr in Me}$	он •ОН	191
	- 9.0 6 95	P					25	95.5% MeOH 4.5% H.O		114
К÷	5.55	P					20	H ₀ O		150
	5 30	P		с	-13		25	4-8 × 10 ⁻² M NMe₄Br in H₄	0	195
	5.40	P		2	10		25	4–8 × 10 ⁻² M NMe₄Br in H₀	0	191
	5.0	P(sie) ^b					25	4-8 × 10 ⁻² M NMe₄Br in H₀	0	191
	9.45	P					25	95.5% MeOH, 4.5% H ₂ O		114

					Δ <b>S</b> ,	$\Delta C_{p}$ , cal/				
<b>A</b> 41			ΔН,		(mol	(mol	Temp,	Supporting		
Cation	Log K	Methoda	kcal/mol	Methoda	deg)	deg)	C	electrolyte/solvent	μ	Ret
Rb+	3.7	Р	10 5	0	15		20			150
	4.35	P P(sia)b		C ·	15		25 25	$4-8 \times 10^{-2}$ M NMe ₄ Br in H ₂ O $4-8 \times 10^{-2}$ M NMe ₂ Br in H ₂ O		191, 195 101
Cs ⁺	-0.7	P					20			151
	<2.0	P					25	4–8 × 10 [–] ² м NMe₄Br in H₂O		191, 195
$Ca^{2+}$	4.1	Р					20	H ₂ O		150
	4.40	P ·	-0.15	С	20		25	4–8 $ imes$ 10 ^{−2} м NMe₄Br in H₂O		191, 195
$Mg^{2+}$	<2.0	Р					25	$4-8 imes10^{-2}$ M NMe ₄ Br in H ₂ O		191
Ba ²⁺	>15	P			•		20	H ₂ O		150
	9.50	P		C	0		25	$4-8 \times 10^{-2}$ M NMe ₄ Br in H ₂ O		191, 195
Sr2+	11.5	P					20	95.5% MEOH, 4.5% H ₂ O		114
51	8.00	P	-8.1	с	9		25	4–8 × 10 [–] ² м NMe₄Br in H₃O		191, 195
	0.00	•	0.1	Ŭ	5	54b. M -	⊢ L ≕ M			202, 200
Na ⁺	7.4	Р					25	95.5% MeOH, 4.5% H₂O		114
K+	9.05	Р					25	95.5% MeOH, 4.5% H₂O		114
Ba ²⁺	11.05	Р					25	95.5% MeOH, 4.5% H₂O		114
		_				54c, M -	- L·≕ M			
Na+	7.3	Р					25	95.5% MeOH, 4.5% H₂O		114
K⊤ Re²+	8.0	P					25	95.5% MeOH, 4.5% H ₂ O		114
Da	8.5	٢				55a M J	M	95.5% Weon, 4.5% н ₂ 0		114
l i+	<20	Р				<b>JJa,</b> W 7	25	$4-8 \times 10^{-2} \text{ M}$ LiCl in H ₂ O		191, 195
Na ⁺	<2.0	P					25	$4-8 \times 10^{-2}$ M LiCl in H ₂ O		191
	1.65	P(sie) ^b					25	$4-8 imes10^{-2}$ M LiCl in H $_2$ O		191, 195
	4.80	P(sie) ^b					25	4–8 $ imes$ 10 ^{–2} м LiCl in MeOH		191
K+	2.2	Р					25	4-8 $ imes$ 10 ^{-,} м LiCl in H $_2$ O		191
	2.1	P(sie) ^b	6.2	С	11		25	$4-8 imes10^{-2}$ M LiCl in H $_2$ O		191, 195
Rb+	2.05	P(sie)⁵	5.4	С	9		25	$4-8 \times 10^{-2} \text{ M LiCl in H}_2\text{O}$		191, 195
Cs+	2.20	P	<i>с</i>	<u>^</u>	14		25	$4-8 \times 10^{-2}$ M LICI in H ₂ O		191 105
$Ca^{2+}$	2.0	P(sie)	0.5	U U			25	$4-8 \times 10^{-2}$ M LICI IN H ₂ O		191,195
Mø2+	< 2.0	P					25	$4-8 \times 10^{-2}$ M LiCl in H ₂ O		191
Ba ²⁺	6.00	P					25	$4-8 \times 10^{-9}$ M LiCl in H ₂ O		191, 195
Sr ^{?+}	3.40	P					25	$4$ –8 $ imes$ 10 ⁻² M LiCl in H $_2$ O		191, 195
						56a, M -	-L == M	1L		
Li+	<2.0	Р					25	4-8 $ imes$ $10^{-2}$ м LiCl in H $_2$ O		191, 195
Na+	<2.0	P					25	$4-8 \times 10^{-2}$ M LiCl in H ₂ O		191, 195
	2.80	P(sie) ^ø					25	$4-8 \times 10^{-2}$ M LiCl in MeOH		191
K ⁺ .	1.60	Р					20 25	$4-8 \times 10^{-2}$ M LICI IN H ₂ O		195
Rh+	< 0.7	F P(sip)b					25 25	$4-8 \times 10^{-2}$ M LiCl in H ₂ O		191, 195
Cs ⁺	<2.0	P					25	$4-8 \times 10^{-2}$ M LiCl in H ₂ O		191, 195
Ca ²⁺	<2.0	P					25	$4-8 \times 10^{-2}$ M LiCl in H ₂ O		191, 195
$Mg^{2+}$	<2.0	Р					25	$4$ –8 $ imes$ 10 $^{-2}$ м LiCl in H $_2$ O		191
Ba ²⁺	. 3.65	Р					25	4–8 $ imes$ 10 ^{–2} м LiCl in H $_2$ O		191, 195
Sr ²⁺	2.0	Р					25	$4-8 \times 10^{-2}$ M LiCl in H ₂ O		191
	1.8	Р					25	$4-8  imes 10^{-2}$ M LiCl in H ₂ O		195
1:+	~2 0	D				5/a, IVI -	+ L ≕ IV 25	1L		191, 195
LI' Nat	<2.U ∠2 ∩	۲ P					25	$4-8 \times 10^{-2} \text{ M}$ LiCl in H ₂ O		191, 195
K+	<2.0	P	N. N.				25	$4-8 \times 10^{-3}$ M LiCl in H ₂ O		191, 195
Rb+	≤0.5	P(sie) ^b					25	4-8 $ imes$ 10 ⁻² м LiCl in H $_2$ O		191, 195
Cs+	<2.0	P					25	4-8 $ imes$ $10^{-2}$ м LiCl in H $_2$ O		191, 195
Ca ²⁺	<2.0	P					25	$4-8 \times 10^{-2}$ M LiCl in H ₂ O		191, 195
Mg²+	<2.0	P					25	$4-8 \times 10^{-2}$ M LiCl in H ₂ O		191, 195 101 105
Sr²⁺	<2.0	Р				60a M	∠5 ⊥   №	4−8 X 10 ⁻² M LICI IN H₂U /I		101, 100
Na ⁺	45	P(sia)b					25	MeOH		119
K+	5.8	P(sie) ^b					25	MeOH		119
Rb+	6.2	P(sie) ^b					25	MeOH		119
Cs+	>6.0	P(sie) [,]					25	MeOH		119
Ag ⁺	6.0	P(sie) ^b					25	H₂O		119
	>9.5	P(sie)⁵				00 141	25 LMN			113
A+	<u> </u>				I	oua, IVIL -	דיועו ≕דוי 25			119
~B	∕0.0						25			

Cation	Log K	Method ^a	∆H, kcal/mol	Method ^{<i>a</i>}	Δ <b>S</b> , cal/ (mol deg)	Δ <b>C</b> _p , cal/ (mol deg)	Temp, °C	Supporting electrolyte/solvent	μ	Ref
			·· · · · · · · · · · · · · · · · · · ·	<u> </u>		72a, M	+ L = N	/L	······································	
K+	1.15	Р					25	MeOH	10-4-10-2	180
Ag+	4.34	Р					25	H₂O	10-4-10-2	180

" Method used to determine log K values: P, potentiometric; S, spectrophotometry; C, calorimetry; Con, conductance; Pol, polarography; Sol, solvent extraction. b sie = selective ion electrode.

TABLE IX.	Structures	of Metal-Macrocycle	Complexes

Macrocycle, L	Meta	Anion	Structure	Method	Ref
······································			Oxygen Donor Atoms		
3a (benzo-15-crown-5)	Na+	1-	NaLI: Na atom located equidistant from and slightly out of plane of O atoms	X-Ray	203 169
<b>6g</b> (dibenzo-18-crown-6)	Na∸	Br−	NaLBr $2H_2O$ : Na atom located in plane of O atoms	X-Ray	204 169
	Rb⁺, Na⁺	SCN-	(Rb _{0.55} Na _{0.45} )LSCN: only one metal atom bonded to a given cyclic polyether. Metals are located in planes of O atoms	X-Ray	15 166
6h (isomer A) (dicyclohexyl- 18-crown-6)	Ba²+	SCN-	$BaL(SCN)_2$ : Ba atom located in plane of O atoms	X-Ray	202
	Co ²⁺	CI-	Co ₂ L ₂ Cl ₄ : sandwich structure having two Co atoms lo- cated equidistant between two cyclic polyethers with each Co atom coordinated to three O atoms in each polyether	Spectral and magnetic data	167
			nate cyclic polyethers and Co atoms with the Cc atoms coordinated to three O atoms from each of two polyethers		
10b (dibenzo-24-crown-8)	K⊤	SCN-	K ₂ L(SCN) ₂ : two K atoms located in plane of O atoms with each K atoms coordinated to five O atoms	X-Ray	168
<b>11a</b> (dibenzo-30-crown-10)	K÷	1-	KLI: K atom located in loop of O atoms which are es- sentially equidistant from K	X-Ray	205 169
			Nitrogen Donor Atoms		
15a	Ni²+	NO₃⁻	NiL(H ₂ O)(NO ₃ ) ₂ : Ni octahedrally coordinated with three N atoms, two H ₂ O molecules, and one nitrate; Ni is above plane of N atoms and equidistant from them	X-Ray	28
	Co³+	I <u>-</u>	CoL ₂ I ₃ : Co coordinated to six N atoms, three from each macrocycle; the three N in each macrocycle define planes which are parallel to one another with the Co sandwiched midway between	X-Ray	30
18a	Ni ²⁺	CI-	NiLCl ₂ : Ni atom position is a slight tetrahedral distor- tion from square-planar coordination	X-Ray	213
18b (tet b)	Ni ²⁺	CIO4-	[NiLAcO]ClO4: four N atoms coordinated to adjacent octahedral sites of Ni atom with Ac groups occupy- ing the two remaining sites	X-Ray	210
<b>1</b> 8i	Ni²∸	CIO ₄ -	NiLCIO: Ni atom coordination is square planar	Pmr spectra	214
	Cu ²⁻	CIO₄−	CuLCIO ₄ : Cu atom coordination is square planar	Pmr spectra	214
18n	Ni²∸	CIO+-	NiL(ClO₄)₂: Ni atom position is a slight tetrahedral dis- tortion from square-planar coordination	X-Ray	211 212 216
	Co ³⁺	CN-	[CoL(CN) ₂ ]ClO₄: stereochemical arrangement about the central Co atom is approximately octahedral with CN groups above and below the macrocycle	X-Ray	206
18v (cis-tetene)	Ni ²⁻	CIO₄ [−]	NiL(CIO ₄ ); Ni atom position is a slight tetrahedral distortion from square-planar coordination	X-Ray	207
20h (TABB)	Ni ²⁻	I–	NiLl ₃ H ₂ O: Ni atom position is tetragonally coordi- nated to N atoms with opical positions occupied by an I atom and a H ₂ O atom	X-Ray	209
	Ni²∸	BF₄⁻	NiL(BF ₄ ): Ni atom coordination is square planar	X-Ray	209
21ь	Ni ²⁺	Br−	NiLBr ₂ ·H ₂ O: stereochemical arrangement about the central Ni atom is approximately square pyramidal with Br atom at the apex	X-Ray	217
25a	Fe³∸	CIO⁴−	[(H₂O)LFe-O-FeL(H₂O)](ClO₄)₄: dimer, with each Fe located in plane of five N atoms of one macrocycle	X-Ray	103

TABL	EIX (	cont	inued)
------	-------	------	--------

Macrocycle, L	Metal	Anion	Structure	Method	Ref
	Fe ³⁺	SCN-	[FeL(NCS)2]ClO4: Fe atom located in plane of N atoms	X-Ray	103
31a	Cu ²⁺	CI-	[CuLCI]+[CuCl₂]-: Cu bonded to four N atoms and to one Cl atom; Cl occupies the opical position of a distorted square pyramid	X-Ray	215
<b>38a</b> (phthalocyanine)	Ni ²⁺ Pt ²⁺ Be ²⁺ Mn ²⁺ Fe ²⁺ Co ²⁺ Cu ²⁺		Metal ion located in plane of N atoms (square-planar coordination)	X-Ray	141
		Mixe	d Donor Atoms: Nitrogen-Oxygen		
49a	Ni ²⁺	· 1-	NiLl ₂ : Ni lies in plane defined by N and O atoms; I atoms occupy opical positions from Ni atom	X-Ray	187
50a	Cu ²⁺	CI-	CuLCl ₂ : Cu located in cavity of macrocycle bound by two N and two O atoms; two atoms are not coordi- nated to the Cu	X-Ray	189
54a	Na ⁺	1-	NaLI: Na located in cavity of macrocycle bound by two N and six O atoms	X-Ray	193
	$K^+$	I-	KLI: K located in cavity of macrocycle bound by two N and six O atoms	X-Ray	193
	Rb+	SCN-	RbLSCN H2O: Rb located in cavity of macrocycle bound by two N and six O atoms	X-Ray	192
	Cs+	SCN-	CsLSCN H₂O: Cs located in cavity of macrocycle bound by two N and six O atoms	X-Ray	193
	Ba²+	SCN-	BaL(SCN) ² ·H ₂ O: Ba located in cavity of macrocycle bound by two N and six O atoms of the macrocycle, an O atom of a water molecule, and the N atom of a thiocyanate group	X-Ray	194
55a	Ba²+	SCN-	BaL(SCN) ₂ ·2H ₂ O: Ba located in cavity of macrocycle bound by two N and seven O of the macrocycle and two water O atoms	X-Ray	194
		Mixe	ed Donor Atoms: Sulfur-Nitrogen		
67a	Fe ²⁺	CIO4-	FeL(CIO ₄ ) ₂ ·CH ₃ OH: Fe located in cavity of macrocycle octabedrally bound by two S and four N atoms	X-Ray	196

A symmetrical macrocycle having two sulfur and four oxygen atoms, **72a**, has been synthesized, and log *K* values have been reported for the Ag⁺ and K⁺ complexes in aqueous solution.¹⁸⁰ A fourfold increase in the binding constant for Ag⁺ over that for K⁺ was found and attributed to the ability of Ag⁺ to form both ionic bonds with oxygen atoms and covalent bonds with the sulfur atoms, whereas the K⁺ can form only ionic bonds.

### 4. Nitrogen-Sulfur-Oxygen

#### a. Monocyclic

A 12-membered macrocycle, **74a**, containing one oxygen, two sulfur, and one nitrogen donor atoms was found to readily form 1:1 metal complexes with nickel(II) and cobalt(II) with the metal and ligand located not in a plane but in an octahedral configuration¹⁴⁸ where the other two bonding positions were occupied by unidentate groups (Cl or Br). This configuration was at least partially attributed to the relatively small hole available in the ring for insertion of the metal.

#### b. Bicyclic

Macrobicyclic diamines containing oxygen, sulfur, and nitrogen atoms, **75a** and **76a**, have been found to form predominantly 1:1 type complexes with a series of metal ions in water and in chloroform.¹⁵¹ No equilibrium constants have been reported for the reaction of metal ions with macrocycles containing three different donor groups.

## V. Thermodynamic Data

The thermodynamic quantities (log K,  $\Delta H$ ,  $\Delta S$ , and  $\Delta C_{\rm p}$ ) for the interaction of ions with synthetic multidentate macrocyclic molecules together with the methods and conditions used in their determination are given in Table VIII. The data in Table VIII are arranged according to the order in which the macrocycles appear in Table I with macrocycles containing oxygen donor atoms first followed by nitrogen, sulfur, and mixed donor atoms in that order. Within each such group the ligands are listed in order of increasing numbers of donor atoms. The metal ion order is that given in ref 121. Consecutive reactions are given first, followed by overall and unspecified reactions in that order. The log K and  $\Delta H$  values are listed in order according to first, temperature; second, solvent; and third, ionic strength. The data valid at the lowest temperature are given first, followed by data obtained at higher temperatures. At each temperature the data valid in aqueous solution are given first followed by those determined in other solvents arranged alphabetically according to the solvent. For each solvent the data are arranged in order of ionic strength with those valid at the lowest ionic strength given first.

The most numerous thermodynamic data included in Table VIII are equilibrium constants. Relatively few  $\Delta H$  and  $\Delta S$  and very few  $\Delta C_{\rm p}$  values have been reported. The equilibrium constant determinations have been made under a variety of temperature, ionic strength, and solvent conditions, and in some cases one or more of these

Cation	k _f , M ⁻¹ Sec ⁻¹	k _r , sec ^{−1}	Method	∆ <b>E</b> i, kcal/ mol	∆ <b>E</b> r, kcal/ mol	Temp, °C	Supporting electrolyte/solvent	μ	Ref
			0	xygen l	Donor At	oms			
				6g, M	+ L == N	1L			
Na ⁺	$6 \times 10^7$	$1  imes 10^{5}$	²³ Na nmr spectros- copy	6.5	12.6	25	Measurements performed in N,N'-dimethylform- amide containing 0.3–1.9 M NaSCN and 0.1–0.2 M L in temp range ––60 to 80°	0	16
				<b>11a,</b> M	+L = I	ИL			
Na ⁺	$>1.6 imes10^7$	$>$ 1.3 $ imes$ 10 5	Spectrophotometry	a		25	MeOH	0.15 м (LiCl)	24
K+	$6 imes 10^{ m s}$	$1.6 imes10^4$	Spectrophotometry	a		25	MeOH	0.15 м (LiCl)	24
Rb∻	$8  imes 10^8$	$1.8 imes10^4$	Spectrophotometry	1		25	MeOH	0.15 м (LiCl)	24
Cs+	$8  imes 10^8$	$4.7  imes 10^4$	Spectrophotometry	1		25	MeOH	0.15 M (LiCI)	24
NH₄+	$>3 imes10^{r}$	$>1.1 imes10^{5}$	Spectrophotometry	a		25	MeOH	0.15 M (LiCI)	24
TI+	8 × 10 ⁶	2.5 × 10⁴	Spectrophotometry	a • MI÷		25 MI CI	MeOH	0.015 M (tetra- butylammo- nium per- chlorate)	24
NI		77	54	<b>a,</b> WL	+ 0 =		D.O. containing 1097		100
ina'		27	c	10 MI+	14.2				100
<b>1</b> /+		20	J	4 <b>a,</b> ML	15.9	36	D.O containing 10%		190
<b>N</b> ' .		50	54	a Mi+	10.0 	MLCI			100
<b>K</b> +		30	J-	a, wie	15.8	36	D ₂ O containing 10% I		190
N.		50	54	a MI+	+ Br⁻ ==	MIBr	D20 001101111 1070 2		
<b>K</b> -		42	••	u, me	15.7	35	D₀O containing 10% L		190
		12	54	la. ML+	+ CI- =	MLCI			
Rb∸		38		,	. 14.4	9	D₂O containing 10% L		190
			54a	, MLCI ⁺	+ CI- =	= MLCI ₂			
Ca²∸		<20			>17	>100	D₂O containing 10% L		190
			54a	, MLCI+	· + CI ⁻ =	= MLCI ₂			
Ba ²⁺		<18			>17	>100	D₂O containing 10% L		190
			54a	, MLCI+	+ Br⁻ =	= MLBr ₂			
Sr ²⁺		<15			>17	>100	D₂O containing 10% L		190
			54	<b>4a,</b> ML+	+ CI=.=	MLCI			
TI+		51			15.8	39	D ₂ O containing 10% L		190
		64			15.7	40	D ₁ O containing 10% L		190
			54a	, ML+ +	• NO ₃ - =	MLNO ₃			100
TI+		51			13.5	6	D₂O containing 10% L		190

