Recent Advances in the Chemistry of Unsaturated Lactones

Y. S. RAO

Department of Chemistry, Kennedy-King College, Chicago, Illinois 60621

Received May 7, 1975 (Revised Manuscript Received July 28, 1975)

Contents

/. Introduction

The chemistry of butenolides was reviewed in 1964.⁷⁹¹ However, this review was not exhaustive in that several references were not included. A brief review of these compounds with special reference to naturally occurring lactones has also been published.²⁶⁶ Other reviews about these lactones and hydroxy

lactones or tetronic acids were published earlier.^{445,447} The chemistry of cis - β -acylacrylic acids has also been reviewed.²¹ The cyclization reaction of acetylenic acids to yield lactones has been reviewed as well.^{23,376} Several theses on the chemistry of butenolides have been published (ref 477, 542, 661, 885,900, 906, 1030, 1147).

It has been observed that $\Delta^{\beta,\gamma}$ -butenolides are isoelectronic with 5(4H)-oxazolones.³⁴⁷ A similar comparison with oxazolone isomers would give the isomers shown below. It may be seen

that unlike the oxazolone isomers, which can exist in five forms, there can only be three types of furanones: 2(3H), 2(5H), and 3(2H). Compound 6, a $\Delta^{\beta,\gamma}$ -butenolide with a β substituent, isoelectronic with 3-substituted isoxazolone is not known. Attempts to prepare 6 (R = C₆H₅) gave only β -phenyl- $\Delta^{\alpha,\beta}$ -butenolide.⁷²¹ It is conceivable that if $6 (R = C_6H_5)$ is synthesized, it could be the starting material for a series of α -arylidene- β aryl- $\Delta^{\beta,\gamma}$ -butenolides (7) which are isoelectronic with 3-aryl-4-arylidene-5(4H)-isoxazolones (8).

//. Scope of the Review

This review consists of recent advances in the chemistry of $\Delta^{\beta,\gamma}$ -butenolides (9), $\Delta^{\alpha,\beta}$ -butenolides (10), α -arylidene (alkylidene)- $\Delta^{\beta,\gamma}$ -butenolides (11), and γ -arylidene (alkylidene)- $\Delta^{\alpha,\beta}$ -butenolides (12). Also included for discussion are pulvinic acid (13) and its derivatives.

Cardenolides, isocardenolides, and pseudocardenalides with reference to their methods of preparation are also included. Recent advances in the chemistry of tetronic acids (14) are discussed. The chemistry of several naturally occurring lactones

and synthetic approaches to α -methylenelactones 15 will be surveyed briefly. Bislactones and dilactones are also discussed. Not included are benzofuranones⁷¹² and ascorbic and penicillic acids. Literature up to the end of February 1975 is reviewed.

///. Nomenclature

The term "butenolide" for describing buteno- or crotonolactones was first employed by Klobb in 1898.^{550,551} Though the butenolide nomenclature has been in vogue for quite sometime, along with the crotonolactone system, Chemical Abstracts currently has adopted the furanone system of naming these compounds. Thus $\Delta^{\beta,\gamma}$ -butenolides are the 2(3H)-furanones and $\Delta^{\alpha,\beta}$ -butenolides are 2(5H)-furanones. Compound 11 (R = R' $=$ C₆H₅) is called 3-phenylmethylene-5-phenyl-2(3H)-furanone, and 12 $(R = R' = C_6H_5)$ is 3-phenyl-5-phenylmethylene- $2(5H)$ -furanone. Pulvinic acid (13) is 3-hydroxy-5-oxo- α ,4-diphenyl- $\Delta^{2(5\text{H}),\alpha}$ -furanacetic acid. Accordingly, pulvinic acid dilactone (16) is termed 3,6-diphenylfuro $[3,2-b]$ furan-2,5-dione, and pulvinone (17) is 3-phenyl-4-hydroxy-5-phenylmethylene- $2(5H)$ -furanone. In spite of this standardization of naming lac-

tones, the crotonolactone and butenolide nomenclature still continues to be employed in the literature. In this review, the furanone-butenolide nomenclature will be used interchangeably, and for the pulvinic acid derivatives, trivial nomenclature will be used.

IV. Methods of Preparation

A. Synthesis of $\Delta^{\beta,\gamma}$ -Butenolides $(2(3H)$ -Furanones)

1. γ -Keto Acids

 γ -Keto acids continue to be main sources for 2(3H)-furanones. Aliphatic acids may be cyclized by heating with orthophosphoric acid.²¹¹ Compound **18** (R = C_2H_5) is prepared by the reaction

$$
\begin{array}{ccc}\n\text{RCOCH}_{2}CH_{2}COOH & \xrightarrow{H_{3}PO_{4}} & & \xrightarrow{\text{R}} & \text{H} \\
18 & & & \text{R} & & \text{O} \\
 & & \text{R} = CH_{3} \cdot C_{2}H_{5} \cdot n - C_{3}H_{7}\n\end{array}
$$

Aromatic keto acids $(R = Ar)$ may be lactonized by heating with acetic anhydride (ref 209-212, 344, 661, 785, 906). Acetyl chloride containing hydrogen chloride has been found to be equally effective in lactonization (ref 344, 507, 508, 829). Yet another method consists of heating the γ -keto acid to 300 °C and distilling the lactone under reduced pressure.^{477,906} The pyrolysis of 3-(2,5-dimethylbenzoyl)-2-methylpropionic acid (19) and 3-(2,5-dimethylbenzoyl)butric acid (20) was at first supposed to yield the corresponding $\Delta^{\beta,\gamma}$ -lactones. 477 These lactones have been shown since to contain the double bond in the α, β position.⁹⁰⁶

The cylization of β -benzoylpropionic acid to give 5-phenyl-2(3H)-furanone (21) has been studied extensively.⁶⁶¹ It was

shown that acetic anhydride containing a trace of concentrated sulfuric acid, to help solubilize the γ -keto acid, at moderate temperatures gave 87% yield of 21. The use of other catalysts, such as phosphoric and polyphosphoric acids and benzenesulfonic acid, in place of sulfuric acid did not raise the yields. Similarly, the usage of thionyl chloride or trifluoroacetic anhydride in place of acetic anhydride gave low yields. The use of nitrogen atmosphere and long reaction times was reported to yield 45 % of 21. A more recent method involves the use of dicyclohexylcarbodiimide in dioxane containing traces of concentrated sulfuric acid giving a 95% yield of the cyclized product.⁷⁹³

The required γ -keto acids are prepared by succinoylation of aromatic hydrocarbons or by the reaction of succinic and substituted succinic anhydrides with aryl Grignard reagents.³⁴⁴ For highly substituted γ -keto acids (22), the reaction of α -bromo esters with lithio derivatives of acetophenone, acetonaphthone, and derivatives of these compounds is available.^{507,508}

A second method consists of treating 3-methoxy-6-alkyl(aryl)pyridazine (23) with tert-butylmagnesium chloride and hydrolyzing the intermediate product.

When benzoyldiazomethane is condensed with the dimethylacetal of a ketene derivative, compound 26 is obtained. Compound 26 may be considered to be the dimethyl acetal of γ -phenyl- α , α -disubstituted butenolide. Compound 26, on reduction, gives γ -keto acids. 847,848

Other reagents used for cyclization are acetic anhydride, hydrogen chloride, and phosphorus pentachloride or stannic chloride in benzene.⁹⁵⁶ Sulfuric acid (65%) causes cyclization of α , β -diphenyl- β -benzoylpropionic acid.^{245,246}

2. From α - (or β -)Aryl- β -aroylpropionic Acids

 α -Aryl- β -aroylpropionic acids (27) may be prepared by the action of potassium cyanide on chalcones^{17,377,771} and subsequent hydrolysis of the intermediate nitrile 28. These compounds

may also be prepared by the Friedel-Crafts alkylation of β aroylacrylic acids.⁸⁴² Compounds 27, on heating with acetyl chloride³⁷⁷ or acetic anhydride⁸⁴² or above their melting points, are reported to yield α,γ -diaryl- $\Delta^{\beta,\gamma}$ -butenolides (29). It has been pointed out that some of these high-melting compounds are dimeric rather than monomeric.^{17,661}

When β -benzoyl- α -methylpropionic acid (30) is heated with acetic anhydride, it is reported to yield α -methyl- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide (31), melting at 84–86 °C. On the other hand, when 30 is heatd with acetic anhydride containing concentrated sulfuric acid, a compound 32 formulated as the $\Delta^{\alpha,\beta}$ isomer and melting at 226-227 ⁰C is obtained. Recent work has shown that compound 31 is a yellow oil boiling at 134 ⁰C (1 mm) and that the high-melting solid is dimer 33.604,661,906

3. From Esters

A multistep synthesis, starting from methyl benzoate, has been reported recently^{591,592} (Scheme I).

SCHEME I

$$
C_6H_5COOCH_3 \xrightarrow{\text{Nah}} C_6H_5COCH_2SOCH_3
$$
\n
$$
\xrightarrow{\text{i. NaH}} C_6H_5COCH_2SOCH_3
$$
\n
$$
\xrightarrow{\text{ii. BrCH}_2COOCH_3} C_6H_5COCHSOCH_3 \xrightarrow{\text{i. NaBH}_4} 21
$$
\n
$$
CH_3OOCCH_2
$$

4. From Epoxides and Dianions

When phenylthioacetic acid in dry THF is treated with lithium diisopropylamide, the dianion 33a is formed. Compound 33 at —60° gives with styrene oxide, a butyrolactone derivative, which on oxidation and pyrolysis in pyridine gives 21 ⁵⁰³

5. From Cyclopropane Derivatives

When 2,3-diphenyl-2-cyclopropene-1-carboxylic acid (34) is heated in benzene in the presence of a catalytic amount of

copper stearate, it rearranges to give β , γ -diphenyl- $\Delta^{\beta,\gamma}$ -butenolide (35).⁵⁶⁵

- 6. From Acetylenic Compounds
- a. Acetylenic Acids

Carboxylation of phenylethynylcarbinol (36) in the presence of sodium amide gives 2-hydroxy-2-phenylprop-1-yne-1-carboxylic acid (**37**). Hydrogenation of **37** gives γ -phenyl- $\Delta^{\alpha,\beta}$ butenolide (38) which isomerizes to $21.^{721}$

b. Metal Carbonyl Catalyzed Reactions

Allyl halides are treated with phenylacetylene in the presence of nickel tetracarbonyl dissolved in acetone to give 39.²¹³ Similar

$$
C_6H_5C \equiv CH + CH_2 = CHCH_2Cl + Ni(CO)_4
$$

\n C_6H_5
\n C_6H_5
\n CH_2
\n CH_2
\n CH_2
\n CH_2
\n CH_2
\n CH_3
\n CH_5
\n CH_5
\n CH_5
\n CH_5
\n CH_5
\n CH_3

reactions were carried out with 1-hexyne and 1-octyne.²¹⁵ In an alternate method allyl halides are treated with acetylene and carbon monoxide in the presence of nickel chloride and Mn-Fe alloy. The yield of lactones is about 25%. 685 In a more recent method, β -chlorovinylphenyl ketone has been reacted with acetone, with $Ni(CO)₄$ added as a catalyst.

Ethyl acetate saturated with acetylene on treatment with benzoyl chloride and $\mathsf{Ni}(\mathsf{CO})_4$ gives $\mathsf{21}^\mathsf{,687,1124,1125}$ Ethylene and carbon monoxide also react under 200 atm pressure at 160° in the presence of a catalyst of palladium iodide to give lactone derivatives.⁵⁹³ Side reactions have been eliminated by adding aliphatic esters of C_{3-20} alcohols instead of ketonic solvents. Thus acetylene-acetyl bromide in ethyl acetate containing $Ni(CO)_4$ reacted to give α -angelica lactone. In a similar manner, compounds 21 and 39 are prepared.¹⁰⁹⁹

7. From Furan Compounds

The reaction of furan with phenyllithium gives a 13% yield of γ -(2-furyl)- $\Delta^{\beta,\gamma}$ -butenolide (41)⁷²⁴ (Scheme II).

8. From Acetoacetic Ester Derivatives

Heating 4,7-dioxocaprylic acid (42) with acetic anhydride gives γ -(3-oxobutyl)- $\Delta^{\beta,\gamma}$ -butenolide (**43).**⁸⁹⁰ The reaction of so-

dioacetoacetate with ω -bromoacetophenone gives α -acetyl- γ -phenyl- $\alpha^{\beta,\gamma}$ -butenolide (44) along with the $\Delta^{\text{grka},\beta}$ isomer.

9. From Diazo Ketones and Ketene Derivatives

The reaction of diazo ketones with ketenes in ether in $N₂$ atmosphere at room temperature has been reported to give $\Delta^{\beta,\gamma}$ -butenolides, products of 1,3-cycloaddition.⁸¹¹⁻⁸¹⁵ The following mechanism of Scheme III is suggested⁸¹² for the $\Delta^{\beta,\gamma}$ -butenolide formation.

Bisbutenolides 46 are obtained when the starting material consists of bis(diazo ketone). Bromination of 46 (R₁ = 4-

 $NO₂CaH₄$, R = C₆H₅) gives the β -bromo derivatives. Compound 48 is obtained from tris(diazoacetylbenzene). A similar bis(bu-

tenolide) 49 is obtained from 1,5-diazoacetylthiophene. With dimethylketene and substituted diazo ketones, the corresponding α , α -dimethyl- $\Delta^{\beta,\gamma}$ -butenolides **50** are obtained.⁸¹⁵

Thermolysis of α -diazo ketones also yields $\Delta^{\beta,\gamma}$ -butenolides.¹⁰²⁹ A more detailed discussion of the thermal decomposition reaction is presented later.

The reaction of diazo ketones with ketenes has been recently

employed in the synthesis of $\Delta^{\beta,\gamma}$ -butenolides.^{1057-1059,1122} it has been pointed out that in the reaction of α -diazoacetophenone and diphenylketene, the products obtained are α, α, γ -triphenyl- $\Delta^{\beta,\gamma}$ -butenolide (51), 2,2,5-triphenyl-3(H)-furanone (52), and 53.

10. From Pyruvic Acid Derivatives

Ethyl 4-hydroxyphenylpyruvate with phosgene and potassium ferf-butoxide in tert-butyl alcohol gave the lactone 54 in 4% yield.⁷⁷²

11. From γ -Aryl (Alkyl) Butyric Acids

Recently, the oxidative cyclization of γ -arylbutyric acids by persulfate in the presence of silver or copper salts at 20-80 °C to γ -substituted $\Delta^{\beta,\gamma}$ -butenolides has been reported.¹¹¹⁷

12. From Other $\Lambda^{\beta,\gamma}$ -Butenolides

Alkylation of $\Delta^{\alpha,\beta}$ -butenolides and $\Delta^{\beta,\gamma}$ -butenolides in the presence of sodium hydride has been reported to give $\Delta^{\beta,\gamma}$ butenolides. Thus, α,β,γ -triphenyl- $\Delta^{\alpha,\beta}$ -butenolide reacts with benzyl benzenesulfonate and NaH to give α,β,γ -triphenyl- α benzyl- $\Delta^{\beta,\gamma}$ -triphenylbutenolide. Similarly, alkylation of 55a with

methyl iodide in dimethyl sulfoxide and NaH gives α, β, γ -triphenyl- α -methyl- $\Delta^{\beta,\gamma}$ -butenolide.⁶⁶¹ Similar alkylation of 21 with benzyl chloride gives α, α -dibenzyl- γ -phenyl- $\Delta^{\beta, \gamma}$ -butenolide. α, α -Dibenzyl- γ -4-methoxyphenyl- $\Delta^{\beta,\gamma}$ -butenolide is similarly obtained from γ -4-methoxyphenyl- $\Delta^{\beta,\gamma}$ -butenolide. When compound 32 is treated with n -butyl chloride and NaH in Me₂SO, α -methyl- α -butyl- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide is obtained. With CH₃I and benzyl chloride, compound 32 gives α, α -dimethylv3g-phenyl- $\Delta^{\beta,\gamma}$ -butenolide and 56, a compound also obtained from α -benzyl- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide and methyl iodide. Both α and β -angelica lactones on methylation and benzylation in the presence of sodium hydride in Me₂SO give the same α, α, γ -trimethyl- $\Delta^{\beta,\gamma}$ -butenolide (56a) and α,α -dibenzyl- γ -methyl- $\Delta^{\beta,\gamma}$ -butenolides (56b).

13. From Butenoic Acids

When 2,2,3-trimethyl-3-butenoic acid or 2,2-dimethyl-3 phenyl-3-butenoic acid is treated with bromine, the corresponding dibromo acid is obtained. On heating, the dibromo acid gives a β -bromobutyrolactone derivative, which on dehydrobromination with an amine gives a $\Delta^{\beta,\gamma}$ -butenolide derivatives.^{111,112}

14. Condensation of Acetoacetic Ester with α -Bromo **Dicarboxylates**

Condensation of acetoacetic ester with bromomalonic ester, diethyl α -bromosuccinate, and diethyl α -bromoglutarate yielded γ -oxo esters. On heating with H₃PO₄, these γ -oxo esters cyclize to give $\Delta^{\beta,\gamma}$ -butenolides containing an ester function.^{390,391}

Compounds prepared by the above methods are listed in Table I in the Microfilm Edition (see paragraph at the end of this paper for ordering information).

B. Synthesis of α-Arylidene (Alkylidene)-γ-aryl $(alkyl)-\Delta^{\beta,\gamma}$ -butenolides

1. From γ -Keto Acids by Perkin-Erlenmeyer **Conditions**

Condensation of γ -keto acids with an aldehyde in the presence of acetic anhydride and sodium acetate still continues to be the largely used general method.¹¹²⁶ This method has been used in synthesis of several arylidene butenolides (ref 308, 309, 439-442, 501, 502, 707, 823, 966, 970). It has been reported recently (ref 58, 59, 77, 434, 435, 1098) that cyclohexanone, fluorenone, and tetrachlorophthalic anhydride react with β aroylpropionic acids under Perkin-Erlenmeyer conditions to give the corresponding butenolides 57. Isatin condenses with β -

57, Ar = 4-CIC₆H₄, 4-CH₃OC₆H₄, 4-CH₃C₆H₄, C₆H₅

aroylpropionic acids to give α -N-acetyloxindolydene butenolides 58.³⁰⁷ In a study of the degradation products obtained from Violacein, compound 58 ($Ar = C_6H_5$) has been synthesized.⁸⁰

Ketones do not normally take part in Perkin-Erlenmeyer reactions, so the above methods constitute the first reported condensation of γ -keto acids with keto compounds. Recently it has been observed that acetone, methyl ethyl ketone, and 4-nitroacetophenone condense with β -aroylpropionic acids in the presence of potassium carbonate or sodium bicarbonate.⁷⁹³ The condensation of 5-nitrofurfural with β -benzoylpropionic acid has been reported to give two geometric isomers of α -(5-nitrofurvlidene)- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide, (59).^{501,502} It may be

pointed out that benzaldehyde is reported to condense with β benzoylpropionic acid to give a mixture of geometric isomers, 987 although the to geometric isomers have not been separated and characterized.

CH₂COOC₂H₅ 2. From $\Delta^{\beta,\gamma}$ -Butenolides

 α -Angelica lactone condenses with aromatic aldehydes in the presence of pyridine or triethylamine to give the corresponding α -arylidene derivatives.^{259,1008,1127} A series of $\Delta^{\beta,\gamma}$ -butenolides has been prepared and condensed with aromatic aldehydes^{744,884} to give the corresponding arylidene butenolides. Under these conditions, 3,5-dibromosalicylaldehyde condenses with α -angelica lactone,¹⁰⁰⁸ γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide, and γ -4-methyoxyphenyl- $\Delta^{\beta,\gamma}$ -butenolide to give arylidene butenolides, 60. Also isolated are the coumarin derivatives 61.

Condensation of α -angelica lactone with silyl ynamines or diethylaminoacetylene gives the corresponding diethylaminoethylidene derivatives 63.339-341

3. From Pyruvic Acid Derivatives

When phenylpyruvic acid condenses with acetophenone in the presence of a base an acid 64 is obtained. Compound 64 on

64

heating with hydrochloric acid-acetic acid mixture give α benzylidene- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide (65). 231,234 Under similar conditions, 4-methylacetophenone gave an acid, which on treatment with HCI-acetic acid gave a mixture of geometric isomers $66.^{231,237}$ The higher melting isomer was the same as

that prepared from benzaldehyde and β -4-methylbenzoylpropionic acid.¹⁴⁹ The product from acetone and phenylpyruvic acid, **67,** condenses with benzaldehyde to give α , δ -dibenzylidenelevulinic acid, which on HCI-HOAc treatment gave the lactone 68.²³⁶ The lactone obtained from phenylpyruvic acid and benzyl

$$
C_{6}H_{5}CH_{2}COCOOH + CH_{3}COCH_{3}OH
$$
\n
$$
C_{6}H_{5}CH_{2}—COOH
$$
\n
$$
CH_{2}COCH_{3}
$$
\n67\n
$$
C_{6}H_{5}CH=CCOOH
$$
\n
$$
CH_{2}COCH=CHC_{6}H_{5}
$$
\n
$$
CH_{2}COCH=CHC_{6}H_{5}
$$
\n
$$
H_{OAC}^{COCH} = CH \bigotimes_{G_{6}H_{5}CH}^{COCH} + CH \bigotimes_{G_{6}H_{6}H_{7}}^{COCH} + CH \bigotimes_{G_{6}H_{7}}^{COCH} + CH \bigotimes_{G_{6}H_{7}}^{COCH}
$$

methyl ketone was originally formulated as 69.²³⁵ This compound has since been shown to be 70.²³⁸ The compound, γ - $(\beta$ -phenethyl)- α -benzylidene- $\Delta^{\beta,\gamma}$ -butenolide (71a),⁷⁹¹ obtained from phenylpyruvic acid and benzalactone, is actually the $\Delta^{\alpha,\beta}$ isomer 71b.⁶⁷⁶

A recent method uses aroylpyruvic acids with phenyl iodoacetate to give butenolides 72.¹⁵⁶

4. From Morpholinium Perchlorates of 5-Phenylfuran

 β -Benzoylpropionic acid is converted into the morpholide, which on treatment with acetic anhydride and perchloric acid gave 73. Compound 73 reacted with aldehydes to give α -arylidenebutenolides. With 4-hydroxybenzaldehyde, α -4-hydroxy-

benzylidene- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide was obtained.^{153,154} Since the morpholinium perchlorates are obtained from the γ -keto acids, this method is not of synthetic value. This method has also been employed to α -arylhydrazonobutenolide.¹⁵⁵

5. By Condensation with Diethyl Oxalate

Condensation of γ -keto acid esters or $\Delta^{\beta,\gamma}$ -butenolides with diethyl oxalate in the presence of sodium ethoxide gives **74.⁷²⁶**

6. From Dialdehydes and γ -Keto Acids

Condensation of phthalaldehydes with β -benzoylpropionic acid gives the three isomeric butenolides 75.⁷⁹⁵ Under similar conditions, benzaldehyde condensed with the diketo acid **76** to give compound **77.**⁷⁹³ Compound **76** gave a polymer with terephthaldehyde 78.⁷⁹³ It may be pointed out that γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide (21) condenses with terephthaldehyde to give the bis butenolide 75 as well as monobutenolide $79.812,814$ Also it has been observed that o -phthaldehyde condenses with β benzoylpropionic acid in the presence of sodium methoxide to give 3-benzoyl-2-naphthoic acid (8O).⁶⁵⁰

7. From Acetylenic Derivatives

Reaction of β -chlorovinyl phenyl ketone has been shown to react with acetone in the presence of $Ni(CO)₄$ added as a catalyst¹⁸⁴ to give γ -phenyl- α -isopropylidene- $\Delta^{\beta,\gamma}$ -butenolide (**40**). Similarly prepared are compounds 81.689

 $R = CH₃$, $R' = cyclohexylidene$ $R = n - C_5H_{11}$, $R' =$ cyclohexylidene $R = CH_3$, $R' = (CH_3)_2C =$ $R = n - C_5H_{11}$, $R' = (CH_3)_2C$ =

7. From Tetronic Acid Derivatives

When α -benzyltetronic acids react with thionyl chloride, α -

 $(CH_3)_2C_6H_3$, 2,5- $(CH_3)_2C_6H_3$

benzylidene- β -hydroxy- $\Delta^{\beta,\gamma}$ -butenolides (82) are obtained via the intermediate oxobutyrolactones.⁷³⁸

Compounds prepared by the above methods are given in Table Il (see Microfilm Edition).

C. Synthesis of $\Delta^{\alpha,\beta}$ -Butenolides **(2(5W)-Furanones)**

In the following sections, several methods for the synthesis of $\Delta^{\alpha,\beta}$ -butenolides will be presented. The fact that the $\Delta^{\alpha,\beta}$ butenolide ring is present in natural products such as cardenolides explains why so many methods are available for the synthesis of this class of compounds. Not all the methods discussed below qualify as general methods and may be useful only in specific cases.

1. From Cycloalkane Derivatives

a. Substituted Cyclopropanes

When diphenylcyclopropenone is heated at 145-150 °C, diphenylacetylene and a dimer 83 are obtained. The yield of the dimer increased in the presence of bases.¹⁵⁷ When methylcy-

clopropenone is heated to 100 °C, compound 84 is obtained.¹⁵⁹ Under similar pyrolytic conditions, dipropylcyclopropenone yields only 4-octyne.¹⁵⁸ Breslow and coworkers¹⁶⁰ have earlier shown that Darling's lactone²⁶⁴ is β,γ -diphenyl- $\Delta^{\alpha,\beta}$ -butenolide. Recently it has been reported that cyclopropanedicarboxylic esters

The compound ethyl 2,2-dimethyl-3-isopropylidenecyclopropane-1-carboxylate (87) is treated with bromine and lithium hydroxide successively to give the lactone 88.^{670The} free acid

of 87 could be converted to a bromolactone 89, which would react with hydroxide ion or water to give 88.

b. Cyclobutane Derivatives

Phenylcyclobutadienequinone (90) reacts in a bomb at 150° with methanol to give β -phenyl- γ -methoxy- $\Delta^{\alpha,\beta}$ -butenolide (91).

Treatment of 3-phenyl-4,4-dichlorobutenone with alkali gives α -dichloromethylcinnamic acid, which on further treatment with Ag salts lactonizes to the γ -hydroxy analog of 91.641

2. By Electrolytic Methods

The anodic oxidation of 5-alkyl-2-furoic acids in protic solvents gives γ -alkyl- γ -methoxy- $\Delta^{\alpha,\beta}$ -butenolides 92 and the γ -acetoxy analogs 93 as the principal products.^{964,1133} The electrolytic

decarboxylation of paraconic acids 94 in triethylamine-pyridine-water mixture with carbon electrodes gives 70-90% yields of unsaturated lactones.⁹⁶³

3. From β -Keto Sulfoxides

The methyl esters of a series of alkyl and aralkyl carboxylic acids are converted to the corresponding γ -alkyl (aralkyl) butenolides according to the reaction sequence in Scheme IV. Compound 95 could be the starting material for the synthesis

of β -methyl- γ -alkylbutenolides via the β -methyl ketosulfoxide formed by methylation of 95 in the presence of sodium hydride (Scheme V). This method has also been successfully employed in the synthesis of γ -9-hydroxy-1-nonyl- $\Delta^{\alpha,\beta}$ -butenolide.⁵⁹²

$$
R = C_5H_{11}, C_6H_5CH_2CH_2, n-C_{15}H_{31},
$$

CH₂ = CH₁CH₂₈

SCHEME V

4. Photolysis of Sultones

The unsensitized photolysis of sultones 96 in ether solution results in 53-65% yield of the corresponding butenolides.

5. From Epoxides

 α -Bromo epoxides such as 2-bromo-2,3-epoxy-3-methylbutane, react with sodiocyanoacetic ester to give ethyl 2,5 dihydro-2-imino-5-isopropyl-2-furoate, which on acid hydrolysis

gives α -carboxyethyl- γ -isopropyl- $\Delta^{\alpha,\beta}$ -butenolide.⁹⁸¹ With diethyl sodiomalonate, the bromo epoxide gives the above butenolide. With both 3-bromo-1,2-epoxybutane and 1-bromo-2,3-epoxybutane, the same butenolide, γ -ethyl- α -carboxyethyl- $\Delta^{\alpha,\beta}$ -butenolide, 982 is obtained. 1-Chloro-1,2-epoxy-2methyl-3-acetyl-5-hexene, on refluxing in xylene, gives α , γ dimethyl- β -2-butenyl- $\Delta^{\alpha,\beta}$ -butenolide.¹⁷¹ In a recent method,

Uda and coworkers reported the reaction^{503,985} of epoxides with dianion of phenylthioacetic acid. The intermediate α -phenylthiobutyrolactone is oxidized with sodium metaperiodate (or hydrogen peroxide or m-chloroperbenzoic acid) to the sulfoxide, which on pyrolysis at 110° gives the desired butenolides. This

method may be used for the synthesis of fused lactones such as 99. The advantage of this method is that the dianion may be alkylated and the product in turn converted to a dianion similar to **33a** and used for the synthesis of α , γ -disubstituted butenolides **100.**

For the synthesis of β , γ -disubstituted butenolides 101, Uda and coworkers⁵⁰⁴ have used the α -phenylsulfinylbutyrolactone 98 as shown in Scheme Vl.

Compound **102** adds to diethyl lithiomalonate to give the analog of 103 ($R' = CH(COOC₂H₅)₂$). This compound on oxidation and pyrolysis gives **104.** However, with 1-morpholino-1-cyclopentene, 102 gives γ -cyclopentylidenebutenolide.

In a synthetic approach to sesquiterpene lactones, β -vinylbutenolide **105** (required for the annelation reaction) has been synthesized via the α -phenylthiolactone as shown below. The advantage of this method is that although **105** is an unstable compound, it may be stored as α -phenylsulfinyl- β -vinylbutyrolactone.¹⁰⁶²

6. Reformatsky-Elderfield Reaction

The reaction of acetoxy ketones with bromoacetic ester under Reformatsky conditions still continues to be the method of choice for the synthesis of $\Delta^{\alpha,\beta}$ -butenolides. This method has been

employed for the synthesis of β -4-allyl-3-hydroxylphenyl- $\Delta^{\alpha,\beta}$ -butenolide starting from 4-allyl-3-acetoxybenzoic acid. 313 Conine and Jones employed this method²²⁵ and found that the yields varied from 3 to 69 % in the final step.

In their efforts to synthesize β -vinyl- $\Delta^{\alpha,\beta}$ -butenolide (**105**), Yoshikoshi and coworkers started with 3-hydroxypropionic acid and by the series of transformations given above got an overall yield of 12% of 105. The intermediate, β -(2-acetoxyethyl)butenolide, was converted to 105 via the β -(2-bromoethyl) analog.¹⁰⁶² Most recently the Reformatsky reaction was employed for the synthesis of β -(4-chlorophenyl)- $\Delta^{\alpha,\beta}$ -butenolide.⁹⁸⁴ The

method has also found utility in the synthesis of 4-methoxy-4'-(β - $\Delta^{\alpha,\beta}$ -butenolido)- α,α' -diethylstilbene (106)^{620,621} (Scheme VII).

A series of butenolides with deoxybenzoin substituent in the β position has been reported.⁷⁴⁰ In their studies of phenolic butenolides related to hexoestrol and stilboestrol, Campbell and Hunt prepared the saturated analog **107** of **106** with a hydroxy group instead of the methoxy group. It is noteworthy that when $3,4$ -di(p -acetoxyphenyl)- n -hexane is subjected to a Reformatsky reaction, only compound **107** is obtained and not the "dibutenolidohexane".¹⁸⁰ The hydroxy analog **106** has been prepared starting from 3,4-di(p-acetoxyphenyl)-n-hexene.

A variation of the Reformatsky reaction has been employed by Epstein and Sonntag.^{320,321,900} Instead of α -acetoxy ketones, α -halo ketones were reacted with bromoacetic ester in the presence of zinc to give unstable Reformatsky adducts which were converted to $\Delta^{\alpha,\beta}$ -butenolides either by pyrolysis or by conversion to unsaturated hydroxymethyl esters and photolysis of the latter (Scheme VIII). Under these conditions, 2-chlorocyclohexanone gave 99. In a similar manner, β -cyclopentyl- $\Delta^{\alpha,\beta}$ -butenolide was prepared.⁷⁸⁹

7. From Cyanohydrins

Cyanohydrins such as lactonitrile react in this tetrahydropy-

ranyl ether form with alkyl Grignard reagents to give ketonic compounds. These compounds react with triethyl phosphonoacetate in the presence of sodium hydride to give **108.** Compound 108 cyclizes in the presence of BF₃-O(C₂H₅)₂ in benzene to give 108a in an overall yield of 25–30%.^{901,902}

8. From Acetylenic Compounds

a. Acetylenic Carbonyl Compounds

When acetylenic carbonyl compounds such as phenylpropargylaldehyde, acetylphenylacetylene, and benzoylphenylacetylene are subjected to Reformatsky reaction with bromoacetic ester and subsequent dehydration of the hydroxy compounds, unsaturated esters are obtained, which readily cyclize to give lactones of the type 109, ^{1035, 1036}

The conversion of 4-hydroxy-2-pentynoic acid, 4-hydroxy-4-methyl-2-heptynoic acid, and 4-hydroxy-2-heptynoic acid to give corresponding γ -alkyl- $\Delta^{\alpha,\beta}$ -butenolide by hydrogenation on Pd/BaS04 was reported earlier (ref 514 142 in 791). Essen-

tially, the same method has been employed in the synthesis of a series of $\Delta^{\alpha,\beta}$ -butenolides.⁷²⁵

A modification for the hydroxyacetylenic acid synthesis consists of treating an aldehyde with lithium carboxyethylacetylide and conversion of the intermediate hydroxyacetylenic ester to the acid and hydrogenation of the latter to the lactone.⁴⁶⁵

$$
n-C_8H_{17}CHO + LiC = CCOOC_2H_5
$$
\n
$$
\longrightarrow C_8H_{17}CHC = CCOOC_2H_5
$$
\n
$$
\downarrow
$$
\n
$$
CH
$$
\n
$$
\longrightarrow C_8H_{17}CHC = CCOOH \longrightarrow
$$
\n
$$
n-C_8H_{17}
$$
\n
$$
\downarrow
$$
\n
$$
n-C_8H_{17}
$$

OH Treatment of ethyl 2-metriyl-2-acetoxy-3-butynoate with silver acetate and acetic acid gives ethyl 2-methyl-4,4-diacetoxy-2 butenoate, which on treatment with alcoholic HCI gives two lactones.⁹⁹⁵

In a recent method, methyl propynoate in THF was treated in sequence at -78 °C with n-butyllithium, hexanal, and trimethylchlorosilane to give methyl 4-trimethylsilyloxy-2-nonynoate (110). Further treatment of 110 with divinylcopperlithium and workup gave 111, which was cyclized to β -vinyl- γ -n-pentyl- $\Delta^{\alpha,\beta}$ -butenolide (112). 239

b. Carbonylation of Acetylenic Compounds

The Pd-catalyzed carbonylation of 2-methyl-3-butyn-2-ol in

Diphenylacetylene, on carbonylation in ethanol in the presence of PdCl $_2$, gives a 66% yield of α,β -diphenyl- $\Delta^{\alpha,\beta}$ -butenolide (114).⁹⁷⁷ Acetylene gets carbonylated with carbon monoxide in the presence of cobalt carbonyls to give 115.¹⁵

$$
\begin{array}{c}\n\circ \\
\hline\n\text{CC} \quad (CO)_3 \\
\hline\n\text{Allenic catbanions, 116, generated by the action of lithium}\n\end{array}
$$

diethylamide ori 3,3-diethoxy-1-methylthiopropyne, react with aldehydes and ketones to give 117. Compound 117, on treatment with alcoholic HCI, gives β -thiomethyl- $\Delta^{\alpha,\beta}$ -butenolides (118).¹⁸³ The conversion of propiolic acid⁸⁸² and 4-benzoyl-2-methyl-3-butyn-1-al⁹⁹⁴ to $\Delta^{\alpha,\beta}$ -butenolides has also been reported. Similar reaction of propiolic acid and ethanol and 1-propanol is reported to yield $\Delta^{\alpha,\beta}$ -butenolides.¹⁷²

9. From Allenic Acids

In the method given above, ¹⁸³ a pseudoallenic compound has been used. The first use of an allenic compound for lactone synthesis was by Ziegler and Sauermilch, ¹⁰⁶⁸ consisting of the following steps. Compound **119,** which on dehydration could conceivably give a highly arylated allene derivative, gave with AIPO₄ or boiling acetic anhydride or concentrated H_2SO_4 or PCI₃ or SOCI₂ α, γ, γ -triphenyl- $\Delta^{\alpha, \beta}$ -butenolide.

$$
(C_6H_5)_2C = CHMgBr + C_6H_5COCOOOH_3
$$
\n
$$
\longrightarrow (C_6H_5)_2C = C \longrightarrow CHCOCH_3 \longrightarrow C_6H_5
$$
\n
$$
C_6H_5
$$
\n
$$
C_6H_5
$$
\n
$$
C_6H_5
$$
\n
$$
120
$$

119

Phenylallenecarboxylic acids **121** have been prepared by reacting phenyl and α -substituted phenylacetyl chlorides with Wadsworth and Emmons reagent **122** to give **123,** followed by pyrolysis and treatment with alkali. Compounds **121,** on treatment with Br₂ in CCI₄, cyclize to give optically active $\Delta^{\alpha,\beta}$ -butenolides 124.889

The desired allenecarboxylic acids have been synthesized by a different rute from Wadsworth-Emmons reagent and ketene derivatives (Scheme IX). Compound **121** cyclizes to racemic

 $\Delta^{\alpha,\beta}$ -butenolides either with sodium hydroxide or aqueous alcohol containing sulfuric acid.⁵⁷⁴

An optically active lactone γ -methyl- γ -phenyl- $\Delta^{\alpha,\beta}$ -butenolide **(125)** has been synthesized recently by employing a similar method⁷¹¹ (Scheme X).

10. From Dienoic Acids

When methyl 3-methyl-5-phenylpentadienoate **(126)** is prepared from benzaldehyde and 4-bromo-3-methyl-2-butenoic acid methyl ester (methyl γ -bromosenecioate), a lactone, possibly **127,** is obtained as a by-product.¹⁰³⁴ Sodium 2,4-pentadienoate reacts with I_2 in KI at 50° to give a $\Delta^{\alpha,\beta}$ -butenolide derivatives.⁹¹⁴

$$
C_6H_5CHO + BrCH_2CH_3
$$
\n
$$
CHCOOCH_3
$$
\n
$$
CHCOOCH_3
$$
\n
$$
CH_3OCH_3
$$
\n
$$
CHCOOCH_3
$$
\n
$$
CHCOOCH_3
$$
\n
$$
CH_3O
$$
\n
$$
H_3O
$$

7 7. From Vinylacetic Acids

 α - or β -substituted butenolides are obtained in a one-step reaction from 3-butenoic acid, 2-methyl-3-butenoic acid, and 3-methyl-3-butenoic acid, by bromination and dehydrobromi-

nation with triethylamine in 27-75 % yields.³⁶⁰ Compound **128** adds to diazopropane to give **129.** On photolysis in benzene, compound **129b** gives a cyclopropane derivative, **131** along with **130b** and α -methyl- $\Delta^{\alpha,\beta}$ -butenolide. With $\Delta^{\alpha,\beta}$ -butenolide adduct, 130a and 131 (R = H) are obtained in 50:50 yields.³⁵⁹ A similar vinylacetic acid, 2-chloro-3-phenyl-4-piperidino-3-butenoic acid, loses HCI on heating to 80° under reduced pressure to give 132.513

$$
CH2=C-CH-CH-CH
$$

\n
$$
R = R1 = H
$$

\n
$$
R = H, R1 = CH3
$$

\n
$$
R = CH3, R1 = H
$$

\n
$$
\xrightarrow{1.Br2 in CH2Cl2
$$

 \mathcal{L}^{R}

$$
\overbrace{\text{C} \text{A} \text{B}}^{\text{C} \text{C} \text{A}_3}
$$

131

12. From Miscellaneous Acids

a. 3,3-Disubstituted-2-arylacrylic Acids

The Wittig reaction between arylglyoxylic esters and isopropylidenetriphenylphosphorane yields 2-aryl-3-methylcrotonic esters. These compounds are converted into monobromo derivatives, which on distillation lose methyl bromide to give $\Delta^{\alpha,\beta}$ -butenolides in 16-27% yields.^{613,784}

b. From 4-Acetoxybutenoic Acid Esters

It has been reported that 3-acetoxymethyl-2-methyl-2-butenoic acid ethyl ester **(133)** and similar compounds are heated with polyphosphoric acid or p -toluenesulfonic acid to give $\Delta^{\alpha,\beta}$ -butenolides in 44-77.5% yields.²⁹⁴

c. From γ -Bromo α,β -Unsaturated Carboxylic Acids and Their Methyl Esters

 γ -Bromocrotonic acid, γ -bromotiglic acid and γ -bromosenecioic acid and their methyl esters are converted to $\Delta^{\alpha,\beta}$ butenolides when heated with iron powder at 125°.⁶²² When ethyl γ -bromocrotonate is heated, thermal lactonization is reported to occur.¹¹⁴⁷ The bromination of tiglic acid with N-bromosuccinimide is reported to give α -methyl- $\Delta^{\alpha,\beta}$ -butenolide as a by-product.⁶²³

d. From β -Arylamino Acrylates

Oxaloacetic ester condenses with aromatic amines to give β -arylamino acrylates, which on reduction with lithium aluminum hydride in THF at 0° give β -arylamino- $\Delta^{\alpha,\beta}$ -butenolides.⁶⁶⁹ That he compounds are β -substituted and not α -substituted has been shown by independent synthesis from tetronic acid and aromatic amines. β -Anilino- $\Delta^{\alpha,\beta}$ -butenolide is prepared from aniline and chloroacetoacetic ester.¹⁴⁴

e. From Phenylsuccinic Acid Derivatives

Cyclization of 4-methoxyphenylsuccinic acid followed by reduction and dehydration yields α - p -anisyl- $\Delta^{\alpha,\beta}$ -butenolide, also obtained from the naturally occurring sugiresinol.⁵²⁵

f. From 2-Oxobutyric Acid

Condensation of 2-oxobutyric acid with aldehydes in the presence of concentrated sulfuric acid is reported to give α hydroxy- $\Delta^{\alpha,\beta}$ -butenolides. 825

$$
\begin{array}{ccc}\n & & & \text{or} \\
 & & \text{or} \\
 & & \text{or} \\
 & & \text{or} \\
 & & & & & & & \text{or} \\
 & & & & & & & \text{or} \\
 & & & & & & & \text{or} \\
 & & & & & & & \text{or} \\
 & & & & & & & \text{or} \\
 & & & & & & & \text{or} \\
 & & & & & & & & \text{or} \\
 & & & & & & & & \text{or} \\
 & & & & & & & & \text{or} \\
 & & & & & & & & & \text{or} \\
 & & & & & & & & & \text{or} \\
 & & & & & & & & & \text{or} \\
 & & & & & & & & & \text{or} \\
 & & & & & & & & & & \text{or} \\
 & & & & & & & & & & \text{or} \\
 & & & & & & & & & & \text{or} \\
 & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & & & \text{or} \\
 & & & & & & & & & & &
$$

g. From β -Aryl- α -oxoglutaric Acids

In their studies on leucodrin, Perold and coworkers^{756,757} observed that heating β -aryl- α -oxoglutaric acids 134 converts them to β -aryl- $\Delta^{\alpha,\beta}$ -butenolides 135.

h. From 5,5,5-Trifluorolevulinic Acid **(136)**

The lactone obtained by the dehydration of **136** was originally

represented by Groth as a $\Delta^{\alpha,\beta}$ -butenolide. ¹¹⁰⁰ The same compound was also designated as $\Delta^{\beta,\gamma}$ -butenolide. 1101 From a study of infrared spectra, Filler and coworkers have established the $\Delta^{\alpha,\beta}$ nature of the double bond.³⁴⁶

i. From α , β Unsaturated Acids

Epoxidation of α , β -unsaturated acids followed by heating with a catalytic amount of acid gives β -hydroxy- γ -lactones. These hydroxylactones may be subsequently dehydrated to give $\Delta^{\alpha,\beta}$ -butenolides.⁷⁵³

13. Stobbe Condensation

Diethyl succinate condenses with benzophenone in the presence of sodium ethoxide to give 136,^{512,924-926,1150} γ , γ -Diphenyl- $\Delta^{\alpha,\beta}$ -butenolide (137) may also be prepared from the adduct between 1,1-diphenylethylene and carbonyl cya $nide.^{2,3}$

Under Stobbe reaction conditions, benzyl α -ketobutyrate in the presence of di-fert-butylsuccinate and potassium tert-butoxide underwent self-condensation to give α -hydroxy- β methyl- γ -ethyl- γ -carboxy- $\Delta^{\alpha,\beta}$ -butenolide (138) along with fert-butyl and benzyl esters of **138.³⁷**

Stobbe's original work has shown that the itaconic acid derivatives similar to **136** add bromine to give bromolactones which on dehydrobromination yield carboxy butenolides 139.¹¹⁵⁰

The condensation of piperonal with diethyl succinate followed by treatment with lithium borohydride and aqueous HCI led to the formation of β -3,4-methylenedioxybenzyl- $\Delta^{\alpha,\beta}$ -butenolide. With 4,4'-dimethoxybenzophenone and diethyl succinate, the product obtained after reduction with lithium borohydride and m -chloroperbenzoic acid (mcpba) turns out to be β - $\Delta^{\alpha,\beta}$ -butenolidylbis(4-methoxyphenyl)carbinol (140).⁶¹⁸

14. Condensation of Pyruvic Acid Derivatives with Carbonyl Compounds

Most of the work in this field has been done by Cordier and coworkers.²²⁹⁻²³⁸ Thus benzylpyruvic acid reacts with cyclohexanone in the presence of potassium hydroxide to give **141,** which undergoes acid-catalyzed cyclization to 142.^{229,230} With acetone, benzylpyruvic acid gives **143,** which on dehydration gives an ethylenic acid which exists as a $\Delta^{\alpha,\beta}$ -butenolide, 144.⁵⁴⁴ With phenylpyruvic acid, methyl ethyl ketone gives **145** in the

presence of KOH. However, in the presence of HCI-acetic acid, the product obtained is 146.⁵²² The acid product obtained by the condensation of acetylacetone with phenylpyruvic acid gives a spiro dilactone, 147, when heated with HCI-HOAc.⁵²¹

Similar condensation of acetone and pyruvic acid gives 2 methyl-2-hydroxylevulinic acid, which on dehydration gives 2 methyl-4-oxo-2-pentenoic acid existing in the form of, α, γ dimethyl- γ -hydroxy- $\Delta^{\alpha,\beta}$ -butenolide.²⁵ Condensation of pyruvic acid with cyclohexanone gives α -hydroxy- α -(2-ketocyclohexyl)propionic acid, which on treatment with acid gives 148.775 The above condensation reaction was reported to give 40 % 148⁵⁷⁵ while Rosenmund and coworkers¹¹⁵⁴ assumed it to have the structure 149. Recent work has shown⁷⁷⁶ that the original formulation of 148 is correct and that 148 may be dehydrated to give 150. Pyruvic acid also condenses with 5α -androstan-17 β -ol-3-one to give hydroxy acid 151 which may be cyclized

to hydroxylactones similar to 148 and unsaturated lactones 151a.⁷⁷³ Similarly, N-methylpiperidin-4-one condenses with pyruvic acid to give hydroxy acid, easily cyclized to 152 in methanolic HCI.

