Recent Advances in the Chemistry of Rhenium

GEORGE ROUSCHIAS

Department of Chemistry, University of Southampton, Southampton S09 5NH, England

Received July 5, 1973 (Revised Manuscript Received October 19. 1973)

Contents

/. Introduction

Rhenium, first detected by Noddack, Tacke, and Berg in 1925 in the X-ray spectra of certain mineral concentrates,¹ was the last of the stable elements to be discovered. It is among the least abundant, both in the crust of the earth and in the solar system.² There are no sufficiently elevated concentrations anywhere in nature to permit economic extraction as the primary commodity, and the only commercial source is as a by-product of the molybdenum industry.³ When molybdenite is roasted in air to molybdenum trioxide, volatile dirhenium heptoxide passes into the effluent gases and flue dusts and may be recovered by wet scrubbing or leaching with water. Rhenium is then isolated from the aqueous extracts either by selective adsorption as ReO_4^- on an anion exchanger or by solvent extraction, and it is finally precipitated as NH_4 ReO₄ or Re₂S₇.³ The free world reserves of

rhenium have been estimated as ca. 1000 tons of which 70% are in the U.S.A. and 20-25% in Chile.⁴ Substantial deposits also exist in the U.S.S.R.⁵ Production in the U.S.A. rose from 600 kg in 1963⁴ to 1800 kg in 1970,⁶ and the total world production in 1970 was 3.75 tons.⁶ The price of the metal fluctuated between \$500 and $$1500$ per pound in 1970–1972⁷ and is sensitive to demand since supplies are strictly limited. Unless most of the rhenium is recovered from molybdenite roasting, the small exploitable reserves will be irretrievably lost in the flue gases.

Although rhenium is the heaviest congener of manganese, the chemistry of the two elements is very different, except in the oxidation states of I and below (essentially the organometallic compounds) and in certain formal stoichiometries. Technetium $8-10$ is the only element which rhenium resembles closely, and even then not to the extent that tungsten resembles molybdenum.¹¹ There are distant similarities with isoelectronic complexes of molyb- $\frac{11}{2}$ tungsten, 12 and osmium, 13 For this reason rhenium has been studied separately from other elements, and it is perhaps legitimate to discuss its chemistry in isolation. Several monographs on the subject exist, σ is the three $8.9.14$ are complementary and supersede the earlier texts. Review articles cover the coordination compounds through 1966,15 the analytical chemistry, 16,17 t the catalytic properties $18-20$ the metallure t of rhenium allove 4.21 the halides of rhenium 218 and the thermodynamic functions and phase diagrams of certain sysname functions and phase diagrams of certain sys-Inorganic Chemistry" 23 and in the serial publications, 24 and the organometallic compounds have been reviewed through 1971.²⁶

The present article attempts to present, in conjunction with ref 15 and 26, a fairly complete account of the chemistry of rhenium by discussing most of the developments that have occurred between January 1965 and December 1972, together with some earlier and later work. Organometallic compounds in the oxidation states I, 0, and —I are omitted since they have been recently reviewed elsewhere.²⁶ and the chemistry of nitrosyls and enedithiolates is best discussed with the organometallic chemistry. Nuclear properties, the physical chemistry of the metal and its alloys, heterogeneous catalysis, and the analytical chemistry are not covered. Bond distances, force constants, and thermodynamic data have been converted to SI units.

It is becoming fashionable to classify metal compounds according to the ligands. This is useful when complexes of similar ligands and a range of metal ions are to be compared. For other purposes classification according to oxidation state has decided advantages. Although it has been pointed out correctly and repeatedly

that oxidation states are purely formal and may bear little resemblance to real charges, 27 it is a fact that for one reason or another every oxidation state has its own characteristic tendencies. These may include magnetic behavior, stereochemical preferences, scarcity, affinity for particular ligands, or reaction patterns. Any scheme which attempts to classify a large number of compounds inevitably creates exceptions which remain unclassified.. Fewer such exceptions emerge because the oxidation state is undefined (e.g., certain nitrosyls and vicinal enedithiolates) than because the ligands are mixed, and these exceptions may always be considered separately. It is hoped that the present account will illustrate how oxidation state, in spite of its limitations, provides the most logical basis for classifying the chemistry of an element, and it should therefore be retained. It is then possible to further classify the reactions of a given oxidation state as those which alter (redox reactions) or conserve it (conformational changes, association, substitution, reactions of coordinated ligands), and the chemistry of rhenium will be presented in relation to this framework.

//. General Properties of the Element

Rhenium, of atomic number 75 and atomic weight 186.2,²⁸ belongs to group VIIa of the periodic table. It occurs naturally as a mixture of two isotopes, ¹⁸⁵Re (37.40%) and 187 Re (62.60%) . ²⁹ The heavier isotope is a weak β -emitter, and the daughter $187Os$ is present in all rhenium-bearing rocks.³⁰ The end-point energy of the emitted β -particles (2.62 \pm 0.09 keV) is the lowest recorded for β -decay and is even lower than the difference in the atomic binding energies of Re and Os (ca. 13.8 keV). $31,32$ The very soft β -rays are absorbed by solid rhenium compounds, but an accurate determination of the β -spectrum was achieved using gaseous π me is opportune that admired being gasebee in the measured half-life for decay to continuum. states, $(6.6 + 1.3) \times 10^{10}$ yr $3¹$ is longer than the total μ and μ (a.g. μ 10 μ), μ is longer than the total building μ $187O_o$ ratios in geologically dated molybdenites, 33 because 50 \pm 30% of disintegrations are to bound atomic states. The half-life is expected to be shorter at high temperatures (estimated as < 3 X 10⁹ yr at 10⁶ K) since bound-state decay to inner-shell vacancies of the ionized atom would occur more readily than to outer-shell vacanatom. Would occur more readily than to outer-sitem vacanshow the hounds ¹⁸⁷Re, and a detectably anomalous should be depleted in the salar a detectably anomalous isotopic ratio might exist captured from the solar wind on the lunar surface.³³ A recent analysis of lunar material nas, nowever, snown a slight enrichment in ^{Tor} He, possibly due to neutron capture by ¹⁸⁸W.³⁸ The shortened halflife of ^{to} Re thus remains unconfirmed and cosmological conclusions based on ^{lo}'He/^{lo}'Os ratios ought to be made with caution. The 10^{16} Ref 10^{16} Os ratio has been used to determine the age of molybdenum deposits, 30 but it must be borne in mind in this connection that little is known of the detailed geochemical behavior of either ele-
ment.³⁷

The nuclear properties of rhenium isotopes are such as to permit accurate determination of nanogram quantities by neutron activation analysis.^{35,38} The neutron capture cross sections have been measured for both natural isotopes as a function of neutron energy from 0.01 eV to 2.6 MeV.³⁹ Both 185 Re and 187 Re have isotopic spin $\frac{5}{2}$ and large quadrupole moments $[Q(^{185}Re) = (2.36 \pm 0.5) \times$ 10^{-24} ; $Q(^{187}$ Re) = (2.24 \pm 0.5) \times 10⁻²⁴ cm²].^{40,41} The corresponding nmr signals have been detected in solid ReO_3 at 1-4 K⁴² and in aqueous NaReO₄ at ambient temperatures.⁴³ The signals in aqueous perrhenate are

extremely broad due to quadrupole relaxation of shortlived collision complexes of $\mathsf{ReO_4}^+$ and solvent molecules $[T_2^{-1}(^{185} \text{Re}) = 4.5 \times 10^4; T_2^{-1}(^{187} \text{Re}) = 4.25 \times$ $10⁴$ sec⁻¹].⁴³ A number of nqr spectra have been recorded,⁴⁴ and a detailed study of the atomic spectrum of rhenium has yielded the hyperfine structure coupling constants for the ground state $5d^56s^2$ $^6S_{5/2}$ and for 14 excited states of the neutral atom.⁴⁵

///. Occurrence of Rhenium

On all counts, rhenium is an exceptionally rare element. A careful search in the Fraunhofer spectrum of the sun was negative, putting an upper limit of not more than 0.5 atom per 10¹² H.⁴⁶ Claims of rhenium lines in certain stellar spectra have not been confirmed.⁴⁶ Concentrations in iron meteorites (0.0023-4.4 ppm based on the analysis of 70 specimens)⁴⁷ are an order of magnitude less than those of osmium and iridium.⁴⁸ and the mean osmium to rhenium ratio in chondritic meteorites is 11.4 ± 1.3.⁴⁹ A sample of 32 chondrites representing all classes was found to contain 0.0311-0.0804 ppm corresponding to $0.025-0.076$ atom of Re per 10^6 silicon.⁴⁹ The atomic abundance in the Orgueil meteorite, a Type I carbonaceous chondrite generally considered most nearly representative of the composition of primitive solar dust, is 0.052 (Si $= 10⁶$), almost equal to the mean in all chondrites (0.052) , 38.49 . This confirms that no fractionation has occurred relative to Orgueil.³⁸ The abundance of rhenium in the solar system is usually taken as 0.055 and, together with that of Tb, Tm, Lu, and Ta, is the lowand, together with that Or TD, Thi, Ed, and Ta, is the low-
act among the stable elements.⁵⁰ The rhenium content of est among the stable elements." The memorit content of
Issues volcanics (0.0016-1.6 ppb) 51 is much lower than this but is comparable to that of achondrites (0.25-0.9 pp
1555 175 ppb)³⁵ and of terrestrial basic rocks (ca. 0.5 ppb).

Rhenium is decidedly siderophilic, and concentrations in the iron phase of chondrites exceed by a factor of 30 to 300 the concentrations in the nonmagnetic phases.³⁸ The earth's crust is therefore depleted in rhenium. On the basis of analyses on 14 igneous and metamorphic rocks, the crustal abundance has been estimated at 0.5 ± 0.3 ppb, with the lowest values occurring in ultrabasics.⁵² The element is highly dispersed within the crust, and elevated concentrations normally occur only in molybdenites.⁵³ A strong geochemical association with molybdenum persists through all stages of magmatic crystallization, and rhenium is finally incorporated as an isomor p_{max} and p_{max} is p_{max} in MoS_2 , 54 A large number of molybdenites have now been analyzed, 53-5 ⁹ and the rhenium content has been found to vary over very wide limits from \leq 0.1 ppm to $>$ 2000 ppm (0.2%). An exceptionally high concentration (1.88%) has been reported in a sample from Armenia.⁵⁵ Of the many factors that influence the ratio of Re to Mo, two seem to be well established: molybdenites with the highest content of rhenium (ca. 0.1%) tend to be associated with copper in multi m ineral accretions. $54.55.57-60$. The converse is not neces sarily true and molybdenites low in rhenium (ca. 1 ppm) have also been found in cupriferous areas.⁶⁰ The copper minerals themselves never carry more than traces of the element. 57 61 The molybdonites of pneumatolytic-hydrothermal origin, the concentration of rhenium increases as the temperature of the ore-forming process deme temperature of the ore-forming process debeen recorded in some volcanic sublimates.⁵⁴

Weathering of molybdenites results in the oxidation of both elements to their soluble highest states, but their close association ends here. Whereas molybdates are reabsorbed and in a certain locality were found to practi-

TABLE I. Characteristic Properties of the Nine Oxidation States of Rhenium

cally disappear from ground water at a distance of 200 m from the source, rhenium could still be detected 1 km away.⁶² The greater mobility of rhenium (undoubtedly as perrhenate) is reflected in its accumulation in the sea where it attains fairly high concentrations compared to other trace elements (8.4 ng I.^{-1} in surface Pacific⁶³ and 4.0 ng $1. -1$ in intermediate Atlantic waters; 64 cf. Mo. 10 μ g I.⁻¹, and Au, 11 ng L⁻¹⁻²). It is removed from the sea by adsorption on clays but not on carbonates or ferromanganese minerals, and argillaceous deep sea sediments contain $1.4-19.4$ ppb of Re, 64 an order of magnitude higher than the crustal abundance. This may explain the high rhenium content of certain sedimentary deposits containing fish bone detritus and its lack of correlation with the molybdenum content.⁶⁵ It would be interesting to determine rhenium in clays associated with evaporite deposits. Some rhenium has also been detected in coalpositor come momant has also been detected in coalores from Arizona.⁵³

Only one rhenium mineral, dzhezkazganite, has been identified to date. It occurs in the Cu-Mo deposits of Central Kazakhstan SSR as microscopic prisms (ca. 100 nm long) closely associated with grains of bornite.^{61,66} The mineral was once thought to be $CuReS₄$, but copper has now been shown to be a contaminant and the composition has been established as $[{\sf Re},{\sf Mo}] {\sf S}_2$, 61,67 Traces of ReS_2 are said to occur in the Mansfeld copper shales and of an unidentified mineral in the Prince Leopold Mines, Katanga. Both might actually be $[Re, Mo]S_2$. It does not appear to have been agreed at what point in the $MoS₂-ReS₂$ series the name dzhezkazganite ought to be adopted.

IV. Chemistry of Rhenium Compounds

An important feature of the chemistry of rhenium, shared to some extent with molybdenum, tungsten, technetium, and osmium, is the existence of a large number of easily accessible oxidation states which interconvert under mild redox conditions. For this reason, reactions often yield mixtures of products, and experimental conditions must be carefully controlled to obtain reproducible

results. Although as many oxidation states are known for manganese, the majority are represented by a small number of species of low stability and are readily converted to Mn^{II} and MnO_2 . The most accessible oxidation state is the seventh. It is obtained by mild oxidation of the metal and most of its compounds in the presence of water. Both Re^{VI} and Re^V disproportionate to Re^{VII} and Re $^{\mathrm{IV}}$ but, whereas Re $^{\mathrm{V}}$ is readily stabilized by a variety of ligands, Re VI is apparently not, and very few complex species have been isolated. The tendency to form multiple bonds to oxygen and nitrogen remains strong but changes character from Re $^{\mathrm{VII}}$ to Re $^{\mathrm{V}}$, then virtually disappears with Re^{IV} . Metal–metal bonding is first encountered in the ternary oxide $Nd_4Re^V_{2}O_{11}$ and in several solid compounds of Re IV , and assumes particular significance in the chemistry of Re^{III}. In sharp contrast to manganese, the second oxidation state is the least well known. The lower oxidation states $(I, 0, and -I)$ are represented by a large number of carbonyl derivatives and organometallic compounds similar to those of manganese, as well as by some surprisingly stable complexes such as ReCI(N₂)(dppe)₂. Rhenium(-1) is confined to carbonyl anions. The salient properties of the nine known oxidation states of rhenium are summarized in Table I.

A. Rhenium(VII)

The chemistry of rhenium(VII) is dominated by the great stability of the perrhenate ion to which nearly all species eventually hydrolyze. Even in the absence of water the chemistry is rather limited by the slight tendency to form complexes with ligands other than oxide. Nevertheless, all coordination numbers from four to nine have been encountered within this relatively narrow range of compounds and, under conditions which preclude formation of ReO_4 ⁻, tetrahedral coordination does not seem to be especially favored. Technetium(VII) appears to have a more pronounced tendency to be tetrahedral. There are some striking structural similarities to analogous compounds of iodine(VII) which provide the only comparison between rhenium and the halogens. The relationship to osmium(VIII) and tungsten(VI) is rather dis-

Figure 1. Ring of four polyhedra in the structure of crystalline Re2O?. Bond distances in pm.

tant, and no isopolyanions have been reported for rhenium. The highest oxidation states of the lighter actinides show many similarities to those of the corresponding metals in the d block. Very little is yet known about the newly discovered seventh oxidation state of neptunium to draw reliable comparisons with rhenium(VII), and it remains to be seen whether significant similarities persist this far along the actinide series. The oxidizing properties of rhenium(VII) are feeble as exemplified by the existence of thio and hydrido anions, and an oxobromide.

7. Dirhenium Heptoxide, Perrhenic Acid, and Perrhenates

Dirhenium heptoxide $(Re₂O₇)$ is obtained in yellow crystals when the metal or a lower oxide is heated in oxygen⁶⁸ (ΔH_f° = -1263 kJ mol⁻¹).⁶⁹ It melts at 301.5° to a colorless, mobile liquid of high vapor pressure (η = 1.161 cP at 346.0°; bp 358.5°, $\Delta H_{\rm vap}$ = 67 kJ mol⁻¹).⁷⁰ The molecular weight and vibrational spectrum of the vapor indicate that it contains discrete O_3 Re-O-ReO₃ molecules of symmetry C_{2n} in which the oxo bridge is probably bent and the local symmetry of each rhenium atom is C_{3v} (i.e., isostructural with gaseous $Cl₂O₇$ and $T_{\rm C_2O_7}$, 71 and aqueous Cr_2O_7 ²⁻¹, 72 , 73 The principal species in the mass spectrum is the molecular ion.^{74,75} A vibrational analysis has yielded the force constants for the terminal and bridging metal-oxygen bonds as 800 and 250 N m⁻¹ respectively, and the strongest bands in the Raman spectrum have been assigned to ν (ReO₃) 1009 vs, 972 m; $\delta(\text{ReO}_3)$ 341 m; $\rho_r(\text{ReO}_3)$ 185 ms; and $5(BOOB)$ 50 m cm -1 liquid dirhenium heptoxide also contains discrete dinuclear molecules since the Raman spectrum is almost identical with that of the vapor.⁷² The solid, however, is polymeric and has a very different spectrum. 72.74.76 The crystal structure is unique. An equal number of nearly regular Re04 tetrahedra and of highly distorted ReO_6 octahedra share corners through oxygen bridges to form sheets parallel to the ac plane, with only oxygen-oxygen van der Waals contacts between the sheets. Each sheet is formed from rings of four polyhedra (Figure 1) perpendicular to the ac plane which are themselves linked through corners of octahedra (Figare abundance $\frac{1}{2}$. The structure is thus reminiscent of, but not the same as, the isoelectronic $Mo_2O_7^2$ from in $Na_2Mo_2O_7$. It is completely different from solid ditechnetium heptoxide

Figure 2. Projection of the structure of Re_2O_7 along the c axis showing the linking of rings to form sheets perpendicular to the plane of the paper.

which contains isolated Tc_2O_7 molecules with a linear oxo bridge.⁷⁸ Bridging Re-O bonds (172.5-216.0 pm) are longer than terminal (165.0-174.2 pm), but still short enough to indicate a bond order higher than unity.⁷⁷

Fusion of dirhenium heptoxide to the molecular liquid merely involves cleavage of two of the long Re-O bonds in each octahedron.⁷⁷ These must be formed again when the liquid freezes, in keeping with its tendency to remain supercooled.⁷⁰ The white amorphous oxide erroneously described as Re_2O_8 in the old literature may be the result of rapid quenching of molecular Re_2O_7 .^{77,188} A small proportion of the heptoxide is said to melt incongruently to ReQ_3 (s) and oxygen.⁷⁵ Contrary to earlier reports, the pure heptoxide is either insoluble in anhydrous organic solvents or it undergoes reduction.^{74,79} Moist solvents convert it to perrhenic acid, which may then dissolve. Thus Re_2O_7 dissolves in dioxane only in the presence of water. Colorless rhombic crystals of stoichiometry Re_2O_7 . $2H_2O\cdot 2C_4H_8O_2$ and unknown structure may be isolatenzo-zoangoz and dimnown structure may be issued ou noth the columnity and on heating they accompose $Re₂O₇$ to epoxides.⁸¹

Dirhenium heptoxide dissolves freely in water to form a colorless, strongly acidic solution of perrhenic acid (formally HReO4) from which stable metal perrhenates may be prepared. The acid is completely dissociated to the $ReO₄$ ion in solutions less concentrated than 70 wt % $H{\sf ReO}_4$ (ca. 7 M). $82, 83$ Such solutions have metal-oxygen stretching frequencies identical with those of aqueous sodium perrhenate (970 and 919 cm^{-1)82,84} and may be concentrated without loss of rhenium in the vapor. 85 Solutions more concentrated than 80 wt % HReO₄ are yellow and have additional metal-oxygen stretches due to undissociated perrhenic $acid^{82,84}$ They boil with loss of acid (e.g., 92.1 wt % HReO₄, bp 193.5° is in equilibrium with vapor containing 7.0 wt % HReO₄ at the boiling $point$)⁸⁵ and are extremely viscous owing to hydrogen **bonding 86** The ¹H nmr spectrum consists of a single sharp peak at all concentrations due to rapid proton ex- $\frac{1}{2}$ change. $82,83$ Pale yellow, hygroscopic needles of anhydrous perrhenic acid are obtained by cooling a concentrated solution to -70° 87 or by allowing the heptoxide to absorb water vapor.⁸⁸ The anhydrous acid may be recrystallized from nitromethane, but it begins to dissociate in vacuo above 65° to Re₂O_{7.}87.88 The crystal structure consists of isolated O_3 Re-O-Re O_3 (H₂O)₂ molecules in which the oxo bridge is linear and the aquo ligands are

mutually cis (Figure 3).⁸⁶ Since concentrated solutions have the same vibrational spectrum as the anhydrous acid, they are also believed to contain $\text{Re}_2\text{O}_7(\text{H}_2\text{O})_2$ molecules, $84,86$ but the presence of some ReO₃(OH) has not been excluded. There is some evidence that $ReO₃(OH)$ molecules may be present in the vapor above undissociated perrhenic acid. 87 Nevertheless, no rhenium compounds analogous to CIO₃(OH) or H_3O^+ CIO₄ have been isolated. The crystal structures of permanganic⁸⁸ and pertechnetic acids¹⁰ have not yet been determined. Trimethylsilyl perrhenate, the only known ester of perrhenic acid, is stable in the absence of water but is rapidly hydrolyzed to ReO⁴ - and Me3SiOH. ⁸ ⁹ The crystalline compound contains essentially tetrahedral $\text{ReO}_3(\text{OSiMe}_3)$ molecules in which the large Re-O-Si angle (164°) indicates some multiple bonding to the bridging oxygen.⁹⁰

Perrhenic acid may be distilled from sulfuric acid solutions⁹¹ though the actual volatile species have not been identified. Some reduction to a pink $\mathsf{Re}^{\nabla \mathrm{I}}$ species has been reported, 92, 93 and a crystalline substance of uncertain structure has been isolated from concentrated sulfuric acid.⁹⁴ Perrhenic acid may be extracted from aqueous solutions into nonpolar organic solvents by tributyl phosphate (TBP), essentially as the perrhenate of a TBP- H_3O^+ complex.⁹⁵

Nearly all metal cations form perrhenates of exceptional stability. Those formed by metals of groups Ia, IIa, IIb, Ag^I, TI^I, Pb^{II}, Fe^{III}, and most divalent cations of the first transition series were known before 1965.^{8,14} The colorless perrhenates M^I ReO₄ either have a tetragonal scheelite structure ($M = Na$, K, Rb, NH₄, and Ag) or an orthorhombic pseudoscheelite structure ($M = Cs$ and TI), but high-temperature tetragonal polymorphs of both \overline{C} sReO₄⁹⁶ and MReO₄^{96,97} are known. The alkali perrhenates ($M = Na$, K, Rb, and Cs) melt and boil without decomposition (bp 1370° for $M = K1^{8,9,14}$ and the infrared spectra of the vapors are consistent with the presence of ReO⁴ - ions.⁷³ A mass spectrometric study has shown that NaReO₄ and KReO₄ vaporize as monomers (ion pairs) and dimers (ion clusters) in comparable amounts⁹⁸ and is thus at variance with earlier electron diffraction data which indicated that the vapor consisted of ReO₃(OK) molecules^{.99} Ammonium perrhenate¹⁰⁰ begins to decompose to amorphous oxides, water, and N_2 gins to decompose to amorphous oxides, water, and w_2
(but not NH3) at 220-250° (2-5% hr=1) and decomposition is rapid at 325° (70% hr⁻¹). Crystalline ReO₂ is formed above 400°.^{101,102} Pyrolysis of a mixture of NH4ReO4 and MnCO3 yields Mn(ReO4 J 203 and reduction of NH4ReO4 is hydrogen white α_4 /2, and reduc- $\lim_{\varepsilon\to 0}$ or $\lim_{\varepsilon\to 0}$ in hydrogen gives $\lim_{\varepsilon\to 0}$ and pure rhenium metal.¹⁹ Aliphatic amines extract perrhenate into organic solvents as alkylammonium perrhenates¹⁰⁵ in which anion and cation are linked by hydrogen bonds.¹⁰⁶

The thermal stability of perrhenates decreases with increasing cationic charge. Thus $Zn(ReO₄)₂$, ¹⁰⁷ $Ni($ ReO₄ $)_2$,¹⁰⁸ and UO_2 (ReO₄)₂¹⁰⁹ begin to decompose at a red heat to Re₂O₇ and ZnO, NiO, and $U_3O_8 + O_2$, respectively. Anhydrous $M^{III}(ReO₄)_3$ (M = Al, Ga, and In) are obtained by heating Re_2O_7 with M_2O_3 in a sealed tube, and they dissociate to the same oxides in air above ca. 300°.¹¹⁰ All the known hydrates of $M^{III}(ReO₄)_3$ (M = Al, Ga, $In.110,111$ Bi, 112 Sc, 113 Y, and the lanthanides^{114,115}) are readily soluble in water, ethanol, and acetone and may be dehydrated without hydrolysis. Yttrium and the lanthanide perrhenates crystallize from water as tetrahydrates which are either monoclinic (La to Nd) or orthorhombic (Pr to Dy). The Pr and Nd salts exist in both forms.¹¹⁴ Anhydrous La(ReO₄)₃ loses Re₂O₇ above 700 $^{\circ}$ to form a new phase, La₃ReO₈, which is itself stable up to at least 1100° and which is decomposed by water

Figure 3. An isolated molecule of crystalline perrhenic acid. Bond distances in pm.

to $La(ReO₄)₃ + La₂O₃.¹¹⁵ Clains that the lanthanide per$ rhenates decompose at ca. 700° to $Ln₂O₃ + Re₂O₇¹¹⁴$ thus appear to be in error. In solid $M^{III}(ReQ_4) \cdot nH_2O$ the ReO₄⁻ ion is likely to be weakly coordinated to M^{III}, and a crystal structure determination on at least one of these salts would be worthwhile. The compounds M^{IV-} $(ReO_4)_4 \cdot nH_2O$ (M = Th and Np, $n = 0$ and 4;¹¹⁶ M = Zr and Hf, $n = 6^{117}$) and $M_2O(ReO_4)_6 \cdot nH_2O$ (M = Zr and Hf, $n = 0$ and 9)¹¹⁷ have been reported and almost certainly contain M^{IV}-O-Re^{VII} bridges.

The perrhenate ion is strictly tetrahedral in solution^{43,118} but may have a lower symmetry in crystalline salts.¹¹⁹ A species of symmetry T_d ought to show four Raman-active fundamentals $[e.g., CrO₄² = (aq)].$ Only three have been observed for ReO₄⁻(aq) [971, $\nu_1(A_1)$; 916, $\nu_3(F_2)$; and 332 cm⁻¹, $\nu_4(F_2)$] as well as for the isoelectronic MO_4^2 (aq) (M = MO_1^2 and W) and $OSO₄(I).¹¹⁸$ This has been attributed to accidental coincidence of $v_2(E)$ and $v_4(F_2)$, ¹¹⁸ but a more plausible explanation is that $v_2(E)$ is too weak and broad to be seen. 120 The $\nu_3(F_2)$ fundamental is shifted closer to $\nu_1(A_1)$ than expected from T_d symmetry, apparently as a result of a close association of the anion with water molecules, and in $\text{TCO}_4 = (a\sigma)$ it becomes coincident with v_3 at 912 cm^{-1} 120 The stretching force constant in ReO₄⁻ (755 N m⁻¹) is greater than in MnO_l and TcO_l and the b in the group and in writing and roof, and the comparable. 121 In crystalline perrhenates of the scheelite type the site symcrystalling permemates or the scheente type the site sy
mothy of RoO + is S4, and the vibrational spectra, 120. $\frac{1}{2}$ including the lattice vibrations, 123 may be interpreted on this basis. Since the anion is distorted in solid KReO4, it is possible to observe a pure nqr spectrum.⁴⁴

It is generally accepted that the chemically significant energy levels in the oxo anions MO_4^- (M = Mn, Tc, and Re) occur in the order $3t_2 < t_1 < 2e < 4t_2$ and that the groundstate configuration is $(3t₂)⁶(t₁)⁶$. 124, 125 On the other hand, there has been wide disagreement as to the separation of these levels and molecular orbital calculations have been of little help.¹²⁵ By symmetry t_1 is a nonbonding ligand orbital, and it is believed that the slightly bonding 3t₂ has nearly pure ligand character and that the antibonding 2e assumes increasing d character from Mn to Re.¹²⁶ The first two band systems in the electronic spectra have a complicated vibrational structure both in aqueous solution¹²⁵ and in a KCIO₄ host at 2.5 K¹²⁶ and they have been assigned to the $t_1 \rightarrow 2e$ and $3t_2 \rightarrow 2e$ transitions, respectively (both ${}^{1}A_{1} \rightarrow {}^{1}T_{2}$). These assignments have recently been rationalized by an SCCC-MO calculation.¹²⁷ The first band occurs in the visible only for

 $MnO₄$ (18,300 cm⁻¹) and is shifted into the uv for TcO₄⁻ (32,200 cm⁻¹) and ReO₄⁻ (44,000 cm⁻¹).¹²⁴ The ReO_4^- ion exhibits slight temperature-independent paramagnetism comparable to that of $\mathsf{MnO_4}^-$, 128

Whereas $OSO₄$ associates with OH^- in basic solution to give $OSO_4(OH)_2^{2-}$,¹³ the perrhenate ion persists as $\mathsf{ReO_4}\text{-}$ even in saturated aqueous NaOH.129 Like several other oxoanions (e.g., $SO_4{}^2$, $NO_3{}^+$, and $MnO_4{}^+)$, it exchanges oxygen with water under acid catalysis. The rate law

rate of exchange = $k_0[H_2O][\text{Re}O_4^{-}]$ + $k_1[H_2O][\text{Re}O_4^{-}] [H^+]^2$ + $k_2[H_2O][ReO_4^-][OH^-]$ (1)

was proposed by Murmann, with $k_0 = 1.4 \pm 0.1 \times 10^{-8}$ M^{-1} sec⁻¹, $k_1 = 3.36 \pm 0.15 \times 10 M^{-3}$ sec⁻¹, and k_2 $= 1.555 \pm 0.023 \times 10^{-4} M^2 \text{ sec}^{-1}$ in 0.1 M LiCl at 25° .¹³⁰ At pH <4 this reduces to the term $k_1[H_2O]$ $[{\rm Re}O_4^-][{\rm H}^+]^2$ found by other workers $(k_1 = 4.91 \times 10^{-4})$ M^{-3} sec⁻¹ at 30°),¹³¹ and in this region the exchange is faster than for MnO_4 ⁻ (k_1 = 3.0 \times 10⁻³ M ⁻³ sec⁻¹)¹³⁰ and TcO_4 ⁻ (k_1 = 2.0 M^{-3} sec⁻¹).¹³¹ The dependence of each term on $[H₂O]$ had been assumed, and a kinetic study with small amounts of water in anhydrous methanol showed that the rate was in fact independent of $[H_2O]$ in the region of acid catalysis and only slightly dependent in the uncatalyzed region. There was no exchange with methanol. A mechanism consistent with these observa- tions proceeds through a fast equilibrium between Re O_4 ⁻ and \overline{R} eO $_2$ (H $_2$ O) ⁺ followed by slow dissociative exand neo $3(120)$, followed by slow dissociative ex-
change between ReO₃(H₀O)⁺ and H₂O, assisted by general hydrogen bonding to the solvent.¹³²

The ReO_4 ⁻ ion is a weak ligand but not as weak as ClO_4^- . Thus pyrolysis of $[Co(NH_3)_5(H_2O)][ReO_4]_3$ yields the perrhenato complex $[Co(NH_3)_5(OReO_3)][ReO_4]_2$, which is hydrolyzed by water back to the aquo complex according to first-order kinetics. Hydrolysis occurs through fission of the Re-O bond and is subject to both acid and base catalysis (first order in each). $^{13\bar{3}}$ The complex UO $_2$ (n - Bu_3PO ₂(ReO₄)₂ of unknown structure is nonconducting in benzene but dissociates in methanol.¹³⁴ The complexes $M(py)_4(ReO_4)_2$ (M = Mn, Co, Ni, Cu, and Zn) contain coordinated perrhenate in the solid state¹³⁵ but, like the analogous perchlorato complexes,¹³⁶ give ionic species in all solvents in which they dissolve. Certain bands in the electronic spectra of the lanthanide ions shift by ca. 1 nm in fairly concentrated aqueous perrhenic acid $(>3$ M), and this has been interpreted as implying the formation of 1:1 and 1:2 complexes of $\text{ReQ}_4 = \frac{137}{137}$ However, the shift does not occur in N_0 and it might have been some does not occur in Nanieo₄ and it might have been
caused by H⁺ rather than ReO₄⁺. The above com $pounds, certain solid adducts of the lanthanides, 138 and$ pounds, certain some addition of the familiances, \sim ϵ
the dinuclear Re^{III} complexes $[\text{Re}_2(\text{RCO}_2)_4](\text{ReO}_4)_2$ and $[Re_2Cl_2(RCQ_2)_3]$ ReO₄¹⁴⁰ are the only ReO_4 ⁻ complexes so far reported. In the last complex ReO₄^{$-$} plexes so lar reported. In the last complex news
moieties bridge dinuclear Re^{III}s units to form chains, but no examples of chelating perrhenate have yet been established.