^a Absorbance change at isosbestic point.

quantities have not been reported. The wide range of solvents used is understandable in terms of the range of solubilities and of reactivities exhibited by the various macrocycles. It should be realized that the thermodynamic values are valid only at the specific experimental conditions and are not necessarily comparable with data obtained under different conditions. It is also well to realize that often the substance used as the added electrolyte interacts to a significant extent with the ligand or metal being studied so that competing reactions take place which can affect the values obtained. A further complication is encountered in the determination of  $\Delta H$ values by calorimetric procedures where use of added electrolyte can result in errors which are often undetected. The hydration sphere of the reacting metal (and in some cases the ligand also) is changed in the presence of added electrolyte to contain some (usually unknown) number of coordinated electrolyte ions. Heat effects involved in the replacement of these ions could be significantly different from those involved in replacing the solvent molecules. Thus, in most cases, neither the log Knor  $\Delta H$  value is known for the reaction of the added electrolyte, leaving the  $\Delta H$  value for the formation of the metal complex in error by some unknown amount.

The  $\Delta H$  values in Table VIII have often been calculated from the variation of the equilibrium constant with temperature. This method involves a differentiation process and results in a certain loss in accuracy which can be minimized if careful work is done at many temperatures. Therefore, one should be careful not to attach undue significance to the very small standard deviations often reported for  $\Delta H$  values calculated by this method. The errors propagated through differentiation in calculating  $\Delta H$  values from equilibrium constant data as a function of temperature have been discussed.²⁰¹ In general, the direct methods of calorimetry are preferable to temperature-dependent methods for the determination of  $\Delta H$  values.

Enthalpy changes,  $\Delta S$ , and  $\Delta C_p$  values provide information regarding sites of binding and interactions of the metal ion with the macrocycle and the effect of the solvent on these interactions. The magnitude of the  $\Delta H$ values are indicative of (a) the type and number of binding sites (*i.e.*, oxygen, nitrogen, sulfur, etc.). The magnitudes of the  $\Delta S$  values are indicative of solvent-solute interaction and supply information about relative degrees of hydration of the metal ion, macrocycle and complex, the loss of degrees of freedom of the macrocycle when complexed with the metal ion, and charge types involved in the reaction. In addition, comparison of the  $\Delta H$  and  $\Delta S$  values for systems give rise to analogies among such systems. Izatt and coworkers⁴ have extensively discussed the variation of thermodynamic quantities in cation-macrocycle interaction with respect to cation parameters (size, type, and charge) and macrocycle parameters (size of cavity, type and number of donor atoms, type and number of rings, and conformation of ring).

### VI. Structural Data

The structures of metal macrocyclic complexes are presented in Table IX. The structures are arranged according to the order in which the macrocycles appear in Table I with macrocycles containing oxygen donor atoms first, followed by nitrogen, sulfur, and mixed donor atoms. Both the metal forming the complex and the predominant the metal forming the complex and the predominant anion are given together with the free macrocycle. A description of the complex is given from the point of view of describing the general location of the metal in the cavity of the macrocycle. The crystal structure data indicate that polyether macrocycles in general form complexes with alkali metal salts in which the metal is held in the center of a ring formed by the coplanar oxygen atoms for rings containing four, five, and six oxygen atoms (ref 15, 166, 167, 169, 202-204). Larger rings can apparently accommodate more than one metal ion, as a ring containing eight O atoms was found¹⁶⁸ to form a 2:1 metal-macrocycle complex. As the ring gets even larger, however, the macrocycle tends to form 1:1 complexes in which the ligand is wrapped around the metal ion. This latter configuration was found for a ring containing ten oxygen atoms.169,205

Metal-ligand complexes formed by transition metal ions and macrocycles containing four nitrogen atoms have the metal located in the center of a ring formed by four coplanar nitrogen atoms.206-217

Polyoxa macrobicyclic diamines appear from crystal structure data to bind both alkali and alkaline earth metal ions in the cavity formed by the nitrogen and oxygen atoms.¹⁹²⁻¹⁹⁴ The metals are bound to both the nitrogen and oxygen atoms and are located approximately equidistant from the oxygen atoms and from the nitrogen atoms.

# VII. Kinetic Data

Kinetic data for the interaction of metal ions with macrocyclic molecules and for the interaction of metalmacrocyclic complexes with anions are given in Table X. The macrocycles are arranged in Table X according to the order in which they appear in Table I. Where available, both forward and reverse reaction rates are given as well as forward and reverse energies of activation.

Acknowledgments. Appreciation is expressed for financial support from the U.S. Public Health Service for NIH Grant GM 18811-02 and Career Development awards to Dr. James J. Christensen (No. 1-K3-GM-24,361-05) and Dr. Reed M. Izatt (No. 1-K3-GM-35, 250-05) and from the National Science Foundation for NSF Grant GP-33536X

### VIII. References

- (1) J. J. Christensen, J. O. Hill, and R. M. Izatt, Science, 174, 459 (1971).
- (1971).
  (2) C. J. Pedersen and H. K. Frensdorff, Angew. Chem., Int. Ed. Engl., 11, 16 (1972).
  (3) M. R. Truter and C. J. Pedersen, Endeavour. 30, 142 (1971).
  (4) R. M. Izatt, D. J. Eatough, and J. J. Christensen, Stuct. Bonding (Berlin), 16, 161 (1973).

