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/. Introduction 

The increasing trend on the part of chemists to endeavor to 
interpret the thermodynamic behavior of chemical systems in 
fluid media in terms of molecular parameters and lntermolecular 
interactions has resulted in a need for new statistical thermo
dynamic approaches to fluids and fluid mixtures. While a number 
of such approaches have been developed, a particularly useful 
and intuitively attractive approach which yields important insight 
into the nature of such fluids is the scaled particle theory.1-10 

Although this theory was originally developed as a formal sta
tistical mechanical theory of dense hard-sphere fluids, it became 
apparent that it provided relations which were relevant to the 
behavior of real fluids. The present article is not a review of the 
formalism of the scaled particle theory, but rather is an effort 
to select those aspects of the theory which make it important 
in understanding qualitatively and semiquantitatively the im
portant contributions to the thermodynamic properties of non
aqueous and aqueous solutions. These solution properties have 
always been of interest to physical chemists, but in recent years 
there has been an unprecedented interest in solution thermo
dynamics by physical organic chemists, by inorganic chemists, 
by electrochemists, and, most notably, by biochemists. This 
interest stems in part from the importance of solvent effects on 
reaction rates and mechanisms, on the nature of ionic interac
tions in electrolyte solutions, and on the nature of hydrophobic 
interactions and the conformational properties of proteins and 
other biologically important molecules. Particular emphasis will 
be placed on the nature of dilute solutions, that is, on solutions 
in which the solubility of a substance is directly proportional to 
either the pressure or activity of the substance. These solutions 
are said to obey Henry's law, and one can show that the only 
molecular interactions that influence the system are the inter
actions of single solute molecules with the solvent. Experimental 
and theoretical studies of solutions obeying Henry's law give 
direct information about this interaction. If solubility studies of 

the deviations from Henry's law are made, then molecular in
formation can be obtained involving not only the solute-solvent 
interaction but also the interaction between two or more solute 
molecules. 

The following sections will (a) outline those aspects of the 
thermodynamics of solutions which are of particular interest in 
understanding intermolecular interactions in fluids, (b) develop 
those aspects of the scaled particle theory of fluids which will 
be of importance in studying solubility phenomena, and (c) apply 
the scaled particle theory to the interpretation of data pertaining 
to aqueous and nonaqueous solutions in terms of molecular and 
thermodynamic parameters. 

//. Theory of Dilute Solutions 

A. Thermodynamics of Dilute Solutions 

The concentration of a solute dissolved in a liquid solvent can 
be expressed as a power series in the activity or fugacity of the 
solute. This power series is given as11 

Pi = E B1+I1Af2ZkT)1 (D 

where p2 is the number density of the solute (i.e., the number 
of molecules of solute dissolved per unit volume of solution), f2 

is the fugacity of the solute (this is frequently replaced by the 
pressure of the solute), kT is the Boltzmann constant times the 
absolute temperature, and B2(, B3^ etc., are functions of the 
temperature. It is possible to relate the quantities B2(, S3^, etc., 
to the molecular properties of the solute and the solvent through 
the application of the techniques of statistical mechan
ics.11"13 

McMillan and Mayer11 in considering the general problem of 
osmotic equilibrium showed that for constant solvent activity 
the coefficients of the terms in (f2/kT) are analogous to the virial 
coefficients in the virial equation of state of gases. The coeffi
cient B2( is the second solute-solvent virial coefficient. These 
virial coefficients can be expressed in terms of integrals involving 
the configurations of one, two, etc., solute molecules and the 
configurations of the various molecules of the solvent. Of par
ticular importance in this discussion is B2(. It can be shown 
that12 

B2( = l f (e-W*r-1)drl 
V ./vol 

(2) 

where r, is the position of the /th solute molecule under con
sideration, and W(F1) is the average potential energy of the /th 
solute molecule whose center is at r, and which interacts with 
the solvent. The averaging is over all allowable configurations 
of the solvent. The integral is over the entire volume of the so
lution. The importance of this coefficient is that it is dependent 
only upon one solute molecule interacting with the solvent, and 
hence solute-solute interactions do not enter into the first term 
in the expansion given by eq 1. We will see that this result is of 
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great importance to our consideration in the following sec
tions. 

Although we will not be concerned in this article with the 
evaluation of B3^, we present a few comments on it for the sake 
of completeness. The integral expressing B3^ is considerably 
more complex than that for B2( and is given after a few ap
proximations by12 

B3{= ^TT f f (e-^F'^'kT- 1)d/idfj (3) 
V J J vol 

where B2( is the second solute-solvent virial coefficient and 
(JO2[Fi1Fi) is the effective pair potential of two solute molecules, 
one located at position F and the second located at position rj, 
The effective pair potential is averaged over all configurations 
of the solvent molecules. The importance of S3^ is that it is de
pendent only upon the interaction of two solute molecules with 
each other and with the solvent. It can be similarly shown that 
the /th virial coefficient in eq 1 Is dependent upon /molecules 
of solute interacting with each other and simultaneously with the 
solvent. 

As can be seen, one can decompose the complex problem 
of solution equilibrium into its simplest parts and study these 
independently. The present article is concerned with a somewhat 
detailed examination of the effect of molecular type and tem
perature upon the second solute-solvent virial coefficient, 
B2(. 

The quantity of B2( is directly related to the experimental 
quantity called the Henry law constant which is usually expressed 
as 

h = KHX2 (4) 

where f2 is the fugacity of the solute, KH is the Henry law con
stant, and X2 is the mole fraction of solute in the solution. Since 
the number density of solute molecules dissolved in a dilute 
solution is related to X2 by 

P2V1 = NX2 (5) 

where V1 is the molar volume of solvent and N is Avogadro's 
number, we can see that the Henry law constant is given by 

KH = RT/V,B2s (6) 

Since B2( represents the probability that a molecule of solute 
be found in the position F integrated over all possible positions 
in the solvent volume, it can be directly related to a Boltzmann 
equation12-14 

B2^=S-WSRT ( 7 ) 

where W is the reversible work required to dissolve 1 mol of 
solute in an infinite amount of solvent at constant P and for its 
equivalent, the partial molar free energy of the solute at infinite 
dilution. Substitution of this into eq 6 and rearranging yields 

In KH = W/RT+ In (RTVV1) (8) 

We will obtain this result in a more conventional manner In the 
next section. At this point it is worth noting the relationship be
tween KH and B2( and between B2( and W. 

The chemical potential of a solute in a liquid solvent can be 
expressed as15 

M2,som = -U2 + PV2 + RT In A2
3Zh + RT" In (AZ2/ V) (9) 

where -U2 is the molar potential energy of the solute in the 
solution relative to infinite separation, P is the hydrostatic 
pressure, V2 is the partial molar volume of the solute, VZA2

3 and 
h are the partition functions per molecule for the translational 
and internal degrees of freedom of the solute, and W2 Is the 
number of solute molecules jn the volume, V, of the solution. 
For very dilute solutions V^ V1, the volume of the solvent, and 
(N2ZN1) « X2, the mole fraction of the solute. 

The sum of the two terms on the right-hand side of eq 9 rep
resents the reversible work required to introduce one solute 
molecule into a solution of concentration N2ZV. For very dilute 
solutions the reversible work required to add a solute molecule 
to the solution is equivalent to that of adding one molecule to the 
pure solvent. It is convenient to consider the process of intro
ducing the solute molecule into the solvent as consisting of two 
steps.16"18 

Step 1. The creation of a cavity in the solvent of suitable size 
to accommodate the solute mq[ecule. The reversible work or 
partial molar Gibbs free energy, G0, required to do this is identical 
with that required to introduce 1 mol of hard-sphere molecules 
of the appropriate radius such as to produce a mole of cavities 
in the solution. 

Step 2. The introduction into the cavity of a solute molecule 
which interacts with the solvent according to some potential law. 
The molar reversible work here, G\, is identical with that of 
charging the hard spheres or cavities introduced in step 1 to the 
required potential; i.e., it is the work associated with giving each 
cavity or hard sphere the proper charge distribution and polar-
izability to simulate a real solute_molec_ule. _ 

Substitution of Gc + G, for (-U2 + PV2) and X2IV1 for N2ZV 
in eq 9 yields 

M2,som = Gc + Gi + Rrin (A2
3//2) + RfIn (X2I

1V1) (10) 

The chemical potential of the solute in a gas phase in equilibrium 
with the solution is given by 

M2,gas = RT In (A2
3Zj2) + RTIn (f2ZRT) (11) 

where f2 is the fugacity of the solute. 
Equating M2,som to /u2,gas yields 

In (f2/X2) = G0IRT+ GfIRT+ In (RT-ZV1) (12) 

or since for very dilute solutions f2 = KHX2, 

In KH = G0IRT+ G1IRT+ In (RTZ^1) (13) 

The molar heat of solution is 

AH5= (VnKH) = H0+Hi-RT+aPRT2 (14) 

where a? is the coefficient of thermal expansion of the solvent; 
the partial molar volume of the solute is 

V2 = (dn2Mln/dP)T,N = V0 + V1 + /3TRT (15) 

where /3T is the isothermal compressibility of the solvent. 

B. Scaled Particle Theory of Fluids 

In a series of papers Reiss, Frisch, Helfand, Lebowitz, and 
Tully-Smith1"9 have developed a statistical mechanical theory 
of fluids based upon the properties of the exact radial distribution 
function which yields an approximate expression for the re
versible work required to introduce a spherical particle into a 
fluid of spherical particles. They consider the case of a system 
of N particles obeying a pairwise additive potential and couple 
one additional particle obeying the same potential to this system 
by the procedure of distance scaling. The coupling procedure 
is used to obtain an expression for the chemical potential of the 
fluid in terms of a function related to the radial distribution 
function for the fluid. 

The essence of the scaled particle theory is that work is re
quired to exclude the centers of molecules from any specified 
region of space in a fluid. Consider a fluid consisting of N 
spherically symmetrical molecules possessing a hard core of 
diameter C1 and exerting whatever attractive forces are con
sistent with the volume V of the fluid. Imagine now excluding the 
centers of all N molecules from a spherical region of space of 
radius r in the volume V. This region of space would In fact be 
a cavity in the fluid. Suppose we denote the probability that such 
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a cavity exists by p0(r,p), where p is the number density of the 
fluid (N/V). The cavity could be created by a statistical fluctua
tion, and the probability that such a fluctuation would occur is 
given by1 2 - 1 4 

Po(r,p): = e-Wlr,p)/kT (16) 

where W(r,p) is the reversible work required to produce a cavity 
of radius r is the fluid. Note the similarity of eq 16 and 7. It is clear 
that Po(r,p) can be equated with B2( where the solute is a non-
penetrable cavity or its equivalent a hard sphere solute. The 
scaled particle theory attempts to determine po(r,p) as accurately 
as possible based upon statistical mechanical and geometrical 
arguments. The general approach is to start with a cavity of zero 
radius and allow it to grow or be scaled up to the desired radius 
(see Figure 1a). 

This is perhaps made more clear if one considers the prob
ability of finding a molecular center just outside the cavity radius 
r, i.e., of finding the center in the fluid shell of thickness r t o r 
+ dr. This probability is given by 47rr2pG(r,p) dr, where pG(r,p) 
is the conditional probability that a molecular center is located 
in that region. The probability that there is no center in this 
spherical shell is simply 1 — 47Tr2PG(^p) dr. 

The probability that there is no molecular center in the range 
0 to r times the probability that there is no center in the range 
r to r + dr is just equal to the probability that there is no center 
in the range 0 to r + dr or 

po(,+ dr) = p 0 ( r ) + ( ^ ) dr 

= p 0 ( r ) [ 1 - 4 X r 2 P G ( ^ p ) dr] (17) 

or 

(d In p0(r)/dr) = -47rr2pG(r,p) (18) 

Referring to eq 16, we find 

(dW(r,p)/kT/dr) = Awr2pG(r,p) (19) 

and consequently 

W(r,p)/kT=4Trp P r 2 G ( r , p ) d r (20) 

Hence the determination of the reversible work of introducing 
a cavity into a fluid is dependent upon the determination of a 
functional representation of the conditional probability G(r,p). 
Lengthy arguments1-8 indicate that an asymptotic expansion in 
1/r is a suitable representation; thus we can write 

G(r,p) = £ G1(P)(Vr)' (21) 

The task is now to evaluate the coefficients Gi(p), and this is 
done by seeking exact relationships that G(r,p) must possess 
and for each such relationship one coefficient G, can be de
termined. 

The first such exact relationship is a particularly interesting 
one. For all values of r < a^l2, one and only one hard-core 
molecule can have its center in the spherical region of radius 
r, otherwise the hard cores would have to overlap. The proba
bility that a molecular center is in this region is V ^ p ; 
hence 

Po = 1 - "/37Tr3P r < a y 2 

Reference to eq 18 indicates that 

1 
G(r,p) = 

(1 - V^3P) 
r< a-f/2 

(22) 

(23) 

Substituting eq 18 into eq 20 and carrying out the integration 
yields 

W0(r,p) = kT In (1 - 4Z3TTr3P) r < ^ / 2 (24) 

Figure 1. (a) Spherical cavity of radius r caused by a hard-sphere solute 
of diameter a2 in a hard-sphere fluid of molecules of diameter o-\. (b) 
A point solute creates a cavity of radius oy2 by excluding the center 
of all solvent molecules. 

where W0(r,p) is the reversible work of producing a cavity of 
radius r < ff-,/2. In a way this is a curious result. A cavity of ra
dius UT/2 in a fluid of hard spheres is in fact a point (see Figure 
1b, and hence eq 24 with r3 replaced by (oV2)3 represents the 
work required to introduce a point solute into the fluid. Further
more, a solute of diameter a2 requires the creation of a cavity 
of radius r = (U1 + <J2)I2. Geometrical considerations indicate 
that for 0 < r < oV2 at most one molecular center can be found 
in the cavity, for o y 2 < r < a^lVz at most two molecular 
centers can be found in the cavity, etc., until at r = (T1 twelve 
molecules can occupy the defined spherical region. 

There are a host of exact conditions that can be found in ad
dition to that of eq 23. These have led to the evaluation of G1 in 
eq 21 through G5.8 It has been shown that G3 is zero and G4 is 
likely to be zero. Examination of eq 20 and 21 indicates that an 
asymptotic expansion for W(r,p) of the form 

W(r,p) = K0+ K,r + K2P + K3P (25) 

might be an excellent approximation. This incidentally is the 
same form as required in classical thermodynamics, i.e. 

4 / 4<5\ 
W(r) = - TTr3P + ATTt2J M ) (26) 

where the term involving P (the pressure) is just the volume work; 
the term involving 7 (the surface tension) is the surface work 
and the term involving hlr is a term which corrects the surface 
tension for the effect of surface curvature. The only difference 
between these equations is the absence of the constant term 
K0 in the thermodynamic equation. Since the thermodynamic 
equation is meant to account for macroscopic cavities, the ab
sence of the K0 term introduces negligible error but for micro
scopic cavities K0 is an important term. Three of the exact 
conditions used to evaluate the G, can also be used to evaluate 
the Ks in eq 25. In the original development of the scaled par
ticle theory, the Ks were obtained by expanding W(r,p) about 
r =a-[/2 giving 

W(r,p) = W0 + W0'(r- oi/2) 

+ -W0"(r- a^/2)2 + I W0'"(r- a1/2f (27) 
2 6 

where W0= kT\n(1 — Trcr^p/6) and where the first and second 
derivatives are known to be continuous and hence obtainable 
from eq 24. The coefficient of the cubic term was obtained by 
direct comparison with the thermodynamic equation and hence 
K3 is equal to %TTP. After suitable algebraic manipulations one 
obtains 