Condensation of ethyl pyruvate with a series of aldehydes such as n-butyraldehyde, 1-pentanal, hexanal, and heptanal in the presence of diethylamine gives 153, which is dehydrated to the aldehydo carboxylic acid 154. Compound 154 in its cis form exists as a hydroxylactone. Compound 155 gives an ether 156 by dehydration.⁸⁶⁶ When glyoxylic acid is used instead of pyruvic

acid in condensation with cyclohexanone in the presence of morpholine, γ -morpholinobutenolide similar to 148 is obtained, and it gives 148 on heating with ethanolic hydrochloric acid. Compound 148 is also obtained by the hydrolysis of 2-oxocyclohexylglycollic acid ethyl ester with hydrochloric acid-acetic acid. Steroidal compounds such as 151 are also prepared by the morpholine-catalyzed reaction of glyoxylic acid.⁸⁶⁵ Acetophenone condenses with potassium pyruvate in the presence of KOH to give α -methyl- α -methoxy- β -benzoylpropionic acid (157). Compound 157 is converted to α -methyl- γ -phenyl- $\Delta^{\alpha,\beta}$ -butenolide (32) according to the reaction sequence in Scheme XI.⁶⁰⁴ The hydroxybutyrolactone derivative may be converted

to a mixture of lactones similar to 158 and 32 by heating with triphenylphosphine in CCI₄.²⁷⁸ The later method has been employed in the synthesis of α -methyl- γ -isobutyl- $\Delta^{\alpha,\beta}$ -butenolide and α -methyl- γ -ethyl- $\Delta^{\alpha,\beta}$ -butenolide. The latter compound was

synthesized from 2-hydroxy-2-methyl-4-oxohexanoic acid **(159),** itself obtained from the condensation of methyl ethyl ketone with pyruvic acid. It may be pointed out that this compound was originally thought to be 2-hydroxy-2,3-dimethyl-4-oxopentanoic acid (160).¹¹⁵⁴ The condensation of methyl propyl ketone with

pyruvic acid in the presence of phosphoric acid yields α,γ dimethyl- β -ethyl- γ -hydroxy- $\Delta^{\alpha,\beta}$ -butenolide.⁶⁰

Benzyl idenepyruvic acids also act as good starting materials for $\Delta^{\alpha,\beta}$ -butenolides. Thus, base-catalyzed condensation of 3-nitrobenzaldehyde with pyruvic acid gives the 3-nitrobenzylidenepyruvic acid, while in the presence of acid condensation occurs to give **161.**⁹¹⁵ Benzylidenepyruvic acids condense in aqueous medium with aromatic amines to give α -aminophenyl derivatives **162.**

15. From Other Heterocyclic Compounds

Trifluoroacetic anhydride converts α -amino acids such as alanine, phenylalanine, and 2-aminobutyric acid to trifluoroacetyloxazolidine 163 and enol trifluoroacetates, 164.^{916,917} On heating with bases, compound 1**63** rearranges to give a $\Delta^{\alpha,\beta}$ butenolide derivative **165.** It has been observed that treatment

of an α -amino acids with trifluoroacetic anhydride directly yields 2(5H)-furanones.

Another furanone derivative is obtained with a trifluoroacetyl group in the β position when alanine is heated with an excess trifluoroacetic anhydride to 160° in a bomb. Compound **165** (R $=$ COOCH₃ or COOC₂H₅) may be prepared by acetylation with TFAA of aspartic acid monoester. The rearrangement of oxazolidone **163** to **165** ($R = CH_3$ or C_6H_5) in the presence of a base is also observed.

1,3-Dihydroxyacetone reacts with 2-aryl-5-oxazolone in the presence of lead tetraacetate in THF to give unsaturated oxa-

zolones which are hydrolyzed and recyclized to give $\Delta^{\alpha,\beta}$ -butenolides. The addition of ethyl vinyl ether protects the 1,3 dihydroxyacetone in situ.^{954,1155}

Freeman and coworkers reported recently^{1149,1196} that cycloaddition of acetylenes and acetylenic esters to 1,3,4-oxadiazin-6-ohe 4-oxides (166) produces α - or γ -acylbutenolides in good yields. The nature of R_2 and R_3 determines the nature of the end products. With highly electrophilic acyl groups $\Delta^{\beta,\gamma}$ isomers are obtained whereas the α,β isomers are obtained with less electrophilic groups.

16. From 3(2H)-Furanones

Ring opening of 2-ethyl-4-ethoxycarbonyl-5-methyl-3(2H) furanone with potassium hydroxide and subsequent ring closure leads to the formation of α -acetyl- γ -ethyltetronic acid.²⁷⁷ A similar transformation of 5-amino-4-phenyi-3(2H)-furanone to α -phenyltetronic acid has also been reported.⁹⁸⁸ Under similar conditions, compound **168** gives a tetronic acid deriva $tive.$ 392,1104

17. Oxidation of Phenolic and Furan Compounds

a. Chemical Oxidation

The autoxidation of 4,6-di-tert-butylguaiacol **(169)** in organic solvents in the presence of potassium tert-butoxide has been

reported to give a 6% yield of the lactone 170,¹¹⁵⁹ Similar oxidations of 3,5-di-fert-butyl-2,6-dimethoxyphenol and 4-tertbutyl-2,6-dimethylphenol gave the corresponding lactones **171** and 172.³⁰¹ The oxidation of 4-methylcatechol, 4-methyl-o-

benzoquinone, 4-methylveratrole, and p-cresol with peracetic acid in acetic acid yields a mixture of lactones **173,174,** and **175** in varying amounts.³³⁸

b. Photochemical Formation of Lactones from Phenols and Dienones

When 4,6-di-fert-butylresorcinol is irradiated in methanol in the presence of rose bengal with oxygen bubbling through, α , γ -di-tert-butyl- γ -hydroxy- $\Delta^{\alpha,\beta}$ -butenolide is obtained.⁶⁵⁵ Under similar conditions, 4,6-di-tert-butylcatechol gives 176.655,657,837

Photolysis of 2,4,6-tri-tert-butyl-4-methoxy-2,5-cyclohexadienone gives bicyclopentanone, which on pyrolysis leads to the

formation of isomeric pair of butenolides, **177** and 178.⁶⁵⁶ These photooxidation reactions involve singlet oxygen and excited triplet sensitizer and provide a model for enzymatic cleavage of phenolic rings.

c. From Furan Derivatives

When the furan derivative **179,** is subjected to photosensitized oxidation, it gives oxygenated derivative, which on heating gives the lactone **180.** Compound **180** is also obtained from **179** by ozonolysis of the latter.81-83

The conversion of 2-acetoxyfuran to β -angelica lactone by photolysis of the former in ether solution has been reported recently.^{478,907} Under similar conditions, 2-methoxyfuran gives α -angelica lactone. The conversion of 2-acetoxyfuran to γ acetoxy- $\Delta^{\alpha,\beta}$ -butenolide has also been reported.⁹⁷⁹ It is well known that furfural may be photooxygenated to γ -ethoxy- $\Delta^{\alpha,\beta}$ -butenolide in ethanol. 584,1049 It should be pointed out that 2-acetoxyfuran may be obtained by the pyrolysis of 2,5-diacetoxy-2,5-dihydrofuran^{193,222,258} and may be halogenated to the corresponding γ -halo- $\Delta^{\alpha,\beta}$ -butenolide.³¹²

d. From β -lonone

Oxidation of β -ionone with potassium permanganate is reported to yield **181** (R = OH).¹⁶³ Sensitized photooxidation of β -ionone similarly gives 181 (R = H) in a 12% overall yield.⁷⁰³

183, R

and chromium pentoxide, an endoperoxide **184,** is slowly converted to α,β,γ -triphenyl- α -benzoyl- $\Delta^{\beta,\gamma}$ -butenolide **185,** which on heating to 210° yields α, β, γ -triphenyl- $\Delta^{\alpha, \beta}$ -butenolide (183, $R = C_6H_5$ ⁷¹ Compound 185 is also obtained from 2,4,6-tri-

phenylpyrylium 3-oxide **(185a)** by oxygenation in 36% yield. The yield increases to 41 % by benzophenone-sensitized irradiation in benzene solution.¹⁰¹⁹ Compound **185** is converted to a dilactone, the structure of which will be discussed later.

e. Oxidation of Furans

The conversion of furan ring in naturally occurring compounds to $\Delta^{\alpha,\beta}$ -butenolides has been reported by autoxidation, 1161 by catalytic oxidation,⁷²⁷ and in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.⁶⁷⁸ Perbenzolc acid oxidation

of lindestrene (**186**) is supposed to give an unstable $\Delta^{\beta,\gamma}$ lactone **186a** which isomerizes to the $\Delta^{\alpha,\beta}$ isomer **186b** on Al₂O₃,⁹⁵² 3-Isopropylfuran 187 is converted to γ -hydroxy- β -isopropyl-

 $\Delta^{\alpha,\beta}$ -butenolide on oxidation with peracetic acid in CHCI₃. However, with N-bromosuccinimide, 187 gives β -isopropyl- $\Delta^{\alpha,\beta}$ -butenolide. This reaction has been extended to the synthesis of digitoxigenin from the corresponding furyl derivative 188 by oxidation with peracetic acid.^{269,337} With NBS, an isomer of digitoxigenin acetate **(189)** is obtained. The naturally occurring furocaespitane is converted by m-chloroperbenzoic acid to β -(3-bromo-4-chloro-4-methylcyclohexyl)- γ -methyl- $\Delta^{\alpha,\beta}$ -butenolide.⁴⁰⁰

18. From Esters of α -Hydroxy Ketones

Bases such as alkali metal hydrides, alkali metal hydroxides, alkoxides, and amides react with esters of α -hydroxy ketones in solvents such as DMSO and DMF to give butenolides.^{608,609}

The compound 1 -acetyl- 1-propionyloxycyclohexane gives **190.**

This reaction may be utilized in the synthesis of steroidal lactones as follows. An extension of this reaction was in the synthesis of 22-methyl-3-oxo-14 α -carda-4,20(22)-dienolide (192) from the

corresponding Wittig reagent and sodium hydride in DMSO. Where R₁ and R₂ are hydroxyl groups in **191**, anhydrous potas-

 $R_1 = R_2 = H$, $R_3 = CH_3$, $R_4 = (C_6H_5)_3\overline{P}Br^{-1}$

sium carbonate in *tert*-butyl alcohol is used. With diethyl phosphonate instead of the usual Wittig reagent, K_2CO_3- tert-butyl alcohol reagent works as well.⁶⁰⁷ This method has been employed in the synthesis of several inotropic cardeno-.
lides.⁶¹⁰⁻⁶¹²

19. β -Cyclohexylbutenolides

In a series of papers, Professor Inhoffen's group gives a detailed account of synthetic approaches to β -substituted cyclohexylbutenolides. Their first method employs 3-(4-oxocyclohexyl)-4-(4-hydroxycyclohexyl)hexane **(193),** which by a series of transformations given in Scheme Il is converted to **194.**⁴⁹⁷

Compound **193** and its 3,4-unsaturated analog are the starting materials for a synthesis involving condensation with glyoxalic acid and subsequent reduction of the hydroxylactone with sodium borohydride.⁴⁹⁵ A similar series of reactions have been employed in the synthesis of 3- β -hydroxy- $\Delta^{5(6)}$ -14 α -card-20(22)enolide and 3- β -hydroxy-14 α -card-20(22)-enolide, 195 and 196, respectively, starting from **197** and 198.⁵⁷³ (Scheme XIII).

The pseudocardenolide **200** has been prepared starting from **199** by employing the acid chloride method shown in Scheme XIII.⁴⁹⁵

SCHEME XIII

193a

SCHEME XIV

199a

In a recent paper, compound **199** (erythro form) has been

converted to erythro **194** in four steps according to Scheme XIV.⁵⁷² The dibutenolide **201** is prepared similarly.

20. Condensation with Glyoxylic Acid

The condensation of glyoxylic acid with carbonyl compounds has been employed in the synthesis of butenolides as mentioned above.⁴⁹⁵ This method has been employed for the synthesis of

 γ -hydroxybutenolides. 849 The corresponding γ -chlor o butenolides have also been prepared thus. A similar condensation of glyoxylic acid with 5- α -androstanolone in the presence of a base gives hydroxy acids which on heating with alcoholic HCI gives the lactone 202, 268

21. By Friedel-Crafts Reaction

A combination of Friedel-Crafts reaction and Reformatsky reaction has been employed by Schmitt and coworkers for the synthesis of β -arylbutenolides containing a -CH₂COOR substituent on the benzene ring. $854 - 857$ The free acid 203 (R = CH2COOH) is converted to the acid chloride and subjected to another Friedel-Crafts reaction with anisole and toluene to give **204.** The compound β -(4-methoxyphenyl)- $\Delta^{\alpha,\beta}$ -butenolide (205) is prepared in 51% yield by a slight modification of Reformatsky reaction as given in Scheme XV.

Compound **205** may be nitrated, chlorinated, and chlorosulfonated to give substituted lactones. Similar studies have been carried out with β -veratryl (206) and β -(2,4-dimethoxyphenyl)- $\Delta^{\alpha,\beta}$ -butenolide (207). Compounds 205, 206, and 207 have been acylated in the presence of anhydrous aluminum chloride with a series of acid chlorides.⁸⁵⁵ The acylated compounds have been reduced to the corresponding hydroxy compounds. β -Carboxyphenyl- $\Delta^{\alpha,\beta}$ -butenolides are prepared by heating chloroacetyl derivatives in anhydrous pyridine.

A series of benzofuranobutenolides (208) have been synthesized starting from butenolides containing hydroxy and acyl groups in the ortho position on the benzene ring, 209. Compounds 208 are reduced to the corresponding alcohols.^{853,856}

22. From Butyrolactones

Butyrolactones continue to be the starting material for butenolides. In a recent method, γ -butyrolactone has been shown to be converted to α -methyl- $\Delta^{\alpha,\beta}$ -butenolide (210) in 75% yield via the thioether.⁹⁶⁹ Bromination of γ -butyrolactone followed

by dehydrobromination with triethylamine is the method due to Price and Judge for the synthesis of $\Delta^{\alpha,\beta}$ -butenolide or γ -crotonolactone.⁷⁷⁷ γ -Crotonolactone (211) itself was synthesized

from glycerol- α -chlorohydrin as follows in 23% yield. 397 It is also obtained by the pyrolysis of β -hydroxy- γ -chlorobutyric acid.^{1163,1164,1167} The method⁷⁷⁷ has been adopted for the synthesis of labeled γ -crotonolactone.⁸⁵⁰ A three-step synthesis giving an overall yield of 65.2% of 211 has been reported recently and consists of the following steps.^{943.}

Yet another method for the synthesis of 210 consists of the steps shown below.⁴⁹⁴ Organoselenium compounds have been

recently employed for the synthesis of γ -(*n*-hexyl)- $\Delta^{\alpha,\beta}$ -butenolide (211a).⁸⁸³ A similar method has been employed by Grieco and coworkers for the synthesis of γ -(n-hexyl- α -benzyl)- $\Delta^{\alpha,\beta}$ -butenolide.¹¹²⁹

The reduction of α,β -diketo- γ -phenyl- γ -butyrolactone gives α , β -dihydroxy- γ -phenyl- $\Delta^{\alpha,\beta}$ -butenolide.²⁵² Similar dihydroxy butenolides are prepared from tetronimides.²⁵³ The conversion of 2, β -diketo-5-hydroxy-5,6-diphenyl-4-pyrone to α -hydroxy- β , γ -diphenyl- $\Delta^{\alpha,\beta}$ -butenolide has been reported.²⁵⁵ These transformations have been employed for the synthesis of hydroxy butenolides.^{251,254,256,257} The reaction of tetronic acid with arylamines has been reported to give β -anilino derivatives.³³⁴ Similar conversion of γ -butyrolactone to cyclohexylureido- $\Delta^{\alpha,\beta}$ -butenolide has been reported.⁶²⁷

23. Darzen 's Type of Synthesis

The reaction of α -halo aldehydes such as α -bromoisobutyraldehyde (212) with methyl chloroacetate is reported to give 14% yield of α -chloro- γ , γ -dimethyl- $\Delta^{\alpha,\beta}$ -butenolide and 9% of methyl 4-bromo-4-methyl-2,3-epoxypentanoate.⁹⁵¹ The reaction of 212 with diethyl sodiomalonate has been reported³⁶³ to give α -carboxyethyl- γ , γ -dimethyl- $\Delta^{\alpha,\beta}$ -butenolide. A rein-

vestigation of this reaction showed that the product obtained is 213.949 The reaction of 212 with ethyl acetoacetate in the

presence of a base such as NaOEt and K_2CO_3 is reported to proceed as in Scheme XVI, giving $\Delta^{\beta,\gamma}$ -butenolides. However, in the presence of K_2CO_3 , the products obtained are $\Delta^{\alpha,\beta}$ -butenolides. A reinvestigation of this reaction showed 212a is obtained.

$$
212 + \text{RCOCH}_2\text{COOC}_2\text{H}_5
$$

SCHEME XVI

24. Condensation of Acyloins with Active Methylene Group Containing Compounds

McRae and Kuehner⁶⁶³ reported the condensation of benzoin with ethyl cyanoacetate in the presence of sodium ethoxide to give α -cyano- β, γ -diphenyl- $\Delta^{\alpha, \beta}$ -butenolide. Benzoin was converted to the phenylacetate by treatment with phenylacetyl chloride, and the ester was cyclized to α β γ -triphenyl- $\Delta^{\alpha,\beta}$ butenolide (214).⁷⁸² In a latter modification, sodium amide in liquid ammonia was used.⁶⁶¹

It has been observed that benzoin condenses with phenylacetic acid in the presence of triethylamine-acetic anhydride to give α , β , γ -triphenyl- $\Delta^{\alpha,\beta}$ -butenolide.⁷⁹³ Compound 214 was assumed to exist as a hydroxyfuran and its benzoyl derivative 215 was isolated by the lead tetraacetate oxidation of the compound obtained by the nitric acid oxidation of tetracyclone.⁷⁸¹ Compound 215 has been since shown to be $\alpha.\beta.\gamma$ triphenyl- α -benzoyl- $\Delta^{\beta,\gamma}$ -butenolid (185)¹⁰⁵⁹ and is debenzoylated to 214 on treatment with alkali. In a reexamination of the cyclization of benzoin phenylacetate (216), Rio and cowork-

ers^{816,820} have shown that 214 is obtained not only by Dilthey's method but also by the lactonization of α , β -diphenyl- β -benzoylpropionic acid in 65% H₂SO₄ (originally formulated as the $\Delta^{\beta,\gamma}$ isomer by Crawford^{245,246}) and that 216 gives the intermediate β -hydroxy- α , β , γ -triphenylbutyrolactone 217 at low

temperature. Compound 217 is also obtained by the Ivanov reaction between benzoin and the Ivanov reagent obtained from phenylacetic acid. Compound 214 may be O-methylated to give 2-methoxy-3,4,5-triphenylfuran and also C-alkylated to give $\Delta^{\beta,\gamma}$ derivative. Essentially, the same observations were made by McCoy and Weinheimer.⁶⁶¹ Compound 214 dimerizes in the presence of $K_3Fe(CN)_6$. It has been observed that 214 and the corresponding γ -hydroxy, γ -methoxy, and γ -acetoxy derivatives undergo photochemical isomerization to phenanthrene derivatives 218, in the presence of a Woods filter and oxygen. 821,822

In a recent paper, Padwa and Dehm¹¹⁰⁵ reported their studies on the isomerization of the following $\Delta^{\alpha,\beta}$ -butenolides. They isolated products formed by migration of aryl group as also phenanthrene derivatives (see Scheme XVII).

The mechanism in Scheme XVIII has been suggested to involve a triplet state. It may be pointed out that in their studies about pyrrolinones, Rio and Masure studied the dehydration of α -phenyl- β -benzoylpropionic acid⁸¹⁷⁻⁸¹⁹ to give α,γ -diphenyl- $\Delta^{\alpha,\beta}$ -butenolide.

The condensation of acyloins 219 with acetoacetic ester in the presence of aluminum isopropoxide has been reported to give $\Delta^{\alpha,\beta}$ lactones 220. Cyanoacetic ester and malonic ester have been used instead of acetoacetic ester. Compounds prepared thus are given as 221.¹¹⁴⁸ A similar condensation of malonic ester with acyloins has been carried out in the presence of pyridine-triethylamine. Compound 221 ($R_2 = R_3 = R_4 = CH_3$, R_1 = COOC₂H₅) is isolated with long reaction times, while the

SCHEMEXVIII

 α -cyano analog is obtained in the presence of sodium ethoxide. Compound 219 reacts with diketene to give β, γ, γ -trimethyl- α -acetyl- $\Delta^{\alpha,\beta}$ -butenolide. Compound 222 (a or **b**) is converted to the carboxy derivative, which on decarboxylation yields β , γ , γ -trimethyl- $\Delta^{\alpha,\beta}$ -butenolide.⁷⁵²

Phenacyl bromide and 2-benzoyl-2-bromopropane react with Ivanov reagent **223** to give a hydroxybutyrolactone along with the $\Delta^{\alpha,\beta}$ -butenolide in the mother liquor. The hydroxybutyrolactone may be dehydrated with p -toluenesulfonic acid in toluene.¹⁰⁵⁴

In a series of papers, Avetisyan and coworkers have reported the condensation of acyloins with acids (or their derivatives) containing active methylene group. The methylene compounds include diethyl malonate, cyanoacetic ester, ethyl benzoylacetate, diketene, acetoacetic ester, ethyl phenylacetate, malonic acid ester chloride, and phenylacetyl chloride. The condensation catalysts are pyridine, triethylamine, and sodium ethoxide in aromatic hydrocarbon solvents usually at temperatures below the boiling point of the solvents.^{39-57,1128} The acyloin compounds used in the reaction may be converted first to esters, and the esters are then cyclized to $\Delta^{\alpha,\beta}$ -butenolides with sodium ethoxide. The butenolides obtained in these reactions with α -acetyl

substituent have been treated with lithium aluminum hydride to give alcohol derivatives of butenolides. With diketene α acetylbutenolides are obtained. A similar reaction has been reported by Lacey.595,596

The α -carboxyethyl derivatives are converted into α -carbamoyl derivatives by treatment with amines.⁵⁶

The condensation of benzil with malonodinitrile gives a product, which, by a series of transformations, is converted to α -cyano- β , γ -diphenyl- γ -ethoxy- $\Delta^{\alpha,\beta}$ -butenolide.¹¹³⁴

25. Aminobutenolides

The compound γ -acetamido- $\Delta^{\alpha,\beta}$ -butenolide (224) has been isolated from a series of Fusarium species.^{414,1028,1055} The

compound **224** is synthesized in 26 % yield from acetamide and γ -bromo- $\Delta^{\alpha,\beta}$ -butenolide.¹⁶⁹ In a study of the mechanism on Fischer Indole synthesis, α -hydroxy- β -(2-nitrophenyl)- $\Delta^{\alpha,\beta}$ -

butenolide has been synthesized as follows. This compound could not be converted into the Plieninger intermediate α amino- β -(2-anilino)- $\Delta^{\alpha,\beta}$ -butenolide by reaction with ammonium formate.⁷³⁹

In a recent paper, Korte and coworkers reported that treatment of α -azido- γ -butyrolactones with catalytic amounts of sodium ethoxide leads to the elimination of 1 mol of $N₂$ with rearrangement to give α -aminobutenolides (Scheme XIX). Under SCHEME XIX

similar conditions, α -4-nitrobenzylideneamino- γ -butyrolactone is converted to a butenolide derivative. α -Diazo- γ -butyrolactone, on photolysis or heating, gives a $\Delta^{\alpha,\beta}$ -butenolide derivative.⁸⁵⁸ Other aminobutenolides have been synthesized from aspartic acid⁶⁰³ and acetylenic compounds.⁶⁵⁹ The reactions of α , β dihalo crotonolactones to give amino derivatives will be discussed later.

26. Pyrolysis of Diels-Alder Adducts

 γ -Dideuteriobutenolides have been synthesized according to the sequence of reactions in Scheme XX.³⁹⁹

SCHEME XX

27. Phosphorus-Containing Butenolides

 α -Diketones such as biacetyl react with carbon suboxide in the presence of trialkyl phosphites to give γ -acetyl- γ -methyl- β -methoxy- α -phosphoryl butenolides.⁷⁸⁷

When carbon suboxide is added to an adduct of biacetyl and methyl diphenylphosphinite, the buenolide **225** is obtained.

28. Condensation with Diethyl Oxalate

o-Nitrotoluene reacts with diethyl oxalate in the presence of sodium ethoxide to give 226.^{839,840} The reaction of a series of

o-hydroxyacetophenones substituted in a position para to the hydroxy group, with diethyl oxalate in the presence of sodium ethoxide, has been reported. The end products are β -benzoyl- α -hydroxy- $\Delta^{\alpha,\beta}$ -butenolides.^{723,743} With α -hydroxy- β -3-

methoxypropionoyl- $\Delta^{\alpha,\beta}$ -butenolide, it is possible to cause ring closure to give the corresponding reduced γ -pyrone butenolides 227.^{188,241} With the corresponding α -hydroxy- β -3-methoxy-

2-propenoyl- $\Delta^{\alpha,\beta}$ -butenolide, a γ -pyrone butenolide 228 is obtained and its reactions with thiols and primary and secondary amines have been studied.¹⁸⁹ The products obtained are assigned the following structures. Compound 228 reacts with hy-

drazines with the ring opening of the γ -pyrone ring rather than the butenolide ring.¹⁸⁷ A series of acetophenones, 2-acetylthi-

ophene, and 2-acetylbenzofuran are converted to 2-aroyl- α hydroxybutenolides by this method⁷⁸—condensation with diethyl oxalate, hydroxymethylation of the resulting pyruvic acid derivative and acid-catalyzed ring closure^{296,746} in 50% yields. The condensation of diethyl ketone with diethyl oxalate in the presence of potassium ethoxide is reported to give the γ -lactone of 3-methyl-2,4-dihydroxy-2,4-hexadienoic acid, and this on

reduction with Raney nickel gives α -hydroxy- β -methyl- γ ethyl- $\Delta^{\alpha,\beta}$ -butenolide.³²³

29. Synthesis Involving $\Delta^{\alpha,\beta}$ -Butenolides

The reaction of α -methyl- β -ethyl- γ -bromo- $\Delta^{\alpha,\beta}$ -butenolide (229) with 2,4-dimethoxypyrimidine gives 4-methoxypyrimidinyl derivative, which is hydrolyzed to γ -(uracil-1-yl)- β -ethyl- α methyl- $\Delta^{\alpha,\beta}$ -butenolide (**230**). When γ -bromo- $\Delta^{\alpha,\beta}$ -butenolide

is used instead of 229, γ -(uracil-1-yl)- $\Delta^{\alpha,\beta}$ -butenolide is obtained. The reaction consists of heating the furanone with the pyrimidine derivative in DMF in the presence of K_2CO_3 . Alkylation of adenine with 229 gave γ -(6-amino-9H-purin-9-yl)- β -ethyl- α -methyl- $\Delta^{\alpha,\beta}$ -butenoline (230a).^{285,286}

Antheridiol (231) is a sex hormone isolated from the water mold Achlya bisexualis.⁶⁶⁵ The reaction of γ -bromo- α -iso-

propyl- $\Delta^{\alpha,\beta}$ -butenolide with 3 β -hydroxy-7-keto-22,23-bisnor- Δ^5 -cholenaldehyde (232) under Reformatsky conditions gives 231a, an isomer of 231.⁶⁶⁴ In a modified process, the 7deoxy derivative of 232 is treated with the carbanion of β -isopropyl- $\Delta^{\alpha,\beta}$ -butenolide in THF at -70° to give about 70% yield of 7-deoxyantheridiol, and this was converted into 231a by photooxygenation and oxidative rearrangement.^{666,667} The desired β -isopropylbutenolide has bee prepared from 1-acetoxy-3-methyl-2-butanone and ethyl bromoacetate. γ -Bromo- β -isopropyl- $\Delta^{\alpha,\beta}$ -butenolide itself is obtained by the pyrolysis of

2,5-diacetoxy-3-isopropyl-2,5-dihydrofuran and addition of bromine to the end product. Alternately it is prepared by the addition of diazopropane to γ -bromo- $\Delta^{\alpha,\beta}$ -butenolide.⁶⁶⁸ The condensation reactions of the carbanions of $\Delta^{\alpha,\beta}$ -butenolide, α -methyl- $\Delta^{\alpha,\beta}$ -butenolide, and the aldehyde, 3 β -acetoxy- 22.23 -bisnor- Δ^5 -cholenaldehyde (7-deoxy-232) have been studied. The carbanions have been generated by treatment with trityllithium in THF.

30, Synthesis of Fused Butenolides

Several butenolides fused to cyclohexane ring or decalin ring have been reported: loliolide (233c), actinidiolide (233b), dihydroactinidiolide (234) and eremophilenolide (235). The structure

of loliolide obtained from Lolium perenne has been established.⁴⁷⁹ Digiprolactone has been isolated from Digitalis purpurea leaves, and it has been shown to be identical with loliolide.¹⁰⁰⁵⁻¹⁰⁰⁷ Compound 234 is also isolated from the neutral fraction of the steam volatiles from tobacco, 66 from the essential oil of the leaves of Actinidia polygama, 838 and from photooxidation products of β -ionone.⁷⁰³ Levantenolides 236 and 237 have been isolated from Turkish tobacco.⁵³³ Loliolide and its analogs have been synthesized.^{1170,1171,1186}

a. Oxidation Methods

A recent method for the synthesis of 234 consists of oxidation of alcohols 238 and 239.¹⁰⁸⁸

In the synthesis of loliolide, Sondheimer and coworkers employed selenium dioxide oxidation in the final step (Scheme XXI).⁶⁵¹

b. Starting from Homosafranic Acid

Loliolide, actinidiolide, and dihydroactinidiolide have all been synthesized in an elegant manner by Demole and Enggist.²⁷⁶ The starting material is homosafranic acid (240), itself obtained from β -cyclocitral. Hydroboration of 240 followed by treatment with I_2 in KI gives the iodo lactone, which on heating with pyridine gives 233a. Homosafranic acid is epoxidized and acidified to give a hydroxy lactone which on dehydration gives 233b. Compound

234 is obtained from the reduced acid either via the epoxide, hydroxylactone, and dehydration or via the iodolactone and dehydrohalogenation.

c. By Alkylation with Bromoacetic Ester

Cyclohexanone has been converted to 99 via the pyrrolidine enamine, alkylation with bromoacetic ester, hydrolysis of 2 ketocyclohexylacetic ester, and cyclization of the free acid with acetic anhydride.¹¹⁰² Compound 99 was also prepared by Wang and coworkers.^{1015,1016} The enamine method is similar to the

one employed by Minato and coworkers.⁶⁷⁸ Chappell converted trans-1-decalone and trans-2-decalone by the enamine alkylation method to 241 and 242.¹⁹⁶

Compound 241 is also obtained by Reformatsky reaction of 3(e)-acetoxy-frans-2-decalone with bromoacetic ester followed by a series of transformations of the intermediate hydroxy esters. The Reformatsky reaction of 3(a)-acetoxy-2-decalone also leads to 241. Also obtained is the butenolide 243.

243

Finally the intermediate keto acetic ester may be obtained by the enolate anion alkylation of a suitable keto compound.⁷⁶⁷

Bailey and coworkers synthesized 234 from 2,2,6-trimethylcyclohexene-1-glycolic acid (244), easily obtained from 2,2,6-trimethylcyclohexanone. Treatment of 244 with H_2SO_4 is reported to give 234 in 35% yield.⁶⁶

A cyclohexenobutenolide 245 has been prepared for comparison with the pyrolysis product of bis(dehydrodihydroenemein) (246).⁷²⁸ A compound similar to 99 with a 2-oxocyclohexyl substituent has been reported.⁸⁷¹ Pelletier and coworkers syn-

thesized the fused lactone 247, employing the steps in Scheme XXII.⁷⁵⁴

Finally Horii and coworkers have reported the synthesis of dihydroactinidiolide (234) and actinidiolide (233b) by employing the lithium ethoxyacetylide method.^{1170,1171} This key step has been used for the synthesis of securinine and racemic loliol ide.¹¹⁶⁸⁻¹¹⁷¹

31. Butenolides Connected with Cephalosporin **Synthesis**

Several butenolides substituted in the α and β position with amino hydroxy or thio substituents have been synthesized in

connection with studies on cephalosporin lactones. β -Aminoethyl-α-tetronic acid (248), is prepared from γ-butyrolactone according to the sequence in Scheme XXIII. 382,383

The reaction of β -triphenylmethylthiomethyl- α -hydroxy- $\Delta^{\alpha,\beta}$ -butenolide (249) leads to the corresponding to α -amino derivative.^{287,716,1156} Compound 249 condenses with benzaldehyde to give **249a.**

The W-acetyldihydrothiazine derivative has been synthesized by a different route.¹¹⁷² α -Hydroxy- β -thiomethyl- $\Delta^{\alpha,\beta}$ -butenolide has been used for the synthesis of the dihydrothiazine deriva $tive.$ 365-367

Similar studies on synthetic approach to cephalosporin involved the steps in Scheme XXIV. Compound **251** reacts with /3-sodiothioacrylic ester to give **252.** Compound **250** is converted to α -isocyanato- β -methyl- $\Delta^{\alpha,\beta}$ -butenolide via the acid chloride and azide.⁴²⁶

Similar studies on furo oxathiins were made by Beyerman and coworkers. They used RCHO-BF₃ complex in reaction with α -hydroxy- β -acetylthiomethyl- $\Delta^{\alpha,\beta}$ -butenolide (253), prepared from pyruvic acid and diethylamine hydrochloride and treatment with thioacetic acid.^{105,1157}

bromoisopropylidene malonic ester

32. Synthesis Involving the Steroid Nucleus

As pointed out earlier, the $\Delta^{\alpha,\beta}$ -butenolide ring occurs in the aglycon moiety of the cardiac glycosides. The point of attachment of the steroidal ring in the cardenolides is to the β position of the butenolide ring. Isocardenolides, on the other hand, contain the steroidal ring attached to the butenolide in the γ position.⁷⁶³ A third classification of cardenolides is the pseudocardenolide which does not contain a steroidal unit but has a β substituent in the lactone ring.⁴⁹⁷ In recent years, synthesis of digitoxigenin, periplogenin, uzarigenin, and canarigenin have been reported.

a. Digitoxigenin (254)

Methyl 3 β -acetoxy-14 β -hydroxy-5 β -etianate (255) is converted to 5 β -pregnane-3 β , 14 β -diol-20-one-3-acetate (256) with methyllithium. Reaction of 256 with lithium ethoxyacetylide

followed by rearrangement of the acetylenic compound gives an α , β -unsaturated ester, which on SeO₂ oxidation gives digitoxigenin acetate.^{262,263} The compound 14-deoxydigitoxigenin has been prepared from 3β -acetylnorlithiochloyl chloride. The α , β -unsaturated acid needed for SeO₂ oxidation is prepared by dehydrobromination in the presence of sodium tert-butoxidesodium iodide.⁸⁴⁴

In a recent method, the acetate of 254 has been prepared according to Scheme XXV. Compound 257 is converted to 254 via the 14,15-epoxide of 257, 370

Diethyl oxalate condenses with a keto steroid such as 258 to give a diketo ester.⁴⁷² Also synthesized were 14-epidigitoxigenin and 3-deoxydigitoxigenin.¹⁰⁷⁷

In other syntheses, the 14-hydroxy group was introduced into β -anhydrodigitoxigenin acetate.^{61,315}

b. α -Acetyl- β -(androsten-17-yl)- $\Delta^{\alpha,\beta}$ -butenolides

The method consists of reacting compounds such as preg-

nan-21-ol-3,20-dione with acetoacetic ester to give 259. Sodium methoxide converts 259 to 260, formed by intramolecular cyclization.³⁶⁸

c. Syntheses Involving Malonic Esters The reaction of oxo steroids such as 261 with malonic acid benzyl half-ester chloride gives the dibenzyl malonate ester. β - $[\Delta^5$ -Androstenol-3-yl-17]- $\Delta^{\alpha,\beta}$ -butenolide (262) has been

prepared thus.³⁶⁹ Potassium half-ester malonate has been used for the syntheses of 3-oxo-5 α -carda-14,20(22)-dienolide which is synthesized and converted to uzarigenin (263).⁹¹⁰ Canarigenin

C

(264) has been synthesized from 3-oxocarda-4,14,20(22) trienolide (265) by a series of transformations.³⁷¹

Pettit and coworkers started with the acetoxy iodoacetyl steroid for the synthesis of isocardenolide 266.^{759,763} Fritsch

and coworkers also employed Wittig's reaction for the synthesis of β - $[\Delta^5$ -androstenol-(3 β)-yl-17]- $\Delta^{\alpha,\beta}$ -butenolide (262).³⁶⁹

Diethyl cyanomethylphosphonate has been used for reaction with 3β -diacetoxy-20-oxo-5 α -pregnane, and the intermediate cyano derivative cyclizes to give an iminolactone (Scheme XXVI). Hydrolysis of the latter compound gives cardenolides.^{760,764}

SCHEME XXVI

Finally activation with phosphorus derivatives has been employd to synthesize cardenolides⁶⁰⁷ and substituted cardenolides with chlorine, fluorine and methyl substituents on the lactone ring.²⁹⁹

e. Miscellaneous Methods

Periplogenin (266a) has been synthesized by the reaction of a dihydroxy steroidal derivative with lithium ethoxyacetylide.

The malonic acid condensation with a formyl steroid has been used for the synthesis of a spirolactone steroid 266c.⁹³

Compounds prepared by the above methods are listed in Table III (see Microfilm Edition).

It may be seen from the above discussion that the methods most commonly used for $\Delta^{\alpha,\beta}$ -butenolide synthesis are Reformatsky reaction with its variations; lithium ethoxyacetylide method and the condensation of acyloins with active methylene group containing compounds.

D. Synthesis of γ -Arylidene (Alkylidene)- α -aryl (alkyl)- $\Delta^{\alpha,\beta}$ -butenolides

1. From Pulvinic Acid Derivatives

 α -Phenyl- γ -benzylidene- $\Delta^{\alpha,\beta}$ -butenolide_l(12), called "Cornicularlactone" is obtained as one of the reduction products of pulvinic acid 13.^{24,905} The acid product, obtained by the reduction

12.
$$
R = R_1 = C_6H_5
$$

of 16 with Pd/C, is dihydropulvinic acid. This compound, on heating with acetic anhydride, gives carboxy cornicularlactone, which on distillation under vacuum undergoes decarboxylation to give 12.

2. From Bromo Acids

Cinnamaldehyde condenses with phenylacetic acid to give 2,4-diphenylpenta-2,4-dienoic acid (267). The dibromide of 267,

formulated 2,5-dibromo-2,5-diphenyl-3-pentenoic acid and obtained by bromination of 267 in carbon tetrachloride, may be debrominated with diethylaniline to give 12.961 In a recent method, Saikachi and Taniguchi^{835,836} obs*e*rved that a bromo

aldehyde 268 condenses with α -furylacetic acid and α -thenylacetic acid in the presence of acetic anhydride and triethylamine to give 269 in 16-17% yields.

3. From Phenylpropargylaldehyde and Malonic or Phenylacetic Acids

In a series of papers, Pascual and coworkers reported the condensation of phenylpropargylaldehyde with malonic acid (ref 89, 90, 150 and those quoted in 791) to give propargylidenemalonic acids 270. Isomerization of 270 to α -carboxy- γ -aryli-

dene- $\Delta^{\alpha,\beta}$ -butenolides may be effected by heating 270 in glacial acetic acid, by silver ion catalysis, or by directly heating a mixture of propargylaldehyde, malonic acid, and glacial acetic acid for 9 h. In place of malonic acid, one may use cyanoacetic acid and malonitrile to give the corresponding α -cyano- γ -benzylidene- $\Delta^{\alpha,\beta}$ -butenolide (271).¹⁵⁰ Heating 271 (R = COOH) under vacuum gives γ -benzylidene butenolide.