Perrhenate is a weaker oxidant than pertechnetate. Reduction of aqueous solutions in the absence of complexing agents results in ill-defined hydrated oxides.^{8,9,14,141} A large number of species, mostly transient and poorly characterized, are generated by chemical or electrolytic reduction in weakly complexing media under various conditions. $8,9,14,93,142-145$ The first polarographic wave in 4 M sulfuric acid probably corresponds to reduction to a purple $\mathsf{Re}^{\nabla I}$ species which may then disproportionate slowly to Re $^{\rm IV}$ and Re $^{\rm VII}$, thus resulting

in a three electron change.¹⁴² In neutral 1 M KCI on a dropping mercury electrode, perrhenate is reduced irreversibly to rhenium metal and not to Re^{-1} as was once believed.¹⁴³ Various species have been implicated in polarographic reduction in HCI¹⁴⁴ and fused chloride media,¹⁴⁵ but the picture remains confused. Under strongly complexing conditions reduction leads to stable, isolable complexes which will be discussed under their oxidation states. Whereas pertechnetate inhibits steel corrosion in concentrations less than 5×10^{-5} M, perrhenate is totally inactive in this respect.¹⁴⁶ The chemical reactions of radiorhenium produced by irradiating crystalline perrhenates with 660-MeV protons have been studied in several laboratories.¹⁴⁷

2. Other Oxo Anions, Mixed Oxides, Thio Anions, and Chalcogenides

Noddack and Noddack had recognized in 1933 that oxo species in addition to (meta)perrhenate (ReO₄⁻) could exist in strongly basic media, but only one compound, $Ba_3(ReO_5)_2$, was isolated during the next 30 years. Recent work¹⁴⁸ leaves no doubt that meso- and orthoperrhenates of the alkalis and alkaline earths exist as stable, crystalline compounds in the solid state and are generally isomorphous with the corresponding compounds of osmium(VII) and iodine(VlI). They are hygroscopic and are all immediately hydrolyzed to metaperrhenate and alkali. Lesser known technetium analogs have been prepared,¹⁴⁹ but there is no counterpart in the chemistry of manganese.¹⁵⁰

The bright yellow mesoperrhenates $M^{I}{}_{3}$ ReO₅ and $\mathsf{M}^{\text{II}}{}_{3}$ (ReO $_{5})_{2}$ are obtained by heating stoichiometric quantities of the metaperrhenates with $M_{2}^{I}O_{2}$ (M^I = Na), M^IOH (M^I = K), M^{II}CO₃ (M^{II} = Sr), or M^{II}(OH)₂ (M^{II} = Ba) in dry oxygen.¹⁴⁸ Pure $M^I{}_3$ ReO₅ (M^I = K, Rb, and Cs) may be prepared by heating rhenium dioxide and alkali superoxide to 400° for 3 hr, but if peroxide is used in place of superoxide the only product is $\mathsf{M}^{\text{I}}\mathsf{ReO}_4.^{150,151}$ These compounds undergo a reversible phase transition at 374° (M^I = K), 320° (M^I = Rb), and 304° (M^I = Cs), but may otherwise be heated to 900° without change.¹⁵¹ On the other hand, the lithium and calcium compounds seem to be so unstable that attempts to prepare them have resulted in mixtures of ortho- and metaperrhenates. Strontium mesoperrhenate disproportionates to such a mixture above 750°

$$
2\text{Sr}_3(\text{ReO}_5)_2 \longrightarrow \text{Sr}_5(\text{ReO}_6)_2 + \text{Sr(ReO}_4)_2 \tag{2}
$$

whereas the barium compound is stable up to at least 1200°.¹⁴⁸ The complex infrared spectra indicate low symmetry but are otherwise uninterpretable.¹⁵² Since barium mesoperrhenate is sparingly soluble, crystals may be grown from strongly alkaline aqueous solutions¹⁵³ and then have the composition $Ba_3(ReO_5)_2 \cdot \frac{1}{3}Ba(OH)_2$ ¹⁸⁸ The X-ray crystal structure reveals discrete hydroxyl and $ReO₅$ ^{3 -} ions of slightly distorted square-pyramidal geometry in which the apical Re-O bond (169 pm) is appreciably shorter than the basal bonds (180 and 185 pm).¹⁸⁸ Likewise, K_3 ReO₅ in fused KReO₄ has the cryoscopic behavior of a 3:1 electrolyte, suggesting the presence of $ReO₅$ ³⁻ ions in the melt.¹⁵⁰ Thus mesoperrhenates appear to be simple salts of ReO_5^3 -. It has been reported that $Ba_3(ReO_5)_2$ gives a yellow solution in concentrated alkali, and on the basis of the intensity of the shoulder on the low-energy side of the metaperrhenate absorption band it has been claimed that in 15 M NaOH about 30% of the rhenium is in the form of mesoperrhenate.¹⁵³ This conclusion seems too simple since perrhenate is the only

species present in the absence of barium, even in very concentrated alkali,^{129,153} Furthermore, the barium salts are unique among both meso- and orthoperrhenates in that they dissolve in absolute methanol without solvolysis.¹⁴⁸ It is possible that the oxo species gains stability by coordination to barium or dissolves as a heteropolyanion.

Deep orange or green orthoperrhenates $M^{I}{}_{5}$ ReO₆ (M^I = Li and Na)¹⁴⁸ and $M^{II}{}_{5}$ (ReO₆)₂ (M^{II} = Ca, Sr, and Ba ^{148,154} are the only phases produced when the metaperrhenates are heated with the correct amount of base. No other phases appear when excess of base is used. The compounds of the heavier alkalis are unknown, mesoperrhenates being produced instead.^{148,154} Lithium orthoperrhenate is obtained in hexagonal, yellow leaflets (red-brown when hot) as the only new phase in the $Li₂O-$ LiRe04 system, and the structure consists of almost cubic close-packed oxygen atoms with layers of octahedral holes filled entirely by lithium or entirely by lithium and rhenium atoms in the ratio 2:1. This results in isolated ReO $_6$ octahedra in which the length of the Re-O bond is 205 pm so that the compound could be regarded as the lithium salt of $\text{ReQ}_6{}^{5-155}$ The sodium salt is isostructural. The infrared spectra of the lithium $(\nu(\text{Re}-\text{O}))$ 650 cm - 1) and barium compounds (v(Re-O) 622 $\frac{1}{2}$ cm $\frac{1}{2}$ m and band compounds $\frac{1}{2}$ (nc-O) because $\frac{1}{2}$ um , σ (ne-O) over um) are consistent with their for-
mulation as ionic hexaoxorhenates(VII), 152 though they could equally be regarded as ternary oxides related to could equally be regarded as termally oxides related to
perovskite.¹⁵⁴ The mixed oxides Ba_nMIBeO₆ (MI – Li perovskite. The mixed baldes bagin nebe (IVI = LI
and Na) are ordered perovalities,157 and the oxides $A_4MRe_2O_{12}$ have related structures with a stacking sequence of 12 layers $(A = Ba, M = Mg, Ca, Co, Zn, Cd,$ and In; $A = Sr$, $M = Mg$, Co , Ni, and Zn) or 24 layers (A $= M - Q_1$, $M = M = Q_2$, and $A = Q_3$. M $= Q_4$ $-$ W $-$ Cd; $A - W - Ba$, and $A - S$, 154 depending on the M/A radius ratio.¹⁵⁴ The oxides in which are probably in a μ and μ and μ and μ and μ the polywhich $A =$ ivi are probably identical with one of the

Mixed oxides with covalent Re–O–M bonds (M = V^V , Nb^V, Mo^{VI}, etc.) promise to have an extensive and interesting structural chemistry. Thus red $VReO₆$ (perhaps VO2ReO4) loses oxygen on heating to form green, hygroscopic prisms of V_2 Re₂O₁₁. Magnetic measurements are consistent with equal numbers of V^V , V^{IV} , Re^{VII}, and $\mathsf{Re}^{\nabla \mathbf{I}}$ atoms.¹⁵⁸ X-Ray diffraction reveals a network of distorted VO4 and Re04 tetrahedra sharing corners with an equal number of $VO₅$ trigonal bipyramids and distorted ReO_5 square pyramids.¹⁵⁹ Crystalline phases of unknown structure and stoichiometry $Ti_2Be_2O_{11}$, Nb₄Re₂O₁₇, $NbReO₆$, 160 La₃Re $O₈$, 115 and La_gRe₆O₃₃¹⁶¹ have also been described.

All four thioperrhenates ReO_{4-n}S_n " (n = 1-4) have been reported as products of the reaction of H_2S with aqueous perrhenate under various conditions of pH. Of these, only ReO_3S^- and ReS_4^- have been rigorously characterized in crystalline salts. An additional species, probably ReOS_3^- , has been detected in solution at pH 11.0,¹⁶² and it has been speculated, but without evidence, that ReO_2S_2 ⁻ might also exist in solution. Investigation of this system is rendered difficult by the tendency of thioperrhenates to decompose to ReO₄^{$-$} and Re₂S₇ at a rate comparable to their formation.¹⁶² Since many perrhenates are highly soluble in organic solvents, it would be possible to study the system under nonaqueous conditions. The isoelectronic thioanions $MO_{4-n}S_n^{2-}$ (M = Mo and W) are well known, but neither Mn^{VII} nor Os^{VIII} form analogous complexes.

Perrhenate reacts slowly with H_2S in neutral solution to form yellow $\text{ReO}_3\text{S}^{-163}$ and in strongly alkaline solution $(25\% \text{ NH}_3)$ purple ReS₄⁻¹⁶⁴ Cesium and thallium thioxothioperrhenates crystallize in the BaSO₄ structure (cf. KMnO4) while the potassium and rubidium salts belong to a new structure type related to scheelite.^{163,165} A singlecrystal X-ray study has shown that the ReO_3S^- ion in RbReO₃S departs slightly from C_{3v} symmetry and that the length of the Re-S bond is 214 pm. The mean length of the Re-O bonds (175 pm) is practically the same as in $KReO₄$ (177 pm).¹⁶⁵ A normal coordinate analysis of CsReO₃S (ν (Re-S) 517 cm⁻¹) has yielded the stretching force constants for the Re-S and Re-O bonds as 425 and 750 N m^{-1} , respectively,¹⁶⁶ though much lower values (285 and 625 N m⁻¹) have been calculated for TIReO₃S $(\nu(\text{Re-S})$ 504 cm⁻¹).¹⁶⁷ The crystalline, purple-black tetrathioperrhenates $AReS₄$ (A = AsPh₄, PPh₄, and NMe4) dissolve in organic solvents, but the solutions decompose within a few hours. Intense charge-transfer bands, for which assignments have been proposed, occur at 19,800 (ϵ 9.6 \times 10⁴), 32,050 (ϵ 1.8 \times 10⁴), and 44,000 cm⁻¹ (ϵ 3 \times 10⁴). Infrared assignments include $v_s(Re-S)$ [501, $v_1 (A_1)$], $v_a(Re-S)$ [486, $v_3(F_2)$], and $\delta_{a}(\text{ReS}_{2})$ [200 cm⁻¹, $\nu_{4}(\text{F}_{2})$]. As in ReO₄⁻, $\nu_{2}(\text{E})$ is either very weak or coincident with $v_4(F_2)$. The stretching force constant varies from 326 to 394 N m^{-1} according to the force field model assumed in the calculation.¹⁶⁴

Acid solutions of perrhenate react with H_2S to give a brownish black amorphous precipitate of dirhenium heptasulfide $(Re₂S₇)$, through a number of unidentified intermediates. It usually contains excess sulfur which is very difficult to remove. Some samples,¹⁶⁸ but not others,^{169,170} have become microcrystalline after heating in vacuo for several weeks, and their magnetic properties depend on their history. This is, nevertheless, the only practical preparation since $Res₂$ does not react with sulfur and Re₂O₇ is reduced by both sulfur and H₂S to impure ReO_3 . The structure of Re_2S_7 is unknown. It dissociates directly to ReS_2 and sulfur when heated under argon¹⁶⁹ but is reduced by hydrogen at ambient temperatures to an amorphous pyrophoric substance of stoichiometry ReS₃, possibly the trisulfide.^{168,169} Reduction at higher temperatures proceeds to ReS_2 and then to the metal. The intermediacy of Re_2S_5 has been proposed, 168 but not substantiated.¹⁶⁹ The heptaselenide has not been reinvestigated since its early preparation.⁹

3. Rhenium Heptafluoride and the Oxohalides

Fluorine reacts with rhenium metal to give a mixture of ReF₆ and ReF₇, but ReF₆ reacts further under 3 atm of F_2 at 400° to form pure ReF₇,¹⁷¹ The heptafluoride is also obtained by treating rhenium powder with F_2 in a fluidized bed¹⁷² and by exploding a rhenium wire in SF_6 under certain conditions.¹⁷³ Technetium does not form a heptafluoride so that $IF₇$ and the very unstable OsF₇ are the only other known heptahalides of the elements. Both rhenium and iodine heptafluorides have body-centered cubic unit cells at room temperature in which the molecules are disordered.^{171,174} A transition to lower symmetry (orthorhombic for $|F_7|$ occurs at ca. -120° , 174 A set of X-ray diffraction data for single crystals of orthorhombic $IF₇$ could not be refined unambiguously to a definite molecular geometry, 175 and the exercise has not been attempted yet for ReF_7 .

It has been suspected for some time that both molecules might be nonrigid, with $ReF₇$ the less rigid of the two. Thus the $19F$ nmr spectrum of a solution of ReF₇ in $WF₆$ consists of a sharp singlet at ambient temperatures, indicating fast intramolecular exchange of fluorine nuclei within the nmr timescale.¹⁷⁶ The vibrational spectra in the liquid and vapor phases are consistent with D_{5h} sym-

Figure 4. Stages in the pseudorotational cycle in ReF₇. Arrows indicate displacements of fluorine atoms by ca. 8° from the pentagonal bipyramid.

metry (excluding D_{7h} on other grounds) but the greater width of the infrared deformations of ReF₇ suggest much larger intramolecular motions in this molecule than in $IF₇.¹⁷⁷$ Experiments on the deflection of molecular beams in inhomogeneous electric fields indicate that ReF_7 has polar components which increase as the temperature is lowered. Such behavior is incompatible with a rigid structure, D_{5h} or otherwise. Similar polar components appear for $IF₇$ only at considerably lower temperatures.¹⁷⁸ An elegant electron diffraction study of $Ref₇$ has shown that a small but significant departure from D_{5h} symmetry occurs in the gas phase.¹⁷⁹ The diffraction data are consistent with puckering of the equatorial ring of five fluorines by no more than ca. 9° and concomitant bending of the axial fluorines by ca. 8° from the C_5 axis, away from the nearest equatorial fluorines (C_2 or C_s ; Figure 4). Taken in conjunction with the other properties of ReF7, these deformations are almost certainly not static but are stages in a pseudorotational cycle $(C_1 \rightarrow C_2 \rightarrow C_3)$ in which the equatorial pucker $(E_2¹¹$ vibration) and axial bend $(E_1¹$ vibration) progress in a fixed phase relationship around the C₅ axis of the reference pentagonal bipyramid. The pucker probably originates in steric crowding of equatorial fluorines and in turn induces the axial deformation, thus leading to strong coupling of E_2 ¹¹ and E_1 ¹. The coupling α and α and the large vibrational amplitudes render the model of independent normal vibrations inapplicable.¹⁷⁹ A similar situation pertains to $IF₇$ and XeF₆. Two independent attempts at force constant calculations on the basis of D_{5h} symmetry have yielded disparate results.¹⁸⁰

Rhenium heptafluoride is stable in dry oxygen up to 500° 171 and is thus less oxidizing than PtF₆ and much more stable to dissociation than $OSF₇$. Surprisingly, it is only slightly more oxidizing than ReF $_6$ in that both fluorides are inert toward AsF_3 but oxidize PF₃ to PF₅. Generally, the reactions of $ReF₇$ toward halides are similar to, though more vigorous than, those of $\text{Re}F_6$.¹⁸¹ The heptafluoride dissolves unchanged in anhydrous HF to an essentially nonconducting solution, 182 but the ReF₈⁻ ion is obtained as the nitronium or nitrosonium salt by heating ReF_7 with NO_2F or NOF, respectively. It is suspected to have a square antiprismatic structure.¹⁸³

The three perrhenyl halides ReO_3X (X = F, Cl, and Br) and the oxofluorides ReO_2F_3 and ReOF_5 have been known for a long time. The latter is isostructural with OsOF₅ and IOF₅ $(C_{4v})^{184}$ and reacts with nitryl and nitrosyl fluorides to form salts of $\mathsf{ReOF}_6\widehat{\ }\,$ 183 A mixed oxohalide of stoichiometry $\text{Re}_2\text{O}_4\text{Cl}_5$ is said to be formed by interaction of ReO_3Cl and ReOCl_4 .¹⁸⁵ The only other recent work on oxohalides appears to consist of attempts at vibrational analyses.¹⁸⁶ A number of thiohalides such as Res_3CI , ReSCI₄, ReSCI₂, and $Re_2S_3CI_4$ have been reported as products of the reactions of sulfides with chlorine or of chlorides with S_2Cl_2 .¹⁸⁷ Although thiohalides are undoubtedly formed in such reactions, none of the above compounds have been adequately characterized.

4. Complexes

The complex species that have not been discussed above will be considered arbitrarily in this section. Four halo or oxohalo anions are known, viz. ReF₈-, $ReOF_6^-$, 183 $ReO_2F_4^-$, 9 and $ReO_3Cl_2^-$, 189 and are all completely hydrolyzed by water to perrhenate. The last is obtained as the cesium salt by adding CsCI to perrhenic acid in concentrated HCI and has a vibrational spectrum consistent with the fac configuration. This is in keeping with the tendency of oxo ligands in octahedral d^0 complexes to occur mutually cis.¹⁰⁰ Although both WO₂F₃³⁺ and $OsO₃F₃$ ⁻ are known, the isoelectronic $Ro₂F₃²$ - ion' cannot be isolated from solutions of perrhenic acid in even anhydrous HF^{189} The salt K_2 ReO₃N is formed in the reaction of potassium amide with Re_2O_7 in liquid ammonia¹⁹¹ and is considered to have a Re-N triple bond $(\nu(\text{Re-N})$ 1022 cm⁻¹; $\nu(\text{Re-O})$ 878, 830 cm⁻¹).¹⁹² It is $\frac{1}{2}$ intermediate between MoO_2N^3 and $\text{O}.\text{O}_2\text{N}$ in the ease of hydrolysis to ammonia.

An anhydrous nitrate, $ReO₃NO₃$, is obtained by the action of N_2O_5 on ReO₃CI and appears to be polymeric. The infrared spectrum is consistent with the presence of bridging nitrate groups, and the mass spectrum contains dinuclear species. It decomposes above 70° without melting to Re_2O_7 and NO_2 .¹⁹³

Labile, hygroscopic adducts $ReO_3Cl(dmf)_2$ and $ReO_3 Cl(dmso)_2$ in which the ligands are bound through oxygen may be prepared from stoichiometric quantities of $ReO₃Cl$ and the appropriate ligand in dry $CCl₄$.¹⁹⁴ Even less stable adducts ReO_3ClL_2 $\left| \text{L} \right| = \text{pv}$, $\frac{1}{2}$ dipy, 2^{37} Me-CONMe₂, $(Me_2N)_2CO$, and PO(NMe₂)₃] are formed only with an excess of L and decompose when washed with $CCl₄$. 195

Perhaps the most interesting complex of rhenium(VII) is the enneahydridorhenate ion, $Re H_9^2$, formed in the reduction of perrhenate with an alkali metal. The highest yields have been attained using NaReO₄ and sodium in ethanol (35% Na₂ReH₉).¹⁹⁶ Various erroneous formulations had been advanced until the anion was eventually characterized by Ginsberg and his coworkers by X-ray and neutron diffraction. Each rhenium atom in K_2 ReH₉ is at the center of a trigonal prism of hydrogen atoms with three other hydrogens beyond the centers of the rectangular faces of the prism. The nine Re-H bonds are nearly equal with a mean length of 168 ± 1 pm and a mean H-Re-H angle between hydrogens in the same vertical mirror plane of $93.6 \pm 0.6^{\circ}$, 197 K₂TcH₉ is isostructural.¹⁹⁸ Although two distinct proton environments are expected, only one nmr signal is observed in aqueous solution at τ 19.1 which suggests, but does not prove, that the ion is fluxional. Certain deformations (e.g., E') would interchange prism and equatorial hydrogens at large amplitudes though it has not been proved that this is necessar- μ the pseudorotation mechanism.¹⁹⁷ Librations about the $Co₂$ and $Co₂$ axes of ReH $₂$ ² have been detected in solid</sub> K2ReH9 at 90 K by inelastic neutron scattering spectroscopy (time scale ca. 10^{-11} sec), and the barriers to hindered rotation have been estimated for each of the two crystallographically distinct sites of ReH₉²⁻¹⁹⁹ Nmr relaxation studies with a much longer observation time scale $(ca-10^{-5}$ sec) reveal, by contrast, only isotropic rotations. 199,20 ⁰ It is possible that the apparent isotropy

is the result of pseudorotational interchange of C_3 and $C_2{}'$ even in the solid state at a rate between 10⁵ and 10¹¹ sec⁻¹, but there are alternative interpretations.¹⁹⁹ Infrared Re-H stretches in solid K_2 ReH₉ occur at 1931 sh, 1846 s, and 1814 sh cm^{-1} and a single deformation frequency at 735 s cm^{-1} .¹⁹⁶ Neutron scattering, for which no selection rules apply, reveals further overlapping deformations at 640, 760, and 810 cm $^{\rm -1,199}$

The ReH₉²⁻ ion is fairly stable in water at high pH but loses H₂ near neutrality. It is reduced by CO in ethanol to tri- μ -hydrido-bis[tricarbonylrhenate(l)], 201 a rare example of a complex with three hydride bridges. It is possible to formally replace one²⁰² or two²⁰³ hydride ligands in $\mathsf{ReH}_9{}^2{}^+$ by tertiary phosphines or arsines. Thus the anions ReH $_8$ L⁻ (L = PPh₃, PEt₃, P-n-Bu₃, and AsPh₃) are obtained, accompanied by some ReH₅L₃ (L = PPh₃ and AsPh₃), by heating ReH₉²⁺ with L in 2-propanol.²⁰² The white, neutral complexes $ReH₇L₂$ are found among the products of the reaction of $ReOCl₃L₂$, $ReO(OR)Cl₂L₂$, and especially ReCl₄L₂ with LiAIH₄ in tetrahydrofuran (L = PPh₃, PEtPh₂, PEt₂Ph, AsEt₂Ph, and $\frac{1}{2}$ dppe). They lose H₂ when heated alone to form (ReH_xL₂)_n (n = 2?) and with excess L to form $ReH_5L_3.^{203}$ It is interesting that when $\textsf{ReH}_8(\textsf{PPh}_3)$ $\bar{}$ is treated with HCI it gives the dinuclear rhenium(III) species $[PHPh_3]_2$ Re $_2$ Cl $_8^{202}$ whereas $\mathsf{ReH}_7(\mathsf{PEt}_2\mathsf{Ph})_2$ gives $\mathsf{ReCl}_4(\mathsf{PEt}_2\mathsf{Ph})_2.^{203}$ As in $\mathsf{ReH}_9{}^2$ $^+$ itself, the protons in ReH $_8$ L⁻ and ReH₇L₂ are magnetically equivalent in solution. Acid-catalyzed H-D exchange occurs between ReD_7L_2 and EtOH by an unknown mechanism, but this is slow relative to the nmr time scale. Exchange also occurs with benzene at 100° and with dihydrogen. 203

B. Rhenium(VI)

The sixth is undoubtedly one of the least stable oxidation states of rhenium and thus parallels the behavior of osmium(VII)¹³ but contrasts sharply with molybdenum(V)¹¹ and tungsten(V).^{12,190} Rhenium(VI) occurs in a number of solid oxides in which it nearly always occupies octahedral sites, but the well-established molecular compounds are confined to ReF₆, ReF₅Cl, ReOX₄ (X) $=$ F, CI, and Br), the adducts ReOCI₄L, and a few simple anionic complexes. Transient-colored species formed in the reduction of ReO_4^+ have also been attributed to r henium(VI). $92, 93, 142$ All coordination numbers from four to eight are known, but octahedral coordination is definitely preferred. The five-coordinate oxotetrahalides tend to assume sixfold coordination either by association in the solid state or by forming adducts with monodentate ligands.

1. Rhenium Trioxide, Mixed Oxides, and Oxo Anions

Samples of rhenium trioxide obtained by reducing $Re₂O₇$ with CO or by heating the complex of HReO₄ and dioxane⁸⁰ are cubic, slightly nonstoichiometric, 204 and inert. The oxide disproportionates without melting above 400° to ReO₂ and Re₂O₇, but pure single crystals of stoichiometric ReQ_3 may be prepared from the nonstoichiometric samples by vapor transport in the presence of an excess of iodine at ca. $370^{\circ}.^{204}$ The structure of ReO₃ is a well-known prototype,¹⁹⁰ formally derived from perovskite by deletion of the large cation from the center of each cubic unit cell. It is closely related to the tungsten bronzes $\text{Na}_x \text{WO}_3$ (0.3 < x < 0.95)²⁰⁵ which are defect perovskites in which $WO₃$ assumes an ReO₃ lattice with the centers of x of the unit cells occupied randomly by SOdium. 2°5,206

Rhenium trioxide is a metal. The resistivity increases linearly with temperature²⁰⁴ and at room temperature (18 μ Ω cm) is only ten times greater than that of copper $(1.72 \mu\Omega \text{ cm})^{206}$ The surface has a red metallic luster, and the dielectric constant derived from the optical reflectance spectrum is characteristic of free electron behavior for photon energies between 0.2 eV and the sharp plasma edge at 2.1 eV. Several interband transitions occur beyond the plasma edge, and the minimum in reflectivity in the green region at 2.30 eV (1.5% reflectivity as compared to 93% at 0.2 eV) is responsible for the red color.²⁰⁶ Nmr Knight shifts and spin-lattice relaxation rates for ¹⁸⁵Re and ¹⁸⁷Re at 1-4 K indicate that the conduction bands in ReO₃ and Na_xWO₃ are essentially identical near the Fermi level and suggest that they possess strong d character.⁴² Similar conclusions follow from the optical reflectance spectra. 206 These observations have an important bearing on the conduction mechanism in the cubic tungsten bronzes themselves, which thus appears to involve donation of the sodium valence electrons into empty, essentially tungsten 5d conduction bands of the insulator WO_3 . Several detailed calculations of the band structure and Fermi surface of ReO_3 have given results in good agreement with experiment.²⁰⁷

The redox potential of a stoichiometric ReO_3 electrode in aqueous perrhenate varies linearly with pH from pH 1 to pH 3, but is independent of perrhenate concentration. The nature of the couple is unknown but may involve a lower oxide.²⁰⁸ In alkaline solution the electrode becomes passive, apparently owing to disproportionation to $ReO₄$ and an insoluble, nonconducting Re^{IV} species.²⁰⁹

Cubic rhenium bronzes, M_x ReO₃ (M = Na and K, x < 1), are obtained by heating ReO₃ with alkali azide²¹⁰ or $MReO₄$ with rhenium metal, 2^{11} and the solid solutions W_{1-x} Re_xO₃ (0 < x < 1) are cubic for x > 0.25.²¹¹ A hexagonal bronze, K_x ReO₃, is also known.²¹² The hexagonal, nonstoichiometric oxide $\text{Re}_{1+x}\text{O}_3$ (0.14 $\lt x \lt 0.21$) is formed when a mixture of ReO_3 and ReO_2 is heated to 700-1400° under a pressure of 65 kbars. The structure of a single crystal $(x = 0.16)$ was elucidated by X-ray diffraction and found to contain hexagonal close-packed oxygen with one-third of the octahedral holes completely occupied by rhenium atoms and another third (of a different type) only partially occupied. Complete filling of the latter third would have given the unknown oxide Re_2O_3 , but no new phases were obtained when $ReO₂$ and Re were heated together under pressure. In both cubic ReO₃ and hexagonal Re $_{1,16}$ O₃ rhenium is present in an octahedral oxygen environment, but the volume per formula unit is considerably smaller for the high-pressure hexagonal phase.²¹³ All the above substances, with the exception of the WO_3 -Re O_3 solid solutions rich in tungsten, have metallic conductivity.^{211,213} Unlike BoO itself and the cubic ramo conductivity. Chino hoog noon and the cubic below 3.6 K.212
Februarie 3.6 K.212 below 3.6 K.²¹² An attempt to prepare bronzes $Cu_xReO₃$ by heating $\text{Re}O_3$ with copper led to the stoichiometric phase $CuRe₄O₁₂.²¹⁴$

A large number of ordered perovskites $\mathsf{A}_2\mathsf{M}^{11}\mathsf{Re}^{\nabla 1}\mathsf{O}_6$ $(A = Ca, Sr, or Ba; M = Ca, Sr, Ba, Ma, Mn, Fe, Co, Ni,$ Zn, or Cd) have been synthesized by heating mixtures of binary oxides^{9,215} and in other ways.¹⁴⁸ The M^{II} and $\mathsf{Re}^{\nabla \mathbf{I}}$ cations occupy octahedral sites. The perovskites are cubic when $M = Ba$, and black, single crystals of octahedral habit may be grown by the hydrothermal technique. They are semiconductors, with the exception of $Ba₂FeReO₆$ which has metallic conductivity (resistivity = 1.6 m Ω cm at 370 K). The oxides Ba₂MReO₆ (M = Mn, Fe, and Ni) are ferrimagnetic and $Ba₂CoReO₆$ is antiferromagnetic with a Néel temperature of 40 K.²¹⁵ The only

oxides in which rhenium is known to occupy tetrahedral sites are of the type $Ba_3M_2^{111}Re^{VI}O_9$ (M = Cr and Fe) and have the hexagonal BaTiO₃ structure.⁹ There is no evidence for the existence of either solid rhenates or of the ReO $_4$ ^{2 –} ion in solution.

A number of other oxide phases such as $La₂ReO₆,¹⁶¹$ Li_4MgReO_6 ,²¹⁶ $Ca_5Re_2O_{11}$, Sr_2ReO_5 ,^{148,217} etc., have been claimed, but the reports lack sufficient evidence and are somewhat confusing. The mixed oxide Li_6 ReO $_6$ has been obtained in two modifications by several routes.²¹⁸ The blue-black rhombic α form obtained above 620° is isomorphous with α -Li₆TcO₆¹⁴⁹ and Li₆MO₆ (M = W and Te), while the β form obtained at lower temperatures is isomorphous with β -Li₆TcO₆ and Li₆MO₆ (M = Os, Np, Pu, and Am). The X-ray powder pattern of β - Li_6 ReO₆ is practically the same as of Li_5 ReO $_6$,¹⁵⁵ and the structure has therefore been assumed to consist of nearly cubic close-packed oxygen with all the rhenium atoms and most of the lithium in octahedral holes. Since the available octahedral holes are too few to accommodate all the lithium, some lithium atoms would of necessity occupy tetrahedral holes but may scatter too weakly to alter the powder pattern.²¹⁸ While this theory seems entirely reasonable, it would be difficult to distinguish β -Li₆ReO₆ from Li_5 ReO₆ doped with Re^{VI}. The vibrational²¹⁹ and electronic spectra of Li_6 ReO₆ have been discussed.²²⁰ Although the compound could be regarded as a salt of the ReO 6^6 ⁻ ion, neither this nor any other oxo anion of rhenium(VI) persists in solution.

A ternary nitride $Sr_{27}Be_5N_{28}$ is obtained, together with $Sr₉Be₃N₁₀$, by heating rhenium metal with strontium nitride under nitrogen.²²¹

2. Rhenium(VI) Halides and Oxohalides

Rhenium hexafluoride is formed from the elements $(\Delta H_f^{\circ} = -1350 \pm 10 \text{ kJ} \text{ mol}^{-1})$, 222 along with the heptafluoride. The latter is reduced to ReF_6 by rhenium metal.¹⁷¹ The hexafluoride is of theoretical interest in that it is one of the few octahedral molecules subject to dynamic Jahn-Teller effects which can be studied in the aas phase.²²³ Calculations based on the model that Jahn-Teller forces originate in the electrostatic interaction between the nonbonding rhenium t_{2g} electron and the fluorine atoms predict a static tetragonal distortion of only ca. 0.5 pm, but a profound effect on the vibrational shectrum.²²⁴ In keeping with these predictions, experiments with molecular beams have shown that ReF $_6$ is monte that morecally begins have chome that the group established O_h symmetry within the limits of experimental error (\pm 0.4 pm). The mean Re-F separation (183.2 \pm 0.4 pm) is nearly the same as in OSF_6 (183.2 pm), which should also be subject to Jahn-Teller distortions, and in $WF₆$ (183.4 pm) and IrF₆ (183.2 pm), which should with 6 (100.4 pm) and $m \in \{100, 200\}$ pm), which should ReF₆ is isomorphous with MF₆ (M = W, Os, Ir; and also Mo, Tc, Ru, Rh, and Pt) both in the body-centered cubic polymorph and in the modification of lower symmetry which is stable below room temperature.¹⁷⁴ A molecule with O_h symmetry is expected to have three fundamentals active in the Raman $[\nu_1(A_{1g}), \nu_2(E_g),$ and $\nu_5(F_{2g})]$ and two in the infrared $[\nu_3(F_{1u})$ and $\nu_4(F_{1u})]$. The gasphase vibrational spectra of WF_6 , ReF₆, and IrF₆ are phase vibrational spectra of wr_6 , nerg, and ur_6 are
consistent with this 223.227 but the ur_6 and ur_7 bands in ReF_6 have broad non-Gaussian envelopes and are displaced from the frequencies deduced by interpolation. This is the result of vibronic coupling caused by dynamic This is the result of vibronic coupling caused by dynamic tail. 223,227.228 Further manifestations of the Jahn-Teller

effect are apparent in the vibronic structure of electronic bands^{229,230} which indicate that the distortion is trigonal, 230 and in slow electron capture experiments. 231

Rhenium hexafluoride is a stronger oxidant than W_{F_6} but is weaker than OSF_6 . Thus WF₆ does not react with nitric oxide whereas both ReF₆ and OsF₆ are reduced to $(NO)MF_6$. ReF₆ reacts with nitrosyl fluoride by fluoride transfer only to give $(NO)_2$ ReF₈ whereas OsF₆ gives a mixture of (NO) OsF₇ and (NO) OsF₆.²³² The reactions of TcF_6 are similar to Re F_6 ²³³ The hexafluoride is reduced smoothly by PF_3 (but not ASP_3) to Ref_5 , 181 by BCI_3 to ReCI_{5,} 222 and by BBr₃ and PBr₃ to ReBr_{5,} 181 Like WF₆ and OsF₆ it gives nonconducting solutions in liquid hydro- α en fluoride, 234 though the anions ReF₇⁻ and ReF₈²⁻ $\frac{1}{2}$ may be obtained in other ways. $9.232.233$ The mixed halide ReF₅CI is formed together with ReF₆ when ReCI₅ is treated with fluorine, and it decomposes even at room temperature to a mixture of ReF $_6$ and lower chlorides. The effective magnetic moment at 300 K (1.11 BM) is considerably higher than that of ReE_6 (0.25 BM) 235

Although several preparations of $ReCl_6$ have been claimed, 8,236 there is serious doubt that such a compound actually exists. The action of chlorine on rhenium metal dispersed on porous brick does not yield ReCI6 as was once believed, but impure ReOCl₄. The oxygen is derived from the ceramic material which is apparently attacked by the hot metal. 237 It is almost certain that the highest chloride formed by direct chlorination is the pentachloride, and ReCI₅ itself does not react with either gaseous or liquid chlorine, even under uv irradiation.²³⁷ In view of this it would have been surprising if technetium formed a hexachloride, and a recent reinvestigation has actually shown that $TcCl₄$ is the highest chloride that can be obtained from chlorine and technetium. ²³⁸ Halogen exchange between ReF $_6$ and BCI₃ or PCI₃ is said to yield an extremely volatile material which readily loses chlorine and which analyzes correctly for $BeCl₆$ 181,236 However, authentic ReCI₆ would be expected to be much less volatile than ReF $_6$ (bp 33.7°) and slightly less volatile than WCI₆ (bp 346°). The reaction of ReF₆ with BCI₃ has recently been found to give only ReCI₅ and fluoride chlorecently been found to give only riedly and hubride child-
rides of boron. 222 The synthesis of ReCI in a low-temperature matrix does not seem to have been attempted.

Three oxohalides are known. Dark blue $ReOF_4$ is formed when ReF₆ is treated with ReO₃, W(CO)₆, or a small amount of water. The crystal structure consists of distorted ReOF₅ octahedra sharing cis fluorine atoms to form infinite chains. The bridging F-Re bond trans to oxygen (230 pm) is substantially longer than the bridging F-Re bond trans to fluorine (199 pm). Oxygen is always terminal, and the short Re-O separation (165 pm) indicates a high bond order. The structure of $ReOF₄$ is thus similar to that of $TCOF₄$ and $MOF₄$ but quite different from tetrameric WOF $_4$ ²³⁹ The dark brown oxotetrachloride (mp 30.0°) is the most accessible molecular compound of rhenium(VI) and is best prepared by heating ReCI₅ with oxygen in a Carius tube²³⁷ or rhenium metal with sulfuryl chloride.²⁴⁰ It is also formed when rhenium is heated with a mixture of chlorine and oxygen, $Re₂O₇$ with thionyl chloride, ⁸ ReO₃ with ReCl₅, MoCl₅, MoOCl₄, or WOCI $_4$, 241 and ReCI₅ with MoO₃ or MO₂CI₂ (M = Mo, where the community of the control of the sured.²⁴³ The crystalline solid consists of square-pyramidal ReOCI₄ molecules with apical oxygen (Re-O, 163 pm) and is thus entirely different from WOCI4. The units are very weakly associated through distant cis Re- \cdots Cl interactions (355 and 365 pm). 2 4 ⁴ The infrared spectrum in the gas phase $(\nu(\text{Re}-\text{O})$ 1040, $\nu(\text{Re}-\text{Cl})$ 392 cm⁻¹) is practically the same as in inert solvents (CCI4, cyclohex-

ane) indicating that the same species is involved.²⁴⁵ It has not been possible to show whether this species is square pyramidal or trigonal bipyramidal. Two metalchlorine stretches are expected for C_{4v} symmetry and three for D_{3h} , but only one has been observed. $245 - 247$ In the mass spectrometer, ReOCI4 fragments principally to $ReOCl_4^+$, $ReOCl_3^+$, and $ReOCl_2^+.248$ $ReOBr_4$ has not been investigated recently.

3. Complexes

Rhenium oxotetrahalides usually react to give compounds in oxidation states other than six. Thus ReOCI $_4$ is reduced by concentrated hydrochloric acid with evolution of chlorine to $\text{ReOCl}_5{}^{2-}$, 247 by pyridine to ReO- $Cl_3(py)_2$, ²³⁷ and by thionyl chloride to ReCl₆²⁻; and it disproportionates in water to ReO₂ and ReO₄^{-8,9} lnert ligands may, however, coordinate to the vacant position in ReOX₄ trans to oxygen to form adducts ReOX₄L of C_{4v} symmetry in which the Re-L bond is long and weak. In solid ReOX₄ the ligand is the halide atom of a neighboring ReOX_4 molecule.^{239,244} Equimolar quantities of ReOCI4 and water yield the bright red, crystalline complex $ReOCl_4(H_2O)$ which has been shown by X-ray diffraction to have a short Re-O bond (163 pm, the same as in ReOCI₄ itself) and a long Re-OH₂ bond (227 pm) trans to it. The four chlorine atoms are equidistant from the rhenium at 229 pm and are bent away from the terminal oxygen toward the water molecule. 249 The adducts ReOCL(MeCN)²⁵⁰ and ReOCL(POCI₂)²³⁷ are obtained from ReOCI4 and the free ligands and dissociate again on heating under vacuum. ReOCI₄(POCI₃) is partly dissociated even in CCI₄ solution but not in TiCI 237. There is some spectroscopic evidence that similar adducts are formed when donors such as acetone and ether are added to solutions of ReOCI4 in inert solvents.²⁴⁵ The complex oxohalide $(Re_2O_3Cl_6)(ReO_3Cl_2)$ formed by uv irradiation of a mixture of ReOCI₄, ReOCI₄(H₂O), and $ReO₃Cl$ has a related structure (1) in which perrhenyl

chloride donates weakly trans to each of the two terminal oxygens in the hypothetical μ -oxo-bis[oxotrichlororhenium(VI)]. Once again there is a short terminal Re-O bond (169 pm) and a long bond in the trans position (241 pm), in this case to an oxygen of ReO_3Cl . The bridging $O-Re$ separation (184.7 pm) is intermediate.²⁵¹ It is possible that the compound $\text{Re}_2\text{O}_4\text{Cl}_5$ may consist of one-half of this molecule, i.e., $ReOCl₄(OReO₂Cl)¹⁸⁵$

Salts of the anions $ReOX_5^-$ (X = Cl and Br) separate when AX (A = AsPh₄, NEt₄, and acridinium, $X = CI;^{247} A$ = PPh₄, $X = Br^{250}$ is added to a solution of ReOX₄ in anhydrous chloroform or dichloromethane. The diethyloxonium salt of ReOCI₅^{$-$} is also obtained from ReOCI₄ and HCI in dry ether, 252 and ReOF₅⁻ by the partial hydrolysis of ReF_8^2 ^{-, 9} Partial hydrolysis of $ReOCl_4$ ⁻ gives the mauve, almost diamagnetic anion [CI4ORe-O- ReOCl_4] $^{2-}, ^{247}$ and ammonolysis of ReOCl_4 gives a polymeric material of stoichiometry ReO($NH₂$)₄, said to con-

tain Re $V^{1,250}$ It was once believed that ReOCI $_5{}^{2+}$ in aqueous hydrochloric acid is oxidized by air to ReOCl_6^2 ⁻,²⁵³ but subsequent work has not confirmed this. ²⁴⁷ - 2 5 4

The tendency of rhenium(V) to form a single multiple bond to oxygen and a weak bond in the trans position is reminiscent of other d^1 ions such as $\mathsf{V}^{\mathsf{IV}},$ Cr $^{\mathsf{V}},$ Mo $^{\mathsf{V}},$ and W^{∇_c 190 The Re–O stretching frequency occurs at 950– 1040 cm^{-1} and the magnetic moments of all mononuclear Re VI compounds except ReF $_6$ and ReF $_7^-$ fall within 1.2-1.7 BM, rather lower than the spin-only values. Only three complex species are known not to have terminal Re-O bonds, $viz.$ ReF₇⁻, ReF₈²⁻,^{9,232,233} and $\mathsf{Re}\left(\mathsf{CN}\right)_{8}^{2}$ – $^{-15}$

C. Rhenium(V)

The most characteristic feature of Re^V is the existence of a large number of stable, diamagnetic complexes in which the metal forms multiple bonds to oxygen or nitrogen. They are mostly octahedral and of the types $ReOX_5^2$, $ReOX_4L$, $ReOX_3L_2$, $ReO_2X_4^3$, ReO_2L_4 ⁺, $(ReOX₂L₂)₂O$, ReN $X₂L₃$, and Re(NR) $X₃L₂$. It thus resembles $Mo^{V,11} Os^V$, and $Os^{V1,13}$ more closely than the isoelectronic Mo^{IV} and W^{IV} which form few stable oxo species. Although the tendency to form multiple bonds to nitrogen is shared with adjacent elements in their higher α vidation states (M α ^{VI}, Os^V, Os^{VI} and Os^{VIII}) it appears to be more pronounced for Re^{V} than for any other $\frac{1}{2}$ transition metal. The few complexes of Re^V which lack such multiple bonds are generally eight-coordinate and diamagnetic. Paramagnetic species thus ought to be viewed with suspicion unless they have been thoroughly R remains the reduction of $\mathbf{R}eV$ to $\mathbf{R}eV$ and/or Re¹¹¹ occurs with such ease that it is often encountered under conditions which might have been expected to lead to substitution.

1. Rhenium(V) Oxides and Oxo Anions

The elusive oxide Re_2O_5 has been obtained crystalline, but not pure, by the electrolytic reduction of perrhenate in 12 M sulfuric acid. The blue-black precipitate formed in this way retains sulfuric acid which cannot be removed by washing with water, since this results in disproportionation. The acid is lost under vacuum only at temperatures which cause partial oxidation to ReO_3 and disproportionation to ReO₂ and Re₂O₇, but some tetragonal Re₂O₅ survives these conditions.²⁵⁵ A very impure form of the same oxide is apparently produced in the chemical reduction of perrhenate. $93,255$. Rhenium (V) is found in the octahedral sites of the ordered perovskites $A_2M^{III}Be^{V}O_6$ $(A = \text{Sr} \ M = \text{Cr}^9 \ A = \text{Ba} \ M = \text{Sc} \ Y \ \text{and} \ \text{In}^{215} \ A =$ Sr and Ba, M = a lanthanide²⁵⁶), formed by heating mixtures of binary oxides. When M is a lanthanide, the perovskites obey the Curie-Weiss law down to at least 77 K^{256} and in Ba₂GdReO₆ and Ba₂ErReO₆ no magnetic ordering occurs even at 4.2 K.215 Purple crystals of $Cd₂Re₂O₇$ with the pyrochlore structure and with rhenium in octahedral coordination (Re-O, 190 pm) are formed by the interaction of Re_2O_7 vapor and cadmium.²⁵⁷

When a lanthanide oxide is heated with an excess of ReO₂, a compound of stoichiometry $Ln_4Re^V₂O₁₁$ is obtained.^{258,259} An X-ray diffraction study of a single crystal $(Ln = Nd)$ has shown that the structure contains pairs of $ReO₆$ octahedra sharing an edge, and that $NdO₄$ and NdO_8 polyhedra link the $Re₂O₁₀$ units into a three-dimensional network. The Re-Re separation (242 pm) is short, indicating strong metal-metal bonding (cf. 275 pm in rhenium metal and 374 pm in $\text{Re}_2\text{Cl}_{10}$).²⁵⁹ Similar Re_2O_{10}

units (Re-Re, 242 pm) occur in the ternary oxide $La_4Be_6O_{19}$ in which rhenium has a formal oxidation state of 4 $\frac{1}{3}$, but in this case the Re₂O₁₀ units are linked together directly by sharing corners. Lanthanum is tencoordinate.²⁶⁰

Other oxides said to contain Re^V include Ca₂Re₂O₇,²¹⁷ $Li₃ReO₄$, and $Li₆ MgRe₂O₉, ^{216,217}$ but they have not been described in detail. The vibrational spectrum of $Li₃ReO₄$ is consistent with the presence of $\mathsf{ReO_4}^{3-}$ ions. 261

2. Rhenium (V) and Halides and Oxohalides

Rhenium pentafluoride is best prepared by reducing the hexafluoride with PF₃.¹⁸¹ Rhenium pentachloride (mp $261^{\circ};^{237}$ $\Delta H_{\rm f}^{\circ}$ = -360 \pm 3 kJ mol⁻¹²²²) is the only product of chlorination of the metal under normal conditions and may also be obtained by heating Re_2O_7 with CCI₄.²⁶² The dark brown crystalline solid contains dimeric Re_2Cl_{10} molecules isostructural with M_2Cl_{10} (M = Nb, Ta, Mo, and U), but is not isomorphous with the other pentahalides since the molecules are packed differently. Each Re₂CI₁₀ unit consists of two octahedra sharing an edge in which the rhenium atoms are displaced by 20 pm from the centers of the octahedra away from each other,' and the long Re \cdots Re separation (373.9 \pm 0.2 pm) precludes the existence of a metal-metal bond. The average terminal and bridging Re-Cl distances are 224.4 \pm 1.2 and 246.5 \pm 1.3 pm, respectively.²⁶³ The far-infrared spectrum can be assigned to $Re₂Cl₁₀$ in both the solid state^{264,265} and in cyclohexane solution.²⁶⁴ and 12 out of the 13 active fundamentals expected for D_{2h} symmetry have been observed. ReCI₅ vapor is presumably monomeric since the heaviest fragment detected in a mass spectrometer at 100 $^{\circ}$ is ReCI₅⁺. The major fragment is $ReCl₄ + .265$ A number of other physical properties have been recorded, including the electronic spectrum²⁶⁵ and the phase diagrams for various metal chloride systems.²⁶⁶

The reactions of ReCI₅ are numerous and complex. It may be distilled unchanged in an atmosphere of chlorine, but it dissociates to ReCI₃ and CI₂ when heated in a stream of inert gas.²⁶⁷ In a static system, ReCI₅ and ReCI₃ interact to form β -ReCI₄.^{268,269} ReCI₅ is reduced quantitatively to β -ReCl₄ by SbCl₃²⁶⁹ and to ReCl₃ by SnCl₂.²⁶⁵ It is also reduced by tetrachloroethylene in accordance with the equation²⁷⁰

 $ReCl_5 + \frac{1}{2}CCl_2 \longrightarrow CCl_3 \longrightarrow \beta$ -ReCl₄ + $\frac{1}{2}C_2Cl_6$ (3)

When ReCI₅ is heated with metal oxides or oxohalides, it gives mixtures of products which always contain ReOCI4^{242,251,265,271} and apparently never $ReOCl₃$, 251 , 265 Thus $As₂O₃$ or $SO₂$ gives a mixture of $ReOCl₄$ and $ReCl₃,²⁶⁵$ while $ReO₃$ gives $ReO₃Cl$, $ReOCl₄$, $\text{Re}_2\text{O}_3\text{Cl}_6(\text{ReO}_3\text{Cl})_2$, ReO_2 , ReCl_3 , and rhenium metal.^{251,271}

Rhenium pentachloride acts as a mild but efficient Friedel-Crafts catalyst and promotes the alkylation and acylation of aromatic rings.²⁷² It also catalyzes the oligomerization of olefins and acetylenes,²⁷² the condensation of acetone to mesityl oxide,²⁷³ and the polymerization of styrene to a product of high molecular weight. The kinetics of the last reaction have been interpreted on the basis of cationic intermediates.²⁷⁴ Olefin polymerization is inhibited by tetrabutyltin and a mixture of ReCI₅ and SnBu₄ catalyzes the disproportionation of pent-2-ene to but-2 ene and hex-2-ene at room temperature.²⁷⁵

The pentachloride may react with potential ligands in several ways that often depend on the solvent and on the presence of traces of moisture. "Aged ReCI₅" is said to react differently from freshly prepared ReCI₅, but since the latter is very hygroscopic and otherwise stable at ambient temperatures, "aged" samples are almost certainly partly hydrolyzed. The following reactions have been observed.

(a) Simple Substitution or Ligand Transfer. This occurs rarely and is only expected with inert ligands in the absence of water. Phosphorus pentachloride at 300°C gives the salt $[PCI₄]$ ReCl₆²⁷⁶ and ReCl₅ is said to react with fused KSCN to give $\text{Re}(\text{SCN})_6$ ⁻²⁷⁷ and with KCNO in dimethyl sulfone to give $Re(OCN)_{6}$ ⁻.²⁷⁸ In view of the general behavior of Re^{\vee} , the last two reactions are rather surprising. A polymeric acetate $ReCl₃(OAc)₂$ is formed in glacial acetic acid.²⁷⁹

(b) Reduction to Rhenium(IV) by the Ligand. Under anhydrous conditions, $ReCl₅$ is reduced to complexes of the type ReCl₄L₂ or ReCl₅L⁻ by a number of ligands which are not normally considered reducing. The pentahalides of molybdenum and tungsten behave in a similar way, 280, 281 but ReCl₅ is the strongest oxidant. Anhydrous nitriles thus cause reduction to ReCl₄(RCN)₂ (R = Me, n-Pr, and Ph), 282 fused α, α' -dipyridyl to ReCl₄(dipy), 265 dioxane, thioxane, and tetrahydrofuran to ReCl₄L₂ (L = $C_4H_8O_2$, C_4H_8OS , and thf), ²⁸³ and [NEt₄]CI in CH_2Cl_2 to the salt $[Net_4]$ ReCl₅.²⁸⁴ It is noteworthy that the known $ReCl₆$ ion²⁷⁶ is not formed in the last reaction, although under similar conditions $MoCl₅$ and $WCl₅$ yield $[NEt₄]MCI₆$. The reaction of ReCI₅ with PPh₃ is complicated and in anhydrous acetone yields both ReCl₄(PPh₃)₂ and $[MeCOCH₂CMe₂PPh₃][ReCl₅(PPh₃)],$ together with traces of $\text{Re}_{\alpha}C I_{\alpha}^2$ and $\text{Re}_{\alpha}C I_{\alpha}^2$ = 273 The cation is oresumably formed by Michael addition of PPh₃ to mesityl oxide, itself a product of the condensation of acetone catalyzed by ReCI₂ 273.285 The oxidation product from the above reactions has been investigated only in the case of acetonitrile. At least a third of the chlorine atom lost by ReCI₅ is evolved as HCI, and at least another third appears in a highly chlorinated organic oil (58% Cl) which can be extracted into light petroleum.²⁸² An oil obtained in the reduction of VCI4 by acetonitrile contains 2-methyl- $\frac{4}{6}$, $\frac{6}{5}$, $\frac{1}{10}$, $\frac{1}{1$

(c) Hydrolysis to Rhenium(V) Oxo Species. In the presence of small amounts of water, ReCI₅ usually yields complexes of Re^V with terminal oxygen. Large cations thus precipitate ReOCI₅²⁻ from solutions of ReCI₅ in concentrated $HCl^{253,254}$ and $ReOBr₅²⁻$ from 48% HBr.²⁶⁵ Triphenylphosphine in wet acetone gives trans- $ReOCl₃(PPh₃)₂,^{254,265}$ pyridine gives $[ReOCl₂(py)₂]₂O₁²⁸⁷$ and α, α' -dipyridyl gives (ReOCI₂dipy)₂O.²⁸⁷ Aquo and hydroxo complexes are undoubtedly formed as intermediates since the $Re=$ O moiety can be reversibly protonated to Re-OH and Re-OH₂, with equilibrium constants lving strongly to the left.^{254,287} Unlike MoCl₅11,190 there is no evidence that $ReCl₅$ can abstract oxygen from organic solvents or ligands. Thus MoCI₅ gives MoO- $Cl_3(POPh_3)_2$ with POPh₃ in acetone, whereas ReCI₅ disproportionates.²⁸⁸

(d) Disproportionation. ReCI₅ disproportionates in water above pH 7 to ReO₂ and ReO₄⁻.²⁵⁴ At lower pH, hydrolysis to Re^V oxo species competes with disproportionation. In wet acetone the anions ReO_4 ⁻ and $\textsf{Re}_2\textsf{Cl}_9{}^2$ are formed through unidentified transient intermediates,²⁸⁹ and the salt $[(POPh₃)₂H]₂Re₂Cl₉ separates$ in the presence of POPh₃.²⁸⁸ This is perhaps the origin of $Re_2Cl_8^2$ ⁻ and $Re_2Cl_9^2$ ⁻ formed in the complex reaction of ReCI₅ with PPh₃ in acetone.²⁷³

Rhenium pentabromide is said to be formed by direct union of the elements, but very little, if any, could be pre-

pared by this method by later workers.²⁹⁰ The compound may be obtained by treating ReF₆ with BBr₃ or \texttt{PBr}_3 , 181,236 and \texttt{ReBr}_3 with $\texttt{Br}_2.^{291}$ It has not been properly characterized. No oxohalides of rhenium(V) have been established beyond doubt. Claims for the preparation of ReOF₃ exist in the early literature, 8,9 but all attempts to obtain ReOCI $_3$ have met with failure.²⁶⁵ A report that α - and β -ReOCI $_3$ had been prepared 271 was effectively withdrawn.²⁵¹

3. Oxo Complexes

The very stable oxo and dioxo complexes of rhenium(V) have been discussed in some detail by Fergusson.¹⁵ They are usually prepared by reduction of perrhenate in the presence of a ligand in strongly acid solu $tion, ^{283,292-299}$ and by ligand substitution in ReOCI₃- $(PPh₃)₂$ or ReO(OEt)X₂(PPh₃)₂,254,283,287,293,300-304 They have also been synthesized by solvolysis of Re- Cl_5 , ^{254, 265, 287} aerial oxidation of Re^{III 305, 306} and $Re^{IV,307-310}$ and in other ways. The complexes fall into three categories, namely, mononuclear with one terminal oxide, mononuclear with two terminal oxides, or dinuclear with one terminal oxide on each Re^{\vee} and an oxo bridge. The metal is nearly always found in pseudo-octahedral coordination but is five-coordinate in ReO₂I (PPh₃)₂, $[ReOX_2(PPh_3)_2] + 302$ and $ReOX_4 - (X = Cl, Br, and l).$ ²⁹⁴ and may be seven-coordinate in complexes of tridentate ligands such as ReOCI3(tas)¹⁵ and ReOCI3(tdpme).²⁹² The five-coordinate complexes are unsaturated and readily $\frac{1}{2}$ increase their coordination number to six $\frac{294,302}{2}$ whereas ReOCI3(tdpme) dissociates to a six-coordinate isomer in which tdpme is bidentate.²⁹² Most well-established oxo complexes are described in Table II, but protonated species are omitted.

All Re^∇ oxo species are diamagnetic though weak, temperature-independent paramagnetism (TIP) equivalent to 0.3-0.8 BM usually remains when allowance is made for the diamagnetism of the ligands. $128,295,310$ The infrared spectra have been tabulated³¹¹ and discussed.³¹²⁻³¹⁴ The terminal Re-O stretch in monooxo complexes and in the binuclear μ -oxo species lies within 912–995 cm^{-1.312} Trans dioxo species have bands at 775-835 cm⁻¹ (v_{as} (ReO₂)) and 220-270 cm⁻¹ $(\delta(\text{Re}O_2))$, with $\nu_s(\text{Re}O_2)$ (ca. 800 cm⁻¹) active only in the Raman. $312.314.315$ The u -oxo complexes have additional bands at 720–860 cm⁻¹ and 200–205 cm⁻¹ which have been assigned to $v_{\rm as}$ (Re-O-Re) and $v_{\rm s}$ (Re-O-Re), respectively, 312 though an alternative assignment favors respectively. The agreement and increasing a band at $660-670$ cm⁻¹ to be associated with ν (Re-O- $\mathsf{R}e^{(300)}$ The order of the terminal Re-O bond in monooxo complexes exceeds two since both the oxygen p_x and p_y orbitals overlap with the metal d_{xz} and d_{yz} . The two metal d electrons occupy the nonbonding d_{yz} orbital and thus account for the diamagnetism.

The anions ReOCl $_5{}^2$ $\bar{ }$ and ReOBr $_5{}^2$ $\bar{ }^2$ 265 are firmly established, but ReOI $_5{}^{2+}$ has been only briefly described.³¹⁶ Salts of ReOCI 5^{2+} may be obtained by reducing perrhenic acid with HI,^{8,9,295} by boiling $[{\sf ReO}_2(\texttt{en})_2]$ CI with 5 M HCI, 254 or by dissolving ReOCI $_{4}$ 247 or ReCI $_{5}$ in concentrated HCI, and adding a large cation.^{253,254} The cesium salt is the most common, but many others have been described. $^{254\cdot317}$ They are usually contaminated with ReO $_4$ $^$ and $\mathsf{ReCl}_{6}{}^{2+}$ owing to disproportionation, and magnetic moments ranging from 0.8 to 2.85 BM have been claimed.^{247.253.254} In fact, pure Cs₂ReOCI₅ prepared at -10° is diamagnetic, and a correction for ligand diamagnetism reveals TIP equivalent to 0.43 BM at room temperature.²⁹⁵ The salts of Cs_2 ReOX₅ (X = Cl and Br) are isomorphous with the corresponding Mo and W compounds, $247,265,318$ and the electronic $128,247,254,318,319$ and vibrational^{247,320} spectra have been recorded and analyzed.

The five-coordinate anion $ReOBr_4$ ⁻ is formed as one of the products of aerial oxidation or ReBr_3 in $\mathsf{HBr},^{305}$ and all three anions $ReOX_4^-$ (X = Cl, Br, and I) may be prepared in high yield by reducing perrhenate with zinc in methanolic sulfuric acid and adding HX.²⁹⁴ They form stable salts with large cations and may form weak solvates with water or acetonitrile. The crystal structures of both $[NEt₄]ReO Br_4(H_2O)^{305}$ and $[AsPh_4]ReOBr_4(MeCN)^{321}$ have been solved. The anion in each case consists of a square pyramidal ReOBr4 moiety in which the rhenium atom is respectively 32 and 34 pm above the Br_4 plane and the Re-O separation is short (Table III). In conjunction with the high Re-O stretching frequency (1000 \pm 10 cm⁻¹). this indicates unusually strong π -bonding. The solvent molecule occupies the sixth coordination position trans to oxygen to form a long, weak bond $(Re-OH₂, 232 pm; Re$ -NCMe, 231 pm).

Perhaps the most important compound of rhenium(V) is $trans\text{-}ReOCl₃(PPh₃)₂$ which separates almost quantitatively when perrhenic acid in concentrated HCI is added to a suspension of PPh₃ in glacial acetic acid.²⁹⁶ This and the related ethoxo complexes ReO(OEt) X_2 (PPh₃) $_2$ ²⁹⁶ have been used as intermediates in the synthesis of complexes of Re^{III} , 300.306.322 ReIV, 301.322 and Re^{VII}, 203 as well as Re^V.

The oxide ligands in all Re^V dioxo complexes whose configuration is known are mutually trans.^{254,312-315,323-326} This is also the case for other d^2 metals (Ru^{VI} and Os^{VI}) but is in contrast to dioxo complexes of d⁰ metals (V^v, Mo^{vI}, W^{vI},^{313,314} and $Re^{VII 189}$) in which they are cis. The trans-dioxo configuration has been confirmed by X-ray diffraction for $[{\sf ReO}_2(py)_4]$ CI \cdot 2H₂O³²⁴ and by both X-ray³²⁶ and neutron diffraction 325 for $\rm K_3ReO_2(CN)_4.$ In the d⁰ cis-dioxo complexes the ligands O_x and O_y donate exclusively into d_{xz} and d_{vz} and share only $d_{x,v}$, whereas in the d² transdioxo complexes, O_z and O_{-z} share both d_{xz} and d_{yz} but leave d_{xy} nonbonding to accommodate the two d electrons. 3^{13} The Re-O bond order is thus two. 3^{15} and the Re-O bond lengths in trans-dioxo complexes are significantly longer than in monooxo complexes (Table III). It has been suggested that the ligand field exerted on the metal in trans-ReO₂ (py)₄⁺ is essentially the linear field of the oxide ligands, and the solvent effects on the electronic spectrum may then be interpreted as arising from the interaction of the solvent with the terminal oxides.³²⁷

The dinuclear μ -oxo complexes have a linear O=Re-O—Re= O moiety which has been established by X-ray diffraction in $\text{Re}_2\text{O}_3(\text{Et}_2 \text{dtc})_4, {}^{303,328}$ $\text{Re}_2\text{O}_3\text{Cl}_4(\text{en})_2, {}^{329}$ and $[Pt(NH₃)₄]₂$ Re₂O₃(CN)₈.³³⁰ The structure of $\mathsf{Re}_2 \mathsf{O}_3(\mathsf{Et}_2 \mathsf{dt} \mathsf{c})_4$ (d²) contrasts sharply with that of $Mo_{2}O_{3} (Et_{2}dtc)_{4}$ (d¹) in which each terminal oxide is cis to the oxo bridge.³²⁸ In all three species the geometry of each rhenium atom is distorted octahedral, and in $Re₂O₃(Et₂dtc)₄$ the two Et₂dtc ligands on one metal atom are staggered by ca. 40° relative to the other to avoid close S...S contacts. The terminal Re-O bonds are shorter than in trans-dioxo species (Table III) and are presumed to have a bond order of three. 325, 328

Rhenium(V) oxo complexes undergo the following reactions.

(a) Ligand Substitution. Terminal oxide in ReO₂(en)₂⁺ is inert and the complex may be dissolved in water and reprecipitated as the iodide with less than 1% exchange. The slow exchange of oxygen between $\text{ReO}_2(\text{en})_2^+$ and labeled water obeys the equation

TABLE II. Oxo Complexes of Rhenium(V)"

 $\ddot{}$

 $\frac{1}{\sqrt{2\pi}}\int_{0}^{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\pi}d\theta.$

307

TABLE II. (Continued) Oxo-species Ligand (L) Comments Synthesis Ref Re O₂l(dppe)(PPh₃) $ReO₂CN(H₂O)(py)₂$ $ReO₂(oxine)(H₂O)₂$ $ReO₂lL₂$ $ReO_2L_4^+$ $\mathsf{ReO}_2(\mathsf{py})_3\mathsf{PPh}_3{}^+$ $\mathsf{ReO}_2(\mathsf{py})_2(\mathsf{PPh}_3)_2^+$ $\mathsf{Re}_2\mathsf{O}_3(\mathsf{CN})_8$ ^{4–} $Re₂O₃X₄L₄$ $Re₂O₃(R₂dtc)₄$ PP_{h₃} dmso py py, picolines tu $NH₃$ 5-Coordinate and monomeric lnsol; M unknown $\mathsf{Anion} = \mathsf{C}\mathsf{h}$, etc.; see also ref 15 Anion $=$ C τ , Br τ , and I τ $\mathsf{Anion} = \mathsf{ClO}_4^-$ Anion $=$ Cl^{$-$} RNH $_2$, 1/ $_2$ diamines, 1/ $_2$ dppe, tu $\,$ $1/2e n$ $1/2$ dipy $1/2$ d ppe py and $1/2$ dipy $\frac{1}{2}$ en $R = Me$, Et, and Ph Anion $=$ Cl⁻⁻, etc. $\text{Anion} = \text{ClO}_4^-$ Anion $=$ Cl⁻, Br⁻, I⁻, ReO₄⁻, ReO₄⁻ + HX + dppe in EtOH 293 etc. Anion $=$ \vdash Anion $=$ \vdash and ClO₄ Anion $=$ \vdash See text $X = Cl$ or Br $X = Cl$; see text See text $ReO₂$ l(PPh₃)₂ $+$ 1 molof dppe 302 $[ReO₂(py)₄]CN + water on standing$ 299 $ReO₂·aq + fused oxineH in air$ 309 $ReO(OEt)1_2(PPh_3)_2 + H_2O$ in Me₂CO 302
ReOL(PPh₂)₂⁺ + H₂O $ReO_{2}(PPh_{3})_{2}^{+} + H_{2}O$ 302
ReOCl₃(PPh₃)₂ + dmso 354 $ReOCl₃(PPh₃)₂ + dmso$ $trans-ReOCl₃(PPh₃)₂ + py in hotEtoH$ EtOH 287 $Re₂O₃Cl₄(py)₄ + py in wet EtOH 287ReO(OFt)Cl₄(py)₃ + py 287$ $ReO(OEt)Cl₂(py)₂ + py$ 287
ReOX = + py (X = Cl and Br) 294 $ReOX₄⁻ + py (X = Cl and Br)$ 294 $ReOCl₃(dmso)PPh₃ + py$ 254
K₂ReCl₄ + L + O₂ in water 308 K_2 ReCl₆ + L + O_2 in water $ReO₄ + HCl + SnCl₂ + tu$ 298 ReO(OEt)Cl₂(PPh₃)₂ (green isomer) + concdNH3 254 See ref 15 15
ReOCl₃(dmso)(PPh₃) + en + H₂O 254 $ReOCl₃(dmso)(PPh₃) + en + H₂O$ $\mathsf{K}_2\mathsf{ReLU}_6 + \mathsf{en} + \mathsf{H}_2\mathsf{O} + \mathsf{O}_2{}^b$ $ReOX_3$ (dipy) $+$ excess dipy in hot EtOH 297 $ReO₂$ $(PPh₃)₂ + 2$ mol of dppe 302 $ReO₂$ I(PPh₃)₂ + excess py at room temp 302 $[{\rm ReO_2(py)}_3{\rm PPh}_3]I + {\rm PPh}_3$ 302
 ${\rm ReO_2(CN)}_4$ + 0.5 M HCl 330, 340 $ReO_2(CN)_4^- + 0.5 M HCl$ 330, 340 $ReCl₅ + L in wet Me₂CO$ 287
ReOCI₄ + L 237 $ReOCl₄ + L$ $ReOX_3(PPh_3)_2$ or $ReO(OEt)Cl_2$ - $(PPh₃)₂ + pyinC₆H₆$ 287 $ReO(OH)(en)₂²⁺$ in HCI on standing 254 $ReOCI_3(PPh_3)_2 + NaR_2'dt$ c in boiling Me₂CO 300
e₂O₃Cl₄(pv)₄ + NaEt₂dtc 300 $Re₂O₃Cl₄(py)₄ + NaEt₂dtc$

 a Protonated dioxo species are excluded. b Best method of preparation.

rate of exchange = $k_0 + k_1$ [enH₂²⁺] + k_2 [en] + k_3 [OH⁻]{ [ReO₂(en)₂⁺] (4)

where at 50° k_0 = 7.86 \times 10⁻⁵ sec⁻¹, k_1 = 6.47 \times 10^{-3} M⁻¹ sec⁻¹, k_2 = 1.4 \times 10⁻³ M⁻¹ sec⁻¹, and k_3 $= 3.26 \times 10^{-1} M^{-1}$ sec^{-1.332} Other ligands range from labile to fairly inert but are decidedly more labile than on rhenium(IV). Thus $Cs₂ReOCl₅$ exchanges chloride rapidly with labeled HCI even in suspension, 333 whereas ReCl $_6^{2\,+}$ in 7 M HCI does not exchange significantly in weeks. 334

TABLE III. **Rhenium-Oxygen Bond Lengths in Rhenium(V) Oxo Species**

Compound	Terminal Re-0, pm	Bridging Re-O, pm	Ref
$trans\text{-}ReOCl3(PEt2Ph)2$	\sim 160		331
$[Net_4] [ReOBr_4(H_2O)]$	171(4)		305
[AsPh ₄][ReOBr ₄ (MeCN)]	173(6)		321
$[{\sf ReO}_2(py)_4]$ Cl·2H ₂ O	176(3)		324
K_3 ReO ₂ (CN) ₄	177.3(8)		325
	178.1(3)		326
$[Pt(NH_3)_4]_2$ Re ₂ O ₃ (CN) ₈	169.8(7)	191, 49(4)	330
$\text{Re}_2\text{O}_3(\text{Et}_2\text{dtc})_4$	172.2	191.0	328
$Re2O3Cl4(en)2$	167(5)	191.2(5)	329

Cyanide exchange with $\text{ReO}_2(\text{CN})_4^{3-}$ and chloride exchange with $Re OCl_4(H_2O)$ ⁻ is complete in less than a minute. Conversely, amine exchange with $\text{ReO}_2L_4^+$ (L = $\frac{1}{2}$ en, MeNH₂, and py) is slow and obeys the rate equation

 $Me₂CO$

rate of exchange =
$$
{k_0 + k_1[OH^-]}[HeO_2L_4^+]
$$
 (5)

 $ReOX(R_2dtc)_2 + H_2O + Na_2CO_3$ in

 $(R = Me$ and Et) 300

where at 25° $K_0 = 8.5 \times 10^{-7}$, 9.4 \times 10⁻⁶, and 4.17 \times 10^{-5} sec⁻¹ for L = $\frac{1}{2}$ en, MeNH₂, and py, respectively; and $k_1 = 6.9 \times 10^{-2}$ for L = 1/2en and 4.33 \times 10² M⁻¹ sec⁻¹ for $L = M$ eNH₂. The term in $[OH^-]$ is presumably associated with an SN1-CB mechanism and is absent for $L = \rho v$, 335 Since oxide creates a high electron density on the metal, bonds to σ donors ought to be weakened and to π acceptors strengthened.³³⁵ This may explain the presence of π acceptors in the more inert mono-oxo complexes and the fact that most dioxo complexes of σ donors are cationic (Table II). In the presence of π acceptors, complexes are usually sufficiently inert to permit the isolation of geometrical isomers although these tend to equilibrate on heating in solution. The isomers of $ReO(OEt)Cl₂(PPh₃)₂$ equilibrate at room temperature in benzene within a few hours.³⁰¹ Specific ligand substitution is readily affected in the cold or on gentle warming in a suitable solvent. Thus reactions 6 (L = PPh₃, PEt₂Ph,

and $\frac{1}{2}$ dipy)³⁰⁶ and 7 (L = PPh₃ and AsPh₃)²⁹⁴ are compfete within a few minutes in the cold, and reactions 8 (L

$$
Re OCl3(PPh3)(POPh3) + 2L \longrightarrow Re OCl3L2 + PPh3 + POPh3
$$
\n(6)

$$
ReOBr_4(MeCN)^- + 2L \longrightarrow ReOBr_3L_2 + MeCN + Br^-(7)
$$

 $=$ thioxane and dithiane), 283 9, 301 and 10 302 occur readily in hot benzene. Further examples are given in Table 11.

$$
ReOCl3(AsPh3)2 + 2L \longrightarrow ReOCl3L2 + 2AsPh3 (8)
$$

 $ReO(OEt)Cl_2(PPh_3)_2$ + acacH \longrightarrow

 $ReOCl₂(acac)(PPh₃)₂ + EtOH (9)$ ReO_2 I(PPh₃)₂ + 2dppe \longrightarrow ReO₂dppe₂⁺ + I⁻ + 2PPh₃ (10)

Substitution by water or hydroxyl is often followed by deprotonation to give trans-dioxo (eq 11)³⁰² or μ -oxo species (eq 12). 287

 $\text{ReO}(\text{OEt})I_2(\text{PPh}_3)_2$ + $H_2O \xrightarrow{\text{cold acetone}}$ ReO_2 I(PPh₃)₂ + HI + EtOH (11) $2{\mathsf{ReOCI}}_3{\mathsf{(PPh}}_3)_2$ + 6py + H₂O $\overline{{\mathsf{co}}$ ld benzene $\overline{{\mathsf{e}}}}$

 $[{\sf ReOCl}_{2}({\sf py})_{2}]_{2}O + 2{\sf pyH}^{+} + 2{\sf Cl}^{-} + 4{\sf PPh}_{3}$ (12)

(b) Oxidation. Oxo species do not normally react with molecular oxygen. They are oxidized directly to perrhenate by fairly strong oxidants, and no intermediates have been detected. Labeled Re $\mathsf{O}_2(\mathsf{en})_2^+$ is oxidized by CIO+ to ReO₄^{$-$} in which half the oxygen (*i.e.*, 1.91 atoms) is derived from $\text{ReO}_2(\text{en})_2^+$ and half (*i.e.*, 2.16 atoms) from solvent water. Likewise, oxidation by $MnO₄$ and by ozone gives $ReO₄$ in which 1.71 and 1.95 oxygen atoms, respectively, are derived from $\text{ReO}_2(\text{en})_2 + .332$ Surprisingly, ReOCl₄(H₂O) - in 10 M HCI is oxidized rapidly by nitrate ion to ReO₄⁻ according to second-order kinetics ($k = 2.19$ M⁻ sec⁻¹ at 25^o), and the resulting nitrite ion then slowly reacts with Re^V according to eg 13 $(k = 0.644 \, M^{-1} \, \text{sec}^{-1} \, \text{at} \, 25^{\circ})$.³³⁶ ReOBr₄ is oxidized

 $5 \text{ReOCl}_4(\text{H}_2\text{O})^- + 2 \text{NO}_2^- \longrightarrow$ 3ReO_4^- + $2\text{ReCl}_5(\text{NO})^{2-}$ + 10HCl (13)

by dmso to $\text{ReO}_4^{\text{+}}$, 305 and the five-coordinate complex $\mathsf{ReO_2I}(\mathsf{PPh}_3)_2$ by oxygen to $[\mathsf{ReOl}_2(\mathsf{PPh}_3)_2]\mathsf{ReO_4}.^{302}$

(c) Reduction to Re¹¹¹ . Mild reduction of monooxo species proceeds directly to mononuclear Re^{III} with removal of terminal oxide, and no $\mathsf{Re}^{\mathrm{IV}}$ intermediates accumulate in detectable concentrations. This provides the usual synthetic route to octahedral complexes of Re^{III}.³⁰⁶ Thus reaction 14 occurs almost quantitatively in boiling acetonitrile and $POPh₃$ is the only oxidation prod-

trans-ReOCl₃(PPh₃)₂ + MeCN + PPh₃
$$
\longrightarrow
$$

*trans-ReCl*₃(MeCN)(PPh₃)₂ + POPh₃ (14)

uct. The mechanism probably involves oxide transfer between $ReOCl₃(MeCN)(PPh₃)$ and $PPh₃$. Reduction to the same product occurs in lower yield even in the absence of free PPh₃, but the reducing agent is still PPh₃ displaced from $ReOCl₃(PPh₃)₂$ by acetonitrile, and not acetonitrile itself.³⁰⁶ Similarly dppe reduces ReOCI₃(dppe) to [ReCl₂(dppe)₂]Cl,²⁹³ dithionite reduces ReOCl₃(tdpme) to $ReCl_3$ (tdpme), 292 PPh₃ reduces $ReOCl_2(Et_2dtc)$ (PPh₃) to $\text{ReCl}_2(\text{Et}_2 \text{dtc}) (\text{PPh}_3)_2$,³⁰⁰ and PR_2Ph (R = Me, Et, n-Pr, and $n-Bu$) reduce trans-ReOCI₃(PPh₃)₂ to mer- $ReCl₃(PR₂Ph)₃$.³³⁷ Further examples are given in Table VIII. $trans\text{-}ReOCl₃(PPh₃)₂$ is not reduced by PPh₃ in this way.

(d) Disproportionation to Re^{IV} and Re^{VII}. The unknown cations ReO \cdot aq³⁺ and ReO₂ \cdot aq⁺ are presumably very unstable, and all reactions that might generate them lead instead to disproportionation. Thus ReOBr₄⁻ disproportionates in hot water according to³⁰⁵

$$
3\text{ReOBr}_4^- + 5\text{H}_2\text{O} \longrightarrow \text{ReO}_4^- + 2\text{ReO}_2 + 10\text{HBr} + 2\text{Br}^-
$$
\n(15)

and the equilibrium 16 has been established in aqueous hydrochloric acid.²⁹⁵

$$
3\text{ReOCl}_5^{2-} + \text{H}_2\text{O} \rightleftharpoons \text{ReO}_4^{-} + 2\text{ReCl}_6^{2-} + \text{Cl}^{-} + 2\text{HCl} (16)
$$

Very mild reducing agents under otherwise drastic conditions (for example, prolonged heating in a high boiling solvent) sometimes yield complexes of $\mathsf{Re}^{\mathrm{IV}},$ but it is not clear whether by reduction or by disproportionation. Thus ReOBr₄⁻ gives ReBr₆²⁻ in hot hydrobromic acid, 305 ReO(OEt)Cl $_2$ (PPh $_3)_2$ gives both ReCl $_2$ - $(acac)_2$ and Re^{III}CI(acac)₂PPh₃ in boiling acetylacetone, $301,338$ and trans-ReOCI₃(PPh₃)₂ gives ReCI₄(PPh₃)₂ when heated in xylene or propionic acid under hydrogen chloride.³²² When *trans*-ReOX₃(PPh₃)₂ (X = Cl and Br) is heated with carboxylic acids in toluene, it gives a mixture of $ReX_4(PPh_3)_2$, $Re_2X_2(RCO_2)_4$, $Re_2OX_5(RCO_2)(PPh_3)_2$ (in air), 322 and Re₂OCI₃ (RCO₂) (PPh₃)₂ (in the absence of air).^{322,339}

(e) Protonation of Terminal Oxide. Mono-oxo complexes can seldom be protonated,³¹⁵ but trans-dioxo complexes readily yield oxohydroxo species. Thus yellow $\mathsf{ReO}_2(\mathsf{en})_2{}^+$ gives a pink solution of $\mathsf{ReO}(\mathsf{OH})\,(\mathsf{en})_2{}^2{}^+$ in 2 M HCl^{254,310} and purple needles of $[{\sf ReO}({\sf OH})(\sf en)_2]$ -[CIO4J2 separate from perchloric acid. The compound is weakly acidic with a dissociation constant of 5 \times 10^{-4} .³⁰⁷ Crystalline salts of the cations ReO(OH)L₄²⁺ may similarly be obtained by adding acid to $\text{ReO}_{2}\text{L}_{4}^{+}$ (L $= py^{254}$ and $\frac{1}{2}$ dppe²⁹³), and the equilibrium

 $\text{ReO}_2(\text{NCS})_2(\text{PPh}_3)_2^-$ + H⁺ \rightleftarrows ReO(OH)(NCS)₂(PPh₃)₂ (17)

has been established.³⁰⁴

Oxohydroxo species may condense to give dinuclear μ -oxo species. The anion ReO₂(CN) 4^{3} ⁻ is protonated rapidly in 0.5 M HCl to ReO(OH)(CN)₄²⁻ (pK_a = -4.2)^{340,341} which then slowly eliminates water to give $\text{Re}_2\text{O}_3(\text{CN})_8$ ^{4-:340} and the solution of ReO(OH)(en)₂²⁺ in 2 M HCI slowly deposits green crystals of Re_2O_3 - Cl_4 (en) 2^{254} ReOCI(R₂dtc) 2 is converted quantitatively to $Re₂O₃(R₂dtc)₄$ by aqueous sodium carbonate, presumably because the oxohydroxo species formed initially by displacement of chloride condenses immediately.³⁰⁰

At much lower pH oxohydroxo species may be protonated further to either oxo-aquo or dihydroxo species, but substitution usually ensues. Thus ReO_2 I (dppe) (PPh₃) gives $\text{ReOl}_3(\text{dppe})$ when heated with HI, 302 $[\text{ReO(OH)}$ $py_4]^2$ ⁺ gives ReOCI₅²⁻ with boiling 5 M HCI,²⁵⁴ and $\mathsf{ReO}_2(\mathsf{CN})_4{}^{3+}$ gives $\mathsf{ReO}(\mathsf{H}_2\mathsf{O})(\mathsf{CN})_3^3\mathsf{F}^+$ with hot, 40% HF^{342} ReO₂(en)₂⁺, however, gives a blue solution of Re(OH) $_2$ (en) $_2^{3+}$ in 10 M HCl, 254,310 and the strongly acidic cation may be precipitated as the hexachloroplatinate.³⁰⁷ Substitution eventually occurs in hot concentrated HCI to $Re OCl_5^2$ ⁻²⁵⁴ or $Re OCl_4(H_2O)$ ⁻,²⁹⁴ and $Re(OH)_2Cl_4 =$ is not formed.

(f) Other Reactions. Apart from protonation, very few reactions of ligands coordinated to rhenium (V) have been reported. Ethylenediamine in $\text{ReO}_2(\text{en})_2^+$ ex-

changes hydrogen rapidly with D_2O , 335 and trans- $ReOCl₃(PPh₃)₂$ is oxidized by ozone to $ReOCl₃(PPh₃)$ - $(POPh₃)$, 290 The Re= O moiety is reminiscent of $>$ C=O in its reactions with arylamines³⁴³ and aroylhydrazines³⁴⁴ to form Re=N- but is otherwise quite unlike ketonic carbonyl and will not, for example, undergo the Knoevenagel condensation.²⁸² Reactions which generate multiple bonds to nitrogen are discussed in the next section.

4. Nitrido and Organoimido Complexes

A large number of compounds are now known in which rhenium(V) forms a multiple bond to a single atom of nitrogen. Most of these were discovered in Chatt's laboratory and fall into two categories: the organoimido complexes Re(NR) X_3L_2 (R = alkyl, aryl, etc.) formally contain a rhenium-nitrogen double bond and are all octahedral; the nitrido complexes, which contain a formal rhenium-nitrogen triple bond, may be five- or six-coordinate, depending on the size of the other ligands. Thus in the series of complexes ReNCI₂(PR₃)_n, $n = 3$ when PR₃ = PMe₂Ph, PMePh₂, etc., but $n = 2$ when PR₃ = PPh₃. Both types are known for PR_3 = PEtPh₂ and P-n-PrPh₂ and the equilibrium

$$
ReNCI_2(PEtPh_2)_3 \xrightarrow{\longrightarrow} ReNCI_2(PEtPh_2)_2 + PEtPh_2 \quad (18)
$$

exists in solution.³⁴⁵ The other five-coordinate nitrido complexes comprise the square-pyramidal dithiacarbamate $\,$ ReN(Et $_2$ dtc) $_2$ ^{303,346} and the aryls Re- $NAr_2(PPh_3)_2.^{347}$ Both yellow K_3 ReN(CN)₅ and pink K_2 ReN(CN)₄ \cdot H₂O contain six-coordinate rhenium since the latter apparently exists as the aquo ion $\text{ReN}(\text{CN})_4(\text{H}_2\text{O})$ ⁻ in solution³⁴⁸ and as infinite chains in the crystal, in which $\text{ReN}(\text{CN})_4$ units are stacked so that each apical nitride is bridging. The X-ray data proved difficult to refine, and only the Re \cdots Re separation is yet known with any certainty.³⁴⁹ No complexes with either two multiply bound nitrogens or with one nitrogen and one terminal oxide are known, but the μ -oxo-bis(phenylimido) species $\text{Re}_2\text{O}(N\text{Ph})_2(\text{Et}_2\text{dtc})_4$ has been prepared from $\text{Re}_2\text{O}_3(\text{Et}_2 \text{dtc})_4$ and aniline and from $Re(NPh)Cl_3(PPh_3)_2$ and NaEt₂dtc in aqueous acetone.³⁰⁰ Organoimido complexes have been synthesized by the following methods.

(a) Condensation of Rhenium(V) Monooxo Complexes with Primary Amines. Aromatic, but not aliphatic, amines in boiling benzene react according to the equation 343

 $ReOCl_3(PR_3)_2$ + ArNH₂ \longrightarrow Re(NAr)Cl₃(PR₃)₂ + H₂O (19)

and aroylhydrazine hydrochlorides in boiling benzeneethanol give the emerald green chelates (2) . 344 The che-

lates could also be considered as formally rhenium(lll) derivatives (3) , $344,350$ but their infrared spectra suggest that the canonical form (2) predominates. Dibenzoylhydrazine gives the same product as monobenzoylhydrazine since one benzoyl group is lost as ethyl benzoate, but acetyl, p -tosyl, and N -benzoyl- N' -methylhydrazine give a nitrido complex only. Under the same conditions, but in

the presence of a ketone (R_2CO) , the hydrochlorides of both acyl and aroylhydrazines $(R^{t}$ CONHNH₂) give complexes of the corresponding ketone hydrazones (4), rath-

er than the imido complexes.³⁴⁴ The cation [Re(NMe) (Me- $NH₂$ ₄CI]²⁺ has been obtained from the complex reaction of K_2 ReCI₆, MeNH₂, water, and oxygen.³⁵¹

(b) Reaction of $ReOCl_3(PPh_3)_2$ with 1,2-Disubstituted Hydrazines. The alkylimido complexes $Re(NR)Cl_3(PPh_3)_2$ $(R = Me, Et, n-Pr, and c-C₆H₁₁)$ which are not available through reaction 19 may be prepared in high yield from $ReOCl₃(PPh₃)₂$, $[RNH₂NH₂R]Cl₂$, and PPh₃ in benzeneacetone. The other products are [RNH₃]CI and POPh₃. The choice of solvent is critical, and $\text{ReNCI}_2(\text{PPh}_3)_2$ is formed in benzene-ethanol by an obscure pathway. Under the same conditions diarylhydrazines undergo the benzidine rearrangement, but RCONHNHPh $(R = Me)$ and Ph) give $Re(NPh)Cl_3(PPh_3)_2.^{352}$

(c) Reaction of $Re OCl₃(PPh₃)₂$ with Phosphinimines $(Ph_3P=NR)$. This method provides the only route to aroylimido complexes such as $Re(NR)Cl_3(PPh_3)_2$ (R = PhCO) which cannot be made from benzamide by reaction 19 nor from dibenzoylhydrazine by method b. It gives the phenylimido complex when $R = Ph.^{353}$

(d) Reaction of $Re OCl₃(PR₃)₂$ with Phenyl Isocyanate. Phenylimido complexes Re(NR)Cl₃(PR₃)₂ (PR₃ = PPh₃ and $PEt₂Ph$) are formed in boiling xylene with evolution of $CO₂,³⁵⁴$ but the reaction is not general and the known complex $Re(NPh)Cl(Et_2dtc)_2$ cannot be obtained from $ReOCI(Et₂dtc)₂$ in this way.³⁰⁰

Nitrido complexes have been obtained in low yield by the action of sodium azide on $\text{ReCl}_3(\text{PR}_3)_3$, 345 but the only practical synthesis of the $Re \equiv N$ bond involves the reaction of a rhenium(V) monooxo complex with hydrazine hydrochloride^{343,345} or with certain substituted hydrazines.^{344,352} The Re^V=O moiety may be generated in situ, and the complexes ReNX₂(PR₃)_n (X = Cl, Br, and I; $n = 2$ or 3) are conveniently prepared by the slow addition of Re₂O₇ in ethanol to a boiling mixture of $[N_2H_6]X_2$ and PR₃ in the same solvent.³⁴³ ReO(OEt)Cl₂(PR₃)₂ appears to be an essential intermediate since $ReOCl₃(PPh₃)₂$ does not give a nitrido complex in either dry ethanol or in wet or dry tetrahydrofuran, but substitution to ReO(OEt)CI₂(PPh₃)₂ takes place in wet ethanol, which then gives the nitrido complex. Low pH is also essential since N_2H_5C1 gives a lower yield of product than $N_2H_6Cl_2$ and N_2H_4 gives none at all. One nitrogen in hydrazine finally appears as NH_4Cl (and in PhNHNH₃CI as <code>PhNH $_{3}$ CI</code>) and terminal oxide in Re $^{\mathrm{V}}$ $\!=$ O as <code>POPh</code> $_{3}$ 345

Once formed, the Re mN and Re mN R moieties are extremely stable and may persist through fairly drastic substitution reactions. Thus $\text{ReNBr}_2(\text{PPh}_3)_2$ reacts with

excess potassium cyanide to form $\text{ReN}(\text{CN})_5^{3-}$, 348 $\text{ReNCI}_2(\text{PPh}_3)_2$ with aryllithium to form Re- $NAr_2(PPh_3)_2$, 347 and $Re(NR)Cl_3(PPh_3)_2$ with tertiary phosphines and arsines to form $\textsf{Re}\,(\textsf{NR})\, \textsf{Cl}_3\textsf{L}_2.^{352}$ Re(N- $Me)Cl₃(PEtPh₂)₂$ is resistant to HCI but is converted to $\text{ReCl}_4(\text{PEtPh}_2)_2$ by chlorine.³⁵² Terminal nitride is sufficiently basic to coordinate to Lewis acids, and the complexes ReNCI₂(PR₃)₃ split the bridges in Pt₂CI₄(PEt₃)₂ to give $(PR_3)_3Cl_2$ Re \equiv N \rightarrow PtCI₂ (PEt₃) and form adducts with boron trihalides. They may be displaced from these adducts by pyridine.³⁵⁵ The Re-N stretching frequency occurs within the range 1010–1062 cm⁻¹³⁴⁵ and rises by up to 100 cm^{-1} on coordination. In this respect the Re \equiv N moiety is reminiscent of $C \equiv N$ in organic nitriles.³⁵⁵

The complexes 2 are much more reactive than organoimido complexes, and the chelate ring is opened by a number of monodentate ligands (L) such as nitriles,^{344,356} pyridine, phosphine, etc., to give the benzoylazo complexes $Re(N=NCOPh)Cl_2L(PPh_3)_2$, and by the more reactive tertiary phosphines to $Re(N=NC-$ OPh)CI₂L₃.³⁴⁴ These are formally derivatives of rhenium(III), but they do not possess the temperature-independent paramagnetism typical of other rhenium(lll) complexes.³³⁷ The crystal structure of $\text{ReCl}_2(N=NO-$ Ph)(PMe₂Ph)₃ has revealed an essentially linear Re-N-N moiety,³⁵⁷ implying Re-N multiple bonding and consistent with the benzoylazo group acting as a three-electron donor.³⁴⁴ When the benzoylazo complexes are heated with certain tertiary phosphines in methanol, the benzoyl group is removed as $PhCO₂Me$ to give stable dinitrogen complexes of rhenium(I) of the type ReCI(N_2)L₄ (L = PMe₂Ph, 1/2dppe, etc.). 358 Complex 2 (Ar = Ph) reacts with nitric oxide to give $\text{ReCl}_2(\text{NO})(\text{PPh}_3)_2$, and with chlorine to give first $ReCl_3(N=NCOPh) (PPh_3)_2$ and then ReCl₄(PPh₃)₂, benzoyl chloride, and dinitrogen.³⁴⁴

Nitrido and organoimido complexes have been examined by X-ray diffraction in much greater detail than monooxo complexes. The more important bond lengths are given in Table IV with K_2OsNCl_5 included for comparison. The two five-coordinate nitrido complexes may be described as distorted square pyramidal with apical nitride. In ReN(Et₂dtc)₂ the sulfur atoms lie at the corners of a rectangular base with all four Re-S separations approximately equal at 238.8 pm and 5 pm shorter than in $\text{Re}_2\text{O}_3(\text{Et}_2\text{dtc})_4$.³⁴⁶ In both $\text{ReN}(\text{Et}_2\text{dtc})_2$ and $\text{ReNCI}_2(\text{PPh}_3)_2$ all bond distances are significantly shorter than the corresponding distances in six-coordinate complexes.³⁵⁹ The six-coordinate complexes deviate from octahedral geometry in two respects: first, the chlorine-metal distance trans to the nitrogen ligand is longer than the cis chlorine-metal distances though all distances are longer than in ReCl $_6^{2+}$ (235 pm); $^{360-362}$ secondly, ligands cis to nitrogen are bent away from it, $360-362$ and in K₂OsNCI₅ the trans CI-Os-CI angles are 166.0 and 169.1 \degree , 363 These distortions are steric in origin. The strong repulsions which would have operated between nitrogen and ligands in the cis position at 90° are relieved by an expansion of the cis angle. This forces the cis ligands toward the chlorine trans to nitrogen, setting up additional repulsive forces which push the trans ligand away from the metal. The strong trans influence of N^3 - and RN² - is thus predominantly steric. As the number and bulk of the phosphine ligands increases, steric crowding becomes more severe and M-L bonds lengthen further. In ReNCI₂L₃ crowding is so severe when $L =$ PPh₃ that the sixth coordination position cannot be occupied.³⁶³ It was recognized a long time ago that PPh₃ is too bulky to occupy three coordination positions on a

number of metal ions including $\mathsf{Re}^{\text{III}}, \ \mathsf{Re}^{\text{V}}$, $\mathsf{Rh}^{\text{III}}, \ \mathsf{and}$ Ir^{III} (except in association with hydride), and chemical reactions that would otherwise generate $MX₃(PR₃)₃$ take a different course when $PR_3 = PPh_3$, ³⁶⁴

The Re-N-C moiety in Re(NMe)Cl₃(PEtPh₂)₂, Re(N- $C_6H_4OMe-p)Cl_3(PEt_2Ph)_2$, and $Re(NC_6H_4Ac$ $p)$ Cl₃(PEt₂Ph)₂361 deviates by no more than 8° from linearity, indicating sp-hybridized nitrogen. The lengths of the formally double Re=NR bonds are only slightly dependent on R and are ca. 10 pm shorter than the formally triple Re \equiv N bond in ReNCI₂(PEt₂Ph)₃.³⁶² These facts suggest that the order of the Re-N bond is essentially three in both the nitrido and the organoimido complexes, 345, 363 and Ibers attributes differences in Re-N bond distances predominantly to steric factors. The phosphines in $\text{ReNCI}_2(\text{PEt}_2\text{Ph})_3$ are so crowded that they force a substantial lengthening of the Re-N bond compared to both $\text{ReNCI}_2(\text{PPh}_3)_2$ and $\text{Re(NR)Cl}_3(\text{PR}_3)_2$. Electronic effects may, of course, operate in addition, and it has been suggested that the s contribution of nitrogen to the σ component of the Re-N bond is greater in imido than in nitrido complexes, leading to increased strengthening of the Re-N bond in the former.³⁴⁵ Organoimido complexes may also be formulated as nitrene complexes of rhenium (HI) , 353 a canonical form useful in rationalizing certain reactions, e.g., with chlorine.

5. Other Complexes

Complexes of rhenium(V) lacking a terminal oxide, nitride, or imide ligand are rare and are generally rather unstable. Alkali salts of ReF_6^- are well known.^{8,9} $[N_2H_6]$ ReF₆ (μ = 2.13 BM) separates as yellow needles when Re F_6 is reduced with hydrazinium fluoride in liquid HF^{365} and $[NO]$ ReF₆ is obtained from ReF₆ and nitric α oxide.²³² Only one salt of ReCl₆⁻ has been prepared, namely, $[PCI_4]$ ReCl₆ (μ = 2.47 BM), and attempted metathesis with alkali chlorides leads to reduction to ReCI $_6$ ^{2 -}.²⁷⁶ Both CsRe(SCN)₆ (μ = 1.38 BM)²⁷⁷ and $[ASPh_4]Re(OCN)_6$ (μ = 2.70 BM_1 278 have been isolated from melts, and $[AsPh_4]Re(CN)_6$ (μ = 1.50 BM) has been claimed as a product of the reaction of KCN with K_2 ReCl₆ in fused KSCN and subsequent work-up.³⁶⁶ The formation of $Ra(\text{CN})_0 =$ under the above conditions does however, require confirmation. The stable anion $\mathsf{Pa}(\mathsf{CN}) \cdot 3 = \mathsf{an}(\mathsf{an}(\mathsf{Con}(1), 4)) \cdot 4 = \mathsf{and}(\mathsf{NN}) \cdot 4 = \mathsf{and}(\mathsf{ON}) \cdot 4 = \mathsf{and$ $\frac{1}{2}$ can be isolated from water and has been studied extensively.^{8,9,15} Halogens oxidize $\text{ReX}_2(\text{diars})_2^+$ to the eight-
sively.^{8,9,15} Halogens oxidize $\text{ReX}_2(\text{diars})_2^+$ to the eightcoordinate cations $\text{Re}X_4 \cdot (\text{diars})_2 + (X = C I \text{ and } B r)$, ¹⁵ and π -Cp₂ReH to π -Cp₂ReX₂+ (X = Cl, Br, and 1).³⁶⁷ An eight-coordinate dithiacarbamate Re($Et_2 dtc$)₄⁺, isoelec t_0 and t_1 denotes the product with α denotes the products of the products of the products of the products. $\frac{1}{2}$ for the complex reaction $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ (PPh3) of the complex reactions of ReCl(CO)₅ or ReCl₄(PPh₃)₂ $N(\text{CO})_5$ or newstrial complex $\text{O}(4)$ with tetraethylthluram disulfide. \sim Neutral complexes are confined to the free pentahalides and the eight-coordinate hydrides. An adduct ReCl₅PCl₃ (μ = 2.37 BM) said to be formed from rhenium metal and PCI₅369 could be $[PCI_4]_2$ Re₂Cl₈³⁷⁰ or $[PCI_4]_2$ Re₂Cl₉ and requires confirmation.

The hydrides are best prepared by treating ReCI3(PR3)3 with LiAIH4 in tetrahydrofuran or $ReH₇(PR₃)₂$ with excess PR₃, and are also available from $ReOCl₃(PR₃)₂$. They include $ReH₅(PR₃)₃$ (PR₃ = PEt₂Ph, PEtPh₂, and PPh₃), ReH₅(PPh₃)(dppe), and ReH₅(dppe)₂ in which one of the two dppe ligands is monodentate. The complexes $ReH_5(PPh_3)_2L$ (L = PEt_2Ph , AsPh₃, $C_6H_{11}NH_2$, py, and $C_5H_{10}NH$) are obtained by heating $ReH_7(PPh_3)_2$ with L in boiling tetrahydrofuran, and it is remarkable that PPh₃ is not displaced by PEt₂Ph. On the nmr time scale the five hydride protons are equivalent,

and the ³¹P nuclei are likewise equivalent so that the proton resonance always appears as a quartet in ReH₅(PR₃)₃ and as a triplet in ReH₅(PR₃)₂L (L \neq PR_3). ²⁰³ The complexes ReH₅(PAr₃)₃ (Ar = Ph and C_6H_4Me-p) react quantitatively with halogens with evolution of hydrogen to form $ReH_4X(PAr_3)_3$ (X = Br and I) and with $SnCl₂$ to form $ReH₄(SnCl₃)(PAr₃)₃$. Re- H_4 (PPh₃)₃ reacts further with iodine in air to give $ReO₂I (PPh₃)₂$ and with carbon monoxide to give Re- $1(CQ)_{3} (PPh_3)_{2}$.³⁷ The rhenium(lll) hydrides $ReH_3(dppe)_2$ and $ReH_3(dppe)$ (PPh₃)₂ may be protonated reversibly to the cations R eH₄(dppe)₂+ and $ReH_3(dppe)(PPh_3)_{2}^+$, respectively, and may be oxidized with halogen to the same cations.³⁷² All known eightcoordinate complexes of rhenium(V) are diamagnetic.

D. Rhenium(IV)

The fourth oxidation state is particularly stable in association with classical ligands (i.e., predominantly σ donors) and, like other d³ ions, it normally adopts octahedral stereochemistry. Numerous very stable complexes of the types $\text{Re}X_6^2$ ⁻, $\text{Re}X_5L^-$, and $\text{Re}X_4L_2$ are known (Table V), but, in contrast to Tc^{IV} and Mo^{III}, hardly any cationic types have yet been prepared. No simple cationic species appear to exist under any conditions and, in the absence of suitable ligands, $ReO₂(aq)$ seems to be in equilibrium with water at all pH's $[constant Mo (H₂O)₆³⁺].$ The tendency of Re^{IV} to form oxo species has been overemphasized, and there are, in fact, no authenticated species with terminal oxide though several binuclear complexes contain an oxo bridge. Metal-metal bonding in Re^{IV} chemistry is more important than in TC^IV but rather less than in W^{III} . Re-Re bonds thus occur in ReO₂, ReS₂, ReCI4, and a few dinuclear molecular species. Unlike ${\sf Ru}^{\rm V}$ and ${\sf Os}^{\rm V}$, redox reactions of ${\sf Re}^{\rm IV}$ occur with greater difficulty than of adjacent oxidation states, and Re^{IV} does not normally show any tendency to disproportionate.

1. Rhenium (IV) Oxides and Chalcogenides

Hydrated rhenium dioxide (ReO₂·aq) precipitates from water as a brown to black amorphous substance as the ultimate product of hydrolysis of ReCl₆²⁻, disproportionation of the halides or oxohalides of rhenium(V) and rhenium(VI), and reduction of perrhenate in the absence of strong ligands, e.g., by Cr^{II} in sulfuric acid or electrolytically.³⁷⁴ The product formed on a platinum, gold, or mercury cathode in 3 M sulfuric acid retains adsorbed hydrogen and is more easily oxidized than ReO_2 aq of chemical origin.³⁷⁵ The anhydrous oxide may be prepared by heating ReQ_2 aq in nitrogen, 374.376 by the pyrolysis of NH_4 ReO₄, and by reduction of ReO₃ with rhenium at ca. $500^{\circ}, 374.377$ but some care must be taken to obtain a stoichiometric phase. Two crystalline modifications are known. Monoclinic α -ReO₂, known only as a microcrystalline powder, is formed below 300° and is isostructural with $MoO₂$ and $WO₂$ with short, pairwise Re-Re interactions at ca. 249 pm.^{378,379} Orthorhombic β -ReO₂ (ΔH_f°) $= -447.2 \pm 8.4$ kJ mol⁻¹, $\Delta S_f^{\circ} = 48.1 \pm 6.3$ J mol⁻¹ deg -1)³⁸⁰ is formed irreversibly above 300° (460° according to a recent study³⁷⁶), and large single crystals may be grown by vapor transport in the presence of iodine.³⁷⁷ The structure is a prototype and consists of zigzag chains of ReO_6 octahedra sharing edges, themselves connected by sharing corners. All Re-Re separations within the chains are equal at 261 pm but are still short enough to indicate metal-metal bonding.³⁷⁹ Whereas ReO2 \cdot aq is an insulator, 381 both α -ReO $_2$ and β -ReO $_2$ exhibit metallic conductivity in the form of sintered powders with the conductivity of α -ReO₂ about a third that of β -

ReO $_2$.³⁸² Single crystals of β -ReO $_2$ have a resistivity of 100 $\mu\Omega$ cm at 300 K.³⁷⁸ Both modifications possess weak Pauli paramagnetism independent of temperature, 382 and band models that account for their physical properties have been proposed.^{378,382,383}

Rhenium dioxide dissolves in fused alkalis but the melts soon decompose and no oxo anions have been isolated. Ternary oxides $Ln₂ReO₅$ (Ln = a lanthanide) and Ln_4 Re₃O₁₂ (Ln = La and Nd) of unknown structure are formed by heating mixtures of ReO₂ and $Ln₂O₃$, 161.258 and by reducing $La₃ReO₈$ with rhenium.¹⁶¹ Substances such as $Na₂ReO₃$ have also been claimed.²¹⁷ The ternary nitrides M_9 Re₃N₁₀ (M = Sr and Ba), obtained by heating rhenium with M_3N_2 under nitrogen, have metallic conductivity. Their structures are not known.²²¹ A number of phosphides such as Re_3P_4 have been described.³⁷³

The three chalcogenides Res_{2} , 169 ReSe₂, 384 and $\mathsf{ReTe}_2{}^{385}$ may be prepared by heating the elements together in sealed silica ampoules to ca. 1000° and single crystals have been grown by vapor transport.¹⁷⁰ The disulfide $(\Delta G_f^{\circ} = -243 + 0.146T \text{ kJ mol}^{-1} \text{ from Re(c)}$ and $S_2(g)$)³⁸⁶ is by far the most stable phase in the rhenium-sulfur system and is also obtained by heating K ReO₄,³⁸⁷ ReO₂, or ReO₃ with sulfur, by the pyrolysis of Re_2S_7 , and by the action of H₂S on aqueous ReCl_6^2 or ReCI₃.^{168,169} It does not react when heated with excess sulfur or with excess rhenium, and it resists aqueous hydrochloric acid, alkalis, and alkali sulfides.¹⁶⁹ It is oxidized by hypochlorite,³⁸⁸ nitric acid, etc., to perrhenate. Dissociation to the elements begins above 700° in $vacuo$, 169 and there is some scant evidence for the existence of ill-defined intermediate phases.^{168,169,389} No lower sulfides have actually been isolated, but lower tellurides³⁹⁰ as well as Re₂Te₅³⁹¹ might exist. Only one modification of ReS_2 (and ReSe_2) exists between -180 and 1150 $^{\circ}$, 170 and this had long been thought to have the monoclinic structure of MoS₂, ^{169,392} A single crystal X-ray study has, however, shown that ReS_2 is triclinic with the same layer structure as ReSe_2 and is thus isomorphous with neither MoS_2 nor TeS_2 ¹⁷⁰ The structure of ReSe_2 is a distorted version of the CdCI₂ layer lattice. The rhenium atoms within each layer are surrounded octahedrally by selenium and are displaced from the centers of the octahedra in such a way as to form Re_4 clusters, roughly at the corners of a rhombus. The shortest Re-Re separation, 265 \pm 5 pm, is across the diagonal and the rhombi are linked into chains by relatively long $Re-Re$ bonds at 308 ± 5 pm.³⁸⁴ ReTe₂ is orthorhombic and thus differs from both Res_{2} and TrRes_{2} . When me and among noth both hooge and reregional minority. gle, dark purple microcrystalline phase of composition $\text{Re}_3\text{Se}_2X_5$ (X = CI and Br) and Re_2Te_5 , and bromine $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ structures of these substances are unknown but they may be related to the trinuclear rhenium(lll) clusters. All three chalcogenides of rhenirm (IV) are diamagnetic 169,170,384 and behave as semiconductors.¹⁷⁰

2. Rhenium(IV) Halides and Complexes with Metal-Metal Bonds

All four tetrahalides have been reported. Blue ReF⁴ may be prepared by reducing ReF $_6$ with rhenium under carefully controlled conditions³⁹³ and in other ways.⁹ It dissolves in water or methanol to form transient blue solutions which persist for up to a few hours when a little H_2O_2 is added.³⁹⁴ The structure of ReF₄ and the nature of the blue species in solution are unknown.

A number of substances have been described as rhenium tetrachloride but only one, black β -ReCl₄, has been

TABLE IV. Metal-Nitrogen and Metal-Chlorine Bond Lengths in Nitrido and Organoimido Complexes

TABLE V. Mononuclear Complexes of Rhenium(IV)

Tabl e V (Continued)

 $^{\rm 2}$ μ refers to effective magnetic moments at room temperature in BM; DM refers to dipole moments in debyes. $^{\rm b}$ Best method of preparation.

adequately characterized. It was obtained accidentally in 1966 in a preparation of the trichloride, 395 and its chemistry was elucidated using this single batch before a reproducible synthesis²⁶⁸ had become available. The tetrachloride may be prepared by heating $ReCl₅$ and $ReCl₃$ in a sealed tube at 300°, 268 but, since the reaction is already reversible at that temperature, only ReCl₃ remains when ReCl₅ is heated in a stream of inert gas. 268, 269, 395 It is also obtained by the reaction of ReCl_5 with $\text{SbCl}_3{}^{269}$ or C_2Cl_4 (eq 3)²⁷⁰ and rhenium metal with SbCI₅.²⁶⁹ The crystal structure contains dinuclear $Re₂Cl₉$ units similar to $W_2Cl_9^{3-}$, *i.e.*, with two ReCI₆ octahedra sharing a face. The dinuclear units are joined into chains by sharing corners, and the Re-Re separation within each unit, 273 ± 3 pm, indicates a metal-metal bond.³⁹⁶ The structure contrasts with that of technetium tetrachloride in which $TcCl_6$ octahedra share edges to form zigzag chains with the technetium atoms definitely not bonded at a separation of 362 pm.³⁹⁷ Consequently, TcCI4 exhibits ordinary paramagnetism (μ = 3.48 BM), whereas β -ReCI₄ exhibits $TIP²⁶⁸$ The black, amorphous substance obtained by heating ReO_{2} -aq with thionyl chloride is said to be a different form of the tetrachloride, α -ReCl₄, and a trimeric structure has been suggested.³⁹⁸ However, the composition of the product is variable, and it is evidently not a pure substance. 399,400 Its reactions are very similar to those of β -ReCl₄, ³⁹⁹ A third form, γ -ReCl₄, results when $ReCl₅$ is heated with hexachloropropene and transforms to β -ReCl₄ at high temperatures.⁴⁰¹ It remains to be shown that the α - and γ -tetrachlorides are not merely impure samples of β -ReCI₄. Apart from a new synthesis of $ReBr_4$ from $ReCl_5$ and Br_3^{401} and a report of some reactions of Rel_A with pyridine bases 402 the tetrabromide and tetraiodide have not been investigated in recent years. They certainly merit further attention since their structures are completely unknown and their reported preparation from aqueous mineral acid^{8,9} implies unusual behavior for tetravalent rhenium. Only one oxohalide, ReOCI2, has so far been established and is formed in the reaction of ReO_3 with ReCl_5 or ReOCl_4 , and in the pyrolysis of $ReOCl_4(H_2O)$. It has still not been obtained pure but is believed to have a structure that includes linear oxo bridges. At 500° it disproportionates to ReO₃CI, $ReOCl₄$, $ReCl₃$, and rhenium metal. 403 The existence of a n itride, R eNF, 394 is in doubt 404

Most reactions of β -ReCI₄ yield complexes of Re^{III} and Re^v and depend markedly on conditions, but remnants of the dinuclear units usually persist. Thus β -ReCl₄ dissolves in weakly acidified methanol as the violet

 $\mathsf{Re_2} \mathsf{Cl_9}^{2+}$ ion in which rhenium has a formal oxidation state of 3.5. The ion is easily reduced to blue $\mathsf{Re}^{\mathrm{III}}{}_{2}\mathrm{Cl}_{8}{}^{2-}$, and the derivatives $(\mathsf{Re} \mathrm{Cl}_{3}\mathrm{L})_{2}$ (L = PPh₃, AsPh₃, and dth) are formed in the presence of L^{395} Rhenium(IV) complexes are obtained only under anhydrous conditions in the absence of air. Pure pyridine under nitrogen thus gives cis -ReCI₄(py)₂ and $\left[\mathsf{pyH}\right]_2$ Re $_2$ Cl $_8, ^{405}$ but in acetone in the presence of air it gives only $\mathsf{ReO}_2(\mathsf{py})_4$ ⁺ $\text{Re}_2\text{O}_3\text{Cl}_4(\text{oy})_4$, and [pyH]₂Re₂CI₈.³⁹⁵ Prolonged heating in dry acetonitrile gives impure $ReCl_4(MeCN)_2$ and, in the presence of PPh₃, a mixture of ReCI₄(PPh₃)₂, (ReCI₃PPh₃)₂, and some $ReCl_3(MeCN)(PPh_3)_2$.^{405,406} On the other hand, PPh₃ in dry acetone yields $[CH_3COCH_2CMe_2PPh_3]_2$ Re₂Cl₉ and $\text{ReOCl}_3(\text{PPh}_3)_2$, presumably by oxygen abstrac $tion. ⁴⁰⁵$

The simplest fragment expected to be formed in the reaction of β -ReCI₄ with concentrated HCI would be Re $^{\rm IV}$ 2Cl $_{\rm 9}$ - as this ion bears the same relation to β -ReCl $_4$ that $\mathsf{Re}_3\mathsf{Cl}_{12}{}^3{}^-$ bears to ReCl_3 . Although $\mathsf{Re}_2\mathsf{Cl}_9{}^-$ has not yet been obtained in this way, both green $[N-n-Bu_4]$ - Re_2Cl_9 and red $[N-n-Bu_4]Re_2Br_9$ have been prepared by oxidizing $\text{Re}_2 \text{X}_8^2$ with halogen. They are readily reduced to $[N-n-Bu_4]_2$ Re₂X₉ (μ = 1.5 BM for X = Cl and 1.7 BM for $X = Br$) by tin, copper, or mercury in acetone solution or even "spontaneously" when suspended in methanol. Iron carries the reduction further to $[N-n-Bu_4]_2$ Re₂X₈.⁴⁰⁷ The structure of Re_2Cl_9 has been shown to be similar to $W_2Cl_9^{3}$ with a Re-Re separation of ca. 271 pm.⁴⁰⁸ but that of $\text{Re}_2\text{Cl}_9{}^{2-}$ has not been reported. Two other series of rhenium(IV) complexes are known to contain metal-metal bonds. The first comprises the dark green diamagnetic carboxylate complexes Re₂- $OX_5(RCO_2) (PPh_3)_2$ (X = Cl or Br; R = *i*-Bu, sec-Bu, Bz, Ph, C₆H₄OMe-p-, or $n - C_n H_{2n+1}$ with $n = 1, 2, 5, 7, 9$, 11, and 15) of structure 5 in which oxide, chloride, and carboxylate bridge simultaneously despite apparent steric constraints. $322,409$ The Re-Re separation is 252.2 \pm 0.1 pm (for X = CI and R = Et), much shorter than in β -ReCI4 and comparable to the essentially double Re-Re bond in trinuclear Re^{III} clusters, but the bite of the bridging ligands may be partly responsible for forcing the rhenium atoms so close together.⁴⁰⁹ The most remarkable feature of the complexes 5 is their unusual stability. Solutions in aprotic solvents resist chlorine, bromine, thionyl chloride, and boiling acetic acid for several days, and the oxo bridge is protonated reversibly by concentrated HNO₃ or HCIO₄.³²² Excess sodium methoxide displaces chloride without further change to give purple

 $Re₂OCl₄(OMe) (RCO₂) (PPh₃)₂$ in which OMe is possibly bridging.³⁶⁴ The second series, purple Re₂O- $Cl_3(RCO_2)_2(PPh_3)_2$ (R = sec-Bu, *i*-Bu, *tert*-Bu, Bz, and $n - C_n H_{2n + 1}$ with $n = 2, 3, 5, 7,$ and 11) of structure 6,

were initially formulated without the oxygen bridge, 322 but the correct structure was established by X-ray diffraction for R = Et (Re-Re, 251.4 \pm 0.1 pm) giving each rhenium atom a formal oxidation state of 3.5.³³⁹ Like Re_2Cl_9^2 ⁻ the magnetic moments (μ = ca. 2.0 BM) correspond to one unpaired electron per molecule. In contrast to 5, the complexes 6 are highly reactive and are oxidized by iodine, cold nitric acid, etc., to unstable products, and decompose slowly in the solid state.³²²

3. Complexes without Metal-Metal Bonds

Most compounds of rhenium(IV) lacking metal-metal bonds are stable neutral or anionic complexes of classical ligands with the metal in octahedral coordination. Their reactions usually give other complexes of rhenium(IV) or are destructive. Variable amounts of Re^{IV} complexes are formed as by-products in several reactions of Re^{∇} and Re^{III} as, for example, trans- $Recl_4(PPh_3)$ when the ligands include Cl^- and PPh_3 , 364 and $ReCl₆²$ in the presence of HCI.^{285,295,305} Mononu- ϵ is the mass of ϵ in the processed of the mass in the complexes of ϵ and V have been synthesized by the following routes and are described in Table V.

(a) Reduction of Perrhenate in Halogen Hydracid. Whereas reduction of ReO_4^+ in weakly complexing acids yields Re^V oxo species²⁹²⁻²⁹⁹ or ReO₂·aq,³⁷⁴ moderately strong reducing agents (I^-, Sn^{II}) in concentrated HX lead to the formation of $\text{Re}X_6^{2-}$ ions (X = Cl, Br, and $11.8,9,14$ Yields exceed 90% when the reducing agent is hypophosphorous acid.⁴¹⁰ The hydroxo species $Re(OH)X_5^2$ have also been isolated from such solutions, and Re(OH) Br_5^2 is obtained, for example, by the electrolytic reduction of KReO₄ in HBr.⁴¹¹ These species are in equilibrium with the μ -oxo dimers Re₂OX₁₀⁴⁻, and the thermodynamic functions for the equilibrium

$$
\text{Re}_2 \text{OCl}_{10}^{4-} + \text{H}_2 \text{O} \implies 2 \text{Re}(\text{OH}) \text{Cl}_5^{2-} \tag{20}
$$

have been determined.⁴¹²

The orange coloration, which develops when perrhenic acid is reduced in the presence of thiocyanate and which has long been used for the spectrophotometric determination of rhenium at the microgram level, was once attributed to Re^V oxo complexes such as ReO₂(SCN)₄3⁻. The absorption spectrum is, however, identical with that of either pure $\mathsf{Re}(\mathsf{SCN})_{6}{}^{2+}$ or a mixture of $\mathsf{Re}(\mathsf{SCN})_{6}{}^{2+}$ and $\text{Re}(\text{SCN})_{6}$ ⁻ depending on conditions, and the orange color is evidently due to one or both of these species.²⁷⁷ Although several oxo-thiocyanato complexes of $\mathsf{Re}^{\mathsf{IV}}$ are mentioned in the literature, 413 none has been adequately characterized.

(b) Reduction of Rhenium(V) Compounds by Mildly Reducing Ligands. The reduction of ReCI₅ to ReCI₄L₂ was discussed in section IV.C.2(b). The salt $[NEt₄]ReCl₅$ obtained from $[NEt₄]Cl$ and ReCI₅ is remarkable in that the anion is polymeric and has a visible and far-infrared spectrum consistent with chains of $ReCl_6$ octahedra sharing cis edges $(i.e.,$ as in $TcCl₄)$. It dissolves only with reaction.²⁸⁴ The reduction or disproportionation of Re^V monooxo species discussed in section IV.C.3(c) often gives mixtures of oxidation states, but trans- $\text{ReCl}_4(\text{PPh}_3)_2^{322}$ by cis- and trans-ReX₂(acac)₂ (X = Cl, Br, and I) are conveniently prepared by this route. The latter $(X = CI)$ had originally been formulated as a dimer with bridging acetylacetonates on the basis of a spurious molecular weight measurement but was later shown to be monomeric both by X-ray diffraction in the solid state and by molecular weight and mass spectral measurements in solution and in the gas phase.³³⁸

(c) Ligand Substitution in Rhenium(IV) Complexes. The anions ReX_6^2 are extremely inert to substitution.³³³ Exchange with $*X^-$ ($*X = {}^{36}Cl$ and ${}^{82}Br$) is slower by a factor of 20–50 in ReX $_6^2$ ⁻ than in TcX $_6^2$ ⁻,⁴¹⁴ and for $ReCl_6^2$ ⁻ in 7 *M* hydrochloric acid 50% exchange occurs only after 1405 hr at 50°.³³⁴ Attempts to fit exchange rates to a rate equation are rendered difficult by the necessity to work at high H^+ and Cl^- concentrations, and the best fit is obtained with the expression $k[\text{ReCl}_6^2^-][\text{H}^+]$, where $k = (0.659 \pm 0.221) \times 10^{-5}$ M^{-1} sec⁻¹ at 90°.³³⁴ It is thus possible to precipitate mixed crystals K_2 ReBr₆-K₂SnCl₆ and K₂ReBr₆-K₂OsCl₆ with concentrated HCI which are free from $MCI_nBr_{6-n}^{2-\alpha}$, 415 When K_2ReCl_6 is boiled with a mixture of concentrated HCI and HBr for several hours, all the mixed anions ReCI_nBr_{6-n}²⁻ are obtained and may be separated chromatographically.⁴¹⁶ Much faster halogen exchange occurs in the solid state at 200° (10⁻¹-10⁻² min⁻¹),^{417,418} and substitutions by $CNO - 278$ and $SCN^{-1/419}$ have been effected in molten salts. The aquation of ReCl₆²⁻ in dilute acid is exceedingly slow ($k_1 = 9$) \times 10⁻⁹ sec⁻¹ at 35.0°) and is catalyzed by mercury(II).⁴²⁰ That of ReBr₆²⁻ is rather faster ($k_1 = 1.78 \times$ 10^{-6} sec⁻¹ at 35.0° in 0.2 M HCIO₄) with activation parameters $\Delta H^* = 109 \pm 4.6$ kJ mol⁻¹ and $\Delta S^* = -25$ \pm 12 J deg⁻¹ mol⁻¹. The activation enthalpy is thus higher than for the aquation of $IrBr_6^{3-}$ ($\Delta H^* = 94.6$ kJ mol^{-1}).⁴²⁰ K₂ReI₆ dissolves in 20% H₂SO₄ to give redbrown Re(OH) 15^{2} which may be extracted with ether.²⁵³ The anions ReX_6^2 are seldom used for the synthesis of other rhenium(IV) complexes, but the more labile singly charged or neutral species [NEt₄]ReCI₅ and Re- Cl_4 (MeCN)₂, available from ReCl₅, are useful intermediates. The bridge splitting reaction of [NEt4]ReCI₅ with L thus provides a route to $ReCl_5L^+, ^{284}$ and the complexes

 $ReCl₄L₂$ are readily obtained by removing MeCN from the equilibrium²⁸²

$$
ReCl_4(MeCN)_2 + 2L \implies ReCl_4L_2 + 2MeCN \qquad (21)
$$

Since the complexes ReCl₄(amidine)₂ do not react with PPh₃, pyridine displaces one PPh₃ from ReCl₄(PPh₃)₂,³²² and the equilibrium 21 lies farther to the right for $L =$ PPh₃ than for AsPh₃ or SbPh₃,²⁸² it follows that rhenium (IV) has an affinity for hard bases in the Pearson sense. A dimer $[NEt₄]₂[(ReCl₅)₂pz]$ is obtained from Re- $Cl_5(MeCN)$ - and 0.5 mol of pyrazine.²⁸⁴

(d) Reactions of Ligands Coordinated to Rhenium(IV). Since complexes of rhenium(IV) are both inert and stable, reaction with bases may result in nucleophilic attack on an activated ligand rather than in substitution. The nitrile moiety in $ReCl_4(RCN)_2$ is thus sufficiently polarized to add primary aromatic amines $(ArNH₂)$ across the triple bond giving complexes of N-substituted amidines, Re- $Cl_4[NH=C(NHAr)R]_2$. Primary aliphatic alcohols likewise yield complexes of imidate esters, Re- $Cl_4[NH=C(OR')R]_2$, from which the ester moiety may be displaced with PPh₃.²⁸² Complexes of the type ReX₄L₂ have been synthesized by pyrolysis of the salts [LH]₂ReX₆, where L is a pyridine base⁴²¹ or a phosphine.⁴²²

(e) Oxidation of Mononuclear Rhenium(lll) Compounds with Halocarbons. The octahedral complexes $ReCl₃(RCN)(PPh₃)₂$ are oxidized almost quantitatively by warm carbon tetrachloride according to the equation

trans-ReCl₃(RCN)(PPh₃)₂ + CCl₄
$$
\longrightarrow
$$

\ntrans-ReCl₄(PPh₃)₂ + RCN + ¹/2C₂Cl₆ (22)

The formation of C_2Cl_6 suggests that trichlorocarbene radicals are generated in the reaction and the reacting species promote the polymerization of styrene. However, the rate is not affected by radical initiators or scavengers but increases with CCI4 concentration and is retarded by free nitrile. It thus seems that the rate-determining step is displacement of RCN by CCI4, followed by rapid homolytic dissociation of the CI-CCI₃ bond. Mixed halide complexes $\text{Re}X_nX'_{n-n}L_2$ may be prepared by heating $\textsf{ReX}_3(\textsf{RCN})$ L₂ with \textsf{CX}_4' (X, $\textsf{X}' = \textsf{CL}$ or Br; L = PPh₃, AsPh₃, or SbPh₃).³⁰⁶ Similarly, the complexes mer- $MCI_3(PR_3)_3$ are oxidized by CCI₄ to trans-MCI₄(PR₃)₂ when $M =$ Re and Os, but not Ru or $Ir.337,423$ Substituted trichloromethanes such as C_2Cl_6 , CCI₃CO₂H, and PhCCI₃ are equally effective oxidants, but dichloromethanes are generally inert. The radical fragments from C_2Cl_6 , 306 CHCI₃, and CHCI=CCI₂⁴²³ generate C₂CI₄, CHCI₂CHCI₂, and C2H2CI4, respectively. Hydrides are well known to react with $|CC|_4$ (or $CHCl_3$) to yield chloride complexes and CHCI₃ (or CH_2Cl_2) and the apparently seven-coordinate ReHX₂ (acac) (PPh₃)₂ may be obtained from ReH₂ (acac) $(PPh_3)_2$ in this way.⁴²⁴

(f) Other Oxidations. A number of rheni $um(HII)$ ^{337,372,424} and rhenium(I)⁴²⁵ complexes are oxidized by halogen to rhenium (IV) (Table V), and $\text{Re}_2\text{Cl}_8{}^{2-1}$ gives $\text{Re}(\text{SCN})_6^2$ with thiocyanate in acetone.⁴²⁶ The anion ReCl₄(MeCN)₂⁺ is oxidized quantitatively by Fe³⁺, Cu^{II}, cold HNO₃, and I₂ to ReCl₄ (MeCN)₂,²⁸² and the hydrides $ReH_7(PR_3)_2$, $ReH_4I(PR_3)_3$, and $ReHI_2(acac)$ - $(PPh_3) 2^{424}$ give ReX₄ (PR₃)₂ with halogen hydracids.

The physical properties of the hexahalorhenates have been studied in considerable detail.¹⁵ The enthalpy of formation of $\mathsf{ReCl}_{6}{}^{2+}\cdot$ aq has been calculated from the enthalpy of hydrolysis to ReO₂.2H₂O(s) (ΔH° = -310 ± 1 kJ mol⁻¹) and of oxidation by hypochlorite to ReO₄⁻ \cdot aq (ΔH° $=$ -682.5 \pm 3.4 kJ mol⁻¹) as -765.8 \pm 3.4 kJ $mol^{-1.427}$ This compares with the enthalpy of formation

of K_2 ReCl $_6$ (c) of -1311 kJ mol $^{-1}$. Single-crystal X-ray studies have shown K_2 ReCI₆ and K_2 ReBr₆ to have the cubic structure of K_2PtCl_6 with Re-Cl, 235.3 \pm 0.4 pm, and Re-Br, 248 \pm 0.5 pm, and that all halogen atoms are crystallographically equivalent.⁴²⁸ The structure of $[p-MeC_6H_4NH_3]_2$ ReCl₆ is similar (Re-Cl, 235 \pm 2 pm). ⁴²⁹ The halogen pure ngr spectra of K_2 ReCI₆ and K_2 ReBr₆ at room temperature consist of a single resonance for each halogen isotope in keeping with O_h symmetry for the ReX_6^2 ⁻ ion, but transitions to phases of lower symmetry occur on cooling and cause the resonances to split. The iodine resonance in K_2 ReI₆ is a triplet at all temperatures, implying at least three iodine environments.⁴³⁰ The positive temperature coefficient of the nqr frequency in WCl_{6}^{2} and ReCl $_{6}^{2}$ has been interpreted on the simple assumption that halogen to metal $p\pi - d\pi$ bonding is proportional to the number of vacancies in the t_{2g} set of metal 5d orbitals and is thus larger for ReCl $_{6}^{2}$ - than for $PtCl₆² - .430$ This argument has, however, been disput $e^{(431.432)}$ and an alternative interpretation is based on the temperature dependence of the soft liberation mode in the solid.⁴³¹ Volume effects are also pertinent.⁴³³ The $\frac{1}{2}$ charge on M in MCl_{s}^{2} has been estimated by extended Huckel molecular orbital calculations to de- $\frac{1}{2}$ crease from 1.32 on Ra^{IV} to 0.69 on Pr^{IV} 434 in excellent agreement with values of 1.34 and 0.70 calculated from nar results⁴³². The 4f_{7 /2} electron binding energy rises steadily from 44.5 eV in K_2 ReCI₆ to 75.6 eV in K_2 PtCI₆, reflecting the increasing positive charge of the nucle- μ and the non-transition of the total (i.e., $\pi + \pi$) covalency of the M-Cl bond increases rather more rapidbovalency of the M of bond moredoco rather increments.
Iv than had been predicted, 4^{34} from 0.45 in ReCls²⁺ $(t_{2}-3)$ to 0.55 in PtCI $s^{2}- (t_{2}-6)$ and that the π component $\frac{1}{2}$ decreases from 0.097 to zero.⁴³²

The vibrational spectra of all four hexahalorhenates have been recorded in the solid state and the force constants calculated according to modified Urey-Bradley (UBFF) and valence force fields (Re-Cl, 145 and 171 N m^{-1} , respectively.^{432,436} The M-Cl force constant (UBFF) in MCI₆²⁻ rises slowly from 125 N m⁻¹ for M = Hf to 159 N m⁻¹ for $M = Pt$ as the total covalency of the M-CI bond increases.⁴³² Hexahalorhenates of long-chain aliphatic amines are readily soluble in organic solvents,⁴³⁷ and the infrared active fundamentals, ν_3 and ν_4 , of a solution of $[N(n-C_7H_{15})_4]_2$ ReX₆ in benzene occur at 297 and 170 cm⁻¹, respectively, when $X = CI$; and ν_3 at 208 cm⁻¹ when $X = Br⁴³⁸$

The electronic spectra of hexahalorhenates in aqueous solution,^{15,439} in nonaqueous solvents and halide melts⁴⁴⁰ and in the solid state⁴⁴¹ have been assigned, and the energy level diagram of $Re⁴⁺$ in an octahedral crystal field has been deduced from the sharp line spectra of Re^{IV} in crystals of K₂PtCI₆ and Cs₂ZrCI₆ at 4 K.⁴⁴² The crystal field parameter Δ_0 for ReCl₆²⁻ is 29,000 cm⁻¹ and compares with 25,000 cm⁻¹ for TcCl₆²⁻ and 18,000 cm⁻¹ for MnCl₆^{2-128,439} Rhenium(IV) in single crystals of $Cs₂ZrBr₆, ⁴⁴³ Cs₂ZrCl₆, and Cs₂HfCl₆ shows$ sharp line luminescence at low temperatures which in the last two cases consists of four lines originating in $\Gamma_7(^{2}T_{2g})$ and terminating in the $\Gamma_8(^{4}A_{2g})$ ground state.⁴⁴⁴ A very detailed review of the electronic and esr spectra of K_2 ReCl₆ is available.⁴⁴⁵

Hexahalorhenates are generally magnetically nondilute, and both K_2 ReCI₆ and K_2 ReBr₆ are ordered antiferromagnetics at 4.2 K with Néel temperatures of 11.9 and 15.3 K, respectively.^{15,446} Neutron diffraction indicates that this is a result of antiferromagnetic stacking of ferromagnetic sheets along the axis perpendicular to (001).⁴⁴⁶ Large cations may cause some dilution,^{447,448} but the

Re \cdots Re separation does not necessarily increase. The closest Re \cdots Re separation in $[p-MeC_6H_4NH_3]_2$ ReCl₆, for example, is virtually the same as in K_2 ReCI₆ although the distance between layers of rhenium atoms increases from 570 pm in the potassium salt to 1252 pm in the p toluidinium salt.⁴²⁹

Solutions of K_2 ReCI₆ in LiCI-KCI melts are stable indefinitely at 450° although a little rhenium metal is formed by disproportionation during the dissociation process. Electrolytic reduction gives rhenium metal without accumulation of appreciable concentrations of intermediate oxidation states and the apparent standard electrode potential $E^0(\text{Re}^{IV}/\text{Re}^{0})$ at t° C is -0.389 + (5.6 \times 10^{-4}) (t - 450) V relative to a standard Pt^{II}/Pt⁰ reference electrode.¹⁴⁵ One-electron polarographic reduction of ReCI $_6^2$ ⁻ in aqueous mineral acid is now firmly established,⁴⁴⁹ and the kinetics of the system have been carefully studied.⁴⁵⁰ There is less evidence that the reduction product actually is $ReCl₆^{3–}$ although this seems plausible in view of the existence of the equilibrium $ReCl_4(MeCN)_2$ $+ e^- = \text{ReCl}_4(\text{MeCN})_2^{\text{-}}$. ²⁸² Reduction of ReX₆²⁻ with formic acid generates ReX(CO)₅ ($X =$ Cl, Br, and I) in high yield and thus provides one of the best available routes to compounds of rhenium(1).⁴⁵¹ The chemical effects of 185 Re(n, γ)¹⁸⁶Re reactions in solid hexahalorhenates have been investigated in detail^{418,452} but will not be discussed here.

All known complexes $\text{ReX}_4(\text{PR}_3)_2$ have the trans configuration, ^{453, 454} and the single Re-Cl stretching frequency in the far-infrared at 320 \pm 2 cm $^{-1}$ is almost independent of PR₃ but is ca. 20 cm⁻¹ higher than in $ReCl₃(PR₃)₃$, ^{453, 455} The stretching frequency increases from $ReCl_4(PR_3)_2$ to $PtCl_4(PR_3)_2$ by ca. 20 cm⁻¹.⁴⁵³ A series of ligand to metal charge-transfer bands commence at ca. 17,000 cm⁻¹, at lower energies than in $ReCl₆²$, 455,456 The Re-CI and Re-P bond lengths in $ReCl_4(PMe_2Ph)_2$ are 233.1 \pm 0.3 and 250.5 \pm 0.3 pm, respectively, and, whereas the M-Cl separations in $MCI_4(PMe_2Ph)_2$ vary by only about 1 pm from $W^{\rm IV}$ to Ir^{IV}, the M-P separation falls steadily by ca. 5 pm for each successive element.⁴⁵⁷ This trend may be interpreted satisfactorily in terms of the form of the overlap integrals and on the plausible assumption that some chlorine to metal π -bonding is to be expected but little if any π back-bonding from the metal to phosphorus.⁴⁵⁴ The $4f_{7/2}$ electron binding energies in $MCI_4(PR_3)_2$ are approximately the same as in MCI $_6^2$ ⁻ and are independent of PR₃ but rise steadily from $M = W$ to $M = Pt^{435}$ The effective magnetic moments of octahedral complexes of rhenium(IV) at room temperature fall within the range 3.1-3.8 BM, rather less than the spin-only value of 3.86 BM (Table V). This range is clearly higher than for any other oxidation state (Table I), and magnetic susceptibilities can therefore be used empirically as a fairly reliable diagnostic test for mononuclear rhenium (IV).

In addition to the mononuclear complexes described above (Table V) and the polymeric $ReCl_5^-$ ion, rhenium (IV) forms a number of μ -oxo species of which only $\mathsf{Re}_2\mathsf{OCl}_{10}{}^{4-}$ has been thoroughly characterized. 15,458 The $\mathsf{Re}\textrm{-O}\textrm{-}\mathsf{Re}$ moiety is linear¹⁵ as in $\mathsf{Os}_2\mathsf{O}\mathsf{Cl}_{10}^{4\,\textrm{-}\,4\,59}$ but in contrast to $\mathsf{W}_2\mathsf{OCl}_{10}$ ^{4-,460} and the linearity has been rationalized by molecular orbital calculations.⁴⁶¹ When $\mathsf{Re}_2\mathsf{OCl}_{10}{}^{4-}$ is treated with hydrogen peroxide or other oxidants in acid solution, it forms a blood-red species formulated as Re₂(OOH)Cl₁₀³⁻ with a μ -hydroperoxo bridge.⁴⁵⁸ A more plausible formulation would perhaps be as a μ -superoxo complex of $\mathsf{Re}^{1 \vee}$ analogous to $\lfloor (NH_3)_{5}Co-O-O-Co(NH_3)_{5} \rfloor^{5}$. The anion may be precipitated as the paramagnetic cesium salt (μ = 3.57 BM)

and thus contrasts with the nearly diamagnetic
Re₂OCI₁₀^{4–}.⁴⁵⁸ Other μ -oxo species include $\mathsf{Re}_2\mathsf{OCl}_{10}$ 4 – . 458 \int Other μ -oxo species include $\mathsf{Re}_2\mathsf{O}(\mathsf{OH})_6(\mathsf{LL})_2^{4-}$ (LL = oxalate, citrate, tartrate, and gallate), $\text{Re}_2\text{O}(\text{OH})_2(\text{LL})_4^4$ CL = oxalate and $\frac{1}{4}$ EDTA), 8,14,15 Re₂O(OH)₂(SO₄)₂(LL)₄⁴⁻, ⁴⁶² and possibly $Re(OH)_4(LL)^{2-}$ (LL = oxalate and gallate),¹⁴ but they all require confirmation. Some ill-defined phthalocyanine complexes have also been claimed.⁴⁶³ Rhenium(IV) may be incorporated in heteropolyacids by treating $\sin W_{11}O_{39}$ ⁸⁻ and $P_2W_{17}O_{61}$ ¹⁰⁻ with ReCl₆²⁻ under nitrogen. The blue products $\mathsf{SiRe^{IVWVI_{11}O_{39}{}^{4-}}}$ and $\mathsf{P_{2}}$ - $\mathsf{Re}^{\text{IVWVI}}$ 17 O_{61} ^{6 –} are oxidized by air to the purple Re^{VI} heteropolyacids SiRe^{VI}W^{VI}₁₁O₄₀⁴⁻ and P₂Re^{VI}W₁₇O₆₂⁶⁻, but further oxidation only yields perrhenate.⁴⁶⁴

E. Rhenium(lll)

The chemistry of Re^{III} is intermediate between its isoelectronic neighbors W^{II} and Os^{IV} . It forms a large number of mononuclear octahedral complexes similar to those of Os $^{\mathrm{IV}}$ and OS $^{\mathrm{III}}$ in which classical σ donors coexist with weak π acceptors. They are mostly of the types ReX₂L₄⁺ and $\text{Re}X_3L_3$, and rarely $\text{Re}X_4L_2^-$. It also forms two types of metal atom clusters formally derived from dinuclear $\textsf{Re}_2 \textsf{X}_8^2$ and trinuclear $\textsf{Re}_3 \textsf{X}_{12}^3$. In this respect it strongly resembles Mo^{II} and W^{II} where the clusters are based on $Mo_2X_8^{4-}$ and $M_6X_8^{4+}$. Little is known about Tc^{III}, but there appear to exist important differences with Re^{III} in detail, in particular the relative reluctance of Tc^{III} to form stable cluster compounds.

It was once believed that the tendency of Re^{III} to form metal-metal bonds is so great as to virtually preclude the existence of mononuclear species. However, the synthesis of octahedral complexes by a variety of routes has now established that the most common stereochemistry of Re^{III} is monomeric octahedral and that the stability of cluster compounds is probably kinetic. Thus both $\text{Re}_3\text{Cl}_{12}^{3-}$ and $\text{Re}_2\text{Cl}_8^{2-}$ may be boiled with concentrated hydrochloric acid without reaction and, under drastic conditions, it is possible to convert trinuclear to dinuclear, and dinuclear to mononuclear complexes, but not vice versa.

No oxides of rhenium(lll) have been established with certainty, but a ternary phase, L_1R_2 , has been mentioned briefly,²¹⁷ and La₈Re₆O₂₁ is said to be formed in the reduction of $La_4Be_3O_{12}$ with hydrogen.¹⁶¹ Hydrolysis of rhenium trichloride under nitrogen^{465,466} and reduction of perrhenate with borohydride⁴⁶⁷ gives a hydrated oxide whose composition approaches $\text{Re}_2\text{O}_3 \cdot 3\text{H}_2\text{O}$. It is slowly oxidized by water and rapidly by air to ReO_2 , and it loses a molecule of water at 200° in vacuo. It disproportionates to ReO₂ and Re at higher temperatures, 465 and anhydrous Re_2O_3 cannot be made. 213,465 The standard enthalpy of formation of Re_2O_3 aq has been calculated from the enthalpy of hydrolysis of ReCl₃ by base (ΔH°) = -227.2 ± 5.9 kJ mol⁻¹) as -498.3 kJ mol⁻¹ and the free energy of formation as -425.1 ± 2.5 kJ mol $^{-1}$.⁴⁶⁶

1. Rhenium(lll) Halides and Complexes of Trinuclear Clusters

The property of rhenium(III) to form stable trinuclear clusters was discovered in 1963, and a large number of such complexes were then prepared in the laboratories of Fergusson and Cotton.¹⁵ Their structures are based on the $\text{Re}_3 X_9$ moiety in which an equilateral triangle of rhenium atoms is held together by strong metal-metal bonds and by three coplanar halogen bridges beyond the edges of the triangle. Each rhenium atom carries one terminal halogen above and one below the $\text{Re}_3 X_3$ plane. A third terminal position within the plane may be occupied by a

TABLE Vl. Trinuclear Complexes of Rhenium(lll)

ligand L or X, or may remain vacant. Each rhenium atom is thus seven-coordinate but is six-coordinate (deficient) when the terminal in-plane ligand is missing. There thus exist derivatives such as $\mathsf{Re}_3\mathsf{X}_{12}{}^3{}^-$, $\mathsf{Re}_3\mathsf{X}_9\mathsf{L}_3$, $\mathsf{Re}_3\mathsf{X}_{11}{}^2{}^-$ (one deficient rhenium atom), and $\text{Re}_3 \text{X}_{10}$ ⁻ (two deficient rhenium atoms). Most known trinuclear derivatives together with all the Re-Re separations that have been determined are given in Table Vl. The separation of deficient from nondeficient rhenium atoms is always shorter than other Re-Re separations. In the crystalline trihalides the in-plane position is occupied by a halogen atom of a neighboring $\text{Re}_3 X_9$ unit so that in ReCl_3 the units are joined to form infinite sheets⁴⁶⁸ and in Rel₃ to form zigzag chains with a third of the rhenium atoms deficient.⁴⁶⁹ The linking of Re_3Br_9 units in ReBr_3 is uncertain, and the structure of the involatile trifluoride, said to be formed when a rhenium wire is exploded in $\mathsf{SF}_{6}, ^{173}$ is unknown.

Derivatives of trinuclear clusters may generally be prepared only from the trihalides and have never been obtained from either mono- or dinuclear rhenium(III). Rhenium trichloride ($\Delta H_{\rm f}^{\circ}$ = -264 \pm 3 kJ mol $^{-1}$, $\Delta G_{\rm f}^{\circ}$ = -190 ± 3 kJ mol⁻¹)⁴⁷⁰ is formed almost quantitatively when ReCI₅ is heated in a stream of nitrogen²⁶⁷ and rhenium tribromide (ΔH_f° = -164 \pm 3 kJ mol⁻¹, ΔG_f° $=$ -130 \pm 3 kJ mol⁻¹)⁴⁷⁰ is obtained by direct union of the elements at 600° under pressure,⁴⁷¹ but it is difficult to obtain a pure product in this way. 472 A better synthesis involves the pyrolysis of $\mathsf{Ag_2ReBr_6}.^{473,474}$ Rhenium triodide may be prepared by reducing perrhenate with hydriodic acid, 475 by heating ReI4 or $(\mathrm{NH}_4)_2\mathrm{Rel}_6$ with iodine, $475,476$ and by treating ReCI $_3$ with a large excess of BI₃.⁴⁷⁷ It loses iodine under reduced pressure to form poorly characterized lower iodides.⁴⁶⁹ All the mixed halides $\text{Re}_3\text{Cl}_n\text{Br}_{9-n}$ and $\text{Tr}_n\text{Re}_{3-n}\text{Cl}_9$ are apparently formed when appropriate mixtures of the binary halides

are heated together, and the molecular ions have been identified in the mass spectrometer.⁴⁰⁰ Pure Re₃Cl₃Br₉ in which chlorine occupies the bridging positions, may be prepared by treating ReCI₃ with excess BBr₃, but attempted sublimation results in redistribution of the halogen atoms to give Re₃CIBr₈.⁴⁷⁷ Only one reaction, namely the formation of $\text{Re}_3\text{Cl}_9(\text{PR}_3)_3$ in the pyrolysis of $ReOCl₃(PR₃)₂$, by-passes the intermediacy of a trihalide.

The $\text{Re}_3 X_9$ moiety survives moderately severe physical conditions. Rhenium trichloride thus dissolves in fused dimethyl sulfone as the solvated trimer Re₃CI₉⁴⁷⁸ and has a molecular weight of 885 \pm 60 in sulfolane.⁴⁶⁸ The most abundant species in the mass spectrum is $\text{Re}_3\text{Cl}_9 + .^{479}$ The trichloride $(\Delta H_{\text{subI}} = 204 \pm 6 \text{ kJ mol}^{-1}$ at 277°) and tribromide $(\Delta H_{\text{sub}} = 199 \pm 8 \text{ kJ} \text{ mol}^{-1}$ at 277°) sublime to essentially pure $\text{Re}_3 X_9$ vapor, 480 and an electron diffraction study of Re₃Br₉ at 300-400°, reveals D_{3h} symmetry.⁴⁸¹ Both ReCl₃ and ReBr₃ dissolve in concentrated HX to give the ions $[Re₃X_{9+n}$ aq $]^{n}$ (n = 0-3). and large cations (M^+) precipitate M_3 Re $_3X_{12}$, 482-484 M_2 Re₃X₁₁,^{482,485,486} and MRe₃Br₁₀,⁴⁸² In addition, oxidation of $ReBr_3$ in HBr may lead to the precipitation of M_2 ReBr₆, MReOBr₄, MReO(H₂O)Br₄,³⁰⁵ and M_2 Re₄Br₁₅. The last substance contains equimolar amounts of $ReBr_6^{2-}$ and $Re_3Br_9(H_2O)_3$.^{469,487} Both $Re_3Cl_{12}^{3-}$ and $\text{Re}_3\text{Br}_{12}^{3-}$ have D_{3h} symmetry in the cesium salts. 483, 484 The deficient rhenium atoms may or may not be associated with a molecule of water in the crystal. Thus $Cs₂Re₃Br₁₁$ is anhydrous and the out-of-plane BrReBr angle closes from 159° at the nondeficient atoms to 133° at the deficient atom to relieve repulsive forces.⁴⁸⁶ On the other hand, $[AsPh₄]$ ₂Re₃Cl₁₁ is almost certainly associated with a molecule of water, giving a CIReCI angle of 153 $^{\circ}$ at the "deficient" rhenium atom, 485 similar to that in $\mathsf{Re_3} \mathsf{Cl_{12}}^{3-}$ (158 $^\circ$), 483 $\mathsf{Re_3} \mathsf{Br_{12}}^{3-}$ (155 $^\circ$), 484 and $\mathsf{Re_3}$

 $Br_9(H_2O)_3$ (155°).⁴⁸⁷ The anion $\text{Re}_3\text{Cl}_3\text{Br}_7(H_2O)_2^-$, precipitated by $\mathsf{Cs^+}$ from a solution of $\mathsf{ReCl_3}$ in $\mathsf{HBr},$ contains two terminal in-plane water molecules and three bridging chlorines. 484,488 Neutral complexes $\mathsf{Re}_3\mathsf{X}_9\mathsf{L}_3$ (X $=$ Cl and Br) are obtained by heating solutions of ReX₃ in organic solvents with ligands such as tertiary phosphines and $ar{s}$, $474,482,489$ sulfoxides, $474,490$ nitriles, 491 and weak nitrogen bases. 491,492 The PEt $_2$ Ph groups in Re $_3\cdot$ $X₉(PEt₂Ph)₃$ occupy the terminal in-plane positions.⁴⁸⁹

Three terminal ligands in $\text{Re}_3 \text{X}_{12}^{3-}$ may be displaced easily and another six with some difficulty, but the $\text{Re}_3 X_3$ core is very inert. Thus a solution of $\mathsf{Re}_3\mathsf{Cl}_{12}{}^{3+}$ in hydrochloric acid containing ³⁶CI may be boiled for 8 hr without any incorporation of ³⁶CI in the bridging positions.⁴⁸² Similarly, treatment of ${\sf Re_3Cl_{12}}^{3-}$ with thiocyanate, 482 cyanide, or azide yields complexes of the types $\mathsf{Re}_3\mathsf{Cl}_9\mathsf{X}_3{}^3{}^-$, $\mathsf{Re}_3\mathsf{Cl}_6\mathsf{X}_6{}^3{}^-$, and $\mathsf{Re}_3\mathsf{Cl}_3\mathsf{X}_9{}^3{}^-$ according to the severity of conditions, but the last three chlorines cannot be displaced.^{482,490} Arsenate displaces all outof-plane ions in the presence of dimethyl sulfoxide to give $\text{Re}_3\text{Br}_3(\text{AsO}_4)_2(\text{dmsO})_3$ of structure 7.⁴⁹³

The reactions of ReX_3 with bidentate ligands are not well understood. Complexes of stoichiometry $\text{Re}_3\text{Cl}_9(\text{LL})_{3/2}$ are obtained under mild conditions for LL $=$ dppe, Et₂dth, and dipy and are suspected to be polymeric.^{491,494,495} Under more drastic conditions excess LL has yielded substances with a higher proportion of ligand which may be ionic or polymeric.^{491,494} and α, α' . dipyridyl also causes some reduction.⁴⁹⁵ Tridentate phos- $\frac{1}{2}$ and $\alpha, \alpha', \alpha''$ -terpyridyl⁴⁹⁴ afford compounds such as $\text{Re}_3\text{Cl}_9(\text{LL})_n$ with $n = 1, 1.33$, and 2.

Destruction of the Re₃CI₉ moiety requires severe conditions. Nitrogen bases of $pK \gtrsim 5$ such as pyridine, isoquinoline, and benzimidazole reduce $ReCl₃$ to the trinuclear rhenium(II) compounds $(ReLU₂L)_n$ (see section $IV.F$), 492 and liquid ammonia gives a substance of approximate composition ReCI₃-3NH₃ from which $Res Cl_{12}^{3-}$ may be regenerated by hydrochloric acid.⁴⁹⁷ The powerful bidentate ligands dppe and diars can, however, break up the Re₃Cl₃ core to give $[ReCl_2(LL)_2]$ Cl,⁴⁹⁴ and certain polydentate phosphines (L_p) afford green $\frac{1}{2}$ products ReCl₃L_p, and $[ReCl_2 L_p]^+$ which may be mononuclear.⁴⁹⁸ Molten diethylammonium chloride converts $\text{Re}_3\text{Cl}_12^3$ to Re_2Cl_8^2 in high yield, and dissolution of ReCl_2 in LiCI-KCI eutectic⁴⁷⁸ or pyrolysis of a mixture of ReCI₃ and CsCI⁴⁹⁹ results in disproportionation to $ReCl_e² = and Re.$

The bonding in trinuclear clusters has been discussed in detail elsewhere, $15,500$ and the Re-Re bond order has been predicted to be two.¹⁵ Bond lengths are in the range $243-251$ pm. Derivatives of ReCI₃ and ReBr₃ are dark red or purple and absorb intensely at 500-560 and 750-950 nm. The position of the second band depends

on the nature of the terminal ligands. The relevant transitions have not been identified, but the chromophore is carried by the $\text{Re}_3 X_3$ core.^{15,474,491} Some attempts have been made to assign the complex vibrational spectra and hence to calculate force constants.⁵⁰¹ Rhenium trichloride exhibits weak TIP with $\chi_{\rm M}$ = 528 \times 10⁻⁶ cm³ mol⁻¹, and there appears to be a second modification which is nearly diamagnetic.⁵⁰²

2. Complexes of Dinuclear Clusters

A number of complexes are known in which two rhenium(llI) atoms are held together by a strong, exceptionally short metal-metal bond. They are formally derived from the Re_2Cl_8^2 ⁻ ion (8) and have been thoroughly

characterized by Cotton and his coworkers. Chloride may be replaced by other monodentate ligands^{396,426,503-508} and by two, $508-510$ three, 140 or four $139.511-513$ carboxylate bridges, and the vacant axial positions trans to the Re-Re bond may be occupied by monodentates. Most known complexes of this type, together with Re-Re separations and methods of synthesis, are given in Table VII.

The formation of dinuclear clusters is not well understood. They have been obtained by the reduction of mononuclear compounds in higher oxidation states and by the degradation of trinuclear clusters, but never from mononuclear rhenium (III). Reduction requires very specific conditions. Perrhenate has thus been reduced to $\text{Re}_2\text{Cl}_8{}^{2+}$ only by hydrogen under pressure and by H_3PO_2 in constant boiling hydrochloric acid.⁵⁰⁶ Under different conditions ReCl₆²⁻ usually results. Re₂Cl₈²⁻ is also formed in the disproportionation of $ReCl₅$ in acetone, $273,288,289$ and the tetra- μ -carboxylato complexes $Re₂X₂(RCO₂)₄$ (9) are best prepared by heating trans- $ReOX_3(PPh_3)_2$ with acid anhydrides $(X = Cl and Br).^{322}$ The mechanisms of these reactions are totally obscure.

TABLE VII. Dinuclear Complexes of Rhenium(lll)

" Bestmethod of preparation.

Partial disruption of the $\mathsf{Re}^{\text{III}}{}_3 \text{Cl}_9$ moiety occurs in boiling carboxylic acids to give $\text{Re}_2\text{Cl}_2(\text{RCO}_2)_4^{279}$ and in fused $[NH₂Et₂]$ CI to $\text{Re₂Cl₈²⁻.^{478,515}$ When ReCI₃ is heated with carboxylic acids in the presence of air, partial oxidation of Re^{III} to ReO₄^{$-$} occurs and ReO₄^{$-$} then coordinates at the axial positions to give the complexes $\text{Re}_2(\text{R}-\text{Re}_2)$ $CO_{2})_{4}$ (ReO₄)₂ (9, X = ReO₄)¹³⁹ and Re₂Cl₂(RCO₂)₃- $($ ReO₄ $)$. ¹⁴⁰ In the latter, ReO₄ groups join Re₂Cl₂(RCO₂)₃ units into chains of alternate ReO₄ and Re₂ moieties.¹⁴⁰

Once formed, the Re-Re bond persists through fairly severe chemical reactions. The equilibrium

 $\text{Re}_2\text{Cl}_3{}^{2-}$ + 4RCO₂H \implies $\text{Re}_2\text{Cl}_2(\text{RCO}_2)_4$ + 4HCl + 2Cl⁻ (23)

may thus be traversed in either direction without disruption of the Re_2 moiety.^{506,512,513} Complexes such as $\text{Re}_2\text{X}_4 (\text{RCO}_2)_2 (\text{H}_2\text{O})_2$ (two bridging RCO₂, axial H₂O), 509 $Re₂X₄(RCO₂)₂$ (two bridging carboxylates, axial positions vacant), 5^{10} and Re₂Br₃(RCO₂)₃(H₂O) (three bridging carboxylates) have been isolated as intermediates.⁵⁰⁸ Boiling 40% hydrobromic acid converts $\text{Re}_2\text{Cl}_8{}^{2-}$ to $Re₂Br₈²⁻$ without further change,⁵¹⁴ and tertiary phosphines displace one chloride on each rhenium atom to qive Re₂CI₆(PR₃)₂,⁵⁰⁷ Dinuclear clusters may also survive redox conditions in that $\text{Re}_2 X_8^2$ is oxidized by halogens to $\text{Re}_2 X_9$ ⁻ $(X = \text{Cl and Br})^{406}$ and is reduced po- $\ar{\theta}$ and $\ar{\theta}$ $\ar{\theta}$ and $\ar{\theta}$ $\ar{\theta}$ $\ar{\theta}$ and $\ar{\theta}$ $\ar{\theta}$ and $\ar{\theta}$ $\ar{\theta}$ and $\ar{\theta}$ SCN , 5^{15} Although salts of the reduced species have not been isolated, $(NH_4)_{3}Tc_{2}Cl_8$ is known as a crystalline

solid and the anion is isostructural with $\mathsf{Re}_2\mathsf{Cl}_8{}^2$ (D_{4h}) .⁵¹⁶ Dithiahexane reduces $\text{Re}_2\text{Cl}_8{}^2$ ⁻ to $\text{Re}_2\text{Cl}_5(\text{dth})_2$ in which rhenium has a mean oxidation state of 2 5 5O⁸ .517

Cleavage of the Re₂ moiety does, however, occur more easily than cleavage of $\text{Re}_3 X_3$ in the trinuclear clusters. Thus $\text{Re}_2 \text{X}_8{}^{2+}$ reacts with excess dppe to give $[{\sf Re}X_2({\sf dppe})_2]X^{507}$ and even with thiourea to give $\text{Re}X_3$ (tu)₃ (X = CI and Br).⁵⁰⁸ Substitution of chloride in $Re₂Cl₈²⁻$ by thiocyanate is in competition with oxidation to Re(SCN) 6^{2} ; and treatment of Re₂(SCN) 8^{2} ⁻ with PPh3 yields an intriguing paramagnetic species of stoichiometry Re₂(SCN)₈(PPh₃)₂^{2 -} (μ = 4.1 BM per Re atom) which may contain high-spin rhenium (III). 426

Nine crystal structures have been determined, and in every case the conformation about the Re-Re bond has been found to be eclipsed.^{139,140,505,509-511,518-520} Bond lengths lie within the narrow range of 220-226 pm (Table VII) irrespective of the presence or absence of carboxylate bridges, and it may therefore be inferred that a strong metal-metal bond is present even in the tetra- μ -carboxylato complexes (9). Spin pairing via the metal-metal bond renders the complexes essentially diamagnetic, 506 and the diamagnetic anisotropy induced by circulating electrons in the bond causes substantial deshielding of ligand protons in the nmr spectrum of $\mathsf{Re}_2\mathsf{Cl}_6(\mathsf{PR}_3)_2.^{521}$

The Re-Re stretching frequency occurs as an intense band in the Raman spectrum at 285 \pm 11 cm⁻¹ and has been detected in $\textsf{Re}_2\textsf{X}_8{}^{2-}$, $\textsf{Re}_2\textsf{X}_4(\textsf{RCO}_2)_2(\textsf{H}_2\textsf{O})_2$, and $\mathsf{Re}_2\mathsf{X}_2(\mathsf{RCO})_4$.^{522,523} The $\mathsf{Re}_2\mathsf{X}_8{}^{2+}$ ions have strict D_{4h}

 \cdot

TABLE VIII. Mononuclear Complexes of Rhenium(lll)

 \mathbb{Z}^2

TABLE VIII (Continued)

 $Re(CN)_{6}$ -

" Ben zoylazo complexes and cyclopentadienides are not included.

symmetry and the Re-X distances in K_2 Re₂Cl₈ \cdot 2H₂O⁵¹⁸ and $Cs₂Be₂Br₈⁵¹⁹$ are 229 and 247.8 pm, respectively, similar to the terminal Re-X distances in ReX $_3$. The salt $Cs_2Re_2Cl_8·H_2O$ is said to contain both $Re_2Cl_8^2$ ⁻ and $\mathsf{Re}_2\mathsf{Cl}_8(\mathsf{H}_2\mathsf{O})_2{}^2$ ions. 520 Each rhenium atom in Re₂- $Cl_6(PEt_3)_2$ carries one PEt₃ eclipsed with a chlorine on the opposite rhenium atom so that the two $PEt₃$ groups are mutually trans about the Re-Re bond.^{396,505} There is, however, no virtual coupling of the proton spins to the phosphorus nuclei in the isostructural $\text{Re}_2\text{Cl}_6(P \textsf{Me}_2\textsf{Ph}|_2$, 521 The Re-CI distance trans to PEt₃ (235.2 pm) is significantly longer than the Re-Cl distance trans to Cl (229.6 pm) . 505 Axial ligands are always bound weakly. and the axial Re-Cl distance in $\text{Re}_2\text{Cl}_2(\text{PhCO}_2)_4$ (249 pm) is much longer than the meridional Re-Cl distances in related complexes (230-235 pm).⁵¹¹ The axial Re-Cl stretching frequency in a range of complexes occurs at 230 \pm 10 cm⁻¹ as compared with 332 \pm 1 cm⁻¹ for the meridional.⁵²²

The mean Re-Re separation in dinuclear clusters is 24 pm shorter than the mean separation in trinuclear clusters and 52 pm shorter than in rhenium metal. The bond is formally quadruple and consists of a σ , two π , and a δ component which originate in overlap of a set of $d_z^2 - p_z$ hybrids and of the d_{xz} , d_{yz} , and d_{xy} orbitals on each rhenium atom (z-axis along C_4). Two low-lying σ orbitals $(d_z^2 - p_z)$ hybrids; σ_n) are directed outwards along C_4 and are empty and nonbonding in $\text{Re}_2 X_8^2$ but bind the axial ligands in $\textsf{Re}_2\textsf{X}_2(\textsf{RCO}_2)_4{}^{5\bar{2}4}$ and accommodate the additional electrons in $\text{Re}_2 X_8^{3-}$ and $\text{Re}_2 X_8^{4-}$, 515 It is the δ component which requires the ligands to be eclipsed and provides competition with steric forces favoring a staggered conformation with no δ overlap.^{524,525} Extended Huckel calculations estimate the rotational barrier in $\textsf{Re}_2\textsf{Cl}_8{}^2^-$ at 210 kJ mol $^{-1}$, 14% of the total Re-Re bond energy, and therefore δ -bonding decisively overcomes the repulsive forces.⁵²⁶ The absorption bands in Re₂Cl₈²⁻ at 14,500, 32,800, and 39,200 cm^{-1} have been tentatively assigned to $\delta \rightarrow \sigma_n$, $\delta \rightarrow \delta^*$, and $\pi \rightarrow \sigma_n$ transitions, respectively. The $\delta \rightarrow \sigma_n$ transition is absent in $\textsf{Re}_2\textsf{X}_2 (\textsf{RCO}_2)$ ₄ because the σ_n orbitals are occupied. 526

The complex $\text{Re}_2\text{Cl}_5(\text{dth})_2$ differs from the dinuclear rhenium(lll) complexes in having an extra metal valence electron per molecule and the staggered conformation 10. Both axial positions are occupied since chloride ions

form linear bridges between dinuclear units, but the Re-Cl separations are very unequal at 249.3 and 324 pm. In the staggered conformation δ overlap is precluded by symmetry, and three electrons must therefore occupy nonbonding d_{xy} orbitals. Such a configuration is consistent with the observed magnetic moment of 1.73 BM, independent of temperature. The Re-Re bond is thus a triple bond $(\sigma^2 \pi^4)$ and at 229.3 pm is 5.4 pm longer than the quadruple bond in Re_2Cl_8^2 . The difference is small because δ overlap is the weakest component of the bond in $\text{Re}_2\text{Cl}_8{}^2$. The most plausible charge distribution in 10 is as the zwitterion $\overline{-}$ Cl₄Re^{III} \equiv Re^{II}Cl(dth)₂⁺, and a very high dipole moment would be expected. The failure of $\text{Re}_2\text{Cl}_5(\text{dth})_2$ to be eclipsed is presumably due to the inadequately small stabilization of a $(\delta)^2(\delta^*)^1$ configuration originating in d_{xy} orbitals of very unequal energy.⁵¹⁷

3. Mononuclear Complexes

The majority of mononuclear rhenium(lll) complexes are octahedral, but several seven-coordinate complexes are also known. These include $\text{ReX}_2(\text{CO})$ (diars) $2^+,$ 425 $\mathsf{Re}\left(\mathsf{Et}_2\mathsf{dtc}\right)_3(\mathsf{CO})^{-368} \qquad \mathsf{ReX}_3(\mathsf{CO})_2(\mathsf{PMe}_2\mathsf{Ph})_2,$ $ReX₃$ - CO)(PMe₂Ph)₃,⁵²⁷ and a number of hydrides of the types ReH₃L₄ and ReH₂XL₄, ^{372,528} ReX₃(CO)(PMe₂Ph)₃ is obtained simply by passing CO through $ReX_3(PMe_2Ph)_3$ in boiling ethanol (X = Cl and Br). 527 The crystal structures of two seven-coordinate hydrides,

namely, ReH₃(dppe)(PPh₃)₂⁵²⁹ and ReH₃(dppe)₂,⁵³⁰ have been solved by X-ray diffraction, and both contain nearly pentagonal bipyramidal molecules with apical phosphorus. If Cp is assumed to occupy three coordination sites, then π -Cp₂ReH is formally also seven-coordinate. This compound has two unshared electron pairs and can be protonated to π -Cp₂ReH₂⁺ or may form adducts with boron trihalides, e.g., π -Cp₂ReH(BF₃).⁵³¹ When π -Cp₂ReH is treated with excess butyllithium followed by excess methyl iodide, a peculiar reaction occurs to give π -CpReMe₂(C₅H₅Me) in which neutral C_5H_5 Me bonds to Re^{III} through four carbon atoms as in butadiene complexes.⁵³² Rhenium(III) is believed to be five-coordinate in ReCl₃(POPh₃)₂³¹⁵ and in the aryls $\mathsf{ReAr}_3(\mathsf{PEt}_2\mathsf{Ph})_2.^{347}$

Mononuclear complexes have been synthesized in a variety of ways, and most known compounds of this type are described in Table VIII. The chief preparative routes are the following.

(a) Reduction of Perrhenate. The most direct route to $mer\text{-}ReX_3(PMe_2Ph)_3$ is to heat $KReO_4$ in concentrated hydrochloric acid with PMe₂Ph in ethanol. The mechanism is not known but presumably involves a Re $\rm{^{\vee}}\text{=}$ O intermediate. Overall vields are ca. 85%. 527

(b) Reduction of Oxo Complexes of Rhenium(V). A large number of complexes of the type mer-Re X_3L_3 have been obtained in high yield by heating oxo complexes such as $ReOCl₃(PPh₃)₂$ with the appropriate ligand, 301, 306, 337, 347, 533 The reducing agent may be the ligand itself, and the mechanism has been discussed in section IV.C.3(e). A remarkable reaction occurs when $trans\text{-}ReOCl₃(PPh₃)₂$ is heated with excess PPh₃ and $CH₂(CN)₂$ or its dimer. The product is $ReCl_3(C_6H_4N_4)(PPh_3)_2$ where

$$
C_6H_4N_4 = HN=C
$$
 $\left(\frac{CH_2}{NH}\right)C = C(CN)_2$

and is presumably formed by cyclization of coordinated malononitrile dimer. It reacts with methanolic ammonia to give a complex with the six-membered chelate ring derived from the ligand $HN=C(NH_2)CH_2C(NH_2)$ = $C(CN)_2$ ²⁸² Deprotonation of the methylimido complexes $ReCl₃(NMe)(PR₃)₂$ with bases such as pyridine gives methylenamido complexes of the type $ReCl_2(N=CH_2)$ py(PR₃)₂ and ReCl₂(N=CH₂)(PR₃)₃.⁵³⁴

(c) Reduction of Complexes of Rhenium(IV). Although some $\mathsf{Re}^{\mathrm{IV}}$ complexes are resistant to reduction, others may be reduced smoothly to Re^{III}. Thus ReCl₄(MeCN)₂ is reduced rapidly by ethanolic trimethylamine, aqueous ascorbic acid, or cadmium amalgam in dry acetonitrile to cis -[ReCI₄(MeCN)₂]⁻. The anion can be titrated with Fe^{3+} back to ReCl₄(MeCN)₂.²⁸² Similarly trans- $ReCl_4(PR_3)_2$ is readily reduced by excess PR_3 in boiling ethanol to $mer\text{-}ReCl_3(PR_3)_2$,⁴²³ Rel_6^{2-} by CO to $[Rel_4(CO)_2]^{-1,541}$ and $ReCl_6^2$ $\bar{=}$ by CN $\bar{=}$ to $Re(CN)_6$ ^{3 $\bar{=}$.535}

(d) Substitution in Complexes of Rhenium(lll). Whereas dinuclear and trinuclear clusters are converted to mononuclear complexes only with great difficulty, the mononuclear complexes themselves interconvert under mild conditions.^{282,372,528,536,537} The readily available Re- $Cl_3(MeCN)$ (PPh₃)₂ is an especially useful source of Re^{III} complexes, and it initially loses MeCN and one PPh₃, as in the formation of $ReCl₃(py)₂(PPh₃)$ and $ReCl₃(ben$ zil)(PPh₃).³⁰⁶ It reacts with tertiary phosphines (except PPh $_3$) to form $mer\text{-}ReCl_3(PR_3)_{3}.^{537}$ Steric crowding precludes the existence of $ReCl₃(PPh₃)₃$ so that Re- $Cl_3(MeCN) (PPh_3)_2$ dissolves in fused PPh₃ without reac-
tion; and at higher temperatures it gives and at higher temperatures

 $[{\sf ReCl}_3({\sf PPh}_3)]_n.^{306}$ The complexes ${\sf ReH}_3({\sf PPh}_3)_4$ and $ReH_3(dppe)_2$ are useful intermediates in the synthesis of other seven-coordinate hydride complexes. 372,528

(e) Oxidation of Rhenium(l) and Rhenium(O) Complexes. Many derivatives of the carbonyl halides are readily oxidized by halogens to Re^{III}, for example, Re- $Cl(CO)_{3}(PMe_{2}Ph)_{2}$ by chlorine to ReCl₃(CO)₂(P- $\mathsf{Me}_2\mathsf{Ph})_2{}^{527}$ and $\mathsf{ReCl(CO)_5}$ by $(\mathsf{Et}_2\mathsf{NCS})_2$ to $\mathsf{Re}(\mathsf{Et}_2\mathsf{dtc})_3$ - $(CO).$ ³⁶⁸ Re₂(CO)₁₀ is oxidized by ReF₆ to ReF₃(CO)₃, the only fluoride complex of Re^{III},⁵³⁸ and Re₂(CO)₇(P- $Me₂Ph₃$ by bromine to $ReBr₃(CO)$ (PMe₂Ph)₂.⁵³⁹

Mononuclear complexes are stable as solids but are oxidized more or less readily by air in solution. Thus air oxidizes $ReCl_3(MeCN)(PPh_3)_2$ to $ReCl_3(PPh_3)(POPh_3)$ in hot benzene, 306 and ReCl₄(MeCN)₂ ⁻ to ReCl₄(MeCN)₂ in the presence of $Cu^{2+}.^{282}$ Re(acac) $_3$ ⁵³⁶ and Re-(hfac) 3^{540} oxidize even in the solid state. Mild reduction affords complexes of Re^I. Thus mer-ReCl₃(PR₃)₃ gives Re- $Cl(CO)₃(PMe₂Ph)₂$ when treated with CO or formic acid, 527 and ReI₄(CO)₂⁻ is reduced by CO in hot ethanol to Rel₂(CO)₄⁻.⁵⁴¹

The octahedral complexes possess paramagnetism equivalent to 1.5-2.1 BM which, however, is independent of the temperature. Such behavior is characteristic of low-spin d⁴ systems in O_h fields (Re^{III}, Os^{IV}) and arises because the large spin-orbit coupling ($\zeta \sim 2500 \text{ cm}^{-1}$) gives a diamagnetic ground state. A small admixture of a higher state then gives the observed behavior by a second-order Zeeman effect.^{537,542} Unlike other paramagnetic complexes such as $OSCl₃(PR₃)₃$, the complexes $ReCl₃(PR₃)₃$ give sharp nmr peaks which experience Knight shifts proportional to the temperature.^{537,543} Since contact and pseudocontact shifts in ordinary (first-order) paramagnetic compounds are inversely proportional to the temperature, this is further evidence that the paramagnetism of $ReCl₃(PR₃)₃$ is second order.⁵⁴³

The Re-Cl distances in $trans\text{-}ReLU3(MeCN)(PPh3)2$ are 235 pm (trans to CI) and 240 pm (trans to MeCN), 406 and in $mer\text{-}ReCl_3(PMe_2Ph)_3$ 235.3 pm (trans to CI) and 245.4 pm (trans to P).⁴⁵⁷ They are therefore longer than the Re-Cl distance in trans-ReCl₄($PMe₂Ph$)₂ (233.1 pm) and the Re-Cl stretching frequencies are lower. Thus two out of the three expected fundamentals in mer-Re- $Cl_3(PEt_2Ph)_3$ occur at 306 and 255 cm⁻¹ and both expected fundamentals in $fac-ReCl₃(PMe₂Ph)₃$ at 298 and 262 cm⁻¹, whereas the Re-Cl stretching frequency in trans-ReCl₄(PR₃)₂ occurs at ca. 320 cm⁻¹.⁴⁵³ The nitrile complexes of Re^{III} are remarkable in that they show no $C \equiv N$ stretching frequency in the infrared.^{282,306} Nevertheless, there is nothing unusual in the bonding of MeCN in trans-ReCl₃(MeCN) (PPh₃)₂ and the Re-N distance is normal at 205 pm.⁴⁰⁶ The stretch appears strongly in the Raman at 2271 cm^{-1,544} Although an intense $C \equiv N$ stretch occurs in cis -ReCl₄(MeCN)₂, there is no band at all in cis -[ReCl₄(MeCN)₂]⁻. The structure of the latter has been confirmed by X-ray diffraction.⁵⁴⁵ and there is no satisfactory explanation of why the band should be completely quenched simply by adding one electron to $ReCl_4(MeCN)_2$. The electronic spectra of $ReCl_3(PR_3)_3$ have been discussed.^{455,456}

F. Rhenium(ll)

The second oxidation state is the least well known and very few authentic compounds exist. This is surprising in view of the considerable stability of other d^5 systems such as Mn^{II} , W^{I} , and Os^{III} , and it may be that many more Re^{II} compounds will be synthesized in the future.

A difluoride is said to be formed when a rhenium wire is exploded in PF $_5$, 173 and ReI₃ loses I₂ to form a phase

which approaches ReI₂ in composition.⁴⁶⁹ Both trinuclear and dinuclear clusters of Re^{III} may be reduced without cleavage of the metal-metal bonds, but the products are not very stable. Thus ReCl₃ is reduced by nitrogen bases (L) to diamagnetic compounds of stoichiometry $(ReCl₂L)_n$ whose electronic spectra resemble those of trinuclear clusters and which may be oxidized to Re_3Cl_3 ², They are believed to contain Re_3Cl_6 L₃ units held stacked above each other by chloride bridges. Re_3Cl_1 ^{3 - 547} and Re_2Cl_8 ^{2 - 515} may be reduced to Re^{11} polarographically, and $\text{Re}_2 X_8^2$ ⁻ by dithiahexane to $[{\sf ReBr}_2({\sf dth})]_n$ of unknown structure.⁵⁰⁸

The remaining complexes of Re^{II} are mononuclear. Mild oxidation of ReCl(N₂) (dppe)₂, ReCl(N₂) (PR₃)₄, and ReCI(CO)(dppe)₂ gives the corresponding Re^{II} cations $\mathsf{ReCl}(\mathsf{N}_2)$ (dppe) $_2$ $^+$ $ReCl(N_2)(PR_3)_4^+$, and Re- $Cl(CO)(dppe)₂ + .³⁵⁸$ The neutral complexes ReX₂(diars)₂, $ReX_2(tas)$, and $ReX_2(qas)$ $(X = Cl, Br, and I)$ are obtained by vigorous reduction of the corresponding Re^{III} cations,¹⁵ and Rel₄(CO)₂² by treating Rel₄(CO)₂⁻ with alcoholic potash in acetone.⁵⁴¹ A number of cyanide complexes have been reported but have not been adequately characterized.⁵⁴⁸

V. Abbreviations

Acknowledgments. I wish to thank Dr. D. Burton for reading the section on the occurrence of rhenium, Professor G. Wilkinson for numerous helpful discussions, and Universal Matthey Co., Ltd., for a generous loan of perrhenic acid. Figures 1, 2, and 3 have been redrawn from ref 77 by permission.

VI. References

- *(2* k. K. Turekian in "Handbook of Geochemistry," Vol. I, k. H. Wedepohl, Ed., Springer-Verlag, Heidelberg, 1969, Chapter 10.
- *(3* W. H. Davenport in "High Temperature Refractory Metals," Part I,
published as "Metallurgical Society Conferences," Vol. 34, Gordon
and Breach, New York, N. Y., 1965, pp 465–489.
J. H. Port in "High Temperature Refractory M
- (4 bished as "Metallurgical Society Conferences," Vol. 34, Gordon
and Breach, New York, N.Y., 1966, pp 23–43.
S. T. Badalov and S. M. Basitova, Tr. Vses. Soveshch. Probl. Re-
niya, 3rd. 1, 24 (1968): Chem. Abstr., 74, 114263w
- (5
- (6 (7 Universal Matthey Products Ltd., London, personal communica-
- (8 tion. R. Colton, "The Chemistry of Rhenium and Technetium," Inter-
- (9 science, London, 1965. R. D. Peacock, "The Chemistry of Technetium and Rhenium," El-
- (10) sevier, Amsterdam, 1966.
K. V. Kotegov, O. N. Pavlov, and V. P. Shvedov, *Advan. Inorg.*
Che*m. Radi*ochem., 11, 1 (1968).
P. C. H. Mitchell, *Quart. R*ev., *Chem. Soc.,* **20,** 103 (1966);
- (11 K. V. Kotegov, O<mark>.</mark>
Che*m. Radiochem.,*
P. C. H. Mitchell,
- Coord. Chem. Rev., 1, 315 (1966).
R. V. Parish, Advan. *Inorg. Chem. Radiochem.,* **9,** 315 (1966).
W. P. Griffith, Quart. Rev., Chem. Soc., 1**9,** 254 (1965).
S. Tribalat, "Rhénium et Technétium," Gauthier-Villars, Paris,
- (12)
(13)
- (14: 1957.
	- J. E. Fergusson, Coord. Chem. Rev.. 1, 459 (1966).
	- (15)
(16)
(17)
	- C. L. Ruffs, Crit. Rev. Anal. Chem., 1, 335 (1970).
L. V. Borisova and A. N. Ermakov, *Tr. Vs*es. Soveshch. Probl. Re-
níya, 3rd. 1, 123 (1968); Chem. Abstr., 74, 119545z (1971).
M. A. Ryashentseva and K. M. Minachev, *Rus*
	- (18) 944 (1969).
	- **d9:** W. H. Davenport, V. Kollonitsch, and C. H. Kline, *Ind. Eng.*
Chem., 60 (11), (1968).
H. S. Broadbent, Ann. *N. Y. Acad. Sci.*, 145, 58 (1967).
E. M. Savitskii, M. A. Tylkina, and K. B. Povarova, ''The Alloys of
Rhenium,''
	- (20
	- (21:
	- (21a) J. H. Canterford and R. Colton, "Halides of the Second and Third Row Transition Metals," Wiley, London, 1968. D. Schab, Freiberg. Forschungsh. B, 158 (1971); Chem. Abstr.. **75,** 100081U (1971).
	- (22
	- (23 R. D. Peacock in "Comprehensive Inorganic Chemistry," A. F.
	- (24 Trotman-Dickenson, Ed., in press. C. D. Garner in "Inorganic Chemistry of the Transition Elements," Vol. 1, Chemical Society Specialist Periodical Report, London, 1972.
	- (25) R. B. King, *Organometal. Chem. Rev., Sect. B*, 4, 52 (1968); A. Wojcicki, *ibid.*, 5, 618 (1969); 6, 1088 (1970); 9, 159 (1972).
	- (26 H. C. Lewis Jr., and B. N. Storhoff, J. Organometal. Chem.. **43,** 1 (1972).
	- (27 C. D. Cook, K. Y. Wan, U. Gelius, K. Hamrin, G. Johansson, E. Olsson, H. Siegbahn, C. Nordling, and K. Siegbahn, J. Amer. Chem. Soc. **93,** 1904 (1971); L. Vaska, Accounts Chem. Res.. 1, 335 (1968).
	- (28 Table in J. Amer. Chem. Soc, **93,** 2579 (1971).
	- (29) G. H. Riley, *J. Sci. Instrum.*, **44,** 769 (1967).
(30) Sh. E. Esenov, K. E. Egizbaeva, S. K. Kalinin, and E. E. Fain,
	- Geokhimiya, 610 (1970)
	- (31 R. L. Brodzinski and, D. C. Conway. Phys. Rev. B. **138,** 1368 (1965).
	-
	-
	- (32)
(33)
(34)
(35)
(36)
	- E. Huster and H. Verbeek, Z. Phys., **203, 4**35 (1967).
W. Herr and W. Hoffmeister, *Helv. Phys. Acta*, **35,** 320 (1962).
D. C. Clayton, *Nature (London),* **224,** 56 (1969).
J. W. Morgan, *Nature (London),* **225,** 1037 (197
	- . Fngl., 1**0,** 845 (1971).
(37) A. V. Sinitsyn, *Prirod*) A. V. Sinitsyn, Priroda {Moscow), 58 (1969); Chem. Abstr.. **72,** 102724t (1970).
	- (38) K. F. Fouché and A. A. Smales, Chem. Geol., 2, 105 (1967).
	- (39 S. J. Friesenhahn, D. A. Gibbs, E. Haddad, F. H. Froehner, and
W. M. Lopez, J. *Nucl. Energy*, **22**, 191 (1968); D. C. Stupegia, M.
Schmidt, and A. A. Madson, *ibid.*, 19, 767 (1965).
J. Kuhl, A. Stendel, and H. Walther,
	- (40)
(41)
	-
	- (42 (43 A. Narath and D. C. Barham, Phys. Rev.. **176,** 479 (1968). R. A. Dwek, Z. Luz, and M. Shporer, J. Phys. Chem.. **74,** 2232
	- (44) M. T. Rogers and K. V. S. R. Rao, J. Chem. Phys., 49, 1229 (1970).
	- (1968).
	- (45 G. Hohberg, K. Krebs, B. Schulz, and R. Winkler, Z. Phys.. **186,** 380 (1965). (46) J. W. Swensson, Solar Phys.. **13,** 25 (1970).
	-
	- (47) K. F. Fouché and A. A. Smales, Chem. Geol., 1, 329 (1966).
(48) A. A. Yavnel, Geokhimiya, 228 (1970); Chem. Abstr., 7**2**, 102743y
	- (49 (1970).
	- (50 J. W. Morgan and J. F. Lovering, Geochim. Cosmochim. Acta. 31, 1893 (1967).
A. G. W. Caneron in "Origin and Distribution of the Elements." L.
H. Ahrens, Ed., Pergamon Press, Oxford. 1968, p 125.
J. F. Lovering and D. Butte
	- (51
	- (52)
	- (53) $D. F$ J. W. Morgan and J. F. Lovering, *Earth Planet. Sci. Lett..* 3, 219
(1967).
D. F. C. Morris and E. L. Short in ''Handbook of Geochemistry,'' Vol. II. K. H. Wedepohl, Ed., Springer-Verlag, Heidelberg, 1969. '
- (1) W. Noddack. I. Tacke, and O. Berg, Naturwissenschaften. **13,** 567 (1925).
- (54) K. Terada, S. Osaki, S. Ishihara, and T. Kiba, Geochem. J., 4, 123 (1971)
- (55) I. G. Magak'yan, G. O. Pidzhyan, and A. S. Faramazyan, Kom-pleks. Ispol'z. Medno-Molybden. Rud., 29 (1970); Chem. Abstr 75,89970k (1971).
- (56) D. P. Watson, N. S. W. Dep. Mines, Geol. Surv. Miner. Ind. N. S.
W., No. 46, 1 (1970); Chem. Abstr., 75, 89972n (1971); V. Angellelli, A. Rosales, and I. B. Schalamuk. Rev. Asoc. Geol. Argent.
26, 153 (1971); Chem. A
-
-
- (59) Z. M. Mamedov, *Dokl. Akad. Nauk Azerb. SSR*, 21, 24 (1965);
Chem. Abstr., 64, 12383f (1966); C. I. Superceanu, Geol.
Hundsch., 58, 798 (1966); Chem. Abstr., 71, 93466k (1969); G.
Tischendorf and W. Limpack, Geologie, Chem. Abstr., 70, 79913b (1969).
-
- G. H. Riley, Geochim. Cosmochim. Acta, 31, 1489 (1967). A. B. Yusupova, Nov. Issled. Rud. Dzhezkazgana, 124 (1970); Chem. Abstr., **74,** 24225f (1971).
-
-
-
- 1. A. Klimenko, Izv. Vyssh. Ucheb. Zaved., Geol. Razved., 8, 77
(1965): Chem. Abstr., 64, 3245h (1966).
E. M. Scadden, Geochim. Cosmochim. Acta, 33, 633 (1969).
J. Olafsson and J. P. Riley, Chem. Geol., 9, 227 (1972); A. D
- K. I. Satpaev, Geo*khimiya*, 1004 (1965); M. K. Satpaeva, Vestn.
Akad. Nauk Kaz. SSR, **2**1, 36 (1965); Che*m. Abstr.,* 63, 16037c
(1965); S. K. Kalinin and E. E. Fain, Geo*l. Rud. Mestorozhd.*, 13,
- 57 (1971); C*hem. Abstr.*, 7**6,** 74740g (1972).
M. P. Dedeshko, T. A. Satpaeva, and E. E. Fain, *Vestn. Akad.*
Nauk *Kaz. SSR, 20, 47 (1964); T. P. Polyakova, ibid., 21, 69
(1965): Chem. Abstr., 62. 7507h (1965); 63*
- A. D. Melaven, J. N. Fowle, W. Brickell, and C^ F. Hiskey, lnorg. Syn., 3, 188 (1950).
(69) E. G. King, D. W. Richardson, and R. V. Mrazek, U. S. At. Energy
- E. G. King, D. W. Richardson, and R. V. Mrazek, *U. S. At. Energy*
Co*mm.*, BM-RI-7323 (1969); Chem. Abstr., 72, 137193w (1970).
L. A. Nisel'son, R. K. Nikolaev, I. I. Vasilevskaya, and A. G. Vasil-
'eva, *Russ, J. Inorg.*
-
-
-
-
-
-
- B. Krebs and A. Müller, Z. Naturforsch, B. 23, 415 (1968).
H. B. Skinner, U. S. At. Energy Comm., UCRL-19645 (1970);
Chem. Abstr., 74, 147957d (1971).
K. Ulbricht and H. Kriegsmann, Z. Chem., 7, 244 (1967).
B. Krebs, A. Mü
-
-
-
- (82) K. Ulbricht, R. Radeglia, and H. Kriegsmann, Z. Anorg. Allg. Chem., **356,** 22 (1967).
- A. K. Covington, J. G. Freeman, and T, H. Lilley, Trans. Faraday Soc., 65, 3136 (1969).

(84) K. I. Petrov, V. A. Bardin, and V. G. Kalyuzhnaya, *Proc. Acad.*
-
-
- K. I. Petrov, V. A. Bardin, and V. G. Kalyuzhnaya, Proc. Acad.
Sci. USSR, Chem. Sect., 178, 138 (1969).
K. A. Bol'shakov, V. A. Bardin, and A. F. Gladneva, Russ. J.
Inorg. Chem., 10, 1377 (1965); K. A. Bol'shakov, G. L. Pl
-
- N. A. Frigerio, *J. Amer. Chem. S*oc., **91,** 6200 (1969).
M. Schmidt and H. Schmidbaur, *I*norg. Syn., **9,** 149 (1967).
-
- G. M. Sheldrick and W. S. Sheldrick, J. Chem. Soc. A. 2160
- (1969).
V. A. Bardin and K. A. Bol'shakov, *Russ. J. Inorg. Chem.*, 11,
582, 625 (1966); K. A. Bol'shakov, N. I. Tel'perin, V. Z. Grishko,
V. A. Bardin, F. Rossner, and G. L. Plotinskii, *ibid.*, 1**2,** 1134
(1967). (91)
- (92) L. V. Borisova and T. I. Yarinova, Russ. J. lnorg. Chem., 15, 164 (1970).
- L. V. Borisova, D. I. Ryabchikov, and T. I. Yarinova, Russ. J. (93) *lnorg. Chem.*, 13, 166 (1968).
V. A. Bardin, K. I. Petrov, and K. A. Bol'shakov, *Russ. J. Inorg.*
-
- Chem., 11, 1124(1966). J. J. Bucher and R. M. Diamond, J. Phys. Chem.. 73, 675 (1969). H. H. Beyer, A. Mueller, and B. Krebs, Z. Phys. Chem., **234,** 429
- (1967).
- (97)
- (97) B. Kanellakopulos, *J. Inorg. Nucl. Chem.*, **28,** 813 (1966).
(98) K. Skudlarski, J. Drowart, G. Exsteen, and A. Vander Auwera-
- Mahieu, *Trans. Faraday* Soc., 63, 1146 (1967).
(99) V. P. Spiridonov, A. N. Hodchenkov (98)
-

(1966).

-
- (100) R.J.Thompson, *Inorg. Syn.*, **8**, 171 (1966).
(101) Yu. E. Ratner, Yu. V. Tsvetkov, and L. G. Berezkima, *Russ. J.*
1001) *Inorg. Chem.*, 13, 795 (1968).
(102) P. Gibart, *Bull.* Soc. C*him. Fr*., 70 (1964).
-
-
- (103) K. Traore, *C. R. Acad. Sci.*, Ser. *C*, **272,** 1173 (1971).
(104) Yu. E. Ratner, D. M. Chizhikov, and Yu. V. Tsvetkov, *Izv. Akad.*
- *Nauk SSSR, Metal.*, 100 (1968). (105) G. Scibona, R. A. Nathan, A. S. Kertes, and J. W. Irvine, Jr., J.
-
- Phys. Chem.. 70, 375 (1966). (106) K. A. Bol'shakov, N. M. Sinitsyn, K. I. Petrov, V. F. Travkin, and M. V. Rubtsov, Russ. J. lnorg. Chem., 13, 1589 (1968); K. I. Petrov, M. V. Rubtsov, N. M. Sinitsyn, and V. F. Travkin, *ibid.*, 14, 1704(1969).
- (107) S. F. Akhmetov, B. M. Akimov, and L. N. Gulenko, Russ. J. lnorg. Chem., 14, 1550(1969).
- (108) C. Laragne, K. Traore, and J. Brenet, C. R. Acad. Sci., Ser. C. **274,437** (1972). (109) J. P. Silvestre and W. Freunlich, C. R. Acad. Sci., Ser. C. **268,**
- 2098 (1969).
- (110) G. Baud and M. Capestan, Bull. Soc. Chim. Fr., 3608 (1966); C. R. Acad. Sci., Ser. C, **266,** 382 (1968). (111) M. B. Varfolomeev, N. B. Yakovleva, and V. E. Plyushchev, Wuss.
-
- J. lnorg. Chem., 14,35 (1969). (112) M. B. Varfolomeev, A. V. Stooyarova, and V. E. Plyushchev, Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol., 13, 15 (1970); Chem. Abstr., **72,** 139085m (1970).
- (113) L. N. Komissarova, M. B. Varfolomeev, V. I. Ivanov, and V. E. Plyushchev, Proc. Acad. Sci. USSR. Chem. Sect, 160, 100
- (1965).

(114) V. E. Plyushchev and M. B. Varfolomeev, *Russ. J. Inorg. Chem.*

10, 55, 58 (1965); *ibid.*, 12, 182, 775, 937 (1967); *izv. Vyssh.*

Ucheb. Zaved., *Khim. Khim. Tekhnol.*, 10, 23 (1967); *Chem.*

Abstr., 6
-
- (115) G. Baud and M. Capestan, Bull. Soc. Chim. Fr., 4685 (1967). (116) J. P. Silvestre, M. Pages, and W. Freundlich, C. R. Acad. ScL. Ser. C. **272,** 1808 (1971).
- (117) M. B. Varfolomeev, K. A. Rybakov, and V. E. Plyushchev, Russ. J. lnorg. Chem.. 15, 1381 (1970); K. I. Petrov, G. N. Voronskaya, V. E. Plyushchev, and M. V. Varfolomeev, ibid., 15, 1229 (1970).
- (118) L. A. Woodward and H. L. Roberts, Trans. Faraday Soc, 52, 615 (1956).
-
-
-
- (119) J. C. Morrow, *Acta Crystallogr.*, 13, 443 (1960).

(120) R. H. Busey and O. L. Keller, Jr., J. Chem. Phys., 41, 215 (1964).

(121) F. A. Cotton and R. M. Wing. *Inorg. Chem.*, 4, 867 (1965); A.

Mueller and B. Kreb
- 789 (1972).
- (124) H. B. Gray, Coord. Chem. Rev., 1,2 (1966).
- (125) P. Mullen, K. Schwochau, and C. K. Jdrgensen, Chem. Phys. Lett, 3,49 (1969).
- (126) H. U. Guedel and C. J. Ballhausen, Theor. Chim. Acta, 25, 331 (1972).
- (127) R. Kebabcioglu, A. Mueller, and W. Rittner, J. MoI. Struct., 9, 207 (1971).
- (128) B. Jezowska-Trzebiatowska. S. Wajda, M. Baluka, L. Natkaniec, and W. Wojciechowski, *Inorg. Chim. Acta*, 1, 205 (1967).
(129) W. P. Griffith, *J. Chem. Soc. A*, 1467 (1966).
(130) R. K. Murmann, *J. Phys. Chem.*, 71, 974 (1967).
-
-
- (131) A. Wiechen, W. Herr, B. Hess, and H. H. Pieper, Angew. Chem...
 $\ln L$. Ed. Engl., 6, 1003 (1967); B. Hess, H. H. Pieper, A. Wiechen,

and K. Schwochau, Z. Naturforsch. A, 21, 2115 (1966).

(132) R. K. Murmann, J. Am
-
-
- (135) H. G. Mayfield, Jr., and W. E. Bull, lnorg. Chim. Acta, 3, 676 (1969).
- (136) W. C. Jones and W. E. Bull, J. Chem. Soc. A, 1849 (1968).
(137) K. I. Petrov, N. A. Orlin, and V. E. Plyushchev, *Russ. J. Inorg.*
Chem., 14, 1442 (1969); 15, 227, 229 (1970).
(138) G. Vicentini, M. Perrier, and J. C
-
- (1971).
- (139) C. Calvo, N. C. Jayadevan, C. J. L. Lock, and R. Restiva, Can. J. Chem., **48,** 219 (1970). (140) C. Calvo, N. C. Jayadevan, and C. J. L. Lock, Can. J. Chem., 47,
- 4213 (1969).
-
- (141) V. S. Khain, N. N. Antsygina, V. N. Shchuka, and L. K. Greben-

shchikova, *Russ. J. Inorg. Chem.*, 15, 1137 (1970).

(142) J. A. Shropshire. *J. Electroanal. Chem.*, 16, 275 (1968): D. W.

Letcher, T. J. Cardwell, a
-
- (1971); G. Henzeand R. Geyer, Z. Chem.. 8, 349,437 (1968). (145) R. A. Bailey and A. A. Nobile, Electrochim. Acta. 17, 1139 (1972). (146) G. H. Cartledge, Brit Corros. J.. 1, 293 (1966).
-
- (147) E. lanovici and N. Zaitseva, J. lnorg. Nucl. Chem.. 31, 2669, 3309

(1969), and references therein.

- (148) R. Scholder and K. L. Huppert, Z. Ano*rg. Allg. Chem.*, **334,** 209 (202)
(1964); R. Scholder, K. L. Huppert, and P. P. Pfeiffer, Angew. (203)
Chem., Int. Ed. Engl., 2, 265 (1963).
C. Keller and B. Kanellakopulos, J. Ino
- (149) (1965).
- (150) (151) G. Duquenoy, Rev. ChIm. Miner., 8, 683 (1971). (205) A. Chretien and G. Duquenoy, C. R. Acad. ScL, Ser. C, 268, 509
- (152) (1969). (206) E. J. Baran and A. Mueller, Z. Anorg. AIIg. Chem., **368,** 168
- (153) (1969). (207) S. K. Majumdar, R. A. Pacer, and C. L. Rulfs, J. Inorg. Nucl.
- (154) Chem., 31, 33 (1969). J. M. Longo, L. Katz, and R. Ward, Inorg. Chem., 4, 235 (1965); (208) R. Ward, BuH. Soc. Chim. Fr., 1149 (1965). J. Hauck, Z. Naturtorsch. B, **23,** 1603 (1968); **24,** 1064, 1067 (209)
- (155)
-
- (156) (157) (158) (1961). <²¹²) W. Freundlich and M. R. Lee, C. R. Acad. ScL, Ser. C, **264,** 704 (1969). (21°) J. Hauck, Z. Naturtorsch. B, **24,** 645 (1969). (211) A. W. Sleight and R. Ward, J. Amer. Chem. Soc, **83,** 1088
-
- (159) (160) (1967). (213) M. R. Lee, C. R. Acad. ScL, Ser. C, **271,** 127 (1970). M. R. Lee and W. Freundlich, C. H. Acad. ScL, Ser. C, **268,** 2302 (214) (1969).
-
- G. Baud and M. Capestan, *Bull. Soc. Chim. Fr.,* 3999 (1968). (215)
A. *C.* Ranade, A. Mueller, and E. Diemann, *Z. Anorg. Allg. Chem.*,
-
- 373, 258 (1970).

A. Mueller and B. Krebs, Z. Anorg. Allg. Chem., **342,** 182 (1966); (217)

B. Krebs, A. Mueller, and H. Beyer, *ibid.*, **362**, 44 (1968).

A. Mueller, E. Diemann, and V. V. K. Rao, Chem. Ber., 103, 2961 (2 (165) B. Krebs and E. Kindler, Z. Anorg. Allg. Chem., 368, 293 (1969).
- A. Mueller, B. Krebs, and W. Hoeltje, Spectrochim. Acta, Part A, (222)
23, 2753 (1967).
- M. Fetizonand J. C. Gramain, BuH. Soc. Chim. Fr,, 1001 (1967).
-
-
- K. Traore, *Bull. Soc. Chim. Fr*., 1284 (1965).
G. Odent, *Rev. Chim. Mi*ner.**, 6,** 933 (1969).
J. C. Wildervanck and F. Jellinek, J. Less-Common Metals, **24,** 73 (224)
(1971). (225)
- J. G. Malm and H. Selig, J. Inorg. Nucl. Chem., **20,** 189 (1961). H. W. Roesky, O. Glemser, and K. H. Hellberg, Chem. Ber., 98,- (226)
- 2046 (1965).
- R. L. Johnson and B. Siegel, J. Inorg. Nucl. Chem., **31,** 2391 (1969).
-
- S. Siegel and D. A. Northrop, Inorg. Chem., 5, 2187 (1966). (228) J. Donohue, Acta Crystallogr., **18,** 1018 (1965); R. D. Burbank, ibid., **15,** 1207 (1962).
- (176) N. Bartlett, S. Beaton, L. W. Reeves, and E. J. Wells, Can. J.
-
- Chem., 42, 2531 (1964). (230)
H. H. Claassen, E. L. Gasner, and H. Selig, J. Chem. Phys., 49, 1803 (1968); H. H. Claassen, E. L. Gassen and H. Selig, *ibid.*, 43, 103 (1965). (231)
E. W. Kaiser, J. S. Muenter, W. Klemperer
-
- E. Wendling and S. Mahmoudi, *Rev. Chim. Miner.*, **9**, 291 (1972);

G. P. Bhavsar and K. Sathianandan, *Curr. Sci.*, **41**, 173 (1972);

Chem. Abstr., 76, 119320p (1972).

J. H. Canterford, T. A. O'Donnell, and A. B. Waugh,
-
-
-
-
-
- D. V. Drobot, B. G. Korshunov, and V. A. Aleksandrova, *Russ. J.*
Inorg. Chem., 16, 1223 (1971).
W. A. Yeranos and F. D. Foss, *Mol. Phys.*, 9, 87 (1965); A. Mul- (240)
Ier, B. Krebs, and C. Peacock. Spectrochim. Acta,
- urforsch. B, **24**, 1508 (1969).
D. V. Drobot, B. G. Korshunov, and S. L. Kovacheva, *Russ. J.* (242)
Inorg. Chem., 17, 139 (1972). (230, 2630 (1969). W. A. Gault, *Diss. Abstr. B*, 30, 2630 (1969). (243)
D. E. Grove, N.
-
-
-
-
- F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry," (245)
3rdied, Wiley, New York, N. Y., 1972. (246)
A. F. Clifford and R. R. Olsen, *Inorg. Syn.*, 6, 167 (1960).
B. Krebs and A. Mueller, J. *Inorg. Nucl. Chem.*
- (1967).
-
-
- C. Ringel and H. A. Lehmann, Z. Anorg. Allg. Chem., 353, 158 (248)

(1967); 366, 73 (1969).

C. Ringel. Z. Chem., 9, 461 (1969).

A. P. Ginsberg and C. R. Sprinkle, Inorg. Chem., 8, 2212 (1969);

A. P. Ginsberg and C. R. S
-
-
- T. C. Farrar, T. Tsang, and R. B. Johannesen, J. Chem. Phys., **51,** 3595(1969). (256)
- (201) A. P. Ginsberg and M. J. Hawkes, J. Amer. Chem. Soc., 90, 5930

(1968).

- A. P. Ginsberg, C*hem. Commu*n., 857 (1968).
J. Chatt and R. S. Coffey, *J. Chem. S*oc. *A*, 1963 (1969); C*hem.*
- Co*mmu*n., 545 (1966).
A. Ferretti, D. B. Rogers, and J. B. Goodenough, *J. Phy*s. C*hem.*
- Solids, 26, 2007 (1965).
- P. G. Dickens and M. S. Whittingham, Quart. Rev., Chem. Soc., **22,** 30 (1968). J. Feinleib, W. J. Scouler, and A. Ferretti, Phys. Rev., **165,** 765
- (1968).
- J. M. Honig, J. O. Dimmock, and W. H. Kleiner, J. Chem. Phys., **50,** 5232 (1969); L. F. Mattheiss, Phys. Rev., **181,** 987 (1969); ibid., B, 2, 3918 (1970).
- P. Chartier and R. Poisson, C. *R. Acad. Scl., Ser. C*, **265,** 1353
(1967); *Bull.* Soc. Chim. Fr., 1275 (1970).
R. Poisson and P. Chartier, *Bull. S*oc. Chim. Fr., 1278 (1970).
B. L. Chamberland, *Inorg. Chem.,* **8,** 1183
-
-
- (1966).
- A. W. Sleight, T. A. Bither, and P. E. Bierstedt, So*lid Stat*e Co*m-*
*mu*n., 7, 299 (1969). W. Jeitschko and A. W. Sleight, J. Solid State Chem., 4, 324
- (1972). J. Cloarec, A. Deschanvres, and B. Raveau, C. R Acad. ScL Ser. C. **264,** 1841 (1967).
- A. W. Sleight and J. F. Weiher, J. Phys. Chem. Solids, **33,** 679 (1972).
-
- G. Lang, Z. Anorg. AIIg. Chem., **348,** 246 (1966). R. Scholder and P. P. Pfeiffer, Angew. Chem., Int. Ed. Engl., 2, 265 (1963).
- J. Hauck, Z. Naturtorsch. B, **24,** 455, 1067 (1969).
- J. Hauck and A. Fadini, Z. Naturtorsch. B, **25,** 422 (1970).
- J. Hauck, Z. Naturtorsch. B, **24,** 1349 (1969). F. K. Patterson and R. Ward, Inorg. Chem., 5, 1312 (1966); Chem. Commun., 323 (1965).
- (222) J. Burgess, C. J. W. Fraser, I. Haigh, and R. D. Peacock, J.
- Chem. Soc, Da/ton Trans., in press; and personal-communication. B. Weinstock and G. L. Goodman, Advan. Chem. Phys., 9, 169 (1965).
- M. S. Child and A. C. Roach, Mol. Phys., 9, 281 (1965).
- E. W. Kaiser, J. S. Muenter, W. Klemperer, W. E. Falconer, and W. A. Sunder, J. Chem. Phys., **53,** 1411 (1970).
-
- E. J. Jacob and L. S. Bartell, *J. Chem. Phy*s., **53,** 2231 (1970).
H. H. Claassen and H. Selig, *Isr. J. Chem.,* 7, 499 (1969); H. H.
Claassen, G. L. Goodman, J. H. Holloway, and H. Selig, *J. Chem.* Phys., **53,** 341 (1970).
- I. W. Levin, S. Abramowitz, and A. Mueller, *J. Mol. Spectrosc.,*
41, 415 (1972); A. A. Kiseljov, *Proc. Phys. Soc.,* London (*At. Mol.* Phys.), 2,270 (1969).
-
- R. McDiarmid, J. Mol. Spectrosc., **39**, 332 (1971).
J. C. D. Brand, G. L. Goodman, and B. Weinstock, J. Mol. Spectrosc., **38**, 449 (1971).
J. A. D. Stockdale, R. N. Compton, and H. C. Schweinler, J.
J. A. D. Stockdale, R.
-
-
- (1967) .
- (234) B. Frlec and H. H. Hyman, Inorg. Chem., 6, 1596 (1967).
- (235) R. D. Peacock and D. F. Stewart, Inorg. Nucl. Chem. Lett., 3, 255 (1967).
- (236) J. H. Canterford and A. B. Waugh, Inorg. Nucl. Chem. Lett., 7, 395 (1971).
- (237) A. Guest and C. J. L. Lock, Can. J. Chem., 49, 603 (1971).
- A. Guest and C. J. L. Lock, *Can. J. Chem.*, **50,** 1807 (1972).
A. J. Edwards and G. R. Jones, *J. Chem. Soc. A*, 2511 (1968); A.
J. Edwards, G. R. Jones, and B. R. Steventon, *Chem. Commu*n., 462 (1967).
- D. A. Edwards and A. A. Woolf, J. Chem. Soc. A, 91 (1966). I. A. Glukhov, S. S. Eliseev, and N. A. El'manova, Russ. J. Inorg. Chem., **15,** 160, 416, 1696 (1970).
-
-
- 1. A. Glukhov, S. S. Eliseev, and N. A. El'manova, *Russ. J. Inorg.*
Chem., 13, 628, (1968): 14, 1061 (1969): 15, 1562, 1699 (1970).
L. A. Nisel'son, R. K. Nikolaev, and Z. N. Orshanskaya, *Russ. J.*
Inorg. Chem., 4, 453 (
- C. G. Barraclough and D. J. Kew, Aust. J. Chem., **25,** 27 (1972).
- J. H. Canterford, R. Colton, and I. B. Tomkins, *Inorg. Nucl. Chem.*
Lett., **4, 4**71 (1968); K. I. Petrov, V. V. Kravchenko, D. V. Drobot, and V. A. Aleksandrova, Russ. J. Inorg. Chem., **16,** 928 (1971).
- B. J. Brisdon and D. A. Edwards, *I*norg. Chem., 7, 1898 (1968);
Chem. Commun., 278 (1966).
-
- D. L. Singleton and F. E. Stafford, *Inorg. Chem.*, 11, 1208 (1972).
P. W. Frais and C. J. L. Lock, Can. *J. Chem.*, **50,** 1811 (1972).
D. A. Edwards and R. T. Ward, *J. Chem. S*oc., *Dalt*on *Tra*ns., 89
- (1972). (251) C. Calvo, P. W. Frais, and C. J. L. Lock, Can. J. Chem., 50, 3607
- (1972). G. Lux, *Z. Chem.*, 5, 143 (1965).
R. Colton, *Aust. J. Chem.,* 18, 435 (1965).
D. E. Grove and G. Wilkinson, *J. Chem. Soc. A*, 1224 (1966).
S. Tribalat, D. Delafosse, and *C. Piolet, C. R. Acad. Sci.,* 261,

G. Baud and M. Capestan, Bull. Soc. Chim. Fr., 1872 (1969); C. R. Acad. ScL, Ser. C. **267,** 314 (1968).

1008 (1965).

