The Chemistry of Sulfilimines

THOMAS L. GILCHRIST* and CHRISTOPHER J. MOODY

The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 3BX, United Kingdom

Received August 31, 1976

Contents

I.	Int	roduction	409
II.	Me	ethods of Preparation	409
	A.	Reaction of Sulfides with N-Halo Compounds	409
	В.	Other Oxidative Addition Reactions of Sulfides	411
	C.	Reaction of Sulfoxides with Amines and a Dehydrating Agent	413
	D.	Reaction of Diaryldialkoxysulfuranes with Amines and Amides	413
	Ε.	Reaction of Sulfoxides with Isocyanates, Sulfinylamines, and Related Compounds	415
	F.	Routes Involving Azides and Related Compounds	417
	G.	Preparation of N-Unsubstituted Sulfilimines	419
	H.	Substitution of N-H Sulfilimines	419
	1.	Miscellaneous Methods	419
III.	St	ructure and Spectroscopic Properties	420
	Α.	Structure and Bonding	420
	В.	X-Ray Crystal Structure Determinations	421
	C.	Dipole Moments	421
	D.	Photoelectron Spectra	421
	E.	Infrared Spectra	421
	F.	Ultraviolet Spectra	422
	G.	Nuclear Magnetic Resonance Spectra	422
	H.	Mass Spectra	422
٧.	Ch	emical Properties	423
	A.	Basicity	423
	В.	Alkylation and Acylation	423
	C.	Thermal Reactions	425
	D.	Photochemical Reactions	428
	E.	Oxidation	428
	F.	Reduction	428
	G.	Hydrolysis and Other Reactions with Bases and Nucleophiles	429
	Н.	Miscellaneous Reactions	430
٧.	Us	es	431
۷I.	Re	lated Compounds	431
	Α.	Imidosulfurous Acid Derivatives	431
	В.	Sulfinimidic Acid Derivatives	432
	C.	Benzo-1,2,4-thiadiazines and 1H-1,2,4,6-Thiatriazines	432
/II.		dendum	432
III.	Re	ferences	433

I. Introduction

Sulfur–carbon ylides have proved to be important reagents in organic synthesis, particularly in reactions involving intramolecular rearrangement and intermolecular attack on substrates bearing an electrophilic carbon atom. In recent years there has been increasing interest in developing a comparable chemistry of sulfur–nitrogen ylides. This review deals with one group of such ylides, represented by the general formula 1, in which R^1 and R^2 are carbon substituents.

These ylides are named as sulfilimines in *Chemical Abstracts* but as sulfimides according to IUPAC rules;² the name "iminosulfuranes" is also commonly used in current literature. The relationship of sulfilimines to other sulfur ylides, sulfoxides, and sulfones is as shown. A consideration of the relative electronegativities of the atoms involved leads to the prediction that the properties of sulfilimines should be intermediate between those of sulfonium ylides and of sulfoxides. They should also be similar in properties to the corresponding sulfoximines³ but more reactive, just as the sulfonium ylides are more reactive than the corresponding oxosulfonium ylides.

R¹R²S—CR³R⁴	R¹R²\$ÑR³	$R^{1}R^{2}\overset{+}{S}-\overline{O}$
sulfonium ylides	sulfilimines	sulfoxides
R ¹ R ² SO—CR ³ R ⁴	R1R250-NR3	R ¹ R ² SO ₂
oxosulfonium ylides	sulfoximines	sulfones

These generalizations seem to be borne out in terms of the structure, stability, and reactions of the sulfilimines which have been investigated so far.

The review is organized so as to provide a comparative survey of different types of sulfillimines; thus, general properties and general types of reactions are discussed. The tables in section II provide access to information on individual compounds. We have aimed to cover the literature to mid-1976, and to include in the tables all sulfillimines known at that time, with the exception of *N*-sulfonyl derivatives, for which only representative examples are listed. Structures of type 1 in which either of the groups ${\rm R}^1$ or ${\rm R}^2$ is attached to sulfur through a heteroatom are not correctly classed as sulfillimines, although they are often named as such; the chemistry of these compounds is included separately, in the form of a brief survey, in section VI.

Several earlier reviews⁴ have dealt with aspects of sulfillimine chemistry.

II. Methods of Preparation

A. Reaction of Sulfides with N-Halo Compounds

The reaction of sulfides with chloramine-T and salts of other *N*-chloroarenesulfonamides was the first method to be discovered for preparing sulfilimines, and is still the method of choice for preparing most arenesulfonylsulfilimines. A report by Raper⁵ in 1917 described the formation of a crystalline compound from the reaction of mustard gas with chloramine-T, and in 1921 Nicolet and Willard⁶ obtained a crystalline derivative from diethyl sulfide and chloramine-T, to which a sulfilimine structure was tentatively assigned. Several sulfilimines were prepared in the same way by Mann and Pope⁷ in 1922; since then the reaction has been widely used as a means of preparing crystalline derivatives of sulfides for characterization purposes. Sulfides can be regenerated from the sulfilimines by a variety of methods (section IV.F).

TABLE I. Representative N-Sulfonyl Substituted Sulfilimines, $R^1R^2S^+ - \overline{N}SO_2R^3$

e Ph Me 124-126 46 E 33	R!	R ²	R ³	Mp, °C	Yield, %	Methoda	Re
e Ph Me 124-126 46 E 33 No Ph Me 174-176 43 E 33 Ph Me 174-176 43 E 5 Ph Me CICI, 174-176 43 E 7 Ph Me CICI, 174-176 43 E 7 Ph Me CICI, 174-176 43 E 7 Ph Me CICI, 174-176 70 C 22 Ph Me Ph CH, 136-131 A 34 A	√le	Me	Me	122-123	61	E	33
Ph Me	Ле	Ph	Me				
e Me CCI, 174-176 43 E b CF, 37-40 68 E c c e Me CF, 37-40 68 E c c 29-30 85 E 10. e Me Et,N 47,5-48.5 64 B 13. e Me PiCH, 147-148 70 C 25. h Ph Me PiCH, 147-148 70 C 25. h Ph PiCH, 146 34 A 94. h PiCH, 158-199 82 B 22. h PiCH, 158-199 82 E 33. h 157-158 47 C 30. h 158-159 77 C 25. h 161-162 B 13. h 157-158 36 F 52. h 161-162 B 13. h 157-158 36 F 52. h 161-162 B 13.	h						
e Me CF, 37-40 68 E C 29-30 85 E 100 e Me E1,N 47.5-48.5 64 B 131 e Me (CH ₂),N 99.5-100.5 75 B 130 e Me (CH ₂),N 99.5-100.5 75 B 130 e Me (CH ₂),N 99.5-100.5 75 B 130 e Me PhCH, 147-148 70 C 25 Me PhCH, 136 31 A 94 PhCH, 136 34 A 94 A 100 e Me PhCH, 146 34 A 94 A 100 e Me PhCH, 146 34 A 94 A 100 e Me PhCH, 146 34 A 94 A 100 e Me PhCH, 146 34 A 94 A 100 e Me PhCH, 146 34 A 94 A 100 e Me PhCH, 146 34 A 94 A 100 e Me PhCH, 146 34 A 94 A 100 e Me PhCH, 146 34 A 94 A 100 e Me PhCH, 146 34 A 94 A 100 e Me PhCH, 146 34 A 94 A 100 e Me PhCH, 146 146 147 A 100 e PhCH, 147 A 100 e Ph							
29-30							
e Me Me (CH ₂), N 99.5-100.5 75 B 131 e Me (CH ₂), N 99.5-100.5 75 B 131 e Me Me (PhCH, 147-148 70 C 25 h PhCH, 147-148 70 C 25 h PhCH, 136 31 A 94 h PhCH, 136 34 A 94 h PhCH, 146 78 F 52 h Ph 92-94 A 7 h PhCH, 146 78 F 52 h Ph 92-94 A 7 h Ph Ph 87.5-88 59 A 11: h 157-158 47 C 30 h 158-159 77 C 25 h 161-162 B 133 h 4 7 h 6 e n-Pr p-MeC,H, 104-105 A 8 6 h 6 e n-Pr p-MeC,H, 104-105 A 8 6 h 6 e n-Pr p-MeC,H, 116-117 A 8 6 h 6 e n-Pr p-MeC,H, 133 - 134 5 A 6 h 6 e n-Pr p-MeC,H, 133 - 134 5 A 6 h 6 e n-Ph p-MeC,H, 133 - 134 5 A 7 h 1	le	Me	CF ₃				
e Me Me PhCH, 147-148 70 C 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				29-30	85		108
e Me Me PhCH, 147-148 70 C 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	le	Me	Et.N	47.5-48.5	64	В	13b
e Me Me PrCH, 147-148 70 C 2 S 10 n Ph PrCH, 136 31 A 94 NCH, PRCH, 136 31 A 94 NCH, PRCH, PRCH, 136 31 A 94 A 94 NCH, PRCH, PRCH, 136 A 4 A 94 NCH, PRCH, PRCH, 136 A 4 A 94 NCH, PRCH, PRCH, 136 A 4 A 94 NCH, PRCH, PRCH, 136 A A 4 A 94 NCH, PRCH, PRCH, 136 B A 129-131 80 C 2 S 124-126 78 F 52 F 72							
Ph PhCH, PhCH, 136 31 A 94 CH, PhCH, PhCH, 146 34 A 9 E							
NCH, PNCH, PNCH, PNCH, 146 34 A 94 A 64 B							
NCH, PhCH, 2-Thinryl 136							
e Me Ph 129-131 80 C 21 50 B e 124-126 78 F 52 6 Et Ph 92-94 A 7 6 Ph 87.5-88 59 A 111 6 Me P-MeC,H, 156-159 82 E 33 157-158 87 F 30 157-158 47 C 30 157-158 47 C 30 157-158 47 C 30 157-158 36 F 52 161-162 B 13 157-158 37 F 50 161-162 B 13 163-158 36 F 52 161-162 B 13 163-158 36 B 13 163-158 36 B 13 17-16-162 B 13 17-16-	hCH,	PhCH₂	PhCH ₂	146	34	Α	94
e Me Ph 129-131 80 C 21 50 B e 124-126 78 F 52 6 Et Ph 92-94 A 7 6 Ph 87.5-88 59 A 111 6 Me P-MeC,H, 156-159 82 E 33 157-158 87 F 30 157-158 47 C 30 157-158 47 C 30 157-158 47 C 30 157-158 36 F 52 161-162 B 13 157-158 37 F 50 161-162 B 13 163-158 36 F 52 161-162 B 13 163-158 36 B 13 163-158 36 B 13 17-16-162 B 13 17-16-	hCH,	PhCH,	2-Thie n yl	136		Α	d
124-126			Ph		80	C	
124-126		1410		123 101			
Et Ph 92-94				104 106			
Et Ph 92–94 A f c e Ph Ph 87.5–88 59 A 11: e Me Me P-MeC,H, 155–159 82 E 33 157–158 47 C 30 154–156 73 F 50. 157–158 47 C 30 157–157.5 90 A 10. 158–159 77 C 25. 161–162 B 13. 157–158 36 F 52. 160–160.5 H 63. 157–158 36 F 52. 160–160.5 H 63. 167–157.5 A 6 F 52. 160–160.5 H 63. 160–160.5 H 63. 160–160.5 H 63. 177–158 36 F 52. 180–160.5 H 63. 180–160.				124-126	/8		
e Ph Ph Ph 87.5-88 59 A 111 e Me P-MeC_H, 158-199 82 E 33 157-158 87 C 30 154-156 73 F 50 157-157.5 90 A 101 158-159 77 C 25 161-162 B 13 157-158 36 F 52 161-162 B 13 157-158 36 F 52 161-162 B 13 157-158 36 F 52 161-162 B 13 160-150.5 H 63 160-15							
e Ph Ph Ph 87.5-88 59 A 111 e Me P-MeC_H, 158-199 82 E 33 157-158 87 C 30 154-156 73 F 50 157-157.5 90 A 101 158-159 77 C 25 161-162 B 13 157-158 36 F 52 161-162 B 13 157-158 36 F 52 161-162 B 13 157-158 36 F 52 161-162 B 13 160-150.5 H 63 160-15	e	Et	Ph	92-94		Α	f
Be Me P-MeC ₆ H, 158-159 82 E 33 157-158 87 E 30 157-158 47 C 30 157-158 73 F 50 157-157.5 90 A 10 158-159 77 C 25 161-162 B 13. 157-157.5 90 A 10 158-159 77 C 25 160-160.5 H 63 160-160.	e	Ph	Ph	87.5-88	59		112
157-158						Ê	
157-158		IVIE	p-1016C61 14			_	
154-156							
157-157.5 90							30
157-157.5 90				154-156	73	F	50c
158-159				157-157.5	90	Α	10b
161-162							
157-158 36 F 52 160-160.5 H 63 63 63 63 63 63 63					//		
160-160.5							
S8				157—158	36	F	52
S8				160-160.5		Н	63
156-158 26					58		
Et p-MeC,H, 133 A 7 e n-Pr p-MeC,H, 104-105 A 8 e i-Pr p-MeC,H, 116-117 A 8, 8 e i-Pr p-MeC,H, 116-117 A 8, 8 e i-Pr p-MeC,H, 116-117 A 8, 8 e i-Pr p-MeC,H, 116-117 A 15 e P-MeC,H, 132 65 A 15 e P-MeC,H, 132 65 A 16 e P-MeC,H, 132 65 A 16 e P-MeC,H, 132 65 A 16 e P-MeC,H, 133.5-134.5 47 A 11 e P-MeC,H, 133.5-134.5 47 A 11 e P-MeC,H, 133.5-134.5 47 A 11 e P-MeC,H, 159-160 56 A i H,Cl CH,Cl p-MeC,H, 159-160 56 A i H,Cl CH,Cl p-MeC,H, 159-160 56 A i H,Cl CH,Cl p-MeC,H, 101-102 A j H,=CH CH,CH p-MeC,H, 144 26 H 63 I 44-143.5 59 H 56 I 44-143.5 59 H 56 I 44-145 83 E 33 I 4-C(CH,1),- p-MeC,H, 135-136 58 E 33 I 4-C(CH,1),- p-MeC,H, 135-136 58 E 33 I -(CH,1),- p-MeC,H, 135-136 58 E 33 I -(CH,1),- p-MeC,H, 148-149 A h I I I I I I I I I I I I I I I I I I I				156 159			
e					26		
e i.Pr p.MeC ₆ H ₄ 116-117 A g.f. e n.Bu p.MeC ₆ H ₄ 89-90.5 70 A 15. e Ph p.MeC ₆ H ₄ 132 65 A i e Ph p.MeC ₆ H ₄ 132 65 A i e Ph p.MeC ₆ H ₄ 129-130 90 A 10 e m.CIC ₆ H ₄ p.MeC ₆ H ₄ 133.5-134.5 47 A 11. e p.MeOC ₆ H ₄ p.MeC ₆ H ₄ 145 53 A i e p.O ₂ NC ₆ H ₄ p.MeC ₆ H ₄ 159-160 56 A i H,CI CH,CI p.MeC ₆ H ₄ 101-102 A j H,=CH CH ₂ =-CH p.MeC ₆ H ₄ 91-93 A k t Et p.MeC ₆ H ₄ 133-134 59 H 56 -(CH ₂) ₅ - p.MeC ₆ H ₄ 133-134 B 56 -(CH ₂) ₅ - p.MeC ₆ H ₄ 148.5-149 A h -(CH ₂) ₅ - p.MeC ₆ H ₄ 164-165 60 A l -(CH ₂) ₅ - p.MeC ₆ H ₄ 166-168 41 H 65 -(CH ₂) ₂ CHBu ² (CH ₂) ₂ - p.MeC ₆ H ₄ 166-168 41 H 65 -(CH ₂) ₂ CHBu ² (CH ₂) ₂ - p.MeC ₆ H ₄ 166-168 41 H 65 n p.MeC ₆ H ₄ 166-168 41 H 65 n o.MeC ₆ H ₄ p.MeC ₆ H ₄ 166-168 41 H 65 n o.MeC ₆ H ₄ p.MeC ₆ H ₄ 166-168 41 H 65 n o.MeC ₆ H ₄ p.MeC ₆ H ₄ 122-122.5 48 A o o n o.MeOC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 122-122.5 48 A o o n o.MeOC ₆ H ₄ p.MeC ₆ H ₄ 122-122.5 48 A o o n o.MeOC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 58 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 56 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 56 H,NC ₆ H ₄ p.MeC ₆ H ₄ p.MeC ₆ H ₄ 133-134 H 56 H,NC ₆ H ₆ p.MeC ₆ H ₄ 133-134 H 56 H,NC ₆ H ₆ p.MeC ₆ H ₄ 133-134 H 56 H,NC ₆ H ₆ p.MeC ₆ H ₄ 133-134 H 56 H,NC ₆ H ₆ p.MeC ₆ H ₄ 133-134 H 56 H,NC ₆ H ₆ p.MeC ₆ H ₆ P.MeC ₆ H ₆ A I							
e i.Pr p.MeC ₆ H ₁ 116-117 A g.f. e n.Bu p.MeC ₈ H ₄ 89-90.5 70 A 15. e Ph p.MeC ₈ H ₄ 132 65 A i e Ph p.MeC ₈ H ₄ 129-130 90 A 10 e m.ClC ₆ H ₄ p.MeC ₈ H ₄ 133.5-134.5 47 A 11. e p.MeC ₈ H ₄ p.MeC ₈ H ₄ 145 53 A i e p.O ₂ NC ₆ H ₄ p.MeC ₈ H ₄ 145 53 A i e p.O ₂ NC ₆ H ₄ p.MeC ₈ H ₄ 159-160 56 A i H,Cl CH,Cl p.MeC ₈ H ₄ 101-102 A j H,Cl CH ₂ =CH p.MeC ₈ H ₄ 91-93 A k e t p.MeC ₈ H ₄ 144 26 H 63 -(CH ₂) ₂ =CH p.MeC ₈ H ₄ 135-136 58 E 33 -(CH ₂) ₃ - p.MeC ₈ H ₄ 135-136 58 E 33 -(CH ₂) ₃ - p.MeC ₈ H ₄ 148.5-149 A h -(CH ₂) ₃ - p.MeC ₈ H ₄ 164-165 60 A l -(CH ₂) ₃ - p.MeC ₈ H ₄ 164-165 60 A l -(CH ₂) ₃ - p.MeC ₈ H ₄ 168-169 63 A m -(CH ₂) ₄ - p.MeC ₈ H ₄ 168-169 63 A m -(CH ₂) ₄ - p.MeC ₈ H ₄ 168-169 63 A m -(CH ₂) ₄ - p.MeC ₈ H ₄ 169-168 A1 H 65 A1 H 65 A1 H 65 A1 H A1	e	n-Pr	$p ext{-}MeC_6H_4$	104-105		Α	g
e	e	<i>i-</i> Pr	n-MeC.H.	116-117			
e Ph					70		
Ph							
131-132 66	le						
e m-CIC _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 133.5–134.5 47 A 11 e p-MeOC _c H ₄ p-MeC _c H ₄ 159–160 56 A i e p-O,NC _c H ₄ p-MeC _c H ₄ 159–160 56 A i H,CI CH ₂ CI p-MeC _c H ₄ 91–93 A k t Et p-MeC _c H ₄ 91–93 A k t Et p-MeC _c H ₄ 144 26 H 63 -(CH ₂) ₅ - p-MeC _c H ₄ 135–136 58 E 33 -(CH ₂) ₅ - p-MeC _c H ₄ 148.5–149 A h -(CH ₂) ₅ - p-MeC _c H ₄ 164–165 60 A l -(CH ₂) ₅ - p-MeC _c H ₄ 187–188 95 A 39. -(CH ₂) ₅ - p-MeC _c H ₄ 168–169 63 A m -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 170–191 74 H 56 -(CH ₂ CH ₂ CH ₂ CH ₂ G p-MeC _c H ₄ 170–191 74 H 56 -(CH ₂ CH ₂ CH ₂ G p-MeC _c H ₄ 170–191 74 H 56 -(CH ₂ CH ₂ CH ₂ G p-MeC _c H ₄ 170–191 74 H 56	1e	Ph	$p ext{-}MeC_6H_4$	129-130	90	Α	10b
e m-CIC _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 133.5–134.5 47 A 11 e p-MeOC _c H ₄ p-MeC _c H ₄ 159–160 56 A i e p-O,NC _c H ₄ p-MeC _c H ₄ 159–160 56 A i H,CI CH ₂ CI p-MeC _c H ₄ 91–93 A k t Et p-MeC _c H ₄ 91–93 A k t Et p-MeC _c H ₄ 144 26 H 63 -(CH ₂) ₅ - p-MeC _c H ₄ 135–136 58 E 33 -(CH ₂) ₅ - p-MeC _c H ₄ 148.5–149 A h -(CH ₂) ₅ - p-MeC _c H ₄ 164–165 60 A l -(CH ₂) ₅ - p-MeC _c H ₄ 187–188 95 A 39. -(CH ₂) ₅ - p-MeC _c H ₄ 168–169 63 A m -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 166–168 41 H 65 -(CH ₂) ₅ - p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 161.5–162 62 A o o meO _c H ₄ p-MeC _c H ₄ p-MeC _c H ₄ 170–191 74 H 56 -(CH ₂ CH ₂ CH ₂ CH ₂ G p-MeC _c H ₄ 170–191 74 H 56 -(CH ₂ CH ₂ CH ₂ G p-MeC _c H ₄ 170–191 74 H 56 -(CH ₂ CH ₂ CH ₂ G p-MeC _c H ₄ 170–191 74 H 56				131-132	66	Н	56
e	lo	m.CIC H	n-MeC H				
e		n Ma OC 11					
H;CI CH;CI p;-MeC, H, 101-102 A k H;=CH CH;=CH p;-MeC, H, 91-93 A k t Et p;-MeC, H, 144 26 H 63		p-ivieOC ₆ H ₄					
H_2==CH		p - $O_2NC_6H_4$			56		
H_2==CH	H ₂ CI	CH ₂ CI	$p ext{-}MeC_6H_4$	101-102		Α	j
Et	H.==CH			91-93		Α	k
142-143.5 59					26	H	63
144-145		_,	p-1016 C 61 14				
-(CH ₂) ₄ -							
-(CH ₂) ₃						E	
-(CH ₂) ₅	-(CH,),-	$p ext{-MeC}_6H_4$	135-136	58	Ε	33
147-148			p-MeC.H.	148.5-149			
-(CH ₂) ₃ SCH ₂ (CH ₂) ₂ CHBu ^t (CH ₂) ₂ - p-MeC ₆ H ₄ 168-169 p-MeC ₆ H ₄ 168-169 p-MeC ₆ H ₄ 166-168 41 H 65 p-MeC ₆ H ₄ 111-112 p-MeC ₆ H ₄ 111-112 p-MeC ₆ H ₄ p-MeC ₆	'	. = : -2/5	F 06. 14		65		
-(CH ₂) ₂ CHBu ^t (CH ₂) ₂ -	101	1 \ 6011	- Mac 11				
p-MeC ₆ H ₄ 168−169 63 A m p-MeC ₆ H ₄ 166−168 41 H 65 p-MeC ₆ H ₄ 113 70 A i 111−112 94 A 10 106−107 83 D 28 111−112 100 H n o-MeC ₆ H ₄ p-MeC ₆ H ₄ 122−122.5 48 A o o-MeOC ₆ H ₄ p-MeC ₆ H ₄ 161.5−162 62 A o meOC ₆ H ₄ p-MeC ₆ H ₄ 133−134 H 58 n-MeC ₆ H ₄ p-MeC ₆ H ₄ 19-MeC ₆ H ₄ 190−191 74 H 56 n-MeC ₆ H ₄ p-MeC ₆ H ₄ 190−191 74 H 56 n-MeC ₆ H ₂ CH ₂ CH ₂ CI p-MeC ₆ H ₄ 133−134 A j n-MeC ₆ H ₄ p-MeC ₆ H ₄ 190−191 74 H 56 n-MeC ₆ H ₂ CH ₂ CH ₂ CI p-MeC ₆ H ₄ 133−134 A j n-MeC ₆ H ₄ p-MeC ₆ H ₄ 133−134 A j n-MeC ₆ H ₄ p-MeC ₆ H ₄ 133−134 A j n-MeC ₆ H ₄ p-MeC ₆ H ₄ 133−134 A j n-MeC ₆ H ₄ p-MeC ₆ H ₄ 133−134 A j n-MeC ₆ H ₄ p-MeC ₆ H ₄ 133−134 A j							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-(CH ₂) ₂ C	JHBu [‡] (CH ₂) ₂ —	$p ext{-}MeC_6H_4$	187-188			39a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					13	Ε	39a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^	∕ ^S					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$p ext{-}MeC_6H_4$	168-169	63	Α	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			* *				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<i>0</i>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>~</u>		p-MeC.H.	166-168	41	Н	65b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 2 64				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ph		113	70	А	i
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ph					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ph		111-112	94	Α	10b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ph		111-112 106-107	94 83	A D	10b 28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			p-MeC ₆ H₄	111-112 106-107 111-112	94 83 100	A D	10b 28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			p-MeC ₆ H₄	111-112 106-107 111-112	94 83 100	A D H	10b 28 n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	١	o-MeC₅H₄	$p ext{-MeC}_6H_4$ $p ext{-MeC}_6H_4$	111-112 106-107 111-112 122-122.5	94 83 100 48	A D H A	10b 28 n o
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		o-MeC ₆ H ₄ o-MeOC ₆ H ₄	p-MeC ₆ H₄ p-MeC ₆ H₄ p-MeC ₆ H₄	111-112 106-107 111-112 122-122.5 161.5-162	94 83 100 48	A D H A A	10b 28 n o o
$p - M = CH_2$ CH_2 CH_2 CI $p - M = C_6H_4$ CH_2 CI CH_3 CH_4	n n MeOC₅H₄	o-MeC ₆ H ₄ o-MeOC ₆ H ₄ p-MeOC ₆ H ₄	<i>p</i> -MeC ₆ H ₄	111-112 106-107 111-112 122-122.5 161.5-162 133-134	94 83 100 48	ADHAAH	10b 28 n o o 58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n n :MeOC ₆ H₄ :H ₂ NC ₆ H₄	$o ext{-MeC}_6H_4$ $o ext{-MeOC}_6H_4$ $p ext{-MeOC}_6H_4$ $p ext{-H}_2NC_6H_4$	<pre>p-MeC₆H₄ p-MeC₆H₄ p-MeC₆H₄ p-MeC₆H₄ p-MeC₆H₄</pre>	111-112 106-107 111-112 122-122.5 161.5-162 133-134 230	94 83 100 48 62	A D H A A H A	10b 28 n o o 58 p
e $p ext{-} ext{PC-}_6 ext{H}_4 ext{CH}_2 ext{q}$ $p ext{-} ext{MeC}_6 ext{H}_4$ A r	n n MeOC ₆ H ₄ H ₂ NC ₆ H ₄	$o ext{-MeC}_6H_4$ $o ext{-MeOC}_6H_4$ $p ext{-MeOC}_6H_4$ $p ext{-H}_2NC_6H_4$	<pre>p-MeC₆H₄ p-MeC₆H₄ p-MeC₆H₄ p-MeC₆H₄ p-MeC₆H₄</pre>	111-112 106-107 111-112 122-122.5 161.5-162 133-134 230	94 83 100 48 62	A D H A A H A H	10b 28 n o o 58 p
	n n MeOC ₆ H ₄ H ₂ NC ₆ H ₄ nCH ₂	$o ext{-MeC}_6H_4$ $o ext{-MeOC}_6H_4$ $p ext{-MeOC}_6H_4$ $p ext{-H}_2NC_6H_4$ $PhCH_2$	<i>p</i> -MeC ₆ H ₄	111-112 106-107 111-112 122-122.5 161.5-162 133-134 230 190-191	94 83 100 48 62	A D H A A H A H	10b 28 n o o 58 p 56
$p_{-}PC_{\diamond}H_{a}CH_{\gamma}q$ $p_{-}MeC_{\diamond}H_{a}$ A r	MeOC ₆ H ₄ H ₂ NC ₆ H ₄ OCH ₂	o-MeC ₆ H ₄ o-MeOC ₆ H ₄ p-MeOC ₆ H ₄ p-H ₂ NC ₆ H ₄ PhCH ₂ CH ₂ CH ₂ CI	p-MeC ₆ H ₄	111-112 106-107 111-112 122-122.5 161.5-162 133-134 230 190-191	94 83 100 48 62	A D H A A H A H A	10b 28 n o o 58 p 56 j
$p ext{-} ext{P-PC}_{arepsilon} ext{H}_{arepsilon} ext{CH}_{arrho} ext{} p ext{-} ext{MeC}_{arepsilon} ext{H}_{4} ext{A} ext{} r ext{} p ext{-} ext{Pc}_{arepsilon} ext{H}_{4} ext{CH}_{arrho} ext{} ext{} ext{} ext{} ext{} ext{P-MeC}_{arepsilon} ext{H}_{4} ext{} ext{A} ext{} ex$	MeOC ₆ H ₄ H ₂ NC ₆ H ₄ oCH ₂ oCH ₂	o-MeC ₆ H ₄ o-MeOC ₆ H ₄ p-MeOC ₆ H ₄ p-H ₂ NC ₆ H ₄ PhCH ₂ CH ₂ CH ₂ CI p-PC ₆ H ₄ CH ₂ q	p-MeC ₆ H ₄	111-112 106-107 111-112 122-122.5 161.5-162 133-134 230 190-191	94 83 100 48 62	A D H A A H A H A A	10b 28 n o o 58 p 56 j

TABLE I (Continued)

R!	R ²	R ³	Mp, °C	Yield, %	Method ^a	Ref
Me	Me	p-MeOC ₆ H ₄	138.5-139.5	66	С	25
		- '	139	48	F	42b
Me	Me	p-CIC ₆ H ₄	117		Α	s
Me	Ph	p-CIC ₆ H ₄	98-98.5	65	Α	112
n-C ₆ H ₁₃	MeCH===CH	p-BrC ₆ H ₄	74-82	62	Α	t
n-Bu ii	n-Bu	p-BrC ₆ H ₄	104-105		Α	t
Me	Me	p-0, NC, H ₄	187.5-188.5		Α	и
			184-185	85	С	21
			186-187	90	С	25
H,C==CHCH,	H,C = CHCH,	p-0,NC,H ₄	75 - 76.5		Α	131a
Ph	Ph	p-0, NC, H ₄	160-161		Α	и
p-MeCONHC ₄ H ₄	p-MeCONHC ₆ H ₄	p-MeCONHC ₆ H ₄	163		Α	p
υ-H,NC,H,	<i>p</i> -H ₃ NC ₆ H ₄	<i>p</i> -H ₂ NC ₅ H ₄	245 dec		Α	p
PhCH, * *	PhCH, ° 7	p-PhN=NC ₆ H ₄	170-171 dec	55	Α	v
Me	Me	F	50	94	Ε	w

^a Method of preparation as described in section II. ^b H. C. Buchholt and A. Senning, *Acta Chem. Scand.*, 24, 2255 (1970). ^c E. Behrend and A. Haas, *J. Fluorine Chem.*, 4, 83 (1974). ^a A. Chrzaszczewska and W. Szalecki, *Lodz. Tow. Nauk, Wyd. 3, Acta Chim.*, 12, 129 (1967); *Chem. Abstr.*, 71, 124094 (1969). ^e D. Swern, I. Ikeda, and G. F. Whitfield, *Tetrahedron Lett.*, 2635 (1972). ^f F. G. Mann, *J. Chem. Soc.*, 958 (1932). ^g D. Leaver and F. Challenger, *J. Chem. Soc.*, 39 (1957). ^h M. Večera and J. Petránek, *Collect. Czech. Chem. Commun.*, 21, 912 (1956). ^f A. Kucsman, I. Kapovits, and M. Balla, *Tetrahedron*, 18, 75 (1962). ^f T. P. Dawson, *J. Am. Chem. Soc.*, 69, 968 (1947). ^k J. S. H. Davies and A. E. Oxford, *J. Chem. Soc.*, 224 (1931). ^f R. B. Greenwald, D. H. Evans, and J. R. DeMember, *Tetrahedron Lett.*, 3885 (1975). ^m D. Hellwinkel and G. Fahrback, *Justus Liebigs Ann. Chem.*, 715, 68 (1968). ⁿ N. Furukawa, T. Yoshimura, T. Omata, and S. Oae, *Chem. Ind. (London)*, 702 (1974). ^o M. Moriyama, S. Oae, T. Numata, and N. Furukawa, *ibid.*, 163 (1976). ^p K. K. Andersen, J. Bhattacharyya, and S. K. Mukhopadhyay, *J. Med. Chem.*, 13, 759 (1970). ^q P is polystyrene polymer support. ^p H. Kise, H. Serita, M. Seno, and T. Asahara, *Chem. Lett.*, 283 (1974). ^s C. Dell'Erba, G. Guanti, G. Leandri, and G. Poluzzi Corallo, *Int. J. Sulfur Chem.*, 8, 261 (1973). ^t D. S. Tarbell and W. E. Lovett, *J. Am. Chem. Soc.*, 78, 2259 (1956). ^u J. Petránek, M. Večera, and M. Jureček, *Collect. Czech. Chem. Commun.*, 24, 3637 (1959). ^v R. Madeja, *Lodz. Tow. Nauk, Wyd.* 3, 53 (1955); *Chem. Abstr.*, 52, 3710i (1958). ^w H. W. Roesky and A. Hoff, *Chem. Ber.*, 101, 162 (1968). 162 (1968).

Other N-halo compounds derived from amides, amidines, quanidines, ureas, and urethanes have also been found to react with sulfides to give sulfillimines in the presence of a base (Tables III and VIII). N-Chloro compounds are most frequently used; these may also be generated in situ by treating the amine or amide with tert-butyl hypochlorite. Anilines, amides, amidines, and heterocyclic amines have been converted into sulfilimines using the in situ technique (Tables III, V, VII, and VIII).

Salts of N-chloroarenesulfonamides have been found to give sulfilimines with sulfides of many types, including diaryl sulfides, but, with a few exceptions, 8,9 most other N-halo compounds have given sulfilimines only with dialkyl or alkyl aryl sulfides.

Two types of mechanism can be envisaged for these reactions: (a) nucleophilic attack by the sulfide on the N-halo compound (eq 1), with the formation of an azasulfonium salt, and (b) halogenation of the sulfide by the N-halo compound, followed by nucleophilic attack of the amine or amide, or its anion, on the halosulfonium salt (eq 2). The distinction between these mechanisms is less clearly defined if the involvement of a tetracovalent sulfurane intermediate, formed by oxidative addition of the N-halo compound to the sulfide, is considered (eq 3).

$$R^{1}R^{2}S + R^{3}NHX \longrightarrow R^{1}R^{2}S^{*}NHR^{3}X$$

$$\xrightarrow{base} R^{1}R^{2}S^{*} \longrightarrow NR^{3} \qquad (1)$$

$$R^{1}R^{2}S + R^{3}NHX \longrightarrow R^{1}R^{2}S^{*}XNHR^{3}$$

$$\xrightarrow{base} R^{1}R^{2}S^{*} \longrightarrow NR^{3} \qquad (2)$$

$$NHR^{3}$$

base pip25-Kinetic investigations of reactions involving chloramine-T point to the mechanism of eq 2 as the more likely: a slow ratedetermining chlorination of the sulfide is followed by rapid nucleophilic attack by the sulfonamide anion. 10 The second step

may involve a sulfurane as an intermediate. Other nucleophiles can compete with the amide anion in the attack on the sulfonium

salt; thus, water can give rise to the formation of sulfoxides,

TABLE II. Cyclic N-Sulfonyl Substituted Sulfilimines

R	Mp, °C	Yield, %	Method ^a	Ref
Me	238 dec	81	Α	b
Et	156 dec	77	Α	98
Bu	118 dec	58	Α	98
C ₆ H ₁₃	116 dec	63	Α	98
C ₈ H ₁₇	122 dec	92	Α	98
Bu ^t	177-178	76	Α	98
Ph	261-262	92	Α	98
$p ext{-}MeC_6H_4$	213-214	80	Α	98
$p\text{-CIC}_6H_4$	238 dec	92	Α	b
PhCH ₂	168-169	72	Α	98
Et ^c	164	94	Α	98

 d Method of preparation as described in section II, b A. W. Wagner and R. Banholzer, $\it Chem.~Ber.,~\bf 96,~1177~(1963),~^{C}$ The 5-NO $_2$ substituent is replaced by Me.

which are often formed as by-products in these reactions. 10,11 The relative yields of sulfilimines and sulfoxides depend upon the pH of the reaction medium, 10b the solvent, 10a and the groups on sulfur. 11 A reaction closely related to these is the reaction of the oxime tosylate 2 with dimethyl sulfide. 12

NOTs
$$N-$Me_2$$
 $N-$Me_2$ $N-$Me_2$

B. Other Oxidative Addition Reactions of Sulfides

A second group of reagents which bring about the formation of sulfilimines from sulfides and amines or amides includes lead tetraacetate, N-chlorosuccinimide, and sulfuryl chloride. There is good evidence that initial oxidation occurs at sulfur with many

TABLE III. N-Acyl Substituted Sulfillimines, R $^{\rm I}$ R $^{\rm 2}$ S $^{\rm +}$ - $\overline{\rm N}$ COR $^{\rm 3}$

Et Ph NH ₂ 173–174 68 A 104 -(CH ₂) ₄ - Me 66–68 95 A 111 -(CH ₂) ₄ - CHCl ₂ 145–148 5 A 101 -(CH ₂) ₄ - CHGl ₂ 155–157 1 C 20 -(CH ₂) ₄ - Ph 116–117.5 35 C 20 -(CH ₂) ₄ - Ph 116–117.5 35 C 24 n-Pr n-Pr Me 36–38 95 A 111 n-Pr p-MeC ₆ H ₄ NH ₂ 119–120 59 A 104 i-Pr i-Pr Me Oil 95 A 111 i-Pr i-Pr MeO 60 F 45 i-Pr Ph NH ₂ 122–123 67 A 104 n-Bu Ph NH ₂ 122–123 67 A 104 n-Bu Ph NH ₂ 101–102 66 A 104 n-Bu Ph Ph CHO ₂ 73 10 A 101 n-Bu Ph Ph CHO ₂ 73 10 A 101 n-Bu Ph Ph CHMePh 93–94 66 H f n-Bu Ph Ph MeCOCH—CH Ph Ph Ph Ph MeCoCH—CH Ph Ph Ph Ph Ph MeCoCH—CH Ph P	R!	R ²	R ³	Mp (bp/mmHg), °C	Yield, %	Method ^a	Ref
Me Me CH,Cl 92-94.5 70 B 5 Me Me Me CHCl, 46-47 E 36 Me Me CHCl, 46-47 E 36 Me Me CHCl, 46-47 E 36 Me Me Me CF, 60 F 45 Me	Me	Me	Me	67–68			
Me Me CHG1, 46-47 E 36 Me Me CC1, 78-79 F 36 Me Me Me CC1, 78-79 F 36 Me Me Me Me CC1, 78-79 F 36 Me M							100
Me Me CCI, 78–79	Мe	Me	CH ₂ CI		70		b
Me M	Me	Me		46-47		Ε	36
Me Me Me Me Me EtO OII 73 F 55 F 45 Me Me Me Me EtO OII 73 F 55 S2 Me Me Me Me Me Ph 108-109.5 47 C 24 T 22 A 1002 Me Me Me Me Ph 108-109.5 47 C 24 A 1002 Me Me Me P-O,NC,H₁ 217-218 dec 90 C 21 Me Me Me P-O,NC,H₁ 92-93 69 C 21 Me Me Me P-O,NC,H₁ 93-94 92 Me Me Me P-O,NC,H₂ 93-100 10 Me P-O,NC,H₂ 93-100 10 Me P-O,NC,H₂ Me P-MOC,H₂ NH₃ 168-169 55 A 104 Me P-MOC,H	Me	Me	CCI ₃	78–79			36
Me Me Me Me Me Et O OII 73 F 52 S2 Me Me Me Me Et O OII 73 F 52 S2 Me	Me	Me	CF ₃		60	Ε	37
Me Me Me Ph 108-109.5	Me	Me			60	F	45
Me Me Me Ph 108-109.5 47 C 24 F 44 Me Me Ph Ph 108-109.5 47 C 24 F 43,44 Me Me P-Q-NC,H, 95-99 65 A 1002 Me Me Me P-CIC,H, 92-93 60 C 21 Me Me Me P-CIC,H, 92-93 60 C 21 Me Me Me P-CIC,H, 93-94 28 C 24 Me Me Me P-BEC,H, 136-137 80 C 21 Me Me Me P-BEC,H, 136-137 80 C 21 Me Me Ph Me Oil 91 A 55 Me Me Ph Me Ph NH, 168-105 58 H 55 Me Me Ph Me Ph Me Oil 91 A 101 Me Ph Me Ph Me Oil 91 A 101 Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me Ph Me Ph Me NH, 168-105 58 H 55 Me Me Ph Me Ph Me Ph Me NH, 168-105 58 Me NH, 168-105 Me Ph Me Ph Me NH, 168-105 Me Ph Me Ph Me NH, 168-105 Me Ph Me Ph Me NH, 168-105 Me Ph Me NH, 168-105 Me Ph Me NH, 173-176 68 A 101 Me Ph Me Me Me Me Me Ph Me Me Ph Me Me Me Ph Me Me Me Ph Me Me Me Ph Me Me Ph Me Me Me Ph Me Me Me Ph Me Me Ph Me Me Ph Me Me Ph Me Me Me Ph Me Me Ph Me Me Me Me Ph Me Me Me Ph Me Me Me Me Ph Me	Me	Me		Oil	73	F	52
Me Me Me Ph 108-109.5 47 C 24 40 102 103 104 102 105 105 105 105 105 105 105 105 105 105							
Me Me Ph 108-109.5 47 C 24 T 102 T 103 T 102 T							
Me Me Me Ph 108-109.5 47 C 24					62		
Me Me P-MeC,H, 95-99 65 A 102 Me Me P-CIC,H, 95-99 65 A 102 Me Me P-CIC,H, 92-93 60 E 40 Me Me P-CIC,H, 92-93 60 E 40 Me Me P-CIC,H, 92-93 60 E 40 Me Me P-SEC,H, 93-94 28 C 24 Me Me Me P-SEC,H, 93-94 28 C 24 Me Me St Me 59-60 94 A 111 Me Ph Me OII 91 A 55 Me Ph CHCI, 99-100 10 A 101 Me Ph CHCI, 99-100 10 A 101 Me Ph Ph IN, 175-176 58 H 55 Me Ph NH, 168-169 55 A 104 Me P-MEC,H, NH, 168-169 55 A 104 Me P-MEC,H, NH, 168-161 42 A 104 Me P-MEC,H, NH, 173-174 68 A 101 Me P-ME P-MEC,H, NH, 173-174 68 A 101 Me P-MED,H NH, 173-174 68 A 101 Me P-MED,H NH, 173-174 68 A 101 Me P-MED,H NH, 173-174 68 A 10	Me	Me	Ph	108-109 5			
Me Me Me P-MeOC,H₁ 95-99 65 A 102 Me Me Me P-O,NC,H₁ 217-218 dec 90 C 21 Me Me P-O,C,H₂ 32-93 60 E 40 Me Me P-BrC,H₁ 108-110 74 E 40 Me Me P-BrC,H₁ 108-110 74 E 40 Me Me P-BrC,H₁ 136-137 80 C 21 Me Me Me NH; 136-137 80 C 21 Me Ph Me Oil 91 A 55 Me Ph CHCl; 99-100 10 A 101 Me Ph Ph Ph 104,5-105 58 H 55 Me Ph NH; 175-176 64 A 104 Me Ph NH; 168-169 55 A 104 Me P-MeC,H₁ NH; 168-169 55 A 104 Me P-MeC,H₁ NH; 160-161 42 A 104 Me P-MeC,H₁ NH; 160-161 42 A 104 Me P-MeOC,H₁ NH; 160-161 42 A 104 Me P-MeC,H₁ NH; 173-174 68 A 110 Me P-MeC,H₁ NH; 173-174 68 A 101 Me P-MeC,H₁ NH; 173-174 68 A 101 Me P-MeC,H₁ NH; 173-174 68 A 101 Me P-MeC,H₁ NH; 173-175 11 C 20 Me P-MeC,H₁ NH; 19-120 59 A 111 Me P-MeC,H₁ NH; 119-120 59 A 111 Me P-MeC,H₁ NH; 119-120 59 A 111 Me P-MeC,H₁ NH; 119-120 66 A 104 Me P-MeC,H₁ NH; 119-120 66 A 104 Me P-MeC,H₁ NH; 119-120 66 A 104 Me P-MeC,H₁ NH; 119-120 70 H 60 Me P-MeC,H₁ NH; 119-120 70 H 76 Me P-MeC,H₁ NH; 119-120	1710	1416	• • • • • • • • • • • • • • • • • • • •	100 105.5			
Me Me Me P-MeOC, H, 95-99 65 A 102 Me Me Me P-O,NC, H, 217-218 dec 90 C 21 Me Me Me P-BC, H, 108-110 74 E 40 Me Me Me P-BC, H, 108-110 74 E 40 Me Me Me 2-C, H, CH, 93-94 28 C 24 Me Me Me NH, 136-137 80 C 21 Me Ph Me Oil 91 A 55 Me Ph CHCl, 99-100 10 A 101 Me Ph CHCl, 99-100 10 A 55 Me Ph NH, 175-175 64 A 104 Me Ph NH, 175-175 64 A 104 Me Ph NH, 156-161 42 A 104 Me P-MeCC, H, NH, 150-161 42 A 104 Me P-MeCC, H, NH, 150-161 42 A 104 Me P-MeCC, H, NH, 168-169 55 A 104 Me P-MeCC, H, NH, 168-169 55 Me P-MeCC, H, NH, 160-161 42 A 104 Me P-MeCC, H, NH, 160-161 A2 A 104 Me P-MeCC, H, NH, 173-174 68 A 101 Me P-MeCC, H, NH, 173-174 68 A 101 Me P-MeC, H, NH, 173-174 68 A 104 Me P-MeC, H, NH, 173-174 68 A 104 Me P-MeC, H, NH, 119-151 C 20 Me P-MeC, H, NH, 119-151 C 20 Me P-MeC, H, NH, 119-120 59 A 104 Me P-MeC, H, NH, 119-120 59 A 104 Me P-MeC, H, NH, 101-102 66 A 104 Me P-MeC, H, N							
Me Me P,MeOC,H, 95-99 65 A 102 Me Me Me P,CIC,H, 217-218 dec 90 C 21 Me Me Me P,CIC,H, 217-218 dec 90 C 21 Me Me Me P,BFC,H, 108-110 74 E 40 Me Me P,BFC,H, 108-110 74 E 40 Me Me Ne P,BFC,H, 136-137 80 C 24 Me Me Ne NH, 136-137 80 C 21 Me Et Me S9-60 94 A 111 Me Ph Me OJ-100 10 A 101 Me Ph Nh NH, 175-176 64 A 101 Me Ph NH, 175-176 64 A 104 Me P,MeC,H, NH, 150-151 42 A 104 Me P,MeC,H, NH, 150-151 42 A 104 Me P,CIC,H, NH, 150-151 42 A 104 Me P,MeC,H, NH, 150-151 42 A 104 Et Et CHCI, 112-113 C 20 Et Et CHGI, 141-155 35 A 101 Et Et CHGI, 141-155 30 A 101 Et Et CHGI, 141-155 30 A 101 Et Et CHGI, 141-15 30 A 101 Et Et CHGI, 141-15 C 20 Et Et CHGI, 141-168 5 A 101 Et Et CHGI, 141-17 C 20 Et Et CHGI, 145-148 5 A 101 —(CH ₃) CHG ₃ 149-151 C 20 —(CH ₃) CHG ₃ 149-152 50 A 101 —(CH ₃) CHG ₃ 149-152 50 A 101 —(CH ₃) CHG ₃ 149-152 50 A 101 —(CH ₃) CHG ₃ 149-152 50 A 101 —(CH ₃) CHG ₃ 149-152 50 A 101 —(CH ₃) CHG ₃ 149-151 C 20 —(CH ₃) CHG ₃ 149-160 66 A 104 —Ph Ph NH ₄ 122-123 50 A 101 —Ph Ph NH ₄ 122-123 50 A 101 —Ph Ph NH ₄ 122-123 67 A 104 —Ph Ph NH ₄ 101-102 66 A 104 —Ph Ph NH ₄ 101-102 66 A 104 —Ph Ph NH ₄ 101-102 66 A 104 —Ph Ph Ph CHMePh 93-94 66 H f —Ph Ph NH ₄ 100-151 63 H f —Ph Ph Ph CHMePh 93-94 66 H f —Ph Ph Ph Ph CHMePh 93-94 66 H f —Ph Ph Ph Ph CHMePh 93-94 66 H f —Ph Ph Ph Ph CHMePh 93-94 66 H f —Ph Ph Ph Ph CHMePh 93-94 66 H f —Ph Ph Ph Ph CHMePh 93-94 66 H f —Ph Ph Ph Ph Ph EtO 88-89 30 30 A 8							
Me Me Me P-McCc,H₁ 95-99 65 A 102 Me Me Me P-O,NC,H₁ 217-218 acc 90 C 21 Me Me Me P-BC,H₂ 108-110 74 E 40 Me Me P-BC,H₂ 108-110 74 E 40 Me Me Me P-BC,H₂ 108-110 74 E 40 Me Me Me P-BC,H₂ 108-110 74 E 40 Me Me Me NH, 136-137 80 C 21 Me Me NH, 136-137 80 C 21 Me Ph Me OII 91 A 55 Me Ph CHCl, 99-100 10 A 101 Me Ph CHCl, 99-100 10 A 101 Me Ph NH, 175-176 64 A 104 Me Ph NH, 168-165 58 H 55 Me P-McC₂H₁ NH, 168-169 55 A 104 Me P-McC₂H₁ NH, 160-161 42 A 104 Me P-McOc₂H₁ NH, 160-161 42 A 104 Me P-McCc,H₁ NH, 160-161 42 A 104 Me P-McCc,H₁ NH, 160-161 42 A 104 Et Et CHBr₁ 124-125 30 A 101 Et Et CHBr₁ 124-125 30 A 101 Et Et CHBr₁ 124-125 30 A 101 Et Et Et CHBr₁ 124-125 30 A 101 F 47							
Me Me Me P-CIC,H₁ 217-218 dec 90 C 21 Me Me Me P-CIC,H₂ 108-110 74 E 40 Me Me Me P-BFC,H₃ 108-110 74 E 40 Me Me Me N-CIC,H₂ 136-137 80 C 24 Me Me Me N-CIC,H₂ 136-137 80 C 21 Me Et Me S9-60 94 A 1111 Me Ph Me OII 91 A 55 Me Ph CHC1 99-100 10 A 101 Me Ph CHC1 99-100 10 A 101 Me Ph NH₁ 175-176 64 A 104 Me Ph NH₁ 175-176 64 A 104 Me Ph NH₁ 150-151 42 A 104 Me P-CIC,H₁ NH₁ 150-151 42 A 104 Me P-CIC,H₁ NH₁ 150-151 42 A 104 Me P-MeC,H₁ NH₁ 170-151 52 A 111 Me P-MeC,H₁ NH₁ 173-174 68 A 104 Me P-MeC,H₁ NH₁ 119-120 59 A 111 Me P-MeC,H₁ NH₁ 122-123 67 A 104 Me P-MeC,H₁ NH₁ 101-102 66 A 104 Me P-MeC,H₁	N 4 -	N.A	- M-00 H	05.00			
Me Me Me PBC, H, 108-110 74 E 40 Me Me Me PBC, H, 108-110 74 E 40 Me Me Me 2-C, H, CH; 93-94 28 C 24 Me Me Me NH, 136-137 80 C 21 Me Et Me S9-60 94 A 111 Me Ph Me OII 91 A 55 Me Ph CHCI, 99-100 10 A 101 Me Ph NH, 175-176 64 A 104 Me Ph NH, 175-176 64 A 104 Me Ph NH, 175-176 64 A 104 Me Ph NH, 168-169 55 A 104 Me P-CIC, H, NH, 150-151 42 A 104 Me P-MGC, H, NH, 160-161 42 A 104 Me TE TE TE MG (110-111/0.3) 81 A 100 Et Et CHCI, 112-113 C 20 Et Et CHGr, 12-125 30 A 101 Et Et Et CHGr, 12-125 30 A 101 Et Et Et MGO Et Et Et SHOHER HG 66-68 95 A 107 Et ETSCH=CH MGO Et ETSCH=CH MGO THE STOCK HG A 101 MG 66-68 95 A 111 -(CH ₃),- CHCI, 145-148 5 A 101 -(CH ₃),- CHCI, 149-151 C 20 -(CH ₃),- CHCI, 149-151 C 20 -(CH ₃),- CHCI, 116-117 C 20 -(CH ₃),- Ph 116-117. S 5 C 24							
Me Me Me PBC,H, 108-110 74 E 40 Me Me Me NH, 1336-137 80 C 24 Me Me Me NH, 136-137 80 C 21 Me Et Me 59-60 94 A 1111 Me Ph Me Oil 91 A 55 Me Ph Ph Ne Oil 91 A 55 Me Ph Ph NH, 104,5-105 58 H 55 Me Ph Ph NH, 175-176 64 A 104 Me Ph NH, 150-151 42 A 104 Me P-CIC,H, NH, 150-151 42 A 104 Me P-CIC,H, NH, 150-151 42 A 104 Me P-CIC,H, NH, 150-151 42 A 104 Me P-MeC,H, NH, 160-161 42 A 104 Me P-MeC,H, NH, 160-161 42 A 104 Me P-MeC,H, NH, 160-161 42 A 104 Me T-Me P-MeC,H, 112-113 C 20 Me T-Me P-MeC,H, 112-113 C 20 Me T-Me P-Me P-Me P-Me P-Me P-Me P-Me P-Me P							
Me Me 2-C,H,CH, 93-94 28 C 24 Me Me NH 136-137 80 C 21 Me Et Me S9-60 94 A 111 Me Ph Me OI 91 A 55 Me Ph CHCI, 99-100 10 A 101 Me Ph DH 104,5-105 58 H 55 Me Ph NH, 175-176 64 A 104 Me Ph NH, 175-176 64 A 104 Me PhCCL,H, NH, 150-151 42 A 104 Me PhCCL,H, NH, 150-151 42 A 104 Me Ph 160-161 42 A 104 Me Ph 116-111/0.3 81 A 111 Et Et CHCI, 112-123		Me				Ε	
Me Me Et Me 59-60 94 A 111 Me Ph Me OII 91 A 55 Me Ph Me OII 91 A 55 Me Ph CHCI, 99-100 10 A 101 Me Ph NH, 175-176 64 A 104 Me Ph NH, 175-176 65 A 104 Me Ph NH, 150-151 42 A 104 Me P.MeC₄H₄ NH, 150-151 42 A 104 Et Et CHCI, 112-113 C 20 Et Et CHGI, 112-113 C 20 Et Et CHGI, 124-125 30 A 101 Et Et Et CHGI, 173-174 68 A 107 Et Et EtSCH==CH MeO Et Et EtSCH=CH MeO Et Et CHGI, 145-148 5 A 101 —(CH₃),- Me 66-68 95 A 111 —(CH₃),- CHCI, 145-157 11 C 101 —(CH₃),- CHCI, 145-157 11 C 101 —(CH₃),- CHCI, 145-157 11 C 101 —(CH₃),- CHGI, 154-157 11 C 101 —(CH₃),- Nh, 122-123 50 A 104 —Pr n-Pr n-Pr Me 36-38 95 A 111 —Pr p-MeC₄H₄ NH, 119-120 59 A 104 —Pr p-MeC₄H₄ NH, 119-120 59 A 104 —Pr p-MeC₄H₄ NH, 119-120 59 A 104 —Ph Ph NH, 122-123 67 A 111 —Ph Ph Ph Me 66-87 95 H 55 ——Ph Ph Ph Me 66-87 95 H 55 ——Ph Ph Ph Me 66-87 95 H 55 ——Ph Ph Ph MeCOCH—CH Ph Ph Ph BetO Re-R₄ 1119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph Ph MeCOCH—CH Ph Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch	Me	Me					
Me Me Et Me 59-60 94 A 111 Me Ph Me OII 91 A 55 Me Ph Me OII 91 A 55 Me Ph CHCI, 99-100 10 A 101 Me Ph NH, 175-176 64 A 104 Me Ph NH, 175-176 65 A 104 Me Ph NH, 150-151 42 A 104 Me P.MeC₄H₄ NH, 150-151 42 A 104 Et Et CHCI, 112-113 C 20 Et Et CHGI, 112-113 C 20 Et Et CHGI, 124-125 30 A 101 Et Et Et CHGI, 173-174 68 A 107 Et Et EtSCH==CH MeO Et Et EtSCH=CH MeO Et Et CHGI, 145-148 5 A 101 —(CH₃),- Me 66-68 95 A 111 —(CH₃),- CHCI, 145-157 11 C 101 —(CH₃),- CHCI, 145-157 11 C 101 —(CH₃),- CHCI, 145-157 11 C 101 —(CH₃),- CHGI, 154-157 11 C 101 —(CH₃),- Nh, 122-123 50 A 104 —Pr n-Pr n-Pr Me 36-38 95 A 111 —Pr p-MeC₄H₄ NH, 119-120 59 A 104 —Pr p-MeC₄H₄ NH, 119-120 59 A 104 —Pr p-MeC₄H₄ NH, 119-120 59 A 104 —Ph Ph NH, 122-123 67 A 111 —Ph Ph Ph Me 66-87 95 H 55 ——Ph Ph Ph Me 66-87 95 H 55 ——Ph Ph Ph Me 66-87 95 H 55 ——Ph Ph Ph MeCOCH—CH Ph Ph Ph BetO Re-R₄ 1119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph Ph MeCOCH—CH Ph Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch H 119-120 70 H f Ph Ph Ph BetOch	Me	Me	2-C ₁₀ H ₂ CH ₂	93-94	28		24
Me	Me	Me		136-137	80		21
Me Ph Me Ph CHCl, 99-100 10 A 55 Me Ph Ph Ph 104.5-105 58 H 105 Me Ph Ph NH, 175-176 64 A 101 Me Ph NH, 175-176 64 A 104 Me P-MeCc,H₄ NH, 168-169 55 A 104 Me P-MeCc,H₄ NH, 150-151 42 A 104 Me P-MeCc,H₄ NH, 150-151 42 A 104 Me P-MeCc,H₄ NH, 160-161 42 A 104 Me P-MeCc,H₄ NH, 160-161 42 A 100 Et Et CHCl, 112-113 C 20 Et Et CHCl, 112-113 C 20 Et Et CHBr, 124-125 30 A 101 Et Et Et MeO 60 F 45 Et EtSCH==CH MeO Et EtSCH==CH MeO F 47 Et Ph NH, 173-174 68 A 104 -(CH,),- Me 66-68 95 A 101 -(CH,),- Me 66-68 95 A 101 -(CH,),- CHCl, 145-148 5 A 101 -(CH,),- CHCl, 145-157 11 C 20 -(CH,),- CHCl, 145-157 11 C 20 -(CH,),- CCl, 116-117 C 20 -(CH,),- CCl, 116-117 C 20 -(CH,),- CCl, 116-117 C 20 -(CH,),- Ph 116-117.5 35 C 24	Me	Et					
Me Ph Ph Ph Ph 104.5-105 58 H 55 Me Ph Ph NH, 175-176 64 A 104 Me Ph NH, 168-169 55 A 104 Me P-CIC,H, NH, 168-169 55 A 104 Me P-MeC,H, NH, 160-161 42 A 104 Me P-MeC,H, NH, 160-161 42 A 104 Me P-MeC,H, NH, 160-161 42 A 104 Et Et Me (110-111/0.3) 81 A 100 Et Et CHCI, 112-113 C 20 Et Et CHBr, 124-125 30 A 101 Et Et CHBr, 124-125 30 A 101 Et Et Et MeO 60 F 45 Et Et Et MeO 7 F 47 Et Et ESCH=CH MeO 8 P 47 Et ESCH=CH MeO 8 P 47 Et H EN Ph NH, 173-174 68 A 107 Et ESCH=CH MeO 8 P 47 Et H 149-151 C 20 ——(CH,),-———————————————————————————————————	Me	Ph	Me	Oil			55
Me Ph Ph 104.5-105 58 H 55 Me Ph NH ₂ 175-176 64 A 104 Me p-MeC ₂ H ₄ NH ₂ 168-169 55 A 104 Me p-MeOC ₂ H ₄ NH ₃ 150-161 42 A 104 Et Et Me (110-111/0.3) 81 A 100 Et Et CHCl ₂ 112-113 C 20 Et Et CHGI ₂ 112-113 C 20 Et Et MeO 60 F 45 Et Et MeO F 45 Et Et MeO F 47 Et Ph NH ₂ 173-174 68 A 104 -(CH ₃) ₁₋ Me 66-68 95 A 111 C 20 Et Ph NH ₂ 145-148 5 A 101							
Me Ph NH; 175-176 64 A 104 Me p-MeC,H₄ NH; 168-169 55 A 104 Me p-CIC,H, NH; 150-151 42 A 104 Me p-MeOc,H₄ NH; 160-161 42 A 104 Et Et Me (110-111/0.3) 81 A 100 Et Et CHCl; 112-113 C 20 Et Et CHG; 112-113 C 20 Et Et CHBr; 124-125 30 A 101 Et Et MeO 60 F 45 Et EtO (135-140/0.05) 95 A 107 Et Et MeO F 45 Et Ph NH; 173-174 68 A 107 Et Ph NH; 173-174 68 A 101 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Me p-MeC_H, Me NH, 1 168-169 55 A 104 Me p-CIC _c H ₄ NH; 1 150-151 42 A 104 Me (110-111/0.3) 81 A 100 Et Et Me (110-111/0.3) 81 A 100 Et Et CHCl; 12-113 C 20 Et Et CHG; 12-113 C 20 Et Et CHBr; 12-113 C 20 Et Et CHBr; 12-113 C 20 Et Et MeO 60 F 45 Et Et MeO 60 F 45 Et Et MeO F 47 Et Ph NH ₂ 173-174 68 A 104 -(CH ₂) ₄ - CHCI; 145-148 5 A 101 -(CH ₃) ₄ - CHCI; 145-148 5 A 101 -(CH ₃) ₄ - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Me p-ClC,H, Me NH, Device,H, NH, NH, NH, NH, NH, NH, NH, NH, NH,							
Me p-MeOC, H₄ NH₁ 160-161 42 A 104 Et Et Me (110-111/0.3) 81 A 100 Et Et CHCI₁ 112-113 C 20 Et Et CHBr₂ 124-125 30 A 101 Et Et MeO 60 F 45 Et Et MeO 60 F 45 Et EtO (135-140/0.05) 95 A 107 Et Ph NH₁ 173-174 68 A 104 -(CH₃),- Me 66-68 95 A 111 C 20 -(CH₃),- Me 66-68 95 A 101 11 C 101 -(CH₃),- CHBr₂ 154-157 11 C 20 111 C 101 101 101 101 101 101 101 101 101 101							
Et Et Me (110-111/0.3) 81 A 100 Et Et Et CHCl; 112-113 C C 20 Et Et Et CHBr; 124-125 30 A 101 Et Et Et MeO 60 F 45 Et Et Et Ph MeO F F 47 Et EtSCH=CH MeO F F 47 Et Ph NH, 173-174 68 A 101 -(CH,),- Me 66-68 95 A 111 -(CH,),- CHCl, 145-148 5 A 101 -(CH,),- CHCl, 145-151 C 20 -(CH,),- CCI, 145-157 11 C 101 -(CH,),- CCI, 116-117 C 20 -(CH,),- Ph 116-117.5 35 C 24 n-Pr n-Pr Me 36-38 95 A 111 n-Pr p-MeC,H₄ NH, 119-120 59 A 104 i-Pr i-Pr Me OII 95 A 111 i-Pr i-Pr Me							
Et Et CHCI, 112-113							
Et Et CHCl, 112-113	Εĭ	Et	ivie	(110-111/0.3)			
Et Et CHBr, 124-125 30 A 101 Et Et Et MeO 60 F 45 Et Et Et CH MeO F F 47 Et Et EtSCH==CH MeO F F 47 Et Ph NH, 173-174 68 A 104 -(CH ₂) ₄ - Me 66-68 95 A 111 -(CH ₂) ₄ - CHCl, 145-148 5 A 101 -(CH ₂) ₄ - CHBr, 154-157 11 C 101 -(CH ₂) ₄ - CCl, 116-117 C 20 -(CH ₂) ₄ - CCl, 116-117 C 20 -(CH ₂) ₄ - CCl, 116-117 C 20 -(CH ₂) ₄ - NPr Me 36-38 95 A 111 n-Pr Ph NH, 122-123 50 A 104 n-Pr p-MeC ₆ H ₄ NH ₂ 119-120 59 A 104 i-Pr i-Pr Me Oil 95 A 111 i-Pr i-Pr MeO 60 F 45 i-Pr i-Pr MeO 60 F 45 i-Pr Ph NH ₂ 122-123 67 A 104 n-Bu Ph NH ₂ 122-123 67 A 104 n-Bu Ph NH ₃ 122-123 67 A 104 n-Bu Ph NH ₂ 101-102 66 A 104 n-Bu Ph NH ₃ 101-102 66 A 104 n-Bu Ph NH ₄ 101-102 66 A 104 n-Bu Ph Ph NH ₅ 101-102 66 A 104 n-Bu Ph NH ₂ 101-102 66 A 104 n-Bu Ph NH ₃ 101-102 66 A 104 n-Bu Ph NH ₄ 101-102 66 A 104 n-Bu Ph NH ₅ 101-102 66 A 104 n-Bu Ph NH ₆ 101-102 n A 101					98		
Et Et MeO (135-140/0.05) 95 A 107 Et Et SCH=CH MeO F 47 Et Ph NH₁ 173-174 68 A 104 Et Ph NH₂ 173-174 68 A 104 Et Ph NH₂ 173-174 68 A 104 Et Ph NH₂ 173-174 68 A 104 CCH₂ Ph 145-148 5 A 101 C 20 -(CH₂)₄- CHCI₂ 145-148 5 A 101 C 20 A 101 C 20 A 101 A 101 A 101 A 101 A							
Et Et Et EtO (135-140/0.05) 95 A 107 Et Et EtSCH==CH MeO F 47 A7 A 104 A				124-125			
Et			MeO		60		45
Et Ph NH, 173-174 68 A 104 -(CH ₂) ₄ - Me 66-68 95 A 111 -(CH ₂) ₄ - CHCl ₂ 145-148 5 A 101 -(CH ₂) ₄ - CHGl ₅ 155-157 11 C 20 -(CH ₃) ₄ - CHBr; 154-157 11 C 101 -(CH ₂) ₄ - CCl ₃ 116-117 C 20 -(CH ₂) ₄ - Ph 116-117.5 35 C 24 n-Pr n-Pr Me 36-38 95 A 111 n-Pr p-MeC ₆ H ₄ NH, 122-123 50 A 104 i-Pr i-Pr Me Oil 95 A 111 i-Pr i-Pr MeO i-Pr i-Pr i-Pr i-Pr MeO i-Pr i-Pr i-Pr i-Pr MeO i-Pr i-Pr i-Pr i-Pr i-Pr MeO i-Pr i-Pr i-Pr i-Pr i-Pr i-Pr i-Pr i-Pr	Et	Et	EtO	(135-140/0.05)	95	Α	107
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Et	EtSCH==CH	MeO			F	47
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Et	Ph	NH,	173-174	68	Α	104
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-(CH ₃) ₄ -					111
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-(CH ₂) ₂ -					
-(CH ₂) ₄ - C(H ₂) ₄ - CCI ₃ 116-157 11 C 101 -(CH ₂) ₄ - Ph 116-117.5 35 C 20 n-Pr n-Pr Me 36-38 95 A 111 n-Pr Ph NH ₂ 122-123 50 A 104 n-Pr p-MeC ₆ H ₄ NH ₂ 119-120 59 A 104 i-Pr i-Pr Me Oil 95 A 111 i-Pr i-Pr Me Oil 95 A 111 i-Pr i-Pr MeO 60 F 45 i-Pr Ph NH ₂ 122-123 67 A 104 n-Bu Ph NH ₂ 122-123 67 A 104 n-Bu Ph NH ₂ 101-102 66 A 104 Ph Ph Me 86-87 95 H 55 89 100 H c Ph Ph CHCl ₂ 73 10 A 101 Ph Ph Ph CHMePh 93-94 66 H f Ph Ph Ph MeCOCH=CH Ph Ph MeCOCH=CH Ph Ph Ph Ph MeCOCH=CH Ph Ph Ph Ph MeCOCH=CH Ph P		(274	22.2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-(CH) -	CHBr		1.1		
-(CH ₂) ₄ - Ph		-(CH) -	CCI		11		
n-Pr n-Pr Me 36-38 95 A 111 n-Pr Ph NH2 122-123 50 A 104 n-Pr p-MeC6,H4 NH2 119-120 59 A 104 i-Pr i-Pr Me Oil 95 A 111 i-Pr i-Pr MeO 60 F 45 i-Pr Ph NH2 122-123 67 A 104 n-Bu Ph Me 86-87 95 H 55 89 100 H c c 177-179d 40 H e Ph Ph C-C3Hs 90.5-91 63 H f Ph Ph MeCOCH=CH 66 H f Ph Ph MeCOCH=CH 66 H 60 Ph Ph MeCOCH=CH Ph 123-125 67 D 28 60		(CH)			25	C	24
$n\text{-Pr}$ Ph NH2 $122-123$ 50 A 104 $n\text{-Pr}$ $p\text{-MeC}_6\text{H}_4$ NH2 $119-120$ 59 A 104 $i\text{-Pr}$ $i\text{-Pr}$ Me Oil 95 A 111 $i\text{-Pr}$ $i\text{-Pr}$ MeO 60 F 45 $i\text{-Pr}$ Ph NH2 $122-123$ 67 A 104 $n\text{-Bu}$ Ph NH2 $101-102$ 66 A 104 $n\text{-Bu}$ Ph Me $86-87$ 95 H 55 89 100 H c $177-179^d$ 40 H e Ph Ph CHCl2 73 10 A 101 Ph Ph CHMePh $93-94$ 66 H f Ph Ph Ph Ph $123-125$ 67 D 28 Ph Ph Ph PheC ₆ H ₄ $119-120$ 70 H f Ph P	n. Dr	-(Cl-2)4-				<u> </u>	
$n\text{-Pr}$ $p\text{-MeC}_6\text{H}_4$ $N\text{H}_2$ $119\text{-}120$ 59 A 104 $i\text{-Pr}$ $i\text{-Pr}$ Me Oil 95 A 111 $i\text{-Pr}$ $i\text{-Pr}$ MeO 60 F 45 $i\text{-Pr}$ Ph MeO 60 F 45 $i\text{-Pr}$ Ph NH2 $122\text{-}123$ 67 A 104 $i\text{-Pr}$ Ph NH2 $101\text{-}102$ 66 A 104 $i\text{-Pr}$ Ph Me $86\text{-}87$ 95 H 55 89 100 H c Ph Ph Ph $66\text{-}87$ $95\text{-}95$ <							
i-Pr i-Pr i-Pr Me Oil 95 A 111 i-Pr i-Pr MeO 60 F 45 i-Pr Ph NH2 122-123 67 A 104 n-Bu Ph NH2 101-102 66 A 104 Ph Ph Me 86-87 95 H 55 89 100 H c 177-179d 40 H e Ph Ph C-C3H3 90.5-91 63 H f Ph Ph CHMePh 93-94 66 H f Ph Ph MeCOCH==CH 6 H 6 H 6 Ph Ph Ph Ph 123-125 67 D 28 60 H e 77 H 55 100 H c Ph Ph Ph Ph 119-120 70 H f Ph Ph EtO 88-89 30 A 8							
$i\text{-Pr}$ $i\text{-Pr}$ MeO 60 F 45 $i\text{-Pr}$ Ph NH_2 $122-123$ 67 A 104 $n\text{-Bu}$ Ph NH_2 $101-102$ 66 A 104 Ph							
i -Pr Ph NH2 $122-123$ 67 A 104 n -Bu Ph NH2 $101-102$ 66 A 104 Ph Ph Me $86-87$ 95 H 55 89 100 H c $177-179^d$ 40 H e Ph Ph C -C3H3 $90.5-91$ 63 H f Ph Ph P -MeC0H=CH P -MeC0H=CH P -MeC0H=CH P -MeC0H=CH P -MeC0H P -MeC0H=CH				Oil			
$n\text{-Bu}$ Ph NH2 $101-102$ 66 A 104 Ph Ph Me $86-87$ 95 H 55 89 100 H c $177-179^d$ 40 H e Ph Ph $CHCl_2$ 73 10 A 101 Ph Ph $c-c_3H_s$ $90.5-91$ 63 H f Ph Ph MeCOCH=CH 66 H f Ph Ph MeCOCH=CH 66 H f Ph Ph Ph $123-125$ 67 D 28 Ph Ph Ph $123-125$ 67 D 28 Ph Ph 77 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			NH ₂				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ph					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ph	Ph	CHCI				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							f
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				<u> </u>			, 60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		• • •	H		J	1.1	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ph	Ph	H		9	Н	60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ph	Ph	Ph	123-125			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						Н	
Ph Ph $p ext{-MeC}_6 ext{H}_4$ 119–120 70 H f Ph Ph EtO 88–89 30 A 8							
Ph p -MeC $_6$ H $_4$ 119-120 70 H f Ph Ph EtO 88-89 30 A 8							
Ph Ph EtO 88-89 30 A 8	Ph	Ph	$p ext{-}MeC_{arepsilon}H_{\scriptscriptstyle 4}$	119-120			f
							8
					44	Ĥ	55, e

TABLE III (Continued)

R!	R ²	R ³	Mp (bp/mmHg), °C	Yield, %	Method ^a	Ref
			Oil	60	Н	с
Ph	Ph	PhNH	133.5-135	83	Н	55
				100	Н	c
Ph	Ph	EtNH	87	95	Н	54
Ph	Ph	MeCH(OH)CH ₂	97-99	51	Н	54
Ph	Ph	MeCOCH,	67-68.5	75	Н	54
Ph	Ph	0-HO,CC,H4	157-157.5	95	Н	54
Ph	P h	но,ссн,сн,	130-131	88	Н	54
Ph	p -O $_2$ NC $_6$ H $_4$	Me	104	95	Н	54
PhCH,	PhCH,	Me	72-73		Α	g
PhCH,	PhCH,	CHCI,	120-121	8	Α	101
PhCH,	PhCH,	Et [*]	89		Α	g
PhCH,	PhCH,	Ph	115		A	g

^a Method of preparation as described in section II. ^b D. Swern, I. Ikeda, and G. F. Whitfield, *Tetrahedron Lett.*, 2635 (1972). ^c N. Furukawa, T. Yoshimura, T. Omata, and S. Oae, *Chem. Ind. (London)*, 702 (1974). ^d Mp of picrate. ^e Y. Tamura, K. Sumoto, J. Minamikawa, and M. Ikeda, *Tetrahedron Lett.*, 4137 (1972). ^f N. Furukawa, M. Fukumura, T. Nishio, and S. Oae, *J. Chem. Soc.*, *Perkin Trans. I*, 96 (1977). ^g M. V. Likhosherstov, *Zh. Obshch. Khim.*, 17, 1478 (1947).

of these reagents; thus, dimethyl sulfide and tosyl amide gave the sulfilimine Me₂S⁺NTs with lead tetraacetate ¹³ in conditions where no reaction occurred between the oxidant and tosylamide.14 Dimethyl sulfide forms a sulfonium salt with N-chlorosuccinimide which is stable below 0 °C and which reacts with aromatic amines to form azasulfonium salts, 15 from which sulfillimines can be generated using a base. 16,17 The course of the reaction can be changed by the presence of other nucleophiles: for example, the succinimidosulfonium salt reacts with primary and secondary alcohols to give alkoxysulfonium salts, from which aldehydes and ketones can be formed in excellent yields by the addition of triethylamine 18 (Scheme I).

The use of N-chlorosuccinimide has also been extended to other dialkyl sulfides, to alkyl aryl sulfides, and to bis(4methoxyphenyl) sulfide; 16 sulfilimines have been prepared from anilines and heteroaromatic amines, amidines, and N-aminophthalimide (Tables V-VIII and XI). Other oxidants such as sulfuryl chloride 16 probably give sulfilimines by a similar mechanism. Lead tetraacetate is a less satisfactory reagent and gives good yields of sulfilimines in only a few systems, such as with N-aminophthalimide and other cyclic N-amino compounds where oxidation of the amine may be the initial reaction. 19

C. Reaction of Sulfoxides with Amines and a **Dehydrating Agent**

A third approach to the generation of activated sulfonium salts involves the attack on the oxygen atom of a sulfoxide by an electrophile. The resulting oxysulfonium salt 3 can then undergo nucleophilic attach by amines or amides to give azasulfonium salts, which can subsequently be converted to sulfilimines.

$$R^{1}R^{2}SO + X^{+}Y^{-} \rightarrow R^{1}R^{2}S^{+} \longrightarrow OX \xrightarrow{R^{3}NH_{2}} Y^{-}$$
 S
 $R^{1}R^{2}S^{+} \longrightarrow NHR^{3} \rightarrow R^{1}R^{2}S^{+} \longrightarrow NR^{3}$
 Y^{-}

Activating agents which have been used in this sequence include acetic²⁰ and trifluoroacetic anhydrides,²¹ phosphorus pentoxide,^{20,22} phosphorus oxychloride,²³ dicyclohexylcarbodimide,^{24–26} methanesulfonyl chloride,²³ and aryl cyanates.²⁷ The reactions appear to work well only with dimethyl sulfoxide. although a few other sulfoxides have been used. 22 The relative merits of the various possible activating agents have been discussed by Swern and his co-workers, who conclude that trifluoroacetic anhydride is the most efficient and the most versatile.²¹ Anilines, aryl amides, aryl sulfonamides, and urea can all be converted into the corresponding S,S-dimethylsulfilimines using

TABLE IV, Cyclic N-Acyl Substituted Sulfilimines

R!	R ²	Mp, °C	Yield, %	Method ^a	Ref
Н	Me	184	78	Α	155
Н	Ph	245	64	Α	155
Н	$p ext{-MeC}_6H_4$	217	66	Α	155
Н	PhCH ₂	169	54	Α	155
NO_2	Ph	251	52	Α	155
NO ₂	$p ext{-}MeC_6H_4$	248	47	Α	155
CI	PhCH ₂	173	55	Α	155

a Method of preparation as described in section II.

SCHEME I

dimethyl sulfoxide and trifluoroacetic anhydride (Tables I, III, and V). This reagent and those derived from sulfides and positive halogen compounds have generally superseded phosphorus pentoxide and other dehydrating agents.

D. Reaction of Diaryldialkoxysulfuranes with Amines and Amides

Although the methods so far described are fairly versatile with respect to the nature of the substituent on nitrogen, they are usually limited to sulfilimines with at least one alkyl group attached to sulfur. The most general method for preparing S,Sdiarylsulfilimines has been developed by Martin and Franz 28,29 who have made use of isolable diaryldialkoxysulfuranes such as diphenyldi(hexafluoro-2-phenyl-2-propoxy)sulfurane (4). The sulfuranes, which are prepared from diaryl sulfides, bromine. and potassium hexafluoro-2-phenyl-2-propoxide, react readily with ammonia, alkyl- and arylamines, primary amides, and sul-

TABLE V. N-Aryl Substituted Sulfilimines, R¹R²S⁺NAr

R	R^2	Ar	Mp, °C	Picrate mp, °C	Yield, %	Meth- od ^a	Ref
Me	Me	Ph	Oil	130-130.5 dec	60	С	21
	011 01011)		100 111		47	С	22
	-CH ₂ S(CH ₂) ₃ -	Ph	108-111		60	В	16
Ph	Ph	Ph	109.5-110.5	165 166 1	51	D	28
Me	Me	o-MeC₅H₄		165 - 166 dec	40	С	21
	011 61011)		110 116	140 144	95	С	22
	-CH ₂ S(CH ₂) ₃ -	o-MeC ₆ H ₄	112-116	143-144	79	В	16
Me	Me	p-MeC ₆ H₄	40 45	165-166 dec	60	С	21
			40-45	165-167	70	С	22, 147
			52-55	163–167	69	В	16
Me	Me	$p ext{-}MeOC_6H_4$	44-45	117-121 dec	65	С	147
	N.A	50.11	45–47	117-121	88	В	16
Me	Me	o-FC ₆ H ₄	50.00	140-141 dec	85	С	21
Me	Me	o-CIC ₆ H₄	58-60		60	С	b
		010.11	58-60		80	С	22
Me	Me	m-CIC ₆ H ₄ ·	50-52		83	С	22
		010.44	64 66		67	С	b
Me	Me	p-CIC ₆ H ₄	64-66	160 160	52	С	<i>b</i>
			66–67	160-162	80	C	147
	_			160-162	92	В	16
Me	n-Pr	p-CIC ₆ H ₄	Oil	124-128	90	В	16
Me	i-Pr	p-CIC ₆ H ₄	Oil	140-142	76	В	16
Me	Ph	p -CIC $_6$ H $_4$	77–79	133–135	55	В	16
Me	$p ext{-}MeC_6H_4$	$p ext{-CIC}_6H_4$	103-105	140-141	82	В	16
Me	$PhCH_2$	$p ext{-CIC}_6H_4$	96-100	148-149	88	В	16
Et	Et	$p ext{-CIC}_6H_4$	Oil		41	С	22
	-(CH ₂) ₄ -	$p ext{-CIC}_6H_4$	88-95		20	С	22
$p ext{-}MeC$	0 1 - 0 1	$p ext{-CIC}_6H_4$	Oil	133-134	74	В	16
	-CH ₂ S(CH ₂) ₃ -	$p ext{-CIC}_6H_4$	123-128	132-134	91	В	16
	$(H_2)_2$ CHMe $(CH_2)_2$ - c	$p ext{-CIC}_6H_4$	149-153		80	В	148
	$(H_2)_2$ CHMe $(CH_2)_2$ - d	$p ext{-CIC}_6H_4$	77–79		11	С	148
cis-C	$HMeCH_2CHMeSCH_2-c$	$p ext{-CIC}_6H_4$	103-109		64	В	148
cis-C	$HMeCH_2CHMeSCH_2-d$	$p ext{-CIC}_6H_4$	99-102		6	В	148
Me	Me	$p ext{-BrC}_6H_4$	72-74		45	С	22
Me	Me	$p ext{-}NCC_6H_4$	108-109		65	С	21
			110-112	184-185	57	В	16
				184-185	41	С	147
Me	n-Pr	$p ext{-}NCC_6H_4$	Oil	133-137	65	В	16
Me	Me	$p ext{-}MeO_2CC_6H_4$	80-82	178-182	83	В	16
				177-179	55	С	147
Me	$p ext{-}MeC_6H_4$	$p ext{-}RO_2CC_6H_4{}^e$	Oil	108-110	52	В	16
Me	Me	o-O ₂ NC ₆ H ₄	73 – 74		60	С	21
Me	Me	m -O $_2$ NC $_6$ H $_4$	100-101		85	С	26
			96-98		37	С	22
Me	Me	p -O $_2$ NC $_6$ H $_4$	148-151		35	С	22
			163-165		82	С	26
			167-168		70	Ε	40
		, -	166 – 167 dec		65	С	21
Me	Me	<i>p</i> -Me ₂ S ⁺ NSO ₂ C ₆ H ₄	179 — 182 dec		59	С	21
Me	Me	p - H_2 NSO $_2$ C $_6$ H $_4$	135-137 dec		50	С	21
Me	Me	$p extsf{-}RNHSO_2C_6H_4f$	265–268 dec		70	С	21
Me	Me	2-Me-4-CIC ₆ H ₃	50-52		67	С	22, b
Me	Me	2-Me-4-BrC ₆ H ₃	47 - 49		82	С	22, b
Me	Me	2-CI-5-O ₂ NC ₆ H ₃	127-128		71	В	129
Me	Me	$2,4-(O_2N)_2C_6H_3$	175-176		96	С	68
		· · -	181-182		34	Н	56
	$-(CH_2)_5-$	$2,4-(O_2N)_2C_6H_3$	138.5-139.5		92	Н	56
Б.	1 - 2/3				90	Н	
Ph	Ph	$2,4-(O_2N)_2C_6H_3$	133.5-134		89	1.1	55, g
PhCH	Ph	$2,4-(O_2N)_2C_6H_3$ $2,4-(O_2N)_2C_6H_3$	133.5-134 125-126		52	Н	55, <i>g</i> 56
	Ph						
PhCH	Ph ₂ PhCH ₂	$2,4-(O_2N)_2C_6H_3$ $3,5-(O_2N)_2C_6H_3$	125-126 168-170 76-79		52	H C C	56
PhCH Me	Ph PhCH ₂ Me	$2,4-(O_2N)_2C_6H_3$	125-126 168-170		52 74	H C	56 26
PhCH Me Me	Ph PhCH ₂ Me Me	2,4-(O ₂ N) ₂ C ₆ H ₃ 3,5-(O ₂ N) ₂ C ₆ H ₃ 1-C ₁₀ H ₂	125-126 168-170 76-79		52 74 72	H C C	56 26 22

 $[^]a$ Method of preparation as described in section II. b P. Claus and W. Vycudilik, $Tetrahedron\ Lett.$, 3607 (1968). c N-Aryl substituent is equatorial. d N-Aryl substituent is axial. e R = L-menthyl. f R = 2-pyrimidyl. g Y. Tamura, K. Sumoto, J. Minamikawa, and M. Ikeda, $Tetrahedron\ Lett.$, 4137 (1972).

TABLE VI. Cyclic N-Aryl Substituted Sulfilimines

R!	R ²	Mp, °C	Picrate mp, °C	Yield, %	Method ^a	Ref
Н	Me	Oil	160-162	70	В	116
5-Me	Me	Oil	150-152	80	В	116
5-CI	Me	101-109	172-173	95	В	116
5-CI	$p ext{-}MeC_6H_4$	Oil	132-134	37	В	116
7-CI	Me	89-92	170-173	95	В	116
5-CN	Me	136-138	180-183	73	В	116
5-NO,	Me	142-145	180-183	76	В	116
5-CO ₂ Me	Me	113-117	188-191	76	В	116

a Method of preparation as described in section II.

TABLE VII, N-Heteroaryl Substituted Sulfilimines, RIR2S+-NR3

R!	R ²	R ³	Mp, °C	Picrate mp, °C	Yield, %	Method ^a	Ref
Me	Me	2-Pyridyl	86–88		63	В	16
		, ,	Oil	127-130	87	В	117
-CH,S((CH ₂) ₃ -	2-Pyridyl	132-135	117-119	56	В	16
Me	Me	3-Methyl-2-pyridyl	Oil	185 dec	76	В	117
Me	Me	6-Methyl-2-pyridyl	Oil	136	85	В	117
Me	Me	2-Pyrazinyl	Oil	148-150	54	В	117
Me	Me	2-Pyrimidyl			33	Α	117
Me	Me	4-Methyl-2-pyrimidyl				Α	117
Me	Me	4,6-Dimethyl-2-pyrimidyl				Α	117
Me	Me	2-Benzoxazolyl	139-141		67	Α	127
Me	Me	1-Phenyl-5-s-triazolyl	91-93		28	Α	b
Me	Me	O ₂ N Me				С	187b

^d Method of preparation as described in section II. ^b T. L. Gilchrist, C. J. Moody, and C. W. Rees, unpublished result.

fonamides, to give diarylsulfilimines in good yields.²⁸ The reaction probably involves an intermediate amido- or aminosulfurane, as shown. The more basic sulfilimines (derived from ammonia and alkylamines) are formed as alcoholates by this procedure, but the hexafluoro-2-phenyl-2-propanol can be removed by extraction with aqueous alkali.

The sulfurane 4 also reacts with secondary amides to give S, S-diphenylsulfilimines. 29 The intermediate amidosulfuranes 5 collapse to the sulfilimines and esters 6, except in cases where R² is a bulky group. The reaction is a useful method of cleaving secondary amides.

E. Reaction of Sulfoxides with Isocyanates, Sulfinylamines, and Related Compounds

Dimethyl sulfoxide and other dialkyl sulfoxides react exothermically with arenesulfonyl isocyanates and give sulfilimines in good yields. 30,31 Similar reactions take place between sulfoxides and sulfinylamines^{31–35} or sulfur diimides^{32,34,35} (eq 4). Both alkyl and aryl sulfoxides react with N-sulfinyltosylamide, but the latter require heating.33

$$R^{1}R^{2}SO + R^{3}SO_{2}N = X = Y \rightarrow R^{1}R^{2}S - NSO_{2}R^{3} + O = X = Y$$

$$XY = CO, SO, S = NSO_{2}R^{3}$$
(4)

Dimethyl sulfoxide has also been found to react with several acyl isocyanates RCONCO (R = CHCl₂, CCl₃, CF₃, and Ph).^{36,37} Acylsulfilimines were obtained from the haloacyl isocyanates, but benzoyl isocyanate reacted differently: in the presence of a catalytic amount of boron trifluoride etherate a crystalline 1:1 adduct, which was formulated as the sulfurane 7, was isolated.37

The reactions of sulfoxides with tosyl isocyanate, N-sulfinyltosylamide, and N,N-bis(tosyl)sulfur diimide have been the subject of detailed mechanistic investigation, notably by Cram

TABLE VIII. N-Imidoyl Substituted Sulfilimines

R ¹	R ²	R ³	R ⁴	Mp, °C	Yield, %	Method ^a	Ref
Me	Me	Me	Ph	G u m 187–189 ^b	84	Α	17
Me	Me		-(CH ₂) ₃ -	Oil 137 <i>b</i>		Α	12
Me	Me	Ph	H	67–68	80	Α	152
Me	Me	Ph	Ph	167-169	60	Α	17
Me	Me	Ph	o-MeC₅H₄	170-172	67	Α	17
Me	Me	Ph	o-CIC ₆ H₄	172-174	65	Α	17
Me	Me	Ph	p-CIC ₆ H ₄	180-182	62	Α	17
Me	Me	Ph	2,6-Me ₂ C ₆ H ₃	211-213	41	В	154
Me	Me	Ph	2,6-Cl ₂ C ₆ H ₃	204-206	71	В	c
Me	Me	Ph	2,6-Et ₂ C ₆ H ₃	175-180	41	В	154
Me	Me	Ph	2,4,6-Me ₃ C ₆ H ₂	184-186	38	В	154
Me	Me	Ph	PhCH,	105-106	63	Α	17
Me	Me	Ph	2-Pyridyl	170-172	35	Α	17
Me	Me	Ph	COMe	114-116	60	d	152
Me ·	Me	Ph	COPh	188-190	66	d	152
Me	Me	Ph	CO-p-MeC ₆ H ₄	172-173	54	d	152
Me	Me	Ph	NMe,	120-121	92	Α	c
-(CI	d ₂) ₄ −	Ph	Ph	131-133	65	В	17
Ph	P h	Ph	Ph	141-143	50	Н	17
Ph	P h	Ph	o-MeC₅H₄	138	40	Н	17
Ph	Ph	Ph	o-CIC ₆ H ₄	165-167	22	Н	17
Ph	Ph	Ph	p-O ₂ NC ₆ H ₄	135-137	92	Н	c
Ph	Ph	Ph	2,6-Me ₂ C ₆ H ₃	127-129	62	Н	c
Ph	Ph	Ph	2,3,5,6-Me ₄ -4- O ₂ NC ₆	192-194	76	Н	c
Ph	Ph	Ph	2-Benzothia z olyl	163.5-165	78	Н	c
Ph	Ph	Н	NH ₂	72	58	Α	9
PhCH,	PhCH,	Ph	Ph	122-124	67	Α	17

 a Method of preparation as described in section II. b Mp of picrate. c T. L. Gilchrist, C. J. Moody, and C. W. Rees, unpublished results. d Prepared from the sulfilimine where R⁴ = H by acylation.

and his co-workers. The conversion of chiral sulfoxides into *N*-tosylsulfilimines has been studied as a part of a reaction cycle which allows the stereochemistry of various substitution reactions at sulfur to be investigated.³⁵ Thus, the sulfoxide **8** of known absolute stereochemistry was converted into the sulfillimine **9**, the absolute stereochemistry of which was determined using melting point composition diagrams. With *N*-sulfinyltosylsulfonamide and with *N*,*N*-bis(tosyl)sulfur dlimide in dry pyridine at 0 °C the reactions were highly stereoselective and termolecular, and went with inversion of configuration at sulfur.³⁵ In benzene, however, the reaction of the sulfoxide with *N*,*N*-bis(tosyl)sulfur dlimide went with retention of configuration at sulfur and was a bimolecular process.^{35,38a} Similar results were obtained with the cyclic sulfoxides **10** but the reactions were faster.³² With

tosyl isocyanate in acetonitrile at 25 °C the sulfoxide **8** gave the sulfillmine **9**, again with net inversion of configuration, but both the starting material and the product were competitively racemized in these conditions.³¹

The first step in these reactions, which is illustrated in Scheme II for the reaction between (+)-(R)-methyl p-tolyl sulfoxide (8) and N,N^1 -bis(tosyl)sulfur diimide, is assumed to be nucleophilic attack by the oxygen of the sulfoxide to give a zwitterionic intermediate. In a nucleophilic solvent such as pyridine this is stabilized sufficiently to allow the attack of a second mole of the

SCHEME II

reagent, giving a six-membered ring sulfurane intermediate. If, as shown in Scheme II, both incoming and leaving groups occupy equatorial positions, the decomposition of the sulfurane will give

TABLE IX. N-Unsubstituted Sulfilimines, R'R2S+-NH

R!	R ²	Mp (bp/mmHg), °C	Picrate mp, °C	Yield, %	Method ^a	Ref
Me	Me	(39/0.4)		85	G	63
			104		G G	115
Me	Ph	Oil	112-112.5		G	114
Me	$p ext{-}MeC_6H_4$	20		70	G	74
			158-159	95	G G G G G	54
Et	Et	-11.8 to -12		98	G	63
			110-111		G	114, 115
Et	P h	Oil	90-91		G	114
c-C₃H₅	$p ext{-}MeC_6H_4$		138-139	95	G	54
-(C	CH ₂) ₅ -	Oil	191	100	G	114
Ph	Ph	58-60		48	D	28
		71 <i>b</i>		75	G	114
				90	G	55
Ph	$p ext{-}MeC_6H_4$	54-54.5		100	G	114
Ph	o-MeC ₆ H ₄	83.5-84.5		97	Ġ	54
Ph	p-CIC ₆ H ₄	Oil		100	ଓ ଓ ଓ ଓ ଓ	114
	• • •	48-49		77		54
Ph	m -CIC $_6$ H $_4$	35-36			G G G G G	54
Ph	$p-O_2NC_6H_4$	95.5-97.5		76	G	114
	2 - 0 4	93-95		95	G	56
		98–99		95	G	54
Ph	o-O ₂ NC ₆ H ₄	104-104.5		79	Ğ	54
p-MeOC ₆ H ₄	p-MeOC ₆ H ₄	57–58	123	93	Ğ	58
1		55-7		78	Ğ	56
		66 – 67 dec		88	1	65b
Ŏ						
	\$	165–166		81	G	56
CF ₃	ĊF ₃			55	G	c

⁴ Method of preparation as described in section II. ^b Monohydrate. ^c S. D. Morse and J. M. Shreeve, J. Chem. Soc., Chem. Commun., 560 (1976).

a sulfimide of inverted configuration. In a nonnucleophilic solvent such as benzene, the zwitterion may collapse to a four-membered ring sulfurane, in which the incoming group is axial and the outgoing group is equatorial; subsequent decomposition of this sulfurane will give a sulfimide of retained configuration, 11. These reactions form part of a much more general picture of substitution reactions at sulfur, in which other types of molecule can combine with zwitterionic intermediates to form cyclic sulfuranes.31,32 Apart from the unattractive feature that the more electronegative groups in the six-membered ring sulfurane occupy equatorial positions, this scheme accounts well for the kinetics and stereochemistry of the reactions.

Similar reactions have been reported with 4-tert-butylthiane 1-oxides,39 but methionine sulfoxide (12) was reacted, via its

N-phthaloyl derivative, with N-sulfinyltosylamide in pyridine to give a sulfilimine of retained configuration. 38b The unusual stereochemical course of this reaction may be determined by participation of the neighboring carboxyl group in the reaction.38a

There are a few examples of related reactions which have been used to prepare sulfilimines. Dimethyl sulfoxide reacts with several imidosulfurous dichlorides in ether at room temperature to give sulfilimines with the elimination of thionyl chloride (eq

5). The reaction appears to be more general, with respect to the nitrogen substituent, than others of this type, and examples are reported with arenesulfonyl, acyl, ethoxycarbonyl, and aryl groups.40

$$Me_2SO + Cl_2SNR \rightarrow Me_2S - NR + SOCl_2$$
 (5)

An interesting extension of the reaction with isocyanates is the observation that one sulfilimine can be converted into another: S,S-diphenyl-N-methylsulfilimine was found to react exothermically with phenyl isocyanate, giving triphenylsulfilimine in low yield.28

$$Ph_2S$$
— $NMe + PhNCO \rightarrow Ph_2S$ — NPh
(10%)

Sulfilimines are also formed in the reaction of dialkyl sulfides with di-N-tosylsulfur diimide.41

$$R_2S + T_5N = S = NT_5 \rightarrow R_2S = NT_5$$
(35-80%)

F. Routes Involving Azides and Related Compounds

The photolysis of several organic azides in the presence of an excess of a dialkyl sulfide leads to the formation of sulfilimines. Reactions of this type have been observed with arenesulfonyl,42 acyl,43,44 and alkoxycarbonyl azides.44,45 lt is likely that the reactions involve singlet nitrenes as intermediates; these electrophilic species are then intercepted by the sul-

TABLE X. N-Alkyl Substituted Sulfilimines, RIR2S+-NR3

R'	R ²	R ³	Mp,°C	Yield, %	Method ^a	Ref
Me	Ph	(NC) ₂ C=CH	149-150	96	Н	55
Me	Ph	$(NC)(EtO_2C)C = CH$	117-118	71	Н	55
Ph	Ph	Me	79-80	85	D	28
Ph	Ph	i-Pr	34-35.5	98	D	28
Ph	Ph	<i>n-</i> Bu	Oil	98	D	28
Ph	Ph	<i>t-</i> Bu	47 – 49	82	D	28
Ph	Ph	n-C ₆ H ₁₃	Oil	51	Н	59
Ph	Ph	PhCH ₂	65.5-66.5	93	D	28
			62-64	77	Н	59
Ph	Ph	NCCH ₂ CH ₂	Oil	69	Н	60
Ph	Ph	PhCH ₂ CH ₂	Oil	54	Н	59
Ph	Ph	PhMeCH	Oil	71	Н	59
Ph	Ph	1-C ₁₀ H ₂ CH ₂	Oil	74	Н	59
Ph	Ph	PhSO ₂ CH ₂ CH ₂	Oil	100	Н	60
Ph	Ph	EtO ₂ CMeCH	Oil	54	Н	59
Ph	Ph	EtO ₂ CEtCH	Oil	38	Н	59
Ph	Ph	PhCOCH == C(COPh)	131-133	90	Н	55
Ph	Ph	PhCOCH=CPh	119-122	68	Н	55
Ph	Ph	PhCOCH==CH	Oil	68	Н	55
Ph	Ph	(NC) ₂ C==CH	129-131	40	Н	55
Ph	Ph	$(NC)(EtO_2C)C = CH$	167-172	71	Н	55
Ph	Ph	$(NC)_2C = C(CN)$	139-140	87	Н	55
		0				
Ph	Ph		152–153	82	Н	61
Ph	m-O ₂ NC ₆ H ₄	Me	81.3-82.5	65	D	28
	s C	<i>t</i> -Bu	148-149		1	b
		PhCH ₂	142-143	88	1	65a
CF ₃ CF ₃	CF ₃ CF ₃	$(CF_3)_2CF$ $(CF_3)_2C \longrightarrow N(CF_3)_2C$	(89.1) (136.6)	71 82	с с	$egin{array}{c} d \ d \end{array}$

^a Method of preparation as described in section II. ^b H. J. Shine and K. Kim, *Tetrahedron Lett.*, 99 (1974). ^c Prepared from (CF₃)₂SF₂ and LiN=C(CF₃)₂. ^d R. F. Swindell and J. M. Shreeve, *J. Am. Chem. Soc.*, **94**, 5713 (1972).

$$R^3CON_3 \xrightarrow{h\nu} R^3CO\ddot{N}: \xrightarrow{R^1R^2S} R^1R^2S \xrightarrow{-NCOR^3}$$

Evidence to support the intermediacy of singlet nitrenes was obtained by investigating the effect of triplet sensitizers on the reactions. The formation of sulfillimines was inhibited by the presence of the sensitizers, showing that triplet nitrenes did not react in this way. $^{\rm 45}$

Attempts to form sulfilimines by the thermal decomposition of azides in the presence of sulfides have not been very successful, because the sulfilimines are unstable at the temperatures required to decompose the azides. Reactions of this type in which decomposition products of the sulfilimines have been detected have been reported with alkoxycarbonyl azides^{46,47} and with hydrazoic acid;⁴⁸ a sulfilimine was isolated in one case.⁴⁷ Cyanogen azide is exceptional in that it has a low decomposition temperature; it is claimed that *N*-cyanosulfilimines can be formed in good yield from cyanogen azide and sulfides at 20–60 °C.⁴⁹

An unusual reaction occurs with arenesulfinyl azides 13 in

acetonitrile containing dimethyl sulfoxide at 0–20 °C; the products, which are isolated in good yield, are arenesulfonyl sulfilimines.⁵⁰ It is suggested that these reactions involve fourcenter addition of the sulfinyl nitrene to dimethyl sulfoxide. Evidence in support of this proposal comes from a kinetic investigation, which shows that the rate of decomposition of the azides is independent of the concentration of the sulfoxide, and from an experiment using an optically active sulfoxide, which shows that the configuration of the sulfoxide is retained in the sulfilimine.

Sulfilimines have also been isolated from reactions of sulfides with a few other nitrene precursors. Photolysis of 5-phenyl-1,3,4-dioxazol-2-one (14) in dimethyl sulfide gave *N*-benzoyl-*S*,*S*-dimethylsulfilimine (34%).⁵¹

Ph
$$h_1$$
 h_2 h

Treatment of 4-nitrophenylsulfonyloxyamines 15 with triethylamine in the presence of dimethyl sulfide also gave the corresponding sulfilimines $(36-78\,\%)$.

RNHOSO₂C₆H₄-4-NO₂
$$\xrightarrow{\text{Et}_3N,\text{Me}_2S}$$
 $\xrightarrow{+}$ $\xrightarrow{-}$ NR 15 R = ArSO₂, EtOCO

There is good evidence that oxidation of *N*-aminophthalimide (16) by lead tetraacetate involves singlet phthalimidonitrene as

TABLE XI. Other Sulfilimines, RIR2S+-NX

R!	R ²	X	Mp, °C	Yield, %	Method a	Ref
Me	Me	CN	81.8-83	98	F	49, <i>b</i>
Me	c-C ₆ H,,	CN	78.5-79.5	95	F	49
Me	p-CIC ₆ H ₄	CN	107-108	90	F	49
Me(CH ₂) ₁₁	Me(CH ₂) ₁₁	CN	49.5-63	99	F	49
Ph	Ph	CN	62-63	65	В	b
Ph	Ph	Cl	116-117 dec	100	Н	62
Ph	Ph	Br	96-97 d ec	100	Н	62
Ph	Ph	1	99 – 100 dec	100	Н	62
Me	Me	Phthalimido	133-134 dec	90	В	118
Ph	Ph	PhNHCS	138.5	95	Н	54

a Method of preparation as described in section II. b D. Swern, I. Ikeda, and G. F. Whitfield, Tetrahedron Lett., 2635 (1972).

TABLE XII. 1.5-Dihydro-1,2,3,4-thia(SIV)triazoles

R!	R ²	X	Mp,°C	Yield, %	Method	Ref
Me	Me	NMe,	83 dec	61	a	153
Ph	Me	NMe,	80 dec	58	a	153
Ph	Me	Morpholi n o	103 dec	93	а	153
Ph	Et	Morpholino	80 dec	89	а	153
Ph	Allyl	Morpholino	93 dec	69	а	153
PhCH ₂	Me	Morpholi n o	100 dec	92	a	153

a Prepared from $R^{1}C(X) = S^{+}R^{2}I^{-}$ and NaN_{3} .

$$NNH_2 + R_2S \xrightarrow{Pb(OAc)_4} R_2\dot{S} - \dot{N} - N$$

16 (70-90%) R = Me, Et

an intermediate.53 Oxidation in the presence of dimethyl or diethyl sulfide gave the corresponding sulfilimines in good yield. and with other sulfides, products arising from unstable sulfilimines were isolated. 19

Sulfilimines can themselves act as sources of nitrenes in photochemical reactions, and the irradiation of S,S-dimethyl-N-ethoxycarbonylsulfilimine in the presence of diethyl sulfide results in the formation of the S,S-diethylsulfilimine.44

G. Preparation of N-Unsubstituted Sulfilimines

N-Unsubstituted S,S-diarylsulfilimines are reasonably stable compounds for which special synthetic routes are available. They are useful intermediates in the preparation of several other types of S,S-diarylsulfilimines (section II.H). N-Unsubstituted sulfilimines derived from dialkyl or alkyl aryl sulfides are unstable at ambient temperatures but can be isolated as picrates.54

N-H sulfilimines can be prepared by direct amination of sulfides. The best reagent is O-mesitylenesulfonyl hydroxylamine, 55,56 but hydroxylamine-O-sulfonic acid57,58 and chloramine⁵⁷ have also been used.

$$R^{1}R^{2}S + NH_{2}X \rightarrow R^{1}R^{2} \stackrel{b}{S}NH_{2} \stackrel{b}{X} \xrightarrow{base} R^{1}R^{2} \stackrel{+}{S} \stackrel{-}{\longrightarrow} NH$$

 $X = OSO_{2}Mes, OSO_{2}H, CI$

N-H sulfillimines are also readily available from the reaction of N-tosylsulfilimines with concentrated sulfuric acid at room temperature; yields of diarylsulfilimines are excellent.54

$$R^1R^2S$$
—N Ts $\xrightarrow{H_2SO_4}$ R^1R^2S NH₂ OTs \xrightarrow{NaOH} R^1R^2S —NH

In both of the above procedures, diphenylsulfilimine is isolated as a hydrate. Anhydrous S.S-diphenylsulfilimine can be prepared by the method of Franz and Martin²⁸ (section II.D).

A less efficient method for preparing S.S-diarylsulfilimines is the reaction of S,S-diaryIsulfur dichlorides with ammonia.58

$$Ar_2SCI_2 + 3NH_3 \rightarrow Ar_2S \stackrel{+}{\longrightarrow} NH + 2NH_4CI$$
(45%)

H. Substitution of N-H Sulfillmines

Electrophilic substitution of N-unsubstituted S.S-diaryIsulfilimines is an important route to several types of sulfilimines. Examples of such reactions involving the introduction of carbon substituents are shown in Scheme III, and those involving the introduction of heteroatom substituents are shown in Scheme IV.

Reactions of a similar type which have been reported for S, S-dialkylsulfilimines include that with carbon dioxide, giving the betaines 17 (R = Me or Et)63 (eq 6) and an attempted nitrosation of diethylsulfilimine with nitrosyl chloride, which resulted in the formation of diethyl sulfide and nitrous oxide⁶⁴ (eq 7).

$$R_{2}\dot{S} \longrightarrow NH + CO_{2} \xrightarrow{\text{ether}} R_{2}\dot{S} NHCO_{2}^{-} \qquad (6)$$

$$17$$

$$2Et_{2}\dot{S} \longrightarrow NH + NOCI \longrightarrow [Et_{2}\dot{S} \longrightarrow NNO] + Et_{2}\dot{S}NH \dot{C}I \qquad (7)$$

$$\downarrow \qquad \qquad \downarrow$$

$$Et_{2}S + N_{2}O$$

I. Miscellaneous Methods

Radical cation perchlorates of the general structure 18 react

SCHEME III

SCHEME IV

with ammonia or primary alkylamines to give azasulfonium salts, from which sulfilimines can be liberated.⁶⁵

$$\begin{array}{c|c}
X & \xrightarrow{RNH_2} & X \\
\hline
\tilde{C}IO_4 & & \\
18. X = S. O. NMe. NPh
\end{array}$$

Another approach to the synthesis of sulfillimines which has so far been explored very little is the nucleophilic displacement of halide from imidosulfurous dihalides. *N*-Phenyllimidosulfurous difluoride is reported to react with phenyllithium to give triphenylsulfillimine 66 (eq. 8), but an attempt to displace chloride from the ylide $\rm ArS^+CINSO_2Ph$ by the anion of tetraphenylcy-clopentadiene was unsuccessful. 67

$$F_2SNPh + 2PhLi \rightarrow Ph_2S - NPh + 2LiF$$
 (8)

A ligand exchange reaction takes place (eq 9) when S,S-dimethyl-N-2,4-dinitrophenylsulfilimine is heated with tosylamide in dimethylformamide. 68

$$Me_2S - NAr + TsNH_2 \xrightarrow{DMF/90 °C} Me_2S - NTs + ArNH_2$$
 (9)
 $Ar = 2.4 - (NO_2)_2C_6H_3$

III. Structure and Spectroscopic Properties

A. Structure and Bonding

Ylides derived from second-row elements have a greater range of possible bonding interactions open to them than their counterparts formed from elements in the first row of the periodic table. In particular there exists the possibility that electron density can be transferred from the anionic center to a vacant 3d orbital on the second-row element. A description of this type of interaction in sulfur ylides, and its expected consequences, has been given by Price and Oae. ⁶⁹ If such bonding makes an important contribution to the structure of sulfillimines, they are more properly represented as resonance hybrids:

$$R^1R^2\stackrel{+}{S} - NR^3 \leftrightarrow R^1R^2S - NR^3$$

Much of the physical data on sulfilimines, including that from x-ray crystal structure determinations, have been interpreted as supporting the existence of such bonding in sulfilimines. Semiempirical molecular orbital calculations reported by Hoffmann and his co-workers on phosphonium ylides led them to conclude that $d\pi-p\pi$ interaction makes a significant contribution to the stabilization of such ylides. 70 Recently, however, it has been suggested that the ability of sulfur to stabilize an adjacent carbanion is due to the high polarizability of sulfur rather than to the participation of d orbitals in the bonding. 71 An x-ray crystal structure analysis of an azasulfonium betaine has shown that the nitrogen atom is sp³ hybridized and not sp² hybridized as would be expected if $d\pi-p\pi$ conjugation were important. 72 The

problem of the exact nature of the bonding in sulfilimines thus remains open at present.

The electron-accepting properties of the substituents on nitrogen are important in determining the stability of the sulfilimines. In the case of acvisulfilimines there is good evidence (particularly from x-ray and infrared data) that the negative charge is mainly concentrated on oxygen, so that these ylides are best represented by a zwitterionic structure.

$$R^1R^2$$
 $\stackrel{\circ}{S}$ N $\stackrel{\circ}{=}$ C

Sulfillimines derived from unsymmetrically substituted sulfides can exist in optically active forms. This was first shown for Ntosylsulfilimines prepared from 3-(alkylthio)benzoic acids, which were resolved through their brucine salts;73 other methods of preparing optically active sulfilimines include the use of chiral sulfoxides³⁷ and sulfonium salts^{74,75} as precursors.

The optical activity of sulfilimines is undoubtedly due to the appreciable energy barrier to pyramidal inversion at sulfur. The barrier has been estimated as 24.4 kcal mol-1 in the model system H₂S⁺NH on the basis of ab initio SCF molecular orbital calculations, 76 and enthalpies of activation for the racemization of a few sulfilimines have been determined experimentally.

S-Aryl-S-methyl-N-tosylsulfilimines racemize readily when heated in solution at 80-100 °C; the reaction is first order in sulfilimine and is relatively unaffected by the nature of the solvent. Activation enthalpies for the S-4-chlorophenyl⁷⁷ and S-4-tolyl⁷⁸ compounds are respectively 27.9 and 28.7 kcal mol⁻¹, these values being higher than for the corresponding sulfonium salts but lower than for the sulfoxides. For optically active Nacetyl-S-ethyl-S-methylsulfilimine the activation enthalpy is 34.1 kcal mol⁻¹, about 5 kcal mol⁻¹ higher than for the corresponding sulfonium salt.75 Attempts have been made to explain these differences in terms of the relative strengths of the 2p-3d bonds:75,77,78 they have also been ascribed to the extent of repulsive interaction between lone pairs on sulfur and the adjacent heteroatoms in sulfoxides and sulfilimines.75

An x-ray crystal structure determination of S,S-dimethyl-Nmethylsulfonylsulfilimine shows that it consists of a racemic mixture of two enantiomers. 79,80 The existence of enantiomers in such a sulfilimine derived from a symmetrical sulfide depends upon the configurational stability of the S(IV)-N bond, but this is not maintained in solution.80,81 Partial rotation about the S(IV)-N bond occurs easily in solution; this precludes resolution of such compounds and is reflected in the NMR spectrum, which shows a single S(IV)-methyl signal.82 The calculated barrier to rotation about the S(IV)-N bond in the model compound H_2S^+ —NH is small (9.60 kcal mol⁻¹).⁷⁶

The preferred conformations of sulfillimines derived from thianes have been determined by NMR. N-Arenesulfonylsulfilimines have a small preference for a conformation in which the imide group is axial,83 but NH83 and N-4-chlorophenyl84 derivatives preferentially exist in a conformation with the imide group equatorial.

B. X-Ray Crystal Structure Determinations

X-Ray crystal structure analyses have been performed on several N-tosylsulfilimines, including the S,S-dimethyl,85 S,Sdiphenyl,86 and S-methyl-S-phenyl87 derivatives, and on S,Sdimethyl-N-methanesulfonylsulfilimine. 79,88 All these structures show very similar features, and the nature of the substituents in N-sulfonylsulfilimines has very little effect on the bonding. Both the SN bond lengths are shorter than might be expected for a sulfur-nitrogen single bond: that between the sulfonium sulfur and nitrogen lies in the range 1.628-1.636 Å, and that in the sulfonamide group is between 1.58 and 1.60 Å. The torsion angle

TABLE XIII. Dipole Moments of Sulfillimines

Sulfilimine	μ, D	Ref
Me,S ⁺ NTs	7.02	91
PhS ⁺ MeNTs	7.46	91
$p ext{-}NO_2C_6H_4S^+Me\overline{N}Ts$	6.73	91
p-BrC ₆ H ₄ S ⁺ MeNTs	6.62	91
p-CIC ₆ H ₄ S ⁺ MeNTs	6.57	91
p-MeCOC ₆ H ₄ S ⁺ MeNTs	6.18	91
p -MeCOC ₆ H ₄ S ⁺ Me \overline{N} Ts	7.75	91
p-Me,NC,H ₄ S ⁺ MeNTs	8.87	91
Me,S ⁺ NC,H ₄ -o-CI	1.56 ^a	92
$Me_{3}S^{+}\overline{N}C_{6}H_{4}-m$ -CI	1.61 ^a	92
$Me_{2}S^{+}\overline{N}C_{6}H_{4}-p$ -Cl	1.81 <i>a</i>	92

a These values have been questioned in later work; see Addendum and ref 227.

of the SNSO system in these sulfilimines is in the range 31-37°; the distance between the sulfonium sulfur and the nearer of the oxygen atoms on the sulfonamide group is less than the sum of their van der Waals radii, indicating that some attractive interaction is possible.

X-Ray analyses have also been reported for two acylsulfilimines. N-Dichloroacetyl-S, S-diethylsulfilimine contains a nearly planar SNCO system, with sulfur and oxygen atoms syn.89 The bond lengths are: S-N, 1.673 Å; N-C, 1.344 Å; and C-O, 1.212 A. The S-N bond is thus significantly longer than in sulfonylsulfilimines. The S-N bond in S.S-dimethyl-N-trichloroacetylsulfilimine is similar (1.667 Å), but the bond lengths in the trichloroacetylimido group indicate slightly higher charge density on oxygen: N-C, 1.320 Å, and C-O, 1.227 Å.90

C. Dipole Moments

Values of dipole moments for several N-tosylsulfilimines91 and for three N-arylsulfilimines92 are given in Table XIII. By comparison with dimethyl sulfoxide ($\mu = 4.3 \, D$) the tosylsulfilimine is more polar, and the arylsulfilimines are less polar. The dipole moments of the chlorophenylsulfilimines are also lower than those of the corresponding chloroanilines, the difference being greatest for the p-chloro compounds (for p-chloroaniline $\mu = 3.36$ D). The moment of the aryl carbon-nitrogen bond thus appears to be directed in the opposite sense to that of the carbon-chlorine bond in the sulfilimine; this is rationalized as being due to the coplanarity of the S-N aryl system in arylsulfilimines, the interaction of the nitrogen lone pair with sulfur preventing its interaction with the aromatic π system. 92

D. Photoelectron Spectra

The x-ray photoelectron spectrum of S-benzyl-S-methyl-N-tosylsulfilimine has been measured. 93 The binding energy of the sulfonium sulfur atom (166.6 eV) shows that the SN bond is about 45% covalent, compared with 60% for the corresponding sulfoxide. The greater polarity of the SN bond is ascribed to the inductive stabilization of the negative charge on nitrogen by the tosyl group.

E. Infrared Spectra

Most sulfilimines show one or more strong absorption bands in the range 800-1150 cm⁻¹, which have been ascribed to the SN stretching frequency. Values are given in Table XIV for representative types.

Arenesulfonylsulfilimines show four characteristic bands at 1280-1260, 1140-1130, 1090-1070, and 1012-930 cm⁻¹, the first two of which are associated with stretching vibrations of the SO₂ group. 13,94-97 It has been suggested that the lowest frequency band is the asymmetric SIV-N-SVI band.97 The effects of varying the sulfur and arenesulfonyl substituents on the fre-

TABLE XIV. Infrared Frequencies of Sulfilimines Associated with the SN Bond

Sulfilimine	$\nu_{ m max}$, cm $^{-1}$ (SN)	Ref
Ph ₂ S ⁺ NH	910 ^a	28
$Ph_2S^+\bar{N}H$, H_2O	940 <i>b</i>	54
Ph₂S ⁺ NCI	860	62
Ph ₂ S ⁺ NMe	1140, 1080 <i>a</i>	28
Ph ₂ S ⁺ NCH ₂ Ph	1090, 1064 <i>a</i>	28
Ph₂S ⁺ NPh ¯	930 <i>a</i>	28
Me₂S⁺ÑAr	920-890 ^a	92
$R_2S^+\overline{N}CONH_2$	1040 - 960 ^b	104
Me ₂ S ⁺ NCO,Et	821, 782 ^c	99
Et ₂ S ⁺ NCOCHCI,	825, 810 ^a	101
Me ₂ S ⁺ NCOMe	797 ^b	100
Ph₂S⁺ÑCOPh	805 <i>b</i>	54
$Ph_2S^+\overline{N}C = NHNH$	840	9
RR ₂ S ⁺ NSO ₂ Ar	1012-930a	94, 95, 105
$Ph,S^{\dagger}\overline{N}SO,Ar$	960 ^b	54

a CCI $_4$ or CHCI $_3$ solution. b KBr disk. c Neat liquid.

quency of this band are very small, and no obvious trend is apparent. The band is at a similar position in cyclic arenesul-fonylsulfilimines.⁹⁸

N-Aryl-*S*,*S*-dimethylsulfilimines normally show three bands in the region $970-890~\rm cm^{-1}$; two of the three are assigned to deformations of the *S*-methyl groups, since similar bands are present in the spectrum of dimethyl sulfoxide. 92 The position of band at $920-890~\rm cm^{-1}$, associated with the SN bond, shows a small dependence on the nature of the substituent on the *N*-aryl group, electron-releasing substituents giving a slightly higher value. *S*,*S*-Dimethyl-*N*-mesitylsulfilimine has no well-defined absorption in this region; this may be because the bulk of the aryl group prevents it lying in the same plane as the SN bond.

Acylsulfilimines and related compounds generally show the SN stretching band at lower frequencies (790-830 cm⁻¹).^{54,55,99-102} The splitting of the band which is observed in the spectra of some compounds of this type has been ascribed to their conformational mobility. 101 The carbonyl stretching frequencies provide good evidence for the delocalization of the negative charge: they are generally about 80-100 cm⁻¹ lower than in the corresponding amides. For N-acetylsulfilimines the maximum is at 1570-1565 cm^{-1,55,100} for N-benzoylsulfilimines values of 1595-1539 cm⁻¹ have been reported, 54,55,102,103 and for N-ethoxycarbonyl derivatives, the frequency lies in the range 1630–1610 cm^{-1,54,55,99} The lowering of frequency is also seen in the vinylogous acylide 19 for which the carbonyl absorption is at 1595 cm^{-1,61} N-Carbamoyl ylides are exceptional in that the carbonyl frequency (1685-1640 cm⁻¹) is similar to that in urea. 104

F. Ultraviolet Spectra

Many arenesulfonylsulfilimines show two characteristic maxima in the ultraviolet region, one close to 230 nm (log ϵ 4.0–4.5) and the other near 270 nm (log ϵ 3.0–4.5). 25,91,95,105,106 N-Acyl- and N-ethoxycarbonylsulfilimines have a maximum at 217–231 nm (log ϵ 4.1–4.3); 55,99,100,106,107 the absorption has been found not to follow the Beer–Lambert law in some cases. 99,100

There are four bands in the spectra of *N*-aryl-*S*,*S*-dialkylsul-fillmines, at 210, 240–250 (log ϵ 3.6–4.0), 270–280 (log ϵ

3.75–4.05), and 315–325 nm (log ϵ 3.2–3.6); these spectra are interpreted as showing the existence of conjugation between the SN bond and the aromatic system. ⁹² As with the infrared spectrum, the ultraviolet spectrum of the *N*-mesitylsulfillimine is uncharacteristic, presumably because the aromatic ring is no longer coplanar with the SN bond.

G. Nuclear Magnetic Resonance Spectra

In the ^1H NMR spectra of S,S-dimethylsulfillmines the signal for the methyl group lies within a narrow range (δ 2.40–3.03), the exact value being determined by the electron-withdrawing capacity of the nitrogen substituent. In *N*-arylsulfillmines there is a slight but detectable shift of the signal to lower field as the aryl group becomes more electron-withdrawing. $^{16.92}$ The lowest value reported (δ 3.03) is for Me₂S+NSO₂CF₃. 108 Other values for Me₂S+NR are: R = Ts, δ 2.68; 109 R = CO₂Et, δ 2.71; 99 R = COPh, δ 2.76; 103 and R = COCHCl₂, δ 2.80.82 The S-methyl signal for S,S-dimethyl-*N*-tosylsulfillmine remains as a singlet at least down to -45 °C, despite the asymmetry of the ylide in the crystal, because of rotation about the SN bond (see section III.A). Dimethylsulfillmine, Me₂S+NH, has an abnormally high field signal for the methyl groups (δ 2.05), 110 but the role of water in the structure of this ylide is uncertain.

NMR has been used to determine the preferred conformations of some sulfilimines; these results are described in section III.A.

H. Mass Spectra

N-Aryl-*S*,*S*-dimethylsulfilimines show a strong molecular ion in the mass spectrum, but the base peak is invariably the (M - 15)⁺ peak corresponding to the loss of a methyl group. 16,26 Other fragment ions are usually found at (M - 30)⁺ (loss of two methyl groups), (M - 61)⁺ (loss of MeSCH₂), (M - 62)⁺ (loss of Me₂S), (M - 76)⁺ (loss of Me₂SN), and (M - 47)⁺ (loss of MeS). The last fragmentation must be preceded by a rearrangement, probably involving a methyl shift to nitrogen.

The primary mode of fragmentation of carbonyl-stabilized sulfillimines is cleavage of the group α to the carbonyl group. 55,99,100,111

$$R^{1}R^{2}\overset{+}{S}$$
— $\dot{N}COR^{3}$ $\xrightarrow{-R^{3}}$ $R^{1}R^{2}\overset{+}{S}NCO$ $\xrightarrow{-NCO}$ $R^{1}R^{2}S\overset{+}{S}$
 R^{3} = Me, Ph, OEt, NHPh

Another prominent peak in the spectra corresponds to the molecular ion of the sulfide, which may be derived directly from the molecular ion of the sulfillimine, or by stepwise loss of R³- and -NCO. If R¹ or R² are ethyl groups, loss of ethylene (M - 28) $^+$ is a major pathway for fragmentation. 100 Other major fragment ions in the spectra of *N*-benzoyl- and *N*-acetylsulfillimines corresponds to the sulfoxide ions, which may be formed through a four-membered ring transition state (eq 10). 55 Stevens rearrangement is suggested as a pathway in the mass spectral decomposition of *S*, *S*-dimethyl-*N*-acetyl- and -*N*-ethoxycar-bonylsulfillimines. 99,100,111

$$R^{1}R^{2}\mathring{S} - N$$
 $R^{1}R^{2}\mathring{S}O$ (10)

S.S-Diphenylsulfilimines show a strong (M — SPh)⁺ peak, the base peak being 186 (Ph₂S) or 109 (PhS). 17,55 A major peak is also observed at m/e 200 (Ph₂SN). 59 N-Alkyl-S.S-diphenylsulfilimines undergo α -cleavage as the major fragmentation pathway (eq 11). 59

$$Ph_2$$
SNCH₂R $\xrightarrow{-R}$ Ph_2 SN==CH₂ (11)

N-Arenesulfonylsulfilimines show additional fragmentation patterns corresponding to the loss of SO₂ and of R₂SNSO.²⁵

IV. Chemical Properties

A. Basicity

The basicity of sulfilimines depends to a large extent upon the nature of the nitrogen substituents, and to a much smaller degree upon the nature of the sulfur substituents. The p K_a values of the free sulfilimines (Table XV) show that they are comparable in basicity to primary amines, whereas the arenesulfonylsulfilimines are very much weaker bases. The pK_a values of the sulfillimines PhS⁺MeNSO₂Ar follow the order of the Hammett σ constants for the aryl substituents ($\rho = +0.82$) as do those in the series ArS+MeNTs ($\rho = +0.89$). 112 The acceptor properties of the group MeSNTs in the latter series are comparable to those of the methanesulfonyl group. 113

Free sulfilimines form isolable perchlorates,65 hydrochlorides, 58 and p-toluenesulfonates. 54,56 Some N-acylsulfilimines also form isolable hydrochlorides, 24,99,100,102 but the reaction of anhydrous hydrogen chloride with N-alkyl-28 and N-ethoxycarbonyl8-S,S-diphenylsulfilimines resulted only in isolation of decomposition products. Many sulfillimines form crystalline picrates, and these have proved to be particularly useful for purifying and characterizing hygroscopic or low-melting sulfilimines; picrates have been reported for free sulfilimines^{58,114,115} and for aryl, 16,116 heteroaryl, 117 imidoyl, 12,17 phthalimido, 118 and sulfonyl119 derivatives.

N-Aroyl-S, S-dimethylsulfilimines have also been shown to form stable crystalline complexes with Pd(II) and Pt(II) salts; 103,120 thus, N-benzoyl-S,S-dimethylsulfilimine and bis(triphenylphosphine)palladium dichloride gave the orange crystalline complex [(PPh₃)₂PdCl_{2*}Me₂SNCOPh] in good yield. The carbonyl stretching frequency of the complex (1608 cm⁻¹) shows that coordination is through nitrogen.

B. Alkylation and Acylation

Alkylation and acylation of N-unsubstituted sulfilimines results in the formation of new sulfilimines: these reactions are described in section II.H.

N-Tosylsulfilimines are N-methylated by reaction with trimethyloxonium fluoroborate^{78,121} or with methyl fluorosulfonate,78 and are N-ethylated by triethyloxonium fluoroborate. 39a, 121 Alkylation of N-alkylsulfilimines is easier; thus, the N-benzylsulfilimine 20 reacts rapidly with iodomethane, 65 and S, S-diphenyl-N-methylsulfilimine forms salts readily with iodomethane and with 2-iodopropane.28

Salts can also be isolated from the reaction of S,S-diphenyl-N-alkylsulfilimines with acid chlorides; for example, benzoyl chloride and S, S-diphenyl-N-methylsulfilimine react in dry ether to give the moisture-sensitive N-benzoylsulfonium salt in good yield.28

N-Acetyl- and N-benzoyl-S,S-dimethylsulfilimines undergo reactions with acetyl chloride and with acetic anhydride which are analogous to the Pummerer reaction of sulfoxides; 122 thus, the N-acetylsulfilimine reacts with acetyl chloride at 25 °C and with acetic anhydride at 70 °C to give, as major products, diacetamide (50-60%) and MeSCH₂X (X = CI or OCOMe) (48-63%). 123 The N,N-diacetylsulfonium salt 21 is postulated as an

TABLE XV, Values of pK_a of Sulfilimines

Sulfilimine	pK_a	Ref
p-MeC ₆ H ₄ S ⁺ PhNH	8.79	a
o-MeC。H₄S ⁺ PhÑH	8.70	a
Ph ₂ S ⁺ NH	8.56	a
p-CIC ₆ H ₄ S ⁺ PhÑH	8.05	a
o-NO ₂ C ₆ H ₄ S ⁺ PhÑH	7.96	a
p -NO ₂ C ₆ H ₄ S ⁺ Ph $\bar{\text{N}}$ H	7.30	a
Me₂S ⁺ ÑH	7.28 ^b	110
Et₂S ⁺ ÑTs	4.70 ^b	110
Me₂S ⁺ ÑTs	0.57 ^c	d
<i>p</i> -MeOC ₆ H ₄ S ⁺ MeNTs	-1.78, -1.81	105, 112
PhS ⁺ MeNSO ₂ C ₆ H ₄ -p-OMe	-2.13	112
PhS ⁺ MeNTs	$-1.96,^{c}$ -2.23	d, 112
m-MeOC ₆ H ₄ S ⁺ MeNTs	-2.26	112
PhS ⁺ MeÑSO,Ph	-2.36	112
p-CIC ₆ H ₄ S ⁺ MeNTs	-2.3 9	112
m-CIC ₆ H ₄ S ⁺ MeNTs	-2.48	112
PhS ