The Chemistry of Chlorine Monoxide (Dichlorine Monoxide)

J. J. RENARD[†] and H. I. BOLKER^{*}

Pulp and Paper Research Institute of Canada, Pointe Claire, Quebec, Canada H9R 3J9

Received December 9, 1974 (Revised Manuscript Received August 27, 1975)

Contents

^t Present address: International Paper Co., Corporate Research & Development Division, P.O. Box 797, Tuxedo Park, N.Y. 10987. Author to whom correspondence should be addressed.

/. Introduction

In the first reported synthesis of chlorine monoxide (1834), A. J. Balard, a French chemist, prepared a concentrated solution of hypochlorous acid by treating an aqueous chlorine solution with mercuric oxide. Then, upon careful addition of anhydrous calcium nitrate, he observed the evolution of a gas. Its composition was determined by Balard^{1,2} and by Gay-Lussac.³ who showed that on thermal decomposition the new compound yielded chlorine and oxygen in the volume ratio of 2 to 1. Since a vapor density of 86.92 was found, relative to hydrogen $(=2)$, the formula CI₂O was assigned to the gas.

Chlorine monoxide is a compound of considerable scientific interest. As a simple triatomic molecule belonging to the C_{2v} symmetry group, $Cl₂O$ is a classical example of nonlinear $XY₂$ molecules and has therefore been extensively studied by spectroscopists. Also, conflicting reports on its stability have stimulated many investigations of its thermal decomposition as well as of its photolysis. Paradoxically, however, although this compound has been known for 140 years, its chemical reactivity has been relatively neglected. Indeed, its reactivity toward organic compounds has been the subject of only 14 publications. This neglect may be due to Balard's original report that chlorine monoxide gave violent reactions with all the organic compounds with which he brought it into contact, or to a general tacit assumption that all its reactions (in solution) would be the same as those of hypochlorous acid, of which it is the anhydride. The latter assumption is justifiable to a degree, since it has of late been suggested⁴ that CI2O is the active species in the wellknown reactions of HOCI with olefins and aromatic compounds. Indeed, it is to be noted that the conversion of HOCI into $Cl₂O$ is believed to be the rate-controlling step in these reactions. Hence, one purpose of this review is to stimulate further research on the reactivity of chlorine monoxide with organic compounds, particularly on the mechanism of chlorination by HOCI and $Cl₂O.$

Another purpose is to examine comprehensively and critically the present state of knowledge of the chemistry of $Cl₂O$, in the light of growing industrial interest in this gas. For some years, chlorine monoxide has been made on a limited industrial scale as an intermediate in the manufacture of hypochlorite-based disinfectant powders,⁵ but has had no other major use. Recently, however, CI₂O has been found to be an effective reagent for the bleaching of wood pulp and textiles.^{6,7} The use of chlorine monoxide in bleaching wood pulp promises not only to increase process efficiency, but also to significantly reduce stream pollution.

Thus, a review is timely, particularly since chlorine monoxide has hitherto only been the subject of short reviews in treatises of inorganic chemistry^{8,9} and in the "Encyclopedia of Chemical Technology".⁵

It should be pointed out that in recent publications, $Cl₂O$ is referred to as dichlorine monoxide; this name is more correct than chlorine monoxide and appears to be gaining currency.

Nevertheless, in accordance with the bulk of the cognate literature, and with technological usage, the designation chlorine monoxide is retained in the present review.

//. *Preparation*

A. Mercuric Oxide Method

The laboratory technique^{10,11} in widest current use for directly preparing gaseous chlorine monoxide is a reaction (eq 1) based essentially on Balard's original method $1,2$: a stream of chlorine, which may be diluted in an unreactive gas, is passed slowly $(2.1^{10}$ to 15 l./h¹¹) through a column containing mercuric oxide thoroughly mixed with a suitable supporting material, and kept at 18–25[°]C, preferably 20 °C.¹⁰ This method gives very high levels (90+ %) of conversion of chlorine into chlorine monoxide. At low flow rates of diluted chlorine, nearly quantitative conversion is reported.¹⁰¹¹ Nevertheless, losses of yield can occur through the side reaction shown as eq 2, and, if they are to be minimized, several precautions must be observed, including: (1) adequate preparation of the mercuric oxide; (2) thorough mixing of the latter with its inert solid support; and (3) use of pure chlorine and diluent gas.

$$
2Cl_2 + nHgO \to HgCl_2 \cdot (n-1)HgO + Cl_2O \tag{1}
$$

$$
2Cl2 + 2HgO \rightarrow 2HgCl2 + O2
$$
 (2)

It was recognized very early that proper preparation of the mercuric oxide was crucial for attaining a high level of conversion of chlorine into Cl₂O. The first workers in the field¹⁻³ used freshly precipitated, dried, yellow mercuric oxide, but soon recommended that it be heated for about 1 h at 300-400 °C before use. Later, the recommended temperature of pretreatment was reduced to 250 °C.^{12,13} A subsequent investigation of the drying conditions led to the conclusion that heating above 300 °C for a long time was detrimental to the reactivity of the reagent.¹⁴ At the same time it was found that commercially available mercuric oxide was generally unsuitable for the efficient production of CI₂O, and tended to promote reaction 2 unless heated before use at a temperature between 100 and 200 ⁰C.¹⁴ These conclusions have been substantiated by other workers, and current practice calls for heating the mercuric oxide for 10 h at 125–130 °C.¹⁰ In special cases, when CI₂O of high purity is desired, the HgO can be degassed, either by conmgh pamy is desired, the rige can be degacced, children by comuating the flask containing the reagent, prior to adding pure chlorine.¹⁶

Mixing the mercuric oxide with an inert solid increases the surface of contact with chlorine and gives a further improvement in yield. The particles of inert material must be large enough to give a porous bed which will not impede the flow of gas. They should not exceed 1 cm in any dimension, and fines must be removed by screening through a 10-mesh sieve;¹¹ the optimum size of the particles was found to be 1–3 mm.¹⁰ Materials proposed as the inert component include sand, potassium sulfate,³ crushed glass tubing,¹¹ Kieselguhr,¹⁷ pumice, and crushed building bricks.¹⁰ The proportions of the mixture do not seem to be critical, but current practice tends to a greater volume of supporting material: for example, equal weights of HgO and glass,¹¹ or 1 vol of HgO for 4 vol of brick or pumice fragments.¹⁰

The gas with which the chlorine is diluted serves to moderate the reaction and to displace the high-density C_2 O as it is formed.¹⁸ Commercially available chlorine and diluents have usually been found satisfactory, but impurities sometimes cause low conversion ratios. Purification can be effected by bubbling the gases through 18 M H_2SO_4 ,¹¹ and further improved by passing the chlorine through anhydrous $CaCl₂$, and the air, or other diluent, through a column of granular KOH.¹⁰ In a special instance, when very pure chlorine was required, it was prepared directly by the reaction of chlorine trifluoride, CIF₃, with sodium chloride.¹⁵

The gas emerging from the column of mercuric oxide contains chlorine monoxide diluted with inert gas, but often contaminated with various amounts of unreacted chlorine. Preliminary purification is achieved by condensing the $Cl₂O$ in a trap cooled with mixtures of dry ice and alcohol, ^{12, 13} acetone, ¹¹ or carbon tetrachloride-chloroform (1:1).¹⁰ At a low flow rate (2.1 l./h) of an incoming mixture of Cl₂ and N₂ (1:1), a trap cooled at -60 °C will quantitatively condense the product $Cl₂O$, with only traces of chlorine present in the condensed liquid.¹⁰ Further purification can be achieved by passing the gas over phosphorus pentoxide¹³ or dry calcium nitrate, or by fractional distillation at low temperature under reduced pressure. By maintaining the liquid under vacuum at —80 ⁰C, most of the contaminating chlorine can be pumped off.¹⁹

If the presence of diluent gas is undesirable, high conversion of pure chlorine can be achieved by passing it through a very long tube (25 m) coated with a layer of mercuric oxide.²⁰ Alternatively, the reaction vessel may be a fractionating column, with HgO on Kieselguhr spread on its plates; the CI₂O formed is condensed after each cycle, and the unreacted chlorine is recycled.^{15,17}

When only small quantities of $Cl₂O$ are required, the flowthrough technique need not be employed. Instead, a static system¹⁶ can be used. In one method, a predetermined quantity of chlorine is condensed at $-196 °C$ into an evacuated flask containing HgO. The reaction is left to proceed overnight at the temperature of a dry ice-trichloroethylene bath. After distillation of the mixture at low temperature, $Cl₂O$ is obtained in 60% yield. A higher vield (94%) is reported from another method⁶ wherein a mixture of air and chlorine is introduced into an evacuated flask containing a mixture of yellow mercuric oxide and phosphorus pentoxide. The chlorine-air mixture is agitated by means of a motor-driven stirrer, and additional air is periodically admitted to replace the chlorine consumed. The Cl₂O-air mixture is then transferred to an evacuated flask where it can be diluted and stored.

The reaction of chlorine with mercuric oxide can also be used to prepare solutions of $Cl₂O$ in carbon tetrachloride. Mercuric oxide, pretreated under optimal conditions (10 h at 120-130 °C), is added to a solution of Cl₂ in CCl₄ at room temperature.^{11,14,21} The reaction is fast, and, after separation of the basic mercuric chloride, a stable solution of Cl_2O in CCl_4 is obtained. Yields are in the range of 90–95%, 14.21 provided that pure CCI₄ is used. An elaborate method for purifying the solvent has been described,²² but a simpler method, requiring only distillation of commercial AR CCI4 over phosphorus pentoxide, is reported to give satisfactory results.²³

At the end of the reaction, whatever the technique of preparation, the mercuric oxide may be regenerated¹¹ from the residual basic mercuric chloride (HgCl₂ \cdot nHgO) by treatment with an excess of alkali; a pH of 10.5 is said to be optimal for the final supernatant.¹⁴ The temperature must be kept from rising during the addition of alkali, since mercuric oxide precipitated at 102 ⁰C showed a marked loss of reactivity. The recovered HgO is washed extensively and finally dried at 120-130 °C.¹¹ The reactivity of the oxide is said to increase after each regeneration.¹⁰

B. Sodium Carbonate and Allied Methods

In the sodium carbonate method used industrially for preparing chlorine monoxide, the well-known equilibrium of the reversible hydrolysis of chlorine (eq 3) is displaced to the right by removing hydrochloric acid as sodium chloride. Provided that only a small amount of water is present, the solubility of HOCI is rapidly exceeded and chlorine monoxide is evolved. Although sodium carbonate is generally used in this reaction, other alkali metal

carbonates and other alkaline compounds of alkali metals²⁵ (such as phosphates, stannates, silicates, aluminates, or oxides) may be employed. Increasing the surface of gas-solids contact by grinding the alkali salts and agitating the bed has been found to be beneficial.^{24,25} The reaction with sodium carbonate is described by eq 4 and 5.

$$
Cl2 + H2O \rightleftharpoons HOCl + HCl
$$
 (3)

 $2Cl_2 + 2Na_2CO_3 + H_2O \rightarrow Cl_2O + 2NaHCO_3 + 2NaCl$ (4)

$$
2Cl2 + 2NAHCO3 \rightarrow Cl2O + 2CO2 + 2NaCl
$$
 (5)

Under the optimal conditions of reaction, ²⁴ sodium carbonate, containing approximately 10% of water, is allowed to fall slowly down a reaction tower and contacted with an upward flow of chlorine diluted to about 25% in a gas such as air, nitrogen, or carbon dioxide. The humidity in the reaction zone must be maintained at around 10%, either by saturating the incoming gas with water or by injecting steam into the reactor at regular intervals. The temperature of the reaction zone is preferably maintained at about room temperature (20-30 ⁰C), but may be raised to as high as 200 $^{\circ}$ C.

The reaction can be adapted to the preparation of solutions of CI₂O in carbon tetrachloride.^{11,24}

Chlorine monoxide can also be formed when chlorine is brought into contact with dry carbonates or bicarbonates at temperatures above 150 °C, preferably 200 °C.²⁴

C. Preparation from Hypochlorous Acid Solutions

Since, as shown by distribution experiments, CI_2O is several times more soluble in CCI₄ than in water, 2^6 solutions of the gas may be prepared by liquid-liquid extraction (shaking in a separatory funnel) of aqueous solutions of HOCI.

Pure, anhydrous, liquid chlorine monoxide can be prepared by distilling, in vacuo over HgO, a 25% aqueous solution of hypochlorous acid.²⁶ The distillate is collected in three receivers in series, cooled at 0, -20 , and $-80 °C$, respectively. The first two receivers condense only the initial 25% hypochlorous acid solution, while the third condenses the $Cl₂O$.

Pure gaseous $Cl₂O$ can also be prepared by the classical method of treating concentrated solutions of HOCI with anhydrous calcium nitrate.¹

An alternative method for producing the gas is to pass a stream of air through an aqueous solution of HOCI. The nature of the entities present in the emerging stream of wet air is a matter of controversy and is discussed later (see section IV.C). However, when the air stream is dried over anhydrous calcium nitrate, chlorine monoxide is obtained.²⁷²⁸

///. Analysis

An iodometric method is generally used for the titrimetric determination of CI₂O, which reacts with potassium iodide to yield 4 equiv of iodine and 2 equiv of hydroxide ion (eq 6). Since conditions must be acidic for the titration of iodine with thiosulfate, a known excess of acid can be added. After titration, the residual acid can be back-titrated with standard alkali. The possibility of back-titration is useful when the $Cl₂O$ is to be determined in the presence of chlorine, which does not generate hydroxide ion on reaction with iodide (eq 7). Thus the iodometric titration gives the sum of chlorine monoxide and chlorine, and the back-titration gives a measure of $Cl₂O$ alone.

$$
Cl_2O + 4I^- + H_2O \rightarrow 2OH^- + 2Cl^- + 2I_2
$$
 (6)

$$
Cl2 + 2l^- \rightarrow 2Cl^- + l2
$$
 (7)

Several reagents have been proposed for the back-titration. Standard alkali and methyl orange indicator have been used,²¹ as well as 0.1 N Ba(OH)₂ with phenolphthalein.²⁹ However, the

Figure 1. Vapor pressure of chlorine and chlorine oxides.

simplest method to estimate the excess of acid is to add a slight excess of potassium iodate solution after the first iodometric titration (eq 8), and then titrate the liberated iodine with additional thiosulfate.³⁰

$$
10_3^- + 51^- + 61^+ \rightarrow 31_2 + 311_20 \tag{8}
$$

In addition to titration, several instrumental methods are used for the analysis of chlorine monoxide, although they have not all been fully explored and developed.

The use of vapor-phase chromatography has been reported.¹⁶ The gas chromatograph employed was specially built to resist highly corrosive gases $(Cl_2, Cl_2, F_2, ClF, ClF_3)$, all the parts being made of stainless steel, Monel, or nickel. The stationary phase in the column was a halocarbon oil, 13-21, on a Kel-F300 support.³¹

As to other instrumental methods, Spurny³² has reported that the oxides of chlorine, including CI₂O, can be photolyzed quantitatively to chlorine which can then be determined spectrophotometrically. Infrared spectroscopy (section V.F) is a potentially useful method for the direct determination of $Cl₂O$, but a possible disadvantage is that, especially at low concentrations of the gas, excessively long cells may be required to produce absorption bands intense enough to be useful. The ultraviolet spectrum of CI₂O has been described (section V.E) but has not been used for quantitative measurements; the photolytic decomposition of CI₂O by ultraviolet light (section VI.A) is likely to have an adverse effect on precision and reproducibility.

IV. Physical Properties

A. General

At ordinary temperatures, chlorine monoxide is a gas, pale orange-yellow with a slight greenish tinge. Its vapor density has been reported as 2.977 35,34 and 3.007, 35 air being taken as unity. It condenses to a reddish-brown liquid whose vapor pressures have been measured by means of a mercury manometer protected by a dry air buffer.¹³ The results, plotted in Figure 1, were in agreement with eq 9 (p , pressure in mmHg; T , temperature in K) in the range of 173-288 K. The figure also shows corresponding data for $Cl₂³⁶$ and $Cl₂³⁷$ the most common contaminants of $Cl₂O$. It illustrates how purification of the latter by fractionation will be easy when the impurity is chlorine, but difficult when it is chlorine dioxide.

$$
\log p = (-1373/T) + 7.87 \tag{9}
$$

The boiling point of Cl₂O has been reported as $3.8\,^{\circ}$ C,²⁶ but was subsequently determined as 2.0 °C, at 760 mmHg from the vapor pressure data.¹³ The higher value, now unacceptable, was attributed¹³ to the frequently observed superheating of the liquid.

By a method of correlating increments,³⁸ the critical constants

TABLE I. Thermodynamic Functions for the Reaction $Cl_2(g) + \frac{1}{2}O_2(g) \rightarrow Cl_2O(g)$

	ΔH° .	ΔG° .	ΔS° .	S° .	
T. K	kcal mol ⁻¹	kcal mol ⁻¹	cal deg $^{-1}$	cal deg $^{-1}$	Ref
291	18.26				42
298.16	18.26	21.207	-9.93	67.9	43
273.16	18.10	21.950	-14.06	63.8	44
298	23.50	21.870	$+5.47$	83.3	45

of 15 inorganic compounds of CI, O, and N were calculated.³⁹ The results for CI₂O, based on increments for O and CI computed from experimental values of the thermodynamic properties of O_2 , O_2F , CIF₃ and FCIO₃, were: $t_c = 192.2 °C$, $p_c = 64.9$ atm, $v_{\rm c}$ = 169 cm³/mol, $d_{\rm c}$ = 0.519 g/cm³. It is difficult to assess the predictive power of this method, since very few experimental data were available for comparison with the calculated constants for most of the 15 compounds. Nevertheless, the calculated heat of vaporization of CI₂O, 5588 cal/mol, agrees moderately well with the experimental value of 6200 cal/mol.¹³ By the same method of calculation, eq 10 represents the equation of state for $Cl₂O$, in its van der Waals approximation, where p is pressure in atmospheres and V is volume in $cm³$.

$$
p = \frac{nRT}{(V - 73.5n)} - \frac{n^2 \times 9.47 \times 10^{-6}}{V}
$$
 (10)

 \sim The melting point of CI₂O was found to be $-116 \pm 10^{\circ}$ C, when $\frac{1}{2}$ determined with a standard pentane thermometer. Subsequent investigation⁴⁰ on freshly prepared CI₂O, dried over P₂O₅ and
multical by frestigaction, and with a constally activated can purified by fractionation, and with a carefully calibrated copper-constantan thermocouple, gave a freezing point of —120.6 \circ C.

B. Thermodynamic Properties

1. Heat of Vaporization

The straight-line slope of the logarithm of the vapor pressure plotted against the reciprocal of the absolute temperature, in the range of 173-288 K, has given the latent heat of vaporization of Cl₂O as 6.2 kcal/mol, 13 which agrees with a later, independently determined value⁴¹ of 6.3 ± 0.2 kcal/mol. The corresponding Trouton's constant ($\lambda v/T_{\rm b}$) is therefore 22.5 cal deg⁻¹ mol $^{-1}$, and indicates very little, if any, association of CI₂O in the liquid state.

2. Heat of Formation

Table I shows various published values of the heat of formation of chlorine monoxide, and the thermodynamic functions derived from them.

From the heat of solution, at 18 °C, in a large excess of water, the heat of formation of Cl₂O(g) was calculated as ΔH°_{291} =

18.26 kcal/mol.⁴² This value—as well as the heat of solution of $Cl₂O$ in CCI₄ computed from vapor pressure measurements, the free energies of chlorine hydrolysis,⁴⁵ solution of chlorine in water, formation of HCI(aq) and $H_2O(1)$, hydrolysis of CI₂O, and partition of CI₂O between water and CCI₄⁴⁶—was used to calculate the free energy of formation of CI₂O: $\Delta G^{\circ}_{298} = 21.207$ kcal/mol. The corresponding entropy of gaseous CI₂O at 25 °C and 1 atm is 67.9 cal deg^{-1.43}

These derived quantities agree rather well with those calculated⁴⁴ by taking 18.1 \pm 0.3 kcal/mol as the best value for the heat of formation: ΔG° _{273.16} = 21.95 kcal/mol; S° _{298.16} = 63.76 cal deg⁻¹.

The figures in the last row of Table I do not accord with the others. Here, the heat of formation was derived⁴⁵ by considering the enthalpies and free energies of the following processes: $H₂O(1)$ formation, HOCI(aq) formation, and dissolution of CI₂O in water (calculated from vapor pressure measurements). This gave ΔH°_{291} = 23.5 kcal/mol, and the corresponding ΔG°_{298} $= 21.87$ kcal/mol. The consequent entropy for CI₂O in the standard state, 83.3 cal deg⁻¹, is undoubtedly too high (see $\frac{1}{2}$ section IV.A.3), probably owing to the large value found for ΔH^0 . Another possible source of error is that the heats of solution used in the computation of ΔH° are of doubtful validity; they differ appreciably from those found by other workers and exhibit an anomalously large dependence on temperature.

Nevertheless, rather high values of the heat of formation were obtained by measuring the amount of heat liberated from the explosion of Cl₂O: 21.735 \pm 0.560,⁴⁷ 20.050 \pm 1.000,⁴⁸ and 25.100 ± 0.100^{49} kcal/mol.

3. Thermodynamic Functions from Spectroscopic Data

Various authors have used spectroscopic data to calculate the molar thermodynamic functions such as heat content, free energy, entropy, and heat capacity. In computing these functions for an ideal gaseous state at 1 atm, a rigid rotator, harmonic oscillator model was assumed; nuclear spins and isotopic mixing were neglected. Table Il shows the functions calculated for T = 298.16 K, as well as the frequencies and product of the three principal moments of inertia used in the computation of partition functions. It is to be noted that the values of S^o agree best with that in the third line of Table I.

Tabulations of these thermodynamic functions over a large range of temperatures can be found in the original papers.

C. Solubility

1. In Water

Gaseous chlorine monoxide readily dissolves in water (eq 11) where it hydrolyzes as shown in eq 12. Its solubility, at a given partial pressure of solute and at temperatures between 0 and 20 °C, may be conveniently estimated from the nomograph in Figure 2.⁵⁴ The nomograph was derived from previously pub-

Figure 2. Nomograph for the solubility of chlorine monoxide in water.

lished⁴⁵ measurements of vapor pressure. It was the observation²⁶ that CI₂O could be extracted by carbon tetrachloride from a concentrated (aqueous) hypochlorous acid solution which suggested that reaction 11 represents an equilibrium condition.

$$
Cl_2O(g) \rightleftarrows Cl_2O(aq) \tag{11}
$$

$$
Cl_2O(aq) + H_2O(l) \rightleftarrows 2HOCl(aq) \qquad (12)
$$

The heat of solution of chlorine monoxide in a large excess of water has been determined calorimetrically as 9.439 kcal/mol at 18 °C⁴² and 8.940 kcal/mol at room temperature.⁵⁵ The thermodynamic functions reported in Table III were calculated by extrapolating to zero molality the curves obtained by plotting the measured vapor pressure of $Cl₂O$ against the molality. This procedure also gave the equilibrium constant for eq 11.

The values of ΔH in this table differ significantly from those found by direct, calorimetric measurements.^{42,55} They also exhibit an unusually large temperature dependence. Critical reexamination⁵⁶ of the treatment of the vapor pressure measurements⁴⁵ has taken into account the equilibrium of hydrolysis of Cl_2O (eq 12) and has given Henry's constant for Cl_2O over its aqueous solution as 0.00937 \pm 0.00005 (P_{Cl_2O} expressed in mmHg). Thus, the true solubility of $Cl₂O$ is five times greater than that of chlorine. From the best available values for the heats of formation of HOCI(aq), $Cl₂O(q)$, and $H₂O(l)$, the heat of solution of CI₂O in water was computed as 9.44 kcal/mol, in good agreement with values determined by calorimetry.

Liquid CI₂O and water are only partially miscible. Figure 3 shows the temperature-concentration diagram for the system. When the fraction of CI₂O exceeds 11.7 mol % (39% CI₂O by weight), a solid phase forms, which has the composition HOCI-2H₂O. When chlorine monoxide and water are mixed in stoichiometric proportions to give HOCI, two liquid phases are formed which, on freezing, give the hydrate HOCI-2H₂O as the solid phase.⁴⁰

The equilibrium constant K for the hydration of $Cl₂O$ (eq 13) and the partition coefficient R of CI₂O between water and carbon tetrachloride (eq 14) can be computed by resolving a system of two equations formed by substituting in eq 13 and 14 experimental values for $[HOC] + [Cl_2O(aq)]$ and $[Cl_2O(CCl_4)]$ for two experiments at different initial concentrations of CI(I) compounds

Figure 3. Temperature-concentration diagram for the system chlorine monoxide-water.

TABLE III. Heat of Solution of 1 Mol of CI₂O in an Excess of Water

Temp, K	ΔH_T , kcal/mol	ΔG_T , kcal/mol
278	9.3	
283	11.4	
291	16.0	3.73
298		3.35

in the aqueous phase. Goldschmidt 26 obtained values of 1/1040 for $K_{273.16}$ and 8 for R. However, Roth⁴⁶ later remarked that the experimental values selected by Goldschmidt for his computation were obtained for only slightly different initial concentrations of CI(I) compounds, leading to gross errors in the determination of K and R . Using Goldschmidt's experimental results, Roth computed lower values, i.e., $K_{273.16^{\circ}} = 1/282$ and $R = 2.22$, by selecting sets of experiments with a wider range of initial concentrations.

$$
2\text{HOCI}(aq) \rightleftarrows \text{Cl}_2\text{O}(aq) + \text{H}_2\text{O}(l) \tag{13}
$$

 $K = [Cl₂O(aq)]/[HOCl]²$

$$
Cl_2O(aq) \rightleftarrows Cl_2O(CCl_4)
$$
 (14)

$$
R = [\text{Cl}_2\text{O}(\text{CCI}_4)]/[\text{Cl}_2\text{O}(aq)]
$$

The value $K_{273.16}$ = 1/282 was used by Roth⁴⁶ to estimate K_{292} as 1/115 and the heat of solution of chlorine monoxide in water as 8.34 kcal/mol in reasonable agreement with the experimental value of 8.94 kcal/mol.⁵⁵

Figure 4 summarizes the results of measuring the vapor pressures of chlorine(l) compounds above aqueous hypochlorous acid in very dilute solutions $(10^{-3} - 10^{-1}$ mol in 1000 g of H₂O) at 15 °C,⁵⁷ in dilute solutions (10⁻¹-2 mol in 1000 g of H₂O) at 10 and 20 $^{\circ}$ C,⁵⁸ and concentrated solutions (1-20 mol in 1000 g of H₂O) at 3.46, 6.00, 9.92, 16.00, and 19.98 °C.⁴⁵ Despite the differences in experimental methods, the results of Secoy and Cady,⁴⁵ obtained under static conditions, and those of Ourisson and Kastner,⁵⁸ obtained under dynamic conditions, are in very good agreement.

The authors clearly disagree, however, in the interpretation of their results. Since solid HOCI could not be prepared at low temperature, Secoy and Cady⁴⁵ inferred that HOCI could not exist in the gaseous state and, therefore, that the vapor above an aqueous solution of HOCI should consist of only $Cl₂O$ and $H₂O$. This point of view has also been advanced by Noyes and Wilson²⁷ who passed a stream of air through 0.27 N hypochlorous acid and measured the weight of water trapped by anhydrous calcium nitrate, and of chlorine monoxide trapped in an NaOH solution. Since the weight of water collected in the drying tube corresponded almost exactly to the theoretical amount in the given volume of saturated air, Noyes and Wilson concluded that the chlorine(I) species present in the vapor is $Cl₂O$ and not HOCI.

Figure 4. Vapor pressure of chlorine(l) compounds above their aqueous solution.

Figure 5. Vapor pressure, expressed as HOCI, above aqueous solutions of chlorine(l) compounds, over a wide range of concentrations.

Indeed, the titrations of the gas collected in the sodium hydroxide showed that CI₂O and not HOCI had been trapped in it. However, this result was to have been expected, since any HOCI which might have initially been present in the vapor-laden air would have been dehydrated to $Cl₂O$ on passage through the tube of anhydrous calcium nitrate.¹

The results of Noyes and Wilson clearly exclude the hypothesis that all CI(I) compounds in the vapor are present as HOCI. However, their experiment Il can be reevaluated in the light of subsequent published results,⁵⁸ and then it is equally clear that a small amount of HOCI might be present. Thus, when one applies to experiment Il the equilibrium constant for eq 15, one finds that approximately 2 mg of water would be combined with CI₂O as HOCI and would contribute to the weight of water (63 mg) collected in the drying tube. This difference of 3% could easily escape observation, particularly since the efficiency of drying does not seem to be absolute: the weights of water ac-

Figure 6. Stability of chlorine(I) compounds in aqueous solutions. Figure 6. Stability of ohlorine(l) compounds in aqueous solutions.

TABLE IV. Values of K , and $K₂$ in Eq 17

Temp, °C	2K	Κ,	
10	0.42	0.24	
20	1.30	0.70	
30	3.74	1.89	

tually found were consistently 1-2% less than theoretical.

The general consensus among authors⁵⁷⁻⁶⁰ who have written on this subject is that $Cl₂O(g)$ and $HOCI(g)$ coexist in the vapor phase above an aqueous solution of HOCI, the former predominating at high concentrations, and the latter at low concentrations. Figure 5 provides experimental support for this view by presenting the vapor pressure of CI(I) compounds above a solution of HOCI plotted against the concentration (in terms of HOCI) of the solution, over a wide range of concentration. Among very dilute solutions, the vapor pressure varies linearly with the concentration, thus suggesting a predominance of HOCI in the vapor phase. As the concentration increases, the curve deviates from linearity and shows the increasing presence of $Cl₂O$. The evaporation process, then, takes place according to eq 15 and 16.⁵⁸ The partial pressure of chlorine(I) compounds above the solution (the concentration of which is expressed in terms of HOCI) is given by eq 17. Computed values for K_1 and K_2 , at different temperatures, are reported in Table IV.⁵⁸

$$
2HOCl(aq) \stackrel{K_1}{\iff} Cl_2O(g) + H_2O(l) \tag{15}
$$

$$
HOCI(aq) \xleftarrow{K_2} HOCI(g) \tag{16}
$$

 $P_{\text{CIO}} = 2P_{\text{CI}_2\text{O}} + P_{\text{HOCI}} = 2K_1[\text{HOCI(aq)}]^2$ $+ K_2$ [HOCI(aq)] (17)

Despite all of the foregoing argument, it must be recognized that the presence of HOCI in the vapor above its solution has not been established by an unambiguous proof, as might be provided by direct spectroscopic measurement. Such proof would be

highly desirable. Not only the composition of the vapor but also the composition and stability of solutions of $Cl₂O$ in water, as a function of pH, are of considerable technical interest. Since the solutions are those of the very weak hypochlorous acid ($pK = 7.5$), we are dealing with solutions of HOCI and OCI $^-$ in equilibrium with CI₂O at a particular partial pressure above them (Figure 6). Many complex reactions and equilibria can and do occur in these solutions and are further complicated when chloride ion is present.⁶¹

Consideration of the relative positions of the stability domains of HOCI and OCI⁻, as compared with those of water, shows that hypochlorous acid and hypochlorites—while appearing to decompose to oxygen and to chlorine or chloride—actually oxidize water, which is the source of the evolved oxygen. As shown by eq 19-21, the reactions vary with the pH of the solution. The relatively high stability of neutral and alkaline solutions of hypochlorous acid and hypochlorites arises from the slowness of the oxidation of water under alkaline conditions, which in turn is related to the virtual irreversibility of the oxidation reaction (eq 18)

(a) pH
$$
\leq 4
$$
.

$$
2H_2O \longrightarrow O_2 + 4H^+ + 4e^-
$$
 (18)

$$
4H OCl + 4H^{+} + 4e^{-} \longrightarrow 2Cl_{2} + 4H_{2}O \qquad (19)
$$

$$
4 \text{HOCI} \longrightarrow 2 \text{Cl}_2 + \text{O}_2 + 2 \text{H}_2\text{O}
$$

(b) pH \approx 3.3-7.5:

$$
2H OCl + 2H^{+} + 4e^{-} \longrightarrow 2Cl^{-} + 2H_{2}O
$$
 (20)

$$
2H_2O \longrightarrow O_2 + 4H^+ + 4e^-
$$
 (18)

$$
\longrightarrow \text{2Cl}^- + O_2 + 2H^+
$$

(c) $pH > \approx 7.5$:

$$
2OCl^{-} + 4H^{+} + 4e^{-} \longrightarrow 2Cl^{-} + 2H_{2}O \qquad (21)
$$

$$
2H_2O \longrightarrow O_2 + 4H^+ + 4e^-
$$
 (18)

$$
2OCl^{-} \longrightarrow 2Cl^{-} + O_{2}
$$

When aqueous solutions of HOCI contain chloride ions, and are acidic, the slow oxidation of water is replaced by the rapid oxidation of the chloride ions to chlorine (eq 22). As shown by eq 23, the stability of an acidic hypochlorous acid solution will decrease with increasing concentrations of chloride ion.

$$
2Cl^{-} \longrightarrow Cl_{2} + 2e^{-} \qquad (22)
$$

$$
2\text{HOC1} + 2\text{H}^+ + 2\text{e}^- \longrightarrow \text{Cl}_2 + 2\text{H}_2\text{O} \tag{23}
$$

$$
2\text{HOCI} + 2\text{Cl}^- + 2\text{H}^+ \longrightarrow 2\text{Cl}_2 + 2\text{H}_2\text{O}
$$

In equilibria involving the higher oxyacids of chlorine, both hypochlorous acid and hypochlorites can decompose into chlorites and chlorides, according to eq 24 and 25. When chloride ions are present, the domain of stability of chlorates completely overlaps that of CIO⁻ and HOCI. Hence these latter

$$
H OCl + H^{+} + 2e^{-} \longrightarrow Cl^{-} + H_{2}O
$$
 (20)

$$
HOCI + H2O \longrightarrow HClO2 + 2H+ + 2e- (24)
$$

$$
2\text{HOCI} \longrightarrow \text{HClO}_2 + \text{Cl}^- + \text{H}^+
$$

$$
OCl^{-} + 2H^{+} + 2e^{-} \longrightarrow Cl^{-} + H_{2}O
$$
 (21)
\n
$$
OCl^{-} + H_{2}O \longrightarrow ClO_{2}^{-} + 2H^{+} + 2e^{-}
$$
 (25)

$$
2OCI^{-} \longrightarrow CI^{-} + CIO_{2}^{-}
$$

OCI⁻ + 2HOCl \longrightarrow CIO₃⁻ + 2Cl⁻ + 2H⁺ (26)

species are thermodynamically unstable toward ClO $_3^+$ and Cl $^+$ and tend to exhibit reaction 26, which, in practice, does not have an appreciable rate at 25 ⁰C. However, at higher temperature (50 ⁰C), the rate increases sufficiently to become significant.