- (257) P. C. Donohue, J. M. Longo, R. D. Rosenstein, and L. Katz, lnorg. Chem.. 4, 1152 (1965).
- (258) O. Muller and R. Roy, Mater. Res. Bull., 4, 349 (1969).
- (259) K. A. Wilhelmi, E. Lagervall, and O. Muller, Acta Chem. Scand., 24, 3406 (1970). (260) J. M. Longo and A. W. Sleight, *Inorg. Chem.*, 7, 108 (1968); N. L. Morrow and L. Katz, *Acta Crystallogr., Sect. B*, **24,** 1466 (1968); '
T. P. Sleight, C. R. Hare, and A. W. Sleight, *Mater. Res. Bull.*, **3,** 437 (1968).
- F. Gonzalez-Vilchez and W. P. Griffith, J. Chem. Soc, Dalton Trans.. 1416 (1972).
- E. R. Epperson, S. M. Horner, K. Knox, and S. Y. Tyree Jr., lnorg.
- Syn., 7, 163 (1963).
K. Mucker, G. S. Smith, and I. Johnson, *Acta Crystall*ogr., *Sect.*
B. **24**, 874 (1968).
- (264) R. R. Smardzewski, U. S. At. Energy Comm., IS-T-292 (1969); Chem. Abstr., 72, 7273Ox (1970).
- D. A. Edwards and R. T. Ward, J. C*hem. Soc. A*, 1617 (1970).
D. V. Drobot, B. G. Korshunov, and V. A. Aleksandrova, *Russ. J.*
- lnorg. Chem., 13, 1729 (1968); 14, 448 (1969); 15, 584 (1970).
- (267) H. Gehrke, Jr., and D. Bue, *Inorg. Syn.*, 12, 193 (1970). (268) J. H. Canterford and R. Colton, Inorg. Nucl. Chem. Lett., 4, 607
- (1968). (269) P. W. Frais, A. Guest, and C. J. L. Lock, Can. J. Chem., 47, 1069
- (1969). (270) A. Brignole and F. A. Cotton, Chem. Commun., 706 (1971).
- P. W. Frais, C. J. L. Lock, and A. Guest, C*hem. Commu*n., 75
- J. Tsuji, T. Nogi, and M. Morikawa, *Bull. Chem. Soc. Jap.*, **39,** (1971). 714 (1966).
-
- H. Gehrke, Jr., and G. Eastland, *Inorg. Chem.*, **9,** 2722 (1970).
M. Kamachi and H. Miyama, *J. Polym. Sci., Part A*, **3,** 1337
- (1965); 6, 1537 (1968). (275) J. A. Moulijn and C. Boelhouwer, Chem. Commun., 1170 (1971).
- (276) P. W. Frais, C. J. L. Lock, and A. Guest, Chem. Commun., 1612 (1970).
- (277) R. A. Bailey and S. L. Kozak, *Inorg. Chem.*, 6, 2155 (1967).
- (278) R. A. Bailey and S. L. Kozak, J. Inorg. Nucl. Chem., 31, 689 (1969).
- (279) F. Taha and G. Wilkinson, J. Chem. Soc., 5406 (1963).
- E. A. Allen, B. J. Brisdon, and G. W. A. Fowles, J. Chem. Soc, 4531 (1964); G. W. A. Fowles, D. A. Rice, N. Rolfe, and R. A. Walton, Chem. Commun., 459 (1970).
-
- R. A. Walton, Q*uart. Rev., Chem. Soc.*, 126 (1970).
G. Rouschias and G. Wilkinson, *J. Chem. Soc. A*, 489 (1968);
Chem. Commun., 442 (1967).
E. A. Allen, N. P. Johnson, D. T. Rosevear, and W. Wilkinson, *J.*
-
-
- Chem. Soc. A, 788 (1969).
D. G. Tisley and R. A. Walton, J. Chem. Soc. A, 3409 (1971);
Inorg. Nucl. Chem. Lett., 7, 537 (1971).
H. Gehrke, Jr., G. Eastland, and M. Leitheiser, J. Inorg. Nucl.
Chem., 32, 867 (1970).
C. A. A
-
- (1964) (288) H. Gehrke Jr., G. Eastland, L. Haas, and G. Carlson, Inorg.
- Chem., 1**0,** 2328 (1971).
E. A. Allen, N. P. Johnson, D. T. Rosevear, and W. Wilkinson,
-
- *l*norg. Nucl. Chem. Lett., **5,** 239 (1969).
D. E. Grove and G. Wilkinson, personal communication.
K. V. Ovchinnikov, S. E. Logai, and N. I. Kolbin, *Zh. Obshch.*
Khlm., **42,** 1180, 1183 (1972); Che*m. Abstr.*, 77, 93705m, (1972).
- R. Davis and J. E. Fergusson, *Inorg. Chim. Acta*, **4,** 16 (1970).
M. Freni, D. Giusto, and P. Romiti, *Gazz. Chim. Ital.*, **9**7, 833
- (1967). F. A. Cotton and S. J. Lippard, lnorg. Chem., 5, 9 (1966); Chem.
- Commun., 245 (1965).
- J. E. Fergusson and J. L. Love, *Aust. J. Chem., 24, 2*689 (1971).
N. P. Johnson, *C.* J. L. Lock, and G. Wilkinson, *I*no*rg. Sy*n., **9**, 145 (1967).
- (297) M. C. Chakravorti, J. Indian Chem. Soc., 44, 809 (1967).
-
- L. Morpurgo, *Inorg. Chim. Acta*, **2,** 169 (1969).
M. C. Chakravorti, *J. Indian Chem. S*oc., **4**7, 827, 834, 838, 844 (1970); R. A. Bailey and F. J. Montillo, J. lnorg. Nucl. Chem., 31,
- 2031, (1969). J. F. Rowbottom and G. Wilkinson, J. Chem. Soc, Dalton Trans., 826 (1972).
- D. E. Grove, N. P. Johnson, C. J. L. Lock, and G. Wilkinson, J.
Chem. Soc., 490 (1965).
M. Freni, D. Giusto, P. Romiti, and G. Minghetti, *Gazz. Chim.*
Ital., 99, 286 (1969).
S. R. Fletcher, J. F. Rowbottom, A. C. Skap
-
- Chem. Commun., 1572 (1970)**.**
M. Freni, D. Giusto, and P. Romiti, *Gazz. Chim. Ital.*, **99,** 641
- (1969).
-
-
- F. A. Cotton and S. J. Lippard, *Inorg. Chem.*, **4,** 1621 (1965).
G. Rouschias and G. Wilkinson, J. Chem. Soc. A, 993 (1967).
R. K. Murmann, *Inorg. Syn.*, **8,** 173 (1966).
M. M. Ray, J. *Inorg. Nucl. Chem.*, **2**7, 2193 (1
- (309) (1972). H. Przywarska-Boniecka and B. Jezowska-Trzebiatowska, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 13, 67 (1965); Chem. Abstr.,

63, 3874g (1965).

- (310) J. H. Beard, J. Casey, and R. K. Murmann, lnorg. Chem., 4, 797 (1965)
	- (311) S. B. Banerjee and B. Sur, *J. Inorg. Nucl. Chem.*, 28, 2423
(1966); D. K. Chakrabarti, V. I. Panesh, and B. N. Ivanov-Emin, Russ. J. lnorg. Chem., 12, 364 (1967).
	- (312) B. Jezowska-Trzebiatowska, J. Hanuza, and M. Baluka, Spectro-
chim. Acta, Part A, 27, 1753 (1971).
(313) W. P. Griffith and T. D. Wickins, J. Chem. Soc. A, 400 (1968).
(314) W. P. Griffith, J. Chem. Soc. A, 211 (1969
	-
	- 1054 (1964).
	-
	- (316) B. Jezowska-Trzebiatowska, S. Wajda, and M. Baluka, Zh. Strukt.

	Khim., 8, 519 (1967); Chem. Abstr., 67, 96425z (1967).

	(317) B. N. Ivanov-Emin, D. K. Chakrabarti, and A. I. Ezhov, Russ. J.

	Inorg. Chem., 11, 733, 7 N. Ivanov-Emin, Zh. Strukt. Khim., 9, 73 (1968); Chem. Abstr.. 68, 118066h (1968).
	- (318) D. A. Edwards and R. T. Ward, *J. Mol. Struct.*, **6,** 421 (1970).
(319) B. Jezowska-Trzebiatowska and L. Natkaniec, *Zh. Strukt. Khim.,*
	- 8, 524 (1967); Bull. Acad. Pol. Scl., Ser. Sci. Chim., 19, 129 (1971).
	- (320) K. I. Petrov and V. V. Kravchenko, Russ. J. lnorg. Chem., 15, 1142 (1970).
	-
	- (321) F. A. Cotton and S. J. Lippard, *Inorg. Chem.*, **5,** 416 (1966).

	(322) G. Rouschias and G. Wilkinson, J. Chem. Soc., 465 (1966).

	(323) N. P. Johnson, J. *Inorg. Nucl. Chem.*, **34,** 2875 (1972); T. S.

	Khodashova,
	- (324) C. Calvo, N. Krishnamachari, and C. J. L. Lock, J. Cryst. MoI. Struct., 1, 161 (1971). (325) R. H. Fenn, A. J. Graham, and N. P. Johnson, J. Chem. Soc. A,
	- (326) R. K. Murma K. Murmann and E. O. Schlemper, *Inorg. Chem.*, 10, 2352
	- (1971). (327) J. H. Beard and R. K. Murmann, J. lnorg. Nucl. Chem., 30, 2467
	- (1968).
	- .(328) S. R. Fletcher and A. C. Skapski, J. Chem. Soc, Dalton Trans., 1073 (1972); D. G. Tisley, R. A. Walton, and D. L. Wills, lnorg. Nucl. Chem. Lett, 7, 523 (1971).
	- (329) T. Glowiak, T. Lis, and B. Jezowska-Trzebiatowska, Bull. Acad. Pol. Sci., Ser. Sci. Chim., **20,** 199 (1972); Chem. Abstr., 77<mark>,</mark>
53491g (1972).
	- (330) R. Shandies, E. O. Schlemper, and R. K. Murmann, lnorg. Chem., 10, 2785 (1971).
	- (331) H. W. W. Ehrlich and P. G. Owston, J. Chem. Soc., 4368 (1963).
(332) L. B. Kriege and R. K. Murmann, J. Amer. Chem. Soc., 94, 4 L. B. Kriege and R. K. Murmann, J. Amer. Chem. Soc., 94, 4557
	- (1972). (333) J. D. Woods, J. Gruca, and C. M. Pietrzak, Proc. Iowa Acad. Sci., 76, 119 (1969).
	-
	-
	- (334) J. A. Casey and R. K. Murmann, *Inorg. Chem.,* 6, 1053 (1967).
(335) J. H. Beard, C. Calhoun, J. Casey, and R. K. Murmann, *J. Amer.*
(336) J. A. Casey and R. K. Murmann, *J. Amer. Chem. Soc.,* 92, 78
(336) J. A. Cas (1970).
	- (337) J. Chatt, G. J. Leigh, D. M. P. Mingos, and R. J. Paske, J. Chem. Soc. A, 2636 (1968).
	- (338) C. J. L. Lock and C. Wan, Chem. Commun., 1109 (1967); W. D. Courrier, C. J. L. Lock, and G. Turner, Can. J. Chem., 50, 1797 (1972).
	- (339) F. A. Cotton, R. Eiss, and B. M. Foxman, lnorg. Chem., 8, 950
	- (1969). (340) D. L. Toppen and R. K. Murmann, lnorg. Nucl. Chem. Lett., 6, 139 (1970).
	-
	- (341) M. C. Chakravorti, J. lnorg. Nucl. Chem., 34, 893 (1972). (342) M. C. Chakravorti and M. K. Chaudhuri, J. lnorg. Nucl. Chem., 34, 3479 (1972).
	- (343) J. Chatt, J. D. Garforth, N. P. Johnson, and G. A. Rowe, J. Chem. Soc., 1012 (1964).
(344) J. Chatt, J. R. Dilworth, G. J. Leigh, and V. D. Gupta, *J. Chem.*
	- Soc. A, 2631 (1971).
	- (345) J. Chatt, C. D. FaIk, G. J. Leigh, and R. J. Paske, J. Chem. Soc. A, 2288 (1969). (346) S. R. Fletcher and A. C. Skapski, J. Chem. Soc, Dalton Trans..
	- 1079 (1972).
	- (347) J. Chatt, J. D. Garforth, and G. A. Rowe, J. Chem. Soc. A. 1834 (1966).
	-
	- (348) N. P. Johnson, J. C*hem. Soc. A*, 1843 (1969).
(349) W. O. Davies, N. P. Johnson, and P. Johnson, C*hem. Commu*n.,
- 736 (1969); N. P. Johnson, personal communication, 1973.
(350) V. I. Nefedov, I. A. Zakharova, M. A
	- Dyatkina, *Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 20, 1748
(1971); *Dokl. Akad. Nauk SSSR,* 202, 605 (1972).
(351) R. Shandles and R. K. Murmann, J. Inorg. Nucl. Chem., 27, 1869)
	- (1965). (352) J. Chatt, J. R. Dilworth, and G. J. Leigh, J. Chem. Soc. A, 2239
	- (1971).
	- (353) J. Chatt and J. R. Dilworth, Chem. Commun., 549 (1972).
(354) I. S. Kolomnikov, Yu. D. Koreshkov, T. S. Lobeeva.
	- (354) I. S. Kolomnikov, Yu. D. Koreshkov, T. S. Lobeeva, and M. E.
Volpin, *Chem. Commu*n., 1432 (1970); *Bull. Acad. Sci. USSR,*
Div. Chem. Sci., 20, 1951 (1971).
(355) J. Chatt and B. T. Heaton, J. Chem. Soc. A. 705 (1
	- Commun., 274 (1968).
-
-
- (356) J. Chatt, J. Dilworth, G. Leigh, and I. A. Lakharova, Proc. Acad,

Sci. USSR, Chem. Sect., 199, 659 (1971).

(357) G. J. Gainsford and R. Mason, unpublished results.

(358) J. Chatt, J. R. Dilworth, and G. J. Leigh,
-
-
-
- (363) D. Bright and J. A. Ibers, lnorg. Chem., 8, 709 (1969).
- (364) G. Rouschias and G. Wilkinson, unpublished observations.
(365) B. Frlec, H. Selig, and H. H. Hyman, *Inorg. Chem.*, **6,** 1775
- (1967).
- (366) R. A. Bailey, M. Elguindy, and S. L. Kozak, *J. Inorg. Nucl. Chem..* 31, 2275 (1969).
- (367) R. L. Cooper and M. L. H.Green, J. Chem. Soc. A, 1155 (1967).
- (368) J. F. Rowbottom and G. Wilkinson, Inorg. Nucl. Chem. Lett., in
-
-
- press.
(369) R. Machmer, *Inorg. Nucl. Chem. Lett.*, **4,** 91 (1968).
(370) C. J. L. Lock, quoted in ref 190, p 980.
(371) M. Freni. D. Giusto, P. Romiti, and E. Zucca, *J. Inorg. Nucl. Chem.*, **31,** 3211 (1969).
(372) M. F
- 1433 (1967).
- (373) S. Rundqvist, Acta Chem. Scand., 20, 2075 (1966). (374) S. Tribalat and M. L. Jungtleisch, C. R. Acad. ScI.. **259,** 1965 (1964).
-
- (375) S. Tribalat and D. Mofidi, *Bull. Soc. Chim. Fr*., 3684 (1965).
(376) D. Colaitis and C. Lécaille, *Mater. Res. Bull., 7,* 369 (1972).
(377) D. R. Rogers, S. R. Butler, and R. D. Shannon, *I*norg. Syn., 1**3,**
- 142 (1972).
- (378) D. B. Rogers, R, D. Shannon, A. W. Sleight, and J, L. Gillson, lnorg. Chem.. 8,84 1 (1969). (379) A. Magneli, Acta Chem. Scand., **11 ,** 28 (1957).
-
- (380) J . I. Franco and H, Kleykamp, Ber. Bunsenges. Phys. Chem.. 75, 934 (1971).
- (381) D. DelafosseandJ . Holderio, C. R. Acad. ScL. **260,** 2505 (1965).
- (382) P. Gibart, Bull. Soc. Chim. Fr., 444 (1967); C, P. Acad. Set.. **261 ,** 1525 (1965). (383) J . B. Goodenough, P. Gibart, and J. Brenet, C. R. Acad. ScL. **261 ,**
- 2331 (1965). (384) N. W. Alcock and A. Kjekshus, Acta Chem. Scand.. 19, 79
- (1965).
-
- (385) C. A. Sorrell, *J. Amer. Ceram. Soc.*, 51, 285 (1968); S. Furuseth
and A. Kjekshus, Acta Chem. Scand., 20, 245 (1966).
(386) J. Sodi and J. F. Elliott, Trans. Met. Soc. AlME, 242, 2143 (1968);
Chem. Abstr., 70, 51345
- 82603p (1971).
- (388) Kh. Vasilev, Go*d. Vissh, Khimikotekh*no*l. Inst*., 1**2,** 5 (1965);
- Chem. Abstr., **68,** 33634s (1968).
(389) R. A. Isakova, L. E. Ugryumova, K. S. Amosova, N. A. Potanina,
-
- and I. A. Sapukov, *Russ. J. Inorg. Chem.*, 17, 313 (1972).

(390) E. Montignie, *Z. Anorg. Allg. Chem.*, **366**, 111 (1969); A. A. Yana-

ki, V. A. Obolonchik. and R. V. Skolozda, *Izv. Akad. Nauk SSR.*

Neorg. Mater.. 7,
-
-
- Chem., 16, 790 (1971).
- (394) D. E. La Valle, R. M. Steele, and W. T. Smith Jr., *J. Inorg. Nucl.*
Chem., **28,** 260 (1966).
- (395) F. A. Cotton, W. R. Robinson, and R, A. Walton, lnorg. Chem., 6,
- 223 (1967).
(396) M. J. Bennett, F. A. Cotton, B. M. Foxman, and P. F. Stokely, J.
(397) M. Elder and B. R. Penfold, *Inorg. Chem.*, 5, 1197 (1966).
(398) R. Colton and R. L. Martin, *Nature (London)*, 205, 239 (1965).
(39
-
-
-
- 497 (1967). (401) H. Muller and R. Waschinski, lnorg. Nucl. Chem. Lett.. 8, 413 (1972).
- (402) C. Furlani and G. Ciullo, *J. Inorg. Nucl. Chem.,* **2**7, 1167 (1965).
(403) P. W. Frais, H. E. Howard-Lock, and C. J. L. Lock, Can. J.
 Chem., 51, 828 (1973).
- (404) M. Cowie, C. J. L. Lock, and J. Ozog, Can. *J. Chem.*, **48,** 3760
(1970).
-
- (405) R. A. Walton, *Inorg. Chem.,* 10, 2534 (1971).
(406) M. G. B. Drew, D. G. Tisley, and R. A. Walton*, Chem. Commu*n..
 600 (1970).
- (407) F. Bonati and F. A. Cotton, lnorg. Chem.. 6, 1353 (1967). (408) F. A. Cotton and P. F. Stokely, unpublished results quoted in ref 409.
-
- (409) F. A. Cotton and B. M. Foxman, *Inorg. Chem.,* 7, 1784 (1968).
(410) G. W. Watt and R. J. Thompson, *Inorg. Sy*n., 7, 189 (1963).
(411) S. Wajda and E. Jackowska. *Rocz. Chem.*. **44,** 735 (1970);
-
- Chem. Abstr., 73, 83403q (1970).
(412) B. Jezowska-Trzebiatowska, W. Wojciechowski, and J. Mrozinski,
Rocz. Chem. Abstr., 64, 4329d (1966).
(413) S. Wajda and F. Pruchnik, Nukleonika, 12, 821 (1967); Rocz.
Chem., 41, 1473
-

Okubo, *Nippon Kagaku Zasshi, 86, 1142 (1965); Chem. Abstr..*
64, 11854a (1966); L. I. Evteev, *Russ. J. Inorg. Chem.,* 10, 1399 (1965).

- (414) K. Schwochau, *Z. Naturforsh. A*, **20,** 1286 (1965).
(415) H. Müller, *Z. Anorg. Allg. Chem.,* **336, 24 (**1965); **352, 2**91
- (1967),
- (416) E. Blasius and W. Preetz, Z. Anorg. AIIg. Chem., 335, 16 (1965); H. Muller, Fresenius' Z. Anal. Chem., **247,** 145 (1969). (417) K. Rbssler and S. R. Upadhyay, Angew. Chem.. Int. Ed. Engl.. 8,
-
-
-
- 919 (1969).
(418) R. Bell, K. Rössler, G. Stöcklin, and S. R. Upadhyay, J. Inorg.
Mucl. Chem., 34, 461 (1972).
(419) R. A. Bailey and S. L. Kozak, Inorg. Chem., 6, 419 (1967).
(420) J. Burgess, R. D. Peacock, and A. M. Pet
- (421) V. G. Tronev, G. K. Babeshkina, and L. I. Finogenova, *Russ. J.*
Inorg. Chem., 1**0,** 1351 (1963); M. C. Chakravorti, *J. Indian*
Chem. Soc., **42,** 503 (1965).
(422) J. Chatt, J. D. Garforth, N. P. Johnson, and G. A
-
- Soc, 601 (1964). (423) J. Chatt, G. J. Leigh, D, M. P. Mingos, and R. J. Paske, Chem. Ind. {London), 1324 (1967). (424) M. Freni, P. Romiti, and D. Giusto, J. lnorg. Nucl. Chem.. 32. 145
- (1970). (425) W. J . Kirkham, A. G. Osborne, R. S. Nyholm. and M. H. B. Stidd-
- ard, *J. Chem. Soc., 550 (*1965).
(426) F. A. Cotton, W. R. Robinson, R. A. Walton, and R. Whyman.
Inorg. Chem., **6,** 929 (1967).
-
-
-
- (427) R. H. Busey, K. H. Gayer, R. A. Gilbert, and R. B. Bevan, Jr., J.
Phys. Chem., 7**0,** 2609 (1966).
(428) H. D. Grundy and I. D. Brown, Can. J. Chem., **48,** 1151 (1970).
(429) E. Adman and T. N. Margulis, *Inorg. Chem.* (1965); R. Ikeda, A. Sasane, D. Nakamura, and M. Kubo. ibid., 70, 2926 (1966).
- (431) G. P. O'Leary, Phys. Rev. Lett., 23, 782 (1969); Phys. Rev. B. 3, 3075 (1971).
(432) T. L. Brown, W. G. McDugle, Jr., and L. G. Kent, *J. Amer. Chem.*
- Soc, 92, 3645 (1970). (433) R. L. Armstrong, G. L. Baker, and H. M. Van Driel, Phys. Rev. B.
- 3, 3072 (1971).
- (434) F. A. Cotton and C. B. Harris, lnorg. Chem., 6, 376 (1967). (435) G. J. Leigh and W. Bremser, J, Chem. Soc. Dalton Trans.. 1216
- (1972). (436) K. Schwochau and W. Krasser, Z. Naturforsch. A. 24, 408 (1969);
- 25, 206 (1970). (437) K. A. Bol'shakov, N. M. Sinitsyn, V. F. Travkin, and L. P. Resheto-
- va, Russ. J. lnorg. Chem., 15, 1144 (1970). (438) D. A. Kelly and M. L. Good. Spectrochim. Acta. Part A. 28, 1529
- (1972).
- (439) C. V. Jorgensen and K. Schwochau, *Z. Naturforsch, A.* **20,** 65
(1965).
- (440) R. A. Bailey and J. A. McIntyre, *Inorg. Chem.*, 5, 964 (1966).
(441) D. H. Brown, D. R. Russell, and D. W. A. Sharp, J. *Chem. S*oc. *A.* 18 (1966).
- (442) P. B. Dorain and R. G. Wheeler, J. Chem. Phys., 45, 1172 (1966).
- (443) H. H. Patterson, J. L. Nims, and C. M. Valencia, *J. Mol. Spec-*
trosc., **42,** 567 (1972).
-
-
-
- (444) A. R. Reinberg and S. G. Parker, Phys. Rev. B. 1, 2085 (1970).

(446) P. B. Dorain, *Transition Metal Chem..*, 4, 1 (1968).

(446) H. G. Smith and G. E. Bacon. J. Appl. Phys.. 37, 979 (1966); V.

J. Minkiewicz, G. S
-
-
- (450) M. Gross and J. Brenet, Bull. Soc. Chim. Fr., 1214 (1972).
- (451) R. Colton and J. E. Knapp, Aust. J. Chem., 25, 9 (1972).

(452) H. Müller, J. Inorg. Nucl. Chem., 27, 1745 (1965); 28, 2081

(1966); 29, 2167 (1967); 31, 1579 (1969); H. Müller and S. Ab-

berger, Angew. Chem., Int. lin, and S. R. Upadhyay, *Ber. Kernforschungsanlage Juelich.*
JUEL-625-RC (1969); Chem. Abstr.. 73, 40615t (1970); K. Ross-
Jer, J. Otterbach, and G. Stocklin, J. Phys. Chem. 76. 2061
- (1972). (453) J. Chatt, G. J. Leigh, and D. M, P. Mingos, J. Chem. Soc. A 1674
- (1969).
-
- (454) R. Mason and L. Randaccio, J. Chem. Soc. A, 1150 (1971).
(455) F. Cariati, A. Sgamellotti, F. Morazzoni, and V. Valenti, *Inorg.*
Chim. Acta, 5, 531 (1971).
(456) G. J. Leigh and D. M. P. Mingos, J. Chem. Soc. A, 587
-
-
- (458) B. Jezowska-Trzebiatowska, J. Mrozinski, and W. Wojciechowski,
*Bull. Acad. Polo*n. *Sci., Ser. Sci. Chim.*, 17, 629 (1969).
(459) K. F. Tebbe and H. G. Von Schnering, *Z. Anorg. Allg. Chem.*, **396,**
66 (1973).
- (460) E. Konig, lnorg. Chem., 8, 1278 (1969).
- (461) B. Jezowska-Trzebiatowska, H. Kozlowski, and L. Natkaniec, Bull. Acad. Pol. Sc!.. Ser. Sci. ChIm., 19, 115 (1971). (462) S. M. Basitova, F. Sh. Shodiev, N. K. Kobilov, and M. P. Sokolo-
- va, Dokl. Akad. Nauk Tadzh. SSR, **15,** 30 (1972); Chem. Abstr., **77,** 108884v (1972).
- (463) G. Pfrepper, Z. Chem., **10,** 76 (1970); H. Przywarska-Boniecka, Rocz. Chem., 40, 1627 (1966); 41, 1703 (1967); Chem. Abstr., 66, 72008U (1966); 69, 32582g (1968).
- (464) B. Charreton and R. Meunier, C. R. Acad. ScL, Ser. C, **275,** 945 (1972).
- (465) F. Hurst, P. Gibart, and K. Traore, C. R. Acad. ScL, Ser. C, **263,** 97 (1966).
- (466) R. H. Busey, E. D. Sprague, and R. B. Bevan Jr., J. Chem. Phys., 73, 1039 (1969).
-
- (467) R. Pacer, J. Inorg. Nucl. Chem., **35,** 1375 (1973).
(468) F. A. Cotton and J. T. Mague, *Proc. Chem. Soc.*, 233 (1964);
(469) M. J. Bennett, F. A. Cotton, and B. M. Foxman, Inorg. Chem., 7,
(469) M. J. Bennett, F. A.
- 1563 (1968). (470) R. B. Bevan, Jr., R. A. Gilbert, and R. H. Busey, J. Chem. Phys.,
- 70, 147 (1966). (471) N. I. Kolbin and K. V. Ovchinnikov, Russ. J. Inorg. Chem., 13,
- 1190 (1968); Vestn. Leningrad. Univ., Fiz., Khim., 76 (1970); Chem. Abstr., 74, 91965k (1971). (472) V. G. Tronev and R. A. Dovlyatshina, Russ. J. lnorg. Chem., **10,**
- 160 (1965).
- (473) R. J. Thompson, R. E. Foster, and J. L. Booker, lnorg. Syn., **10,** 58 (196?). (474) F. A. Cotton, S. J. Lippard, and J. T. Mague, lnorg. Chem., 4, 508 (1965).
-
- (475) L. Malatesta, *Inorg. Syn.*, 7, 185 (1963); G. W. Watt and R. J.
Thompson, *ibid.*, 7, 187 (1963).
(476) V. G. Tronev and R. A. Dovlyatshina, *Azerb. Khim. Zh.*, 116
(1965); C*hem. Abstr.*, **64**, 9210d (1966).
(477)
- ton Trans., 500 (1972).
-
- (478) R. A. Bailey and J. A. McIntyre, *I*no*rg. Chem*., 5, 1940 (1966).
(479) K. Rinke and H. Schäfer, *Angew. Chem., Int. Ed. Engl.*, 4, 148 (1965).
- . Buchler, P. E. Blackburn, and J. L. Stauffer, J. Phys. Chem., 70, 685 (1966).
- (481) V. V. Ugarov, V. S. Vinogradov, E. Z. Zasorin, and N. G. Rambidi, Zh. Strukt. Khim., **12,** 315' (1971); Chem. Abstr., **75,** 26462a (1971).
- (482) J. E. Fergusson and B. H. Robinson, J. Chem. Soc, 5683 (1964);
- Proc. Chem. Soc., London, 189 (1964).
(483) J. A. Bertrand, F. A. Cotton, and W. A. Dollase, J. Amer. Chem.
Soc., **85, 134**9 (1963); Inorg. Chem., **2,** 1116 (1963); W. T. Rob-
inson, J. E. Fergusson, and B. R. Penfold, *Pr* don, 116 (1963).
-
- (484) M. Elder, G. J. Gainsford, M. D. Papps, and B. R. Penfold, Chem.
Commun., 731 (1969).
(485) B. R. Penfold and W. T. Robinson, *Inorg. Chem.*, **5**, 1758 (1966);
J. E. Fergusson, B. R. Penfold, and W. T. Robinson, *Nat*
- (486) M. Elder and B. R. Penfold, lnorg. Chem., 5, 1763 (1966); Nature (London), **205,** 276 (1965).
- (487) F. A. Cotton and S. J. Lippard, lnorg. Chem., 4, 59 (1965); J. Amer. Chem. Soc, 86, 4497 (1964).
-
- (488) J. H. Hickford and J. E. Fergusson, *J. Chem. S*oc. *A*, 113 (1967).
(489) F. A. Cotton and J. T. Mague, *Inorg. Chem.*, **3,** 1094 (1964).
(490) V. Gutmann and G. Paulsen, *M*on*atsch. Chem.*, 1**00,** 359 (1968).
-
-
- (491) F. A. Cotton and R. A. Walton, *Inorg. Chem.*, **5,** 1802 (1966).
(492) D. G. Tisley and R. A. Walton, *Inorg. Chem.*, 1**2,** 373 (1973);
Inorg. Nucl. Chem. Lett., **6, 4**79 (1970).
(493) F. A. Cotton and S. J. Lippar
- (1966). (494) J. E. Fergusson and J. H. Hickford, lnorg. ChIm. Acta, 2, 475
- (1968).
-
- (495) D. G. Tisley and R. A. Walton, lnorg. Chem., **11,** 179 (1972). (496) R. B. King, P. N. Kapoor, and R. N. Kapoor, lnorg. Chem., **10,** 1841 (1971). (497) D. A. Edwards and R. T. Ward, J. lnorg. Nucl. Chem., **35,** 1043
- (1973). (498) R. B. King, R. N. Kapoor, M. S. Saran, and P. N. Kapoor, lnorg. Chem., **10,** 1854 (1971); R. B. King and M. S. Saran, ibid., **10,**
-
- 1861 (1971).
(499) D. V. Drobot, B. G. Korshunov, and B. Sharkadi Nad', *Russ. J.*
(500) D. V. Korol'kov and V. N. Pak, *Teor. Eksp. Khim.*, 7, 531 (1971);
- Chem. Abstr.. 75. 133202n (1971).
- (501) A. B. Nikol'skii, M. E. Bedrina, and K. V. Ovchinnikov, Russ. J. Phys. Chem., 46, 473 (1972); K. I. Petrov and V. V. Kravchenko, Russ. J. lnorg. Chem., **16,** 980 (1971). (502) D. Brown and R. Colton, Aust. J. Chem., 18, 441 (1965).
-
- (503) R. R. Hendriksma, J. Inorg. Nucl. Chem., **34,** 1581 (1972); Inorg.
1990) M. J. Hynes, J. Inorg. Nucl. Chem., 11, 366 (1972).
(504) M. J. Hynes, J. Inorg. Nucl. Chem., 11, 366 (1972).
(505) F. A. Cotton and B. M. Foxm
-
-
- lnorg. Chem., 4,326 (1965). (507) F. A. Cotton, N. F. Curtis, and W. R. Robinson, lnorg. Chem., 4,
- 1696(1965). (508) F. A. Cotton, C. Oldham, and R. A. Walton, lnorg. Chem., 6, 214
- (1967).
-
-
- (509) P. A. Koz'min, M. D. Surazhskaya, and V. G. Kuznetsov, Zh.
Strukt, Khim., 8, 1107 (1967); 11, 313 (1970).
(510) W. K. Bratton and F. A. Cotton, Inorg. Chem., 8, 1299 (1969).
(511) M. J. Bennett, W. K. Bratton, F. A. 1798 (1966).
-
-
- (513) A. B. Brignole and F. A. Cotton, lnorg. Syn., **13,** 85 (1972). (514) A. B. Brignole and F. A. Cotton, lnorg. Syn., **13,** 81 (1972). (515) F. A. Cotton, W. R. Robinson, and R. A. Walton, lnorg. Chem., 6, 1257 (1967).
- (516) F. A. Cotton and W. K. Bratton, J. Amer. Chem. Soc, 87, 921 (1965).
- (517) M. J. Bennett, F. A. Cotton, and R. A. Walton, J. Amer. Chem. Soc, 88, 3866 (1966); Proc. Roy. Soc, Ser. A, **303,** 175 (1968). (518) F. A. Cotton and C. B. Harris, lnorg. Chem., 4, 330 (1965). (519) F. A. Cotton, B. G. De Boer, and M. Jeremic, lnorg. Chem., 9,
-
- 2143 (1970).
- (520) P. A. Kozimin, G. N. Novilskaya, G. N. Kuznetsov, and A. S. Ko-
telinikova, *Zh. Strukt, Khim.*, 12, 933 (1971).
(521) J. S. Filippo Jr., Inorg. Chem., 11, 1447 (1972).
(522) C. Oldham, J. E. D. Davies, and A. P. Ket
-
- mun., 572 (1971).
(523) W. K. Bratton, F. A. Cotton, M. Debeau, and R. A. Walton, *J.*
Coord. Chem., 1, 121 (1971).
-
-
- (524) F. A. Cotton, *Inorg. Chem.*, **4,** 334 (1965).
(525) V. N. Pak and D. V. Korol'kov, *Zh. Strukt. Khim.*, 1**2,** 342 (1971).
(526) F. A. Cotton and C. B. Harris, *Inorg. Chem.*, 6, 924 (1967).
(527) P. G. Douglas and B
-
-
- (528) M. Freni and P. Romiti, *Inorg. Nucl. Chem. Lett.*, **6,** 167 (1970).
(529) V. G. Albans, P. L. Bellon, and V. Scatturin, *Rend. Ist. Lomb. Sci.*
- Lett., A, **100,** 989 (1966); Chem. Abstr., 69, 39504s (1968). (530) V. G. Albano and P. L. Bellon, J. Organometal. Chem., **37,** 151
- (1972) .
(531) M. P. J Johnson and D. F. Shriver, J. Amer. Chem. Soc., 88, 301
- (1966).
- (532) N. W. Alcock, J. Chem. Soc. A, 2001 (1967); Chem. Commun.. 177 (1965).
- (533) J. R. Sanders, J. Chem. Soc. A, 2991 (1971).
- (534) J. Chatt, R. J. Dosser, and G. J. Leigh, Chem. Commun.. 1243 (1972).
- (535) O. E. Skolozdra, A. N. Sergeeva, and K. N. Mikhalevich, Russ. J.
- lnorg. Chem., **16,** 1628 (1971). (536) W. D. Courrier, W. Forster, C. J. L. Lock, and G. Turner, Can. J. Chem.. 50,8 (1972).
-
- (537) H. P. GunzandG. J. Leigh, J. Chem. Soc. A, 2229 (1971). (538) T. A. O'Donnell and K. A. Phillips, lnorg. Chem., **11,** 2563 (1972). (539) E. Singleton, J. T. Moelwyn-Hughes, and A. W. B. Garner, J. Or-
- ganometal. Chem., **21,** 449 (1970). (540) H. J. Anderson and A. Brenner, J. Electrochem. Soc. **116,** 513
- (1969). (541) M. Freni, P. Romiti, V. Valenti, and P. Fantucci, J. lnorg. Nucl.
- Chem., 34, 1195 (1972).

(542) J. Chatt, G. J. Leigh, D. M. P. Mingos, E. W. Randall, and D.

Shaw, Chem. Commun., 419 (1968).

(543) E. W. Randall and D. Shaw, J. Chem. Soc. A, 2867 (1969);

Chem. Commun., 82 (1965); Mol.
-
-
- Ph.D. Thesis, University of Southampton, 1972.
(546) M. C. Chakravorti and B. K. Sen, J. Indian Chem. Soc., 43, 464
- (1966).
-
- (547) R. Muenze, Z. Phys. Chem. (Leipzig), **240,** 135 (1969). (548) S. Sarkar, J. Indian Chem. Soc. 45, 992, 1186 (1968); 46, 871 (1969); 49, 189 (1972); Indian J. Chem., 7, 940 (1969); 8, 296 (1970); S. Sen, Z. Anorg. AIIg. Chem., **335,** 222 (1965); **340,** 82 (1965).