- (5) N. F. Curtis, Coord. Chem. Rev., 3, 3 (1968).
  (6) D. H. Busch, Helv. Chim. Acta, Fasc. Extraord. A. Werner, 174 (1967)
- D. H. Busch, Rec. Chem. Progr., 25, 107 (1964).
   L. F. Lindoy and D. H. Busch, "Preparative Inorganic Reactions," Vol. VI, W. L. Jolly, Ed., Wiley, New York, N. Y., 1971.
- (9) J. Smid, Angew. Chem., Int. Ed. Engl., 11, 112 (1972).
  (10) D. P. Nelson, Ph.D. Dissertation, Brigham Young University, Provo, Utah, May 1971 G. A. Rechnitz and E. Eyal, Anal. Chem., 44, 370 (1972)
- (12) S. Kopolow, T. E. Hogen Esch, and J. Smid. Macromolecules, 4, 359 (1971). S. Kopolow, Z. Machacek, K. H. Wong, T. E. Hogen Esch, and J. (13)
- Smid, Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem., 13, 259 (1972) (14) U. Takaki, T. E. Hogen Esch. and J. Smid, J. Amer. Chem. Soc.,
- 93, 6760 (1971)
- (15) D. Bright and M. R. Truter. Nature (London), 225, 176 (1970)
- (16) E. Shchori, J. Jagur-Grodzinski, Z. Luz. and M. Shporer, J. Amer. Chem. Soc., 93, 7133 (1971).
- (17) D. F. Evans, S. L. Wellington, J. A. Nadis, and E. L. Cussler, J. Solution Chem., 1, 499 (1972). (18) H. K. Frensdorff, J. Amer. Chem. Soc., 93, 4684 (1971). (19) J. Koryta and M. L. Mittal, J. Electroanal. Chem., 36, 14 (1972).

- (20) J. Almy, D. C. Garwood, and D. J. Cram. J. Amer. Chem. Soc., 92, 4321 (1970). (21) J. L. Dye, M. G. DeBacker, and V. A. Nicely, J. Amer. Chem.
- Soc., 92, 5226 (1970).
- (22) E. M. Arnett and T. C. Moriarity, J. Amer. Chem. Soc., 93, 4908 (1971)
- (23) G. Eisenman, G. Szabo, S. G. A. McLaughlin, and S. M. Ciane, in "Symposium on Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes," D. Vasquez, Ed., Springer-Verlag, New York, N. Y., 1972.
  (24) P. B. Chock, Proc. Nat. Acad. Sci. U. S., 69, 1939 (1972).
  (25) C. H. Park and H. E. Simmons, J. Amer. Chem. Soc., 90, 2429
- (1968)
- (26) G. A. Melson and D. H. Busch, J. Amer. Chem. Soc., 87, 1706 (1965). (27) N. B. Tucker and E. E. Reid, J. Amer. Chem. Soc., **55.** 775
- (1933). (28) E. B. Fleischer and E. Klem, Inorg. Chem., 4, 637 (1965).
- (29) S. C. Cummings and D. H. Busch, J. Amer. Chem. Soc., 92, 1924 (1970)
- (30) R. M. Wing and R. Ejss, J. Amer. Chem. Soc., 92, 1929 (1970)
- (31) J. P. Collman and P. W. Schneider, Inorg. Chem., 5, 1380 (1966)
- (32)
- G. A. Kalligeros and E. L. Blinn, *Inorg. Chem.*, 11, 1145 (1972). D. A. House and N. F. Curtis, *J. Amer. Chem.* Soc., **86**, 1331 (33) D. A. (1964)
- (34) D. P. Rillema, J. F. Endicott, and E. Papaconstantinou, *Inorg. Chem.*, 10, 1739 (1971).
- (35) S. C. Cummings and R. E. Sievers, J. Amer. Chem. Soc., 92, 215 (1970)
- (36) S. C. Cummings and R. E. Sievers, *Inorg. Chem.*, 9, 1131 (1970).
   (37) D. A. House and N. F. Curtis, *J. Amer. Chem. Soc.*, 84, 3248 (1962)
- (38) N.F. Curtis and D. A. House, J. Chem. Soc. A, 537 (1967).
  (39) J. G. Martin, R. M. C. Wei, and S. C. Cummings, Inorg. Chem., 11, 475 (1972).
- (40) C. J. Hipp, L. F. Lindoy, and D. H. Busch, Inorg. Chem., 11, 1988 (1972)
- J. Ferguson and M. L. Tobe, *Inorg. Chim. Acta*, 4, 109 (1970).
   E. K. Barefield and D. H. Busch, *Chem. Commun.*, 522 (1970). (41)
- (42)
- (43) Th. Kaden, Helv. Chim. Acta, 53, 617 (1970).

- (44) C. K. Poon and M. L. Tobe, J. Chem. Soc. A, 1549 (1968).
  (45) C. K. Poon and M. L. Tobe, *Inorg. Chem.*, 7, 2398 (1968).
  (46) B. Bosnich, C. K. Poon, and M. L. Tobe, *Inorg. Chem.*, 5, 1514 (1966).
- (47) B. Bosnich, M. L. Tobe, and G. A. Webb, Inorg. Chem., 4, 1109 (1965).
- (48) N. F. Curtis, J. Chem. Soc., 924 (1965).
  (49) N. F. Curtis and D. F. Cook, J. Chem. Soc., 691 (1972).
  (50) J. M. Palmer, E. Papaconstantinou, and J. F. Endicott, Inorg.
- Chem., 8, 1516 (1969)
- (51) N. Sadasivan, J. A. Kernohan, and J. F. Endicott, Inorg. Chem., 6, 770 (1967)
- (52) P. O. Whimp and N. F. Curtis, J. Chem. Soc. A, 188 (1968)
- (53) D. C. Olson and J. Vasilevskis, *Inorg. Chem.*, 10, 463 (1971).
   (54) L. G. Warner and D. H. Busch, *J. Amer. Chem. Soc.*, 91, 4092
- (1969)
- (55) P. O. Whimp and N. F. Curtis, Chem. Soc. A, 1827 (1966)
- (56) P. O. Whimp and N. F. Curtis, J. Chem. Soc. A, 867 (1966)
   (57) N. F. Curtis, J. Chem. Soc., 2644 (1964).
- (58)
- Y. M. Curtis and N. F. Curtis. Aust. J. Chem., 18, 1933 (1965). (59) D. K. Cabbiness and D. W. Margerum, J. Amer. Chem. Soc., 92, 2151 (1970).
- (60)
- J. A. Kernohan and J. F. Endicott, *Inorg. Chem.*, **9**, 1504 (1970). J. A. Kernohan and J. F. Endicott, *J. Amer. Chem. Soc.*, **9**1, 6977 (61) (1969)
- (62) N. F. Curtis and D. F. Cook, *Chem. Commun.*, 962 (1967).
  (63) D. P. Rillema and J. F. Endicott, *Inorg. Chem.*, 11, 2361 (1972).
  (64) J. C. Dabrowiak, P. H. Merrell, and D. H. Busch, *Inorg. Chem.*, (64) J. C. Doroman, F. H. Morton, and L. H. Enderson, and L. H. 1979 (1972).
  (65) J. Vasilevskis and D. C. Olson, *Inorg. Chem.*, 10, 1228 (1971).
  (66) M. P. Litepio and J. F. Endicott, *Inorg. Chem.*, 10, 1420 (1971).
  (67) N. F. Curtis, *J. Chem. Soc.*, C, 1979 (1967).
  (68) N. F. Curtis and Y. M. Curtis, *Inorg. Chem.*, 4, 804 (1965).