In a more recent method, 792 it has been observed that the condensation of phenylpropargylaldehyde (or a similar acetylenic ketone) with phenylacetic acid and substituted phenylacetic acids in the presence of acetic acid and triethylmine leads to the formation of 12 in 40-85% yields. The intermediate 2,5-diphenyl-2-yn-4-oic acid (272, $R = H$; $R' = C_6H_5$) has cis configuration

and undergoes acid-catalyzed isomerization readily. It may be pointed out that Wiley and coworkers¹⁰³³ observed that 272 gave

3,6-diphenyl-2-pyrone (272a) in the presence of mercuric sulfate

 C_6H_5 $\mathrm{C_{6}H_{5}}$ v O^* 272a

and dilute sulfuric acid. Acetylenic acids similar to 272 have been reported to give $\Delta^{\alpha,\beta}$ -butenolides. ¹⁰³⁴⁻¹⁰³⁶

4. From Substituted Maleic Anhydrides

a. Grignard Method

Reaction of dimethylmaleic anhydride with n-pentylmagnesium bromide yields α,β -dimethyl- γ -pentyl- γ -hydroxy- $\Delta^{\alpha,\beta}$ -butenolide, which on dehydration with p-toluenesulfonic

acid gives bovolide- γ -pentylidene- α, β -dimethyl- $\Delta^{\alpha,\beta}$ -butenolide.⁸⁷² In a similar fashion, a whole series of γ -hydroxy- γ alkyl- $\Delta^{\alpha,\beta}$ -butenolides have been prepared from dimethylmaleic anhydride, and the intermediate hydroxy compounds have been dehydrated by heating with potassium bisulfate. A whole series of γ -alkylidene- $\Delta^{\alpha,\beta}$ -butenolides have been prepared by this method but no yields are given.⁶⁰¹

b. Condensation of Phenylacetic Acids

Diphenylmaleic anhydride is condensed with phenylacetic acid^{224,378} and m-tolylacetic acid¹¹⁴⁶ in the presence of sodium acetate to give 273. Compound 273 on nitration and bromination yielded the corresponding butenolides $(R_1 = Br, NO_2)$.

$$
R = 3 - CH_3C_6H_4, R_1 = H; R = C_6H_5, R_1 = H
$$

Dimethylmaleic anhydride under similar conditions condenses with phenylisocrotonic acid to give γ -cinnamylidene- α , β -dimethyl- $\Delta^{\alpha,\beta}$ -butenolide (**274**).^{601,960}

c. Wittig's Reaction

The reaction of citraconic, maleic, and dimethylmaleic anhydrides with the stable phosphorus ylides—carboethoxymethylenetriphenylphosphorane (275) and acetylmethylenetriphenylphosphorane (276)—occurred in most cases stereospecifically to give γ -lactones 277 and 278. With methylmaleic

anhydride, both cis and trans isomers of 277 and 278 are obtained. With dimethylmaleic anhydride, only the trans isomer is obtained. In the case of maleic anhydride, reaction does not occur and as such a Diels-Alder adduct of furan and maleic anhydride is employed and the final product undergoes a facile retro Diels–Alder reaction to give 279.^{387,1197,1198}

5. From γ -Ethyl- $\Delta^{\beta,\gamma}$ -butenolide (280)

This method applies specifically to γ -ethylidene- $\Delta^{\alpha,\beta}$ -butenolide 281. Compound 280, obtained from 4-oxohexanoic acid, which is obtained by the base-catalyzed condensation of 1-ni-

tropropane and methyl acrylate, is treated with bromine in carbon disulfide. The dibromolactone was dehydrobrominated with triethylamine to give 281.⁵²⁰ A similar method was employed for the synthesis of protoanemonin.¹⁰⁸³

6. From Methyl Furoate

a. Grignard Reaction

When ethyl 5-bromo-2-furoate is treated with phenylmagnesium bromide, γ -diphenylmethylene- $\Delta^{\alpha,\beta}$ -butenolide is obtained.⁹⁰⁸

b. Wittig Reaction

When 3-methylfuroic acid in methanol is photolyzed, it gives α -methyl- γ -methoxy- $\Delta^{\alpha,\beta}$ -butenolide, which is converted to the bromo derivative⁹²³ via the hydroxy and methylene compounds. The phosphonium ylide reacted with 4-nitrobenzaldehyde, anisaldehyde, and the aldehyde obtained from terpineol to give 282. The exact sterochemistry of the end product is not known.¹⁰⁹⁶

7. From Natural Products

Abscissic acid (283), on acid-catalyzed dehydration, gives the lactone 284.⁶⁴⁰ Another naturally occurring butenolide is called piperolide (285), β -methoxy- γ -(α -methoxycinnamylidene)- $\Delta^{\alpha,\beta}$ -butenolide (ref 427, 430, 449, 755).

When D-galactonolactone is benzoylated extensively in pyridine, α -benzoyloxy- γ -phenacylmethylene- $\Delta^{\alpha,\beta}$ -butenolide $(286)^{273}$ is obtained as the end product.

8. From γ -Aroylbutyric Acids

When a γ -aroylbutyric acid is treated with bromine in ether-

dioxane or ethyl acetate, cyclization occurs with the formation of γ -aroylbutyrolactone (287). Compound 287, on heating with a mixture of acetic anhydride and p -toluenesulfonic acid, gives a mixture of geometric isomers of 288.^{1050,1051}

9. From Phenylacetic Acid

One of the products obtained from the reaction of 4-picoline *N*-oxide and phenylacetic anhydride is 273 (R = C_6H_5 , R₁ = H), evidently formed from diphenylmaleic anhydride and phenylacetic acid.²²³ Oxidative decarboxylation of phenylacetic acid, in the presence of cuprous ion catalyst, also leads to 273 (R = C_6H_5 , R₁ = H).¹⁰²⁰ These methods are not of preparative value, since the yields are low.

10. From Maleic Anhydride Adducts

Diels-Alder adducts of maleic anhydride with cyclopentadiene and anthracene give the half-ester acid chloride 289 on successive treatments with an alcohol and thionyl chloride.¹⁰¹² Compound 289 on treatment with RCH₂ZnCI gave the keto acid, which on cylization and pyrolysis yields 291 . 1013 Instead of cyclopentadiene adducts, 9,10-anthraceno adducts may be employed. This method is applicable to γ -alkylidene butenolides of the type 291. Roberts⁸²⁴ has found that endo-norbornenec/s-5,6-dicarboxylic anhydride reacts with isopropylmagnesium bromide to give 3-isobutyryl-5-nobornene-2-carboxylic acid (292a). Compound 292a reacts with thionyl chloride and ammonium hydroxide to give the lactone adduct, which on pyrolysis gives 293.

11. From α -Halo Ketones

When ω -bromoacetophenone is condensed with sodium cyanoacetate, α -cyano- β -phenyl- $\Delta^{\alpha,\beta}$ -butenolide (294) is obtained. Compound 294 condenses with benzaldehyde, acetophenone diethyl ketal, and other aldehydes in toluene in the presence of

piperidine acetal to give the γ -benzylidene derivatives. With

Ar : C6H5, R = H Ar = C6H5, R = CH³ Ar = 4-(CH3)2NC6H4, R = H Ar = 2,5-(HO)2C6H3, R = H Ar = 4-(CH3J2NC6H4CH=CH, R = H

terephthaldehyde, the corresponding bis(butenolide) is obtained, 296. Potassium 4-nitrophenylacetate reacts with chloroacetone to give α -4-nitrophenyl- β -methyl- $\Delta^{\alpha,\beta}$ -butenolide (297). This compound also condenses with aldehydes to give the corresponding γ -arylidene derivatives 298 useful as dyes.³⁵⁴⁻³⁵⁷

Methyl 2-cyano-3-methylthio-4-nitrocrotonate, on treatment with concentrated sulfuric acid, gives α -carbamoyl- β -thiomethyl- $\Delta^{\alpha,\beta}$ -butenolide (299). The latter compound is converted to α -cyano- β -thiomethyl- $\Delta^{\alpha,\beta}$ -butenolide (300). Compound 300 reacts with aromatic aldehydes, DMF, and N-methylpyrrolidone in the presence of POCI₃ to give the corresponding γ -ylidenebutenolides 301. Compound 301 reacts with amines such as benzylamine and morpholine to give 302.⁸⁹⁹

12. From Quinone Derivatives

a. From Azidoquinones

An excellent review article on azidoquinones and their reactions has been published recently.⁶⁹⁰ The reaction of thymoquinone with sodium azide in trichloroacetic acid at 65° gives α -methy l- β -amino- γ -(1-cyano-2-methy lpropylidene)- $\vec{\Delta^{\alpha,\beta}}$ -

butenolide (303).^{694,804,805} In a detailed study of these transformations, 3-amino-6-azido-2-methyl-5-isopropyl-1,4-benzoquinone (304) and the isomeric 2-amino-5-azido-3-isopropyl-

6-methyl-1,4-benzoquinones were synthesized and converted to γ -lactones.⁶⁹⁴ A similar stereoselective transformation of 2-azido-3-methyl-6-isopropyl-1,4-benzoquinone led to α -isopropyl- γ (1-cyanoethylidene)- $\Delta^{\alpha,\beta}$ -butenolide. A series of γ -(cyanoalkylidene)- $\Delta^{\alpha,\beta}$ -butenolides was prepared by this method. Products obtained included precursors of pulvinic acid (13).⁶⁹⁵ The mechanism in Scheme XXVII has been suggested.^{695,696,885}

SCHEME XXVII

This rearrangement has been employed in the synthesis of vulpinic acid (methyl ester of 13) (Scheme XXVIII).^{691,696} The pyrolysis of 2-azido-3,6-diphenyl-1,4-benzoquinone led to the formation of α -phenyl- γ -(cyanobenzylidene)- $\Delta^{\alpha,\beta}$ -butenolide.⁶⁹²

b. From Hydroxyquinones

When 2,4-dihydroxy-3,6-diphenyl-1,4-benzoquinone (polyporic acid) is heated with dimethyl sulfoxide-acetic anhydride mixture, pulvinic dilactone 16, is obtained in high yield.^{697,1030,1031} By starting with the appropriate benzoquinone derivatives, γ -arylidene butenolides have been obtained. The

SCHEME XXVIII

required hydroxy benzoquinones are prepared by known methods.^{175,176} A mechanism to explain the formation of 305 is suggested.^{697,1030,1031}

13. From Phenylpyruvic Acid

It has already been pointed out that benzyl methyl ketone and phenylpyruvic acid condense to give an acid which on cyclization gives α -benzyl- γ -benzylidene- $\Delta^{\alpha,\beta}$ -butenolide (70). 235,238 Similarly, the product obtained from phenylpyruvic acid and benzalacetone condensation is α -benzyl- γ -(2-phenylethylidene)- $\Delta^{\alpha,\beta}$ -butenolide (**71b**).^{576,791}

14. By Claisen Condensation

When bis(4-methoxybenzyl) ketone is condensed with diethyl oxalate in the presence of sodium ethoxide, 2,5-dianisylcyclopentane-1,3,5-trione (306a) is obtained. Compound 306a on pyrolysis gives α -(4-methoxyphenyl)- β -hydroxy- γ -(4-methoxybenzylidene)- $\Delta^{\alpha,\beta}$ -butenolide (306b).⁷³³ 306b could be meth-

ylated with CH₂N₂ to give the β -methoxy derivative or could be demethylated to give α -4-hydroxybenzylidene- β -hydroxy- γ -4-hydroxybenzylidene- $\Delta^{\alpha,\beta}$ -butenolide, which is identical with the naturally occurring product, from the culture filtrate of Aspergillus terreus.

Compounds prepared by the above methods are listed in Table IV (see Microfilm Edition).

E. α -Methylene- γ -butyrolactones

An excellent review published in February 1975 lists all the methods of preparations of compounds 15.¹¹³¹ Essentially the methods may be classified as (1) those involving formation and cyclization of an α -methylene- γ -hydroxy acid, (2) those involving eliminations and, (3) rearrangements. These methods have been explored extensively (ref 88, 115, 119, 260, 261, 406, 407, 411-413, 432, 643, 645-649, 675, 676, 731, 750, 973, 991, 1051-1053, 1116, 1127, 1129, 1130, 1135-1145, 1165).

F. Naturally Occurring Lactones

The $\Delta^{\alpha,\beta}$ ring occurs widely in nature. No $\Delta^{\beta,\gamma}$ -butenolide containing natural product has been isolated. It may be that the $\Delta^{\alpha,\beta}$ forms are more stable and hence more in abundance than the corresponding β, γ isomers. Several naturally occurring lactones along with their sources are tabulated (see in Table V in the Microfilm Edition). This is by no means a comprehensive list and some lactones might have been omitted. Pulvinic acid and other lactones, obtained from lichen substances, are discussed separately.

Most of the sesquiterpene lactones known have been mentioned in a review published earlier.²⁶⁶

G. Tetronic Acids

The chemistry of tetronic acids has been reviewed earlier by Haynes and Plimmer.⁴⁴⁵ Several tetronic acids have been synthesized. Many of these tetronic acids have the α -hydroxy

14, tetronic acid $307, \alpha$ -tetronic acid

substituent, prepared as intermediates for the synthesis of cophalosphorin. The following are some of the methods employed for these syntheses (see also Tables Vl in the Microfilm Edition).

a. From Heterocycles. The compound 2,4-dioxo-3-phenylacetamidobutanoic acid (308) exists in the form of an α -hydroxytetronic acid. Compound 308 is prepared from 2-benzyl-4 oxazolylglyoxylamide and sodium hydroxide.²⁴⁰

b. From α -Acetyltetronic Acid. When a mixture of α -acetyltetronic acid and 4-chlorobenzaldehyde in methanol is treated

with hydrogen chloride gas, 309 is obtained.⁹⁸⁰

c. From Pyruvic Acids. The condensation of butyrylpyruvic acid with aromatic aldehydes in the presence of piperidine leads to the formation of α -tetronic acids.⁹⁵⁹ A whole series of β acyl- γ -phenyl- α -tetronic acids are prepared by reaction of 310 and its analogs with acid anhydride, acyl halide, or ketene. The following mechanism explains the formation of 310.

The structure of zymonic acid 311 has been shown to be α -hydroxy- γ -methyl- γ -carboxy- $\Delta^{\alpha,\beta}$ -butenolide 1174 and not α -methyl- γ -carboxytetronic acid (312) as originally assumed.^{927,1173}

d. From Halogenoacyl Malonates. By a variation of the Benary-Haynes method, Mulholland and co-workers synthesized tetronic acids according to Scheme XXIX in 43-70% overall yields.⁷⁰⁵ The compound γ -ethyltetronic acid may be prepared from γ -ethylidenetetronic acid (Scheme XXX).

The Mulholland method has been employed in the synthesis of optically active tetronic acids. Also prepared is γ , γ -diphenyltetronic acid. The O-acyl compounds are prepared in the presence of TIOEt and the products undergo Fries migration in the presence of TiCl₄ in nitrobenzene to give α -acyltetronic acids.¹¹⁶ This method has been employed for the synthesis of (S)-carolic acid (313) .^{5,116}

Bromination of ketene acetals gives dialkoxybromo esters. These compounds, on pyrolysis, give α -methyl (or phenyl) β ethyltetronates.⁶⁶² The tetronic acids are prepared from the

 $RCH= C(OR')_2 + Br_2 \longrightarrow R'Br + RCHC(OR')_2CHCOOR'$

R

$$
R' = C_2H_5, R = C_6H_5
$$

$$
R' = C_2H_5, R = C_6H_5
$$

bromo keto esters. This method has been used in the synthesis of α -alkyltetronic acids. The starting material is bromoacetic ester with an alkyl substituent on the active methylene group.⁸⁰³ α -Benzyltetronic acid is converted to a series of β -substituted derivatives by treatment with amines.

 $R = n$ -hexyl, n -octyl, n -cetyl, isobutyl, cyclohexyl, α -phenylethyl, γ -phenylpropyl, benzhydryl, p-nitrobenzyl, carbethoxymethyl, benzyl

e. From Acetylenic Compounds. Ethyl tetronate **(315)** may be obtained from 2-propargyloxytetrahydropyran and ethyl carbonate in the presence of sodium ethoxide. The intermediate butyrate ester on heating with $ZnCl₂$ at 150° gives ethyl tetro n ate. 409

$$
\begin{array}{r}\n\text{ROCH}_{2}C \equiv \text{CH} + \text{CO(C}_{2}H_{5})_{2} \\
\xrightarrow{\text{NaOC}_{2}H_{5}} & \text{OC}_{2}H_{5} \\
\xrightarrow{\text{NaOC}_{2}H_{5}} & \text{ROCH}_{2} - \text{CH}_{2}\text{COOC}_{2}H_{5} \\
\xrightarrow{\text{C}_{2}H_{5}} & \text{C}_{2}H_{5}\text{O} \\
\xrightarrow{\text{ZnCl}_{2}} & \text{C}_{3}H_{5}\text{O} \\
\end{array}
$$

f. From Diketoadipic Acid Derivatives. The dioxane derivative **316** dissolves in concentrated sulfuric acid to give γ -carboxymethylenebutenolide.⁹¹³

The disodium salt of ketipic acid is alkylated with alkyl halide to give 317.801

g. Cephalosporin Intermediates. The condensation of pyruvic acid with dimethylamine hydrochloride and formaldehyde gives β -dimethylaminomethyl- α -tetronic acid hydrochloride (318).³⁸⁴ Compound **318** exists as a zwitterion and reacts with potassium thioacetate to give the dilactone **319.** In their studies about cephalosporin derivatives, Beyerman and co-workers synthesized a whole series of α -benzamido- $\Delta^{\alpha,\beta}$ -butenolides¹¹⁵⁶ and α tetronic acids.¹¹⁵⁷ Similar butenolides synthesized are α amino- β -triphenylmethylthiomethyl- $\Delta^{\alpha,\beta}$ -butenolide. 287 Compounds similar to 318 have also been synthesized.^{624,625}

H. β **-Acylacrylic Acids**

A review article has been published recently on β -formylac-

rylic acids. 21 Much work on β -acylacrylic acids has been done by Hellstrom and co-workers. In theory three types of esters of β -acylacrylic acid can exist: the trans form, the cis form, and the cyclic form or the cyclic pseudo ester.^{459,460,1186} Several methods are now available for the synthesis of c/s - β -acylacrylic acid esters and the pseudo ester forms. These methods are discussed below. Compounds prepared by these methods are given in Table VII in the Microfilm Edition.

a. From γ -Bromo- α -angelica Lactone. When α -angelica lactone is brominated in CCI₄ with bromine, 320 is obtained.¹⁰⁸³

The bromo compound on heating with the appropriate alcohol in the presence of triethylamine gives the pseudo ester. 454, 1184 The pseudo ester of β -pivaloylacrylic acid is prepared from β -bromo- β -pivaloylpropionic acid and sodium acetate-acetic acid.^{451,460} These compounds^{452,459} have been tested for biological activity.

b. From Maleic Anhydride. The condensation of isopropenyl acetate with maleic anhydride in dichloromethane in the presence of anhydrous aluminum chloride is reported to yield the Z form of γ -acetonylidene- $\Delta^{\alpha,\beta}$ -butenolide (321).³⁵⁸ The *E* form of **321**¹¹¹⁸ is obtained by varying the workup conditions slightly. **321** has been used in the synthesis of maleyl- and fumarylacetones.

c. Claisen Rearrangement of Propynyl Vinyl Ether. γ -Hydroxy- α -vinyl- $\Delta^{\alpha,\beta}$ -butenolide may be obtained by the Claisen rearrangement of an appropriate butenoic acid derivative (Scheme XXXI).¹¹⁰ Prop-2-ynyl vinyl ether is converted into 4vinyloxy-2-butynoic acid.

SCHEME XXXI

d. From Pyruvic Acid. The condensation of acetone with pyruvic acid gives $c/s-\alpha$ -methyl- β -acetylacrylic acid. This compound exists as a hydroxy lactone, α, γ -dimethyl- γ -hydroxy- $\Delta^{\alpha,\beta}$ -butenolide (322) and may be acetylated and methylated to give the corresponding γ -acetoxy and γ -methoxy derivatives¹⁰²⁴ (see also ref 46 in ref 791).

The condensation of pyruvic acid and ketone in the presence of orthophosphoric acid has been reported to give γ -hydroxybutenolides.⁸⁴⁹ This method has been employed in the synthesis of α,β,γ -trimethyl- γ -hydroxy- $\Delta^{\alpha,\beta}$ -butenolide and 322. 310, 311

e. Photochemical Syntheses. Alcoholic solutions of furan, furfural, and furfuryl alcohol in irradiation in the presence of rose bengal or methylene blue give γ -ethoxy- $\Delta^{\alpha,\beta}$ -butenolide (ref 556, 851, 852, 1114, 1115). In order to synthesize malealdehydic acid

esters, Schenck and coworkers prepared a series of γ -substituted butenolides of type 323.868 This method has been extended

$R = OH$, Cl, OCOCH₃, OCOC₆H₅, OCONHC₆H₅

to the synthesis of the pseudoethyl ester of $c/s-\beta$ -acetylacrylic acid, starting from 2-methylfuran. The modifications include the use of eosin Y and vanadium pentoxide.^{874,921} It may be pointed out that the amount of 323 ($R = OC₂H₅$) with thionyl chloride converts it to 323 (R = CI). 324

A study of the isomers of acetyl and benzoylacrylic acids and esters has been made by Sugiyama and co-workers.⁹³¹⁻⁹³⁵ They observed that on photochemical irradiation three types of reactions occurred: (i) trans to cis isomerization; (ii) formation of $\Delta^{\alpha,\beta}$ -butenolides; and (iii) addition of elements of alcohol to the olefinic double bond to give 324.

When the free acid *trans-* β *-acetylacrylic acid* is irradiated in methanol or without any solvent, the corresponding γ -methyl- γ -hydroxy- $\Delta^{\alpha,\beta}$ -butenolide 932 is produced.

It must be pointed that the ring-chain tautomerism of $cis-\beta$ aroylacrylic acids has been studied by Lutz and co-work $ers⁶²⁹⁻⁶³¹$ (see also ref 219-223 in ref 791).

A summary of β -acylacrylic acids is given in Table VII in the Microfilm Edition.

I. Halogen-Substituted Furanones

Mucochloric and mucobromic acids exist as hydroxy lactones.⁹⁹⁷ It has been reported that α -bromo- β -chloro- β -formylacrylic acid exists as a cyclic structure.¹⁰¹⁷ The halogen atoms on the lactone ring may be replaced by nucleophilic reagents. These nucleophilic substitution reactions will be discussed later.

a. Preparation of Mucohalic Acids. When furfural is chlorinated in the presence of $MnO₂$ and dilute HCI, the product obtained is β -chloro- β -formylacrylic acid, isolated as β -chloro- γ -hydroxyl- $\Delta^{\alpha,\beta}$ -butenolide.⁴²⁴ Direct chlorination of furfural with Cl₂ at 90° is reported to give 325b.⁶³⁶ Treatment of methyl 3,4dibromo-2,5-dimethoxytetrahydro-2-furoate with acid yields mainly α -bromo- γ -hydroxy- $\Delta^{\alpha,\beta}$ -butenolide.

The dihalo derivative similarly gives the α -chloro analog.⁴³⁷ The β -chloro isomer is obtained from γ -hydroxytetronic acid and dilute hydrochloric acid.^{170,709}

b. From Dichloromaleic Anhydride. The reaction of dichlo-

romaleic anhydride with sulfur tetrafluoride gives α,β -dichloro- γ , γ -difluoro- $\Delta^{\alpha,\beta}$ -butenolide (326). 113,335 Similarly, maleic anhydride reacts with SF₄ to give γ, γ -difluoro- $\Delta^{\alpha, \beta}$ butenolide.

326

c. From Perchloro Compounds. Treatment of cis-perchloro-1,3-hexadiene-6-carboxylic acid with silver ion gives 327.⁸²⁶ Tetrachloro-2,2-dialkyl-2H-dihydropyrans (328) on treatment with fuming nitric acid gives 329.¹⁰⁸⁹

Finally the reaction of chlorofumaroyl chloride with dichloroethylene in the presence of anhydrous aluminum chloride gives 330.⁶¹⁷

d. Halogen Exchange Reactions. Kemper and Winston⁵⁴³ prepared a series of γ -dihalomethylene- $\Delta^{\alpha,\beta}$ -butenolides by the halogen exchange reaction (Scheme XXXII). The γ -dichloromethylene analog^{535,1041} has been polymerized with other monomers such as styrene and methyl methacrylate, and the properties of these polymers have been studied (ref 1037, 1039, 1040, 1042, 1045). It has been observed that polymers with

conjugate unsaturation are formed by a 1,4-addition mechanism followed by elimination of elements of hydrogen halide.

e. From β -Aroylacrylic Acids. The condensation of glyoxylic acid with ketones in dioxane in the presence of sulfuric acid gives β -aroylacrylic acids.³¹⁷ The acrylic acid type compounds are also obtained from compounds of the type 331 by heating with potassium methoxide in methanol.¹⁰²³ These compounds may be converted to halosubstituted lactones. It has been observed that diazo ketones (RCOCHN₂) or halo ketones react with Wadsworth-Emmons' reagent to give compounds of type 332.

These compounds may be cyclized with dicyclohexylcarbodiimide to give lactones.⁷¹⁸

f. By Reactions of Halogen-Substituted Lactones. In their search for substances with neoplastic activity, Semonsky and coworkers synthesized a series of halogen-substituted lactones (ref 526, 875-881, 1069-1072). Mucobromic or mucochloric acids and substituted acetophenones in alcoholic solution at temperatures below 5 $^{\circ}$ C react to give α , β -dihalo- γ -phenacyl- $\Delta^{\alpha,\dot{\beta}}$ -butenolides.^{881,997} Mucohalic acids react with alkyl Grignard reagents to give γ -alkyl- α, β -dihalo- $\Delta^{\alpha, \beta}$ -butenolides.⁸⁸⁰ α , β -Dihalo substituted lactones react with sodium salts of carboxylic acid to give 333.⁸⁷⁵

4-R2OC6I ^R1CO**^X**O **A** cr^o 333 X = Br, X X X R1 = Et, R2 = Me R1 = Pr, R2 = Me R1 = /'-Pr, R2 = Me R1 = amyl, R2 = Me Ri ' Ph, R2 = Me = Br, R1 = 3,4-CH2O2C6H3, R2 = Me = Cl, R1 = Me, R2 = Me ; Br, R1 = Me, R2 = Bu X = Cl, R1 = Me, R2 = Bu

Mucochloric or mucobromic acids also react with alkyl naphthyl ethers in the presence of H_3PO_4 and P_2O_5 to give γ naphthyl derivatives.⁸⁷⁶ An interesting reaction of β -bromo- γ -4-methoxyphenyl- γ -acetoxy- $\Delta^{\alpha,\beta}$ -butenolide with amino acids to give $N-(\beta-4-methoxybenzoyl-\beta-bromoacryloyl)$ amino acids.⁵⁸³ Alkoxybenzenes also react with mucohalic acids in the presence of P_2O_5 for zinc chloride to give γ -4-alkoxyphenyl butenolides.^{989,1071} The conversion of β -chloro- β -anisoylacrylic acid to γ -anisyl- β -chloro- $\Delta^{\alpha,\beta}$ -butenolide has been effected by treatment with sodium borohydride.¹⁰⁶⁹ Diethylamine reacts with γ -methoxy- $\Delta^{\alpha,\beta}$ -dihalocrotonolactones to give the corresponding β -diethylamino derivatives.¹⁰⁷²

In a few cases it has been observed that when mucochloric acid reacts with amino compounds such as 2-amino-5-chlorothiazole, the corresponding γ -amino derivative is obtained.^{63,68,715} Reaction with aziridine gives the corresponding γ -N-azirinyl derivative. With tryptamine, however, the product obtained is a pyrrolinone derivative 334.¹⁰⁴⁵ It may be pointed out that aziridine reacts with the methyl ester of mucochloric acid to give β, γ -diaziridinyl- α -chloro- $\Delta^{\alpha,\beta}$ -butenolide.

Bachman prepared a series of γ -4-nitroanilino derivatives for use as microbiocides by reacting mucochloric acid with anilines.⁶²

In a series of papers and patents, Beska and coworkers reported the reactions of mucohalic acids with thiols, ⁹⁶ phenoxyalkylcarboxylic acids, hydrocarbons, phenylhydrazine, trans-2,2-dichloro-3-phenylcyclopropanecarboxylic acid, acetylenic alcohols, alkoxyalkyl alcohols, benzyl alcohols, and chlorosubstituted alcohols (94-102, 796-799, 1044). Reactions of mucohalic acids with phenols, thiophenols, and amines have also been reported (ref 120, 274, 1063-1065).

The reaction of γ -alkoxy- α, β -dihalo- $\Delta^{\alpha, \beta}$ -butenolides with trialkyl phosphites gives the corresponding phosphorus-containing $\Delta^{\alpha,\beta}$ -butenolides 335.^{637-639,1186} In the presence of

sodium bicarbonate mucobromic acid condenses with malonic acetoacetic esters, nitromethane, and pentane-2,4-dione to give **336.** 419,420 γ -Bromomethylene- α , β -dibromo- $\Delta^{\alpha,\beta}$ -butenolide reacts with alcohols to give $337.^{527,528}$

g. From Pyruvic Acids. The condensation of pyruvic acid with aromatic aldehydes gives arylidenepyruvic acids. These compounds may be converted to β -halo- α -hydroxy- $\Delta^{\alpha,\beta}$ -butenolides 338 via the dihalo compounds.830

A summary of the dihalo butenolides is given in Table VIII in the Microfilm Edition.

V. Pulvinic Acid Derivatives

A. Introduction

Lichen substances contain yellow pigments, which are tetronic acids containing carboxyl function as in 13 below. Re-

views have been published about systematization of these lichen substances and their biosynthesis.⁷⁰² Some of the compounds belonging to this class of compounds are given below (also see Table IX in the Microfilm Edition).

Degradative studies on vulpinic acid by Spiegel led to its formulation as 339.⁹⁰⁵ The products obtained by reduction of pulvinic dilactone (16) were also extensively studied.^{24,1191} The structure of pinastric acid was originally assumed to be either 340 or 341.562,563 Asano and Kameda suggested 340 as the structure of pinastric acid.³⁴ This structure was later confirmed by Seshadri and coworkers.^{6,9} Pinastric acid, however, was assigned structure 341 on the basis of its reaction with o-phenylenediamine, dimethylaniline, and sodium periodate,^{417,418,683} and a compound called isopinastric acid was originally assigned the trans-trans structure 342. It appears now that pinastric acid

is α -4-methoxyphenyl- β -hydroxy- γ -phenylcarbomethoxymethylene- $\Delta^{\alpha,\beta}$ -butenolide (340), and isopinastric acid is α phenyl- β -hydroxy- γ -(4-methoxyphenyl)carbomethoxymethylene- $\Delta^{\alpha,\beta}$ -butenolide (341). Work on 340, 341, and 342 has been done by Seshadri and coworkers (ref 6-10, 415-418, 681-683). Recently, variegatic acid (345), 86,304,920 gomphidic acid (346), 919 and xerocomic acid $(347a)$ or $347b$ ⁹¹⁸ have been reported. Possible biosynthetic pathways for vulpinic acid have been proposed either involving polyporic acid (ref 700, 701, 1030, 1031) and 2-phenylglyceraldehyde.⁶⁸² Biosynthesis of calycin has been shown to occur via vulpinic or pulvinic acids but not nus seen enorm to observed that upme or permine dense served.
pulvinic dilactone ⁶³⁴ It has also been observed that phenylalanine, phenyllactic acid, and polyporic acid with C-14 labels on them are readily incorporated into calycin and pulvinic dilactone.⁶³²⁶³⁵ Pulvinamide (348) has also been proposed as a key biosynthetic intermediate.⁶³³

Pulvinic and vulpinic acids have been isolated from a series of lichen substances (ref 10, 13, 140, 141, 329, 466-471, 552, 710, 843, 1074-1076). Paper chromatography (786, 1003) and thin layer chromatography (91, 680) have been employed in identifying the lichen tetronic acids. Vulpinic acid, pulvinic acid, and other tetronic acids have been tested for biological activity (35, 162, 374, 394-396, 428, 577, 644, 713, 717, 896, 897, 992, 1014). It has been observed that vulpinic acid causes hyperthermia leading to death in foxes and wolves (896, 897).

oxalate to give ethyl cyanophenylpyruvate **(350).** Compound **350** may be condensed with any aryl acetonitrile under Claisen

C₆H₅CH₂CN COOC₂H₅ **I** $\frac{1}{2}$ C₆H₅CHCOCOOC₂H₅ ĊΝ **350**

conditions to give unsymmetrical ketipic acid derivative. The Volhard method and the Asano modification have been employed in the synthesis of substituted pulvinic acid derivatives (ref 9, 28, 32-34, 86, 660, 769, 131, 417, 530, 558, 562, 683, 940, 1189). In a more recent method, the condensation of **350** and its analogs with aryl acetonitriles is carried out in dimethoxymethane in the presence of sodium hydride at -10 °C.⁸⁶ The yields are about 50-60%.

b. From Phenylacetyl Chloride. Phenylacetyl chloride condenses with oxalyl chloride in the presence of triethylamine and pyridine to give pulvinic dilactone⁸³³ in 20% yield. This method is not a general method.

$$
2C_6H_5CH_2COCl + CICOCOCl \longrightarrow 16
$$

c. From Cyclopropenone Derivative. Farnum and coworkers³³³ have reported that phenylhydroxycyclopropenone **(351)** is converted to pulvinic dilactone (16) on treatment with thionyl chloride in benzene at 40 °C. The conversion may proceed as shown in Scheme XXXIII.

B. Methods of Synthesis

a. Volhard's Method. This method was first employed by Volhard¹¹⁸⁹ and may be considered to be a general method for the synthesis of ketipic acid^{911,912} derivatives (349) which on acid hydrolysis give pulvinic dilactone derivatives. The method consists of the condensation of diethyl oxalate with phenylacetonitrile in the presence of sodium ethoxide. This method has been modified subsequently by Asano and Kameda.³² In the modified method, phenylacetonitrile is condensed with diethyl

d. From Polyporic Acid Derivatives. Polyporic acid **(352)** and its analogs have been the sources for the synthesis of lichen tetronic acids. Biogenetic pathways for these substances involve polyporic acid.⁷⁰¹ Compound 352 occurs as a fungus pigment⁵⁵⁷ and is readily prepared by Cain's method.^{175,176} Polyporic acid is converted to pulvinic dilactone on oxidation with lead tetraacetate in glacial acetic acid.³⁶¹ The compound termed iso-

vulpinic acid by Spiegel⁹⁰⁵ has been shown to be ethyl pulvinate. Moore and coworkers^{697,1030,1031} employed dimethyl sulfox-

ide-acetic anhydride for the oxidation of polyporic acid. Pulvinic dilactone is obtained in 90% yield. Analogs of 16, 4,4'-dimethoxypulvinic dilactone and 4,4'-dimethoxypulvinic dilactone, have also been prepared in 90% yield. The oxidation of atromentin (2,5-di-p-hydroxyphenyl-3,6-dihydroxy-1,4-benzoquinone) may be carried out in glacial acetic in the presence of hydrogen peroxide–hydrochloric acid.^{558,1030}

C. Reactions of Pulvinic Acid

Pulvinic acid may be decarboxylated by heating in quinoline with copper chromite. The product obtained is α -phenyl- β hydroxy- γ -benzylidene- $\Delta^{\alpha,\beta}$ -butenolide (17).⁸⁶³ This compound

on heating to 270 °C is converted to a cyclopentanetrione derivative 353. Compound 353 has been converted to 17 on heating to 228°.¹¹¹¹ It may be pointed out that vulpinic acid methyl ether¹⁰⁰¹ (354) on heating with potassium hydroxide followed by acidification gives 2,5-diphenyl-3-methoxy-2-cyclopentene-1,4-dione (355), which is also obtained from 0-

methylpulvinone (356).⁵⁵⁸ It may also be pointed out that cy-

clopentanetrione γ -lactone rearrangement was employed in the synthesis of α -(4-hydroxyphenyl)- β -hydroxy- γ -(4-hydroxybenzylidene)- $\Delta^{\alpha,\beta}$ -butenolide, a natural product obtained from Aspergillus terreus.⁷³³

The reaction of pulvinic acid or vulpinic acid with O-phenylenediamine to give a benziminazole derivative 356 has been used as proof of the presence of a substituent in one benzene ring or the other (ref 8, 415, 418, 530, 681, 683, 863). It has been found, however, that ozonolysis gives a better insight into this information.^{6,9,106} The products obtained are oxalic acid, benzoic acid, and benzoylformic acid ester or substituted benzoylformic acid ester.

The reaction of pulvinic dilactone with phenylalanine methyl ester hydrochloride gave rhizocarpic acid (343), and reaction of 16 with L-leucine methyl ester hydrochloride gave epanorin (344).³⁶²

Mass spectra of pulvinic dilactone, calycin, vulpinic, pinastric and rhizocarpic acids have been reported with reference to their fragmentation patterns.^{616,195,1195} Mass spectral data have been used to show that calycin has structure 339 and not 16 (R = OH) as originally assumed.⁶¹⁶

Vl. Chemical Properties of Butenolides

A. Reaction with Acids and Bases

Distillation of $\Delta^{\alpha,\beta}$ -butenolide in the presence of a trace of acid is reported to cause its conversion to succinic acid.²⁹¹ The

product left in the flask after distillation of $\Delta^{\alpha,\beta}$ -butenolide is mainly maleic acid with some traces of fumaric acid.

Treatment of $\Delta^{\alpha,\beta}$ -butenolide with hydrogen chloride gas results in the formation of a butyrolactone derivative and not γ -chlorocrotonic acid which is obtained by hydrolysis with aqueous HCI. Reaction with hydrogen bromide gives the cor-

responding bromobutyrolactone.²⁸⁸ Under similar conditions, β -angelica lactone gives the corresponding butyrolactone derivative.²⁸⁹

It may be pointed out that acid or base hydrolysis of Δ^{β,γ_-} butenolides gives γ -keto acids. Thus γ -pentacarboxylmangano- $\Delta^{\beta,\gamma}$ -butenolide gives β -pentacarbonylmanganocarbonylpropionic acid on acid hydrolysis.⁵⁷⁰ α -Angelica lactone gets protonated in excess $FSO₃H-SbF₅$ solution at -60° to give a ketocarboxonium ion, the structure of which is confirmed by NMR.⁷³⁶

B. Reaction with Acid Chlorides

Acetyl-substituted butenolides such as 357 react with 1 equiv

of PCI₅ to give chlorovinyl butenolides. With 2 equiv of PCI₅, the products obtained are the dichlorovinyl derivatives 358. It may

be pointed out that $PCl₃$ in acetic acid (or $PBr₃$ in acetic acid) has been reported to convert β -santonin to 359, 1192 and the lactone ring remains intact. Under similar conditions, PBr₃ gives 360 and not the bromo analog of 359.

C. Reaction with Alcohols

Alcoholic hydrogen chloride converts $\Delta^{\alpha,\beta}$ -butenolide to give ethyl oxobutanoate obtained by the isomerization of $\Delta^{\alpha,\beta}$ -butenolide to the $\Delta^{\beta,\gamma}$ -form followed by alcoholysis of the latter. Also obtained are γ -ethoxybutyrolactone, β -chloro- γ -butyrolactones, and products of hydrolysis or alcoholysis of these compounds.²⁹⁰ Reaction of β -angelica lactone with ethanol in the presence of HCI gives ethyl levulinate as also γ -methyl- β chlorobutyrolactone.²⁹² The compound α -chloro- $\Delta^{\alpha,\beta}$ -butenolide reacts with alcoholic HCI to give β -formyl- α -chloropropionates, β -formylacrylates, and γ -alkoxy- $\Delta^{\alpha,\beta}$ -butenolides.

D. Reaction with Diazomethane

Diazomethane reacts with α,γ -dimethyl- γ -methoxy- $\Delta^{\alpha,\beta}$ butenolide to give a pyrazoline derivative 361.³¹¹ Reaction of α -cyclohexylidene- γ -aryl- $\Delta^{\beta,\gamma}$ -butenolides with diazomethane has been reported to give cyclopropane derivatives 362.⁵⁸ With diazopropane, $\Delta^{\alpha,\beta}$ -butenolides react to give two types of products 363 and 364.³⁵⁹ It may be pointed out that the reaction of diazomethane with γ -arylidene- α -aryl- $\Delta^{\alpha,\beta}$ -butenolides (365) leads to the formation of C-alkylation products, β -methyl derivatives of 365.⁷⁹¹

E. Reaction with N-Bromosuccinimide

 β -Methyl- $\Delta^{\alpha,\beta}$ -butenolide (366) is brominated by NBS to give the γ -bromo derivative. The latter compound on hydrolysis gives c/s -formylcrotonic acid, the product which may be considered to be an oxidation product of 366.²²⁸ On the other hand, treat-

ment of a series of $\Delta^{\alpha,\beta}$ -butenolides with NBS gives γ -bromo derivatives. The corresponding reactions with $\Delta^{\alpha,\beta}$ -butenolide, β -ethyl- $\Delta^{\alpha,\beta}$ -butenolide, and α,β -dimethyl- $\Delta^{\alpha,\beta}$ -butenolide give γ -hydroxy derivatives of these compounds. 923

F. Reaction under Friedel-Crafts Conditions

The work of Schmitt and coworkers in employing the Friedel–Crafts reaction for the synthesis of $\Delta^{\alpha,\beta}$ -butenolides has been discussed already. A similar reaction has been employed by Prigent and coworkers^{778,779} who prepared a series of substituted $\Delta^{\alpha,\beta}$ -butenolides 367 by this method. Filler and Leipold³⁴⁸ prepared a series of substituted naphthoic acids by the reaction of α -arylidene- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolides. This type of a ring closure has been effected on 9-fluorenylidene butenolides⁴³⁵ to give fluoranthenecarboxylic acids (368). α - F

Angelica lactone and γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide have been reacted with benzene and toluene in the presence of $AICI₃$ to give the corresponding 1,2-diacylethane derivatives.²⁰⁹ A similar reaction with α -angelica lactone and benzene was reported by Eijkmann to give γ , γ -diphenylvaleric acid.^{306,1107-1110}

$$
\begin{array}{ccc}\n & \xrightarrow{Art} & \text{RCOCH}_{2}CH_{2}COAr \\
 & \xrightarrow{Art} & \text{RCOCH}_{2}CH_{2}COAr\n\end{array}
$$

It may be pointed out that the ring-closure reaction of α -arylidene- γ -aryl- $\Delta^{\beta,\beta}$ -butenolides to naphthoic acids has been effected by a mixture of HCI and acetic acid. Thus El-Assal and Shehab308,309 prepared a series of naphthoic acids **369** from

 $Ar = 4-CH_3OC_6H_4$, $4-CH_3C_6H_4$, $4-CIC_6H_4$, $3,4-(CH_3O)_2C_6H_3$

 α , β -tolylidene butenolides. They also reported that α -(2,3dimethoxybenzylidene)- γ -(3,4-dichlorophenyl)- and α -(2,3dimethoxybenzylidene)- γ -(2,5-dimethoxyphenyl)- $\Delta^{\beta,\gamma}$ -butenolides cyclize to the corresponding naphthoic acid derivatives. The butenolide from 5,6,7,8-tetrahydro-2-naphthaldehyde and β -(2,3-dichlorobenzoyl)propionic acid also cyclizes to an anthroic acid derivative.

G. Reaction with Organometallic Compounds

Chiron and Graff reported that α -angelica lactone, γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide, and its γ -benzyl analog react with aryl and aralkyl Grignard reagents to give keto alcohols of type 370, 209

With indolylmagnesium bromide, both α -angelica lactone and γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide give the corresponding 1-acylindoles 371.⁵³⁴ The reaction of furanones with Grignard reagents has

been used in the synthesis of a series of highly colored furylium perchlorate salts by Fabrycy and coworkers. 325-328

Yates and coworkers reported that reaction of a series of $\Delta^{\beta,\gamma}$ -butenolides with phenyllithium gave mixtures of diacylethanes (ref 103, 1057, 1058, 1122). A similar reaction has

been employed by Lutz and co-workers recently.¹¹⁶² The compound α,α,γ -triphenyl- $\Delta^{\beta,\gamma}$ -butenolide reacted with phenyllithium to give a 1,4-diketone, diphenylbenzoylphenacylmethane.