^ P ) - H n ( I - y ) + ( ^ - ) n 
kT 

+ \^y_ + l(^L\2]R2 + iLR* (28) 
Ll - y 2 \1 - y / J pkT 
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Figure 2. The free energy of cavity formation in water and benzene 
at 298.15 K. 

where y = IT pa-^ IQ is the reduced number density, R = (T2Za1, 
and (T2 is the diameter of the hard-sphere solute molecule such 
that the cavity radius is (O1 + a2)l2. It is possible by incorporating 
a fourth exact relation to obtain an approximate equation of state 
for a hard-sphere fluid, and consequently the terms in the 
pressure above could also be expressed in terms of yand T. As 
will be mentioned later, for our purposes of investigating the 
solubility of substances in real fluids there is considerable value 
in retaining as many experimentally known properties of the fluid 
(such as p, P, and their pressure and temperature derivatives) 
as possible. These quantities serve to preserve as much infor
mation as possible about the attractive interactions between the 
solvent molecules. In the application of the scaled particle theory 
to solutions, the theory is used primarily as a means of deter
mining the reversible work required to introduce a hard-sphere 
molecule into a real fluid whose molecules behave as hard cores 
but whose volume and pressure at a given temperature are de
termined by the real intermolecular potentials existing among 
them. 

C. Henry Law Constants 

The Henry law constant provides the basis for understanding 
the properties of dilute solutions because it separates out spe
cifically the solute-solvent interactions. As shown in eq 13, the 
Henry law constant can be expressed as 

In KH = G0/R7" + G1ZRT + In (RTZV1) (29) 

where G0 and G1 are the partial molar Gibbs free energy of cavity 
formation and interaction, respectively. The development of the 
scaled particle theory given above was directed at obtaining an 
expression for G0 which is equal to W{R,p) and given by eq 28. 
The hydrostatic pressure in eq 28 can be replaced by the pres
sure from the theoretical equation of state for the scaled particle 
theory. As discussed above, it is preferable for the purpose at 
hand to use the experimental value of P rather than the theo
retical value for hard-sphere fluid. If the equation of state of the 
real fluid were known from theory, this would of course be pre-

TABLE I. Selected Physical Properties of Various Liquid Substances 
at 298.15 K a 

Sub
stance 

Ar 
CS2 

CCI4 

C6H6 

C-C6H12 

n-C6H14 

A-C6H1S 

0-C7F16 

C6H5CH3 

C6H5F 
N2H4 

(CH3)2CO 
CH3OH 
C2H5OH 
H2O 

cm3 

molecule -1 

1.63 
8.57(0.06)c 

10.49 
10.32 
10.78 
11.78 
15.44 
14.57 
12.33 
10.28 (1.42)c 

3.51 (1.90)c 

8.67(2.83)c 

3.26(1.66)° 
5.13 (1.66)c 

1.47 (1.84)c 

p X 103 

d e g - 1 

4.49" 
1.17 
1.27 
1.38 
1.20 
1.39 
1.15 
1.56 
1.08 
1.22 

1.42 
1.20 
1.10 
0.257 

/3P X 105 

at rn - 1 

22.7" 
10.73 
10.91 
9.38 

12.3 
16.27 
12.14 
29.98 

9.40 

12.55 
12.58 

4.46 

V1 

cmVmol 

28.66" 
60.65 
97.09 
89.40 

108.7 
131.6 
163.5 
225.87 
106.8 
94.03 
52.97 
74.05 
40.73 
58.69 
18.07 

y 

0.436" 
0.483 
0.506 
0.513 
0.523 
C.502 
0.542 
0.502 
0.532 
0.453 
0.472 
0.468 
0.395 
0.445 
0.371 

a The entries in this table together with those of many more substances 
can be found compiled in ref 25. " These properties are for liquid argon at 
87 K. c The number in parentheses is the dipole moment for the substance 
in debyes. 

ferred. For real fluids the term is of importance only for high-
pressure studies and/or in considering the pressure derivatives 
of G0- Figure 2 shows curves of G0IRT vs. R for values of y 
corresponding to those for the solvents water j n d benzene at 
298 K. Included in Figure 2 is a comparison of G0IRTusing the 
scaled particle theory equation of state for P in the last term of 
eq 28 and using the "experimental value" of the hydrostatic 
pressure which in the curves shown was taken to be 1 atm. 
Actually for pressure around 1 atm the pressure term contributes 
a negligible amount to the free energy of cavity formation, and 
hence the curves labeled P = 1 are the equivalent to the sum 
of the first three terms in eq 28. Table I gives values of y for a 
number of solvents. _ 

The partial molar Gibbs free energy for interaction, G1, can 
be approximated in the following manner. Suppose the inter
action energy of a solute molecule with a given solvent molecule 
is e,(r), then the sum of the (•, averaged over the configurations 
of the solvent for a mole of solute jpolecules will be E1. Since 
the solvent is a_condensed phase, E1 is approximately equal to 
H1, and hence G1 can be determined in principle by integration 
of the Gibbs-Helmholtz relationship. This integration requires 
knowing the temperature dependence of the radial distribution 
function. This is not generally known and as an approximation 
it_is assumed that pg(r) is temperature independent and hence 
G| «» E1. For spherically symmetric, pairwise-additive interac
tions 

G1 =* E1 = N I i{r)A-Kr2pQ(a2,r) dr (30) 
«y vol 

where p is the number density of the fluid, N is Avogadro's 
number, and g(a2,r) is a radial distribution function and measures 
the probability of finding a solvent molecular center at the dis
tance r from the center of a solute molecule of hard sphere ra
dius (T2. The most satisfactory and consistent approach here 
would be to obtain the radial distribution function directly from 
the scaled particle theory. Unfortunately this has not been done 
although significant progress in scaled particle theory has been 
made along these lines.10 A number of approximate functions 
based upon physically intuitive notions could be used for g(tr2,r), 
but this has not been done either. The original papers on the 
scaled particle theory as applied to solutions used a uniformly 
distributed solvent; that is, g(cr2,r) was taken to be unity outside 
the radius a2. This is not a particularly poor approximation for 
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TABLE II. Selected Properties and Parameters for the Inert Gases3 

a 

Substance 

He 
Ne 
Ar 
Kr 
Xe 
Rn 

a From ref 25. 

X 1024 

cm3 / 
mol 

0.204 
0.393 
1.63 
2.46 
4.00 
5.86 

- X X 1026 

cm3 / 
molecule 

0.29 
1.17 
3.24 
4.65 
7.04 

tlk, 
K 

6.03 
35.7 

125 
169 
217 
290 

a X 108 

cm 

2.63 
2.79 
3.41 
3.67 
3.96 
4.23 

I 

He ^~~~~~ 
Ne 

~ "̂̂ -

» H 2 0 

®c.He 

-

1 i r— 

Kr 

I 

" 

Xe 

-

-

obtaining the average energy, but it cannot be expected to ac
count for small differences in properties between a given solvent 
and various solutes. If unit radial distribution function is assumed, 
then the integral in eq 30 can be carried out by assuming a 
functional form of t\(r). If one considers the interaction of a po-
larizable polar solute with a polarizable polar solvent, then a 
reasonable expression for t[r) is19 

ei(r) = -C d i s [ ( 1 / r ) 6 - (<x12/r)12/cr12
6] - (C ind + Cdip)(1/r) 

(31) 

where Cdis is the dispersion (or London) energy constant, C ind 

is the inductive energy constant, Cdip is the dipole-dipole energy 
constant, and a12 is the distance at which the dispersion and 
repulsive interactions are equal in magnitude. Substitution of eq 
31 into eq 30 and integrating yields 

G1ZRT = -(16/3)(€*dis//c7) - 8(€* i nd+ e*dip )/kT (32) 

where «*i = irpCJSo^ and where the integral has been eval
uated from (T12 to infinity. The expressions used for the dipole-
dipole and inductive energy are, of course, the rotationally av
eraged terms, and, in those cases where these must be used, 
the adequacy of the approximation must be questioned. 

The contribution of the dispersion energy may be estimated 
by several theoretical expressions. The Kirkwood-Muller for
mula20 has been one of the more successful approximations21 

and is given by 

Cdis = CKM - -6/T7C2 O 1 O 2 

(<*i/Xi) + («2 /X2) 
(33) 

where m is the mass of an electron, c is the velocity of light, ^ 1 

and a 2 are the molecular polarizabilities of the solvent and so
lute, respectively, and Xi and x 2 are the molecular magnetic 
susceptibilities of the solvent and solute (see Tables I and II). 

Another useful form of Cdis is that for the Lennard-Jones 
(6-12) potential 

Cdis = CLJ = 4«12rj12
6 = A(e,e2y

/2[(a, + <r2)/2]6 (34) 

where «1 and t2 are the energy parameters for the solvent and 
solute, and U1 and <r2 are the distance parameters of the solvent 
and solute (see Tables Il and III). 

The inductive energy constant C ind is given by22 

Ht2U2 + fj,2
2a-\ (35) 

where ^ i and \i2 are the dipole moments of the solvent and so
lute, and «1 and a 2 are the polarizabilities of the solvent and 
solute. 

The dipole-dipole interaction constant is the coefficient of 
r~6 in the so-called Keesom orientation energy and is given 
by22 

Cdip = (2/ZWn2
2IkT (36) 

where Mi and fi2 axe the dipole moments of the solvent and so
lute, respectively. 

For a nonpolar solute and solvent only the dispersion energy 
in eq 32 contributes. If either the solvent or the solute is dipolar 

Figure 3. Ln KH vs. polarizability of inert gases in water and benzene 
at 298.15 K. 

TABLE III. Lennard-Jones Parameters tor Solvents from Gas 
Solubility a 

Ar 
CS2 

CCI4 

CgHg 
C-C6H12 

H-C6H i 4 

H-CsHi2 

/-CgH ig 

C7F16 
C6H5CH3 
C6H5F 
N2H4 

(CHs)2CO 
CH3OH 
C2H5OH 
H2O 

<?ib 

3.41 
4.53 
5.38 
5.26 
5.65 
5.94 
6.55 
6.53 
7.11 
5.65 
5.31 
3.63 
4.79 
3.71 
4.36 
2.77 

< T 1 C 

3.42 
4.55 

5.25 
5.60 
5.87 
6.56 
6.48 
7.03 
5.68 
5.31 

/ 
f 
f 

* 1 * 

3.41 
4.53 
5.35 
5.22 

6.44 
7.11 

^e 

3.42 
4.44 
5.88 
5.26 
6.09 
5.91 
7.41 

5.93 

4.67 
3.67 
4.31 

d/k" 

120 
466 
530 
496 
589 
543 
607 
584 
495 
573 
410 
142 
384 
255 
339 
79.3 

(t/kd 

122 
466 
490 
504 

519 
505 

c,/ke 

120 
468 
327 
440 
324 
413 
333 

377 

519 
452 
431 

a Units of a are 1O-8 cm, units for tlk axe K. b Obtained from gas solu
bility; see ref 25. ° Obtained from the heat of vaporization based upon the 
scaled particle theory: AH, = RT+ OpAr2I(I + 2y)2/(1 - y)3]. " Obtained 
from ref 65 from liquid-state properties using a cell theory. e Obtained from 
ref 66 from gas-phase virial coefficients and viscosities. ' Heat of vapor
ization expression is not applicable to hydrogen-bonded liquids. 

but not the other, then only the dispersion term and one term in 
the inductive energy expression contribute. If both solute and 
solvent are dipolar, the entire expression given by eq 32 must 
be used. We can combine eq 28, 29, and 32 to obtain the final 
expression for the Henry law constant given by 

In KH = In (RTZV1) - ( 1 6 / 3 ) e W * r - 8(e" ind + e*dlp)//c7" 

H n ( 1 - y ) + ( ^ ) f f 

+ [ iVi(T^) f> 2 + —_ R3 (37) 
pkT 

where y = -KPa1
3IQ, R = O2Ia1, «*, = irpCj/6cr12

3, and where 
the Ci are given by eq 34, 35, and 36. 

D. Solubility of a Hard Sphere 

It has long been realized that a plot of the logarithm of the 
experimental Henry law constant vs. the polarizability of the 
solute for a given solvent yielded a reasonably smooth curve.23 

Equations 37 and 33 indicates that one should expect such a 
correlation and that the inert gases should define the curve be
cause they are monatomic and spherically symmetric. Figure 
3 shows such a curve for the inert gases dissolved in benzene 
and in water. Similar curves are obtained for all solvents studied 
thus far. The extrapolation to zero a2 of the curve through the 
inet gas points yields a finite value of In KH and, therefore, a 
nonzero solubility even though the interaction term has gone to 
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Figure 4. —A vs. solubility interaction parameter for water and benzene 
at 298.15 K. 

zero. The change from one solute to another is accompanied 
not only by a change in polarizability and hence interaction en
ergy, but also by a change in hard-sphere diameter, a2. A plot 
of (T2 vs. a2 for the inert gases also describes a smooth function, 
and extrapolation of this curve to a2 = 0 gives a value of C2

0 of 
2.55 A.2425 The extrapolation of In KH vs. a2 is thus equivalent 
to determining the solubility of a hard sphere of diameter 2.55 
A in the particular solvent. This can be expressed as 

Hm In KH = In K„° (38) 
C*2—0 

0-2^2.55 A 

where KH° is the Henry law constant for hard spheres of diameter 
2.55 A. 

This ability to determine from experimental data the solubility 
of a hard sphere in a real solvent makes it possible to directly 
test the adequacy of the scaled particle theory to calculate the 
reversible work required to introduce a hard sphere into a real 
liquid solvent. Table IV compares values of In KH° obtained from 
the extrapolation techniques described above for various sol
vents with values of In KH° determined from the theory. The 
agreement is excellent and represents a strong confirmation of 
the validity of eq 28 as derived by the scaled particle theory. The 
results in fact are such that there is good reason to believe that 
we arejiow in possession of £ much better method for calcu
lating G0 than for calculating Gj. 

E. Determination of an Effective Hard-Sphere 
Diameter, (T1 

As stated above, there is good reason to have confidence in 
the scaled particle calculation of the energy of cavity formation 
of a hard sphere in a liquid solvent. A consequence of this is that 
if one has the solubility of the inert gases in a solvent, it is pos
sible to carry out the extrapolation described above and deter
mine In KH° in the solvent. Since the value of In KH° determined 
by this extrapolation is simply equal to G0IRT + In (RT/V^), it 
is clear thatjts value is determined only by the properties of the 
solvent (T1, Vt, T, and the hard-sphere diameter cr2° = 2.55 A. 
If one takes CT1 to be an unknown, then it is possible, from the 
intercept of the In KH vs. a2 curve, to determine the hard-sphere 
diameter of the solvent CT1, and Table III indicates values of CT-I 
for a number of solvents including water24-26 determined in this 
manner. Also included there are values of (T1 determined from 
other more standard methods. It is of particular interest that 
"effective" hard-sphere diameters for solvent molecules have 
been determined for alkanes, cycloalkanes, aromatics, alcohols, 
amines, etc., by Wilhelm and Battino,27 deLigny and van der-
Veen,28 and Liabastre and Pierotti.24-26 DeLigny and van der-
Veen believe the values of CT-I determined from solubility data 

TABLE IV. Theoretical and Experimental Values of Ln KH° 

Solvent 
((T1 X 108cm) 

Ar(3.40)a 

C6H8 (5.27)* 
CCI4 (5.35)" 
0-C6H14 (5.92)a 

C7F1 6 (T-H)" 

7, K 

87.3 
298 
298 
298 
298 

LnKH0 

(calcd) 

10.56 
9.84 
9.31 
8.56 
7.44 

LnK-H° 
(obsd) 

10.50 
9.78 
9.43 
8.62 
7.44 

3 From ref 66. b From ref 65. 

are probably more accurate than values from vapor viscosities 
or second virial coefficients. Of course, one of the advantages 
of determining <ri from solubilities is that for many liquids it is 
frequently not practicable to determine their vapor phase 
properties. 

F. A New Solubility Parameter and the 
Determination of t^/k 

There has been a trend in recent years to search for param
eters composed of physical quantities related to interaction 
energy which are linearly related to solubility. If eq 37 is rewritten 
in the form 

A = In KH + 8(e*ind + e* ̂ )IkT- G0IRT- In (RT/VJ 
= -32xp(6162)1/2(T123/9Kr (39) 

then it is possible to relate A to the interaction energy of the 
solute with the solvent. For a given solvent (e-i/k)1'2 is a constant, 
and hence a plot of —A vs. (62/K)172Ir12

3 should be a straight line 
of slope 32irp(etlk)'uzlkT. Figure 4 shows typical plots of —A 
vs. this new solubility parameter, (62/K)172CT12

3, for a number of 
solutes in benzene and water. The present theory is the only one 
which correlates solubility data for solvents as diverse as water 
and benzene using a single nonadjusted solubility parameter. 

As indicated, the slope of the - A plot is proportional to 
(e-|/K)1/2; hence the experimentally determined slope permits 
the evaluation of the interaction parameter for the solvent. Table 
III gives values of ^ / k determined from solubilities as described 
as well as values determined in other ways. It should be pointed 
out that the value of (e^k) determined in the solution is not 
necessarily equal to that determined in the gas phase because 
of nonadditivity effects in condensed media.29 In general, the 
more dense the solvent and the more polarizable its molecules, 
the greater the nonadditivity correction would be and the cor
rection is in the direction such that («ilSOin/ei,gas) is less than unity. 
In general, the values of (e-ilk) determined from solubility mea
surements for nonpolar molecules are in good accord with values 
from gas-phase virial coefficients and viscosities. It is a direct 
benefit of the present theory that the Lennard-Jones parameters 
of a solvent (a and e/k) can be determined directly from the 
solubility of the inert gases in that solvent. 

G. Thermal Properties of Dilute Solution 
Processes 

The Gibbs free energy of solution can be calculated directly 
from 

AG5 = RT In KH = G0 + Gj + RT In (RTZV1) (40) 

where G0 and Gj are given by eq 28 and 32, respectively. It is 
worth noting that AG5 corresponds to the Gibbs free energy 
change in transferring 1 mol of gaseous solute at unit fugacity 
in atmospheres to a hypothetical unit mole fraction state for the 
solute determined from the properties of an infinitely dilute so
lution of the solute in a given solvent. The molar enthalpy of 
solution is given by eq 14, where H0 is given by 

H0 = yaP/?7*(1 - y)~3[(1 - yf 
+ 3(1 - y)R + 3(1 + 2y)fl2] + y(RP/pk)R3 (41) 
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TABLE V. Comparison of Contributions to the Solubility of Ar and N2 in Benzene and Water at 298.15 Ka 

Solute/solvent Gk and H AG5 AH8 AS5 V1 

Ar/benzene 

Ar/H20 

N2/benzene 

N2/H20 

Calcd 
Obsd 
Calcd 
Obsd 
Calcd 
Obsd 
Calcd 
Obsd 

3677 

5268 

4142 

5199 

4060 

840 

4640 

828 

-3033 

-3248 

-2919 

-2528 

3969 
4167 
6291 
6274 
4548 
4571 
6943 
6720 

678 
297 

-2757 
-2680 
1372 
1016 

-2249 
-2681 

-11.0 
-13.0 
-31.0 
-30.0 
-10.7 
-11.9 
-30.8 
-31.5 

43 
43 
26 
27 
52 
53 
32 
32 

a Units of G and Hare cal/mol, S is in cal/(mol deg), and V1 is cm3/mol. 

where ctP is the thermal expansion coefficient of the solvent and 
R = oVci- _ 

The partial molar enthalpy of interaction, Hu is given by eq 
32 since Gj has been assumed equal to H1. This assumption 
amounts to assuming the entropy change associated with the 
charging of the cavity, S1, is zero. This is certainly not correct 
and S\ should be a small negative quantity. The molar entropy 
of solution is given by 

AS8 = -(dAGs/dT)P = S0 + S, - R In (RT/VJ + aPRT (42) 

where 

Sc = (Ho" G0)/T (43) 

and S1 is usually taken equal to zero as discussed above. The 
result of this is that the calculated values of AS5 should be 
slightly more negative. The molar heat capacity of solution 
i s 2 6 ' 3 0 

ACp = C0 + Cj - R + 2aPRT + RT2 (daPldT)P 

where 

C0 = [2IT- aP + a p - 1 (daPldT)P]Hc' 
- f i [ y a P 7 7 ( 1 - y ) 2 ] 2 [ ( 1 - y ) 2 

+ 6(1 - y)R + 3(4y + 5)R2] 

and 

(44) 

(45) 

Cj = otpH, (46) 

The partial molar volume of the solute at infinite dilution is given 
by eq 15 where 

V0 = 82.05(l3TlaP)(Hc'IRT) + Nira2
3l6 (47) 

and 

Vi = ^TG1 (48) 

H0' is given by H0 less the cubic term in R and eq 48 applies for 
systems not involving dipole-dipole interactions. 

Figure 5 illustrates the importance of cavity thermodynamics 
for water and benzene at 298 K. Although water is frequently 
referred to as an abnormal solvent, one sees in Figure 5 that the 
reversible work of cavity formation for water and benzene are 
functionally very similar; only the magnitudes differ. The enthalpy 
and entropies of cavity formation, however, behave quite dif
ferently. In benzene most of the work of cavity formation goes 
toward the enthalpic maintenance of the excluded volume and 
only a small contribution to the entropy or configurational ex
clusion of volume. Just the opposite is the case with water. This 
difference shows up not specifically because of the scaled 
particle theory, but because of the use of the experimental value 
of the thermal expansion coefficients which introduces implicit 
information about the liquid structure of the solvent into the 
theory. The importance of the scaled particle theory is that it 
makes it natural to consider cavity thermodynamics explicitly 
in terms of molecular properties of the solute and the thermo
dynamics properties of the solvent. 

i—r -i—/i / i 
5 c / R T / / G /RT 

/ 
/ / / / / / 

J I I I L 
1.0 1.2 

Figure 5. Thermodynamic properties of cavity formation in water and 
benzene at 298.15 K. 

Table V compares the contributions of the various cavity and 
interaction terms to the solution properties of argon and nitrogen 
in benzene and water as examples of two diverse solvent sys
tems. It should be pointed out that the equations given above do 
not take into account the variation of a with temperature.3132 

Although the effect is not large over small temperare ranges,33,34 

it can be important for nonspherical molecules over any ex
tended temperature range. 

H. Mixed Solvents, Electrolyte Solutions, and 
Salt Effects 

The reversible work of introducing a hard-sphere solute into 
a fluid mixture containing m components whose molecules have 
hard cores can be obtained in a manner similar to that used to 
obtain eq 28. The result is6,29 

G0 =-RT ln(1 - y 3 ) ' 

- - TrNP(Xs3 (49) 
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where <rs is the diameter of the solute molecule, yt = (ir/6)-
SjPj(Tj', and Pj and at are the number density and the hard-sphere 
diameter of the /th component. The contribution from the in
teraction term is similarly given by 

^ 3 2 ^ •, 4 
G'--jZPiesi<rsi

 3 - i 

( m m \ 

L PjM)2Ks/^Sj3 + E PjO!jMs2/CTsj3 ) 
j = 1 J = I / 

8 m 

- - TT £ Pj^j2P3
2/ (7sj

3 (50) 
9 1=1 

where Pj and ps are the dipole moments of the solute and sol
vent, respectively, and esj and <7sj are the mixed pair potential 
parameters for the solute and the /th component. The Henry law 
constant is then 

\r\KH=Gc+Gi + \n(RT'£Pi) (51) 

The relationships given above can be used to calculate so
lution properties of a solute in a mixed solvent. Shoor and 
Gubbins35 used them to investigate the nature of the solubility 
of a nonpolar gas (argon) in a concentrated electrolyte solution 
(KOH) as a function of concentration and temperature. They 
found the salting-out effect well predicted by the theory and that 
the theory proved superior to the standard electrostatic theories 
of Debye and McAulay36 and Conway, Desnoyers, and 
Smith.37 

Masterton and Lee38 also applied this theory to the salting-out 
of nonpolar solutes from electrolytes including in their study of 
NaCI and Kl solutions. They found the theory gave excellent 
results for systems in which the molecular and ionic diameters 
were small. For larger molecules the quantitative agreement was 
less good, but qualitatively the behavior was still correct and 
adjustments to the molecular diameters were capable of bringing 
about good agreement. As a result, Masterton suggests obtaining 
the ionic radii of ions in solution from the theory.39 Schrier et 
a i 40,41 f0uncj the theory applicable to salting-out of polar mol
ecules from alcohol-water solutions containing NaCI, NaBr, and 
NaI. 

Hirata and Arakawa42 used eq 47 to determine V0 of ionic 
solutions, and they were able to show that V0 corresponds to the 
intrinsic volume of ions in dilute aqueous solution. They indicate 
that the expressions for the intrinsic volume of Stokes and 
Robinson,43 Hepler,44 Conway et al.,45 and Glueckauf46 were 
incomplete and inferior to that obtained from the scaled particle 
theory.JThey then subtract V0 from the experimental V2 and 
obtain V1, the interaction volume. For salt solutions V, is fre
quently a large negative number corresponding to electrostric-
tion. 

///. Discussion and Concluding Remarks 

As stated at the outset no effort has been made to review the 
formalism of the scaled particle theory. Instead one aspect of 
the scaled particle theory (that aspect which permits the cal
culation of cavity work) has been used to calculate one term, G0, 
in the theory of dilute solutions. Contrary to comments in the 
literature that the scaled particle theory as applied to solutions 
refers specifically to hard-sphere fluids, the theory as developed 
above applies to fluids whose molecules have "effective" 
spherical hard cores but whose soft potential determines the 
pressure, density, and their derivatives. The theory is not a rig
orous statistical mechanical theory derived from the molecular 
properties of the solute and solvent. Such a theory would be 
unlikely to yield the agreement for the diversity of molecules that 
have been treated with the present theory. Neff and McQuarrie47 

have attempted to develop a more rigorous theory based upon 
the perturbation theory of Barker and Henderson.48 They start 

with the equation of state of a reference hard-sphere fluid mix
ture from which they obtain 

In KH = p 2
H S / f i r+ H2

00WRT+ In [RTZV1) (52) 

where ps
HS is the chemical potential of the solute in the refer

ence hard-sphere fluid and p2
cor is the correction for the soft 

potential which exists between the solute and solvent. p2
HS is 

obtained directly from he equation of state of a hard-sphere 
mixture as approximated by the Percus-Yevick compressibility 
equation. The expression they obtain for p2

HS/ft7"is identical 
with G0IRT given by eq 23 except that consistency in their 
derivation requires that the pressure term in eq 28 be given by 
the hard-sphere pressure which may be orders of magnitude 
greater than the experimental pressure. The effect of retaining 
the theoretical SPT pressure in the cubic term in R is illustrated 
in Figure 1. For water as a solvent and for R equal to unity G0IRT 
is 6.9 using the SPT pressure, whereas it is 4.6 using the ex
perimental pressure of 1 atm. The deviation for benzene as the 
solvent is even greater, the value of G0IRTcalculated using the 
theoretical pressure being almost a factor of 2 larger than that 
calculated using P equal to 1 atm. The reason for this is that the 
pressure required to confine a fluid of hard spheres to the molar 
volume of most liquids is very great. The pressure-volume work 
required to produce a cavity under these conditions is corre
spondingly very large. The Neff and McQuarrie approach must 
correct for this difference in the term p2

cor. They show that p2
cor 

is made up of a number of terms including the term G1 and a term 
involving an integral they designate as /-M which accounts for 
the change in the interaction among the solvent molecules as 
a result of the disturbance in the radial distribution function of 
the solvent by the solute. This term is required explicitly in the 
Neff and McQuarrie treatment because they have used a true 
hard-sphere reference state. The major contribution of this term 
is included in the term G0 as obtained by the scaled particle 
theory when the experimental properties of the real fluid in
cluding the pressure terms are used. Their approach, which is 
computationally complex, requires calculating the integral /n 
whose integrand contains the product of the solvent-solvent pair 
potential and the derivative of solvent radial distribution function 
with respect to the number of solute molecules. In light of the 
uncertainty of both the pair potential and radial distribution 
function for most real fluids, it is doubtful that one can evaluate 
this integral as well as would be required to correct for the high 
PV work contribution in p2

HS caused by using the hard-sphere 
equation of state rather than using the experimental hydrostatic 
pressure. Neff and McQuarrie treated the system neon in liquid 
argon where the effect of the solvent-solvent term is somewhat 
less important and the approximation in Z11 is somewhat less 
demanding than for most solvents. In this case they found their 
approach yielded somewhat better results than the approach 
discussed here. The slightly better agreement with experiment 
may be fortuitous, but there is no doubt that their theory has the 
satisfying element of not mixing theoretical and empirical results 
in the free energy expression. They do nevertheless use em
pirical expansivities and compressibilities for the heat and vol
ume expressions similar to the method presented here rather 
than using hard-sphere theoretical values. Hermann49 has used 
the Neff-McQuarrie approach in considering hydrocarbon sol
ubility in water, but the number of approximations, assumptions, 
etc., makes it difficult to evaluate its success, but it appears to 
be substantially poorer than the simpler approach suggested 
here. 

Tiepel and Gubbins50 have also used eq 49 to treat solubility 
in fluid mixtures including electrolytes. They use the hard-sphere 
equation of state suggested by Carnahan and Starling51 to obtain 
p2

HS/flfand include the theoretical hard-sphere pressure term. 
They do not, however, include the solvent disturbance term in 
H2°°'IRTas required by Neff and McQuarrie. Ignoring this term 
makes the computation simpler, but the approach does not have 
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theoretical consistency. Although the Carnahan and Starling 
equation of states agrees with machine calculations for a rigid 
sphere fluid better than does scaled particle theory, it is worth 
mentioning that when used to calculate the cavity work term, 
it has not been shown to have the correct thermodynamic limit 
for cavities of large radius. Although no careful examination of 
the work of Tiepel and Gubbins has been made, the values of 
a and c/k used in their work are not those usually found in the 
literature, and there is reason to believe that without careful 
selection of a and e/k for both the solute and the solvent it would 
yield poorer results than the scaled particle approach. 

The scaled particle theory of nonaqueous and aqueous so
lutions has been applied to a host of solution problems, many 
of which have been referred to above. Additional applications 
include examining (1) the problem of solubility in fused salts52 

and liquid metals;53 (2) the problems correlating transfer prop
erties between solvents, for instance, between H2O and 
D2O2425'54 or between water and nonaqueous solvents (the 
transfer between H2O and nonaqueous solvents could be useful 
in establishing criteria for a generalized pH scale);55 (3) the 
problem of theoretically relating partition coefficients to mo
lecular parameters (these can be further related to biomedical 
problems);56 (4) the problem of relating ionization kinetics and 
thermodynamics to molecular properties and isolating those 
contributions which originate from ionized species or neutral 
molecules;57 (5) the properties of a well-defined reference 
molecule (a hard sphere) in a real solvent58 and hence separating 
the solvolysis59 process into a part which can be calculated with 
reasonably high accuracy (the cavity term) and a less well-de
fined term involving solute-solvent interactions. 

There are a number of ways in which the present theory can 
be further investigated and possibly improved. Clearly the scaled 
particle theory itself can be extended to calculate W(R,p) more 
accurately by utilizing more of the exact relationships which have 
been discovered and/or utilizing more structural information as 
suggested by Stillinger for aqueous solutions.60 Another im
provement could be made for nonspherical molecules by in
cluding terms describing the properties of rigid convex bod
ies.6162 The improvement here is not likely to be great since the 
effective diameter of a molecule cannot be determined to better 
than a few hundredths of an angstrom, and this is enough to mask 
the effects of a nonspherical core. The inclusion of a tempera
ture variation in the effective <r may aide in correlating enthalpy 
changes for nonspherical, nonrigid molecules. The greatest 
improvement could be obtained by utilizing more realistic in-
termolecular potentials in G1

6363 and by using the scaled particle 
theory or some other means to provide a_more realistic radial 
distribution function in the evaluation of G1. 

In conclusion, the scaled particle theory has been applied to 
aqueous and nonaqueous solutions. There can be no question 
that it provides an opportunity to investigate solution thermo
dynamics in a manner which has not been available up to this 
time. This comes about because there is no comparable way 
to account for the enthalpy and entropy changes associated with 
the exclusion of volume in a solvent. This is the main reason the 
continuum electrostatic theories are lacking in interpreting dilute 
solutions of molecules in electrolytes. One important feature of 
the present theory is that the structure of the solvent (other than 
its pressure, density, and diameter and their temperature de
rivatives) are not explicitly considered, and hence water and 
other solvents are equally well handled by the theory. 

IV. Addendum 

Since the submission of the original manuscript, a number 
of significant contributions have been made to the general area 
of the scaled particle theory of fluids and its application to the 
investigation solution properties. A few of these are: 

(1) Mandell and Reiss67 have utilized a set of six conditions 

required by the scaled particle theory to determine six coeffi
cients in G(r,p) (eq 21). They find G3 = O as required and G4 and 
G5 are nonzero but small. The equation of state determined'using 
all of these conditions is somewhat improved over that obtained 
using G3 and G4 equal to zero. These results could be used to 
generate a presumably improved but more complex expression 
for the cavity work term. 

(2) Philip and Jolicoeur68 used the scaled particle approach 
to calculate the thermodynamic changes associated with the 
transfer of a hard-sphere solute from several isotopic water and 
methanol solvents. They conclude that the overall importance 
of solvent structural effects on the properties of nonpolar solutes 
in aqueous solution seem overstated and also that the isotope 
effect on trensfer functions appears built into the bulk properties 
of the solvents. 

Desroiers and Lucas69 calculated the transfer properties of 
salts from H2O to 3 m urea and to D2O with apparent good suc
cess. 

(3) Masterton, Polizzotti, and Welles70 investigated the salt 
effects of the complex-ion electrolyte f-[CO(en)2NCSCI]Br on 
the solubility of argon. They use the experimental salting coef
ficients to determine the ionic radius of the complex ion and find 
it proves a useful method of interpreting the molar volumes of 
electrolytes in agreement with the conclusion of Hirata and 
Arakawa.42 Conway, Novak, and Laliberte71 discuss the appli
cability of the scaled particle approach to salting-out behavior 
on the basis that it obscures the structural aspects of the phe
nomenon. They do not make any comparisons or calculations 
using the theory. 

Masterton72 has considered salting coefficients for gases 
dissolved in seawater using the scaled particle approach and 
finds reasonably good agreement between theory and experi
ment. The predicted temperature coefficients have the right sign 
but are only about half the observed values. 

(4) Lucas73 has made model calculations for the transfer of 
a hard-sphere solute from water to other solvents using the 
scaled particle approach and also the modification suggested 
by Stillinger. The author concludes that the solvent dimensions 
are the important parameters in determining the sign of the free 
energy transfer from one solvent to another. 

(5) The application of the theory with modification to the 
calculation of Henry's law constant has been published by Saito 
et al.,74 Benson and Krause,75 Geller, Battino, and Wilhelm,76 

and deLigny and van derVeen.77 The latter work is concerned 
with a system in which one component is very polar. They find 
that complex formation between the solute and solvent can be 
detected and the association constant can be approximately 
evaluated. 

(6) DeVoe78 has used the approach to consider the ther
modynamics of transfer properties in such manner as to define 
a molar structural entropy change and relates this to structural 
ordering of the solvent. He uses a hybrid between the scaled 
particle work term and the Carnahan-Starling equation of state 
for the pressure of a hard-sphere fluid and calculates the entropy 
change for introducing a hard sphere into a hard-sphere fluid 
whose molar volume is that^f the solvent. In ejsence he divides 
the term Sc into two parts, S»s + Sst, where SSH is the entropy 
change for cavity formation in a truly hard-sphere solvent and 
Sst is the structural term. The results obtained are quite inter
esting, and the approach is related to the discussion earlier on 
the use of experimental volumes, etc., and hard-sphere fluid 
properties. 

V. Glossary of Symbols 

a molecular polarizability 
aP thermal expansion coefficient 
/?T isothermal compressibility coefficient 
B2( second solute-solvent virial coefficient 
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B3g third solute-solvent virial coefficient 

c velocity of light 

C interaction energy coefficient for the designated type 

_ energy, where i is dis, ind, dip, rep, etc. 

C0 partial molar heat capacity of cavity formation 

C partial molar heat capacity of interaction 

7 surface tension 

5 thickness of the surface of tension 

tlk Lennard-Jones energy parameter 
€i* integrated interaction energy, where i is dis, ind, 

dip, and rep 
f fugacity 
G conditional probability 
G0 partial molar Gibbs free energy of cavity formation 

Gi partial molar Gibbs free energy of interaction 

AG8 molar Gibbs free energy of solution 

H0 partial molar enthalpy of cavify formation 

H1 partial molar enthalpy of interaction 

AHS molar enthalpy of solution 

k Boltzmann constant 

Ki where / is 0, 1, or 3 are coefficients of the cavity 

radius to the /th power in the work of cavity formation 

expression 

KH Henry law constant 

m mass of an electron 

ji chemical potential or dipole moment 

N Avogadro's number 

N number of molecules 

pQ(r) probability of finding a cavity of radius r 

P pressure 

p number density (N/V) 

r position of a molecular center 

r radius of a cavity 

R gas constant 

R ratio of hard sphere diameters <T2/<TI 

£ hard-sphere diameter 

S0 partial molar entropy of cavity formation 

Si partial molar entropy of interaction 

AS8 molar entropy of solution 

T absolute temperature 

V-t molar volume of the solvent 

V2 partial molar number of the solute 

V0 partial molar volume of cavity formation 

W reversible work of cavity formation 

y reduced density (7rpo-3/6) 

X molecular diamagnetic susceptibility 

X mole fraction 

Vl. References 

(1) H. Reiss, H. L. Frlsch, and J. L. Lebowitz, J. Chem. Phys., 31, 369 
(1959). 

(2) H, Relss, H. L. Frisoh, E. Helfand, and J. L. Lebowitz, J. Chem. Phys., 32, 
119(1960). 

(3) H. Reiss and S. W. Mayer, J. Chem. Phys., 34, 2001 (1961). 
(4) H. L. Frisch, Adv. Chem. Phys., 6, 229 (1963). 
(5) H. Reiss, Adv. Chem. Phys., 9, 1 (1966). 
(6) J. L. Lebowitz, E. Helfand, and E. Praestgaard, J. Chem. Phys., 43, 774 

(1965). 
(7) S. J. Harris and D. M. Tully-Smlth, J. Chem. Phys., 55, 1104 (1971), 
(8) D. M. Tully-Smlth and H. Reiss, J. Chem. Phys., 53, 4015 (1970). 
(9) H. Reiss and D. M. Tully-Smlth, J. Chem. Phys., 55, 1674 (1971). 

(10) H. Relss and R. V. Casberg, J. Chem. Phys., 61, 1107 (1974). 
(11) W. G. McMillan and J. E. Mayer, J. Chem. Phys., 13,276(1954), 
(12) T. L. Hill, "Statistical Mechanics," McGraw-Hill, New York, N.Y., Chapter 

6, Sections 29, 37, and 40. 
(13) J, G. Klrkwood, "Theory of Solutions", Gordon and Breach, New York, N.Y., 

1968. 

1421 (1939); 40, 183 

(14) R. C. Tolman, "The Principle of Statistical Mechanics", Oxford University 
Press, London, 1938, Section 141. 

(15) R. H. Fowler and E. A. Guggenheim, "Statistical Thermodynamics", 
Cambridge University Press, Cambridge, 1939, paragraph 823. 

(16) H. H. Uhlig, J. Phys. Chem., 41, 1215 (1937). 
(17) D. D. Eley, Trans. Faraday Soc, 35, 1281, 

(1944). 
(18) R. A. Pierotti, J. Phys. Chem., 67, 1840 (1963). 
(19) F. London, Trans. Faraday Soc, 32, 8 (1936). 
(20) A. Muller, Proc. Chem. Soc, London, A154, 624 (1936). 
(21) R. A. Pierotti and G. D. Halsey, J. Phys. Chem., 63, 680 (1959). 
(22) J. H. Hildebrand and R. L. Scott, "The Solubility of Nonelectrolytes", 3rd 

ed, Dover Publications, New York, N. Y., 1964. 
(23) J. H. Saylor and R. Battino, J. Phys. Chem., 62, 1334 (1958). 
(24) R. A. Pierotti and A. A. Liabastre, Environmental Resources Certer Report 

No. 0572, Georgia Institute of Technology, 1972. 
(25) A. A. Liabastre, Ph.D. Thesis, Georgia Institute of Technology, 1974. 
(26) R. A. Pierotti, J. Phys. Chem., 69, 281 (1965). 
(27) E. Wilhelm and R. Battino, J. Chem. Thermodyn., 3, 379 (1971); 5, 117 

(1973); 6, 237 (1974); J. Chem. Phys., 55, 4012 (1971). 
(28) C. L. deLigny and N. G. van derVeen, Chem. Eng. Sci., 27, 391 (1972). 
(29) N. R. Kestner ann O. Sinanoglu, J. Chem. Phys., 38, 1730 (1963). 
(30) R. A. Pierotti, J. Phys. Chem., 75, 4066 (1971). 
(33) S. W. Mayer, J. Chem. Phys., 38, 1803 (1963); J. Phys. Chem., 67, 2160 

(1963). 
(32) A. Ben-Nairn and H. L. Friedman, J. Phys. Chem., 71, 448 (1967). 
(33) R. A. Pierotti, J. Phys. Chem., 71, 2366 (1967). 
(34) E. Wilhelm, J. Chem. Phys., 58, 3558 (1973). 
(35) S. K. Shoor and K. E. Gubbins, J. Phys. Chem., 73, 498 (1969). 
(36) P. Debye and J. McAulay, Phys. Z., 26, 22 (1925). 
(37) B. E. Conway, J. E. Desnoyers, and A. C. Smith, Phil. Trans. R. Soc. London, 

Ser.A. 256,389(1964), 
(38) W. L. Masterton and T. P. Lee, J. Phys. Chem., 74, 1776 (1970). 
(39) W. L. Masterton, D. Bolocofsky, and T. P. Lee, J. Phys., Chem., 75, 

(1971). 
(40) F. L. Wilcox and E. E. Schrier, J. Phys. Chem., 75, 3757 (1971). 
(41) Y. T. Chang, M. Y. Schrier, and E. E. Schrier, J. Phys. Chem., 78, 165 

(1974). 
(42) F. Hirata and K. Arakawa, Bull. Chem. Soc, Jpn, 46, 3367 (1973). 
(43) R. H. Stokes and R. A. Robinson, Trans. Faraday Soc, 53, 301 (1957). 
(44) L. G. Hepler, J. Phys. Chem., 61, 914 (1965). 
(45) B. E. Conway, R. E. Verrall, and J. E, Desnoyers, Trans. Faraday Soc, 62, 

2738(1966). 
(46) E. Glueckauf, Trans. Faraday Soc, 61, 914 (1965). 
(47) R. O. Neff and D. A. McQuarrie, J. Phys. Chem., 77, 413 (1973). 
(48) J. A. Barker and D. Henderson, J. Chem. Phys., 36, 2564 (1963); 47, 2856 

(1967); Ace Chem. Res., 4, 303 (1971). 
(49) R. B. Hermann, J. Phys. Chem., 79, 163 (1975). 
(50) E. W. Tiepel and K. E. Gubbins, J. Phys. Chem., 76, 3044 (1972); Can. J. 

Chem. Eng., 50, 361 (1972). 
(51) N. F. Carnahan and K. E. Starling, J. Chem. Phys., 51, 663 (1964); 53, 600 

(1970). 
(52) K, D. Luks and H. T. Davis, Ind. Eng. Chem. Fundam., 6, 194 (1967). 
(53) K. Thormeier, Nucl. Eng. Design, 14, 69 (1970). 
(54) A. Ben-Nairn, J, WiIf, and M. Yaachobi, J. Phys. Chem., 77, 95 (1973); 78, 

170, 175(1974). 
(55) R. G. Bates, M. Paabo, and R. A. Robinson, J. Phys. Chem., 67, 1838 

(1963). 
(56) C. Hansch and T. Fujita, J. Am. Chem. Soc, 86, 1616 (1964). 
(57) C. L. Liotta, E. M. Purdue, and H. R. Hopkins, J. Am. Chem. Soc, 96, 7981 

(1974). 
(58) M. Lucas, J. Phys. Chem., 76, 4030 (1972). 
(59) E. Wilhelm and R. Battino, J. Chem. Phys., 56, 563 (1972). 
(60) F. H. Stillinger, "Physical Chemistry of Aqueous Systems", R. L. Kay, Ed,, 

Plenum Press, New York, N.Y., 1973; J. Solution Chem., 2, 141 (1973). 
(61) A. B. Ritchie, Jr., J. Chem. Phys., 46, 618 (1967). 
(62) R. M. Gibbons, MoI. Phys., 17, 81 (1969). 
(63) M. J. Huron and P. Claverie, J. Phys. Chem., 76, 2123 (1972). 
(64) F. F. Meyer, R. A. Renner, and K. S. Stec, J. Phys. Chem., 75, 642 

(1971). 
(65) Y. Kobatake and B. J. Alder, J. Phys. Chem., 66, 645 (1962), 
(66) J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, "Molecular Theory of Liquids 

and Gases", Wiley, New York, N.Y„ 1954. 
(67) M. J. Mandell and H. Reiss, J. Stat. Phys., 13, 113 (1975). 
(68) P. R. Philip and C. Jolicoeur, J. Solution Chem., 4, 105 (1975). 
(69) N. Desroiers and M. Lucas, J. Phys. Chem., 78, 2367 (1974). 
(70) W, L, Masterton, D. Polizzotti, and H. Welles, J. Solution Chem., 2, AM 

(1973). 
(71) B. E. Conway, D. M. Novak, and L. Laliberte, J. Solution Chem., 3, 683 

(1974). 
(72) W. L. Masterton, J. Solution Chem., 4, 523 (1975). 
(73) M. Lucas, J. Phys. Chem., 80, 359 (1976). 
(74) H. Sagara, Y. Arai, and S. Saito, J. Chem. Eng. Jpn., 8, 93 (1975); K. Uno, 

E. Sarashina, Y. Arai, and S. Saito, ibid., 8, 201 (1975). 
(75) B. B. Benson and D. Krause, Jr., J. Chem. Phys., 64, 689 (1976). 
(76) E. B. Geller, R. Battino, and E, Wilhelm, J. Chem. Thermodyn., 8, 197 

(1976). 
(77) C. L. DeLigny and N. G. van derVeen, J. Solution Chem., 4, 841 (1975). 
(78) H. DeVoe, J. Am. Chem. Soc, 98, 1724 (1976). 