2. In Carbon Tetrachloride

As determined by a dynamic method,⁴³ the vapor pressure of CI₂O above dilute solutions in CCI₄ obeys Henry's law. The

TABLE V. Dielectric Constant, e, and Molar Polarization, P, for CI₂O in Dilute CCI₄ Solutions⁵⁵

Mole fractions (ϵ)					
		Temp, $\frac{1}{\text{C}}$ 0.00597 0			0.00597 0.01197 0.01952 0.02838 0.0390 $P, \text{ cm}^{-3}$ -18 2.3160 2.3196 2.3239 2.3294 2.3367 25.42 -8 2.2952 2.2988 2.3025 2.3078 2.3146 24.56 3 2.2728 2.2761 2.2796 2.2843 2.2904 24.16 14 2.2505 2.2535 2.2568 2.2609 2.2662 23.72 24 2.2305 2.2330 2.2360 2.2399 2.2441 23.14

constants, 1830 mmHg/mol % at 25 ⁰C, and 662 mmHg/mol % at 0 $^{\circ}$ C, have permitted the computation of the thermodynamic function for eq 27:

$$
Cl_2O(g) \rightleftarrows Cl_2O(CCl_4)
$$
 (27)

 ΔG°_{298} = -8.864 kcal/mol; ΔH° = 6.59 kcal/mol

Combining these with other thermodynamic data has given the corresponding functions for the formation of Cl_2O in CCl_4 (eq 28):

$$
Cl_2(g) + \frac{1}{2}O_2(g) \to Cl_2O(CCl_4)
$$
 (28)

 $\Delta G^{\circ}{}_{273}$ = 20.71 kcal/mol; $\Delta H^{\circ}{}_{298}$ = 24.85 kcal/mol

The heat of dilution of Cl_2O by CCl_4 , determined from 0.5 to 3×10^{-6} M, was close to zero.⁶² It was therefore concluded that the heat of formation of $Cl₂O$ in $Cl₄$, as calculated from the heat of reaction of Cl₂O (CCl₄; 0.45 M) with $\mathsf{HO_2}^-$ (aq)⁶³ and available thermodynamic data, would also be the heat of formation of CI₂O in CCI₄ at infinite dilution. Accordingly, ΔH_T , the heat of formation of $Cl₂O$ in CCI₄, was found to be represented by eq 29. Substituting for ΔH_T in the van't Hoff equation and integrating gave ΔG° _r, the free energy of formation (eq 30). The integration constant, I , was evaluated as -2.3102 by combining the free energies of formation of $Cl_2O(g)$ and of solution of $Cl_2O(g)$ in CCl_4 at 298 K to give a value of $\Delta G^{\circ}{}_{298}$.

$$
\Delta H_T = 30.52 - 0.4546T + 0.00141T^2
$$
 (kcal/mol) (29)

 ΔG° _T = 30.52 + 0.4546*T* in *T* – 0.00141*T*²

$$
+ I T
$$
 (kcal/mol) (30)

These equations gave the following values for the thermodynamic constants of CI₂O formation in CCI₄ at 298 K: ΔH_{298} $= +12.57$ kcal/mol, $\Delta G^{\circ}{}_{298} = +21.54$ kcal/mol, $\Delta S_{298} =$ -30.1 cal deg⁻¹.

These values are considerably lower than those previously reported;⁴³ they give⁶² 47.69 cal deg⁻¹ for the entropy content of CI₂O in CCI₄ at 298 K—much lower than $S^{\circ}{}_{298} = 63-64$ cal $\rm deg^{-1}$ derived from spectroscopic data for CI₂O gas (see Table II). This difference is too large to be attributable to the entropy of mixing, which, in this practically ideal solution, should be small. Therefore, the published thermodynamic functions for $Cl₂O$ formation in CCI₄ solution⁶² should be accepted only with reservations.

V. Structure and Spectrochemistry

A. Dipole Moment

Chlorine monoxide is a nonlinear molecule, with a dipole moment of (0.78 \pm 0.08) \times 10⁻⁸ esu, as calculated from the temperature dependence of its molar polarization.⁶⁴ The supporting experimental data (Table V) show the dielectric constants of dilute solutions of $Cl₂O$ in $CCl₄$, as determined at various concentrations and at temperatures from -20 to 25 °C. The uncertainty of the measurements was given as 0.01 %. Molar polarizations, P, were computed from densities measured in a quartz dilatometer.

TABLE VI. Mass Spectra of Cl_2O

a NR, not reported.

TABLE VII. Geometry of CI2O Molecule

d_{CIO} , A	d Cl…Cl ^{, A}	α = \angle CIOCI, deg	Experimental method	Ref
1.71 ± 0.02	2.82 ± 0.02	111 ± 2	Electron diffraction	69
1.68 ± 0.03	284 ± 0.03	115 ± 4	Electron diffraction	70
$1.70 + 0.02$	$279. \pm 0.02$	110.8 ± 1	Electron diffraction	19
1.701		110.8	Electron diffraction	
1.701		110.3	Electron diffraction	72
1.693 ± 0.003	2.795 ± 0.004	111.2 ± 0.03	Electron diffraction	73
1.70038 ± 0.00069		110.86 ± 0.04	Microwave spectroscopy	74
1.70038 ± 0.00043		110.96 ± 0.08		

B. Ionization Potential-Mass Spectroscopy

By means of mass spectrometry, the ionization potential of chlorine monoxide has been measured as 11.16 ± 0.10 eV. The appearance potential of the predominant fragment, $(CIO)^+$, was found to be 12.5 ± 0.1 eV, giving by calculation 32.3 ± 2 kcal/ mol^{65,66} for the dissociation energy of the CI-OCI bond.

Table Vl shows that the reported mass spectra of chlorine monoxide are in fair agreement, considering the differences in experimental conditions. Small discrepancies in the results can be attributed to impurities in the $Cl₂O$. Protonated species in the spectrum reported by Freeman and Phillips⁶⁷ are probably due to the presence of water and HOCI, and perhaps to products formed in reactions with the phosphoric acid coating on the walls of the spectrometer.

The spectra have shown that the dissociation of $Cl₂O$ yields $Cl⁺$ as a real fragment, its peak intensity being independent of time and of sample temperature.⁶⁸

C. Molecular Geometry

The geometric characteristics of the $Cl₂O$ molecule have been determined from both electron diffraction studies^{19,69-73} and microwave spectroscopy.⁷⁴ The two methods have given very good agreement (Table VII) around the values of $d_{\text{Cl}-\text{O}} = 1.70$ $\rm \AA$, $d_{\rm CI}$ = 2.79 Å, and \angle CIOCI = 110.8°.

D. Photoelectron Spectroscopy

The relatively new technique of photoelectron spectroscopy (PES) permits the direct measurement of the energies required to remove valence shell electrons from atoms and molecules and provides information on the bonding characteristics of orbitals (for review, see ref 75). As applied to the chlorine monoxide molecule,⁷⁶ the PES technique has given the first ionization potential, under adiabatic ionization conditions, as 10.94 eV, which compares favorably with the potential of 11.16 eV found by mass spectroscopy.⁶⁵

The first PES band shows a vibrational peak structure assigned to both ν_1 and ν_2 . Since these frequencies in the ionized molecule (v_1 = 670 \pm 40 cm⁻¹; v_2 = 300 \pm 40 cm⁻¹) are larger than in the neutral molecule ($v_1 = 631$ cm⁻¹; $v_2 = 296$ cm⁻¹), the ionized orbital is expected to be slightly antibonding.

As shown in Table VIII, the energies of the molecular orbitals as calculated by the CNDO/2 method are in fair agreement with the experimental ionization potentials, where the sharp peak observed at 12.79 eV is attributed to the loss of the 3p nonbonding electron on Cl. The molecular orbital sequence for $Cl₂O$ is given as a_2^2 , a_1^2 , b_2^2 , b_1^2 .

E. Ultraviolet and Visible Spectroscopy

Two independent investigations^{41,77} of the absorption spec-

TABLE VIII. Vertical lonization Potentials (IP) of CI₂O

Exptl IP, eV	Calcd IP (MO), eV	MО
11.02	9.0	b,
12.37	10.4	b,
12.65	10.7	a_{1}
12.79	12.5	a,
15.90	17.0	$b_{\tiny 2}$
16.65	18.1	а,
17.68	20.3	b,
20.64		

trum, in the ultraviolet and visible range, of gaseous $Cl₂O$ over a large range of pressure (10-600 mmHg) have given results in very good agreement. The absorption begins at 660 nm and is continuous over the entire range, with maxima of increasing intensities at 630, 530, 410, and 255 nm. Initiation of the continuum is attributed to the process in eq 31 , but the reaction in eq 32 may also be important.⁷⁸ The minimum energies for the occurrence of reactions 31 and 32 have been calculated as 36.5 kcal/mol (784 nm) and 41 kcal/mol (698 nm), respectively. The absorption at 256 nm (112 kcal/mol) may be due to the dissociation shown in eq 33, which requires 99 kcal/mol.⁴¹

> $Cl_2O + hv \rightarrow Cl + ClO$ (31)

$$
Cl_2O + hv \rightarrow Cl_2 + O \tag{32}
$$

$$
Cl_2O + hv \rightarrow Cl + Cl + O \tag{33}
$$

Conflicting results have been published^{32,79} on the ultraviolet absorption spectra of CI₂O in carbon tetrachloride solution. In

TABLE IX. Infrared Spectra of CI₂O

what appears to be the least reliable study, three maxima were reported: 320, 395, and 415 nm. The first, at 320 nm, was attributed to the presence of $Cl₂$ in the unpurified sample. Indeed, the relative height of that peak suggests that chlorine was the main species present in solution, possibly because of a low conversion ratio in the preparation. Since the true spectrum of small concentrations of CI₂O may well be masked by the broad absorption of chlorine, the assignment of the other two peaks, 345 and 415 nm, to CI₂O is doubtful.

Indeed, those peaks have not been recorded by more careful workers who used purified CI₂O in their study.⁷⁹ The latter investigators reported a strong sharp band at 264 nm, with a possible shoulder at 310 nm. This spectrum is quite distinct from that of $Cl₂$ in $CCl₄$ which exhibits a large maximum at 220 nm and a smaller one at 330 nm.^{79,80} To confirm that Cl_2O was the species responsible for the absorption at 264 nm, anhydrous acetic acid was added to the CCI₄ solution; the formation of water was observed, and a change in the spectrum to that of acetyl hypochlorite (eq 34).

$$
Cl_2O + 2HOAc \rightarrow 2ClOAc + H_2O \qquad (34)
$$

In confirmation of the second⁷⁹ of the two studies just described, the spectrum of CI₂O in trichlorotrifluoroethane was found to exhibit a broad maximum centered around 260 $nm^{.81}$

F. Infrared Spectroscopy

The assignment of the three fundamental vibrations in the infrared spectrum of chlorine monoxide (Table IX) was a matter

 a_{ν_1} or $2\nu_2$. b Tentative assignment by original authors.

TABLE X. Fundamental Vibration Frequencies for the CI₂O Molecule

	Frequencies in wave numbers, cm^{-1}		Spectroscopic	
			method	Ref
630.7	296.4	670.8	Infrared	53
634	293	673	Raman	91
619.2 ± 5	292.5 ± 1	705 ± 12	Microwave	74

TABLE Xl . Force Constants Calculated for the CI₂O Molecule

of controversy among early investigators in the field.⁸²⁻⁸⁸ However, the results of electron diffraction and microwave spectroscopy have latterly been available to establish that CI₂O is a nonlinear molecule of point group C_{2v} . The rotational constants found by microwave spectroscopy are $A = 42044$, $B =$ 3682, and $C = 3380$ MHz.^{89,90} Thus $A \geq B \approx C$, and the species $Cl₂O$ is a near-prolate symmetric top. In this approximation, the ν_3 vibration of CI₂O (symmetry B₁) will display parallel rotational structure, while the vibrations ν_1 and ν_2 (symmetry A₁) will exhibit a perpendicular rotational structure.

By considering the contours of the absorption bands, comparing experimental spacings of the rotational components with those calculated from the moments of inertia, and comparing observed and calculated isotopic shifts (both oxygen and chlorine), Rochkind and Pimentel⁵³ established the unambiguous vibration assignments shown in Table IX. Polarized Raman spectroscopy⁹¹ and microwave spectroscopy⁷⁴ have subsequently provided confirmation of the assignments (Table X).

Table XI summarizes the force constants of $Cl₂O$, expressed in terms of the internal valence coordinates system, and calculated from fundamental vibration frequencies (Table X) by the general harmonic potential function (eq 35) in the valence force field approximation (GVFF).

$$
2V = f_d(\Delta d_1^2 + \Delta d_2^2) + f_{\alpha}(\Delta \alpha)^2 + 2f_{d\alpha}(\Delta d_1 + \Delta d_2)\Delta \alpha + 2f_{d\alpha}\Delta d_1\Delta d_2
$$
 (35)

Although computed from two independent sources of experimental data, infrared⁵³ and microwave⁷⁴ spectroscopy, the principal force constants, f_{α} and f_{β} , are in good agreement. The originally discordant results^{53,74} for the cross-term $f_{d\alpha}$ were subsequently resolved by analysis of the force field derivation from vibrational frequencies;⁹² the value of 0.13 \times 10⁻³ dyn/rad proved to be in error and was corrected to 0.26 \times 10⁻³ dyn/rad, in good agreement with the 0.283 \times 10⁻³ dyn/rad computed from microwave data. The disagreement between the two values found for f_{dd} was not considered too significant⁷⁴ since the elements of the force constant matrix, $F_{11} = f_d + f_{dd}$ and $F_{33} =$ $f_d - f_{dd}$, which are more closely related to the experimental data in both methods, are in good agreement: $F_{11} = 3.19$ and 3.15 \times 10⁵, and $F_{33} = 2.57$ and 2.35 \times 10⁵ dyn/cm.

It is of interest to note here a previously proposed⁹³ empirical relationship, eq 36, between the Cl-O stretching frequency and the corresponding bond length. If 1.70 Å is taken as the length of the Cl-O bond (see section V.C), then the equation gives a stretching force constant of 3.39 \times 10⁵ dyn/cm, in relatively good agreement, considering the crudeness of the method, with the 2.75–2.80 \times 10⁵ dyn/cm shown in Table XI.

$$
\log k_{\text{Cl-O}} = -6.45 \log r_{\text{ClO}} + 7.0 \tag{36}
$$

The work of Rochkind and Pimentel⁵³ rendered obsolete all

TABLE XII. Raman Spectrum of Liquid CI₂O⁹¹

TABLE XIII. Raman Spectrum of Solid Chlorine Monoxide at 77 K"

previously published $^{52,85-87,94-97}$ force constants of Cl $_2$ O calculated from its vibration frequencies. Nevertheless, the calculations themselves remain of interest for having been concerned with improving and comparing computational procedures, mainly in the valence force-field approximation, but also in the Urey-Bradley force field approximation.52,95

The results in Table Xl, from the GVFF approximation, now seem to constitute a standard against which are compared the various other approximation methods for the computation of force constants.⁹⁸⁻¹⁰¹ However, further discussion of these computations, even where they include chlorine monoxide as examples of XY_2 molecules, is beyond the scope of this review.

G. Raman Spectroscopy

The assignment of the fundamental infrared vibration frequencies⁵³ has been confirmed by polarization studies of the Raman spectrum⁹¹ of liquid CI₂O (Table XII). The spectrum of solid CI₂O (77 K) is more complex, each fundamental being split by the crystal field into two or three components (Table XIII).

The Raman spectrum of $Cl₂O$ isolated in an argon matrix¹⁰² exhibits three bands, at 638, 298, and 678 cm^{-1} , in good agreement with the values shown in Table XII for infrared vibration bands and the Raman bands of the liquid.

H. Microwave Spectroscopy

Complete analyses^{74,89,90} of the microwave spectra of the three species ${}^{35}{\rm Cl}_2{\rm O}$, ${}^{37}{\rm ClO}^{35}{\rm Cl}$, and ${}^{37}{\rm Cl}_2{\rm O}$, have yielded the rotational constants, A , B , and C , and the centrifugal distortion constants of the chlorine monoxide molecule. The rotational constants were used to calculate the effective moments of inertia, I_A , I_B , and I_C , which were, in turn, used for the computation of interatomic distances and bond angle. The results are summarized in Table VII. They agree well with results from electron diffraction studies.

The centrifugal distortion constants are functions of the harmonic force constants and have been used, in their inverse relationship, to compute the corresponding vibration frequencies (Tables X and Xl). The latter have provided good confirmation of the results of infrared spectroscopy.

I. The CI-O Bond in CI₂O

Analysis⁸⁹ of the nuclear quadrupole coupling coefficient has shown that the asymmetry about the Cl-O bond is in the direction corresponding to the loss of an electron from the chlorine p orbital, which is perpendicular to the plane of the molecule. The strongly negative coupling constant in this direction has sug-

gested that each of the structures CI⁺O⁻CI makes at least a 25% contribution to the ionicity of the molecule. Computation from an empirical formula¹⁰³ which relates percent ionicity to the electronegativity difference of the bonded atoms gives ionic character as 14%.

However, there is considerable contrary evidence that the CI-O bond in CI₂O has little or no ionic character. Thus, for example, a low value was found⁵³ for the force constant, f_d —the lowest in the series Cl₂O, ClO₂⁻, ClO₃⁻, ClO₄⁻. Furthermore, the bond length of 1.70 A (among the highest recorded for a Cl-O bond) has often been taken to indicate that $Cl₂O$ provides the prototype of the single covalent Cl-O bond. It is interesting to note that if the currently accepted stretching constant, $k_{\text{ClO}} =$ 2.75 \times 10⁵ dyn/cm, is inserted into the empirical relationship⁹³ (eq 37) derived for Cl-O, Si-O, S-O, and P-O bonds, the bond order of CI-O in CI₂O works out to 0.95, in good agreement with the concept of a single bond.

$$
N_{\text{Cl}-\text{O}} = 1.02 \times 10^{-6} k_{\text{Cl}-\text{O}} + 0.66 \tag{37}
$$

Additional support for the notion that Cl-O is a single covalent bond comes from semiempirical quantum chemical calculations. An internally consistent LCAO-MO method, based on Moffit's "atoms in molecules" method, but with somewhat different parameters, predicts a pure σ bond with no polar π -electron character.¹⁰⁴ The two-center exchange integral $[\beta(\pi)]$ is linearly correlated with the Cl-O distance and with the stretching force constants in the series Cl_2O , ClO_2^- , ClO_3^- , ClO_4^- , ClO_2 . The "extended-Hiickel" LCAO-MO approximation also gives a zero π population; it estimates the energy of atomization as 101.2 kcal/mol as compared with an experimental value of 103.0 $kcal/mol$. ¹⁰⁵ By the CNDO/2 approximation, it has been found that there is a very small (\approx 1%) participation of d orbitals in the mat more to a rety email $(1,1)$ participation of executive in the symmetries of the molecular orbitals are shown in Table VIII.

Vl. Chemical Properties

A. Photochemistry

1. Photochemical Stability

Various observations of the stability of $Cl₂O$ in the presence of light seem to disagree, probably because of differences in the initial purity of the samples being studied. In any event, some level of shielding from intense light sources would seem to be a desirable precaution when working with this substance.

Balard himself¹ had noted that diffuse daylight did not decompose CI2O; exposure to bright sunlight, however, did cause decomposition within a few minutes, but there was no detonation. Later investigators in the 19th century³⁵ said that the gas did not suffer appreciable decomposition during a 15-min exposure to the direct rays of the sun.

One group of investigators in the 1930's 47 observed that CI₂O tended to explosive behavior in the presence of strong light. They were challenged by another group¹⁰⁶ who claimed that a light of 500 candle power, placed 2.5 cm from the wall of a spherical vessel, 7.6 cm in diameter, containing $Cl₂O$ at a pressure of 0.5 atm, did not trigger an explosion.

The literature does not appear to contain any other observations on this topic that are either more recent or more systematic.

2. Photolysis of Gaseous Chlorine Monoxide

In one of the earliest studies of the photolysis of chlorine monoxide, which decomposes principally to $Cl₂$ and $O₂$, chlorine dioxide was identified as a minor product.¹² Of particular concern, however, was the influence of chlorine, almost always present initially as an impurity, on the course of the reaction. It was soon found that the rate of photolytic decomposition of CI₂O was independent of the partial pressure of the free chlorine in

the gas^{12,41,107,108} and proportional to the total amount of energy absorbed, $12,107$ whether absorbed by Cl₂O itself or by Cl₂. Thus, photochemical decomposition is sensitized by $Cl₂$.

A mechanism was proposed in 1929¹⁰⁹ to account for the quantum yield of approximately 2 which had been obtained from investigations using violet light in the range of $410-470$ nm. 12,107 It was suggested that CIO was a significant intermediate in the reaction. Only the initiation step would be affected by the presence of chlorine, the unsensitized initiation being described by eq 38 and the chlorine-sensitized initiation by eq 39. The propagation (eq 40) and termination (eq 41) reactions would be the same, whether the initiation was sensitized or not.

$$
Cl_2O + hv \rightarrow ClO + Cl \tag{38}
$$

$$
Cl_2 + hv \rightarrow Cl + Cl \tag{39}
$$

$$
CI + CI2O \rightarrow CIO + CI2 (+14 kcal/mol)
$$
 (40)

$$
CIO + CIO \rightarrow Cl2 + O2 (+74 kcal/mol)
$$
 (41)

Subsequent studies of the visible and ultraviolet absorption spectra of chlorine monoxide revealed that absorption begins at 660 nm and is continuous through the entire ultraviolet region, with maxima at 630, 530, 410, and 256 nm. $41,77$ Accordingly, the kinetics of photodecomposition was reinvestigated at 436, 365, and 312 nm⁴¹ and at 235–275 nm.¹⁰⁸ At 365 nm, the average quantum yield was 3.5, and the 10° temperature coefficient, which was 1.09 at 10 ⁰C, increased to 1.1 at 25 ⁰C, and continued to rise as the temperature was increased.⁴¹ The formation of a higher oxide of chlorine, in addition to $ClO₂$, was observed. At the shorter wavelengths, the quantum yield was 4.5, and the presence of oxygen or ozone had no influence on the rate of decomposition.¹⁰⁸ The mechanism advanced⁴¹ to account for these observations, and shown in Table XIV, contains additional initiation, and propagation steps, of which reactions 45 and 40a are certainly infrequent, and reactions 40 and 44 would represent the principal paths of chain propagation. The quantum yield suggests short chains, and hence several termination reactions.

The photodecomposition of Cl_2O at 564 nm has been found to be sensitized by bromine, with a quantum yield of 4.3 at 19 °C.¹¹⁰ The process involves short chains and is accompanied by an appreciable dark reaction. The similar quantum yields, virtually equal within experimental error, of the sensitized and unsensitized reactions suggest that energy exchange between $Br₂$ and CI₂O is very specific and takes place at nearly every collision. The same efficiency has been observed for the bromine-sensitized photodecomposition of $CIO₂¹¹¹$ and was interpreted as an example of the ability of molecules with permanent dipoles to be efficient deactivators of molecules activated by light.¹¹² The mechanism in Table XIV was adapted to explain

TABLE XIV. Mechanism of Photolysis of $Cl₂O⁴¹$

 a Equation numbers in parentheses.

sensitization by bromine, reaction 39 being replaced by reactions 49 and 50.

$$
Br_2 + h\nu \to Br_2^* \tag{49}
$$

$$
Br_2^* + Cl_2O \rightarrow Br_2 + Cl + ClO \qquad (50)
$$

In the presence of hydrogen, the photolysis of $Cl₂O$ gives $H₂$, O_2 , and Cl_2 as the main products, but small amounts of HCI and H₂O are also found.¹⁰⁶ Acceleration of the photodecomposition can occur to the point where the production of HCI becomes predominant. The chain propagators are thought to be CIO radicals, and not H radicals.

Experiments with flash photolysis¹¹³ have tended to support the mechanism in Table XIV. The flash photolysis of $Cl₂O$ in a large excess of an inert gas (O_2, N_2, CO_2, SF_6) can conveniently be divided into three stages. During the flash (100 μ s), the concentration of CI₂O falls sharply, while [CIO] reaches a maximum. In the 10 ms following the flash, [CIO] decreases rapidly, while $[Cl₂O]$ falls only slowly. At the end of 10 ms, $ClO₂$ begins to appear; its concentration builds up rapidly in the first seconds, then more slowly, reaches a maximum at 30 s, and then slowly decays. From the decay of CI₂O and the CIO radical, the rate of formation of ClO_2 , and other data available in the literature, the mechanistic details shown in Table XV were worked out.¹¹³ All but one of these reactions (eq 51) are in the previously presented mechanism.⁴¹

$$
Cl_2O + ClO_2 \to Cl_2 + O_2 + ClO \tag{51}
$$

By combining k_{40} , k_{41} , k_{43} , and the quantum yield of 3.5,⁴¹ k_{44} was computed as 2 \times 10⁴ l. mol⁻¹ s⁻¹, which, considering the possible sources of error, was in reasonable agreement with the experimental value of 5.3×10^4 .

However, the interpretation represented by Table XV is limited because it carries the assumptions that the propagation reaction 52 and the termination step 48 do not occur, and that the decay of CIO₂ occurs via reaction 51. More recent experimental evidence¹¹⁴ suggests that reaction 51 is not present, and that reaction 52 is much faster than reaction 48. Flash photolysis of $Cl₂O$, both unsensitized, and sensitized by $Cl₂$ and Br₂, at a wavelength greater than 310 nm led to proposal of the mechanism in Table XVI. An average quantum yield of 4.9 ± 1 , redetermined under flash photolysis conditions, agrees well with the value of 4.0 calculated from the rate constants in the table.

$$
CI + CIO2 \rightarrow 2CIO
$$
 (52)

In flash photolysis at λ <280 nm, vibrationally excited oxygen, O_2 *, was observed. Its concentration increased with increasing pressure of CI₂O and energy of the flash, and was higher in a quartz than in a glass vessel.¹¹⁴ The mechanism in Table XVII was suggested. As indicated by the constants, the rate of relaxation would be determined essentially by the concentration of chlorine atoms in the reaction.

3. Photolysis of CI₂O in Carbon Tetrachloride Solution

Compared to gas-phase photolysis, scant attention has been paid to the photolysis of chlorine monoxide in CCI₄ solution, and only two investigations have been reported, $2^{1,22}$ each giving a different quantum yield. The difference may be explicable by the observation that the course of photolysis is strongly influenced by the purity of the solvent.²²

In the first of the two investigations²¹ a quantum yield close to 1 was obtained by photolysis in violet light (410-470 nm). In the second investigation, 22 the yield was found to be at least 1.8 molecules of CI₂O decomposed per quantum absorbed. Significant quantities of chlorine dioxide were formed in this reaction, with an initial rate estimated as 0.35 mol/quantum.

No mechanisms have been proposed for these photolyses, and there is no report of any experiment performed at 264 nm, the absorption maximum of $Cl₂O$ in $Cl₄$ (see section V.E).

4. Photolysis of Matrix-Isolated $Cl₂O$

Chlorine monoxide has been photolyzed while suspended in matrices of solid nitrogen or argon, with the formation of products observed by means of infrared spectroscopy.^{115,116} It was concluded that five products were formed: three chlorine-containing products, ozone, and (in the N_2 matrix) N_2O . Analysis of chlorine and oxygen isotopic shifts suggested that the three chlorine-containing products are CI---CI---O and two dimers, (CIO)2, of different isomeric structures. The mechanism of the photolysis is rationalized as in eq $61-75$. CI \cdots CI \cdots O is formed through recombination (eq 69) within the matrix cage. One of the $(CIO)_2$ dimers can be formed through the photolysis of Cl_2O pairs (eq 70-72), because of incomplete isolation in the matrix.

 $Cl_2O + hv \rightarrow ClO(^{2}\Pi) + Cl(^{3}P)$ λ <817 nm (61)

$$
Cl_2O + hv \to Cl_2(^1\Sigma) + O(^1D) \quad \lambda < 331 \text{ nm} \tag{62}
$$

$$
CIO ({}^{2}Π) + hν → CI ({}^{2}P) + O ({}^{3}P) \lambda < 281 nm
$$
 (63)

$$
CIO(^{2}\Pi) + hv \to Cl(^{2}P) + O(^{1}D) \quad \lambda < 263 \text{ nm} \tag{64}
$$

$$
ClO2 + h\nu \rightarrow Cl2 + O2
$$
 (65)

$$
(\text{ClO})_2 + h\nu \to \text{Cl}_2\text{O} + \text{O}
$$
 (66)

$$
Cl...Cl\overline{n}O + h\nu \rightarrow Cl_2O \tag{67}
$$

Cl…Cl…O +
$$
h\nu
$$
 → Cl₂ (1Σ) + O (68)

$$
CI + CIO \rightarrow CI \dots CD \dots O \tag{69}
$$

$$
Cl_2O + hv \rightarrow Cl + ClO \qquad (70)
$$

$$
CI + CI2O \rightarrow CI2 + CIO
$$
 (71)

$$
CIO + CIO \rightarrow (CIO)2 \tag{72}
$$

Ozone and the second dimer, which are formed simultaneously, arise from the mechanisms in eq 73 and 74, respectively. Nitrous oxide comes from the reaction in eq 75.

$$
O_2(^{3}\Sigma) + O(^{3}P) \to O_3(^{1}A)
$$
 (73)

$$
O(^3P) + Cl_2O \rightarrow (ClO)_2
$$
 (74)

$$
N_2(^{1}\Sigma) + O(^{1}D) \to N_2O(^{1}\Sigma)
$$
 (75)

Raman spectra¹⁰² of the species obtained by laser photolysis (488 nm) of $Cl₂O$ isolated in an argon matrix have confirmed the formation of the photoisomerism product CI---CI---O. The latter gave strong bands at 962, 373, and 241 cm^{-1} , while a dimer, $(CIO)_2$, gave a band at 850 cm⁻¹. When the CI₂O was photolyzed in an ozone matrix another dimer, $(CIO)_2$, was found; it gave an intense doublet at 995 and 986 cm^{-1} . The photoisomer of CI₂O would have formed by eq 69, and the two dimers by eq 72 and 74, respectively.

B. Thermochemistry

1. Mechanism of Thermal Decomposition

The thermal decomposition of $Cl₂O$, which, like photolysis, yields primarily Cl_2 and O_2 , was at first said to be homogeneous, its rate being unchanged when the reactive surface provided by

the containing vessel was greatly augmented by the addition of glass wool.¹¹⁷ However, evidence for a wall effect was later found,¹¹⁸⁻¹²⁰ so that the reaction is indeed heterogeneous. The decomposition begins after an induction period whose length is inversely proportional to the initial concentration of CI₂O, while the initial velocity of decomposition depends upon the purity of the material, the dimensions of the container, and the temperature.¹²¹ An increase observed¹¹⁷ in the velocity of the reaction as it proceeds might be attributed to autocatalysis by either the Cl_2 or O_2 formed, except that the presence of added Cl_2 , O_2 , N_2 , or air does not influence the course of the reaction.

At low temperatures (60-100 $^{\circ}$ C), the reaction is slow, reaching completion in 12 to 24 h. Above 100 °C, the rate increases so that at 150 ⁰C, the reaction is complete within a few minutes.¹¹⁷⁻¹²¹ At temperatures below 130 °C, the rate of decomposition of $Cl₂O$ is proportional to its concentration, $117,118$ while at 140 °C the rate is proportional to \lbrack Cl₂O \rbrack ^{0.75}.¹¹⁸ All reactions above 110 ⁰C were found to end with an explosion.¹¹⁸

To account for all of these observations, two different mechanisms have been proposed. One interprets the shape of the pressure-time curves by postulating two consecutive bimolecular reactions, the first producing a pressure change less than that from the second,¹¹⁷⁻¹²² with an unknown oxide of chlorine proposed as an intermediate. Since the individual stages of the reaction are not clearly defined, it is suggested that both stages must have similar rate constants, on the one hand, and activation energies, on the other. The activation energy, $E = 21$ kcal/mol, calculated from the slope of an experimentally determined Arrhenius plot, was found in good agreement with the values computed by applying collision theory of gas reactions,123,124 or Eyring's empirical rule (expressing activation energy of a homogeneous bimolecular gas reaction as a function of both the heat of dissociation and the heat of reaction).¹²⁵ In the Damianovitch relationship dealing with the activation energies of isokinetic reactions, the activation energy of the thermal decomposition of CI2O has been found to correlate well with the activation energies of the decomposition of N_2O and HI.¹²⁶

The other mechanism proposed to account for the observed data is a chain reaction, in which Cl atoms and CIO radicals are the chain carriers, $118 - 121,127$ and adequately explains the explosion occurring at the end of the decomposition, the wall effect, and the acceleration that takes place as the reaction proceeds. On the negative side is the observation that diluent gases, such as Cl_2 , O_2 , N_2 , or air, which could be expected to interfer with a chain reaction, actually had a negligible effect. Nevertheless, relatively recent evidence supports the chain mechanism, since CIO has been observed in the mass spectrum of products from the pyrolysis of $Cl₂O$ at 350 $^{\circ}C$, 65 and in the emission spectrum of CI₂O subjected to shock-wave treatment.¹²⁸

One chain mechanism has been proposed¹²⁹ on the basis of similarities between the behavior of the rate of decomposition of CI₂O and of the rate of oxidation of ethane by oxygen. It has also been proposed that "nascent oxygen" could act as an autocatalyst in the thermolysis of Cl₂O. ¹³⁰ However, the most favored mechanism is that illustrated in eq 76 to 83.¹¹⁸ At temperatures below 130°, initiation occurs according to eq 76 and 77, but above 140°, when the order of reaction changes, reaction 78 becomes operative. In accordance with the chain-reaction mechanism, mathematical expressions, approximately fitting the experimental curves, have been derived^{121,127} for the rate of decomposition of $Cl₂O$.

Initiation:

$$
T \le 130 \,^{\circ}\text{C} \quad \text{Cl}_2\text{O} + \text{Cl}_2\text{O} \rightarrow \text{ClO}_2 + \text{Cl} + \text{Cl}_2 \quad (76)
$$

$$
Cl + Cl2O \rightarrow ClO + Cl2 \qquad (77)
$$

$$
T > 140 \,^{\circ}\text{C} \quad \text{Cl}_2\text{O} + \text{Cl}_2\text{O} \rightarrow 2\text{ClO} + \text{Cl}_2 \tag{78}
$$

Figure 7. Explosive limit for chlorine monoxide in the presence of diluent gas.

Propagation:

$$
CIO + Cl2O \rightarrow ClO2 + Cl2
$$
 (79)

$$
ClO_2 \rightarrow ClO + O \tag{80}
$$

$$
ClO_2 \rightarrow Cl + O_2 \tag{81}
$$

$$
Cl_2O + O \rightarrow 2ClO \tag{82}
$$

Termination:

$$
CIO + CIO \rightarrow Cl2 + O2
$$
 (83)

2. Explosive Decomposition

The question of whether CI_2O was so unstable as to explode spontaneously was the subject of controversy among those who did the early research on this substance. Reports of extreme instability^{3,33,34} were later denied;³⁵ the observed instability was attributed to the presence of organic impurities. Nonetheless, chlorine monoxide should itself be regarded as an explosive substance, since its detonation can be easily triggered by an electric spark, heating above 120 °C, or a rapid rate of heating at lower temperatures. The liquid is said to be particularly shock-sensitive, explosions having been encountered during the nurification of gram quantities.¹³¹ The quantity of energy liberated by the explosion of $Cl₂O$ has been variously estimated as $21.735 + 560$ cal/mol, 47.20 , 050 \pm 1000 cal/mol, 48 and 25, 100 $±$ 100 cal/mol.⁴⁹

In mixtures of $Cl₂O$ and oxygen (760 mmHg total pressure) at 23 °C, an electric spark induces an explosion when the concentration of CI₂O exceeds 23.5%. Mixtures containing $25-30\%$ CI₂O explode weakly, with a yellow band moving up the tube. Concentrations of CI₂O above 30% give violent explosions, with an orange-colored flash of light.¹³² The pressure threshold for the spark-induced decomposition of pure $Cl₂O$ was determined as 4.0 ± 0.1 mmHg.¹³³

The presence of diluent gases tends to inhibit the explosion process. As shown in Figure 7, argon is the poorest inhibitor, while CO₂ is the best, for a partial pressure of Cl_2O below 12.5 mmHg. The anomalous behavior of N_2O is attributed to the formation of a molecular complex with Cl_2O .¹³³ The discrepancy, seen in Figure 7, between the experimental results of Cady and Brown¹³² and the corresponding extrapolated value from the work of Pannetier and Ben Caid¹³³ can be explained by a possible contribution of light: Cady and Brown operated in "faint day light"; Pannetier and Ben Caid in complete darkness.

An empirical relationship has been established¹³⁴ which re-

lates the temperature at the critical point of explosion to the partial pressure of C_2O . It is shown as eq 84, where P_m is expressed in mmHg, and T in K, $A = 2500$ and $B = -6.81$. A similar relationship can be derived from the collision theory of gas reactions, giving $A = 2250$, in good agreement with experiment.

$$
log (P_m / T) = (A / T) + B \tag{84}
$$

C. Reactions with Inorganic Substances

1. Hydrogen Atoms

In his original investigation, Balard¹ found that no reaction occurred when CI₂O and H₂ were mixed, but that the approach of a flame caused a violent explosion, which produced hydrochloric acid. The effect of hydrogen on the photolytic decomposition of CI₂O (section VI.A.2) is to accelerate it and to cause the formation of HCI.¹⁰⁶ Under conditions where all the CI₂ is not converted into HCI, small quantities of H₂O are also formed, in addition to the main products, which are $Cl₂$ and $O₂$. These reactions have not been investigated in detail, but the mechanism described by eq 85-88 has been proposed, where CIO is still the main chain carrier. No termination reactions were suggested.

$$
Cl_2O + hv \rightarrow Cl + ClO \tag{85}
$$

$$
CI + CI2O \rightarrow CI2 + CIO
$$
 (86)

$$
CIO + Cl2O \to Cl2 + O2 + Cl
$$
 (87)

$$
CIO + H2 \rightarrow HCl + OH
$$
 (88)

In the reaction of CI₂O with atomic hydrogen, the formation of products has been followed by mass spectrometry¹³⁵ and infrared chemiluminescence.^{136,137} The reaction is complex. If H is in excess, HCI and H_2O predominate as major products with O_2 and Cl_2 appearing as only minor products. With Cl_2O in excess, after 100 msec, $Cl₂$ and $O₂$ are the main products, and smaller amounts of H_2O and HCI are detected. With an excess of CI₂O, or an equimolar ratio, the formation of HOCI is observed, even at the shortest reaction time. Independent of the conditions used, 1.11 \pm 0.1 mol of Cl₂O is consumed per atom of H. Molecular hydrogen is also consumed in smaller proportions. The primary step is conceived as a competition between reactions 89 and 90.

$$
H + Cl2O \rightarrow H O Cl† + Cl \quad \Delta H = -63 \pm 3 \text{ kcal/mol} \quad (89)
$$

$$
H + Cl_2O \rightarrow HCl^{\dagger} + ClO \quad \Delta H = -68 \text{ kcal/mol} \quad (90)
$$

In this reaction, HCI is produced with a distribution of vibrational energy that is markedly lower than its thermochemical limit. The seeming anomaly can be attributed, in part, to the energy required for the reorganization of the Cl-O bond from 1.70 Å in Cl₂O to 1.57 Å in CIO.¹³⁷

Following pulsed electric discharges in a mixture of $Cl₂O$ (0.5) mmHg) and H₂ (5 mmHg), a laser emission of 50-100 μ s, with an output range of 3.6–4.0 μ was observed.¹³⁸ It was attributed to the chain reaction described by eq 89-94.

$$
CI + H_2 \rightarrow HCI + H
$$
 (91)

$$
CIO + CIO \rightarrow 2Cl + O_2 \tag{92}
$$

$$
CI + CIO + M \rightarrow Cl2O + M
$$
 (93)

$$
Cl + wall \rightarrow \frac{1}{2}Cl_2 + wall
$$
 (94)

2. Other Atoms

Just as in the reactions with H atoms, or with Cl atoms during pyrolysis, or during chlorine- and bromine-sensitized photolysis, the production of the radical CIO has been found to be the most important primary process in the reactions of $Cl₂O$ with atoms of O, N, and alkali metals.

The reaction of $Cl₂O$ with O atoms, in a fast-flow system at room temperature, has been monitored by mass spectrometry and appears to follow the scheme described by eq $95-99.67$

$$
O + Cl2O \rightarrow 2ClO \quad k_{95} = 8.3 \times 10^9 \text{ I. mol}^{-1} \text{ s}^{-1} \tag{95}
$$

$$
O + CIO \rightarrow O_2 + Cl \quad k_{96} > 6 \times 10^9 \text{ I. mol}^{-1} \text{ s}^{-1}
$$
 (96)

Cl + Cl₂O → Cl₂ + ClO
$$
k_{97}
$$
 > 4 × 10⁸ I. mol⁻¹ s⁻¹ (97)

Cl + wall \rightarrow 1/₂Cl₂ slow with poisoned walls (98)

$$
2\text{CIO} \rightarrow \text{Cl}_2 + \text{O}_2 \qquad k_{99} = 1.7 \times 10^7 \text{ I.} \text{ mol}^{-1} \text{ s}^{-1} \text{ (99)}
$$

Under the same conditions, when CI₂O was reacted with N atoms, 0.93 \pm 0.1 mol of CI₂O was decomposed per mole of atoms of nitrogen.¹³⁹ The presence of relatively long-lived CIO radicals was observed, but neither NO nor NCI was detected. The mechanism for the reaction with nitrogen atoms is summarized by eq 100-102 followed by reactions 95-99.

$$
N + Cl2O \rightarrow NCI + ClO
$$
 (100)

$$
k_{96} = (9.1 \pm 1.5) \times 10^{8} \text{ I.} \text{mol}^{-1} \text{ s}^{-1}
$$

$$
N + NCI \rightarrow N_2 + CI \qquad k_{101} > 10^9 \text{ I.} \text{ mol}^{-1} \text{ s}^{-1} \qquad (101)
$$

$$
N + CIO \rightarrow NCI + O \qquad k_{102} > 10^9 I. \text{ mol}^{-1} \text{ s}^{-1} \qquad (102)
$$

The matrix reaction of $Cl₂O$ with alkali metal atoms at high dilution in argon leads to absorptions in the infrared region, which are attributed to the corresponding metal chloride, and to other absorption peaks attributed to CIO on the basis of frequency analysis, isotopic shift, and literature data.⁸⁸ The primary process can be described by eq 103, which can be considered to represent the most important process in the reaction of CI₂O with atomic species, i.e., $M = LI$, Na, K, H, O, N, Cl, and Br.

$$
M + Cl2O \rightarrow MCl + ClO
$$
 (103)

3. Alkaline and Alkali Earth Hydroxides

As the anhydride of hypochlorous acid, chlorine monoxide forms hypochlorites with alkaline and alkali earth metal hydroxides. By extracting a carbon tetrachloride solution of CI₂O with an aqueous suspension or solution of $M(OH)_n$ (M = Li, Na, K, Sr, Ca, Ba), and evaporating the resulting extract in vacuo at 40– 50 $^{\circ}$ C, the pure hypochlorite, M(CIO)_n, or one of its crystalline hydrates, can be obtained.¹⁴⁰ Li, Ca, Ba, and Sr hypochlorites are stable. Sodium hypochlorite shows some tendency to decompose on drying, while the potassium salt is even less stable and, during drying, is oxidized to the peroxide by any excess of $Cl₂O$ (eq 104).

$$
2K OCl + Cl2O \to K2O3 + 2Cl2
$$
 (104)

Generally, the dry hypochlorites react with chlorine monoxide to form chlorates, according to eq 105.¹⁴¹ The rate of chlorate formation decreases in the order $Na > Ba > Sr > Li > Ca$. After 8 h, the reaction is complete for NaOCI, but only 30% complete for $Sr(OCl)₂$.

$$
M(CIO)_n + 4Cl_2O \to M(CIO_3)_n + 4Cl_2 \tag{105}
$$

The heat of reaction of Cl_2O in CCl_4 solution with aqueous hydroxyl ions (eq 106) was determined¹⁴² calorimetrically at 5, 10, 25, and 35 °C to give the thermodynamic properties shown as eq 107 and 108. By comparing $\Delta G^{\circ}{}_{298}$, computed according to eq 108 with data available in the literature, the integration constant was evaluated as $l = 1.8874$.

 Cl_2O (CCI₄) + 2OH⁻(aq) \rightarrow 2OCI⁻(aq) + H₂O(I) (106)

$$
\Delta H^{\circ}{}_{T} = -80.86 + 0.3204 T - 0.000420 T^{2} \qquad (107)
$$

$$
\Delta G^{\circ}{}_{7} = -80.86 - 0.3204 T \ln T + 0.000420 T^{2} + I T
$$
 (108)

4. Alkaline Hydrogen Peroxide

The heat of reaction of chlorine monoxide with basic aqueous solutions of hydrogen peroxide (eq 109), as determined^{63,143} calorimetrically at 5, 10, 25, and 35 °C, gave the thermodynamic functions in eq 110 and 111. By computation of $\Delta G^{\circ}{}_{298}$ from the free energies of formation of $HO_2^-(aq)$, $H_2O(l)$, $Cl^-(aq)$, and $Cl_2O(CCI_4)$, it was found that $I = -0.1788$

$$
Cl_2O(CCl_4) + 2HO_2^-(aq) \rightleftarrows 2Cl^-(aq) + H_2O(l) + 2O_2(g)
$$
 (109)

$$
\Delta H^{\circ}{}_{T} = -70.50 - 0.2677T + 0.000740T^{2} \tag{110}
$$

$$
\Delta G^{\circ}{}_{T} = -70.50 + 0.2677 T \ln T - 0.000740 T^2 + 17^2 \quad (111)
$$

5. Nitrogen Oxides

Table XVIII summarizes the reactions of chlorine monoxide with nitrogen dioxide and dinitrogen pentoxide in the gas phase, in solution in an inert solvent (1,1,2-trichloro-1,2,2-trifluoroethane), and in the melt.^{81,144-148} Nitrosyl chloride (NO₃Cl) and nitryl chloride ($NO₂Cl$) have been identified as the main products.

The ratio of the rate constants at 20 °C, for the same reaction in the gas phase and in solution, has been discussed in terms of both the collision theory and the transition state theory of chemical kinetics.¹⁴⁷

The activation energy $(-7500$ kcal/mol) and the Arrhenius factor (1.46 \times 10⁴ l. mol⁻¹ sec⁻¹) for the reaction of chlorine monoxide with nitrosyl chloride in trichlorotrifluoroethane were both much lower than expected for a bimolecular reaction. Nevertheless, the values found were shown to be consistent with the reaction mechanism described by eq 112 and 113. Two structures, Ia and Ib, were proposed for the activated complex $[Cl₂O₁NOCl]$ shown in these equations, but the available evidence did not permit any definite assignment.

$$
Cl_2O + NOCl \stackrel{K_1}{\iff} [Cl_2O \cdot NOCl] \tag{112}
$$

$$
[Cl_2O\cdot NOCl] \xrightarrow{k_1} Cl_2 + NO_2Cl
$$
 (113)

The reaction of CI₂O with NO₂ in the melt (-25 °C) was interpreted as proceeding in two steps, the first being the formation of N_2O_5 , which, in the second, further reacts with Cl_2O to form $NO₃Cl^{146,149}$ it has recently been proposed that the reaction of (104) N_2O_5 with Cl₂O is a nitration by NO_2^+ (N₂O₅(s) $\equiv NO_2^+ NO_3^-$) according to eq 114. This proposal was based on the observation that yields of NO₃CI obtained by nitration of CI₂O by various $NO₂X$ compounds decreases in the order $\mathsf{X}=\mathsf{NO_3}^{\perp} \mathsf{>}\mathsf{BF_4}^{\perp} \mathsf{>}\mathsf{ClO_4}^{\perp}$ $= SO₃F⁻$. This order is the same as the order of ionicity of the NO_2^- X bond. 150

$$
NO2+ + Cl2O \rightarrow NO3Cl + Cl+
$$
 (114)

6. As F_5 and Sb F_5

Chlorine monoxide reacted with $AsF₅$ to give a complex at -78 °C, which, at about -50 °C, eliminated chlorine to yield what was first believed to be an odd-electron molecule, $CIOAsF₅$. ¹⁴⁵ It was later proven that the product was, in fact, the ionic compound $CIO₂⁺ AsF₆⁻,^{151,152}$ for which eq 115-118 give the postulated mechanism of formation.¹⁵²

$$
2Cl2O + AsF5 \rightarrow ClO2+ AsF5Cl- + Cl2 (115)
$$

$$
CIO2+ AsF5Cl- + AsF5 \rightarrow ClO2+ AsF6- + AsF4Cl (116)
$$

TABLE XVIII. Reactions of CI₂O with NO₂ and N₂O₅

Reactions	Rate equation	Phase	Frequency factor, l. mol^{-1} s ⁻¹	Activation energy, kcal/mol	Ref
$CI, O + 2NO, \rightarrow NO, CI + NO, CI$	$-d[Cl, O] =$ k [CI,O][NO,]	Gas	4.35×10^{7}	11.6	146
Mechanism					
$CI_2O + NO \rightarrow NO_2Cl + ClO$ $NO, + ClO \rightarrow NO, Cl$		Solution (Freon 113)	3.50×10^{7}	10.4	145
$2NO, + 2Cl, O \rightarrow 2NO, Cl + Cl,$					
Mechanism		Melt			146
$2NO_2 + Cl_2O \rightarrow N_2O_5 + Cl_2$ $N, O_s + C I, O \rightarrow 2NO, Cl$		$(-25 °C)$			149
$2CI_1O + 2N_2O_3 \rightarrow 2NO_3CI + 2NO_2CI + O_2$	$-d[CI, O]/dt =$ k[N,0,1]	Gas	3.6×10^{13}	24.6	147
Mechanism					
$2N, Q$, \rightarrow $4NO$, $+O$,					
$NO_1 + Cl_2O \rightarrow NO_2Cl + ClO$ $NO, + ClO \rightarrow NO, Cl$		Solution	4.0×10^{13}	24.5	145
$CI_2O + N_2O_5 \rightarrow 2NO_3Cl$		Melt			146, 149
$CI_1O + NOCI \rightarrow CI_1 + NO_2Cl$		Gas			147
	$-d[NOCI]/dt =$	Solution	1.46×10^{4}	7.5	147
	k [CI,O][NOCI]	(Freon 113)			148
$Cl_2O + NOCl \rightarrow O_2 + NO_2$		Melt			147

$$
2AsF4Cl \rightarrow AsF5 + AsF3Cl2
$$
 (117)

$$
AsF3Cl2 + Cl2O \rightarrow AsOF3 + 2Cl2
$$
 (118)

The reaction of SbF_5 with CI₂O is also complicated. The main products identified were $CIO₂SbF₆$, SbOF₃, Cl₂, and $ClO₂Sb₃F₁₆$ ¹⁵³ Except for the last, the products formed are similar to those from AsF₅. Thus the reaction of SbF₅ with CI₂O can proceed by a mechanism similar to that in eq 115-118. However, the reaction is not specific to CI₂O, but general to all chlorine oxides; $CIO₂SbF₆$ and $SbOF₃$ are also formed when SbISbF₅ is reacted with CIO₂ and CI₂O₆, and CIO₂Sb₁₃F₁₆ is also formed during the reaction of SbF_5 with CIO₂ and CI₂O₇. Hence, a more general scheme is required to rationalize these observations.

7. Metallic and Metalloidic Halides

Metallic and metalloidic oxyhalides, which are often polymeric substances, ^{154–159} may be prepared by treating the corresponding halides with chlorine monoxide. In these reactions, 2 mol of chlorine is liberated for every mole of chlorine monoxide consumed. Reactions of this type are illustrated by eq 119-128. The reactions may be completed by the oxidation of the metal or metalloid to its highest oxidation state.

$$
VOCl3 + Cl2O \rightarrow VO2Cl + 2Cl2 (119)154
$$

$$
P(NCI2)3 + 2Cl2O \rightarrow PO2Cl + 3NCI3 (120)155
$$

$$
AsCl3 + 2Cl2O \to AsO2Cl + 3Cl2 (121)155
$$

$$
SbCl_5 + Cl_2O \rightarrow SbO_2Cl + 4Cl_2 \qquad (122)^{155,158}
$$

$$
POCl3 + MOCl5 + Cl2O → MOO2Cl2·POCl3 + 7⁄2Cl2
$$
\n(123) ¹⁵⁹

$$
SnCl_4 + Cl_2O \to SnOCl_2 + 2Cl_2 \qquad (124)^{156}
$$

$$
TICI_4 + Cl_2O \to TiOCl_2 + 2Cl_2 \tag{125}^{157}
$$

$$
\text{RCCI}_{2}\text{CCI}_{2}\text{N} \equiv \text{PCI}_{3} + \text{Cl}_{2}\text{O} \rightarrow \text{RCCI}_{2}\text{CCI} \equiv \text{NPOCI}_{2} + 2\text{Cl}_{2}
$$
\n
$$
(126)^{160}
$$

$$
ArSO_2N=PCI_3 + Cl_2O \rightarrow ArSO_2Cl=NPOCl_2 + 2Cl_2
$$
\n
$$
(127)^{160}
$$

$$
PF_3Cl_2 + Cl_2O \rightarrow POP_3 + 2Cl_2
$$
 (128)¹⁵¹

The mechanism of these reactions is not known in detail, but a cyclic intermediate (eq 129) has been postulated¹⁶⁰ for the trichlorophosphate compounds (eq 126 and 127).

The reaction of silver difluoride with $Cl₂O$ at 65-70 °C has been reported as resembling the reactions of the chlorides.¹⁵ However, since it is known that chlorine dioxide gives the same products on reaction with $AgF₂$, the mechanism in eq 130 and 131 has been proposed.

$$
2Cl_2O \to ClO_2 + \frac{3}{2}Cl_2 \quad (50\,^{\circ}\text{C} < t < 80\,^{\circ}\text{C}) \quad (130)
$$

$$
CIO2 + AgF2 \rightarrow ClO2F + AgF
$$
 (131)

8. Fluorine

The reaction of chlorine monoxide with fluorine has been investigated as a route for the preparation of chlorine trifluoride oxide, CIF₃O.¹³¹ It was found that alkali metal fluorides catalyzed the reactions described by eq 132 and 133.

$$
2F_2 + Cl_2O \rightarrow ClF_3O + ClF \tag{132}
$$

$$
3F_2 + Cl_2O \rightarrow ClF_3O + ClF_3 \tag{133}
$$

High yields $(40-80\%)$ of CIF₃O were obtained by reacting fluorine with liquid $Cl₂O$, in the presence of alkali metal fluorides, at -78 °C for several days in a stainless steel vessel passivated with CIF₃. When no catalyst is used or when KF or NaF are present as catalyst, CIF is the main product. When CsF or RbF are the catalysts, CIF_3 is the favored product.

With a mixture of yellow mercuric oxide and chlorine, which is mainly CI₂O absorbed in mercuric salts, the presence of fluorine produces only a small yield of CIOF₃, while CIF₃ and CIO₂F

are the main products. Gaseous fluorine, except when activated in a glow discharge, does not react with solid $Cl₂O$, but then it does give a low yield $(1-2\%)$ of CIF₃O.

That less than theoretical yield of $CIF₃O$ is obtained in its synthesis from $Cl₂O$ has been explained, at least in part, by a slow reaction which occurs between both compounds.¹⁶¹ When an equimolar mixture of $Cl₂O$ and $Cl₃O$ was allowed to stand for 15 h at room temperature, only 88% of the starting compounds was recovered, and the presence of small quantities of CIF and CIO₂F was observed.

This result was explained by means of the reaction sequence 134-135, in which FCIO is an unstable intermediate.

$$
CIF3O + Cl2O \rightarrow 2[FCIO] + CIF
$$
 (134)

$$
2[FCIO] \rightarrow CIO_2F + CIF
$$
 (135)

9. Miscellaneous

Chlorine monoxide and sulfur trioxide have been found to form an addition compound which was first described as $Cl₂O$ - $4SO_2$.¹⁶² It was later discovered that CIO₂ gives the same compound, whose formula was now given¹⁶³ as $(CIO)(ClO₂)$ - S_3O_{10} .

Mixtures of chlorine monoxide and ammonia explode violently, possibly by the reactions¹⁶⁴ shown in eq 136 and 137.

$$
3Cl_2O + 2NH_3 \to N_2 + 3H_2O + 3Cl_2 \tag{136}
$$

$$
3Cl2 + 8NH3 \rightarrow 6NH4Cl + N2
$$
 (137)

Chlorine monoxide appears to play a role in some of the reactions of chlorine dioxide and catalyzes its hydrolytic decomposition.¹⁶⁵ The catalytic effectiveness of CI₂O is characterized by a sharp maximum at 0.2×10^{-3} mol/l. of Cl₂O. It has also been found to catalyze the thermal decomposition of gaseous $ClO₂$ at 85 °C. Since the photolysis of $ClO₂$ follows the same kinetic law as the Cl₂O-catalyzed thermolysis, it has been suggested¹⁶⁶ that CI₂O is an early product of the photolysis. This notion was later strengthened by the results of a study¹⁶⁷ of the stability of $ClO₂$ in CCI₄ solution. However, it was found that $Cl₂O$ was slowly consumed, and the disappearance of CIO₂ follows the kinetics shown in eq 138.

$$
-d[CI_2O]/dt = k[CIO_2]^{4/3}[Cl_2O]^{1/3}
$$
 (138)

Electrochemical reduction of CI₂O can be achieved in 97 and 7 4% aqueous HCIO4, where it is not hydrolyzed and HOCI is dehydrated to Cl $_2$ O. 168 The polarization curves for the Pt electrode, in these solutions, show an inflection at -1.70 V which is interpreted as resulting from the reduction of $Cl₂O$ according to eq 139 and 140.

$$
Cl_2O + 2H^+ + 2e^- \to Cl_2 + H_2O \tag{139}
$$

$$
Cl_2O + 4H^+ + 4e^- \to 2HCl + H_2O \qquad (140)
$$

When chlorine monoxide was first discovered, its reactivity toward various elements and compounds was tested.¹⁶⁹⁻¹⁷¹ Few details are available, but what little is known is summarized in Table XIX.

D. Reactions with Organic Compounds

1. Saturated Compounds

The predominant reaction CI_2O with organic compounds is chlorination, similar to that effected by chlorine, but differing significantly in that the by-product is not HCI, but water. Since the formation of a benign by-product may often be an advantage, it is surprising that the literature contains little evidence of efforts to develop chlorination by $C₂O$ as an industrial process. In the USSR, the use of $Cl₂O$ to produce chlorinated solvents, particularly carbon tetrachloride, has been found to give very good yields.^{172,173} The procedure was conducted in two connected

TABLE XIX. Miscellaneous Inorganic Reactions of CI₂O

Reactant	Nature of reaction	Products	Ref
Se	Violent		1
P	Violent	$P, O_s, POCI_s$	1
As	Violent	$\overline{As}, \overline{O}_5$, \overline{AsCl}_5	1
Br,	Slow	CIBr, $CIO2$, BrO ₂	1, 169, 170
I_2	Slow	CII, I_2O_5 , IOCI ₃	1, 169, 170
S	Violent	SO_2, S_2Cl_2	1
S (soln in S, Cl,	Slow	SOCI,	171
CS,	Violent	$SOCI2$, CO	1
		CI, S, CI, SO,	
$H_{2}S$	Violent		1
C.	Violent	O_2 , CI ₂ , CO ₂	$\mathbf{1}$
(CN) ₂	Slow	$CO2$, N ₂ , CNCI	1
PH,	Violent		1
CO.		$COCI2$, $CO2$	1
HCI		CI, H, O	1
Hg	Slow	$(HgO)n$, HgCl ₂	1
Ag	Slow	Ag, O, Cl,	1
S Ba			
S Sn S Hq	Violent	S, Cl,	1
CaCl ₂ (moist)	Slow	$Ca(CIO)_{2}$, Ca(CIO ₃) ₂	1

steps, of which the first was the preparation of CI₂O by passing a mixture of chlorine and methane, at 20 °C, through a column containing HgO on pumice particles.¹⁰ The emerging mixture, which contained methane (acting here as an inert diluting gas), $Cl₂O$, some unconverted $Cl₂$, and possibly some chlorinated methane, was then passed through a U-tube reactor, filled with an inert material and heated at high temperature. By this procedure, an initial mixture of 1 vol of CH_4 to 4 vol of Cl_2 , reacting in the U-tube at 350 ⁰C, gave quantitative conversion of the methane into CCI4. At lower concentrations of chlorine, or lower temperatures, the chlorinated products were mixtures of CH_2Cl_2 , CHCI₃, and CCI₄ in various proportions.

The gas-phase chlorination of propane by Cl_2O , at 100 °C, has been found to yield only 1- and 2-chloropropane (7:1 molar ratio) and hypochlorous acid.¹⁷⁴ Although the presence of oxygen, as a product of the straight pyrolysis of $Cl₂O$, might be predicted, none was detected. The mechanism proposed for the chlorination was a free-radical chain reaction, with CIO- as the main chain carrier, and the unimolecular decomposition of Cl₂O as the initiation step.

Later, however, the activation energy of the reaction was measured¹⁷⁵ as 11 kcal/mol, considerably lower than the 36 kcal/mol required for the homogeneous unimolecular decomposition of CI₂O. Hence it was necessary to postulate another initiation step. The new proposal¹⁷⁵ was based on the presence of propene (\approx 0.1%) as an impurity in the propane used in these experiments. The propene would react as in eq 141 to initiate the formation of the chain-carrying (eq 142-145) CIO radicals. From this hypothesis, the overall rate of the reaction was calculated as $10^{-7.1}$ mol 1^{-1} s⁻¹ at 100^o, in good agreement with the observed rate of 10^{-6.9}

$$
C_3H_6 + Cl_2O \rightarrow C_3H_6Cl \cdot + ClO \cdot \tag{141}
$$

 $CIO \cdot + C_3H_8 \rightarrow CH_3CHCH_3 + HOCl$ (142)

 $CIO \cdot + C_3H_8 \rightarrow CH_3CH_2CH_2 + HOCl$ (143)

$$
CH_3CHCH_3 + Cl_2O \rightarrow CH_3CHCICH_3 + ClO \cdot (144)
$$

 $CH_3CH_2CH_2^+ + Cl_2O \rightarrow CH_3CH_2CH_2Cl + ClO$ (145)

The absence of the products of conceivable reactions constituting chain termination (eq 146-148) tends to confirm the

TABLE XX. Reactions of Unsaturated Compounds with $CI₂O$

Reactant	Reagent	Products	Ref
$CI, C = CHCI$ $CI_2C = CCI_2$	CI_2O (CCI ₄) CI_2O (CCI ₄)	$CI3CCHCI2 + CI3CCHO + (CI3CCHCI)2O$ $CI3CCCI3 + CI3CCHO$ (?)	177 177
	CI_2O (CCI ₄)		177
	Cl_2O (CCI ₄)		177
$H(CF_2)_4CF=CF_2$ $H(CF_2)_2CF=CF_2$ CFCI=CFCI $CF2=CFCI$	$CI_2O + CI_2 (CCI_4)$ CI_2O (CCI ₄ + H ₂ O) $CI_2O(H_2O)$ $CI_2O + CI_2 (CCI_4)$	$H(CF_2)_4$ CFCICOF + $H(CF_2)_4$ CFCICF ₂ CI $H(CF2)$, CFCICOOH $(CFCIH)$ ₂ + CHF ₂ COOH CF ₂ COF	178 178 178 178

large chain length (\approx 10⁴) suggested by the kinetics of the gasphase chlorination.

÷.

$$
2C_3H_7 \rightarrow C_6H_{14} \tag{146}
$$

$$
C_3H_7 \cdot + \text{ClO} \cdot \rightarrow C_3H_7\text{OCl} \tag{147}
$$

$$
2ClO \cdot \rightarrow Cl_2 + O_2 \tag{148}
$$

Dissolved in CCI₄, each mole of CI₂O will produce nearly 2 mol of chlorinated products and 1 mol of water (with a small amount of HCI accounting for the balance of the chlorine atoms) from various saturated compounds, such as 1-chlorobutane, 1-chloropropane, and n -butyronitrile.²³ When the reaction is conducted in the dark, there is a very long induction period. It is lengthened by the presence of oxygen or a decrease in temperature and shortened by exposure to light or addition of α, α' -azobisisobutyronitrile (AIBN). These observations suggest that the reaction in the dark is initiated by a slow thermal decomposition of CI₂O (eq 149).

Another significant aspect of the liquid-phase chlorination is the selectivity exhibited by $Cl₂O$ in abstracting hydrogen; the ratio is 1:11:24 for primary: secondary: tertiary. Thus, $Cl₂O$ is more selective than Cl_2 (1:3.9:5.1), but less selective than tert-butyl hypochlorite (1:8:44). However, in various stages of the reaction of CI₂O, changes occur in the product distribution and are such as to indicate an initial buildup of HOCI, with concomitant formation of products in a ratio indicative of the action of CIO radicals, followed by a decrease, accompanied by a less selective formation of chlorinated products, which indicates the action of Cl radicals. The mechanism proposed for chlorination in the liquid phase was accordingly proposed as a mixed radical chain (eq 149-155).

$$
Cl_2O \rightarrow Cl \cdot + ClO \cdot \tag{149}
$$

$$
CIO \cdot + RH \rightarrow HOCl + R \cdot (150)
$$

$$
R \cdot + C i_2 O \rightarrow RCl + ClO \qquad (151)
$$

$$
HOCI \rightarrow CI \cdot + \cdot OH \tag{152}
$$

$$
RH + Cl \rightarrow R \cdot + HCl \qquad (153)
$$

$$
HCl + HOCl \rightarrow H_2O + Cl_2 \tag{154}
$$

$$
R \cdot + C I_2 \rightarrow R C I + C I \qquad (155)
$$

2. Unsaturated Compounds

Benzene was the first organic compound whose reaction with $Cl₂O$ was investigated in any degree of detail.¹⁷⁶ It was reported to yield α - and β -benzene hexachlorides, and oxygen-containing compounds of the general formula $C_6H_6Cl_4O$; 2,4,6-trichlorophenol was identified as a minor product. Since 1900 there has been no published description of any attempt to repeat this reaction and confirm its results.

Research on the reactions of other unsaturated compounds

has also been limited. The known results^{177,178} are summarized in Table XX and accounted for by the speculative mechanism¹⁷⁷ (using trichloroethylene as an illustration) in which the chlorine monoxide first adds to the double bond (eq 156) and then either chlorine is split off leaving a carbonyl group (eq 157) or another molecule of olefin is added to yield an ether (eq 158).

It should be pointed out here that the rate of addition of HOCI to olefins has been found to be second order with respect to [HOCI].¹⁷⁹ Therefore it was suggested that the rate-determining step was the dehydration of HOCI (eq 159), and that $Cl₂O$ is the active species in the chlorination.

$$
2HOCl \rightleftarrows H_2O + Cl_2O \tag{159}
$$

3. Phenols and Aryl Ethers

Table XXI shows the yields of products identified from the reaction of phenol, anisole, o - and p -cresol, respectively, with 0.5 mol of CI₂O.¹⁸⁰ The reactions were conducted in CCI₄ solutions kept in the dark.

From the reaction of phenol, the ratio of ρ : p -chlorophenols produced, 2.9:1, is practically the same as that (2.8:1) obtained from the reaction with chlorine in carbon tetrachloride. This similarity was taken to indicate that chlorination with CI₂O might follow a free-radical mechanism. The hypothesis was further reinforced by the isolation of o, o' -dicresol derivatives (I-III) and 2-chloro-4a,9b-dihydro-8,9b-dimethyl-3(4H)-dibenzofuranone (IV; a Pummerer's ketone) from the reaction with p-cresol, since these products are typical of those obtained from free-radical coupling reactions of phenols.¹⁸¹

When solutions (CCI₄) of p-cresol and CI₂O were mixed, an

electron spin resonance signal was observed. Failure to detect free-radical signals from the reactions of phenol, o -cresol, and anisole was attributed to the short lifetime of the postulated free-radical intermediates.

Color changes observed when diphenylpicrylhydrazyl (DPPH) was present in the reaction mixtures also suggested that freeradical intermediates played a role in the reaction.

Taken together, all this evidence suggested a free-radical mechanism (eq 160-163), akin to the one proposed for alkanes. The formation of hydroxylated products was accounted for by a reaction such as in eq 164.

+ HOCI (161)

$$
2HOCI \implies Cl_2O + H_2O \qquad (163)
$$

Later, the free-radical mechanism was seriously questioned.¹⁸² Contrary evidence included the observation that $Cl₂O$ reacts with DPPH, which is therefore not a good indicator of free radicals in the presence of this reagent. Moreover, the reaction of CI2O with chlorobenzene was not accelerated by the addition of a free-radical initiator (AIBN) or retarded by the presence of a free-radical scavenger (O_2) . It was also observed that the rate of chlorination increased with the polarity of the solvent used and a large increase in the rate occurred when 5% trichloroacetic acid was added. Therefore, in place of the free-radical mechanism, an alternative was proposed, in which a polarized CI₂O molecule attacked the aromatic ring. Equation 165 shows the mechanism as applied to anisole. Preponderance of the ortho chlorination of phenol by $Cl₂O$ can be explained by the mechanism in eq 166.

As noted in section I, chlorine monoxide has recently been found to be an effective agent for the bleaching of wood pulps.6,7 Accordingly, Table XXII presents the main results of reactions of CI₂O with several compounds representing characteristic reactive units in the lignin macromolecule. As the table shows, a significant fraction of products come from displacement of the side chain, R, as might occur by the mechanism in eq 167.

When insoluble lignin, isolated from wood by dissolution of the polysaccharides through periodate oxidation, was subjected

mental analysis of the products showed evidence of extensive chlorination as well as demethylation and oxidation. From these results, and those of the study of model compounds, a tentative mechanism was suggested¹⁸² for the degradation of lignin by $Cl₂O₁$

4. Miscellaneous

One other reaction of an aromatic compound, N,N-dimethylaniline, has been reported in the literature, ¹⁸³ but few details were given. Products isolated included 50.5 mol % of unreacted starting material, 18.9 mol % of 2-chloro-N, N-dimethylaniline, 3.2 mol % of 4-chloro-N, N-dimethylaniline, and 1.2 mol % of 2,4-dichloro-A/,W-dimethylaniline. This selectivity was comparable to that obtained by treating the same starting material with tert-butyl hypochlorite.

to the action of CI₂O in CCI₄ solution, the presence of moisture (10% on lignin) was found essential for obtaining a solubilizing, degradative reaction, such as occurs in bleaching. At least 3 mol of CI2O was required per mole of lignin building block in order to ensure complete solubility of the treated lignin in dioxane. Gel permeation chromatography of the solubilized lignin showed two main fractions: one, at molecular weights narrowly distributed around 500, was interpreted as representing dimers and trimers of phenylpropane units; the other fraction was of a higher molecular weight, with its distribution centered around 5000. EIe-

Other reactions of chlorine monoxide examined only superficially were those with acetone and ethyl acetoacetate, which yielded 1-chloro-2-propanone and α -chloroethyl acetoacetate, respectively.¹⁷⁷

The reaction of $Cl₂O$ with tert-butyl hydroperoxide, in $Cl₃F$ solution at 0^oC, is characterized by an instantaneous liberation of oxygen.¹⁸⁴ At reaction temperatures below -30 °C, no oxygen is evolved at all. Since NMR spectroscopy at low temperature permitted the identification of terf-butylperoxy hypochlorite (t-BuOOCI) and di-tert-butyl trioxide (t-BuOOOt-Bu) as the main products, the reactions were formulated as in eq 168-170.

2HOCI \rightleftarrows CI₂O + H₂O (170)

Initiation of the polymerization of methyl acrylate by the reaction mixture, as well as trapping experiments with an antioxidant, suggested that oxygen evolution proceeds via a peroxy radical whose formation is induced by di-tert-butyl trioxide.

VII. Addendum

Several pertinent articles and patents have appeared since this review was originally completed. One patent¹⁸⁵ deals with an improvement in the sodium carbonate method for generating $Cl₂O$ gas. It claims that yields of over 90% were obtained by passing mixtures of chlorine and moist air, at room temperature and atmospheric pressure, over a highly porous form of $Na₂CO₃$ prepared by calcining pulverized \textsf{NaHCO}_3 at 150–400 °C.

It is encouraging to note that another patent, ¹⁸⁶ as well as recent journal articles, describes reactions of CI₂O with organic compounds, a subject largely neglected in the past. The patent describes a process for making 1,1,1-trichloroethane by means of the anhydrous reaction, in the liquid phase, in the dark, and at temperatures ranging from -20 to about 80 °C, of chloroethane, 1,1-dichloroethane, or a mixture of both with CI₂O. Ethyl iodide, however, on treatment with Cl_2O , was found 187 to yield a complex mixture of ethyl chloride, diethyl ether, and ethyl acetate.

The reaction of CI₂O with cyclohexene has been reinvestigated,¹⁸⁶ and, with the advantage of modern methods of analysis, nine products were detected, of which only two had been isolated in the previous investigation.¹⁷⁷ The main products have now been identified as 3-chlorocyclohexene (yield: 0.79 mol/mol of $Cl₂O$) and *trans-2-chlorocyclohexanol* (0.53 mol/mol of $Cl₂O$). Neither of these was reported as a product in the 1925 work, but the compound then assigned the postulated structure of chloroepoxycyclohexene may have been an artifact formed in the distillation of either the *trans-2-chlorocyclohexanol* or of the intermediate 2-chlorocyclohexyl hypochlorite. The mechanism proposed to account for the formation of nine products suggests that $Cl₂O$ adds directly to the olefin to yield *trans-2-chlorocy-* clohexyl hypochlorite, and simultaneously undergoes homolysis induced by the olefin, with which the free radicals then form addition and substitution products. Although the experimental evidence indicates that a free-radical mechanism predominates, ionic addition reactions cannot be ruled out for two of the products, the major product 3-chlorocyclohexene and the lesser product frans-1,2-dichlorocyclohexane (0.082 mol/mol of $Cl₂O$).

The potential of CI_2O as a bleaching agent for wood pulp has recently been confirmed.¹⁸⁹

VIII. References

- (1) A. J. Balard, Ann. Chim. Phys., Ser. 2, 57, 225 (1834).
-
- (2) A. J. Balard, *Taylor's Sci. Mem.*, 1, 269 (1837).
(3) J. L. Gay-Lussac, *C. R. Acad. Sci.*, 1**4**, 927 (1842).
(4) C. G. Swain and D. C. R. Crist, *J. Am. Chem. Soc.*, **94,** 3195 (1972).
- (5) H. L. Robson in "Encyclopedia of Chemical Technology", Vol. 5, Wiley,
- New York, N.Y., 1964, pp 7–27.
(6) H. I. Bolker and N. Liebergott, *Pulp Pap. Mag. Can.*, 7**3,** T332 (1972).
(7) N. Liebergott and H. I. Bolker, U.S. Patent 3 619 349 (Nov 9, 1971).
-
- (8) J. W. Mellor, "A Comprehensive Treatise on Inorganic and Theoretical Chemistry", Vol. II, Longmans Green and Co., London, 1952, p 240. (9) C. C. Addison, "Mellor's Treatise on Inorganic and Theoretical Chemistry", Vol. II, Suppl. 1, Wiley, New York, N.Y., 1956, p 514.
- (10) V. M. Gallak, N. I. Belinskaya, and T. A. Pavlova, Zh. PrIkI. Khim. (Lenin-
- grad), **38,** 1225 (1965); J. Appl. Chem. USSR, **38,** 1212 (1965). (11) G. H. Cady, lnorg. Synth., 5, 156 (1957).
- (12) M. Bodenstein and G. Kistiakowski, Z. Phys. Chem., **116,** 371 (1925).
- (13) C. F. Goodeve, J. Chem. Soc, 2733 (1930).
-
-
- (14) I. E. Muskat and G. H. Cady, U.S. Patent 2 155 281 (April 14, 1937).
(15) Y. Macheteau and J. Gillardeau, *Bull. Soc. Chim. Fr.*, 4075 (1967).
(16) C. J. Shack and C. B. Lindhal, *Inorg. Nucl. Chem. Lett.*, **3,** 38
- (17) R. L. Farrar, Jr., U.S. A.E.C., **K-1416,** 1-33 (1960).
- (18) V. Meyer, Ber., **16,** 2998 (1883).
-
- (19) J. D. Dunitz and K. Hedberg, J. Am. Chem. Soc, 72, 3108 (1950). (20) G. Lunge and P. Naef, Justus Liebigs Ann. Chem., **219,** 129 (1883).
-
- (21) E. J. Bowen, J. Chem. Soc, 1199 (1923). (22) R. G. Dickinson and C. E. P. Jeffreys, J. Am. Chem. Soc, **52,** 4288 (1930).
- (23) D. D. Tanner and N. Nychka, J. Am. Chem. Soc, **89,** 121 (1967).
- G. H. Cady, U.S. Patent 2 157 524 (May 9, 1939
- (25) G. H. Cady, U.S. Patent 2 157 525 (May 9, 1939).
-
- (26) S. Goldschmidt, Ber., **52B,** 753(1919). (27) W. A. Noyes and T. A. Wilson, J. Am. Chem. Soc, **44,** 1630 (1922). (28) W. A. Noyes and T. A. Wilson, Reel. Trav. Chim. Pays-Bas, **41,** 557
- (1922)
- (29) C. N. Hinshelwood, Proc. R. Soc. London, Ser. A, **131,** 177 (1931). (30) J. W. T. Spinks, J. Am. Chem. Soc, **53,** 3015 (1931).
- (31) V. H. Dayan and B. C. Neale, Adv. Chem. Ser., No. **54,** 223 (1966).
- (32) Z. Spumy, Talanta, 9, 885 (1962).
- (33) J. Pelouze, Ann. Chim. Phys., Ser. 3, 7, 176 (1843). (34) J, Pelouze, C. R. Acad. ScL, **16,** 43 (1843).
-
- (35) K. G. Thurnlackh and G. A. Schacherln, Justus Liebigs Ann. Chem., **230,** 273(1885).
-
-
- (36) P. Harteck, *Z. Phys. Chem.*, 1**34,** 21 (1928).
(37) E. F. King and J. R. Partington, *J. Chem. Soc.*, 925 (1926).
(38) A. V. Pankratov, S. M. Rips, A. N. Zircheminov, and T. V*.* Kuznetsova, Zh. Fiz. Khim., **42,** 380 (1968); Russ. J. Phys. Chem., 2, 198 (1968).
- (39) S. M. Rips, A. N. Zercheminov, and A. V. Pankratov, Zh. Fiz. Khim., **43,**
- 386 (1969); Russ. J Phys. Chem., 3, 208 (1969). (40) C. H. Secoy and G. H. Cady, J. Am. Chem. Soc, **62,** 1036 (1940). (41) W. Finkelnburg, H. J. Schumacher, and G. Stieger, Z. Phys. Chem., Abt.
- B, **15,** 127(1931). (42) "International Critical Tables", Vol. V, McGraw-Hill, New York, N.Y., 1928,
- p 176; J. Thomsen, Thermo-chemische Untersuchungen, Leipzig, 2, 125 (1882).
- (43) D. M. Yost and R. C. Felt, J. Am. Chem. Soc, **56,** 68 (1934).
- (44) W. H. Evans, T. R. Munson, and D. D. Wagman, J. Res. Natl. Bur. Stand., **55,** Research Paper No. 2614.
-
-
- (45) C. H. Secoy and G. H. Cady, *J. Am. Chem. Soc*., **63**, 2504 (1941).
(46) W. A. Roth, *Z. Phys. Chem., Abt. A*, 1**45,** 289 (1929).
(47) J. I. Wallace and C. F. Goodeve, *Trans. Faraday Soc.*, 27, 648 (1931).
(48) H
- Cady, J. Am. Chem. Soc, **63,** 2508 (1941).
-
-
- (49) P. Gunther and K. Wekua, *Z. Phys. Chem., Abt. A*, 1**54,** 193 (1931).
(50) N. W. Luft, *J. Phys. Chem.*, **58**, 928 (1954).
(51) G. Nagarajan, *Bull. Soc. Chim. Belg*., 72, 16 (1963).
(52) K. Venkatesvarlu and R. Tahan
- (1963).
- (53) M. M. Rochkind and G. C. Pimentel, J. Chem. Phys., **42,** 1361 (1965).
-
- (54) D. S. Davis, lnd. Eng. Chem., **34,** 624 (1942). (55) B. Neumann and G. Muller, Z. Anorg. AIIg. Chem., **182,** 235 (1929). (56) W. A. Roth, Z. Phys. Chem., Abt. A, **191,** 248 (1942).
- (57) B. M. Israel, Doctoral Dissertation, University of Wisconsin, 1962; cited by ref 5
- (58) J. Ourisson and M. Kastner, Bull. Soc. Chim. Fr., 6, 1307 (1939).
- (59) K. J. P. Orton and W. M. Gray, Report, 83rd Meeting of the British Association for the Advancement of Science, Birmingham, Sept 10-13, 1913, pp 136-141.
- (60) F. G. Soper, J. Chem. Soc, **125,** 2227 (1924).
- (61) M. Pourbaix, "Atlas of Electrochemical Equilibria in Aqueous Solutions", Pergamon Press, New York, N.Y., 1966, p 591.
(62) V. A. Kustodina, K. P. Mischenko, and I. E. Flis, *Zh. Prikl. Khim.*, **35**, 1374
-
- (1962); *J. Appl. Chem. USSR*, **35**, 1319 (1962).
(63) I. E. Flis, K. P. Mischenko, and V. A. Kustodina, *Zh. Prikl. Khim.*, **34**, 306
(1961); *J. Appl. Chem. USSR*, **34,** 297 (1961).
- (64) D. Sundhoff and H. J. Schumacher, Z. Phys. Chem., Abt. B, 28, 17 (1935).
-
-
- (65) I. P. Fisher, *Trans. Faraday Soc.*, **64,** 1852 (1968).
(66) I. P. Fisher, *J. Sci. Instr.*, **43,** 633 (1966).
(67) C. G. Freeman and L. F. Phillips, *J. Phys. Chem.*, **72**, 3025 (1968).
(68) H. F. Cordes and S. R. Sm
-
- (69) L. E. Sutton and L. O. Brockway, *J. Am. Chem. Soc.*, **57**, 473 (1935).
(70) L. Pauling and L. **O**. Brockway, *J. Am. Chem. S*oc., **57**, 2684 (1935).
- (71) L. Bru Villaseca, M. Perez-Rodriguez, and M. Cubero, J. Chem. Phys., 20, 1069(1952).
- (72) M. Perez-Rodrigues, R. Vega, and J. M. Garcia, An. R. Soc. Esp. Fis Quim., Ser. A, 49, 5 (1953); Chem. Abstr., 48, 6254h (1954).
(73) B. Beagley, A. H. Clark, and T. G. Hewitt, *J. Chem. Soc. A*, 658
- (1968). (74) G. E. Herberich, R. H. Jackson, and D. J. Millen, J. Chem. Soc. A, 336
- (1966).
- (75) A. D. Baker, Acc. Chem. Res., 3, 17 (1970).
- (76) A. B. Cornford, D. C. Frost, F. G. Herring, and C. A. McDowell, *J. Chem.*
Phys., **55,** 2820 (1971).
- (77) C. F. Goodeve and J. I. Wallace, Trans. Faraday Soc, 26, 254 (1930). (78) G. K. Rollefson and M. Burton, "Photochemistry and the Mechanism of
- Chemical Reactions", New York, N.Y., 1939.
(79) M. Anbar and I. Dostrovsky, *J. Chem. Soc.*, 1105 (1954).
- (80) A. E. Gilliam and R. A. Morton, Proc. R. Soc. London, Ser. A, **124,** 604
- (1929).
- (81) H. Martin and R. Gareis, Z Elektrochem., 60, 959 (1956). (82) C. R. Bailey and A. B. D. Cassie, Nature (London), **129,** 652 (1932).
- (83) C. R. Bailey and A. B. D. Cassie, Proc. R. Soc. London, Ser. A, 142, 129
- (1933). (84) G. Hettner, R. Pohlman, and H. J. Schumacher, Naturwissenschaften, 23, 114(1935).
- (85) W. G. Penny and G. B. B. M. Sutherland, Proc. R. Soc. London, Ser. A, 156,
- 654 (1936).
(86) G. B. B. M. Sutherland and W. G. Penny, Proc. R. Soc. London, Ser. A, 156, 678(1936).
- (87) K. Hedberg, J. Chem. Phys., 19, 509 (1951).
-
- (88) L. Andrews and J. I. Raymond, *J. Chem. Phys.*, 55, 3087 (1971).
(89) R. H. Jackson and D. J. Millen, *Proc. Chem. Soc.*, *London*, 10 (1959).
(90) R. H. Jackson and d. J. Millen, *Adv. Spectrosc.*, 3, 1157 (1962).
- (91) D. J. Gardiner, J. MoI. Spectrosc, 38, 476 (1971).
- (92) B. Beagley, A. H. Clark, and D. W. J. Cruickshank, Chem. Commun., 458 (1966)
- (93) E. A. Robinson, Can. J. Chem., 41, 3021 (1963).
- (94) S. Smith and J. W. Linnett, Trans. Faraday Soc, 52, 891 (1956).
- (95) K. Venkateswarlu and R. Thanalakshui, *J. Annamalai Univ., Part B*, **24,**
13 (1962); *Chem. Abstr.*, **59**, 10773*h* (1963).
(96) K. Venkateswarlu and P. Thirugnanasambandam, *Z. Phys. Chem. (Leipzig*),
- 212, 138(1959).
- (97) T. Oka and Y. Morita, J. MoI. Spectrosc, 8, 9 (1962).
- (98) S. N. Thakur and S. N. Rai, *J. Mol. Struct*., **5**, 320 (1970).
(99) A. Natarajan and R. Ramasamy, *Indian J. Pure Appl. Phys.*, 1**0,** 12
- (1972). (100) M. Mohan and A. Mueller, Chem. Phys. Lett., 14, 205 (1972).
- (101) R. Srinivasamoorthy, S. Jeyapandian, and G. A. Savari Raj, Chem. Phys.
- Lett., 14,493(1972). (102) F. K. Chi and L. Andrews, J. Phys. Chem., 77, 3062 (1973).
- (103) V. I. Durakov and S. S. Batsanov, *Zh. Strukt. Khim.*, **2**, 456 (1961); *Chem.
Abstr.*, **57**, 4051*i* (1962).
(104) E. L. Wagner, *J. Chem. Phys.*, **37**, 751 (1962).
-
- (105) F. S. Mortimer, *Adv. Chem. Ser*., **No. 54,** 39 (1966).
(106) T. Iredale and T. G. Edwards, J. *Am. Chem. Soc.*, **59**, 761 (1937).
(107) E. J. Bowen, J. *Chem. Soc.*, 1**23**, 2380 (1923).
(108) H. J. Schumacher and R.
-
-
- (1933).
- (109) H. J. Schumacher and C. Wagner, Z. Phys. Chem., Abt. B, 5, 199 (1929).
(110) A. G. Brown and J. W. T. Spinks, *Can. J. Res.*, *Sect. B*, 1**5**, 113
- (1937).
-
-
- (111) J. W. T. Spinks and J. M. Porter, *J. Am. Chem. Soc.*, **56**, 343 (1934).
(112) J. Franck and A. Euckey, *Z. Phys. Chem., Abt. B*, **20**, 460 (1933).
(113) F. H. C. Edgecombe, R. G. W. Norrish, and B. A. Thrush, *Proc.*
- (114) N. Basco and S. K. Dogra, Proc. R. Soc. London, Ser. A, **323,** 401
- (115) M. M. Rochkind and G. C. Pimentel, *J. Chem. Phys.*, **46,** 4481 (1967).
(116) M. M. Rochkind and G. C. Pimentel, *J. Chem. Phys.*, **48,** 2373 (1968).
(117) C. N. Hinshelwood and C. R. Prichard, *J. Chem. S*oc., 1**23,**
-
- (1923).
- (118) J. J. Beaver and G. Stieger, *Z. Phys. Chem., Abt. B*, 1**2**, 93 (1931).
(119) M. Bodenstein and Z. Szabo, *Math. Naturw. Anz. Ungar. Akad. Wiss.*, **5**7,
- 613 (1938); Chem. Abstr., 33, 2022 (1939). (120) M. Bodenstein and Z. Szabo, Z. Phys. Chem., Abt. B, 39, 44 (1938).
- (121) Z. O. Szabo, Magy. Kem. FoIy., 56, 109 (1950); Chem. Abstr., 45, 862d (1951).
- (122) E. A. Moelwyn-Hughes and C. N. Hinshelwood, Proc. R. Soc. London, 131, 177(1931).
- (123) C. N. Hinshelwood and J. Hughes, J. Chem. Soc, **125,** 1841 (1924).
- (124) C. N. Hinshelwood and C. W. Thornton, *Philos. Mag.*, **50**, 1135 (1925).
(125) H. Eyring, *Z. Phys. Chem., Abt. B*, 7, 244 (1930).
(126) H. Damianovitch*, Gazz. Chim. Ital.*, **59**, 568 (1929).
-
- (127) P. Huhn, Magy. Kem. FoIy., 58, 380 (1952); Chem. Abstr., 47, 5225a (1953).
- (128) H. Guenebaut and C. Couet, C. R. Acad. Sci., **256,** 2613 (1963).
- (129) N. N. Semenov, Phys. Z. Sowjetunion, 1, 561 (1932); Chem. Abstr., 26, 5482(1932).
- (130) J. Zawidski, *Rocz. Chem.*, **5,** 504 (1925); *Chem. Abstr.*, **2**1, 11 (1927).
(131) D. Pilipovitch, C. B. Lindahl, C. J. Schack, R. D. Wilson, and K. O. Christe, lnorg. Chem., 11, 2189 (1972).
-
- (132) G. H. Cady and R. E. Brown, *J. Am. Chem. Soc.*, **67,** 1614 (1945).
(133) G. Pannetier and M. Ben Caid, *Bull. Soc. Chim. Fr.*, 1628 (1961).
(134) A. B. Sagulin, *Z. Phys. Chem.*, *Abt. B*, 1, 275 (1928).
-
- (135) C. G. Freeman and L. F. Phillips, *J. Phys. Chem.*, **72**, 3031 (1968).
(136) M. J. Perona, D. W. Setser, and R. J. Johnson, *J. Phys. Chem.*, **73**, 2091
- (1969).
(137) M. J. Perona, D. W. Setser, and R. J. Johnson, *J. Chem. Phys.*, **52**, 6384
-
-
-
-
- (137) M. J. Perona, D. W. Setser, and R. J. Johnson, *J. Chem. Phys.*, 52, 6384

(1970).

(138) M. C. Lin, *Chem. Phys. Lett.*, 7, 209 (1970).

(139) G. G. Freeman and L. F. Phillips, *J. Phys. Chem.*, **72**, 3028 (1968).

- *i Neorg. Khim.*, 53 (1963); *Chem. Abstr.*, **6**1, 5017g (1964).
(144) H. Martin, *Angew. Chem.*, **70**, 97 (1958).
(145) H. Martin and W. Meise, *Z. Elektrochem.*, **63**, 162 (1959).
-
- (146) H. Martin, W. Meise, and E. Engelmann, *Z. Phys. Chem. (Frankfurt am
Main*), **2**4, 285 (1960).
(147) H. Martin, *Angew. Chem., Int. Ed. Engl.*, 5, 78 (1966).
-
- (148) H. Martin, J. Robisoh, J. Knauth, and K. G. Prusseit, Z. Phys. Chem. (Frankfurt am Main), 77, 227 (1972).
- (149) M. Schmeisser, W. Fink, and K. Brandle, Angew. Chem., 69, 780 (1957).
-
- (150) H. Barbes and P. Vast, *Rev. Chim. Miner.*, **8,** 851 (1971).
(151) C. J. Shack and D. Pilipovitch, *Inorg. Chem.*, **9**, 387 (1970).
(152) C. J. Shack and D. Pilipovitch, *Am. Chem. Soc., Div. Fuel Chem., Prepr.*,
-
- 12, 85(1968). (153) Z. K. Nikitina, V. Ya. Rosolovskii, Izv. Akad. Nauk SSSR, Ser. Khim., 273
- (1973); *Chem. Abstr.*, **79,** 143 328*j* (1973).
(154) K. Dehnicke, *Chem. Ber.*, **97,** 3354 (1964).
(155) K. Dehnicke, *Chem. Ber.*, **97**, 3358 (1964).
-
-
-
-
- (156) K. Dehnicke, *Z. Anorg. Allg. Chem.*, **308**, 72 (1961).
(157) K. Dehnicke, *Z. Anorg. Allg. Chem.*, **309**, 266 (1961).
(158) K. Dehnicke, *Z. Anorg. Allg. Chem.*, **312**, 237 (1961).
(159) K. Dehnicke, A. F. Shihada,
- (160) P. P. Kornuta and V. I. Shevchenko, Zh. Obshch. Khim., 40, 551 (1970); J. *Chem. USSR*, 40, 517 (1970).
(161) C. J. Shack, C. B. Lindahl, D. Pilipovitch, and K. O. Christe, *Inorg. Chem.*,
- 11, 2201 (1972).
-
- (162) A. A. Woolf, *Chem. Ind.* (Lo*nd*on), 1320 (1954).
(163) H. A. Lehmann and G. Kruger, *Z. Anorg. Allg. Chem.*, **274,** 141 (1953).
(164) R. Schwarz and H. Striebich, *Z. Anorg. Allg. Chem.*, **224**, 29 (1935).
-
-

92,393(1973).

-
-
- (165) R. W. Brown, *Tappi*, **35**, 75 (1952).
(166) H. Booth and E. J. Bowen, *J. Chem. Soc.*, 1**27**, 510 (1925).
(167) R. Luther and R. Hoffmann, *Z. Phys. Chem.*, Abt. A, 177, 17 (1936).
(168) A. E. Missan and A. M. Sukho

(172) V. M. Gallak, N. I. Belinskaya, and T. A. Pavlova, *Zh. Prikl. Khim.*, **38,** 2599
(1965); *J. Appl. Chem. USSR*, **38,** 2537 (1965).
(173) V. M. Gallak and N. I. Belinskaya, USSR Patent 181 068 April 1**5**, (1966);
App

(174) L. Phillips and R. Shaw, *Proc. Chem. Soc.* (*London*), 294 (1962).

(175) R. Shaw, *J. Chem. Soc.* B, 513 (1968).

(176) R. Shaw, *J. Chem. Soc.* B, 513 (1968).

(176) R. Scoldschmidt and H. Schussler, *Ber.*, 58**B**

(185) W. A. Mueller, German Offen. 2 326 601 (Dec 12, 1974); British Patent 1 358 839 (July 3, 1974); Canadian Patent 952 285 (Aug 6, 1975). (186) G. L. Kochanny, Jr., and T. A. Chamberlin, U. S. Patent 3 872 176 (March

18, 1975).
(187) K. Baum and C. D. Beard, *J. Org. Chem.*, **40**, 2536 (1975).
(188) D. D. Tanner, N. Nychka, and T. Ochiai, *Can. J. Chem.*, <mark>52</mark>, 2573 (1974). (189) C. Christiansen and R. D. Friedt, Paper Trade J., 159 (23), 44 (1975).