H. Reaction with Enzymes

Tronche and coworkers studied the effects of α -phenyl-, α -p-tolyl, α -p-anisyl-, and α -p-chlorophenyl- $\Delta^{\beta,\gamma}$ -butenolides on the activities of hepatic or renal sorbital dehydrogenase by injecting the former into mice. Correlation between the substituents on the benzene ring and enzymatic activity shows H $> CH₃ > OCH₃$. Hammett σ factors were determined (0.00 for H, -0.170 for CH_3 , -0.268 for OCH₃, and $+0.227$ for CI), and a correlation between electronic parameters and biological activity of butenolides was shown.⁹⁶⁸ In studying the mechanism of chymotrypsin action, Bruice and co-workers studied the uv spectrum of β -phenyl- $\Delta^{\alpha,\beta}$ -butenolide and found that the spectra of acylchymotrypsin intermediates formed during the ester hydrolysis catalyzed by chymotrypsin resemble α -benzylidene- γ -butyrolactone.¹⁶⁶

I. Reaction with Oxidizing Agents

The anodic oxidation in methanol of α -methoxy- γ , γ -dimethylaconic acid is reported to yield a mixture of α, α, β -trimethoxy- γ , γ -dimethylparaconic acid and terebic acid.⁹⁶⁴ Oxidation of furan compounds such as 2-methylfuran and furfuryl alcohol with peracetic acid is reported to give α -hydroxy- γ methyl- $\Delta^{\alpha,\beta}$ -butenolide and $\Delta^{\alpha,\beta}$ -butenolide, respectively.¹²² Oxidation of furfural in ethanol in the presence of a sensitizer is reported to yield γ -ethoxy- $\Delta^{\alpha,\beta}$ -butenolide (ref 271, 584, 851, 852, 1049, 1114, 1115). The oxidation of 2-acetylfuran with H₂O₂-V₂O₅ is reported to give $\Delta^{\alpha,\beta}$ -butenolide along with 2acetoxyfuran.⁵⁸⁵ Photoxidation of 3-methylfuran and 3-methyl- Δ -furoic acid is reported to yield α -methyl- γ -ethoxy- $\Delta^{\alpha,\beta}$ -butenolide.³³¹

Reid and coworkers studied the oxidation of tetronic acids with CrOa-H2SO4. Their results are summarized in Schemes XXXIV. 1080,1081

J. Reducing Agents

Hydrogenation of butenolides in the presence of palladium on charcoal result in hydrogenation with hydrogenolysis of the benzyl position with absorption of 2 mol of hydrogen. The compound α, α -dibenzyl- γ -phenyl- $\Delta^{\beta, \gamma}$ -butenolide gives 2,2dibenzyl-4-phenylbutyric acid in 96% yield. α -Phenyl- $\Delta^{\beta,\gamma}$ -

butenolide is converted to 4-phenylbutyric acid under similar conditions (45 psi for 16 h). With Adams catalyst (platinum on charcoal) $\Delta^{\beta,\gamma}$ -butenolides are converted to a mixture of butanolides and the corresponding substituted butyric acids in the ratio of 4:1. The $\Delta^{\alpha,\beta}$ isomers are converted to butanolides under the same conditions. If isomerization to $\Delta^{\beta,\gamma}$ -lactones occurs, then the butanolide is accompanied by a 12% conversion to butyric acid derivatives. McCoy reported the formation of α , α -dibenzyl- γ -methylbutanolide from the corresponding butenolide along with α,α -dibenzylvaleric acid.⁶⁶¹ Pulvinic dilactone is reduced to dihydropulvinic acid in the presence of Pd/ Q 24,1191

Sodium borohydride reduces 15-oxocardenolides to $15-\alpha$ hydroxycardenolides.⁷³⁴ Lithium aluminum hydride reduction of butenolides has been reported earlier.^{345,788,791}

K. Conversion to Furan Derivatives

Minato and Nagasaki have reported an elegant method for the conversion of fused $\Delta^{\alpha,\beta}$ -butenolides to furan compounds.^{677,678} Their method consists of adding diisobutylaluminum hydride in tetrahydrofuran to a solution of the lactone. The yields are 45-75%. The following is an example of the method.¹¹²⁹

Benzoylation of α -angelica lactone in dimethylformamide in the presence of sodium hydride is reported to give a furan derivative 372.⁶⁶¹

L. Conversion to Other Heterocycles

Furanoquinolines have been reported by the reduction of o-nitrobenzylidene butenolides.⁴³¹ The corresponding methylenedioxy derivative of 373 is also prepared thus.

 α -Nitropiperonal reacts with α -angelica lactone in pyridine to give **374.** Compound **374** is converted to the quinoline derivative **375** when heated with triethyl phosphite.⁴⁹²

M. Alkylation of Butenolides

A study of the alkylations of butenolides **21,** 36, and **55a** and γ -4-methoxyphenyl- $\Delta^{\beta,\gamma}$ -butenolide under various conditions has been completed by McCoy661 and has been discussed earlier. A similar study of the alkylation reaction has been reported by Rio and Hardy.^{816,820} According to these authors, the alkylation of α, β, γ -triphenyl- $\Delta^{\alpha, \beta}$ -butenolide in the presence of pulverized potassium hydroxide and dimethyl sulfate gives 2-methoxy-3,4,5-triphenylfuran exclusively, while alkylation in the presence of solid KOH and methyl iodide gives α, β, γ -triphenyl- α -methyl- $\Delta^{\beta,\gamma}$ -butenolide, a product of C-methylation. More recently, Hornfeldt and coworkers reported that α -angelica lactone gets alkylated with methyl iodide in the presence of the base tetrabutylammonium hydrogen sulfate and sodium hydride to give a 26% yield of a mixture of three compounds: α, α dimethyl- and α -methyl- α -angelica lactones and α -methyl- β angelica lactone **(376).** Compound **376** is the only product ob-

tained when the methylation is carried out with dimethyl sulfate.¹⁹⁸ When alkylations are carried out with picolyl anions, addition to the double bond is reported to occur.¹⁴⁶ Similar additions also occur with α -methyl- and α -ethyl- $\Delta^{\alpha,\beta}$ -butenolides.¹⁴⁷ Pelletier and co-workers¹¹⁰³ prepared a series of butenolides by an alkylation procedure consisting of treating butenolides with diazoalkanes and decomposing intermediate pyrazolines. When the β position is blocked as in the case of

 β -caromethoxy- $\Delta^{\alpha,\beta}$ -butenolide, the product obtained is the α -alkylation product. It may be pointed out that the intermediate pyrazolines 363 obtained from α -methyl- $\Delta^{\alpha,\beta}$ -butenolide and $\Delta^{\alpha,\beta}$ -butenolide are converted to a mixture of products on photolysis. Alkylation and cyclopropane formation are competing reactions. However in the presence of a sensitizer, **378** and **379** are obtained in 88 and 99% yields, respectively.³⁵⁹

N. Conversion to Diketones

Ficini and coworkers prepared a series of α -diethylaminoethylidene compounds 63 from $\Delta^{\beta,\gamma}$ -butenolides.³³⁹⁻³⁴¹ These compounds are converted to diketones **380** on acid hydrolysis.

O. Photochemical Reactions

 α -Angelica lactone is converted to methyl vinyl ketone when irradiated for 6 h in pentane solution. Only methyl vinyl ketone is obtained in 30% yield. Under similar conditions, α -methyl- α -angelica lactone gives a 40% yield of methyl propenyl ketone. A change of solvent to methanol or butanol did not significantly improve the yields.¹⁰⁶¹ A similar photodecarbonylation of α angelica lactone has been reported by Chapman and Mcintosh.²⁰⁰ On the other hand, Hg-vapor sensitized vapor-phase photolysis of $\Delta^{\alpha,\beta}$ -butenolide gave 1-propyne, allene, and cyclopropene. The products obtained from β -methyl- $\Delta^{\alpha,\beta}$ -butenolide were acetylene, ethylene, 1-propyne, 1,4-butadiene, 1-methylcyclopropene, 1-butyne, 1,2-butadiene, and a major quantity of 2-butyne.⁵⁷⁸ Irradiation of $\Delta^{\alpha,\beta}$ -butenolide in polar solvents with a low-pressure mercury lamp is reported to yield the anti photodimers **381** and **382.** These cyclobutane derivatives

are characterized by ir, NMR, and ORD measurements. Compound **381** is formed by head-to-head dimerization, while **382** is formed by head to tail dimerization. Solid-phase irradiation

leads to the formation of 383, a head-to-head syn dimer.⁷³⁰ It is noteworthy that sensitized photolysis of 3-ethylidene-4,5 dihydro-2($3H$)-furanone not only gave the cis isomer but also 3-vinyl-4,5-dihydro-2(3H)-furanone, formed from the cis isomer 732

Tada and coworkers observed that cyclopentene and cyclohexene add to $\Delta^{\alpha,\beta}$ -butenolide photochemically to give 384 and 385. The cycloaddition reaction is sensitized by acetone but not by acetophenone and quenched by dimethoxyethylene.⁹⁴²

The compound α -benzylidene- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide (65) is reported to undergo two primary photochemical reactions: hydrogen abstraction from solvent and geometric isomerization when irradiated in 2-propanol solution with 3130-A light. Compound 65 is assumed to be a mixture of geometric isomers and on irradiation gave only the syn isomer. On irradiation with 3650-A light, 65 underwent isomerization. Aromatic hydrocarbons sensitized the reaction, and some sensitizers selectively caused cis-trans isomerization while others led to isomerization. An orbital symmetry correlation between the sensitizers and 65 was reported.^{987,1200} According to Tokumaru and coworkers,⁹⁶² compound 65 efficiently reabsorbs fluorescence emitted by the hydrocarbon sensitizers, and the wavelength of the fluorescence seems to govern the reaction.

P. Geometric Isomerism among Butenolides

The possibility of the existence of geometric isomers of α benzylidene- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide (65) has been considered for a long time. Ullman and coworkers⁹⁸⁷ claimed that the product obtained by the condensation of 3-benzoylpropionic acid and benzaldehyde under Perkin-Erlenmeyer conditions is a mixture of isomers although these were not separated and characterized. Thiele reported a melting point of 167 °C for what was purported to be a geometric isomer of 65. The compound melting at 156 $^{\circ}$ C¹¹²⁵ is designated the *E* isomer on the basis of NMR spectrum⁶⁴² by Maquestiau and co-workers. They reported that they did not isolate a mixture of 65a and 65b during the preparation.¹¹²⁵ Compound $65a$ with its E configuration is

not isomerized by trifluoroacetic acid and is reported to have syn geometry. It now appears certain that the 156 °C melting isomer of 65 or the commonly known compound has the E configuration, while the Z configuration may be attributed to Thiele's 167 °C melting material⁹⁶⁰ or Kohler and Conant's⁵⁶⁰ 180 °C melting isomer. Until such time as this compound is isolated and characterized, any structure assignment is purely conjectural. Cor-

dier, as mentioned earlier, isolated two isomers of α -benzylidene- γ -(p-tolyl)- $\Delta^{\beta,\gamma}$ -butenolide (66).^{231,237} Two geometric isomers of α -(5-nitrofurylidene)- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide (59) have also been reported.^{501,502}

Although geometric isomerism is possible in the case of γ benzylidene- α -phenyl- $\Delta^{\alpha,\beta}$ -butenolide, attempted photoisomerization of 12 ($R = R' = H$) resulted in extensive degradation of the lactone.¹⁰³⁰ Compound 12 ($R = R_1 = H$) has the transtrans structure. This compound has been reported by others as well (ref 24, 792, 905, 961, 1191). The cis-trans isomer is still not known. Geometric isomers of γ -4-methoxybenzylidene- $\Delta^{\alpha,\beta}$ -butenolide (288) and its analogs have been reported and structural assignments have been made.^{1050,1051}

Q. Polymerization of Lactones

 $\Delta^{\alpha,\beta}$ -Butenolide is homopolymerized in the presence of an anionic catalyst consisting sodium naphthenide, a tertiary amine, phosphine, or arsine in the absence of oxygen and water.²⁰⁷⁷⁴³ Avetisyan and co-workers prepared copolymers of α -carbethoxy - β , γ -dipropyl- $\Delta^{\alpha,\beta}$ -butenolide and its α -cyano analog and styrene in the presence of boron trifluoride etherate.^{40,43} The α -cyano and α -carbethoxy butenolides failed to copolymerize. Copolymerization of α -chlorovinyl- β, γ, γ -trimethyl- $\Delta^{\alpha, \beta}$ -butenolide with acrylonitrile and methyl acrylate have been reported.⁴⁹ Copolymers of γ -dichloromethylene- $\Delta^{\alpha,\beta}$ -butenolide and similar compounds with styrene have been reported (ref 1037, 1039, 1040, 1042, 1043).

R. Syntheses with Butenolide Compounds

In the synthesis of pilocarpine (386), γ -ethoxy- $\Delta^{\beta,\gamma}$ -butenolide is converted to α -ethyl- β -carboxymethyl- $\Delta^{\beta,\gamma}$ -butenolide by condensation with diethyl malonate.²⁷¹ Claisen condensation

of α -ethyl- β -carbomethoxymethyl- $\Delta^{\alpha,\beta}$ -butenolide with phthaloylglycyl chloride gives 387, a key intermediate in the synthesis of 386.219,220

In the synthesis of the prostaglandins, Wendler and coworkers reacted β -angelica lactone with methyl 8,10-undecadienoate to give 388.⁵⁸⁷ Schlessinger and co-workers reported

that the anion of diethyl acetal monosulfoxide 389 adds γ methyl- and γ -methoxy- $\Delta^{\alpha,\beta}$ -butenolide,⁴⁶⁴ via a Diels-Alder

reaction in which β -methyl- γ -hydroxy- $\Delta^{\alpha,\beta}$ -butenolide acts as a dienophile toward 2,3-dimethylbutadiene to give 390.¹⁶⁸ Similarly, γ -ethoxy- $\Delta^{\alpha,\beta}$ -butenolide reacts with butadiene, 2,3-dimethylbutadiene, and cyclopentadiene to give adducts similar to **390.⁴**

In their synthesis of avenciolide, Schlessinger and coworkers prepared and iodolactone, **391,** by this unusual reaction.⁴⁶⁵

A series of cycloaddition products involving α -angelica lactone have been reported (Scheme XXXV). The coumarin de-

rivative obtained from α -angelica lactone and salicylaldehyde has been converted to a series of heterocycles.¹⁰²⁶ Benzonitrile oxide reacts with β -substituted $\Delta^{\alpha,\beta}$ -butenolides to give 1,3dipolar addition products 392.⁶⁷¹ Benzonitrile oxide reacts with α -benzylidene- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide to give 393.⁷⁹⁵

The reaction of α -phenylamino- $\Delta^{\alpha,\beta}$ -butenolide with diphenylketene is reported to give 2,3,3a,4,6,6a-hexahydro-2,6-dioxo-1,3,3-triphenyl-1H-furo $[3,4-b]$ pyrrole.⁶⁷⁴

S. Reaction with Thiols

It is well known that thiols protect against the cardiotoxic activity of cardiac glycosides. Whether this protective action is due to the thiol's reaction with the lactone ring of cardenolide or not has been extensively investigated. The reactions of butenolides with sulfur-containing compounds have been studied at biological pH's.

Hellstrom and coworkers have reported that α -angelica lactone reacts with thioglycolic acid in water by ring opening with the formation of a thiol ester of levulinic acid in the first instance, followed by the formation of levulinate ion and thioglycolic acid (Scheme XXXVI). 456 These authors found that β -angelica lactone

SCHEME XXXVI

reacts with thioglycolic acid at 22 ⁰C giving an adduct, 3-carboxymethylthio-4-hydroxyvaleric acid γ -lactone (394).⁴⁵⁷ The

reaction of β -angelica lactone with thioacetic acid and thiobenzoic acid is reported to give β -thioacetyl and β -thiobenzoyl adducts 395, 372 Reactions of α - and β -angelica lactones with thioacetic acid were studied, and it was found that α -angelica lactone gave c/s-3-(acetylthio)-4-hydroxyvaleric acid lactone

395 (R = CH₃), while β -angelica lactone gave the trans isomer of 395 ($R = CH₃$). The acetyl compounds gave the thio compound on ammonolysis. It was observed that $\Delta^{\alpha,\beta}$ -butenolide adds HCI and thioacetic acid to give the corresponding β -substituted butyrolactone derivatives.³⁷³ The reactions of α - and β -angelica lactones with hydrogen sulfide led to the formation of thiodilactones 396 and 397.1193

The compounds $\Delta^{\alpha,\beta}$ -butenolide and α -methyl-, β -methyl-, and γ -methyl- $\Delta^{\alpha,\beta}$ -butenolides were reacted with 1-propanethiol and α -toluenethiol, and the products were found to be the β thiosubstituted lactones.⁵⁹⁰ Michael addition of α -toluenethiol to $\Delta^{\alpha,\beta}$ -butenolide has been reported, and the product undergoes retro-Michael reaction to give the pure starting materials.⁵¹⁶

The reaction of cysteine with levulinic acid gives a pyrrolidinothiazolidine compound 398.⁷³⁷ The reaction of cysteine with

 β -angelica lactone was reported to give an eight-membered lactone 399 (ref 50 in 791). Black recently repeated the reaction

of cysteine with β - and α -angelica lactones, γ -ethyl- $\Delta^{\alpha,\beta}$ -butenolide, γ -ethyl- $\Delta^{\beta,\gamma}$ -butenolide, and penicillic acid and reported the isolation of lactones with α -angelica lactone and levulinic acid.¹⁰⁹ Hellstrom and co-workers ran the reaction of cysteine with α -angelica lactone and concluded that the product obtained is 398, not 399 ($R = CH₃$), ⁴⁵⁸ based on NMR evidence. Kupchan and coworkers reported that cysteine reacts with $\Delta^{\alpha,\beta}$ -butenolides to give β -thioadducts 400.⁵⁹⁰

Reaction of $\Delta^{\alpha,\beta}$ -butenolide with n-octadecyl- and n-hexadecylthiols is reported to give β -substituted thiolactones.⁴⁸⁹ Similar reactions with α -chloro, γ -methyl, and unsubstituted $\Delta^{\alpha,\beta}$ -butenolides and α -angelica lactone with methyl-, ethyl-, isopropyl-, and terf-butylthiols have been conducted. With $\Delta^{\alpha,\beta}$ -butenolides, only the β -substituted thio derivatives are obtained, while with α -angelica lactone the product is reported to be 401.²⁹³ The reactions are conducted in acid medium while

with α -chloro- $\Delta^{\alpha,\beta}$ -butenolide, a basic medium is employed. Finally the reaction of α -amides of butenolides with phosphorus pentasulfide is reported to give α -thioamides.⁵²

T. Reaction with Hydrazine and Hydroxylamine

Reaction of hydrazine with $\Delta^{\beta,\gamma}$ -butenolides gives 6-arylpyridazin-3-one, also obtained from β -aroylpropionic acids.^{726,842} In alcoholic solution in the cold, α -(9-fluorenylidene)- γ -aryl- $\Delta^{\beta,\gamma}$ -butenolides react to give open-chain compounds 402, whereas in boiling alcohol, the products obtained are pyridaz-

$R = 9$ -fluorenylidene, $Ar = C_6H_5$, 4-CIC $_6H_4$, 4-CH $_3C_6H_4$, 4 -CH₃OC₆H₄

inones. 59 The compound α -benzoyl- β,γ,γ -trimethyl- $\Delta^{\alpha,\beta}$ -butenolide reacts with phenylhydrazine to give a phenylhydrazine 403 which on cyclization with PCI_5 gives the diazophospholine derivative 404.³⁹ Ducher and coworkers observed that α -angelica lactone reacts with hydrazine to give levulinoylhydrazine (405). β -Angelica lactone is first converted to the α isomer by hydrazine, and the final product obtained is 405. Phenylhydrazine reacts with $\Delta^{\alpha,\beta}$ -butenolide and α - and β -angelica lactones to give 406.¹⁷⁸

Fused butenolides react with hydrazine to give fused pyridazinones. 865 The reaction has been extended to the androstanolone-glyoxylic acid condensation product 202. Condensation

406,
$$
R = H, CH_3
$$

of **407** with hydrazine and hydroxylamine gives pyridazinone **408** and oxazinone 409.⁷⁷⁶ This reaction was extended to steroidal lactones as well.⁷⁷³

U. Reaction with Ammonia and Amines

Considerable confusion exists regarding the products obtained by the reactions of butenolides with ammonia and primary amines. In general, α -arylidene- γ -aryl- $\Delta^{\beta,\gamma}$ -butenolides react with ammonia or primary amines in benzene to give the propionamide derivatives. These compounds are converted to a cyclic pyrrolinone structure on heating with acetic anhydride or upon recrystallization³⁰⁷ or on treatment with 6 N HCI.^{501,502} Direct conversion to the pyrrolinone derivative is achieved by heating an alcoholic ammonia solution of the butenolide. No reactions of γ -arylidene- α -aryl- $\Delta^{\alpha,\beta}$ -butenolides with amines or ammonia have been reported.

Dihalobutenolides (from mucochloric or mucobromic acids) are converted to the β -amino derivatives on treatment with amines. This reaction has been discussed in an earlier section.

1. With $\Delta^{\alpha,\beta}$ -Butenolides

A study of the reaction of primary amines such as n -propylamine, n-butylamine, and tryptamine with strophanthidin has been reported by Elderfield and coworkers.¹⁰⁷⁹ They observed that Δ^3 -pyrrolinones are obtained as the end products. Thus

 β -phenyl- $\Delta^{\alpha,\beta}$ -butenolide reacted with n-propylamine in refluxing benzene for 12 h to give the pyrrolinone derivative **410** (R = C_6H_5 : $R' = p-C_3H_7$), which was too unstable for purification. An

amido imine was the main product isolated and characterized as the hydrobromide. With primary amines in ethanol at -10 °C, mucobromic acid gave 4-bromo-5-hydroxy-5-alkyl- Δ^3 -pyrrolin-2-ones.⁸⁸⁰ Straight-chain amides were reported to be formed earlier when γ -p-anisyl- γ -hydroxy- α, β -dihalo- $\Delta^{\alpha, \beta}$ butenolides reacted with amines in alcoholic solution at temperatures below 20 °C. Jones and coworkers⁵¹⁸ summarized recently the reactions of amines on $\Delta^{\alpha,\beta}$ -butenolides. According to them, three types of reactions are possible: (i) Michael addition of the base to the double bond in the lactone ring, (ii) attack by the base on the carbonyl carbon to give an amide derivative, (iii) attack on the γ position of the lactone to give a butenoic acid derivative with the base attached to the γ position of the acid.

 β -Angelica lactone, when reacted with aqueous methylamine at room temperature, gave an 80% yield of β -methylamino derivative. With aqueous methylamine at 0^oC , the product obtained was a pyrrolinone derivative. With benzylamine in the presence or absence of water, the product was the Michael adduct.⁵¹⁹ When the reaction was carried out at 80 °C, the product was β -benzylamino-4-hydroxy-N-benzylpentanoamide. A similar reaction was carried out with guanosine and β -angelica lactone, and it was found that Michael addition was not favored.⁵¹⁷ A similar pyrrolinone formation has been reported.⁶⁵⁸ It should be pointed out that an excellent review of these pyrrolinones and their preparations has been published recently.⁸¹⁷

2. With $\Delta ^{\beta , \gamma }$ -Butenolides

Cromwell and co-workers reported that γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide reacts with morpholine to give β -benzoylpropionomorpholide, a product also obtained from β -benzoylpropionic acid and morpholine.²⁴⁷ Reaction of **21** with ammonia, methylamine, and aniline in ether solution at room temperature for 1 day was reported to yield N -alkyl (or aryl)- β -benzoylpropionamides, all straight-chain compounds. Other amines such as cyclohexylamine, dimethylamine, and sec-benzylmethylamine were also employed.²⁴⁸ In all these cases, the straight-chain compounds were obtained. Recently, the reaction of α , α -dimethyl- γ -(1-phenyl-3-methylpyrazol-4-yl)- $\Delta^{\beta,\gamma}$ -butenolide (411) with benzylamine has been reported.¹⁰⁷⁸ Compound 411 gives an amide with benzylamine in benzene and a pyrrolidine derivative in ethanol. The amide may be cyclized to a pyrrolinone derivative. These are exclusively obtained when alcoholic solutions of ammonia and methylamine are employed.

Jones and Young⁵¹⁸ reported that α -angelica lactone reacted with aqueous methylamine at 0 $^{\circ}$ C to give 1,5-dimethyl-5-hydroxypyrrolidin-2-one. With aniline and benzylamine, only the amide was obtained. Aqueous benzylamine was reported to give a hydroxypyrrolidone derivative. It is noteworthy that the cyclic isomer of levulinanilide, 5-hydroxy-5-methyl-1-phenyl-2-pyrrolidone, has been obtained by filtration of a chloroform solution of the anilide through an acid ion-exchange column,⁵³⁶ and its structure has been established by ir and NMR spectroscopy.

In a series of papers, Chiron and Graff reported the reaction of amines with $\Delta^{\beta,\gamma}$ -butenolides.^{209-212,602,785} The amides have been prepared in 90 % yields by heating the amine and lactone to 180°. The hydroxypyrrolidones are prepared by Grignard reaction on succinimides. In a few cases when a dialkylamine was employed, it was observed that isomerization of $\Delta^{\!\beta,\gamma}$ to $\Delta^{\alpha,\beta}$ occurred. With aromatic amines, hydroxypyrrolidones were obtained. With α,γ -dimethyl- γ -(p-anisyl)- $\Delta^{\alpha,\beta}$ -butenolide, α , α -dimethyl- γ -phenyl- $\Delta^{\beta,\gamma}$ -butenolide, and α , α -dimethyl- γ - $(p$ -tolyl)- $\Delta^{\beta,\gamma}$ -butenolide, aqueous solutions of amines gave only hydroxypyrrolidones. Infrared and ultraviolet spectral data have been employed to distinguish between these two types of compounds.

When other reactive functions are present in the lactone ring such as carboxylic acids, the corresponding amides are obtained.⁴² α -Acetylbutenolides react with amines to give iminobutenolides 412.⁵¹ Tetronic acids react with arylamines to give

 β -arylaminobutenolides. 334 It has also been reported that heating α -carboxyethylbutenolides with dimethylamine in water at 150-200^{'o}C yields the carboxamides.⁴⁷ Quinoline oxide alk-

 $X = H$, 4-CI, 4-CH₃O, 4-NO₂, 4-CH₃

ylates α -carbamoyl- β -methylthio- $\Delta^{\alpha,\beta}$ -butenolide in the γ position to give a γ, γ -bis(2-quinolyl) derivative.⁸⁹⁹

Reaction of γ -chloro- β , γ -dimethyl- α -ethyl- $\Delta^{\alpha,\beta}$ -butenolide proceeds with ammonia to give a pyrrolinone derivative.⁶⁰ Ammonium acetate in acetic acid has also been employed for this conversion.⁸⁹⁰

The pyrrolinone 2-oxo-3,5-diphenyl-3-pyrroline, formulated earlier as 2-oxo-3,5-diphenyl-2-pyrroline, has been shown to be a mixture of two dimers 413 and 414 by Rio and Masure.⁸¹⁷⁻⁸¹⁹ These authors report that α -phenyl- β -benzoyl-

propionitrile, which yielded 413 and 414 mixture on acid hydrolysis with 70 and 95% sulfuric acid, ⁷⁹⁴ reacts with ammonium acetate to give the known 415.1084,1085

V. Dilactones

Several dilactones or lactone dimers have been described. In general these dilactones may have the structures of types 416-422.

Dilactones of type 422 are also known as "Pechmann" dyes.⁹⁶⁷ Dimethyl- and diphenylmaleic anhydrides are converted to bifurandiones 422 ($R = CH_3$, C_6H_5), when heated with triethyl phosphite.¹⁰⁹² These bifurandiones are also obtained when phenyl-, diphenyl-, dimethyl-, and dichlorosuccinyl chlorides are

treated with triethylamine in benzene,¹⁰⁹³ These deoxygenative dimerizations have been used for the preparation of dimers in 52% yield.¹⁰⁹¹ α , α -Dilactones of type 417 are naturally occurring, and one such is ancepsenolide $(417, n = 12, R = CH₃)$ and its β -hydroxy analog.^{859-861,1194}

Spirolactones of type 420 have been reported.^{892,894} Hydrolysis of the substituted methyl acrylate **423** in methyl alcohol with hydrochloric acid gives 420 ($R = CH_3$). A similar spirolactone, **147,** has been described earlier.⁵²¹

The compound anhydrotetronic acid **(424)** is an example of a β , β -dilactone.¹⁷⁷ An α , β -dilactone from an α -tetronic acid has been reported by Scarpati and coworkers.⁸⁴⁶

Compounds of type **418** have been reported by Ried and coworkers.⁸¹¹⁻⁸¹⁵ Their method consists of treating the appropriate ketene with a diazo ketone in a hydrocarbon solvent at -60 °C. A similar dilactone **425** is obtained as a byproduct.⁴⁴⁸

Several γ , γ -dilactones have been reported. One such compound is obtained from the 2,3-dimethyl-3-p-xenoylpropionic acid. Treatment of its lactone with Tollen's reagent gives 426.630

In the conversion of α -angelica lactone to β -angelica lactone with triethylamine, Lukes and coworkers isolated a dilactone 427.628 Acid hydrolysis of ethyl 5-amino-2-furoate is reported

(γ -methyl- γ (γ -methyl- β -butanolide)- $\Delta^{\alpha+\beta}$ -butenolide)-

to produce **428** and its diastereoisomers.⁵⁴⁹ Hornfeldt repeated the earlier work of Lukes and co-workers (conversion of α - to

 β -angelica lactone) and reported the isolation of three compounds to which she also assigned structures **429** and two forms of 427, based on ir and NMR data.⁴⁸¹ Diastereoisomeric compounds **427** were reported earlier by Lukes and co-workers. According to Hornfeldt, Michael addition leads to the dimer formation.

The compound α -methyl- γ -phenyl- $\Delta^{\alpha,\beta}$ -butenolide has been reported by Ramirez and Rubin⁷⁸⁸ to melt at 223 °C. Schreiber

(γ -methyi- α (γ -methyl- β -butanolide)- $\Delta^{\alpha,\,\beta}$ -butenolide)

and co-workers 604 reported that the $\Delta^{\alpha,\beta}$ isomer is a liquid with a boiling point of $134-135$ °C (1 mm) and that the 223° melting compound is a dimer, to which they attribute structure **430.** These results have been confirmed by Springer.⁹⁰⁶

The compounds α,β -diphenyl- $\Delta^{\alpha,\beta}$ -butenolide and α,β,γ triphenyl- $\Delta^{\alpha,\beta}$ -butenolide have been converted to dimers. The diphenylbutenolide gives two types of dimers **431** and **432.**

Compound **431** is obtained from the diphenyl butenolide by treatment with potassium hydroxide in methanol.⁸¹⁸ The hexaphenylphenyl analog of **431** could not be prepared, possibly because of steric hindrance of the phenyl groups. Oxidation of **431** gives **432.** Compound **432** is obtained by treatment of the triphenyl butenolide with potassium hydroxide in methanol followed by oxidation with potassium ferricyanide.⁸¹⁹ Oxidation of the enolate of α, β, γ -triphenyl- $\Delta^{\alpha, \beta}$ -butenolide with K₃Fe(CN)₆ gives the hexaphenyl analog of 432.820

Compound **432** has been prepared by Volger and co-workers⁹⁹⁸ from dypnone by treatment with cupric acetate in methanol containing pyridine and triethylamine while oxygen gas is bubbled through the reaction mixture. Under similar conditions, isomesityl oxide gives tetramethyl analog of 432, 998, 999 These

authors also reported the conversion of β -benzoyl- α -phenylacrolein dimethyl acetal to **432** by acid hydrolysis followed by the cupric acetate catalyst oxidation. Compound **432** is also obtained by oxidation of α, γ -diphenyl- $\Delta^{\alpha, \beta}$ -butenolide.⁹⁹⁸ It may be

$$
\begin{array}{ccc}\n & \text{O} \\
\downarrow & \text{C} \\
\downarrow & \downarrow & \text{C} \\
\downarrow & \downarrow & \text{C} \\
\downarrow & \text{
$$

pointed out that when the oxidation of dypnone is carried out in the presence of sodium methoxide, ammonia, and cupric amine-methoxide complexes, the product obtained is 433_iooo

Compound 432 was prepared by Yates and Clark¹⁰⁵⁶ by the thermal decomposition of α -diazoacetophenone in dodecane at 140° in the dark for 12 h in 24% yield. Compound **432** was formulated as a dilactone containing $\Delta^{\alpha,\beta}$ -lactone moieties. Wasserman and coworkers reported that the high-melting isomer obtained by the dehydration of α -phenyl- β -benzoylpropionic acid is dimeric and gave it the structure 432. The photolysis of α diazoacetophenone **(434)** also gave an 8% yield of 432.¹⁰²⁹ This compound was also isolated by Strzelecka and coworkers in 9 to 17.3% yield by heating 434 and formulated as β , γ -diphenyl- $\Delta^{\beta,\gamma}$ -butenolide, which it was supposed to be for a long time. Hammond and coworkers isolated **432** by the photolysis of **434** in solution.²⁴⁴ Huisgen and coworkers isolated **432** by heating **434** in benzonitrile.487,488 The silver salt catalyzed decomposition of α -diazoacetophenone has been studied by Takebayashi, lbata, and co-workers. These authors reported the isolation of the dilactone, but they formulated it as a $\Delta^{\beta,\gamma}$ -butenolide dilactone.^{944–947} Since the melting point is reported to be 288–290 ⁰C, it is quite likely that Takebayashi and Ibata's formulation of **432** as a $\Delta^{\beta,\gamma}$ -lactone may be in error. As pointed out earlier, Ried and coworkers reacted diazo ketones with ketenes and isolated $\Delta^{\beta,\gamma}$ -butenolides only.⁸¹¹⁻⁸¹⁵ This reaction was employed by Yates and co-workers¹⁰⁵⁸ and also by Kende.⁵⁴⁰ When copper phthalocyanine was used as a catalyst in the decomposition of diazoacetophenone, the product obtained is 435.⁹⁴⁸

It should be pointed out that Yates and Clark¹⁰⁵⁶ isolated α,α,γ -triphenyl- $\Delta^{\beta,\gamma}$ -butenolide when diphenylketene is added to α -diazoacetophenone. Finally, McCoy 661 studied a series of Michael dimers and isolated two dilactones **436** and **437.** A similar dimer has been reported by Filler and Piasek.³⁴⁵

VII. Physical Properties

The spectral properties of butenolides have been extensively studied.

I. Infrared Spectra. The infrared spectra of β -angelica lactone in n-hexane, carbon tetrachloride, and chloroform have been reported. In chloroform solution the carbonyl band is split (1784 and 1759 cm^{-1}).¹⁴³ The integrated intensities of carbonyl stretching bands of β -angelica lactones have been measured in acetonitrile.¹⁰⁴⁸ Raubenheimer and DeKock correlated their

HMO calculations with characteristic infrared data for the lactones.⁸⁰¹ Self-association of α,β -disubstituted- γ -hydroxy- $\Delta^{\alpha,\beta}$ -butenolides has been studied as a function of the hydroxyl and carbonyl absorptions in the infrared.⁵⁶⁸ The dihaloprotoanemonin derivatives show a split carbonyl group.¹⁰³⁸ Hydrogen bonding between lactones and solvents as N-methylacetamide has been studied.⁸⁰⁰

ii. Ultraviolet Spectra. The uv spectral data of a series of hydroxybutenolides have been reported.⁸⁰⁸ Both α - and β -hydroxybutenolides have essentially the same high intensity absorption in neutral solution (λ_{max} ^{EtOH} \sim 235 m μ). However, tetronic acids exhibit a bathochromic shift of $20-25$ m μ when base is added, while the α -tetronic acids show a corresponding shift of 35-40 m μ . UV spectral data for a series of γ -arylidene- $\Delta^{\alpha,\beta}$ -butenolides have been published.¹⁰³⁰ The uv data were employed to distinguish between pinastric and isopinastric acids.⁴¹⁷

iii. NMR Spectra. The τ values for the methyl groups in α - and β -angelica lactones have been measured in deuteriochloroform and benzene.²²⁷ NMR data have been widely used in distinguishing between the $\Delta^{\alpha,\beta}$ and $\Delta^{\beta,\gamma}$ isomers.^{661,906}

Iv. Circular Dichroism Curves. Circular dichroism has been used as a means of determining the absolute configuration of butenolides. $87,983$ In general, the sign of π - π ^{*} Cotton effect is negative when the substituents $R_1 > R_2$ in polarizability and negative when $R_1 < R_2$.

v. Mass Spectra. Of all the physical methods for study of butenolides, this is by far the most widely used method. Mass spectra of $\Delta^{\alpha,\beta}$ -butenolide, α - and β -angelica lactones have been studied. A double bond in the γ -lactone ring seems to give parent ions of much greater intensity than in saturated lactones.¹⁰⁹⁵ Alkyl or phenyl groups migrate from the γ position of a number of γ , γ -disubstituted $\Delta^{\alpha,\beta}$ -butenolides under electron impact.⁵⁴⁶ Mass spectra of several β - and α , β -substituted butenolides have been studied by Reinhoudt and Van de Graaf.⁸⁰⁷ Mass spectral data for γ -methyl- γ -(2-furylmethyl)- $\Lambda^{\alpha,\beta}$ -hu t enolide have been studied. $626,1027$ in all these fragmentations cyclopropenone molecular ions have been detected. Mass spectra of tetronic acids⁴⁴⁶ and fungal metabolites Aspertetronin A and B⁷³ have been determined. Carbon monoxide is eliminated in these instances. Kolsaker determined the spectra of α , β unsaturated $\Delta^{\alpha,\beta}$ -dilactones. The main feature in these spectra is consecutive carbon monoxide expulsion.⁵⁶⁴ Ballantine and co-workers also studied the spectra α -arylidene- α -aryl- $\Lambda\beta\gamma$ but noncrollated budied the operator and injuriously $\frac{1}{4}$ and $\frac{1}{4}$ = pulvinic dilactone and pulvinic acid have also been re-616 ported.^{195,616}

Microwave spectra have been employed to show that ring atoms and carbonyl oxygen are coplanar.⁶⁰⁶ The ionization potentials of carbonyl ions pair orbitals in $\Delta^{\alpha,\beta}$ -butenolides were examined, and a correlation of ionization potential shifts with changes in molecular bonding was obtained.⁶⁷ Dewar and coworkers employed heats of atomization of tautomeric forms of 2-hydroxyfuran to predict the stability of the isomeric forms of butenolides.¹²¹ Where there is a choice between the two types of tautomerism, the $\Delta^{\alpha,\beta}$ form is favored over $\Delta^{\beta,\gamma}.$

vi. Isomerization of $\Delta^{\beta,\gamma}$ - to $\Delta^{\alpha,\beta}$ -Butenolides. The rate of rearrangement of α -angelica lactone and γ -*tert*-butyl- $\Delta^{\beta,\gamma}$ butenolide has been studied in pyridine and benzene solutions at different temperatures.⁴⁸²

vil. Tests for Butenolides. In addition to the Legal test⁶⁰⁵ for

identifying $\Delta^{\alpha,\beta}$ -butenolides, the Baljet test is also employed.⁷² Tollens reagent is also a good test for $\Delta^{\alpha,\beta}$ -butenolides.

Several of these butenolides have been tested for biological activity (ref 19, 179, 181, 182, 203-205, 221, 274, 280-282, 318, 560, 579, 672, 715, 751, 798, 810, 841, 972, 1023). Some butenolides have been identified in tobacco smoke, vegetable protein hydrolyzate, lignans (ref 275, 343, 523, 727, 938) in essential oils,⁵³¹ in saffron,¹⁰⁶⁶ heated glucose,^{284,1011} moldy grains,^{698,986} roasted filbert volatiles,⁵⁴⁷ and volatile compounds in hops.⁴³³ Protonanemonin has been used to prevent polymerization of acrylic acid,⁴³⁶ and has been photolyzed;⁹³¹ its antibiotic activity has been discussed.¹⁷⁹ Ranunculin has been similarly studied.^{352,353}

VIII. Addendum

This review has been updated to June 1976.

A review on the preparation and reactions of unsaturated lactones was published in 1963.¹²⁰⁰ A survey of the metal-catalyzed syntheses of lactones has also been made.¹²⁰¹ Hornfeldt reviewed the tautomeric properties and reactions of thiolenones and butenolides.¹²⁰² A recent review lists all the butenolides of marine origin.¹²⁰³ Several theses on butenolides have also been published. ¹²⁰⁴⁻¹²⁰⁶ Some recent papers on butenolides are given in ref 1311-1336.

The remaining additional references discussed here are indexed according to the section designations in the main text.

IV.A. 1. A series of 7-aryl-4,7-dioxoheptanoic acids were recently prepared. When the aryl group was 6-methoxy-2 naphthyl or 2-acetoxy-4-methoxyphenyl, treatment with cold acetic acid-concentrated sulfuric acid mixture gave $\Delta^{\alpha,\beta}$ -butenolides. With boiling acetic anhydride, only $\Delta^{\beta,\gamma}$ isomers were obtained.¹²⁰⁷ Lactones were prepared from β -(2-phenylbenzoyl) propionic acids and reduced with $LiAlH₄$, 1208 , 1209 The dehydration reaction of levulinic acid to give angelica lactones was studied.¹²¹⁰

IV.A.2. A series of γ -aryl- $\Delta^{\beta,\gamma}$ -butenolides with substituents in the α position have been prepared.¹²¹¹

 $IV.A.6.$ Carbonylation of a vinyl mercurial such as $(E)-2$ chloro-3-hydroxy-1-propenylmercuric chloride in the presence of Pd gives 96% yield of β -chloro- $\Delta^{\alpha,\beta}$ -butenolide.¹²¹²

In a recent paper the effect of various halide ions on the butenolide synthesis in the presence of metal carbonyls was discussed. It was observed that iodide was more effective than Br⁻ and CI⁻ ions, and the activation effects were attributed to an equilibrium of the halide ion with $Ni(CO)_4$ to give $Ni(CO)_3X$.¹²¹³ Reaction of iodobenzene with $Ni(CO)₄$ in the presence of styrene in THF gave a 19% yield of α,γ -diphenyl- $\Delta^{\beta,\gamma}$ -butenolide. The with the garden transported in process, $\frac{1}{2}$ and $\frac{1}{2}$ Phosphorussubstituted palladium halides were also used in lactone synthesis.¹²¹⁵

IV.A.9. Photolysis of α,β -epoxydiazomethyl ketones in benzene gave γ , γ -disubstituted or β , γ -disubstituted $\Delta^{\alpha,\beta}$ -butenolides. However photolysis in benzene-methanol gave γ -hydroxy- α,β -unsaturated esters.¹²¹⁶

IV.A.10. Stecher and co-workers¹²¹⁷ reported that arylidenepyruvic acids add bromine to give dibromo compounds, which tautomerize to $\Delta^{\alpha,\beta}$ -butenolides. The latter serve as starting materials for the synthesis of trans α -bromocinnamic acids.

IV.A.11. The compound γ -ethyl- $\Delta^{\beta,\gamma}$ -butenolide, prepared by Ogibin's method, isomerized to $\Delta^{\alpha,\beta}$ -butenolide when treated with an acid.¹²¹⁸

IV.B. 1. Mukaiyama and co-workers reported that α -angelica lactone reacts with benzaldehyde, hydrocinnamaldehye, and cinnamaldehyde in dichloromethane at 0 $^{\circ}$ C in the presence of BF₃-Et₂O to give γ -substituted- β -acetyl- γ -butyrolactones.¹²¹⁹ With formaldehyde, α -angelica lactone gives cis- α -methyl- γ butyrolactone.¹²²⁰

IV.B.7. Reaction of 2-chloro-5-phenyl-furan-3-aldehyde with sodium bisulfide is reported to give 5-phenyl-3-hydroxymethylene-2(3H)furan-2-thione.¹²²¹

IV.C.1.a. Dehmlow and co-workers¹²²² reported that 2methyl-3-phenylcyclopropenone reacts with cupric bromide to give the dimer, α -phenyl- β -methyl- γ -(1-(2-methyl-3-phenyl)cyclopropenyl)- $\Delta^{\alpha,\beta}$ -butenolide. Eicher et al. isolated a dilactone by reacting 2-phenylcyclopropenone with Cu²⁺ ion. This compound is obviously formed through the intermediate γ -(1-(2phenyl)cyclopropenyl)- α -phenyl- $\Delta^{\alpha,\beta}$ -butenolide.¹²²³ Eicher et al. also reacted 2-phenylcyclopropenone with enamines to give γ -spirocyclopentyl- $\Delta^{\alpha,\beta}$ -butenolides.¹²²⁴ Büchi and co-workers observed that methyl 2-chloro-2,4-diphenyl-3-oxobutanoate, on decarbonylation in the presence of anhydrous sodium carbonate in xylene, gave a 5% yield of γ -methoxy- α , β -diphenyl- $\Delta^{\alpha,\beta}$ butenolide, formed via a cyclopropanone intermediate.¹²²⁵

IV.C.8. Treatment of 3-phenylpropargyl alcohol with n-BuLi followed by carbonation gave α -phenyl- β -butyl- $\Delta^{\alpha,\beta}$ -butenolide.¹²²⁶ Condensation 2-alkyne-1,4-diols with triethyl orthoacetate in the presence of catalytic amounts of pivalic acid gave various β -alkenyl- γ , γ -diaryl (or dialkyl)-butenolides.¹²²⁷

IV.C.9. Details of preparation of **125** have been recently reported.¹²²⁸ The 7-ethyl analog of **125** has also been prepared.