- (69) D. A. House and N. F. Curtis, J. Amer. Chem. Soc., 86, 223 (1964)
- (70) N. Sadasivan and J. F. Endicott, J. Amer. Chem. Soc., 88, 5468 (1966)
- (71) L. G. Warner, N. J. Rose, and D. H. Busch, J. Amer. Chem. Soc., 89, 703 (1967).
- R. E. Ball and J. F. Endicott, Chem. Commun., 51 (1968) (72)
- L. G. Warner, N. J. Rose, and D. H. Busch, J. Amer. Chem. Soc., (73)90, 6938 (1968). V. L. Goedken, P. H. Merrell, and D. H. Busch, J. Amer. Chem. (74)
- Soc. 94, 3397 (1972).
   (75) N. F. Curtis, Y. M. Curtis, and H. K. J. Powell, J. Chem. Soc. A, 1015 (1992).
- 1015 (1966).
- (76) M. M. Blight and N. F. Curtis, J. Chem. Soc., 3016 (1962).
  (77) M. Green and P. A. Tasker, Chem. Commun., 518 (1968).
  (78) J. L. Love and H. K. J. Powell, Inorg. Nucl. Chem. Lett., 3, 113 (1967)
- (79) V. L. Goedken and D. H. Busch, *Inorg. Chem.*, 10, 2679 (1971).
  (80) H. Hiller, P. Dimroth, and H. Pfitzner, *Justus Liebigs Ann. Chem.*,
- 717, 137 (1968)
- (1968).
   P. Bamfield, J. Chem. Soc. A, 2021 (1969).
   P. Bamfield, J. Chem. Soc. A, 2021 (1969).
   N. E. Tokel, V. Katovic, K. Farmery, L. B. Anderson, and D. H. Busch, J. Amer. Chem. Soc., 92, 400 (1970).
   V. Katovic, L. T. Taylor, F. L. Urbach, W. H. White, and D. H. Busch, Inorg. Chem., 11, 479 (1972).
   P. H. Merrell, V. L. Goedken, D. H. Busch, and J. A. Stone, J. Amer. Chem. Soc., 92, 7590 (1970).
   E. K. Barefield and D. H. Busch, Inorg. Chem., 10, 108 (1971).
   G. A. Melson and D. H. Busch, J. Amer. Chem. Soc., 86, 4830 (1964).

- (1964)
- (87) G. A. Melson and D. H. Busch, J. Amer. Chem. Soc., 86, 4834 (1964)
- (88) G. A. Melson and D. H. Busch, Proc. Chem. Soc., London, 223 (1963)
- (89) S. C. Cummings and D. H. Busch, *Inorg. Chem.*, 10, 1220 (1971).
   (90) S. C. Cummings, G. A. Melson, and D. H. Busch, *Inorg. Nucl.*
- Chem. Lett., 1, 69 (1965).
- (91) E. Ochiai and D. H. Busch, Inorg. Chem., 8, 1474 (1969).

- (91) E. Ochiai and D. H. Busch, *Horg. Chem.*, 9, 1474 (1969).
  (92) L. F. Lindoy, N. E. Tokel, L. B. Anderson, and D. H. Busch, *J. Coord. Chem.*, 1, 7 (1971).
  (93) E. K. Barefield, F. V. Lovecchio, N. E. Tokel, E. Ochiai, and D. H. Busch, *Inorg. Chem.*, 11, 283 (1972).
  (94) E. Ochiai and D. H. Busch, *Inorg. Chem.*, 8, 1798 (1969).
  (95) E. Ochiai, K. M. Long, C. R. Sperati, and D. H. Busch, *J. Amer. Chem. Soc.*, 91, 3201 (1969).
  (96) L. Kara and D. H. Busch, *Inorg. Chem.*, 8, 1149 (1969).

- (96) J. L. Karn and D. H. Busch, *Inorg. Chem.*, 8, 1149 (1969).
  (97) K. M. Long and D. H. Busch, *Inorg. Chem.*, 9, 505 (1970).
  (98) G. N. Schrauzer, *Chem. Ber.*, 95, 1438 (1962).
  (99) F. Umland and D. Thierig, *Angew. Chem.*, 74, 388 (1962).
  (100) S. M. Nelson, P. Bryan, and D. H. Busch, *Chem. Commun.*, 641 (1966). (1966)
- Ĵ. D. Curry and D. H. Busch, J. Amer. Chem. Soc., 86, 592 (101) (1964)
- (102) S. M. Nelson and D. H. Busch, *Inorg. Chem.*, 8, 1859 (1969).
   (103) E. Fleischer and S. Hawkinson, J. Amer. Chem. Soc., 89, 720
- (1967).
   (104) R. P. Smirnov and B. D. Berezin, *Zh. Obshch. Khim.*, 37, 789 (1967); *Chem. Abstr.*, 58, 2892v (1968).
- (105) S. Ogawa, T. Yamaguchi, and N. Gotoh. Chem. Commun., 577 (1972). (106) G. A. Zakrzewski, C. A. Ghilardi, and E. C. Lingafelter, J. Amer.
- Chem. Soc., 93, 4411 (1971).

- (107) J. A. Elvidge and J. H. Golden, J. Chem. Soc., 700 (1957).
  (108) P. Bamfield and D. G. Wilkinson, J. Chem. Soc. C, 2409 (1968).
  (109) J. A. Elvidge and R. P. Linstead, J. Chem. Soc., 5008 (1952).
  (110) P. Bamfield and P. A. Mack, J. Chem. Soc. C, 1961 (1968).
- (111) M. O'Rourke and C. Curran, J. Amer. Chem. Soc., 92, 1501 (1970).
- (112) W. Rosen, *Inorg. Chem.*, 10, 1832 (1971).
  (113) D. W. Allen, P. N. Braunton, I. T. Millar, and J. C. Tebby, *J. Chem. Soc. C*, 3454 (1971).
- (114) B. Dietrich, J. M. Lehn, and J. P. Sauvage, Chem. Commun., 15 (1973)
- (115) J. Cheney and J. M. Lehn, Chem. Commun., 487 (1972).
- (116) Reference deleted in revision.
- (117) W. H. Müller, Naturwissenschaften, 57, 248 (1970)
- (118) J. M. Lehn and F. Montavon, *Tetrahedron Lett.*, 44, 4557 (1972).
   (119) J. Cheney, J. M. Lehn, J. P. Sauvage, and M. E. Stubbs, *Chem. Commun.*, 1100 (1972).
- (120) L. T. Taylor, F. L. Urbach, and D. H. Busch, J. Amer. Chem. Soc., **9**1, 1072 (1969)
- (121) J. Christensen and R. M. Izatt, "Handbook of Metal Ligand Heats and Related Thermodynamic Quantities," Marcel Dekker, New York, N. Y., 1970.
   (122) C. J. Pedersen, J. Amer. Chem. Soc., 89, 7017 (1967).
   (123) F. Vogtle and M. Zuber, Tetrahedron Lett., 561 (1972).
   (124) A. Lüttringhaus, Justus Liebigs Ann. Chem., 528, 211 (1937).
   (125) A. Lüttringhaus, Justus Liebigs Ann. Chem., 528, 181 (1937).

- (126) A. Lüttringhaus and K. Ziegler, Justus Liebigs Ann. Chem., 528,
- 155 (1937). (127) R. G. Ackman, W. H. Brown, and G. F. Wright, J. Org. Chem., 20, 1147 (1955)
- (128) A. Luttringhaus and I. Sichert-Modrow, Makromol. Chem., 18-19, 511 (1956)
- (130) J. H. Weber and D. H. Busch, *Inorg. Chem.*, 4, 469 (1965).
   (131) C. S. Marvel, E. A. Sienicki, M. Passer, and C. N. Robinson, *J.*

- Amer. Chem. Soc., 76, 933 (1954).
- (132) L. Field, W. D. Stephens, and F. L. Lippert, J. Org. Chem., 26, 4782 (1961).

Chemical Reviews, 1974, Vol. 74, No. 3 383

- (133) F. Fehér, K. Glinka, and F. Malcharek, Angew. Chem., Int. Ed. Engl., 10, 413 (1971).
   (134) Z. S. Ariyan and R. L. Martin, J. Chem. Soc., 1687 (1972).

- (135) C. J. Pedersen, J. Amer. Chem. Soc., 92, 391 (1970).
  (136) C. J. Pedersen, J. Amer. Chem. Soc., 89, 2495 (1967).
  (137) B. Bosnich, C. K. Poon, and M. L. Tobe, Inorg. Chem., 4, 1102 (1965)
- (138) C. K. Poon and M. L. Tobe, J. Chem. Soc. A, 1549 (1968).
  (139) C. K. Poon and M. L. Tobe, J. Chem. Soc. A, 2069 (1967).
  (140) H. Stetter and K. H. Mayer, Chem. Ber., 94, 1410 (1961).

- (141) A. B. P. Lever, *Advan. Inorg. Chem. Radiochem.*, 7, 27 (1965). (142) H. E. Simmons and C. H. Park, J. Amer. Chem. Soc., **90**, 2428
- (1968).
- (143) H. Stetter and J. Marx, Justus Liebigs Ann. Chem., 607, 59 (1957); Chem. Abstr., 52, 13745d (1958).
  (144) W. Rosen and D. H. Busch, J. Amer. Chem. Soc., 91, 4694
- (1969).
- (145) W. Rosen and D. H. Busch, *Chem. Commun.*, 148 (1969). (146) K. Travis and D. H. Busch, *Chem. Commun.*, 1041 (1970).
- (147) W. Rosen and D. H. Busch, Inorg. Chem., 9, 262 (1970)
- (148) D. St. C. Black and I. A. McLean, *Tetrahedron Lett.*, 3961 (1969). (149) B. Dietrich, J. M. Lehn, and J. P. Sauvage, *Tetrahedron Lett.*,
- 2885 (1969). (150) B. Dietrich, J. M. Lehn and J. P. Sauvage, Tetrahedron Lett., 2889
- (1969). (151) B. Dietrich, J. M. Lehn, and J. P. Sauvage, Chem. Commun., 1055 (1970).

- (152) D. St. C. Black and I. A. McLean, *Chem. Commun.*, 1004 (1968).
  (153) L. F. Lindoy and D. H. Busch, *Chem. Commun.*, 1589 (1968).
  (154) M. C. Thompson and D. H. Busch, *J. Amer. Chem. Soc.*, 86, 3651 (1964).
- (155) E. L. Blinn and D. H. Busch, *Inorg. Chem.*, 7, 820 (1968).
   (156) L. F. Lindoy and D. H. Busch, *J. Amer. Chem. Soc.*, 91, 4690 (1969).
- (157) J. S. Bradshaw, J. Y. Hui, B. L. Haymore, J. J. Christensen, and R. M. Izatt. J. Heterocycl. Chem., 10, 1 (1973).
- (158) J. R. Dann, P. P. Chiesa, and J. W. Gates, J. Org. Chem., 26, 1991 (1961).
- (159) B. Bobranski, T. Jakobiec, and D. Prelicz, Acta Pol. Pharm., 12, 195 (1955).
- (160) C. J. Pedersen, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 27, 1305
- (100) C. J. Federsen, Feder Frod., Feder Finder, Cod. Eng. Lett. 11, 121 (1968).
   (161) R. M. Izatt, D. P. Nelson, J. H. Rytting, B. L. Haymore, and J. J. Christensen, *J. Amer. Chem. Soc.*, 93, 1619 (1971).
   (162) R. M. Izatt, J. H. Rytting, D. P. Nelson, B. L. Haymore, and J. J. Christensen, *Science*, 164, 443 (1969).
   (162) O. L. Dationari, *J. Amer. Chem. Soc.* 92, 286 (1970).
- (163)
- C. J. Pedersen, J. Amer. Chem. Soc., 92, 386 (1970).
   T. E. Hogen Esch and J. Smid, J. Amer. Chem. Soc., 91, 4580 (164) (1969)
- (165) K. H. Wong, G. Konizer, and J. Smid, J. Amer. Chem. Soc., 92. 666 (1970)
- (166) D. Bright and M. R. Truter, J. Chem. Soc. B, 1544 (1970).
  (167) A. C. L. Su and J. F. Weiher, Inorg. Chem., 7, 176 (1968).
  (168) D. E. Fenton, M. Mercer, N. S. Poonia, and M. R. Truter, Chem.
- Commun., 66, (1972). (169) M. A. Bush and M. R. Truter, Chem. Commun., 1439 (1970). (170) Chem. Eng. News, 48 (9), 26 (1970).

(1968).

(1968).

(1968)

(1968).

(1971)

(184) D.

(187) D.

92, 3500 (1970).

Soc., 92, 3508 (1970). D. L. Johnston and

92, 2916 (1970).

- (171) S. N. Graven, H. A. Lardy, D. Johnson, and A. Rutter, Biochemistry, 5, 1729 (1966). (172) P. Mueller and D. O. Rudin, Biochem. Biophys. Res. Commun.,
- (112) P. Meiner and D. O. Rudin, Biochem. Biophys. Hes. Commun., 26, 398 (1967).
  (173) M. M. Shemyakin, Yu. A. Ovchinnikov, V. T. Ivanov, V. K. Antonov, A. M. Shkrob, I. I. Mikhaleva, A. V. Evstratov, and G. G. Malenkov, Biochem. Biophys. Res. Commun., 29, 834 (1967).
- (174) B. C. Pressman, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 27, 1283 (1968).
   (175) D. C. Tosteson, T. E. Andreoli, M. Tieffenberg, and P. Cook, J. Gen. Physiol., 51, 373 (1968).
   (175) D. D. Diodo, H. A. Wachter, B. E. Dohner, and W. Simon, Helv.

(176) L. A. R. Pioda, H. A. Wachter, R. E. Dohner, and W. Simon, *Helv. Chim. Acta.* 50, 1373 (1967).
 (177) H. Lardy, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 27, 1278

(178) G. Eisenman, S. M. Ciani, and G. Szabo, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 27, 1289 (1968).

(179) D. C. Tosteson, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 27, 1269

(182) D. K. Cabbiness and D. W. Mangerum, J. Amer. Chem. Soc., 91, 6540 (1969).

(183) J. E. Parks, B. E. Wagner, and R. H. Holm, J. Amer. Chem. Soc.,

(185) C. H. Park and H. E. Simmons, J. Amer. Chem. Soc.. 90, 2431

(186) G. N. Schrauzer, R. K. Y. Ho, and R. P. Murillo, J. Amer. Chem.

(188) R. W. Kluiber and G. Sasso, Inorg. Chim. Acta, 4, 226 (1970).
(189) M. Herceg and R. Weiss, Inorg. Nucl. Chem. Lett., 6, 435 (1970).
(190) J. M. Lehn, J. P. Sauvage, and B. Dietrich, J. Amer. Chem. Soc.,

R. Boston and N. J. Rose, J. Amer. Chem. Soc., 90, 6859

Johnston and W. D. Horrocks, Inorg. Chem., 10, 687

(180) H. K. Frensdorff, J. Amer. Chem. Soc., 93, 600 (1971).
 (181) D. C. Olson and J. Vasilevskis, *Inorg. Chem.*, 8, 1611 (1969)

- (191) J. M. Lehn and J. P. Sauvage, *Chem. Commun.*, 440 (1971).
   (192) B. Metz, D. Moras, and R. Weiss, *Chem. Commun.*, 217 (1970).
   (193) B. Metz, D. Moras, and R. Weiss, *Chem. Commun.*, 444 (1971).

- (194) B. Metz, D. Moras, and R. Weiss, J. Amer. Chem. Soc., 93, 1806
- (1971).
   (195) J. M. Lehn and J. P. Sauvage, paper presented at Conference de Thermodynamique Chimique, Societe Chimique of France, Bor-
- deaux, France, Oct 20, 1972. (196) P. A. Tasker and E. B. Fleischer, J. Amer. Chem. Soc., 92, 7072 (1970).
- (197) V. Katovic, L. T. Taylor, and D. H. Busch, Inorg. Chem., 10, 458
- (1971). V. Katovic, L. T. Taylor, and D. H. Busch, *J. Amer. Chem. Soc.*, **9**1, 2122 (1969). (198)
- (199) C. J. Pedersen, J. Org. Chem., 36, 254 (1971).
- (200) R. M. Izatt, B. L. Haymore, L. D. Hansen, D. J. Eatough, M. A. Bell, and J. J. Christensen, unpublished results.
  (201) E. J. King, "Acid-Base Equilibria," Macmillan, New York, N. Y., 1965, pp 192–196.
  (202) M. Castron, D. E. Smith, B. M. Izatt, and J. J. Christensen.
- (202) N. K. Dalley, D. E. Smith, R. M. Izatt, and J. J. Christensen, Chem. Commun., 90 (1972).
- (203) M. A. Bush and M. R. Truter, J. Chem. Soc., 340 (1972).

- (204) M. A. Bush and M. R. Truter, J. Chem. Soc. B, 1440 (1971).
  (205) M. A. Bush and M. R. Truter, J. Chem. Soc., 345 (1972).
  (206) P. R. Ireland and W. T. Robinson, J. Chem. Soc. A, 663 (1970).
  (207) I. E. Maxwell and M. F. Bailey, Chem. Commun., 883 (1966).
  (208) E. B. Fleischer and S. W. Hawkinson, Inorg. Chem., 7, 2312
- (1968). (209) S. W. Hankinson and E. B. Fleischer, *Inorg. Chem.*, **8**, 2402 (1969).
- (210) P. O. Whimp, M. F. Bailey, and N. F. Curtis, J. Chem. Soc. A, 1956 (1970).
- (211) M. F. Bailey and I. E. Maxwell, Chem. Commun., 908 (1966).
- (212) R. R. Ryan, B. T. Kilbourn, and J. D. Dunitz, Chem. Commun., 910 (1966)
- (213) B. Bosnich, R. Mason, P. J. Pauling, G. B. Robertson, and M. L. Tobe, *Chem. Commun.*, 97, (1965).
  (214) N. F. Curtis, D. A. Swann, T. N. Waters, and I. E. Maxwell, *J. Amer. Chem. Soc.*, 91, 4588 (1969).
  (215) W. C. Marsh, N. L. Paddock, C. J. Stewart, and J. Trotter, *Chem. Commun.* 1490 (1970).
- Commun., 1190 (1970).
   B. T. Kilbourn, R. R. Ryan, and J. D. Dunitz, J. Chem. Soc. A, 2407 (1969).
- (217) E. Dewar and E. Fleischer, Nature (London), 222, 372 (1969).

J. J. Christensen, D. J. Eatough, and R. M. Izatt