IV.C. 12. Tiglic acids substituted in the γ position with halides were recently prepared, and a small amount of them gave $\Delta^{\alpha,\beta}$ -butenolides as impurities. These are probably formed via the isomeric angelates.¹²²⁹

IV.C. 13. An interesting synthesis of α , γ -dialkyl butenolides has been reported and consists of heating either α , β -diethylsuccinic acid or 3,4-diethylisoxazolone with nitrosylsulfuric acid.¹²³⁰ A new and improved synthesis of $\Delta^{\alpha,\beta}$ - and $\Delta^{\beta,\gamma}$ -butenolides, starting from γ -acetoxy- γ -butyrolactones, has also been reported. 1206, 1231

IV.C. 17. Irradiation of pyrazole derivatives (3,3-dimethyl-5 alkyl-1,2-pyrazoline) in ether solution gave $\Delta^{\alpha,\beta}$ -butenolides as one of several products.¹²³² Oxygenation of 3,5-di-tert-butylpyrocatechol gave α, γ -di-tert-butyl- γ -hydroxy- $\Delta^{\alpha, \beta}$ -butenolide.¹²³³

IV.C. 19. The α -ethoxy analog of 194 has been prepared in a similar manner.¹²³⁴

IV.C.20. Condensation of 1,3-diketones with glyoxylic acidamide adducts in acid medium gives α -benzamido- γ -alkyl (or aryl)- $\Delta^{\alpha,\beta}$ -butenolides.¹²³⁵

IV.C.22. Reaction of γ -butyrolactone with N-phenylthiophthalimide in the presence of lithium diisopropylamide gave α , α -bis(phenylthio)- γ -butyrolactone, which is converted to β substituted butenolides.¹²³⁶ One of the products thus prepared, α -phenylsulfinyl- $\Delta^{\alpha,\beta}$ -butenolide, 1237 can undergo Michael addition with the enolates of cyclopentanone, 2-ethoxycarbonylcyclohexanone, and ethyl *n*-valerate to give β -substituted butenolides.¹²³⁸ Sulfur-containing compounds were also employed in lactone synthesis.¹²³⁹¹²⁴⁰ Yoshikoshi and co-workers used β -vinylbutenolide for Michael additions.¹²⁴¹ Triethyl phosphite is reported to isomerize α -arylidenebutyrolactone to α -arylmethyl- $\Delta^{\alpha,\beta}$ -butenolide.¹²⁴²

Dehydrohalogenation of β , γ -dichloropropionic acid or β chlorobutyrolactone reportedly yields γ -crotonolactone.¹²⁴³

IV.C.24. The required 3,5,5-trisubstituted furanones were prepared by the reaction of potassium phenylacetate with α bromo-substituted aldehydes in the presence of 18-crown-6 and ring closure of the intermediate ester.^{1244,1245} α , β , γ -Triarylsubstituted lactones were prepared starting from the corresponding γ -keto acids and converted to triarylfurans with diisobutylaluminum hydride. ^{1246, 1247}

IV.C.30. It has been observed that derivatives of blocked 2-oxocycloheptaneacetic acids rearrange in the presence of BF_3-Et_2O or acetic acid or acetic anhydride to give spiro $\Delta^{\alpha,\beta}$ -butenolides.¹²⁴⁸ It was also reported that 2-phenylcyclohexanone-2-acetic acid also undergoes dehydrative rearrangement in the presence of polyphosphate or sulfuric acids to give a spiro butenolide.¹²⁴⁹ Michael addition of nitroolefins to cyclohexane-1,3-dione and analogs gave 3-substituted-6,7-dihydro-2-hydroxyiminobenzofuran-4(5H)-ones.¹²⁵⁰

IV.D.2. A general method for the synthesis of γ -arylidene- α -aryl- $\Delta^{\alpha,\beta}$ -butenolides in 70-85% yields starting from arylacetic acids and α -bromocinnamaldehydes has recently been reported. ¹²⁵¹ Schultz and Yee reported that 3-pentanone and dibenzyl ketone condense with diethyl ketomalonate in a mixture of P₂O₅ and methanesulfonic acid to give α -carbalkoxy- γ -alkylidene- $\Delta^{\alpha,\beta}$ -butenolides.¹²⁵²

IV.F. A new $\Delta^{\alpha,\beta}$ -butenolide has been isolated from Solidago serotina.¹²⁵³ Several $\Delta^{\alpha,\beta}$ -butenolides related to c/s-clerodane were useful in characterizing several new diterpenoids.1254,1255 The sponge Spongia officinalis also vielded several $\Delta^{\alpha,\beta}$ -butenolides.¹²⁵⁶ The bicyclic diterpene lactone, Wightionolide, was isolated and characterized.¹²⁵⁷ Chemical reactions of Peridinin, an algal carotenoid, have been reported.¹²⁵⁸ A series of sesquiterpene lactones were isolated from Athanasia by Bohlmann and Grenz.¹²⁵⁹ The acetylenic sesquiterpene "Freelingyne", which has been synthesized earlier by Massy-Westropp and co-workers ^{1197,1198} has been synthesized recently by Pattenden and Knight.¹²⁶⁰⁻¹²⁶² Strigol, a seed germination stimulant, has been isolated and characterized by Cook et $a^{1263,1264}$ and has recently been synthesized.^{1265,1266} Strigol analogs were also prepared by coupling χ -bromo- $\Lambda^{\alpha,\beta}$ -butenolide with sodium enolate of 3-(hydroxymethylene)dihydro-2(3H)-furanone.¹²⁶⁷ Naturally occurring Osmunda lactone is shown to rearrange to 5-hydroxy-2-hexen-4-olide.¹²⁶⁸

Finally, Variabilin was isolated from lrcina variabilis and has been shown to be a naturally occurring tetronic acid.¹²⁶⁹

IV.G. Several new methods for the synthesis of tetronic acids have been reported. The starting materials are halogenated β -keto esters 1270 and enaminones. 1271,1272 Tetronic acids have been directly acylated in the presence of stannic chloride to give fused heterocyclic compounds such as 2H-furo [3,4-6] pyran-4,5-diones.¹²⁷³ Condensation of 2-acetyl-5-methyltetronic acid with aromatic aldehydes in the presence of piperidine followed by reduction gave 2-(3'-arylpropionyl)-5-methyltetronic acids useful as hypotensive reagents.¹²⁷⁴ Tetronic acids with the hydroxyl function in the α position have been prepared by reacting mercaptans with 4-dimethylsulfuranylidene-2,3-dioxotetrahydrofuran derivatives, and their reactions with ammonia and primary amines were studied.¹²⁷⁵⁻¹²⁷⁸ Tetronic acid derivatives have been employed in the synthesis of cephalosporin analogs.¹²⁷⁹ Biosynthetic pathways for tetronic acids from *Peni*cillium charlesii have been proposed.¹²⁰⁵ Treatment of acetoxytetronic acids in toluene with polyphosphoric acid gave α -acetyltetronic acids¹²⁸⁰ along with the parent tetronic acids.

IV.H. The pseudo ethyl esters of β -formylacrylic acids were studied.^{1281,1282}

IV.I. The products of reaction of mucohalic acids with mercaptans have been characterized. Depending on the conditions of reaction, either α -thioaryl- or α , β -dithioaryl- or γ -thioarylfuranones are obtained.^{1283,1284} Several fungicides based on mucohalic acids are also reported.¹²⁸⁵⁻¹²⁸⁸ The compound α,β -dichloro- γ,γ -difluoro-2(5H)-furanone has been prepared from dichloromaleic anhydride and sulfur tetrafluoride.¹²⁸⁹

V.C. The products of reduction of pulvinic acid with diborane in THF has been found to be effective in treatment of arthritis.¹²⁹⁰ Reactions of pulvinone with sodio derivative of methyl mercaptan and thiolacetic acid were reported to give the corresponding thio analogs.¹²⁹¹ Pulvinone derivatives have also been isolated recently.¹²⁹²

Vl.D. Diazoalkanes, diazo esters, and diazo ketones add to 2(5H)-furanones, and the adducts undergo thermal decomposition to give alkylated furanones which are reduced to fu-

rans.^{1103,1293} Similar cycloaddition of diazomethane to aconic acid to give alkylated furanones has been reported earlier.¹²⁹⁴

VI.J. Ollis and co-workers^{1295,1296} studied the stereoselective hydrogenation of disubstituted butenolides in the presence of Pd-BaSO₄. In all these cases the products are γ -butyrolactones; it was observed that the cis isomers are more stable thermodynamically than the trans isomers. Reaction of γ , γ -diethyl- $\Delta^{\alpha,\beta}$ -butenolide with diethylaluminum chloride followed by hydrolysis gave 4-ethyl-2,4-hexadienoic acid.^{1297,1298}

VI.O. The compounds γ -crotonolactone and β -angelica lactone give adducts with isopropyl alcohol when irradiated.¹²⁹⁹

 $VIP.$ A new method for the conversion of the E isomers of 5-phenyl-3-phenylmethylene-2(3H)-furanone and its analogs to Z isomers has been found. This method consists of heating the E isomers in polyphosphoric acid¹²⁵¹ at 90° for 90 min.

VI.Q. Polylactones were prepared by polymerizing γ -crotonolactone and α -angelica lactone with *n*-BuLi and β -angelica lactone with BF_3-Et_2O . Styrene and acrylonitrile were used to form copolymers of γ -crotonolactone.¹³⁰⁰

VI. T. Reaction of butenolides with hydrazine were recently studied.¹³⁰¹⁻¹³⁰³ Reaction of 5-phenyl-2(3*H*)-furanone with piperidine reportedly gave a piperidide.¹³⁰⁴ Similar reactions of furanones with amines has also been reported.

Vl. V. Bifurandiones were obtained from substituted succinyl chlorides.¹³⁰⁷ Pauson et al. prepared bifurandiones from butenolide-cobalt complexes derived from monosubstituted acetylenes and carbon monoxide.¹³⁰⁸ Spectral data (uv) for phthalylidene- $\Delta^{\beta,\gamma}$ -butenolides¹³⁰⁹ have been published. Finally reactions of $\Delta^{\beta,\gamma}$ -butenolides with hydrazines have been reported.¹³¹⁰

Acknowledgments. The author thanks Professors F. Korte, W. Reid (Germany), S. Ducher (France), N. Hellstrom (Sweden), M. Semonsky (Czechoslovakia), and J. Pascual (Spain) for their kindness in supplying him with all their publications about the subject matter. Professors H. Uda and A. Yoshikoshi and Drs. A. Nobuhara, A. Takeda, and M. Takebayashi (Japan) have been extremely kind in furnishing their unpublished work, and the author is thankful to them. Professor A. Padwa of SUNY, Buffalo, is thanked for the promptness with the provided information about aryl group migrations. Also thanked are Dr. P. McCoy and Professors P. Grieco and J. Freeman for providing the author with their publications. The author deems it a great pleasure to express his heartfelt thanks to his daughter, Usha, for typing the manuscript.

Supplementary Material Available. Tables I—IX, summarizing the compounds prepared (84 pp) $\left[\Delta^{\beta,\gamma}$ -butenolides (I), α -arylidene (alkylidene)- γ -aryl (alkyl)- $\Delta^{\beta,\gamma}$ -butenolide (II), $\Delta^{\alpha,\beta}$ -butenolides (III), α -aryl (alkyl)- γ -arylidene- $\Delta^{\alpha,\beta}$ -butenolides (IV), naturally occurring lactones (V), tetronic acids (VI), β -acylacrylic acids (VII), dihalo butenolides (VIII), pulvinic acid derivatives (IX)] will appear following these pages in the microfilm edition of this volume of the journal. Microfiche (4×6) in., 24X, negative, silver halide) of the supplementary material may be ordered directly from Business Operations, Books and Journals Division, American Chemical Society, 1155 16th St., N.W., Washington, D.C. 20036. Full bibliographic citation (journal, title of article, author) and prepayment (\$2.50, U.S.; \$3.00, PUAS, Canada; \$3.50, other foreign countries) are required.

IX. References

-
- (1) B. J. Abadir, J. W. Cook, and D. T. Gibson, *J. Chem. Soc.*, 8 (1953).
(2) O. Achmatowicz and M. Leplawy, *Rocz. Chem.*, **33,** 1349 (1959).
(3) O. Achmatowicz and M. Leplawy, *Bull. Acad. Pol. Sci., Ser. Sci. Chim.*
-
- Geol., Geogr., 6, 409 (1958).
(4) K. Alder and F. Farina, *An. R. Soc. Esp. Fis. Quim., Ser. B*, 54, 689
(1958); *Chem. Abstr.*, 54, 16404h (1960).
- (5) F. H. Andresen, A. Svendsen, and P. M. Boll, Acta Chem. Scand., Ser. B. 28, 130(1974).

Unsaturated Lactones Chemical Reviews, 1976, Vol. 76, No. 5 **683**

- (6) S. C. Agarwal and T. R. Seshadri, Tetrahedron, 19, 1965 (1963).
-
- (7) S. C. Agarwal and T. R. Seshadri, *Tetrahedron*, **21,** 3205 (1965).
(8) S. C. Agarwal and T. R. Seshadri, *Tetrahedron*, **20,** 24 (1964).
(9) S. C. Agarwal and T. R. Seshadri, *Indian J. Chem.*, **2,** 17 (1964).
-
- (10) C. S. Mgal war and T. H. Sesmaal, Indian of Shemin, Bylan (1998), 12, 173 (1961).
- (11) B. V. Aizov, N. Y. Alyamkin, and V. D. Simonov, *Zh. Prikl. Spektrosk., 1*6, 370 (1972); *Chem. Abstr., 77, 4461p (1972); Chem. Abstr., 2008*
(12) B. Akermark, *Acta Chem. Scand.*, 16, 599 (1962).
(13) B. Akermark,
-
-
- (14) G. Aksnes and P. Froeyen, *Acta Chem. Scand.*, **22,** 2347 (1968).
(15) G. Albensi, R. Farina, and A. Taccioli, *Chim. Ind.* (*Milan*), **48,** 1151
- (1966). (16) C. F. H. Allen and G. P. Happ, Can. J. Chem., 42, 655 (1964).
- (17) C. F. H. Allen, J. B. Normington, and C. V. Wilson, Can. J. Res., 11, 382 (1934).
-
- (18) J. Andraud and G. Andraud, C. R. Soc. Biol., 163, 412 (1969).
(19) J. Andraud. G. Andraud, and J. C. Berthelay, C. R. Soc. Biol., 1 J. Andraud, G. Andraud, and J. C. Berthelay, C. R. Soc. Biol., 164, 1711 (1970).
- (20) J. Andraud and G. Andraud, C. R. Soc. Biol., 164, 804 (1970).
- (21) V. M. Andreev, G. P. Kugatova-Shemyakina, and S. A. Kazaryan, Russ. Chem. Rev., 37, 254 (1968).
-
- (22) T. Anthonsen and C. Bergland, *Acta Chem. Scand.*, **25,** 1924 (1971).
(23) M. F. Ansell and M. H. Palmer, *Q. Rev., Chem. Soc.,* 1**8**, 211 (1964).
- (24) Y. Arata, *Yakugaku Zasshi*, **68,** 241 (1948).
(25) **C.** Armengaud, *C. R. Acad. Sci.*, **254,** 3696 (1962).
-
- (26) Y. Asahina, Acta Phytochim., 8, 33 (1934); Chem. Abstr., 29, 147 (1935). (27) Y. Asahina and S. Shibata, "Chemistry of Lichen Substances", Japanese
- Society for Promotion of Science, Tokyo, 1954, p 43. (28) M. Asano and S. Huziwara, J. Pharm. Soc. Jpn., 59, 675 (1939); Chem.
- Abstr., **34**, 1982 (1940). (29) M. Asano and T. Kanematsu, J. Pharm. Soc. Jpn., 51, 390 (1931).
-
-
- (30) M. Asano and T. Kanematsu, *Ber.*, **65B,** 1175 (1932).
(31) M. Asano and Z. Ohta, *J. Pharm. Soc. Jpn.*, **51,** 395 (1931).
(32) M. Asano and Y. Kameda, *J. Pharm. Soc. Jpn.*, **53,** 67–70 (1933).
(33) M. Asano and Y. K
-
-
- (35) F. J. Ascorbe, Caribb. For., 14, 136 (1953); Chem. Abstr., 48, 12 225c (1954).
- (36) G. Albanesi and E. Gavezotti, Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend, 41, 497 (1966); Chem. Abstr., 68, 95 923u (1968). (37) R. P. Augustine and L. P. Calbo, Jr., J. Org. Chem., 33, 838 (1968).
- (38) L. Avellen, I. Crossland, and K. Lund, Acta Chem. Scand., 21, 2104 (1967).
- (39) A. A. Avetisyan, A. N. Dzhandzhapanyan, G. G. Tokamadzhyan, and M.
G. Darigyan, *Khim. Geterotsikl Soedin*, 889 (1974); *Chem. Abstr.*, **81,**
120 749v (1974).
- (40) A. A. Avetisyan, G. S. Melikyan, and M. T. Dangyan, Arm. Khim. Zh., 24,
- 1088 (1971); *Chem. Abstr.*, **76, 14**1 346y (1972).

(41) A. A. Avetisyan, G. S. Melikyan, M. T. Dangyan, and S. G. Matsoyan, Zh.
 Org. Khim., 8, 274 (1972); *Chem. Abstr.*, **76,** 139 902h (1972).

(42) A. A. Avetisyan,
-
-
- S. G. Matsoyan, Zh. Org. Khim., 7, 962 (1971); Chem. Abstr., 75, 63 047q(1971).
- (45) A. A. Avetisyan, M. T. Dangyan, T. A. Mangasaryan, and G. S. Melikyan, USSR Patent 295 759 (1971); *Chem. Abstr.*, **75**, 48 709b (1971).
- (46) A. A. Avetisyan, G. E. Tatevosyan, T. A. Mangasaryan, S. G. Matsoyan, and M. T. Dangyan, *Zh. Org. Khim.*, 6, 962 (1970); *Chem. Abstr.,* **73,** .
34 747w (1970).
- (47) A. A. Avetisyan, M. T. Dangyan, and G. E. Tatevosyan, USSR Patent
- 277 770 (1970); *Chem. Abstr.*, **74,** 124 878q (1971).
(48) A. A. Avetisyan, M. T. Dangyan, T. A. Mangasaryan, G. E. Tatevosyan,
and G. S. Melikyan, USSR Patent 282 312 (1970); *Chem. Abstr.*, **74,** 87 430q (1971).
- (49) A. A. Avetisyan, A. N. Dzandzhapanyan, L. E. Aststryan, and M. T.
Dangyan, *Khim. Geterotsikl Soedin*, 310 (1974); *Chem. Abstr.*, **81,** 49 227n(1974).
- (50) A. A. Avetisyan, T. A. Mangasaryan, M. T. Dangyan, G. E. Tatevosyan, and S. G. Matsoyan, Arm. Khim. Zh., 26, 581 (1973); Chem. Abstr., 79,
- 125 77Op (1973). (51) A. A. Avetisyan, T. A. Mangasaryan, M. T. Dangyan, and S. G. Matsoyan,
- *Arm. Khim. Zh., 26, 659 (1973); Chem. Abstr., 80, 3330v (1974).
19. A. A. Avetisyan, G. S. Melikyan, and M. T. Dangyan, USSR Patent 4.14 254 (1974); Chem. Abstr., 80, 338 (1974).
414 254 (1974); <i>Chem. Abstr.*, **80**
- G. E. Tatevosyan, *Zh. Org. Khim.*, 8, 876 (1972); *Chem. Abstr.*, 77,
19 460m (1972). *Chem. Abstr.*, 77,
(54) A. A. Avetisyan, G. S. Melikyan, and M. T. Dangyan, Arm. Khim. Zh., 25,
140 (1972); *Chem. Abstr.*, 77, 19 128
-
-
-
-
-
- (59) W. I. Awad and A. I. Hashem, J. Chem. U.A.R., 16, 297 (1973).
- (60) J. Awruch and B. Frydman, Tetrahedron Lett., 2611 (1973).
- (61) G. Bach, J. Capitaine, and C. R. Engel, Can. J. Chem., 48, 733 (1968).
-
- (62) G. L. Bachman, U.S. Patent 3 576 010 (1971); Chem. Abstr., 75, 48 891s (1971).
- (63) G. L. Bachman (to Monsanto), U.S. Patent 3 444 178 (1969); Chem. Abstr., 71,61 374h(1969).
- (64) F. G. Baddar, M. F. El-Neweihy, and M. T. El-Zimaity, J. Chem. Soc., 2701 (1961).
- (65) R. B. Bagirov and N. F. Komissarenko, Khim. Prir. Soedin, 2, 251 (1966); Chem. Abstr., 66, 483k (1967). (66) W. C. Bailey, Jr., A. K. Bose, R. M. Ikeda, R. H. Newman, H. V. Secor,
- and C. Varsel, *J. Org. Chem.,* **33,** 2819 (1968).
(67) A. D. Bain and D. C. Frost, *Can. J. Chem.*, **51,** 1245 (1973).
(68) J. W. Baker and G. L. Bachman, U.S. Patent 3 497 595 (1970).
-
-
- (69) W. Baker, K. D. Grice, and A. B. A. Jensen, J. Chem. Soc, 241 (1943).
- (70) J. E. Baldwin, Tetrahedron, 20, 2933 (1964).
- (70) σ . E. Baldwin, J. C. Swallow, and H. W. S. Chan, Chem., Commun., 1407 (1971). (72) H. Baljet, Schweiz. Apoth.Ztg., 56, 89 (1918); Chem. Abstr., 12, 1336
- (1918). (73) J. A. Ballantine, R. G. Fenwick, and V. Ferrito, Org. Mass Spectrosc,
- 1,761 (1968). (74) J. A. Ballantine, V. Ferrito, C. H. Halsall, and V. I. P. Jones, J. Chem. Soc C, 56(1969).
- (75) J. A. Ballantine and R. G. Fenwick, Org. Mass Spectrosc, 5, 615 (1971)
- (76) J. A. Ballantine, C. B. Barrett, R. J. S. Beer, B. G. Boggiano, K. Clarke, S. Eardley, B. E. Jennings, and A. Robertson, J. Chem. Soc, 2222 (1957).
- (77) E. Baltazzi, French Patent 2 002 460 (1969); Chem. Abstr., 73, 104 336n (1970).
- (78) P. J. Bargnoux, J. Paris, and J. Couquelet, *C. R. Acad. Sci., Ser. C*, **276,** 1041 (1973).
- (79) V. A. Barkhash, O. I. Andreevskaya, and N. N. Vorozhtsov, Jr., Dokl. Akad. Nauk SSSR, 166, 1343 (1966).
- (80) C. B. Barrett, R. J. S. Beer, G. M. Dodd, and A. Robertson, J. Chem. Soc, 4810(1957).
- (81) J. J. Basselier and J. P. LeRoux, C. R. Acad. Sci., Ser. C, 270, 1366 (1970).
- (82) J. J. Basselier and J. P. LeRoux, *Bull. Soc. Chim. Fr.*, 4443 (1974).
(83) J. J. Basselier and J. P. L*e*Roux, *Bull. Soc. Chim. Fr.*, 4448 (1974).
-
- (84) F. Batchelor, D. W. H. Clark, and G. A. P. Tuey, German Patent 1 955 390
- (1970); *Chem. Abstr.,* **73,** 77 034 (1970).
(85) J. Baumrucker, M. Calzadilla, T. Rodulfo, J. Archila, J. Albrizzio, and A.
 J. Peraza, J. Org. *Chem.*, 33, 399 1 (1968).
(86) P. C. Beaumont, R. L. Edwards, and G.
- 2968(1968).
-
- (87) A. F. Beecham, *Tetrahedron*, **28,** 5543 (1972).
(88) E. S. Behare and R. B*.* Miller, *Chem. Commun.*, 402 (1970).
- C. Belil, J. Pascual, and F. Serratosa, Tetrahedron, 20, 2701 (1964).
- (90) C. Belil, J. Castella, J. Castells, R. Mestres, and F. Serratosa, *An. R. Soc.*
Es*p. Fis. Quim., Ser. B*, **57,** 617 (1961); **5**9, 507 (1963).
- (91) G. Bendz, J. Santesson, and C. A. Wachtmeister, Acta Chem. Scand., 19, 1776(1965).
- (92) B. H. H. Bergmann, J. C. M. Beijerbergen, F. Covereum, and A. K. Sitj-
pesteijn, *Recl. Trav. Chim. Pays-Bas*, **86,** 709 (1967).
(93) D. Bertin, French Patent 1 369 960 (1964); *Chem. Abstr.*, **62,** 4096a
-
- (1965).
(94) E. Beska, P. Rapos, and J. Demecko, Czech Patent 148 592 (1973);
Chem. Abstr., **80**, 14 835q (1974).
(95) E. Beska and P. Rapos, Czech Patent 146 412 (1972); *Chem. Abstr.*,
- 78, 124 615j(1973).
- (96) E. Beska and P. Rapos, Czech Patent 149 048 (1973); Chem. Abstr., 80, 36 982n(1974).
- (97) E. Beska and P. Rapos, Czech Patent 144 477 (1972); Chem. Abstr., 78, 4106x(1973).
- (98) E. Beska, P. Rapos, and V. Konecny, Czech Patent 150 439 (1973); Chem. Abstr., 80, 133226b (1974). (99) E. Beska, P. Rapos, E. Schler, and P. Winternitz, Czech Patent 130 764
-
-
- (1969); *Chem. Abstr.*, **72**, 55235x (1970).
(100) E. Beska, P. Rapos, and P. Winternitz, *J. Chem. Soc. C*, 728 (1969).
(101) E. Beska, P. Rapos, and E. Sohler, Czech Patent 141 347 (1971); *Chem.*
Abstr., **77,** 48 211m
- (102) E. Beska and P. Rapos, Czech Patent 147 694 (1973); Chem. Abstr., 79, 42323u(1973).
- (103) M. J. Bett and P. Yates, J. Am. Chem. Soc, 92, 6982 (1970).
- (104) W. Bewert, V. Kienvu, J. Paetsch, F. Reicheneder, G. Wonsch, and F. Fuchs, German Offen. 2 109 982 (1971); Chem. Abstr., 78, 44 996u (1973).

(109) D. K. Black, *J. Chem. Soc. C*, 1123 (1966).
(110) D. K. Black, Z. T. Fomum, P. D. Landor, and S. R. Landor, *J. Chem. Soc.*,
Perkin Trans. 1, 1349 (1973).
(111) E. E. Blaise and A. Courtot, *C. R. Acad. Sci.*, **141,**

(114) E. Block and R. Stevenson, J. Chem. Soc, Perkin Trans. 1, 308

(115) J. L. Bloomer and W. F. Hoffman, Tetrahedron Lett., 4339 (1969). (116) J. L. Bloomer and F. E. Kappler, *Tetrahedron Lett*., 163 (1973).
(117) J. L. Bloomer, F. E. Kappler, and G. N. Pandey, *J. Chem. Soc., Chem.*

- (105) H. C. Beyerman, U.S. Patent 3 534 029 (1970).
- (106) S. P. Bhutani, S. S. Chibber, and T. R. Seshadri, Indian J. Chem., 8, 406 (1970).
- (107) C. L. Bickel, *J. Am. Chem. Soc.*, **68,** 941 (1946).
(108) A. J. Birch, G. S. R. Subba Rao, and J. P. Turnbull*, Tetrahedron Lett.*, 4749

(1966).

(1973).

Commun., 243 (1972).

- (118) J. L. Bloomer and F. E. Kappler, J. Chem. Soc, Chem. Commun., 1047 (1972).
- (119) J. L. Bloomer, W. R. Eder, and W. F. Hoffman, Chem. Commun., 354 (1968).
- (120) T. I. Bobrova, S. D. Volodkovisch, and S. S. Kukalenko, Zh. Obshch. Khim., 44,390(1974).
- (121) N. Bodor, M. J. S. Dewar, and A. J. Harget, J. Am. Chem. Soc, **92,** 2929 (1970). (122) J. Boeseken, C. O. G. Vermy, H. Bunge, and C. Van Meeuwen, Recl. Trav.
- Chim. Pays-Bas, **50,** 1023 (1934). (123) M. T. Bogert and J. J. Ritter, Proc. Natl. Acad. Sci. U.S.A., **10,** 363
- (1924).
- (124) F. Bohlmann and C. Zdero, Chem. Ber., **102,** 1034 (1969). (125) F. Bohlmann, K. M. Kleine, C. Arndt, and S. Kuhn, Chem. Ber., 98, 1616
- (1965). (126) F. Bohlmann, H. Bornowski, and C. Arndt, Chem. Ber., **98,** 2236
- (1965). (127) F. Bohlmann, P. Herbst, C. Arndt, H. Schönowsky, and H. Gleinig, Chem. Ber., 94,3193(1961).
-
- (128) F. Bohlmann and C. Zdero, Chem. Ber., **104,** 1329 (1971). (129) F. Bohlmann and C. Zdero, Chem. Ber., **105,** 3587 (1972).
- (130) F. Bohlmann, K. M. Kleine, and C. Arndt, Justus Liebigs Ann. Chem., **694,**
- 149(1966). (131) F. Bohlmann, K. M. Rode, and C. Zdero, Chem. Ber., **99,** 3544 (1966).
- (132) F. Bohlmann and R. Reinecke, Chem. Ber., **99,** 3437-3440 (1966).
- (133) F. BohJmann, H. Monesch, and P. Blaskiewicz, Chem. Ber., **100,** 611 (1967).
-
- (134) F. Bohlmann and C. Zdero, Chem. Ber., **99,** 1226 (1966). (135) F. Bohlmann and K. M. Rode, Chem. Ber., **100,** 1507 (1967). (136) f. Bohlmann and C. Zdero, Chem. Ber., **102,** 1679 (1969).
-
- (137) F. Bohlmann and G. Grenz, Tetrahedron Lett., 3623 (1971).
- (138) P. M. Boll, E. Soerensen, and E. Balieu, Acta Chem. Scand., **22,** 3251 (1968).
- (139) P. M. Boll, Acta Chem. Scand., **22,** 3245 (1968).
-
-
- (140) Bolley, *Jahresbericht*, 554 (1864).
(141) Bolley, *J. Prakt. Chem.*, [1] **93,** 355 (1862).
(142) G. BoIz and W. W. Wiersdorf, German Often. 2 111 119 (1972); *Chem.*
Abstr., **77**, 151 883f (1972).
- (143) R. P. M. Bond, T. Cairns, J. D. Connolly, G. Eglinton, and K. H. Overton, *J. Chem. Soc.*, 3958 (1965).
(144) K. J. Boosen, U.S. Patent 3 758 515 (1973).
(145) G. Bor, *Chem. Ber.*, 9**6,** 2644 (1963).
-
-
- (146) R. F. Borne and H. Y. Aboul-Enein, J. Heterocycl. Chem., 9, 933 (1972).
- (147) R. F. Borne, H. Y. Aboul-Enein, I. W. Waters, and J. Hicks, J. Med. Chem., **16,** 245(1973).
-
- (148) E. T. Borrows and B. A. Hems, *J. Chem. Soc.*, 577 (1945).
(149) W. Borsche, *Justus Liebigs Ann. Chem.*, **526,** 18 (1936).
(150) J. Bosch, J. Castells, and J. Pascual, *An. R. Soc. Esp. Fis. Quim.*, *Ser.*
- B, 57, 469 (1961). (151) P. Bosshard, S. Fumagalli, R. Good, W. Trueb, W. V. Phillipsborn, and
- G. H. Eugster, HeIv. Chim. Acta, **47,** 769 (1964). (152) F. Bourelle-Wargnier and B. Gastambide, C. R. Acad. Sci., Ser. C, **266,**
- 1384(1968).
- (153) G. V. Boyd and K. Heatherington, Chem. Commun., 346 (1971).
- (154) G. V. Boyd and K. Heatherington, J. Chem. Soc, Perkin Trans. 1, 2532 (1973).
- (155) G. V. Boyd and K. Heatherington, J. Chem. Soc, Perkin Trans. 1, 2523 (1973).
- (156) Bregant, J. Matijevich, J. Sirola, and J. Bafenjovich, Bull. Sci., Cons. Acad. Sci. Arts RSF Yugosl., Sect. A, **17,** 148 (1972); Chem. Abstr., **78,** 4047d (1973).
- (157) R. Breslow, T. Eicher, A. Krebs, R. A. Peterson, and J. Possner, J. Am. Chem. Soc, 87, 1320(1965).
- (158) R. Breslow, L. J. Altman, A. Krebs, E. Mohacsi, I. Murata, R. A. Peterson, and J. Possner, J. Am. Chem. Soc, **87,** 1326 (1965). (159) R. Breslow and L. J. Altman, J. Am. Chem. Soc, **88,** 504 (1966).
-
- (160) R. Breslow, R. Winter, and M. Battiste, J. Org. Chem., **24,** 415 (1959).
- (161) J. Bricourt, R. Viani, F. Muggler-Chavan, J. Marion, D. Reymond, and R. H. EgIi, HeIv. Chim. Acta, **50,** 1517 (1967). (162) R. Broderson and A. Kjaer, Acta Pharmacol. Toxicol., 2, 109 (1946).
- (163) C. J. Brooks, G. Eglinton, and D. S. Magrill, J. Chem. Soc, 308
- (1961). (164) B. T. Brown, O. Johansen, G. F. Katekar, and W. H. F. Sasse, Pestic. Sci.,
- 4,473(1973). (165) P. Brown, F. Bruschweiler, G. R. Pettit, and T. Reichstein, Org. Mass.
- S*pectrom.*, **5,** 573 (1971).
(166) T. C. Bruice, P. G. Kury, and D. M. McMahon, *J. Am. Chem. Soc.*, 9**2**,
- 6674(1970). (167) G. Brule, P. Dubois, and T. Obretenov, Ann. Technol. Agric, **20,** 305
-
- (1971); Chem. Abstr., 77, 148 826j (1972). (168) B. v. Burger, E. du Plessis, C. F. Garbers, and J. P. van der Merwe, J. Chem. Soc, Perkin Trans. 1, 581 (1973).
- (169) H. J. Burkhardt, R. E. Lundin, and W. H. McFadden, Tetrahedron, 24, 1225 (1968).
- (170) N. M. Burmakin, M. Y. Berman, and G. Y. Amosov, Khim. Prom (Moscow), 49, 19 (1973); Chem. Abstr., **78,** 85 145x(1973). (171) G. Buchi, D. Minster, and J. C. F. Young, J. Am. Chem. Soc, 93, 4319
- (1971).
-
- (172) G. Buchi and S. Feairheller, *J. Org. Chem.*, 34, 609 (1969).
(173) R. E. Buckles and K. Bremer, ''Organic Syntheses'', Collect. Vol. IV,
Wiley, New York, N.Y., 1963, p 777.
- (174) F. Cafieri, C. Santacroce, and L. Minale, Tetrahedron, 28, 1579 (1972).
- (175) B. F. Cain, J. Chem. Soc, 936 (1961).
- (176) B. F. Cain, J. Chem. Soc, 356 (1963).
- (177) C. T. Calam, A. R. Todd, and W. S. Waring, Biochem. J., 45, 520 (1949).
- (178) P. Calinaud, S. Ducher, and H. Michet, C. R. Acad. Sci., Ser. C, **268,** 351 (1969).
-
- (179) P. G. Caltrider, Antibiotics, 1, 672 (1967). (180) N. R. Campbell and J. H. Hunt, J. Chem. Soc, 956 (1951). (181) L. Canonica, P. Manitto, and U. Valcavi, Gazz. Chim. Hal., **101,** 217
- (1971).
- (182) L. Canonica, P. Manitto, and N. Z. Bolego, J. Biol. Chem., **243,** 1645 (1968).
- (183) R. M. Carlson and J. L. Isidor, Tetrahedron Lett., 4819 (1973).
- (184) L. Cassar and M. Foa, Chem. Ind. (Milan), **51,** 673 (1969).
- (185) L. Cassar, G. P. Chiusuli, and M. Foa, Chem. Ind. (Milan), **50,** 515 (1968); Chem. Abstr., **70,** 114 671v (1969).
- (186) P. Caubere, Bull. Soc Chim. Fr., 148 (1964).
- (187) A. Caudet, P. Tronche, R. Vessiere, and J. Couquelet, Bull. Soc. Chim. Fr., 1707(1973). (188) A. Caudet, J. Couquelet, and R. Vessiere, C. R. Acad. Sci., Ser. C, **270,**
- 1127(1970).
- (189) A. Caudet, J. Couquelet, and R. Vessiere, C. R. Acad. Sci., Ser. C, **272,** 107(1971).
- (190) J. Castaner and J. Pascual, J. Chem. Soc, 3962 (1958).
- (191) J. Castaner and J. Pascual, An. R. Soc. Esp. Fis. Ouim., Ser. B, 53, 651 (1957).
- (192) J. Castells, R. Mestres, and J. Pascual, An. R. Soc. Esp. Fis. Quim., Ser. B, **60,** 803,843(1964). (193) M. P. Cava, C. L. Wilson, and C. J. Williams, Jr., J. Am. Chem. Soc, **78,**
-
- 2303(1956). (194) M. P. Cava, W. R. Chan, R. P. Stein, and C. R. Willis, Tetrahedron, **21,** 2617(1965).
- (195) M. P. Cava, B. Weinstein, W. R. Chan, L. J. Haynes, and L. F. Johnson,
-
- (196) G. *S. Chappell, J. G. (1963).*
(196) G. S. Chappell, *J. Org. Chem.*, **38,** 240 (1973).
(197) B. Cheminan, *Bull. Soc. Chim. Fr.*, 3408 (1972).
(198) B. Cederlund, A. Jesperson, and A. B. Hornfeldt, *Acta Chem. Scan* 25, 3658(1971).
- (199) T. Chakrabarti, J. Sci. Ind. Res., **25,** 544 (1966).
- (200) O. L. Chapman and C. L. Mcintosh, Chem. Commun., 383 (1971).
- (201) A. Chatterjee, R. Mukherjee, B. Das, and S. Ghosal, J. Indian Chem. Soc, **41,** 163(1964).
- (202) Chemisch Fabriek "Naarden", Netherlands Patent 70 01 653 (1971); Chem. Abstr., **75,** 150 588k (1971).
- (203) Chemisch Pharm. Fabrik, Dr. H. Thiemann GmBH, German Patent
1 058 697 (1962); *Chem. Abstr.*, **56,** 4880d (1962).
(204) Chemisch Pharm. Fabrik, Dr. H. Thiemann, German Patent 1 058 697
(1959); *Chem. Abstr*., **55,** 9
-
- (205) K. H. Chemnitius, and H. Prufer, Z. Gesante Inn. Med. Ihre Grenzgeb., 15, 217 (1960); Chem. Abstr., **54,** 17 686g (1960). (206) K. H. Chemitius, S. H. Klee, and G. Reihl, Z. Rheumaforsch, **20,** 355
-
- (1961); *Chem. Abstr.*, **56,** 5373 (1962).
(207) H. H. O. Cherdron, H, Ohse, R. A. Palm, and F. Korte, German Offen.
(208) 1 228 065 (1966); *Chem. Abstr.*, **66,** 55 994v (1967).
(208) G. Chimino, S. DeStefano, L. Min
- **28,** 333 (1972).
(209) R. Chiron and Y. Graff, *C. R. Acad. Sci., Ser. C, 276, 1207 (1973).*
(210) R. Chiron and Y. Graff, *Bull. Soc. Chim. Fr.*, 3715 (1967).
(211) R. Chiron and Y. Graff, *Bull. Soc. Chim. Fr.*, 575 (
-
-
-

53, 9998b (1959).

Abstr., **61,** 40 529c (1964).

(1965).

- (212) R. Chiron and Y. Graff, Bull. Soc Chim. Fr., 2145 (1971).
- (213) G. P. ChiusoJi, G. Bottaccio, and C. Venturello, Chim. Ind. (Milan), **48,** 107 (1966); Chem. Abstr., **64,** 12585e (1966). (214) G. P. Chiusoli, S. Merzoni, and G. Mondelli, Tetradron Lett., 2777
- (1964).
- (215) G. P. Chiusoli and G. Bottaccio, Chim. Ind. (Milan), **47,** 165 (1965); Chem. Abstr., **63,** 13067c(1965). (216) G. P. Chiusoli, G. Bottaccio, and C. Venturello, Tetrahedron Lett., 2875
- (1965).
- (217) P. K. Christiansen, Norg. Tek. Vitenskapsakad., 7, 102 (1959); Chem. Abstr.. **54,** 6531i (1960).
- (218) P. K. Christiansen, Acta Chem. Scand., 11, 582 (1957). (219) A. V. Chumachenko, E. N. Zvonkova, and R. P. Evstigneeva, Zh. Org. Khim., 8, 1100 (1972).
(220) A. V. Chumachenko, M. E. Maurit, A. D. Treboganov, G. V. Smirnova,
R. B. Teplinskaya, L. V. Volkova, E. N. Zvonkova, and N. A. Preobra-
zhenskii, *Dokl. Akad. Nauk SSSR*, **178**, 1352 (1968).
(2

(222) N. Clauson-Kass and N. Elming, *Acta Chem. Scand.*, **6,** 560 (1952).
(223) T. Cohen and J. H. Fager, *J. Am. Chem. S*oc., **8**7, 5701 (1965).
(224) G. Cohn, *Ber*., **24,** 3854 (1891).

(225) J. W. Conine and J. W. Jones, *J. Am. Pharm. Assoc.*, **43,** 670 (1954);
Chem. Abstr., **4**9, 13 962a (1955).
(226) J. D. Connolly and K. H. Overton, *J. Chem, Soc.*, 3366 (1961). (227) J. D. Connolly and R. M. McCrindle, Chem. Ind. (London), 2066

(228) W. J. Conradie, C. F. Garbers, and P. S. Steyn, J. Chem. Soc, 594 (1964).
(229) P. Cordier and A. Haberzettl, *Pharm. Acta Helv.*, **38,** 522 (1963); *Chem.*

(230) P. Cordier and A. Haberzettl, C. R. Acad. Sci., Ser. C, **254,** 699 (1962). (231) P. Cordier, Bull. Soc. Chim. Fr., 151 (1955). (232) P. Cordier and D. Cagnianr, C. R. Acad. Sci., **228,** 1130(1949). (233) P. Cordier, C. R. Acad. Sci., **200,** 1412 (1935).

-
-
-
-
- (234) P. Cordier, *C. R. Acad. Sci.*, **202**, 1440 (1936).
(235) P. Cordier, *C. R. Acad. Sci.*, **225**, 330 (1947).
(236) P. Cordier and J. Kristensen, *C. R. Acad. Sci.*, **240**, 2419 (1955).
(237) P. Cordier and J. Kristen 94,4395(1972).
-
-
- (240) J. W. Cornforth and R. H. Cornforth, *J. Chem. Soc.,* 158 (1957).
(241) J. Couguelet and P. Tronche, *Bull. Soc. Chim. Fr.*, 2015 (1968).
(242) J. Couquelet, J. Couquelet, and J. Bastide, *Trav. Soc. Pharm. Montpe* **33,** 299 (1973); Chem. Abstr., 80, 128 37Oq (1974).
- (243) J. Couquelet, J. B. Boyer, and J. Couquelet, C. R Acad. Sci., Ser. C, **274,** 422(1972).
- (244) D. O. Cowan, M. M. Couch, K. R. Kopecky, and G. S. Hammond, J. Org.
- Chem., **2**9, 1922 (1964).
(245) H. M. Crawford, *J. Am. Chem. Soc.*, **60,** 3078 (1938).
(246) H. M. Crawford, J. C. Davidson, and M. A. Plunkett, *J. Am. Chem. Soc.*,
- **66,** 2010(1944). (247) N. H. Cromwell, P. L. Creger, and K. E. Cook, J. Am. Chem. Soc., 78,
- 4412(1956). (248) N, H. Cromwell and K. E. Cook, J. Am. Chem. Soc, 80, 4573 (1958).
- (249) I. Crossland and L. K. Rasmussen, Acta Chem. Scand., 19, 1652 (1965).
- (250) W. B. T. Cruse, M. N. G. James, A. A. Al-Shamma, J. K. Beal, and R. W. Doskotch, *Chem. Commun.*, 1278 (1971).
(251) H. S. Dahn, J. S. Lawendel, E. F. Hoegger, R. Fischer, and E. Schenker,
- Experientia, **10,** 245 (1954). (252) H. S. Dahn and H. Hauth, HeIv. Chem. Acta, 39, 1366 (1956). (253) H. Dahn and G. Rotzler, HeIv. Chim. Acta, **43,** 1555 (1960).
-
-
- (254) H. Dahn and J. S. Lewandel, HeIv. Chim. Acta, **37,** 1318 (1954).
- (255) H. Dahn and H. Hauth, Chimia, **11,** 262 (1956).
- (256) H. Dahn, J. S. Lewandel, E. F. Hoegger, and E. Schenker, HeIv. Chim. Acta, **37,** 1309(1954). (257) H. Dahn and E. F. Hoegger, HeIv. Chim. Acta, **37,** 1612 (1954).
- (258) G. F. D'Alelio, C. J. Williams, Jr., and C. L. Wilson, J. Org. Chem., **25,**
- 1025(1960). (259) A. Dalpozzo, A. Dansi, V. Mariotti, and E. Meneghini, Boll. Chim. Farm.,
- **111,** 342 (1972); Chem. Abstr., **77,** 147 975v (1972). (260) L. K. Dalton, B. C. Elmes, and B. V. Kolczynski, Aust. J. Chem., **25,** 633
- (1972). (261) L. K. Dalton and B. C. Elmes, Aust. J. Chem., **25,** 625 (1972). (262) N. Danielli, Y. Mazur, and F. Sondheimer, J. Am. Chem. Soc, 84, 875
- (1962).
- (263) N. Danielli, Y. Mazur, and F. Sondheimer, Tetrahedron, **22,** 3189 (1966).
- (264) S. F. Darling and e. W. Spannagel, J. Am. Chem. Soc, **53,** 1117 (1931).
- (265) W. Davey and D. J. Tivey, *J. Chem. Soc.*, 1230 (1958).
(266) F. M. Dean, ''Naturally Occurring Oxygen Ring Compounds'', Butter-
worths, Washington, D.C., 1963, pp 53-81.
(267) P. L. DeBenneville, *J. Org. Chem.*, **6**
-
- (1969).
- (269) R. Deghenghi, J. M. Ferland, and Y. Lefebvre, Proc Int. Congr. Horm.
- Steroids, 2d, 1966, 586 (1967); Chem. Abstr., 68, 96 051v (1968). (270) R, Deghenghi, A. Phillipp, and R. Gaudrey, Tetrahedron Lett., 2045
- (1963).
- (271) J. I. Degraw, *Tetrahedron*, **28,** 967 (1972).
(272) D. H. Dekock and H. G. Raubenheimer, *S. Afr. Med. J.*, **45,** 570.
- (1971). (273) R. M. De Lederkemer and M. I. Litter, Carbohydr. Res., **20,** 442
- (1971).
- (274) J. Demecko, J. Kovac, and M. Fandlova, Agrochemia, **12,** 265 (1972).
-
- (275) E. Demole and D. Berthet, *Helv. Chim. Acta*, **55**, 1866 (1972).
(276) E. Demole and P. Enggist, *Helv. Chem. Act*a, **51,** 481 (1968).
(277) D. De Rijke and H. Boelens, *Recl. Trav. Chim. Pays Bas*, 9**2,** 731
- (1973).
(278) K. DeWit, D. J. Frost, and J. P. Ward, *Rec. Trav. Chim. Pays Bas*, 9**0,** 1207
-
-
-
- (1971).
(279) H. P. Deys, *Pharm. Weekbl.*, 9**8,** 613 (1963).
(280) F. Dickens and J. Cooke, *Br. J. Cancer*, **19,** 404 (1965).
(281) F. Dickens and H. E. H. Jones, *Br. J. Cancer*, **15,** 85 (1961).
(282) F. Dickens and H.
- (1970). (284) P. Dietrich and E. Sundt, Swiss Patent 532 906 (1973); Chem. Abstr., 78, 146 51Oy (1973).
-
-
- (285) I. L. Doerr and R. E. Willette, *Tetrahedron Lett.*, 667 (1970).
(286) I. L. Doerr and R. E. Willette, *J. Org. Chem.*, **38**, 3878 (1973).
(287) J. E. Dolfini, J. Schwartz, and F. Weisenborn, *J. Org. Chem.*, **34,**
- (1968).
- (288) S. Ducher and A. Michet, *C. R. Acad. Sci., Ser. C*, **264,** 597 (1967).
(289) S. Ducher and A. Michet, *C. R. Acad. Sci., Ser. C*, **267,** 1617 (1968).
(290) S. Ducher and A. Michet, *Bull. Soc. Chim. Fr.*, 1640 (1
-
-
-
- (291) S. Ducher, *C. R. Acad. Sci.*, **255,** 3128 (1963).
(292) S. Ducher and A. Michet, *Bull. Soc. Chim. Fr.*, 4353 (1970).
(293) S. Ducher and A. Michet, *Bull. Soc. Chim. Fr.*, 1037 (1973).
- (294) M. Duenger, German Offen. 2 154 439 (1973); Chem. Abstr., 79, 41 966u
- (1973). (295) G. Dupont, R. Dulou, and G. Lefebvre, Bull. Soc. Chim. Fr., 816 (1954).
- (296) G. Durantin, J. B. Boyer, J. Coquelet, and P. Bastide, *Chim. Ther.*, **7,** 472
(1972); *Chem. Abstr.*, **78,** 71 788j (1973).
(297) B. L. van Duuren, *Mycotoxins Foodst., Proc. Symp.*, 275 (1964); *Chem.*
- Abstr., 64, 4046f (1966).
- (298) I. A. Dyankonov and M. I. Komendantov, Zh. Obshch. Khim., **33,** 2448 (1963).
- (299) W. Eberlein, J. Nickl, J. Heider, G. Dahms, and H. Machleidt, Chem. Ber., 105,3694(1972).
- (300) W. Eberlein, J. Heider, and H. Machleidt, Chem. Ber., **107,** 1275 (1974).
- (301) R. C. Eckert, H. Chang, and W. P. Tucker, Tappi, **56,** 134 (1973). (302) J. A. Edwards and J. H. Fried, French Patent 1 582 082 (1969); Chem. Abstr., **73,** 45 217z(1970).
- (303) R. L. Edwards and M. Gill, J. Chem. Soc, Perkin Trans. 1, 1921 (1973).
-
- (304) R. L. Edwards and G. C. Elsworthy, *Chem. Commun.*, 373 (1967).
(305) G. Eigler and J. P*oe*lt, *Oesterr. Bot. Z.*, **112,** 285 (1965).
(306) J. Eijkmann, *Chem. Zentralbl.*, II, 2046 (1907).
-
- (307) A. M. Elabbady, M. A. Omara, and N. G. Kandin, Rev. Roum. Chim., 19, 79(1974).
- (308) L. S. El-Assal and A. H. Shehab, U.A.R. J. Chem., 13, 169 (1970).
- (309) L. S. El-Assal and A. H. Shehab, J. Chem. Soc, 2987 (1963).
- (310) N. El-Ghandour, O. Henri-Rousseau, and J. Soulier, Bull. Soc. Chim. Fr., 2817(1972).
- (311) N. El-Ghandour and J. Soulier, C. R. Acad. Sci., Ser. C, **271,** 766 (1970).
- (312) N. Elming and N. Clauson-Kass, Acta Chem. Scand., 6, 565 (1952). (313) F. El Said, Proc. Pharm. Soc. Egypt, Sci. Ed., **35,** 81 (1953); Chem. Abstr., **51,** 17 812f (1957).
- (314) S. Emmi, U.S. Patent 3 531 292 (1970); Chem. Abstr., **73,** 135 921d (1970).
- (315) C. R. Engel and G. Bach, Steroids, 3, 593 (1964).
- (316) W. Engel, J. Nickl, E. Seeger, H. Teufel, and G. Engelhardt, German Offen. 2 141 925 (1973); Chem. Abstr., 78, 159 272x (1973).
- (317) W. Engel, E. Seeger, J. Nickl, and H. Teufel, German Offen. 2 047 806 (1972); Chem. Abstr., **77,** 19 386s (1972). (318) M. L. Entman, J. W. Cook, Jr., and R. Bressel, Cir. Res., 24, 793
- (1969).
- (319) M. L. Entman, J. W. Cook, Jr., and R. Bressler, J. Clin. Invest, 48, 229
- (1969). (320) W. W. Epstein and A. C. Sonntag, J. Org. Chem., **32,** 3390 (1967). (321) W. W. Epstein and A. C. Sonntag, Tetrahedron Lett., 791 (1966).
-
-
- (322) E. Erlenmeyer, Justus Liebigs Ann. Chem., **333,** 163 (1904). (323) N. Ermanno, U. Vaglini, and C. Cioni, Gazz. Chim. Hal., 97, 158 (1972).
- (324) C. Escobar, F. Farina, and J. M. Sanudo, An. Quim., **67,** 43 (1971).
-
- (325) A. Fabrycy and K. Kozlowski, *Zh. Obshch. Khim.*, **33,** 3768 (1963).
(326) A. Fabrycy and K. Kozlowski, *Monatsh. Chem.*, 9**7,** 1088 (1966).
(327) A. Fabrycy and K. Kozlowski, *Rocz. Chem.*, **41,** 251 (1967).
-
- (328) A. Fabrycy, Rocz. Chem., 40, 1657 (1966).

(1971).

(1968).

(1965).

(1966).

(1966).

(1967).

73, 26 630n(1970).

18,310(1970).

- (329) C. G. Fantesson, Upsala Laekarefoeren. Foerh., 45, 1 (1939); Chem. Abstr., **34,** 5944 (1940).
- (330) S. Farid and S. E. Shealer, J. Chem. Soc, Chem. Commun., 296 (1973).
- (331) F. Farina and M. V. Martin, An. Quim., **67,** 315 (1971).
-
- (332) F. Farina, M. V. Martin, and Paredes, *Synthesis*, 167 (1973).
(333) D. G. Farnum, J. Chickos, and P. E. Thurston, *J. Am. Chem. Soc.*, **88,** 3075(1966).
- (334) T. A. Favorskaya, S. I. Yakumovich, L. N. Ignatyuk, and A. I. Kutnevich, Zh. Org. Khim., 6, 2015 (1970). (335) W. J. Feast, W. K. R. Musgrave, and N. Reeves, J. Chem. Soc. C, 2428
- (1970).
- (336) D. M. Fenton, U.S. Patent 3 564 020 (1971); Chem. Abstr., **75,** 5289J (1971).
- (337) J. M. Ferland, Y. Lefebvre, R. Deghenghi, and K. Wiesner, Tetrahedron Lett., 3617 (1966).

(342) B. C. Fielding, E. J. Haws, J. S. E. Holker, A. D. G. Powell, A. Robertson,
D. N. Stanway, and W. B. Whalley, *Tetrahedron Lett.,* 24 (1960).
(343) W. Fiddler, R. C. Doerr, and A. E. Wasserman, *J. Agric. Food Chem.*

(344) L. F. Fieser and W. H. Daudt, *J. Am. Chem. Soc.*, **63,** 782 (1971).
(345) R. Filler and E. J. Piasek, *J. Org. Chem.*, **28,** 3400 (1963).
(346) R. Filler and R. M. Schure, *Can. J. Chem.*, **45,** 1018 (1967); **46,**

(351) F. R. Foden, J. McCormick, and D. M. O'Mant (to ICI Ltd.), British Patent 1 358 382 (1974); Chem. Abstr., 81, 120 438t (1974). (352) J. Font and J. Pascual, An. R. Soc. Esp. Fis. Quim., Ser. B, **62,** 705

(353) J. Font and J. Pascual, An. R. Soc. Esp. Fis. Quim., Ser. B, 62, 709

(354) J. A. Ford, C. V. Wilson, and W. R. Young, J. Org. Chem., **32,** 167

(355) J. A. Ford, Jr., and C. V. Wilson, U.S. Patent 3 661 899 (1972). (356) J. A. Ford and C. V. Wilson, U.S. Patent 3 468 912 (1969); Chem. Abstr., **71,** 124 209k (1969). (357) J. A. Ford and C. V. Wilson, U.S. Patent 3 507 648 (1970); Chem. Abstr.,

(358) J. Fowler and S. Seltzer, *J. Org. Chem.*, **35**, 3529 (1970).
(359) M. Franck-Neumann, *Angew. Chem., Int. Ed. Engl., 7*, 65 (1968).
(360) M. Franck-Neumann and C. Berger, *Bull. Soc. Chim. Fr.*, 4067

(347) R. Filler and L. M. Hebron, J. Am. Chem. Soc, 81, 391 (1959). (348) R. Filler and H. A. Leipold, J. Org. Chem., **27,** 4440 (1962). (349) D. Fleuryand M. Fleury, C. R. Acad. Sci., **258,** 5221 (1964). (350) E. Flurry, E. Weiss, and T. Reichstein, HeIv. Chim. Acta, 48, 1115

(338) J. C. Ferrand and D. C. Johnson, J. Org. Chem., **36,** 3606 (1971). (339) J. Ficini and A. Dureault, *C. R. Acad. Sci., Ser. C, 273, 28*9 (1971).
(340) J. Ficini and J. P. Genet, *Tetrahedron Lett.*, 1565 (1971).
(341) J. Ficini, J. D'Angelo, J. P. Genet, and J. Noire, *Tetrahedron Le* (1968).

- R. L. Frank, G. R. Clark, and J. N. Coker, J. Am. Chem. Soc, **72,** 1824 (1950).
- R. L. Frank, S. M. Cohen, and J. N. Coker, J. Am. Chem. Soc., **72,** 4454 (1950).
- A. Franke and G. Groeger, Monatsh. Chem., **43,** 55 (1922).
- (364) A. L. Fridman, G. S. Ismagilova, and S. S. Novikov, Russ. Chem. Rev., **41,** 381 (1972).
-
- J. Fried and E. E. Galantay, U.S. Patent 3 472 877 (1969). J. Fried and E. E. Galantay, U.S. Patent 3 326 937 (1967). J. fried and E. E. Galantay, U.S. Patent 3 446 821 (1969).
- W. Fritsch and H. Ruschig, Justus Liebigs Ann. Chem., **655,** 39 (1962).
- W. Fritsch, U. Stache, and H. Ruschig, Justus Liebigs Ann. Chem., **699,** 195(1966).
-
- W. Fritsch, U. Stache, W. Haede, K. Radscheit, and H. Ruschig, *Justus
Liebigs Ann. Chem., 721, 168 (1969).
W. Fritsch, H. Kohl, U. Stache, W. Haede, K. Radscheit, and H. Ruschig,
Justus Liebigs Ann. Chem., 727, 110 (1*
-
-
- G. Fuchs, *Ark. Kemi*, **26**, 111 (1966).
G. Fuchs, *Ark. Kemi*, 29, 379 (1967).
F. Fujikawa, K. Nakajima, A. Tokuoka, Y. Hitosa, J. Omatsu, T. Hatsuda, and M. Fujita, J. Pharm. Soc. Jpn., **74,** 884 (1954).
- F. Fujikawa, K. Nakajima, O. Wadai, M. Torii, S. Nakazawa, T. Tomatsu,
- and T. Toyoda, *J. Pharm. Soc. Jpn.*, **73,** 250 (1953).
R. Fuks and H. G. Viehe, ''Chemistry of Acetylenic Compounds'', Marcel
Dekker, New York, N.Y., 1965, p 524.
- R. C. Fuson and R. G. Bannister, J. Am. Chem. Soc, **74,** 1629
-
- (1952). S. Gabriel and G. Cohn, Ber., **24,** 3228 (1891). V. R. Gaertner, U.S. Patent 3 345 252 (1967); Chem. Abstr., **67,** 109 848s (1967).
- (380) D. Gagnaire, A. Rousseau, and P. Servoz-Gavin, J. Chim. Phys., 61, 1207 (1964).
- (381) D. Gagnaire, E. Payo-Subiza, and A. Rousseau, Nucl. Magn. Reson., Chem., Proc. Symp., 165 (1965); Chem. Abstr., 66, 46 005w (1967). E. E. Galantay, U.S. Patent 3 474 112 (1969); Chem. Abstr., **72,** 31 245b
- (1970).
- E. E. Galantay, C. Hoffman, and N. Paolella, J. Org. Chem., **35,** 4277 (1970).
- (384) E. E. Galanatay, A. Szabo, and J. Fried, Tetrahedron Lett., 415 (1963).
- (385) E. Galantay, H. Engel, A. Szabo, and J. Fried, J. Org. Chem., 29, 3560 (1964).
- (386) G. G. Gallo, C. Coronelli, A. Vigovani, and G. C. Lancini, Tetrahedron, 25, 5677 (1969).
- (387) A. P. Gara, R. A. Massy-Westropp, and G. D. Reynolds, Tetrahedron Lett., 4171 (1969).
- H. Gault and H. Funke, Bull. Soc. Chim. Fr., **41,** 494 (1927). J. R. Geigy, A. G., British Patent 681 376 (1952); Chem. Abstr., 48, 187b (1954).
- (390) R. Gelin and M. Chignac, Bull. Soc. Chim. Fr., 144 (1965)
-
- R. Gelin and M. Chignac, C. R. Acad. Sci., **258,** 3313 (1964). S. Gelin and M. A. Lalliard, C. R. Acad. Sci., Ser. C, **275,** 897 (1972).
- (393) N. N. Gerber, Tetrahedron Lett., 771 (1973).
- N. J. Giarman, J. Pharmacol. Exp. Ther., **102,** 185 (1951).
-
-
- N. J. Giarman, *J. Pharmacol. Exp. Ther.*, **96,** 119 (1949).
N. J. Giarman, *J. Pharmacol. Exp. Ther.*, 94, 232 (1948).
J. W. E. Glattfeld, G. Leavell, G. F. Spieth, and D. Hutton, *J. Am. Chem.* Soc, 53,3164(1931).
- B. M. Goldschmidt, *Mycotoxins, Foodst., Proc. Symp.*, 287 (1964); *Chem.*
Abstr., **64,** 5583 (1966).
- (399) M. Golfier and T. Prange, *Bull. Soc. Chim. Fr.*, 1158 (1973).
- (400) A. G. Gonzalez, J. Darias, and J. D. Martin, Tetrahedron Lett., 3625 (1973).
-
- R. Gorewit and M. Rosenblum, *J. Org. Chem.*, **38,** 2257 (1973).
C. Gourmelon and Y. Graff, *Bull. Soc. Chim. Fr.*, 2365 (1969).
Y. Graff, J. Calando, and M. H. Gardin, *Bull. Soc. Chim. Fr.*, 1106
- (1961).
- R. K. Graham, J. E. Moore, and J. A. Powell, J. Appl. Polym. Sci., **11,** 1797(1967).
- (405) J. A. Gratz, C. E. Cook, and M. E. Wall, Org. Prep. Proced., 2, 51 (1970).
- (406) A. E. Greene, J. C. Muller, and G. Ourisson, Tetrahedron Lett., 2489 (1972).
- (407) A. E. Greene, J. C. Muller, and G. Ourisson, Tetrahedron Lett., 3375 (1972).
- E. E. Gilbert, U.S. Patent 2 861 919 (1958); Chem. Abstr., **53,** 5577f (1959).
-
- J. F. Gillespie and C. C. Price, J. Org. Chem., **22,** 780 (1957). C. P. Green, A. G. Long, P. J. May, and A. Turner, J. Chem. Soc, 766
-
- (1964).
P. A. Grieco and K. Hiroi, *Tetrahedron Lett.*, 3467 (1974).
P. A. Grieco and K. Hiroi, *J. Chem. Soc., Chem. Commun.*, 1317 (1972).
-
-
-
- C. Ivanov and D. Mondeshka, *Izv. Khim. (Bulgar*ia), **8,** 21 (1975).
M. D. Grove and D. Weisleder, *J. Org. Chem.*, 3**8**, 815 (1973).
P. K. Grover and T. R. Seshadri, *J. Chem. Soc.*, 2134 (1960).
P. K. Grover and T. R. Se (1959).
- (417) P. K. Grover and T. R. Seshadri, Tetrahedron, 4, 105 (1958).
-
- P. K. Grover and T. R. Seshadri, *Tetrahedron*, **6,** 312 (1959).
E. Gudriniece, I. Kalnina, and J. Paulins, *Latv. PSR Zinat. Akad. Vestis*, Khim. Ser., 493(1971).
- (420) E. Gudriniece and I. Kalnina, USSR Patent 246 529 (1969); Chem. Abstr., 71, 124 208j(1971).
- (421) K. Haage and H. Reinheckel, German Often., 1 285 554(1969); Chem. Abstr., **70,** 77 356y(1969).
- (422) K. Haage and H. Reinheckel, British Patent 1 081 234 (1967); Chem. Abstr., **67,** 108 235c (1967). (423) T. Habu, H. Yamaguchi, T. Wada, T. Sasaki, H. I. Shii, T. Omura, and H.
- Inokuma, German Offen., 2 413 190 (1974); Chem. Abstr., **82,** 9991z (1975).
- (424) Y. Hachihama, T. Shono, and S. I. Ikeda, J. Org. Chem., 29, 1371 (1964).
- (425) Y. Hachihama and T. Shono, Technol. Rep. Osaka Univ., 7, 177 (1957); Chem. Abstr., **52,** 10 046a (1958).
- (426) W. Haefliger and T. Petrazilka, HeIv. Chim. Acta, 49, 1937 (1966).
- (427) R. Haensel and A. Pelter, Phytochemistry, **10,** 1627 (1971). (428) E. A. Hall, F. Kavanagh, and I. N. Asheshov, Antibiot. Chemother., 1,
- 369(1951). (429) N. Hall, J. E. Hynes, and A. Lapworth, J. Chem. Soc, **107,** 132
- (1915). (430) R. Hansel, J. Schulz, and A. Leuschke, Chem. Ber., **107,** 3337
- (1974).
- (431) M. A. Haq, M. L. Kapur, and J. N. Ray, *J. Chem. Soc.*, 1087 (1933).
- (432) A. D. Harmon and C. R. Hutchinson, *Tetrahedron Lett.*, 1293 (1973).
(433) R. D. Hartley *a*nd C. H. Fawcett, *Phytochemistry*, **7,** 1395 (1968).
-
- (434) A. I. Hashem, J. Prakt. Chem., **315,** 335 (1973). (435) A. I. Hashem and Z. M. Ismail, Indian J. Chem., **12,** 902 (1974).
- (436) M. Hashimoto, Japanese Patent 72 17714 (1972); Chem. Abstr., **78,** 16 733n(1973).
- (437) Y. Hata, S. Senoh, and M. Murakami, Nippon Kagaku Zasshi, 79, 1531 (1958).
-
- (438) K. Hauge, Acta Chem. Scand., **23,** 1059 (1969). (439) R. D. Haworth and W. Kelly, J. Chem. Soc, 1646 (1937).
- (440) R. D. Haworth, W. Kelly, and T. Richardson, J. Chem. Soc, 725 (1936).
- (441) R. D. Haworth and D. Woodcock, J. Chem. Soc, 809 (1938).
- (442) R. D. Haworth, T. Richardson, and G. Sheldrick, J. Chem. Soc, 1576
- (1935). (443) N. Hayashi, J. Sci. Hiroshima Univ., Ser. A, Div. 2, 33, 107 (1969); Chem. Abstr., **72,7** 056 315(1970). (444) P. Hayden (ICI), South African Patent 6 701 375 (1968); Chem. Abstr.,
- 70, 114 637p(1967).
- (445) L. J. Haynes and J. R. Plimmer, Q. Rev., Chem. Soc, **14,** 292 (1960). (446) L. J. Haynes, A. Kirkien-Konasiewicz, A. G. Loudon, and A. Maccoll, Org.
- Mass Spectrom., 1, 743 (1968). (447) L. J. Haynes, Q. Rev., Chem. Soc, 2, 46 (1948).
- (448) R. F. Heck, U.S. Patent 3 293 265 (1966); Chem. Abstr. **66,** 115 813x (1967).
- (449) R. Hansel, C. Beer, and J. Schulz, Chem. Ber., **106,** 3119 (1973). (450) N. Hellstrom, S. O. Almqvist, and M. Aamisepp, J. Chem. Soc B, 1103
- (1969). (451) N. Hellstrom and S. Gronowitz, K. Lantbruks-Hoegsk. Ann., **25,** 363 (1959); Chem. Abstr., **54,** 9751f (1960).
- (452) N. Hellstrom, K. Lantbruks-Hoegsk. Ann., **22,** 297 (1956); Chem. Abstr.,
- **51,** 4558a (1957). (453) N. Hellstrom, K. Lantbruks-Hoegsk. Ann., **22,** 17 (1956).
- (454) N. Hellstrom, K. Lantbruks-Hoegsk. Ann., 23, 519 (1957); Chem. Abstr., **52,** 7156h(1958).
- (455) N. Hellstrom, K. Lantbruks-Hoegsk. Ann., 25, 171 (1959); Chem. Abstr., **54,** 7799a (1960).
- (456) N. Hellstrom, M. Aamisepp, and G. Fuchs, K. Lantbruks-Hoegsk. Ann., 30, 601 (1964); Chem. Abstr., **62,** 16 005f (1965).
- (457) N. Hellstrom, M. Aamisepp, and G. Fuchs, K. Lantbruks-Hoegsk. Ann., 32, 427 (1966); Chem. Abstr., **68,** 12 132m (1968). (458) N. Hellstrom, S. O. Almqvist, M. Aamisepp, and S. Rodmar, J. Chem.
- Soc. C, 392 (1968).
-
- (459) N. Hellstrom, Nature (London), **179,** 58 (1957). (460) N. Hellstrom, Nature (London), **187,** 146(1960).
- (461) N. Hellstrom, Acta Agric. Scand., 8, 285 (1958); Chem. Abstr., **54,** 8418 (1959).

(465) J. L. Herrmann, M. H. Berger, and R. H. Schlessinger, J. Am. Chem. Soc,

(470) O. Hesse, *Ber.*, **30,** 361 (1897).
(471) O. Hesse, *J. Prakt. Chem.*, **62,** 340 (1900).
(472) K. Heusler, J. Keberle, C. Meystre, H. Ueberwasser, P. Wieland, G. Anner,

(473) H. Hift and H. R. Mahler, *J. Biol. Chem*., 19**8,** 901 (1952).
(474) H. B. Hill and R. W. Cornelison, *Am. Chem. J.*, 12, 188 (1890).
(475) H. B. Hill and L. L. Jackson, *Am. Chem. J.*, 12, 112 (1890).
(476) W. Himme

(479) R. Hodges and A. L. Porte, *Tetrahedron*, **20**, 1463 (1964).

(480) Z. Horii, M. Ito, I. Minami, M. Yamauchi, M. Hanaoka, and T. Momose,
 Chem. Pharm. Bull., **18**, 1967 (1970).

(481) A. B. Hornfeldt, *Ark. Kemi*,

-
- (462) R. Hemmerle, *Ann. Chim. (Paris*), 226 (1917).
(463) R. Hemmerle, *C. R. Acad. Sci.*, **162,** 758 (1916).
(464) J. L. Herrmann, J. E. Richman, and R. H. Schlessinger, *Tetrahedron Lett.*,

(466) O. Hesse, Justus Liebigs Ann. Chem., **284,** 176 (1895). (467) O. Hesse, J. Prakt. Chem., **[2] 57,** 244 (1898). (468) O. Hesse, J. Prakt. Chem., **57,** 316 (1898). (469) O. Hesse, J. Prakt. Chem., 68, 39 (1903).

and A. Wettstein, HeIv. Chim. Acta, **42,** 2013 (1959).

(477) C. W. Hinman, M.S. Thesis, Oklahoma State University, 1965. (478) H. Hiraoka and R. Srinivasan, German Patent 2 016 605 (1970); Chem. Abstr., **74,** 53 508f (1971).

3271 (1973).

95, 7923(1973).

63 842e(1967).

- (1974). (546) 485) P. F. Hudrlik, L. R. Rudnick, and S. H. Kopzeiviowski, J. Am. Chem. Soc.,
- 95,6848(1973). (547) 486) R. Huettel, K. T. Vellos, H. Buokl, and M. Taheri, Farben-Chem., Abstr., **65**, 10 552e (1966).
- 487) R. Huisgen, G. Binsch, and L. Ghosez, Chem. Ber., 97, 2628 (1964).
- 488) R. Huisgen, H. Konig, G. Binsch, and H. J. Strum, Angew. Chem., **73,** (549) 368(1961).
- 489) G. A. Hull, F. A. Daniher, and T. F. Conway, J. Org. Chem., **37,** 1837 (550) : (1972).
. (551) 490) R. Hunt and S. T. Reid, *J. Chem. Soc., Perkin Trans. 1*, 2527 (1972). (552)
-
- 491) Y. Ichikawa and T. Matsuo, Bull. Chem. Soc, Jpn., **40,** 2030 (1967). (553) 492) H. Iida, N. Odagiri, and M. Asakura, Japanese Patent 73 22 497 (1973);
- Chem. Abstr., 79, 32 025j (1973). (554) 493) Y. Nino, A. Tanaka, and K. Yamashita, Agric Biol. Chem., **36,** 2505
- (1972). (555) 494) S. Inayama and T. Kawamata, Chem. Pharm. Bull., **21,** 461 (1973). (556)
-
- (495) H. H. Inhoffen, W. Kreiser, and R. Selimoglu, *Justus Liebigs Ann. Chem.*,
= 161 (1973),
- 161(1973). (558) 496) H. H. Inhoffen, W. Kreiser, and M. Nazir, Justus Liebigs Ann. Chem., **755,**
- 1 (1972). (559) 497) H. H. Inhoffen, W. Kreiser, ad R. Panenka, Justus Liebigs Ann. Chem.,
- **749,** 117(1971). (560) 498) H. Irie, H. Harada, K. Ohno, T. Mizutani, and S. Uyeo, Chem. Commun., (561) 268 (1970).
- (499) H. Irie, H. Kimura, N. Otani, K. Udea, and S. Uyeo, *Chem. Commun.*, 678
(1967). (1967). (564) 500) T. Irie, E. Kurosawa, and T. Hamada, J. Fac Sci. Hokkaido Univ., Ser. (565)
- 5, 6 (1958); Chem. Abstr., 52, 16 328 (1958).
- 501) T. Ishii and T. Ito, Japanese Patent 69 10 781 (1969); Chem. Abstr., **71,** 112 795k (1970). (567) 502) T. Ishii and T. Ito, MeijiSeika KenkyuNempo, 43 (1967); Chem. Abstr.,
- 69, 43 702x (1968).
503) K. Iwai, M. Kawai, H. Kosugi, and H. Uda, *Chem. Lett.*, 385 (1974). (568)
504) K. Iwai, H. Kosugi, and H. Uda, *Chem. Lett.*, 1237 (1974). (1985). (569)
505) W. A. Jacobs and A. M. Collins, *J. Bi*
-
-
-
-
- 678(1958).
- (508) J. Jacques, A. Marquet, and C. Hattier, C. R. Acad. Sci., 244, 905 (1957).
- 509) F. R. Japp and W. B. Davidson, *J. Chem. Soc.,* **67,** 136 (1895). (572)
510) F. R. Japp and G. D. Lander, *J. Chem. Soc.*, **6**9, 123 (1897). (573)
511) F. R. Japp and
-
-
-
- 512) D. Jeffery and A. Fry, *J. Org. Chem.*, **22,** 735 (1957).
513) E. F. Jenny and J. Druey, *J. Am. Chem. Soc.*, **82,** 3116 (1960).
514) A. W. Johnson, ''The Chemistry of Acetylenic Compounds'', Vol. II, E. (575 Arnold, London, 1950.
-
- 515) J. B. Jones and J. M. Young, Can. J. Chem., **44,** 1059(1966). (577) 516) J. B. Jones and H. W. Middleton, Can. J. Chem., 48, 3819 (1970).
-
-
- 517) J. B. Jones and J. M. Young, *Can. J. Chem.*, **48,** 1566 (1970). (578)
518) J. B. Jones and J. M. Young, *Can. J. Chem.*, **44,** 1059 (1966). (579)
519) J. B. Jones, C. H. Koo, I. P. Mellor, S. C. Nyburg, and J. M. You
- 520) J. B. Jones and J. M. Young, J. Med. Chem., **11,** 1176 (1968). (581) 521) L. Jung, Bull. Soc ChIm. Fr., 4692 (1967).
-
- 522) S. Jung, L. Jung, and P. Cordier, C. R. Acad. Sci., Ser. C, **262,** 1793 (582) (1966).
- (523) Y. Kaburaki, H. Shigematsu, Y. Yamashita, and H. Kusakabe, Agric. Biol. Chem., 35, 1741 (1971). 524) T. Kagiya, Y, Sumida, and T. Inoue, Bull. Chem. Soc, Jpn., **41,** 767 (584)
- (1968).
- 525) Y. Kai and M. Shimizu, Mokuzai Gakkaishi, **14,** 425 (1968); Chem. Abstr., (585) 114 956s (1969).
- (526) B. Kakac, K. Mnoucek, P. Zuman, M. Semonsky, and A. Cernz, Collect. Czech. Chem. Commun., **33,** 1256 (1968). (587)
- 527) I. Kalnina, E. Gudriniece, and E. Liepins, Latv. PSRZinat. Akad. Vestis,
- Khim. Ser., 103 (1971); *Chem. Abstr.*, 7**5,** 20 061x (1971). (588)
528) I. Kalnina and E. Gudriniece, *Latv. PSR Zinat. Akad. Vestis, Khim. Ser.*, (589)
110 (1972
-
- (530) P. Karrer, K. A. Gehrckens, and D. W. Heuss, elv. Chim. Acta, 9, 446 (1926). 531) M. G. Kasbekar and N. V. Bringi, J. Am. Oil Chem. Soc, **46,** 183 (591)
- (1969).
- (532) T. Kato, M. Tanemura, and Y. Kitahara, Japanese Patent 72 10 388 (1972).
- 533) T. Kato, M. Tanemura, S. Kanno, T. Suzuki, and Y. Kitahara, Bioorg.
- Chem., 1, 84(1971). (593) 534) A. R. Katritzky and R. Robinson, j. Chem. Soc, 2481 (1955). 535) A. Kekule and O. Strecker, Justus Liebigs Ann. Chem., **223,** 170 (594) (1884).
- 536) O. Keller and V. Prelog, HeIv. Chim. Acta, **54,** 2572 (1971).
- (537) R. B. Kelly, E. G. Daniels, and L. B. Spaulding, J. Med. Chem., 8, 547
- (1965). 538) Kemisk Vaerk Koge, Danish Patent 74 271 (1952); Chem. Abstr., **47,** (596'
- 3351h(1953). (597 540) A. S. Kende, Chem. Ind. (London), 1053 (1956). (598)
- 541) R. N. Kemper and A. Winston, Tetrahedron, **27,** 543 (1971).
- 542) R. N. Kemper, Ph.D. Thesis, West Virginia University, Morgantown, (599 W.Va., 1971. (600'
- 543) R. N. Kemper and A. Winston, Proc W. Va. Acad. Sci., **42,** 163 (1970); (601 *Chem. Abstr.,* 7**8,** 71 797m (1973).
544) P. Keyahoff and P. Cordier, *C. R. Acad. Sci.*, 1590 (1961). (602)
-
- 545) A. Y. Khorlin and I. M. Privalova, Khim. Prir. Soedin., 3,191 (1967); Chem. Abstr., 68, 78 555h (1968).
- G. S. King and E. S. Waight, J. Chem. Soc, Perkin Trans. 1, 1499 (1974).
- T. E. Kinlin, R. Muralidhara, A. O. Pittet, A. Sanderson, and J. P. Walradt, J. Agric Food Chem., 20, 1021 (1972).
- W. Kirmse "Carbene Chemistry", 2d ed, Academic Press, New York,
- N.Y., 1972, Chapter 12, p 475. G. M. Klein, J. P. Heotis, and J. P. Meinwald, J. Org. Chem., **33,** 1105 (1968).
- T. Klobb, *C. R. Acad. Sci.*, **130,** 1254 (1900).
T. Klobb, *Bull. Soc. Chim. Fr.*, 389 (1898).
J. Klosa, *Pharm. Arch.*, **7**, 687 (1952).
-
-
- G. Klotmann and H. Mueller, German Offen. 2 108 926 (1972); Chem. Abstr., **77,** 139 442d (1972). J. C. Knight, G. R. Pettit, and P. Brown, J. Org. Chem., **35,** 1415
- (1970).
- M. Kobayashi, J. Pharm. Soc. Jpn., **74,** 367 (1953).
- E. Koch and G. O. Schenck, *Chem. Ber.*, **9**9, 1984 (1966).
F. Kogl, *Justus Liebigs Ann. Chem.*, **447,** 75 (1926).
- (558) F. Kogl, H. Becker, A. Detzel, and G. DeVoss, Justus Liebigs Ann. Chem., **465,** 211 (1928).
- F. Kogl, H. Becker, G. DeVoss, and E. Wirth, Justus Liebigs Ann. Chem.,
- **465,** 243 (1928).
E. P. Kohler and J. B. Conant, *J. Am. Chem. Soc.*, **3**9, 1418 (1917).
-
- E. P. Kohler and L. L. Steele, *J. Am. Chem. Soc.*, **41,** 1093 (1919).
G. Koller and A. Klein, *Monatsh. Chem.*, **63,** 213 (1934).
G. Koller and G. Pfeiffer, *Monatsh. Chem.*, **62,** 160 (1933).
P. Kolsaker, Org. Mass S*pec*
-
-
- (565) M. I. Komendantov and I. N. Dominin, Zh. Org. Khim., 5, 1319 (1969).
- F. Korte, W. Klein, and B. Drefahl, *Kagaku No Ryoiki*, **25,** 318 (1971);
Chem. Abstr., **75**, 75 231h (1971).
A. N. Kost, V. N. Eraksina, E. V. Vinogradova, and T. S. Khazanova, *Khim.* Geterotsikl. Soedin, Akad. Nauk Latv. SSR, 233 (1966); Chem. Abstr.,
- 65, 2201h(1966). S. Kovac, E. Solcanicova, E. Beska, and P. Rapos, *J. Chem. Soc., Perkin*
Trans. 2, 105 (1973).
- U. Kraatz, W. Hasenbrink, H. Wamhoff, and F. Korte, Chem. Ber., **104,**
- 2458 (1971).
C. S. Kraihanzel and L. G. Herman, *J. Organomet. Chem.*, **15,** 397 (1968).
- (571) B. Krawcynska and Z. Eckstein, Przem. Chem., 52, 276 (1973); Chem. Abstr., **7**9, 53 245w (1973).
W. Kreiser, H. U. Warnecke, and G. Nef., *Justus Liebigs An*n. *Chem*.,
- **207,** (1973).
- W. Kreiser and M. Nazir, Justus Liebigs Ann. Chem., **755,** 12 (1972). G. Kresze, W. Runge, and E. Ruch, Justus Liebigs Ann. Chem,, **756,** 112
- (1972).
- J. Kristensen and P. Cordier, C. R. Acad. Sci., **242,** 908 (1956).
- M. Kristensen-Reh, *Bull. Soc. Chim. Fr.*, 882 (1956).
H. Krog, *K. Nor. Videns. Selsk. Forh.*, **27,** 1 (1955); *Chem. Abstr.*, **50,**
12 172b (1956).
-
- (578) I. S. Krull and D. R. Arnold, Tetrahedron Lett., 1247 (1969).
- (579) J. Kucera, Cesk. Farm., 9, 298 (1960); Chem. Abstr., 55, 10 375g (1961).
- (580) M. Kuchar, Collect. Czech. Chem. Commun., 33, 880 (1968).
- (581) M. Kuchar and B. Kakac, Collect. Czech. Chem. Commun., 34, 3343 (1969).
- M. Kuchar and B. Kakac, Collect. Czech. Chem. Commun., 36, 2298 (1971).
- (583) N. Kucharczyk, V. Zikan, M. Semonsky, and V. Jelinek, Collect. Czech.
- *Chem. Commun.*, **3**4, 3637 (1969).
V. F. Kucherov, S. A. Kazaryan, and V. M. Andreev, *Izv. Ak*ad. *Nauk*
SSSR, Ser. Khim., 1996 (1963).
- V. G. Kulnevich and L. V. Tsygankova, *Izv. Vyssh. Uchebn. Z*av*ed.,*
Pishch. Tekhnol., 172 (1971); *Chem. Abstr.,* **76**, 1 460 361n (1972).
W. Kunz, *Z. Physiol. Chem.,* 329, 62 (1962).
C. H. Kuo, D. Taub, and N. L. Wen

(590) S. M. Kupchan, T. J. Giacobbe, I. S. Krull, A. M. Thomas, M. A. Eakin, and D. C. Fessler, *J. Org. Chem.*, **35**, 3539 (1970).
M. Kurono, K. Imaki, C. Tanigawa, and J. Kida, Japanese Patent
74 05 961 (1974); *Chem. Abstr.*, **80,** 120 328m (1974). M. Kurono, K. Imagi, T. Tanikawa, and M. Watanabe, Abstracts of Papers of the 26th Annual Meeting of the Chemical Society of Japan, Hiratsuka,

S. M. Kupchan, J. R. Knox, J. Kelsey, and J. A. Saenz Renauld, Nature {London), **146,** 1685 (1964): (589) S. M. Kupchan, R. J. Hemingway, and R. W. Doskotch, J. Med. Chem.,

1972, Ser. III, p 1623.
N. V. Kutepow, F. Meier, and D. Neubauer, German Offen. 1 276 029
(1968); *Chem. Abstr.,* **70,** 37 229c (1969).
I. A. Kuzovnikova, L. A. Badovskaya, Y. I. Turyan, and U. G. Kulnevich, Khim. Geterotsikl. Soedin., 737 (1974); Chem. Abstr., 81, 151 301r

R. N. Lacey, *J. Chem. Soc.*, 832 (1954).
J. Lam, *Phytochemistry*, **10,** 647 (1971).
J. K. Landquist and C. W. Thormber, *J. Chem. Soc., Perkin Trans 1*, 1114

J. K. Landquist and S. E. Meek, *Chem. Ind. (London*), 688 (1970).
A. Lapworth, *J. Chem. Soc.*, 91, 1133 (1907).
G. Lardelli, G. Dijkstra, P. D. Harkes, and J. Boldingh, *Recl. Trav. Chim.*

(595) R. N. Lacey, British Patent 720 361 (1954); Chem. Abstr., 50, 1920g

C. Laurence and R. Chiron, C. R. Acad. ScL, Ser. C, **268,** 279

A. Lawson, British Patent 772 836 (1957); Chem. Abstr., **52,** 1242b

(1972).

(1974).

(1956).

(1973).

(1969).

Pays Bas, 85, 43 (1966).

7, 803(1964).

(1958).

- (604) G. Leclerc, C. G. Wermuth, and J. Schreiber, Bull. Soc. Chim. Fr., 1302 (1967).
- E. Legal, *Fortschr. Chem.*, 1648 (1**8**83).
A. C. Legon, *Chem. Commun.*, 838 (1970).
- (607) H. G. Lehmann and R. Weichert, Angew. Chem., Int. Ed. Engl., 7, 300
- (1968).
- H. G. Lehmann, *Angew. Chem., Int. Ed. Engl., 4, 783* (1965).
H. G. Lehmann, U.S. Patent 3 331 837 (1967).
- (610) H. G. Lehmann and G. Zoellner, German Offen. 1 807 585 (1970), Chem. Abstr., **73,** 25 765y(1970).
- H. G. Lehmann, G. Zoellner, and R. Wiechert, German Offen. 1 939 164 (1971), Chem. Abstr., **74,** 100 306a (1971).
- H. G. Lehmann, German Offen. 1 229 529 (1966), Chem. Abstr., 66, (612) 55 659q(1967).
- R. U. Lemieux, R. Raap, C. G. Chin, and R. C. Micetich, U.S. Patent 3 622 569(1971).
- Y. Leroux and H. Normant, C. R. Acad. ScL, Ser. C, **270,** 1808 (1970).
- R. Lesipieau and P. L. Viguier, *C. R. Acad. Sci.*, **148,** 419 (1909).
R. M. Letcher and S. H. Eggers, *Tetrahedron Lett.*, 3541 (1967).
M. Levas, *C. R. Acad. Sci., Ser. C*, **270,** 1524 (1970).
-
-
- S. N. Lewis and T. L. Popper, Tetrahedron, **23,** 4197 (1967).
-
-
-
- F. Lieb and K. Eiter, *Justus Liebigs Ann. Chem.*, **761**, 130 (1972).
W. H. Linnell and F. Said, *J. Pharm. Pharmacol.*, 1, 148 (1949).
W. H. Linnell and F. Said, *J. Pharm. Pharmacol.*, 1, 151 (1949).
A. Loeffler, F. Norr 53,383(1970).
-
- A. G. Long and A. F. Turner, *Tetrahedron Lett.*, 421 (1963).
A. G. Long and A. F. Turner, British Patent 1 026 403 (1966); *Chem.*
Abstr., **65**, 3755f (1966).
- E. D. Loughran, E. M. Wewerka, and G. J. Hammons, J. Heterocycl.
- *Chem.*, 9, 57 (1972).
H. M. Loux and E. J. Soboczenski, Belgian Patent 620 174 (1962); *Chem*. Abstr.. 59, 639g(1963).
- (628) R. Lukes, J. Nemec, and J. Jarry, Collect. Czech. Chem. Commun., 29, 1663(1964).
- R. E. Lutz and H. Moncure, Jr., *J. Org. Chem.*, **26,** 746 (1961).
R. E. Lutz and M. Couper, *J. Org. Chem.*, **6,** 91 (1941).
R. E. Lutz, P. S. Bailey, C. Dien, and J. W. Rinker, *J. Am. Chem. Soc.*,
-
- 75,5039(1953).
- W. S. G. Maass, G. H. N. Towers, and A. C. Neish, Ber. Dtsch. Bot, Ges., 77, 157(1964).
- (633) W. S. G. Maass, Phytochemistry, 9, 2477 (1970)
-
- W. S. G. Maass, *Can. J. Biochem.,* 4**8,** 1241 (1970).
W. S. G. Maass and A. C. Neish, *Can. J. Bot.*, **45**, 59 (1967).
H. Maisack, H. Schlecht, and H. Urbach, French Patent 1 443 740 (1966);
- Chem. Abstr., 67, 43 675z (1967). R. Malinowski and B. Sledzinski, Polish Patent 66 432 (1972); *Chem.*
Abstr., **79,** 53 549y (1973).
- (638) R. Malinowski, B. Sledzinski, and J. Kokosinski, Polish Patent 66 436
- (1972); Chem. Abstr., 79, 53 550s (1973). R. Malinowski, J. Kokosinski, and B. Sledzinski, Rocz. Chem., **46,** 39 (1972).
- (640) R. Mallaby and G. Ryback, J. Chem. Soc., Perkin Trans. 2, 919 (1972).
- F. B. Mallory and J. D. Roberts, J. Am. Chem. Soc, **83,** 393 (1961).
- A. Maquestiau, Y. van Haverbeke, and R. N. Muller, Bull. Soc. Chim. BeIg., 83,259(1974).
- H. Marschall, F. Vogel, and P. Weyerstahl, Chem. Ber., **107,** 2852 (1974).
- (644) A. Marshak, W. B. Schaefer, and S. Rajagopalan, Proc. Soc. Exp. Blol. Med., 70, 565 (1949).
- J. A. Marshall and N. Cohen, J. Org. Chem., **30,** 3475 (1965).
- J. A. Marshall and N. Cohen, Tetrahedron Lett, 1997 (1964). J. A. Marshall, N. Cohen, and K. R. Arenson, J. Org. Chem., **30,** 762
- (1965)
- J. A. Marshall and N. Cohen, *J. Am. Chem. Soc.*, **87,** 2773 (1965).
J. Martin, P. C. Watts, and F. Johnson, *Chem. Commun.*, 27 (1970).
-
- R. H. Martin, HeIv. Chim. Acta, **30,** 620 (1947). J. N. Marx and F. Sondheimer, Tetrahedron Suppl., 8, 1 (1966).
-
- S. G. Matsoyan, A. A. Avetisyan, and T. A. Mangasaryan, USSR Patent
251 575 (1969); *Chem. Abstr.*, **72,** 78 443c (1970).
T. Matsuda, H. Kondo, and N. Nakamura, *Kogyo Kagaku Zasshi*, **74**, 1135
- (1971); Chem. Abstr., **75,** 63 052n (1971).
- (654) S. Matsunaga, J. Okada, and S. Uyeo, Chem. Commun., 525 (1965). T. Matsuura, H. Matsushima, S. Kato, and I. Saito, Tetrahedron, **28,** 5119 (1972).
- (656) T. Matsuura and K. Ogura, *J. Am. Chem. Soc.*, 89, 3850 (1967)
- T. Matsuura, A. Nishinaga, N. Yoshimura, T. Arai, K. Omura, H. Mat-
sushima, S. Kato, and I. Saito, *Tetrahedron Lett.*, 1673 (1969).
-
- M. V. Mavrov and V. F. Kucherov, *Ref. Khim. Zh.*, 1, 461 (1972); *Chem.*
Abstr., 79, 17999m (1973).
M. V. Mazarov and V. F. Kucherov, Izv. Ak*ad. Nauk SSSR, Ser. Khim.,* 1763(1972).
- F. Mazza, Rend. Accad. Sci. Fis. Mat., Naples, **31,** 182 (1925); Chem. Abstr., **21,** 1110(1927).
- (661) P. O. McCoy, Ph.D. Thesis, University of Oklahoma, 1964.
- S. M. McElvain and W. R. Davie, J. Am. Chem. Soc, **74,** 1816 (1952).
-
-
- J. A. McRae and A. L. Kuehner, J. Am. Chem. Soc, 52, 3377 (1930). T. C. McMorris, J. Org. Chem., 35, 458 (1970). T. C. McMorris and A. W. Barksdale, Nature (London), **215,** 5098 (1967).
- (666) T. C. McMorris, T. Arunachalam, and R. Seshadri, Tetrahedron Lett., 2673
- (1972).
(667) T. C. McMorris and R. Seshadri, *Chem. Commun.*, 1646 (1971).
(668) T. C. McMorris, R. Seshadri, and T. Arunachalam, *J. Org. Chem.*, **39**,
- 669(1974).
- (669) J. K. Mehra and S. V. Sunthankar, Indian J. Chem., 6, 759 (1968).
- (670) J. Meinwald, J. W. Wheeler, A. A. Nimetz, and J. S. Liu, J. Org. Chem., **30,** 1038(1965).
- (671) R. Metelli and G. F. Bettinetti, Synthesis, 365 (1970).
- (672) P. M. Miller, Plant Dis. Rep., 51, 202 (1967); Chem. Abstr., **66,** 94 168y (1967).
-
- (673) O. S. Mills and G. Robinson, *Inorg. Chim. Acta*, 1, 61 (1967).
(674) T. Minami, I. Niki, and T. Agawa, *J. Org. Chem.*, 39, 3236 (1974).
(675) H. Minato and I. Horibe, *Chem. Commun.*, 531 (1965).
-
- (676) H. Minato and I. Horibe, J. Chem. Soc. C, 1575 (1967).
- (677) H. Minato and T. Nagasaki, *Chem. Ind.* (Lo*ndon*), 899 (1965).
(678) H. Minato and T. Nagasaki, *J. Chem. Soc.*, 377 (1966).
- (679) K. Mitsuhashi, K. Nomura, and S. Shiotani, unpublished results quoted in ref 503.
- (680) M. Mitsuno, Pharm. Bull., 3, 60 (1955).
- (681) (682) O. P. Mittal and T. R. Seshadri, J. Chem. Soc, 3053 (1955). O. P. Mittal and T. R. Seshadri, Curr. Sci., **26,** 4 (1957).
-
- (683) O. P. Mittal and T. R. Seshadri, J. Chem. Soc., 1734 (1956).
- (684) F. Moller and A. Strecker, Justus Liebigs Ann. Chem., **113,** 56 (1860).
- (685) Montecatini Edison S.P.A., Italian Patent 792 602 (1967); Chem. Abstr., 71,3047x(1969).
- (686) Montecatini Societa Generale, Italian Patent 788 039 (1967); Chem. Abstr., **73,** 76 736x (1970).
- (687) Montecatini Edison, Italian Patent 844 442 (1969); Chem. Abstr., 74, 140 990a (1971).
- (688) Montecatini Edison, Italian Patent 827 704 (1968); Chem. Abstr., **74,** 141 001r(1971).
- (689) Montecatini Societa Generale, Italian Patent 809 375 (1968); Chem. Abstr., 77, 126 129g(1972). (690) H. W. Moore, Chem. Soc. Rev., 2, 415 (1973).
-
- (691) H. W. Moore and W. Weyler, Jr., J. Am. Chem. Soc, 93, 2812 (1971). (692) H. W. Moore, W. Weyler, Jr., and H. R. Shelden, Tetrahedron Lett., 3947
- (1969).
- (693) H. W. Moore and H. R. Shelden, J. Org. Chem., **32,** 3603 (1967).
- (694) H. W. Moore and H. R. Shelden, J. Org. Chem., **33,** 4019 (1968). (695) H. W. Moore and H. R. Shelden, Tetrahedron Lett., 5431 (1968).
-
- (696) H. W. Moore, H. R. Shelden, D. W. Deters, and R. J. Wikholm, J. Am. Chem. Soc, 92, 1675 (1970).
- (697) H. W. Moore and R. J. Wikholm, Tetrahedron Lett., 5049 (1968). (698) N. Morooka, N. Uratsuji, Y. Noriaki, T. Yoshizawa, and H. Yamamoto,
- Shokuhin Eiseigaku Zasshi, **13,** 368 (1972); Chem. Abstr., 80, 56 272j (1974).
- (699) R. Moscheles and H. Cornelisus, Ber., **21,** 2603 (1883).

Abstr., 78, 58 409s (1973).

12 985s (1968).

(1952).

-
- (700) K. Mossbach, *Acta Chem. Scand., 21, 2331 (1967).*
(701) K. Mossbach, *Biochem. Biophys. Res. Commun., 1***7**, 363 (1964).
(702) K. Mossbach, *Angew. Chem., Int. Ed. Engl.*, **8,** 240 (1969).
- (703) M. Mousseron-Canet, J. C. Mani, and J. P. Dalle, Bull. Soc. Chim. Fr., 608(1967).
- (704) E. J. Mulders, M. C. T. de Braua, and S. Z. van Straten, Z. Lebensm.- Unters.-Forsch., **150,** 306 (1973).
- (705) T. P. C. Mulholland, R. Foster, and D. B. Haydock, J. Chem. Soc, Perkin Trans 1, 1225(1972).
- (706) T. P. C. Mulholland, R. Foster, and D. B. Haydock, J. Chem. Soc, Perkin Trans. 1, 2121 (1972).
- (707) K. Munakata, S. Marumo, K. Ohta, and Y. L. Chen, Tetrahedron Lett., 3821 (1967). (708) M. Murakami, I. Isako, T. Kashiwagi, H. Matusi, K. Nakano, K. Takahashi, H. Horiguch, and A. Koda, German Offen. 2 225 149 (1972); Chem.

(709) M. Murakami, S. Senoh, and Y. Hata, *Mem. Inst. Sci. Ind. Res. Osaka
Univ., 16, 219 (1959); <i>Chem. Abstr.*, **53,** 22 555d (1959).
(710) J. Murray, *J. Chem. Soc.*, 1345 (1952).
(711) S. Musierowicz and A. W. Roblew

165 (1974); *Chem. Abstr.*, **80**, 108 128p (1974).

(712) A. Mustafa, "Heterocyclic Compounds", Vol. 29, Wiley-Interscience,

New York, N.Y., 1974, p 210.

(713) M. Naito, A. Shihoda, H. Ohta, F. Fujikawa, K. Nakajima, A.

Chem. Abstr., **61,** 15 979h (1964). (715) Netherlands Patent (to BASF) 6 611 582 (1967); Chem. Abstr., 68,

(716) Netherlands Patent (to N. V. Organon) 6 515 209 (1967); Chem. Abstr., **68,** 78 295y (1968).
(717) K. Nakajima, O. Wadai, and M. Torii, *J. Pharm. S*oc. *Jpn.*, **72,** 692)

(718) J. Nickl, G. Dahms, and H. Machleidt, German Offen. 1 920 176 (1970); Chem. Abstr., 74, 12 986s (1971). (719) R. Nicoletti, and R. Baiocchi, Ann. Chim. (Rome), **52,** 716 (1962); Chem.

(722) S. Nishibe, S. Hisada, and I. Ingaki, *Yakugaku Zasshi*, **93,** 374 (1973);
Chem. Abstr., 79, 1694x (1973).
(723) P. Niviere, P. Tronche, and J. Couquelet, *Bull. Soc. Chim. Fr.*, 3658)

(1965).
(724) E. Niwa and M. Miyake, *Chem. Ber.*, **103,** 997 (1970).
(725) A. Nobuhara, *Agric. Biol. Chem.*, **34,** 1745 (1970).
(726) T. A. Nour, F. G. Baddar, and A. Fateen, *J. Chem. Soc.*, 5302 (1964).

Abstr., **5**9, 5014c (1963).
(720) C. H. Nield, *J. Am. Chem. Soc.*, **67,** 1145 (1945).
(721) A. W. Nineham and R. A. Raphael, *J. Chem. Soc.*, 118 (1949).

Unsal luraied Lactones Chemical Reviews, 1976, Vol. 76, No. 5 689

- (727) L. Novotny, V. Herout, and F. Sorm, Collect. Czech. Chem. Commun., 29,2182(1963).
- A. Numata, K. Ohno, T. Irie, and S. Uyeo, J. Pharm. Soc. Jpn., **88,** 1151 (1968).
- (729) M. Ohashi, S. R. Kumasaki, S. Yamamura, K. Nakanishi, and H. Kolke, J. Am. Chem. Soc, **81,** 6339 (1959).
- (730) K. Ohga and T. Matsuo, Bull. Chem. Soc. Jpn., 43, 3505 (1970). (731) E. Ohler, K. Reininger, and U. Schmidt, Angew. Chem., Int. Ed. Engl.,
- 9,457(1970).
- K. Ohga and T. Matsuo, Bull. Chem. Soc. Jpn., **46,** 2181 (1973). V. Ojima, S. Takenaka, and S. Seto, Phytochemistry, **12,** 2527
- (1973). M. Okada and Y. Saito, Chem. Pharm. Bull., **21,** 388 (1973).
- (735) T. Okazaki, A. Ohsuka, and M. Kotake, Nippon Kagaku Kaishi, 584 (1973);
-
- Chem. Abstr., 78, 159 918m (1973). G. A. Olah and A. T. Ku, J. Org. Chem., **35,** 3916 (1970). G. L. Oliver, J. R. Dann, and J. W. Gates, Jr., J. Am. Chem. Soc, **80,** 702 (1958).
- V. Olhoff, R. Huettenrauch, and H. Braeuniger, Z. Chem., **10,** 341 (1970).
- (739) R. J. Owellen, J. A. Fitzgerald, B. M. Fitzgerald, D. A. Welsh, D. M. Walker, and P. L. Southwich, Tetrahedron Lett., 1741 (1967).
- H. Pacheco, A. Cier, A. F. Prijent, and A. Groviller, German Off*e*n.
2 228 948 (1972); *Chem. Abstr.*, **78,** 72 532h (1973).
-
- A. Padwa and R. Hartman, Tetrahedron Lett., 2277 (1966). H. Pagani, G. Lancini, G. Tamoni, and C. Coronelli, J. Antibiot., **26,** 1 (1973).
- (743) R. Palm, H. Ohse, and H. Cherdron, Angew. Chem., Int. Ed. Engl., 5, 994 (1966).
- (744) V. K. Paranipe, N. L. Phalnikar, and B. U. Bhide, J. Univ. Bombay, 17A, 69, (1949); Chem. Abstr., **44,** 1680c (1950). A. D. Pozzo, A. Dansi, and E. Meneghini, Boll. Chim. Farm., **113,** 280
- (1974).
- J. Paris, M. Payard, and P. J. Bargnoux, C. R. Acad. Sci., Ser. C, **278,** 1149(1974).
- W. L. Parker and F. Johnson, U.S. Patent 3 838 168 (1974); Chem. Abstr., 82, 3823z(1975).
- W. L. Parker and F. Johnson, *J. Am. Chem. Soc.*, 91, 7208 (1969).
W. L. Parker and F. Johnson, *J. Org. Chem.*, **38,** 2489 (1973).
J. W. Patterson and J. E. Murray, *Chem. Commun.*, 488 (1971).
-
- (751) L. Pavlikova-Nemcova, V. Fracova, K. Raz, Z. Frank, S. Smolik, and M.
- Semonsky, *Adv. Antimicrob. Antineoplast. Chemother.*, Proc. Int. Congr.
of Chemther., 7th, 1971, 113 (1971).
L. A. Pavlova, V. V. Belogorodskii, and E. D. Venus-Danilova, *Zh. Obshch*,
- *Khim.,* **36,** 1386 (1966).
G. B. Payne, U.S. Patent 3 177 227 (1965); *Chem. Abstr*.**, 63**, 6866f
- (1965). (754) S. W. Pelletier, R. L. Chappell, and S. Prabhakar, J. Am. Chem. Soc.,
- 90, 2889(1968).
- (755) A. Pelter and R. Haensel, Z. Naturforsch., 27, 1896 (1972).
- (756) G. W. Perold, A. S. Howard, and H. K. L. Hundt, J. Chem. Soc. C, 3136 (1971).
-
- G. W. Perold and H. K. L. Hundt, J. Chem. Soc. C, 1924 (1966). E. Perrotti, N. Palladino, M. Greco, and M. De Malde, Ann. Chim. {Rome), **56,** 1368 (1966); Chem. Abstr., **66,** 85435f (1967).
- G. R. Pettit, B. Green, A. K. Dasgupta, and G. C. Dunn, Experientia, **20,** 248(1964).
-
- G. R. Pettit and J. P. Yardley, Chem. Ind. (London), 553 (1966). G. R. Pettit, B. Green, and G. L. Dunn, J. Org. Chem., **35,** 1367
- (1970). G. R. Pettit, B. Green, and G. L. Dunn, J. Org. Chem., **35,** 1377 (1970).
- G. R. Pettit, B. Green, A. K. Dasgupta, P. A. Waitehouse, and J. P. Yardley,
- *J. Org. Chem.*, 35, 1381 (1970).
G. R. Pettit, C. L. Herald, and J. P. Yardley, *J. Org. Chem*., **35, 1**389 (1970).
- (765) G. R. Pettit, T. R. Kasturi, J. C. Knight, and J. C. Occolowitz, J. Org. Chem., 35, 1404(1970).
- G. R. Pettit, T. R. Kasturi, J. C. Knight, and K. A. Jaeggi, *J. Org. Chem.,*
35, 1410 (1970).
- E. Piers, M. B. Geraghty, and R. D. Smillie, Chem. Commun., 614 (1971).
-
- A. Piutti, Gazz. Chim. Ital., **40,** 488 (1911). A. Piutti and F. Mazza, Rend. Accad. Sci. Fis. Mat., Naples, **31,** 148 (1925); Chem. Abstr., **21,** 1110(1927).
- (770) L. Pons and H. Veldstra, Recl. Trav. Chim. Pays-Bas, 74, 1217 (1955).
- (771) K. T. Potts and R. Robinson, J. Chem. Soc., 2466 (1955).
- H. Plieninger and K. Frischkorn, *Chem. Commun.*, 661 (1968).
M. Prasad and C. G. Wermuth, *Bull. Soc. Chim. Fr.*, 624 (1968).
- M. Prasad and C. G. Wermuth, C. R. Acad. ScI., Ser. C, **264,** 405
- (1967).
M. Prasad, C. G., Wermuth, and J. Schreiber, *Bull. Soc. Chim. Fr.*, 1379 (1967).
- (776) M. Prasad and C. G. Wermuth, Bull. Soc. Chim. Fr., 1386 (1967).
- C. C. Price and J. M. Judge, ''Organic Syntheses'', Collect. Vol. 5, Wiley,
New York, N.Y., 1973, p 255.
A. F. Prigent, A. Grouiller, H. Pacheco, and A. Cier, *Chim. Ther.*, **7,** 307
- (1972). A. F. Prigent, A. Grouiller, H. Pacheco, and A. Cier, *Chim. Ther.*, 7, 392
- (1972). (780) B. Puetzer, C. H. Neld, and R. H. Barry, J. Am. Chem. Soc., 67, 832
- (1945)
- R. Putter and W. Dilthey, J. Prakt. Chem., **149,** 183 (1937). R. Putter and W. Dilthey, J. Prakt. Chem., **150,** 40 (1937).
- J. Quintanta, M. Torres, and F. Serratosa, Tetrahedron, **29,** 2065

(1973).

- (784) R. Raap, C. G. Chin, and R. C. Micetich, Can. J. Chem., **49,** 2143 (1971)
- (785) R. Ramachandran, R. Chiron, and Y. Graff, Bull. Soc Chim. Fr., 1031 (1972).
- (786) J. L. Ramaut, Bull. Soc. R. Bot. BeIg., **93,** 27 (1961).
- (787) F. Ramirez and G. V. Loewengart, J. Am. Chem. Soc, **91,** 2293 (1969).
- (788) F. Ramirez and M. B. Rubin, J. Am. Chem. Soc., 77, 3768 (1955).
- (789) S. K. Ranganathan, *Curr. Scl.*, 9, 458 (1940).
(790) E. V. Rao and D. V. Rao, *Indian J. Pharm.*, **33,** 58 (1971).
-
- (791) Y. S. Rao, Chem. Rev., **64,** 353 (1964). (792) Y. S. Rao and R. Filler, Tetrahedron Lett., 1457 (1975).
- (793) Y. S. Rao, unpublished results.
-
- (794) Y. S. Rao and R. Filler, *Chem. Ind.* (*London*), 1862 (1964).
(795) Y. S. Rao and T. M. Muzyczko, unpublished results.
- (796) P. Rapos, P. Wintemitz, E. Beska, and E. Sohler, Czech. Patent 138 824
- (1970); Chem. Abstr., 76, 34 094t (1972). (797) P. Rapos, P. Wintemitz, E. Sohler, and E. Beska, Czech Patent 138 602 (1970); Chem. Abstr., 76, 14 320k (1972).
- (798) P. Rapos, P. Wintemitz, E. Beska, and E. Sohler, Czech. Patent 138 823
- (1970); Chem. Abstr., 76, 25 087r(1972). (799) P. Rapos, J. Synak, E. Beska, E. Sohler, apd P. Wintemitz, Czech. Patent 130 763 (1969); Chem. Abstr., 72, 53 976r (1970).
- (800) H. G. Raubenheimer and D. H. DeKock, J. S. Afr. Chem. Inst., **25,** 321 (1972).
- (801) H. G. Raubenheimer, D. H. DeKock, J. S. Afr. Chem. Inst., **25,** 70 (1972).
- (802) B. Reichert and H. Schafer, Arch. Pharm., **291,** 100 (1958).
- (803) B. Reichert and H. Schafer, Arch. Pharm., **291,** 184 (1958).
- (804) A. H. Rees, *Chem. Ind.* (London), 931 (1964).
(805) A. H. Rees, *Chem. Ind.* (London), 1298 (1965).
-
- (806) H. Reinheckel and K. Haage, J. Organomet. Chem., **10,** 29 (1967). (807) D. N. Reinhoudt and B. Van de Graaf, Reel. Trav. Chem. Phys-Bas, **89,** 509(1970).
- (808) W. Reusch and R. Starkey, J. Org. Chem., **32,** 931 (1967).
- (809) R. J. Reynolds Tobacco Co., Netherlands Patent 6 514 140 (1966); *Chem.*
4*bstr.*, **66,** 15 518x (1967).
(810) K. Rezabek and V. Jelinek, *Neoplasm*a, **6,** 161 (1959).
-
- (811) W. Ried and H. Mengler, Angew. Chem., 73,218(1961). (812) W. Ried and H. Mengler, Justus Liebigs Ann. Chem., **651,** 52 (1962).
- (813) W. Ried and H, Mengler, Justus Liebigs Ann. Chem., **678,** 113
- (1964). (814) W. Ried and H. Mengler, German Patent 1 189 987 (1965); Chem. Abstr.,
- **62,** 16 416e(1965).
- (815) W. Ried and R. Kraemer, Justus Liebigs Ann. Chem., 1952 (1973).
(816) G. Rio and J. C. Hardy, *C. R. Acad. Sci., Ser. C*, 263, 1150 (1966).
(817) G. Rio and D. Masure, *Bull. Soc. Chim. Fr.*, 4598 (1972).
(818) G. Ri
-
-
-
-
-
-
-
- (824) D. L. Roberts, J. Org. Chem., **29,** 2785 (1964).

37, 1166(1964).

(1964).

(1969).

(1967).

(1966).

894(1967).

- (825) W. Roedel and U. Hempel, Nahrung, **18,** 133 (1974). (826) A. Roedig, B. Heinrich, W. Krieger, and M. Schlosser, Justus Liebigs Ann. Chem., **733,** 105(1970).
-
- (827) W. Rosenbrook and R. E. Carney, Tetrahedron Lett., 1867 (1970).
- (828) A. Rossi and H. Schinz, HeIv. Chim. Acta, **42,** 473 (1948).
- (829) E. Rothstein and M. A. S*a*boor, *J. Chem. Soc.*, 425 (1943).
(830) I. M. Roushidi, A. I. El-Sebai, R. M. Shafig, and F. S. G. Soliman, *Phar*-
- mazie, 27,731 (1972). (831) S. Ruhemann, J. Chem. Soc, **89,** 1236 (1906).

(832) H. W. L. Ruijgrok, *Comp. Phytochem.*, 175 (1966).
(833) F. Runge and U. Koch, *Chem. Ber.*, 91, 1217 (1958).
(834) H. Ruschig, W. Fritsch, and E. Lindner, German Patent 1 026 324 (1958);

Chem. Abstr., **54,** 10 961g (1960).
(835) H. Saikachi and Y. Taniguchi, *Yakugaku Zasshi*, **88**, 1559 (1968); *Chem.*
Abstr., 7**0,** 77 684d (1969). (836) H. Saikachi and Y. Taniguchi, Yakugaku Zasshi, **88,** 1256 (1968); Chem. Abstr., 70, 37 583p (1969). (837) I. Saito, N. Yoshimura, T. Arai, K. Omura, A. Nishinaga, and T. Matsuura, Tetrahedron, **28,** 5131 (1972). (838) T. Sakan, S. Isoe, and S. B. Hyeon, Tetrahedron Lett., 1623 (1967) (839) T. Sakan, M. Kato, T. Miwa, and N. Nakamura, Bull. Chem. Soc Jpn.,

(840) T. Sakan, M. Kato, and T. Miwa, Bull. Chem. Soc. Jpn., 37, 1171

(841) K. Sakurai, H, Matsumoto, and J. Adachi, Yakugaku Zasshi, **88,** 919 (1968); Chem. Abstr., **69,** 94 792) (1968). (842) A. Sammourand M. Elhashasfi, J. Prakt. Chem., **314,** 906 (1972).

(843) J. Santesson, *Phytochemistry*, **6,** 685 (1967).
(844) S. Sarel, Y. Yanuka, and Y. Shalon, *Isr. J. Chem.*, **5,** 48p (1967).
(845) S. Sato, A. Morishima, and H. Eakamatsu, *Nippon Kagaku Zasshi*, 91,

(846) M. L. Scarpati, C. Trogolo, and C. lavarone, Gazz. Chim. Ital., **99,** 1167

(847) R. Scarpati, G. Scherillo, and F. Imperato, Gazz. Chim. Ital., 97, 654

(848) R. Scarpati, M. Cioffi, and G. Scherillo, Gazz. Chim. Ital., **96,** 1164

(849) R. Scheffold and P. Dubs, HeIv. Chim. Acta, **50,** 798 (1967). (850) U. Scheidigger, J. E. Baldwin, and J. D. Roberts, J. Am. Chem. Soc, 89,

(851) G. O. Schenk, German Patent 881 193 (1953); Chem. Abstr., **50,** 5035a

557 (1970); Chem. Abstr., 73, 120 03Op (1970).

(1956).

- G. O. Schenk, German Patent 875 650 (1953); Chem. Abstr., 52, 8182e (1958).
- (853) J. Schmitt, M. Suquet, G. Callet, J. Lemeur, and P. Comoy, Bull. Soc. Chim. Fr., 74(1967).
- J. Schmitt, M. Suquet, P. Comoy, J. Boitard, G. Callet, T. Clim, and J.
Lemeur, *Bull. Soc. Chim. Fr.*, 953 (1966).
- (855) J. Schmitt, M. Suquet, J. Boitard, G. Callet, T. Clim, J. Lemeur, and P.
- Comoy, Bull. Soc. Chim. Fr., 960 (1966).
J. Schmitt, M. Suquet, J. Salle, P. Comoy, G. Callet, and J. Lemeur, Chim.
Ther., 305 (1966); Chem. Abstr., 66, 9482p (1967).
- (857) J. Schmitt, French Patent 1 408 721 (1965); Chem. Abstr., 63, 16 305e (1965).
- (858) A. Schmitz, U. Kraatz, and F. Korte, Chem. Ber., 108, 1010 (1975).
- F. J. Schmitz and E. D. Lorance, *J. Org. Chem.*, **36,** 719 (1971).
F. J. Schmitz, E. D. Lorance, and L. S. Ciereszko, *J. Org. Chem.*, **34,** 1989
- (1969). F. J. Schmitz, K. W. Kraus, L. S. Ciereszko, D. H. Sifford, and A. J.
- Weinheimer, Tetrahedron Lett., 97 (1966).
- (862) F. Schon, L. Jung, and P. Cordier, C. R. Acad. Sci., Ser. C, 267, 490 (1968).
- A. Schonberg and A. Sina, *J. Chem. Soc.*, 601 (1946).
L. Schrader, *Tetrahedron Lett.*, 2993 (1971).
-
- (865) J. Schreiber, C. G. Wermuth, and A. Meyer, Bull. Soc. Chim. Fr., 625 (1973).
- (866) J. Schreiber and C. G. Wermuth, Bull. Soc. Chim. Fr., 2242 (1965). (867)
- G. Schroetter, Ber., 42, 2347 (1909). S. H. Schroeter, R. Appel, R. Brainmer, and G. O. Schenck, *Justus Liebigs*
Ann. Chem., 697, 47 (1966).
- (869) K. E. Schulte and K. Baranowsky, Pharm. Zentralhalle Dtschl., 98, 403 (1959).
- (870) K. E. Schulte, J. Reisch, and O. Heine, Arch. Pharm., 294, 234 (1961).
- (871) G. R. Schultze, M. H. Khorgami, and F. Boberg, Justus Liebigs Ann. Chem., 688, 122 (1965).
- J. N. Schumacher, D. L. Roberts (to R. J. Reynolds Tobacco Co.), U.S.
Patent 3 251 366 (1966); *Chem. Abstr.*, **65**, 12 113b (1966).
T. Seki, Y. Watanabe, K. Nakajima, and T. Suzuki, Japanese Patent
- 73 72 120 (1973); Chem. Abstr., 80, p59495v (1974).
-
- S. Seltzer and K. D. Stevens, J. *Org. Chem.*, 33, 2708 (1968).
M. Semonsky, N. Kucharczyk, V. Zikan, and V. Jelinek, *Collect. Czech.*
Chem. Commun., 34, 3533 (1969).
- (876) M. Semonsky, H. Skvorova, V. Zikan, B. Kakac, and V. Jelinek, Collect. *Czech. Chem. Commun.*, **35,** 96 (1970).
M. Semonsky, E. Rockova, V. Zikan, B. Kakac, and **V**. Jelinek, *Collect.*
- Czech. Chem. Commun., 28, 377 (1963).
- M. Semonsky, N. Kucharczyk, V. Zikan, and V. Jelinek, Czech Patent
145 820 (1972); *Chem. Abstr., 78, 15*9 241m (1973).
M. Semonsky, V. Zikan, and V. Jelinek, Czech Patent 127 712 (1968);
Chem. Abstr., **70,** 87 328e (1
-
- (880) M. Semonsky, A. Cerny, R. Kotva, V. Zikan, and B. Kakac, Collect. Czech. *Chem. Commun.*, **33,** 2698 (1968).
M. Semonsky, V. Zikan, H. Skvorova, and B. Kakac, *Collect. Czech*.
- Chem. Commun., 33, 2690 (1968).
- E. P. Serebryakov, L. M. Kostochka, and V. F. Cucherov, Zh. Org. Khim., 9, 1617(1973).
- (883) K. B. Sharpless, R. F. Lauer, and A. Y. Teranishi, J. Am. Chem. Soc., 95,6137(1973).
- (884) M. M. Shah and N. L. Phalniker, J. Univ. of Bombay, Sci., 13A, 22 (1944); Chem. Abstr., 39, 2289 (1945). H. R. Shelden, Ph.D. Thesis, University of California, Irvine, 1969.
-
- (886) M. M. Shemyakin, Zh. Obshch. Khim., 13, 290 (1943).
- M. M. Shemyakin, *Zh. Obshch. Khim.*, **9,** 484 (1939).
T. Shigei and S. Mineshita, *Experlenti*a, **24,** 466 (1968).
-
- (889) K. Shingu, S. Hagishita, and M. Nakagawa, Tetrahedron Lett., 4371 (1967).
- V. M. Shostakovoskii, M. Y. Samoilova, and I. F. Belskii, *Izv. Akad. N*a*uk*
SSSR, Ser. Khim., 1630 (1968).
M. M. Sidky and R. Shaban*a, U.A.R. J. Chem.*, **13,** 501 (1970).
-
- (892) T. Simura, Z. Saito, and H. Satonaka, Kanagawa-ken Kogyo Shikensho Kenkyu Hokoku, **31,** 43 (1971); *Chem. Abstr.*, **75**, 88 401p (1971).
T. Simura, Z. Saito, and H. Satonaka, *Nippon Kagaku Z*asshi, **90,** 1173
- (1969); Chem. Abstr., 72, 54 685g (1970).
- T. Simura, Z. Saito, and H. Satonaka, *Nippon Kagaku Zasshi*, **90,** 716
(1969); *Chem. Abstr.*, **71,** 112 788k (1969).
T. H. Smouse and S. S. Chang, *J. Am. Oil Chem. Soc.,* 44, 509
- (1967).
- U. Soderberg, *Congr. Int. Bot., Rapp. Commun., 8th,* 29 (1954); *Chem.*
Abstr., **48,** 11 652f (1954).
U. Soderberg, Acta Physiol. Scand., **27,** 97 (1953).
-
-
- F. Sondheimer, *Chem. Br.*, 454 (1965).
M. Sone, Y. Tominaga, R. Nastuki, Y. Matsuda, and G. Kobayashi, *Chem.*
Pharm. Bull., **22,** 617 (1974).
- (900) A. C. Sonntag, Ph.D. Thesis, University of Utah, Salt Lake City, Utah, 1967.
-
-
- 1967.
P. E. Sonnet, *J. Org. Chem.*, **33,** 3662 (1968).
P. E. Sonnet, *Chem. Ind.* (Lo*ndon*), 1296 (1967).
J. S. Sørensen and N. A. Sørensen, *Aust. J. Chem.*, **22,** 750 (1969).
J. Soucek, V. Slavikova, M. Kuchar, and E. macol., 21, 1907 (1972).
-
- A. Spiegel, *Justus Liebigs Ann. Chem.*, **219,** 23 (1883).
J. M. Springer, III, Ph.D. Thesis, Oklahoma State University, 1969.
- (907) R. Srinivasan and N. Hiraoka, Tetrahedron Lett., 2767 (1969)
- J. Srogl and I. Stibor, Collect. Czech. Chem. Commun., 33, 1958 (1968).
- (909) A. Stabursvik, *Nor. Tek. Vitenskapsakad.*, **No. 6,** 89 (1959); *Chem. Abstr.,*

55, 14 600a (1961).

- (910) U. Stache, W. Fritsch, W. Haede, K. Radscheit, and K. Fachinger, *Justus*
L*iebigs Ann. Chem.*, **726**, 136 (1969).
(911) H. D. Stachel, *Arch. Pharm.*, **298,** 447 (1965).
-
- (912) H. D. Stachel, Justus Liebigs Ann. Chem., 689, 119 (1965).
- (913) H. D. Stachel, Arch. Pharm., 296, 479 (1963).
- (914) V. I. Staninets, E. A. Shilov, and E. B. Koryak, ZAi. Org. Khim., 4, 268 (1968). (915) E. D. Stecher, A. Waldman, and D. Fabiny, J. Org. Chem., 30, 1800
- (1965).
- (916) W. Steglich, V. Austel, and H. Tanner, Chem. Ber., 101, 916 (1968).
- (917) W. Steglich and V. Austel, Angew. Chem., Int. Ed. Engl., 6, 184 (1967). (918) W. Steglich, W. Furtner, and A. Prox, Z. Naturforsch. B, 23, 1044
- (1968).
- (919) W. Steglich, W. Furtner, and A. Prox, Z. Naturforsch. B, 24, 941 (1969).
- (920) W. Steglich, W. Furtner, and A. Prox, Z. Naturforsch. B, 25, 557 (1970).
- (921) K. D. Stevens and S. Seltzer, J. Org. Chem., 33, 3923 (1968).
- (922) M. A. Stevens, U.S. Patent 2 859 218 (1958).
- (923) P. S. Steyn, W. J. Conradie, C. F. Garbers, and M. J. Devries, J. Chem. Soc, 3075(1965).
- (924) H. Stobbe, K. Russwurm, and J. Schulz, Justus Liebigs Ann. Chem., 308, 175(1899).
- (925) H. Stobbe, M. Noetzel, Justus Liebigs Ann. Chem., 308, 112 (1899). (926) H. Stobbe and K. Russwurm, Justus Liebigs Ann. Chem., 308, 158
- (1899).
- (927) F. H. Stodola, O. L. Shotwell, and L. B. Lockwood, J. Am. Chem. Soc., 74,5415(1952).
- (928) R. Stoermer and F. Schenck, Ber., 60, 2577 (1927).
- (929) H. H. Strain, W. A. Svec, K. Aitzetmuller, M. C. Grandolfo, J. J. Katz, H.
Kiøsen, S. Norgard, S. Liaaen-Jense, F. T. Haxo, P. B. Wegfahrt, and H.
Rappoport, *J. Am. Chem. Soc.*, 9**3**, 1824 (1971).
- (930) H. Strzelecka and M. Simalty-Siemiatycki, C. R. Acad. Sci., 234, 3821 (1961).
- (931) N. Sugiyama, H. Kataoka, and Y. Yamada, Yuki Gosei Kagaku Kyokai Shi, 25, 582 (1967); Chem. Abstr., 67, 116 604n (1967).
- (932) N. Sugiyama, H. Kataoka, C. Kashima, and K. Yamada, Bull. Chem. Soc. Jpn., 42, 1098 (1969).
- (933) N. Sugiyama, T. Gasha, H. Kataoka, and C. Kashima, *Bull. Chem. Soc.* Jpn., **41,** 971 (1968). (934) N. Sugiyama, C. Kashima, H. Kataoka, and K. Tanaka, Bull. Chem. Soc.
- *Jpn.*, 43, 1473 (1970).
(935) N. Sugiyama, C. Kashima, H. Kataoka, and K. Yamada, *Bull. Chem. Soc*.
- Jpn., 41, 2219 (1968). (936) G. Suld, U.S. Patent 3 74 111 (1969); Chem. Abstr., 72, 12 148d
- (1970). (937) H. Susler, M. Habegger, and W. Buechi, Z. Lebensm.-Unters.-Forsch.,
- 148, 215 (1972); Chem. Abstr., 77, 48 112e (1972).
- (938) H. Susler, J. DePizzol, and W. Buechi, *J. Food Sci.*, **32,** 611 (1967).
- (939) M. M. Rao H. Meshullum, and R. Zelnik, Phytochemistry, 14, 1071 (1975).
- (940) B. M. Sutton, U.S. Patent 3 772 341 (1973).

2655 (1964).

(1971).

(1970).

(1967).

(1899).

(1972).

(1961).

Pays-Bas, 88, 209 (1969).

Abstr., 55, 4466 (1961).

Chem. Soc. Jpn., 44, 2258 (1971).

-
- (941) G. Swain, A. R. Todd, and S. Waring, *J. Chem. Soc.*, 548 (1944).
(942) M. Tada, T. Kokubo, and T. Sato, *Tetrahedron*, **28,** 2121 (1972).
- (943) S. Takano and K. Ogasawara, Synthesis, 42 (1974).
- (944) M. Takebayashi and T. Ibata, Bull. Chem. Soc. Jpn., 41, 1700 (1968). (945) M. Takebayashi, T. Ibata, H. Kohara, and K. Ueda, Bull. Chem. Soc Jpn.,
- **42,** 2938 (1969).
(946) M. Takebayashi, T. Ibata, H. Kohara, and M. Hamaguchi, *Sci. Rep., Osak*a
- Univ., **17,** 7 (1968). (947) M. Takebayashi, T. Ibata, and K. Ueda, Bull. Soc. Chem. Jpn., 43, 1500
- (1970). (948) M. Takebayashi, T. Kashiwada, M. Hamaguchi, and T. Ibata, Chem. Lett.,
- 809(1973).
-

(953) K. Takeda, K. Sakurawi, and H. Ishii, Tetrahedron, 28, 3757 (1972). (954) H. S. Tan, D. N. Reinhoudt, and H. C. Beyerman, Reel. Trav. Chim.

(955) H. Tanaka, H. Ugo, and S. Yamasita, Bull. Chem. Soc Jpn., 44, 1079

(956) S. Tanaka and S. Kawai, Nippon Kagaku Zasshi, 80, 1153 (1959); Chem.

(957) M. Tanemura, T. Suzuki, T. Kato, and Y. Katihara, Tetrahedron Lett., 1463

(958) J. H. Tatum, P. E. Shaw, and R. E. Berry, J. Agric Food Chem., 15, 773

(959) K. Thomae, GmBH, British Patent 933 509 (1963); Chem. Abstr., 60, 1702g (1964).
(960) J. Thiele, *Justus Liebigs Ann. Chem.*, **306**, 164, 240 (1899).
(961) J. Thiele and H. Rossner, *Justus Liebigs Ann. Chem.*, 3<mark>06,</mark> 204

(962) K. Tokumaru, H. Sakuragi, and Y. Takahashi, Chem. Lett., 957

(963) S. Torii, T. Okamoto, and H. Tanaka, J. Org. Chem., 39, 2484 (1974). (964) S. Torii, T. Furuta, T. Miyaoka, H. Sako, H. Tanaka, and K. Uneyama, Bull.

(965) G. Traverso, Farmaco, Ed. Sci., 15, 442 (1960); Chem. Abstr., 55, 502h

(966) G. Traverso, Farmaco, Ed. Sci., 16, 472 (1961); Chem. Abstr., 58, 2412e

(949) A. Takeda, S. Tsuboi, and Y. Oota, *J. Org. Chem.*, **38**, 4148 (1973).
(950) A. Takeda, S. Tsuboi, and T. Sakai, *J. Org. Chem.*, **3**9, 2601 (1974).
(951) A. Takeda, S. Ts*u*boi, and T. Hongo, *Bull. Chem. Soc. Jp* (1973). (952) K. Takeda, H. Minato, M. Ishikawa, and M. Miyawaki, Tetrahedron, 20,

Unsaturated Lactones Chemical Reviews, 1976, Vol. 76, No. 5 **691**

(1963).

- (967) A. Triebs, K. Jacob, and A. Dietl, Justus Liebigs Ann. Chem., **702,** 112 (1967).
- (968) P. Tronche, P. Bastide, M. Payard, and J. B. Boyer, C. R. Soc., Biol., 163, 1145(1967).
- (969) B. M. Trost and T. N. Salzmann, J. Am. Chem. Soc, **95,** 6840 (1973).
-
- (970) P. Truitt and S. G. Truitt, J. Med. Chem., 9, 637 (1966). (971) R. Tschesche, K. Welman, G. Wulff, and G. Snatzke, Chem. Ber., **105,** 290(1972).
- (972) R. Tschesche and H. J. Hoppe, Chem. Ber., **104,** 3573 (1971). (973) R. Tschesche, J. Kammerer, and G. Wolff, Chem. Ber., **102,** 2057 (1969).
-
-
- (974) J. Tsuji and T. Nogi, *Tetrahedron Lett.*, 1801 (1966).
(975) J. Tsuji and T. Susuki, T*etrahedron Lett.*, 3027 (1965).
(976) J. Tsuji and T. Nogi, Japanese Patent 67 20 287 (1967); *Chem. Abstr.*, 69, 27 058m (1968). (977) J. Tsuji and T. Nogi, J. Am. Chem. Soc, **88,** 1289 (1966). (978) K. Tsutsumi, T. Fujishita, F. Kido, and A. Yoshikoshi, Papers presented
-
- at the 30th Annual Meeting of the Chemical Society of Japan, Osaka, 1974, p 1387.
- (979) N. M. Tsybina, T. V. Protopoppova, and A. P. Skoldinov, Zh. Org. Khim., 6, 269(1970).
- (980) R. W. Turner, German Often. 2 101 637 (1971); Chem. Abstr., **75,** 118 223b (1971). (981) T. I. Temnikova and R. N. Kovalevskaya, Zh. Obshch. Khim., **35,** 246
- (1965). (982) T. I. Temnikova and S. N. Semenova, Zh. Obshch. Khim., **35,** 27
- (1965).
- (983) I. Uchida and K. Kuriyama, Tetrahedron Lett., 3761 (1974). (984) F. Uchimaru, M. Sato, E. Kossayama, and H. Takahashi, Japanese Patent
- 69 27 027(1969); Chem. Abstr., **72,** 78 711p (1970). (985) H. Uda, personal communication. (986) Y. Ueno, N. Sato, K. Ishii, K. Sakai, and M. Enomoto, Jpn. J. Exp. Med.,
- 42,461 (1972). (987) E. F. Ullman and N. Baumann, J. Am. Chem. Soc, **92,** 5892 (1970).
- (988) S. Umio, K. Kariyone, and K. Tanaka, Japanese Patent 69 17 901 (1969); Chem. Abstr., **71,** 101 695b (1969).
- (989) United Pharmaceutical Works, British Patent 1 195 921 (1970); Chem. Abstr., 7**4,** 12 812g (1971).
(990) U. Valcavi and N. B. Zonta, *G. Arterioscler.*, **5,** 243 (1967); *Chem. Abstr.*,
- 68, 103 729c (1968).
- (991) E. E. van Tamelen and S. R. Bach, J. Am. Chem. Soc, **80,** 3079 (1958).
- (992) K. O. Vartia, Ann. Med., Exp. Biol. Fenn., **27,** 46 (1949); Chem. Abstr., **43,** 5077d (1949).
(993) T. P. Vasileff and D. F. Koster, *J. Org. Chem.*, **35**, 2461 (1970).
(994) L. I. Vereschagin, S. R. Gainulina, R. L. Bolshse-Drovskaya, and G. A.
-
- Pavlova, Khim. Aroma. Nepredelnykh Soedin, 246 (1971); Chem. Abstr., 79, 136 938a (1973).
- (995) M. Verny and R. Vessiere, *Bull. Soc. Chim. Fr.*, 1729 (1969).
(996) M. Verny and R. Vessiere, *Bull. Soc. Chim. Fr.*, 25**8**5 (1968).
-
- (997) E. I. Vinogradova and M. M. Shemyakin, Zh. Obshch. Khim., **16,** 709 (1946). (998) H. C. Volger, W. Brackman, and J. W. F. M. Lemmers, Reel. Trav. Chim.
- Pays-Bas, **84,** 1203(1965). (999) H. C. Volger and W. Brackman, Reel. Trav. Chim. Pays-Bas, **84,** 1233
- (1965).
- (1000) H. C. Volger and W. Brackman, Reel. Trav. Chim. Pays-Bas, **86,** 243 (1967).
- (1001) R. Schenck, Justus Liebigs Ann. Chem., **282,** 21 (1894).
- (1002) J. Volhard and F. Henke, Justus Liebigs Ann. Chem., **282,** 45 (1894). (1003) C. A. Wachtmeister, Bot. Not, **109,** 313 (1956).
-
- (1004) F. Wadaand T. Matsuda, Bull. Chem. Soc. Jpn., **46,** 510 (1973).
- (1005) T. Wada, Chem. Pharm. Bull., **12,** 1117 (1964). (1006) T. Wada and D. Satoh, Chem. Pharm. Bull., **12,** 752 (1964).
-
-
- (1007) T. Wada, Chem. Pharm. Bull., **13,** 43 (1965). (1008) R. Walter and T. C. Purcell, Chem. Ind. (London), 2057 (1966). (1009) R. Walter, H. Zimmer, and T. C. Purcell, J. Org. Chem., **31,** 3854 (1966).
- (1010) R. Walter, D. Theodoropoulos, and T. C. Purcell, J. Org. Chem., **32,** 1649 (1967).
- (1011) R. H. Walter and I. S. Fagerson, J. Food ScL, **33,** 294(1968).
-
-
- (1012) H. M. Walton, *J. Org. Chem.*, **22,** 308 (1957).
(1013) H. M. Walton, *J. Org. Chem.*, **22,** 312 (1957).
(1014) R. P. Walton, M. deV. Colten, and W. M. McCord, *Proc. Soc. Exp. Biol.*
Med., 74, 548 (1950).
- (1015) Y. Wang and C. S. Huang, Hua Hsueh Hsueh Pao, **26,** 84 (1960); Chem. Abstr., 59, 5032d(1963). (1016) Y. Wang and C. C. Wang, Hua Hsueh Hsueh Pao, **28,** 354 (1962); Chem. Abstr., 59, 12 655a (1963).
-
- (1017) H. H. Wasserman, F. M. Precopio, and T. C. Liu, J. Am. Chem. Soc, **75,** 2527(1953). (1018) H. H. Wasserman, R. M. Walters, and J. E. McKeon, Chem. Ind. (London),
- 1795(1961).
- (1019) H. H. Wasserman and D. L. Pavia, Chem. Commun., 1459 (1970). (1020) T. Watanabe, N. Furukawa, and S. Oae, Bull. Chem. Soc Jpn., **41,** 242
- (1968).
- (1021) H. Weidmann, W. Timpe, and N. Wolf, Carbohydr. Res., **25,** 67 (1972). (1022) A. J. Weinheimer, R. E. Middlebrook, J. O. Bledsoe, Jr., W. E. Marsico,
-
- and T. K. B. Karns, *J. Chem. Soc., Chem. Commun.*, 384 (1973).
(1023) C. D. Weis and H. P. Fischer, German Offen. 32 237 527 (1973); *Chem.*
Abstr., 7**8**, 110 589s (1973).
(1024) N. L. Wendler and H. L. Slates, *J. Org. C*
-

(1964).

-
- 1026) G. Westphal, Tetrahedron, **21,** 5199 (1969). 1027) E. M. Wewerka, J. Polym. Sci., 9, 2703 (1971).
- 1028) E. P. White, J. Chem. Soc. C, 346 (1967).
- 1029) K. B. Wiberg and T. W. Hutton, J. Am. Chem. Soc, **76,** 5367 (1954).
-
- 1030) R. J. Wikholm, Ph.D. Thesis, University of California, Irvine, 1971. 1031) R. J. Wikholm and H. W. Moore, J. Am. Chem. Soc, **94,** 6152 (1972).
- 1032) P. E. Wiley and O. Weaver, J. Am. Chem. Soc, **78,** 808 (1956). 1033) R. H. Wiley, C. H. Jarboe, and F. N. Hayes, J. Am. Chem. Soc, 79, 2602 (1957).
-
- 1034) R. H. Wiley, *J. Chem. Soc.*, 3831 (1958).
1035) R. H. Wiley, T. H. Crawford, and C. E. Staples, *J. Org. Chem.*, **27**, 1535 (1962).
- 1036) R. H. Wiley and C. E. Staples, J. Org. Chem., **28,** 3408 (1963).
- 1037) A. Winston, M. Quinn, R. N. Kemper, and N. De Mercurio, Am. Chem. Soc, Div. Org. Coat. Ptast, Chem., Pap., 367 (1969); Chem. Abstr., 75, 36 798d(1971).
- 1038) A. Winston and R. N. Kemper, Tetrahedron, 27, 543 (1971).
-
- 1039) A. Winston and D. A. Chapman, *J. Polym. Sci. Part C*, **22,** 65 (1967).
1040) A. Winston and G. T. C. Li, *J. Polym. Sci., Part A,* **5,** 127 (1967).
1041) A. Winston, J. P. M. Bederka, W. G. Isner, P. C. Juliano,
- J. Org. Chem., **30,** 2784 (1965).
- 1042) A. Winston, D. A. Chapman, and G. T. C. Li, *NASA Contract Rep.*, NASA
CR-94533 (1967); *Chem. Abstr.*, **71**, 71 013h (1969).
1043) A. Winston and G. T. C. Li, *Am. Chem. Soc.*, Div. *Polym. Chem., Prepr.*,
- 7, 590 (1966); Chem. Abstr., **66,** 29 138z (1967).
- 1044) P. Winternitz, E. Beska, E. Sohler, and P. Rapos, Chem. Zvesti, 22, 375 (1968).
- 1045) E. Winterfeldt and J. M. Nelke, Chem. Ber., **101,** 3163 (1968).
- (1046) W. Wislicenus and A. Jensen, Ber., 25, 3448 (1892)
- 1047) H. Wolfers, U. Kraatz, and F. Korte, Chem. Ber., **106,** 874 (1973). 1048) A. B. Wood and B. Buckingham, Spectrochim. Acta, Part A, 26, 465
- (1970). 1049) T. Yamada and I. Ogura, Japanese Patent 3218 (1955); Chem. Abstr.,
- 51, 16 525a (1957).
1050) K. Yamada, Y. Togawa, T. Kato, and Y. Hirata, *Tetrahedron*, 27, 5445 (1971).
- 1051) K. Yamada, T. Kato, and Y. Hirata, *Chem. Commun.*, 1479 (1969).
1052) K. Yamada, M. Kato, M. Iyoda, and Y. Hirata, *J. Chem. Soc., Chem.*
- Commun., 499(1973). 1053) K. Yamada, M. Kato, and Y. Hirata, Tetrahedron Lett., 2745 (1973).
- 1054) V. N. Yandovskii and M. K. Momchev, Dokl. BoIg. Akad. Nauk, 21, 897 (1968); Chem. Abstr., **70,** 2860m (1969).
- 1055) S. G. Yates, H. L. Tookey, J. J. Ellis, and H. J. Burkhardt, Tetrahedron Lett., 621 (1967).
-
-
- 1056) P. Yates and T. J. Clark, *Tetrahedron Lett.*, 435 (1961).
1057) P. Yates and M. J. Betts, *J. Am. Chem. Soc.*, **94,** 1965 (1972).
1058) P. Yates, G. D. Abrams, M. J. Betts, and S. Goldstein, *Can. J. Chem.*, **49,** 2850(1971).
- 1059) P. Yates and G. H. Stout, *J. Am. Chem. Soc.*, **76,** 5110 (1954).
1060) Y. Yatsuhama and T. Shono (to Ajinomoto Inc.), Japanese Patent 26 382.
- (1963); Chem. Abstr., **60,** 5341c (1964). 1061) A. Yogev and Y. Mazur, J. Am. Chem. Soc, **87,** 3520 (1965).
-
-

(1969).

(1960).

- 1062) A. Yoshikoshi, private communication.
1063) F. Zanker and F. Reicheneder, German Offen. 2 054 884 (1972); *Chem*. Abstr., **77,** 48 220p(1972).
- 1064) F. Zanker and F. Reicheneder, German Offen. 2 053 738 (1972); Chem. Abstr., **77,** 87 911r (1972).
- 1065) F. Zanker and F. Reicheneder, German Offen. 2 055 073 (1972); Chem.
- Abstr., **77,** 75 02Oe (1972). 1066) N. S. Zarghami and D. E. Heinz, Lebensm. Wiss. Technol., 4, 43 (1971); Chem. Abstr., 75, 87 198r (1971).
- 1067) S. I. Zavyalov, N. I. Gunar, E. N. Tyurina, and N. A. Preobrazhenskii, USSR
- Patent 352 892 (1972); *Chem. Abstr.*, **78,** 43 245m (1973).
1068) K. Ziegler and W. Sauermiich, *Ber.*, **63B,** 1851 (1930).
1069) V. Zikan, M. Semonsky, N. Kucharczyk, and E. Svacek, *Collect. Czech.*
Chem. Commun., 35, 3
- 1070) V. Zikan, M. Semonsky, and V. Jelinek, Adv. Antimicrob., Antineoplast.
Chemother., Proc. Int. Congr. Chemother., 7th, 1971, 2, 119 (1972);
Chem. Abstr., 79, 111 773e (1973).
- 1071) V. Zikan, M. Semonsky, V. Jelinek, and E. Svacek, *Collect. Czech. Chem.*
20 *Commun.*, **34,** 2157 (1969).
1072) V. Zikan, L. Vrba, B. Kakac, and M. Semonsky, *Collect. Czech. Chem.*
- Commun., **38,** 1091 (1973). 1073) N. N. Zinin, Ber., 5, 1105 (1873). 1074) W. Zopf, Justus Liebigs Ann. Chem., **338,** 46 (1905). 1075) W. Zopf, Justus Liebigs Ann. Chem., **324,** 58 (1902).

1076) W. Zopf, Justus Liebigs Ann. Chem., **284,** 121 (1895). 1077) W. Zurcher, E. Weiss-Berg, and C. Tamm, HeIv. Chim. Acta, 52, 2449

1078) I. A. Strakova, A. Y. Strakov, E. Gudriniece, and N. I. Sikht, *Khim. Get-*
erotsikl. Soedin., 1265 (1974).
1079) T. H. Bembry, R. C. Elderfield, and G. L. Krueger, *J. Org. Chem.*, **25**, 1175

1080) E. B. Ried, R. B. Fortenbaugh, and H. R. Patterson, *J. Org. Chem.*, 15, 572 (1950). 1081) E. B. Ried and R. B. Fortenbaugh, J. Org. Chem., **16,** 33 (1951). 1082) R. J. Petfield and E. D. Amstutz, *J. Org. Chem.*, **19,** 1944 (1954).
1083) C. Grundmann and E. Kober, *J. Am. Chem. Soc.*, **77,** 2332 (1955).
1084) E. B. Knott, *J. Chem. Soc.*, 1196 (1947).

1085) M. A. T. Rogers, *J. Chem. Soc.*, 590 (1943).
1086) W. Brosche, *Ber.*, **47,** 1108 (1914).
1087) R. C. Cambie, R. C. Hayward, J. L. Roberts, and P. S. Rutledge, *J. Chem.
<i>Soc., Perkin T*rans. 1, 1864 (1973). (1088) B. R. Von Wartburg and H. R. Wolf, HeIv. Chim. Acta, 57, 916

- (1974).
(1089) A. Roedig and T. Neukam, Chem. Ber., 107, 3463 (1974).
-
-
-
-
-
-
-
-
- (1089) A. Roedig and T. Neukam, *Chem. Ber.*, **107**, 3463 (1974).

(1090) T. Nogi and J. Tsuji, *Tetrahedron*, **25**, 4099 (1969).

(1091) C. W. Bird and D. Y. Wong, *Tetrahedron*, **31**, 31 (1975).

(1092) C. W. Bird and D
-
- **77,** 126 128f (1972). (1100) R. H. Groth, J. Org. Chem., **24,** 1709 (1959). (1101) P. Brown, J. Burdon, T. J. Smith, and J. C. Tatlow, Tetrahedron, **10,** 164 (1960).
-
- (1102) R. A. Bell and Y. S. Rao, unpublished results.
(1103) S. W. Pelletier, Z. Djarmati, I. V. Micovi, and S. D. Lasjic, *Heterocycles*, 2,601 (1971).
- (1104) S. Gelin and P. Pollet, C. R. Acad. Sci., Ser. C, **279,** 345 (1974).
- (1105) D. Dehm and A. Padwa, papers presented at the Organic Chemistry Division, 169th National Meeting of the American Chemical Society,
- (1106) Philadelphia, Pa., April 1975.
(1106) A. D. Fitton and R. K. Smalley, ''Practical Heterocyclic Chemistry'', Vol.
 4, Academic Press, New York, N.Y., 1968.
(1107) J. Eijkmann, *Chem. Weekblad*, **1,**
-
-
- (1108) J. Eijkmann, *Chem. Weekblad*, **2,** 229 (1905).
(1109) J. Eijkmann, *Chem. Weekbl*ad, **4,** 191 (1907).
(1110) J. Eijkmann, *Chem. Weekblad*, **4,** 727 (1907).
-
- (1111) L. Claisen and T. Ewan, Justus Liebigs Ann. Chem., **284,** 276(1894).
- (1112) H. Simonis, E. Marber, and E. Mermood, *Ber.*, **38,** 398 (1905).
(1113) M. Stoll and P. Bolle, *Helv. Chim. Acta*, **21**, 1547 (1938).
(1114) G. O. Schenck, *Angew. Chem.*, **64,** 12 (1952).
(1115) G. O. Schenck, *Jus*
-
-
-
-
- (1116) M. Fetizon, M. Golfier, and J. M. Louis, *Tetrahedron*, **31,** 171 (1975).
(1117) G. I. Nikishin, Y. N. Ogibin, N. G. Maksimoya, and L. K. Rakhmatullin*a*,
USSR Patent 445 653 (1974); *Chem. Abstr.*, **82,** 42 982v (1
- (1118) M. Nilsson, Acta Chem. Scand., **18,** 441 (1964).
- (1119) Z. Horii, M. Ito, and M. Hanoka, *Chem. Pharm. Bull.*, 1**6**, 1754 (1968).
(1120) G. Stork and H. T. Cheung*, J. Am. Chem. Soc.,* **87,** 378 (1965).
(1121) G. Buchi and D. Rosenthal, *J. Am. Chem. Soc.,* **78**, 3860
-
-
- (1969). (1123) Montecatini Edison S.P.A., Italian Patent 789 552 (1967); Chem. Abstr., **72,** 21 340(1970).
- (1124) Montecatini Edison S.P.A., Italian Patent 815 179 (1968); Chem. Abstr.,
- 71, 80 951q (1969). (1125) R. Filler, E. J. Piasek, and H. A. Leipold, "Organic Synthesis", Collect. Vol. 5, Wiley, New York, N.Y., 1973, p 80. (1126) P. B. Russell, A. R. Todd, and W. S. Waring, Biochem. J., **45,** 530
- (1940).
- (1127) M. Petrazilka, D. Felix, and A. Eschenmoser, helv. Chim. Acta, **56,** 2950 (1973).
- (1128) A. A. Avetisyan, G. E. Tatevosyan, and M. T. Dangyan, Zh. Org. Khim.,
- **11,** 149(1975). (1129) P. A. Grieco, C. S. Pognowski, and S. Burke, J. Org. Chem., **40,** 542 (1975).
- (1130) P. A. Grieco and M. Miyashita, J. Org. Chem., **39,** 120 (1974). (1131) P. A. Grieco, Synthesis, 67 (1975). (1132) J. Biederman, Ber., **24,** 4077(1891).
-
- (1133) S. Torii, H. Tanaka, H. Ugo, and S. Yamsita, Bull. Chem. Soc. Jpn., **44,** 1079(1971).
- (1134) J. W. Ducker and M. J. Gunter, Aust. J. Chem., **27,** 2229 (1974).
- (1135) E. R. H. Jones, T. Y. Shen, and M. C. Whiting, J. Chem. Soc, 230 (1950).
- (1136) V. B. Piskov, J. Gen. Chem. USSR, **30,** 1421 (1960). (1137) A. Loeffler, R. J. Pratt, J. Pucknart, and G. Gebard, Chimia, 23, 413
- (1969).
- (1138) V. R. Tadwalkar and A. S. Rao, Indian J. Chem., 9, 1416(1971).
- (1139) E. E. van Tamelen and S. R. Bath, J. Am. Chem. Soc, **77,** 4683
- (1955). (1140) S. M. Kopchan, T. J. Giacobbe, and I. S. Krull, Tetrahedron Lett., 2859 (1970).
-
- (1141) R. C. Ronald, *Tetrahedron Lett.*, 3831 (1973).
(1142) R. B. Miller and E. S. Behare, *J. Am. Chem. Soc.*, **96,** 8102 (1974).
(1143) S. Isoe, S. B. Hyeon, H. Ichikawa, S. Katsumar*a*, and T. Sakan, *Tetra*-
-
-
-
-
-
- hedron Lett., 5561 (1968).

(1144) P. A. Grieco and J. J. Reap, *Tetrahedron Lett.*, 1097 (1974).

(1145) P. A. Grieco and J. Miyashita, *Tetrahedron Lett.*, 1869 (1974).

(1146) G. Gysae, *Ber.*, **26**, 2482 (1893).

(1147
-
-
-
-
- (1155) C. Armengaud, C. G. Wermuth, and J. Schreiber, C. R. Acad. Sci., **254,**

- 2181 (1962).
(1156) D. N. Reinhoudt, H. S. Tan, and H. C. Beyerman, *Recl. Trav. Chim.*
- Pays-Bas, **87,** 1153,(1968). (1157) H. C. Beyerman, D. N. Reinhoudt, A. Sinnema, and A. van Heen, Reel. Trav. Chim. Pays-Bas, **85,** 347 (1966).
-
- (1158) M. Suquet, *Ann. Chim.* (*Paris*), **8,** 545 (1973).
(1159) F. R. Hewgill and S. L. Lee, *J. Chem. Soc. C*, 1549 (1968).
- (1160) H. Reinheckel, G. Sonnek, and F. FaIk, J. Prakt. Chem., **316,** 215 (1974).
- (1161) H. Hikino, Y. Hikino, and I. Yoshioka, Chem. Pharm. Bull., **10,** 641 (1962).
- (1162) C. V. Juelke, D. W. Boykin, Jr., J. I. Dale, and R. E. Lutz, *J. Org. Chem.,*
40, 545 (1975).
- (1163) G. Kimura and K. Yamamoto, Japanese Patent 69 26 463 (1969); Chem. Abstr., **72,** 12 145a (1970). (1164) S. Kimura and K. Yamamoto, Japanese Patent 69 26 464 (1969); Chem.
- Abstr., **72,** 12 146b (1970).
- (1165) L. S. Hegedus, S. D. Wagner, E. L. Waterman, and S. S. Hansen, *J. Org.*
Chem., **40,** 593 (1975).
- (1166) G. Kimura and K. Yamamoto, Japanese Patent 69 26 465(1969); Chem. Abstr., **72,** 12 147c (1970).
- (1167) J. A. Edwards, J. S. Mills, J. Sundeen, and J. H. Fried, J. Am. Chem. Soc, **91,** 1248(1969).
- (1168) Z. Horii, M. Hanoaka, Y. Tamura, S. Saito, and N. Sugimoto, Chem. Ind. (London), 664(1964). (1169) Z. Horii, M. Hanoaka, Y. Yamawaki, Y. Tamura, S. Saito, N. Shigematsu,
- K. Kotera, H. Yoshikawa, Y. Sato, H. Nakai, and N. Sugimoto, Tetrahe-
- dron, **23,** 1165(1967). (1170) Z. Horii, T. Yagami, and M. Hanoaka, Chem. Commun., 634 (1966).
- (1171) Z. Horii, T. Yagami, M. ItO, and M. Hanoaka, Chem. Pharm. Bull., **16,** 848 (1968).
- (1172) J. A. Marshall, N. Cohen, and A. R. Hochstetler, J. Am. Chem. Soc, **88,** 3408(1966).
-
- (1173) J. L. Bloomer and M. A. Gross, *Chem. Commun.*, 73 (1970).
(1174) J. L. Bloomer, M. A. Gross, F. E. Kappler, and G. N. Pandey, *Chem.
<i>Commun.*, 1030 (1970).
- (1175) I. Fleming, N. Hatanaka, H. Ohta, O. Simamura, and M. Yoshida, 1030 (1970).
- (1176) M. P. Cava, W. R. Chan, L. J. Haynes, L. F. Johnson, and B. Weinstein, Tetrahedron, **18,** 397 (1962).
- (1177) M. P. Cava and B. Weinstein, Chem. Ind. (London), 851 (1959). (1178) J. P. Kutney, D. S. Grierson, G. D. Knowles, M. D. Westcott, and I. H.
Rogers, *Tetrahedron, 29, 13 (1973).
(1179) K. Takeda, I. Horibe, and H. Minato, J. Chem. Soc. C, 569 (1968).*
(1180) K. Takeda, I. Horibe, an
-
-
-
-
- (1181) D. Satoh and K. Aoyama, *Chem. Pharm. Bull.*, **12,** 1463 (1964).
(1182) C. Djerassi and W. Rittel, *J. Am. Chem. Soc.*, **7**9, 3528 (1957).
(1183) E. P. Abraham and G. G. F. Newton, *Biochem. J.,* **7**9, 377 (1966).
- (1184) G. Fuchs and N. Hellstrom, K. Lantbrukshoegsk. Ann., 30, 615 (1964).
- (1185) H. J. Bestmann, F. Seng, and H. Schulz, Chem. Ber., **96,** 465 (1963). (1186) K. W. Ratts and W. G. Phillips, J. Org. Chem., **39,** 3300 (1974).
-
- (1187) P. Rapos, P. Winternitz, E. Beska, and E. Sohler, Czech. Patent 138 821 (1970); Chem. Abstr., **76,** 34 093s (1972). (1188) E. Walton, J. Chem. Soc, 438 (1940).
-

(1975).

(1974).

561-852.

- (1189) J. Volhard, Justus Liebigs Ann. Chem., **282,** 1 (1894).
-
- (1190) M. Asano and Y. Kameda, Ber, **68B,** 1568 (1935). (1191) M. Asano and Y. Arata, J. Pharm. Soc, 59, 679 (1939); Chem. Abstr, **34,** 1982(1940). (1192) T. B. H. McMurray and D. F. Rane, J. Chem. Soc. C, 3851 (1971).

(1193) G. Fuchs, Acta Chem. Scand., **22,** 1952 (1968). (1194) A. J. Weinheimer, F. J. Schmitz, and L. S. Ciereszko, Drugs Sea, Trans, Symp.. 135 (1967); Chem. Abstr., **72,** 70 562v (1970). (1195) R. M. Letcher, *Org. Mass Spectrom.*, 1, 805 (1968).
(1196) J. P. Freeman, J. A. Kassner, and R. C. Grabiak, *J. Org. Chem.*, **40,** 3462

(1197) C. F. Ingham, R. A. Massy-Westropp, and G. D. Reynolds, Aust. J. Chem., **27,** 1477(1974). (1198) C. F. Ingham and R. A. Massy-Westropp, Aust. J. Chem., 1491

(1200) H. Kbrper, "Herstellung von Lactonen & Umwandlung von Lactonen", in Methoden der Organischen Chemie (Houben-Weyl), Sauerstoff Ver-bindungen I Teil 2, Georg Thieme Verlag, Stuttgart, Germany, 1963, pp

(1204) A. Michet, Ph.D. Thesis, University de Claremont, 1975. (1205) F. E. Kappler, Ph.D. Thesis, Temple University, Philadelphia, Pa., 1972. (1206) J. P. Wineburg, Ph.D. Thesis, Temple University, Philadelphia, Pa., 1973; Chem. Abstr., **82,** 9131 (1975). (1207) V. M. Kapoor and A. M. Mehta, J. Chem. Soc, Perkin Trans., 1, 2420

(1973).

(1208) E. Seeger, H. Teufel, and W. Engel, German Offen. 2 240 439 (1974);

Chem. Abstr., **80**, 145 796 (1974).

(1209) J. Nickl, W. Engel, H. Teufel, and G Engelhardt, German Offen. 2 314 929

(1974); *Chem. Abst*

(1974).
(1211) A. Sammour and M. El-Hashash, *Egypt. J. Chem.*, **16,** 381 (1973).
(1212) R. C. LaRock, *J. Org. Chem.*, **40,** 3237 (1975).
(1213) M. Foa and L. Cassar, *Gazz. Chim. Ital.*, **103,** 805 (1973).
(1214) E. Yosh

(1199) A. Svendsen and P. M. Boll, J. Org. Chem., **40,** 1927(1975).

(1201) C. W. Bird, J. Organomet. Chem., **47,** 281 (1973). (1202) A. B. Hornfeldt, Sven. Kern. Tidskr., **80,** 343 (1968). (1203) D. S. Bhakuni and M. Silva, J. Sci. Ind. Res., 34, 36 (1975).

Unsaturated Lactones Chemical Reviews, 1976, Vol. 76, No. 5 **693**

- (1215) G. A. Rowe, British Patent 1 368 802 (1974); Chem. Abstr., 82, 72 542 (1975). (1216) P. M. M. Van Haard, L. Thijs, and B. Zwanenburg, Tetrahedron Lett., 803
- (1975). (1217) E. D. Stecher, M. J. Incorvia, B. Kerben, D. Lavine, M. Oen, and E. Suhl,
- J. Org. Chem., 38, 4453 (1973). (1218) Y. G. Ogibin, E. I. Troyanskii, O. S. Chizov, and V. I. Kadentsev, Izv. Akad.
- Nauk SSSR, 967 (1975).
- (1219) T. Mukaiyama, J. Hanna, T. Inoue, and T. Sato, Chem. Lett., 381 (1974).
- (1220) T. Mukaiyama, M. Wada, and J. Hanna, Chem. Lett., 1181 (1974).
- (1221) I. Y. Kvitko, N. B. Sokoloua, and L. S. Etros, Khim. Geterotsikl, Soedin, 715 (1973); Chem. Abstr., 79, 42383 (1973). (1222) S. S. Dehmlow and E. V. Dehmlow, Z. Naturforsch. B, **30,** 404
- (1975) .
-
- (1223) T. Eicher and N. Peltz, *Tetrahedron Lett.*, 1631 (1974).
(1224) T. Eicher and S. Bohm, *Chem. Ber.*, **107,** 2220 (1974).
(1225) G. Buchi, U. Hochstrasser, and W. Pawlak, *J. Org. Chem.*, **38,** 4348 (1973).
-
-
- (1226) L. I. Olsson and A. Claeson, *Tetrahedron Lett.*, 2161 (1974).
(1227) G. Bennett, *Chem. Lett.*, 939 (1975).
(1228) S. Musierowicz, A. Wroblewski, and H. Krawczyk, *Tetrahedron Lett.*, (1975).
- (1229) P. L. Stotter and K. A. Hill, *Tetrahedron Lett.*, 1679 (1975).
(1230) E. Perrotti, N. Palladino, M. Greco, and M. DeMalde, *Ann. Chim. (Rome*),
56, 136, 1358 (1966).
(1231) J. P. Wineburg, C. Abrams, and D. Swern
- (1975).
-
- (1232) C. Dumont and M. Vidal, *Bull. Soc. Chim. Fr.*, 2301 (1973).
(1233) A. Nishinaga, T. Itahara, and T. Matsuura, *Bull. Chem. Soc. Jpn.*, **47,** 1811 (1974).
-
- (1234) W. Kreiser and G. Neef, *Justus Liebigs Ann. Chem.*, 1279 (1974).
(1235) D. Benishai, Z. Berler, and J. Altman, *J. Chem. Soc., Chem. Commun.*,
- 905(1975).
- (1236) M. Watanabe, K. Shirai, and T. Kumamoto, *Chem. Lett.*, 855 (1975).
(1237) H. J. Monteiro and A. L. Gemal, *Synthesis*, 437 (1975).
- (1238) K. Iwai, H. Kosugi, and H. Uda, Chem. Lett, 981 (1975).
-
- 1239) M. Kurono, K. Imaki, C. Tanigawa, and J. Kida, Japanese Patent)
74 05 961 (1974); *Chem. Abstr.*, **80,** 120 328 (1974).
1940) B. Lythgoe, J. R. Milner, and J. Tideswell, *Tetrahedr*on *Lett.*, 2593).
- (1975). (1241) F. Kido, T. Fujishita, K. Tsutsumi, and A. Yoshikoshi, J. Chem. Soc,
- Chem. Commun., 337 (1975). (1242) T. Kametani, F. F. Ebetino, K. Fukumoto, and A. I. Meyers, Heterocycles,
- 2, 559(1974).
- (1243) K. Yamamoto, *Kogyo Kagaku Zasshi,* **73**, 1668 (1970); *Chem. Abstr.,* 73, 130 593 (1970).
- (1244) A. Padwa and D. Dehm, J. Org. Chem., **40,** 3139 (1975). (1245) A. Padwa and D. Dehm, J. Am. Chem. Soc, 97, 4779 (1975).
- (1246) K. L. Munshi, D. K. Dikshit, R. S. Kapil, and N. Anand, Indian J. Chem.,
- 1**2,** 336 (1974).
(1247) D. K. Dikshit, K. L. Munshi, R. S. Kapil, V. P. Kamboj, and N. Anand, *Indian*) J. Chem., 12, 1144(1974).
- (1248) B. W. Roberts, S. C. Welch, and D. A. Steed, *J. Chem. Soc., Chem.*
Co*mmun.*, 535 (1969).
- (1249) M. E. Scanlan and S. Mackenzie, J. Org. Chem., **37,** 1579 (1972). (1250) G. B. Ansell, D. W. Moore, and A. T. Nielsen, J. Chem. Soc. B, 2376 (1971).
-
- (1251) Y. S. Rao, submitted tor publication. (1252) A. G. Schultz and Y, K. Yee, J. Org. Chem., **41,** 561 (1976).
- (1253) R. McCrindle and E. Nakamura, Can. J. Chem., 52, 2029 (1974).
- (1254) A. B. Henderson, R. McCrindle, and E. Nakamura, *J. Chem. Soc., Chem.*
Co*mmun.*, 453 (1974).
- (1255) I. Kitagawa, M. Yoshihara, T. Tani, and I. Yosioka, Tetrahedron Lett., 23 (1975).
-
- (1256) G. Cimino, S. DeStefano, and L. Minale, *Tetrahedron*, **27**, 4673 (1971);
28, 267 (1972); *Experentia*, **30,** 18 (1974).
(1257) B. S. Joshi, V. N. Kamat, T. R. Govindachari, B. R. Pai, G. Kartha, and
K. T. Go, *J.*
- 949 (1974).
- (1259) F. Bohlmann and M. Grenz, Chem. Ber., **108,** 357 (1975).
- (1260) D. W. Knight and G. Pattenden, J. Chem. Soc, Chem. Commun., 188 (1974).
- (1261) D. W. Knight and G. Pattenden, J. Chem. Soc, Perkin Trans. 1, 635 (1975).
- (1262) D. W. Knight and G. Pattenden, J. Chem. Soc, Perkin Trans. 1, 641 (1975).
- (1263) C. E. Cook, L. P. Whichard, B. Turner, M. E. Wall, and G. H. Egley,
- Science, **154,** 1189(1966). (1264) C. E. Cook, L. P. Whichard, M. E. Wall, G. H. Egley, P. Coggon, P. A. Luhan, and A. T. McPhail, J. Am. Chem. Soc, **94,** 6198 (1972).
- (1265) J. B. Heather, R. S. D. Mittal, and C. J. Sin, J. Am. Chem. Soc, 96, 1976 (1974).
- (1266) G. A. Macalpine, R. A. Raphael, A. Shaw, A. W. Taylor, and H. J. Wild, J. Chem. Soc, Chem. Commun., 834 (1974).
- (1267) J. M. Cassady and G. A. Howie, J. Chem. Soc, Chem. Commun., 512 (1974).
- (1268) K. G. Hollenbeck and M. E. Kuehne, Tetrahedron., **30,** 2307 (1974).
-
-
- (1369) J. D. Faulkner, *Tetrahedron Lett.*, 3821 (1973).
(1270) A. Svendsen and P. M. Boll, *Tetrahedron, 29, 4251 (1973).*
(1271) J. V. Greenhill, M. Ramli, and T. Tomassini, *J. Chem. Soc., Perkin Trans*. 1, 588(1975).
- (1272) J. V. Greenhill and T. Tomassini, Tetrahedron Lett., 2683 (1974).
- (1273) S. Gelin and P. Pollet, J. Heterocyci. Chem., 12, 787 (1975).
- 1274) M. Omo and N. Kawabe, Japanese Patent 74 69 659 (1974); *Chem.* Abstr., 81, 15 196(1974).
- 1275 K. Hagio, N. Yoneda, and H. Takei, Bull. Chem. Soc. Jpn., **47,** 909 (1974).
- 1276 K. Hagio and N. Yoneda, Bull. Chem. Soc Jpn., **47,** 1684 (1974).
- 1277; T. Mukaiyama, K. Hagio, and N. Yoneda, Japanese Patent 73 75 564
(1973); *Chem. Abstr.*, **80**, 82 626 (1974).
K. Hagio and N. Yoneda, Japanese Patent 74 88 862 (1974); *Chem.*
- 1278 Abstr., 81, 151 990(1974).
- 1279) R. Heymes, G. Amiard, and G. Nomine, *Bull. Soc. Chim. Fr.*, 563 (1974).
- 1280) J. Lehmann and H. Wamhoff, *Justus Liebigs Ann. Chem.*, 1287 (1974).
- 1281) I. A. Kuzovnikova, L. A. Badovskaya, Y. I. Turyan, and V. G. Kulnevich, Khim. Geterotsikl. Soedin., 737 (1974).
- 1282) F. Farina, M. J. Gomez, and M. V. Martin, An. Quim., **70,** 900 (1974). 1283) T. I. Bobrova, S. D. Volodkovich, and S. S. Kukalenko, *Zh. Obshch. Khim.*, 44,390(1974).
- 1284) T. I. Bobrova, S. D. Volodkovich, and S. S. Kukalenko, *Zh. Obshch. Khim.*, **45,** 1123(1975).
- 1285) E. Beska and P. Rapos, Czech Patent 157 297 (1975); *Chem. Abst.*, 83, 96 999(1975).
- 1286) E. Beska and P. Rapos, Czech. Patent 149 048 (1974); *Chem. Abstr.*, 80,36 892(1974).
- 1287 J. Demecko and M. Fandlova, Agrochemica, **14,** 324 (1974); Chem. Abstr., 82, 94062(1975). A. DalPozzo, A. Dansi, and E. Meneghini, Boll. Chim. Farm., **113,** 280
- 1288
- 1289; (1974); *Chem. Abstr.*, **82,** 26579 (1975).
Y. K. Kim, G. A. Grindahl, J. R. Greenwald, and O. R. Pierce, *J. Heterocycl.*
Chem., 11, 563 (1974).
- 1290) B. M. Sutton, U.S. Patent 3 821 398 (1974); Chem. Abstr., 81, 120257 (1974).
- 1291 J. Weinstock, J. E. Blank, and B. M. Sutton, J. Org. Chem., **39,** 1454 (1974).
- 1292) N. Ojima, S. Takenaka, and S. Seto, *Phytochemistry*, **14**, 573 (1975). 1293
- S. W. Pelletier, Z. Djarmati, S. D. Lajsic, I. V. Micovic, and D. T. C. Yang,
Tetrahedron, **31,** 1659 (1975).
R. F. Rekker, J. P. Brombacher, and W. T. Nauta, *Recl. Trav. Chim. Pay*s
- 1294) l Bas, 73,417(1954).
- 1295 S. A. M. Tayyeb Hussain, W. D. Ollis, C. S. Smith, and J. F. Stoddart, *J.*
*Ch*em. *S*oc., C*hem. Commun.*, 873 (1974).
S. A. M. Tayyeb Hussain, W. D. Ollis, C. S. Smith, and J. F. Stoddart, *J.*
- 1296; Chem. Soc, Perkin Trans. 1, 1480 (1975).
- 1297; H. Reinheckel, G. Sonnek, and R. Gensike, J. Prakt. Chem., **317,** 273 (1975).
- 1298) H. Reinheckel, G. Sonnek, and E. Gruendemann, J. Organomet. Chem., 65, 9(1974).
-
- 1299) K. Ohga and T. Matsuo, *J. Org. Chem.*, **39,** 106 (1974).
1300) B. Kamo, H. Kuiwai, M. Seto, and S. Furasawa, *Chuo. Daigaku Rikoga-*
k*uba Kiyo*, **16**, 151 (1973); *Chem. Abstr.*, **81**, 121 110 (1974).
-
- 1301) F. J. McEvoy and G. R. Allen, Jr., *J. Med. Chem.*, 1**7,** 281 (1974).
1302) A. A. Avetisyan, A. N. Dzandzhapanyan, G. V. Simonyan, and M. T.
Dangyan, *Arm. Khim. Zh.*, **27,** 954 (1974); *Chem. Abstr.*, **82,** 140 005
- 1303
-
- 1304)
1305)
1306) (1975).
A. A. Avetisyan, K. G. Akopyan, and M. T. Dangyan, *Khim. Geterotsikl.*
So*edin.*, 1604 (1973); *Chem. Abstr.*, **80**, 82 006 (1974).
S. Ohki, S. Fueki, and M. Yoshino, *Yakugaku Zasshi*, **8**9, 104 (1969).
G. Traver
-
- 1307)
1308)
- W. E. Watts, *J. Organomet. Chem.*, **90,** 93 (1975).
1309) C. Hanna and W. T. Smith, Jr., *Proc. Iowa Acad. Sci.*, **58,** 251 (1951);
Chem. Abstr., **4**7, 6765 (1953).
- 1310) W. I. Awad, A. I. Hashem, and K. El-Badry, *Indian J. Chem.*, 13, 1139 (1975).
	-
- 1311)
1312)
1313) N. Bauman, *Chimia*, **2**7, 471 (1973).
P. A. Bartlett, *J. Am. Chem. Soc.*, 9**8,** 3305 (1976).
S. M. A. Omran, M. R. Salem, and N. S. E. Harb, *Ind. J. Chem.*, **13,** 1259 (1975).
- 1314 G. I. Nikishin, Y. N. Ogimin, L. K. Rakhmatullina, and N. G. Maksimova,
-
-

Acta, **59,** 100(1976).

 (1322) S.

(1975). (1975).

(1976). (1976) .

(1975).

 (1325) T.

- 1315)
1316)
1317) *lzv. Akad. Nauk S*SSR, 117 (1976).
G. M. Strunz and P. I. Kazinoti, *Can. J. Chem.*, **54,** 415 (1976).
G. Domschke, *Z. Chem.*, **16,** 13 (1976).
S. P. McManus, P. J. Kelly, W. J. Patterson, and C. U. Pittman, Jr., *J. Org*
- 1318) R. E. Damon and R. H. Schlessinger, *Tetrahedron Lett.*, 4551 (1975).
1319) M. J. Begley, D. W. Knight, and G. Pattenden, *Tetrahedron Lett.*, 4279

1320) I. W. Sinclair and G. R. Proctor, J. Chem. Soc., Perkin Trans. 1, 2485 1321 H. Wolfers, U. Kraatz, and F. Korte, Chem. Ber., **109,** 1061 (1976).

(1976).
1323) C. B. Chapleo, K. L. Svanholt, R. Martin, and A. S. Dreiding, *Helv. Chim.*

Torii, K. Uneyama, and M. Kuyama, Tetrahedron Lett., 1513

Yamauchi, F. Abe. and M. Takahashi, Tetrahedron Lett., 1115

1324) H. Kosugi, S. Sekiguchi, R. Sekita, and H. Uda, *Bull Chem. Soc. Jpn.*, 49, 520 (1976).

1326) H. W. Moore, L. Hernandez, and A. Sing, *J. Am. Chem. Soc.*, 98 3728 1327 1328 S. Gelin and D. Hartmann, J. Heterocyci. Chem., **13,** 521 (1976). D. W. Knight and G. Pattenden, J. Chem. Soc, Chem. Commun. 876

 $\ddot{}$

 $\bar{\bar{z}}$

- (1329) Y. Fujii, K. Shimada, Y. Niizaki, and T. Nambara, Tetrahedron Lett., 3017 (1975).
(1330) E. Yoshi, T. Koizumi, H. Ikeshima, K. Ozaki, and I. Hayashi, *Chem. Pharm.*
-
- *Bull.*, **23**, 249 (1975).
(1331) B. T. Golding, R. W. Rickards, and Z. Vanek, *J. Chem. Soc., Perkin Trans.*
1, 1961 (1975).
(1332) J. A. Gudgeon, J. S. Holker, and T. J. Simpson, *J. Chem. Soc., Chem.*

Commun., 636(1974).

- (1333) S. Lahiri, V. Dabral, and M. V. George, *Tetrahedron Lett.*, 225**9**
(1976). (1976).
(1334) A. Padwa, A. K*u*, and E. Sato, *Tetrahedron Lett.*, 2409 (1976).
(1335) N. Bensel, H. Marschall, and P. Weyerstahl, *Tetrah*
	-
	-
	- (1976).
(1336) K. Kobayashi and T. Ui, *Tetrahedron Lett.* 4119 (1976).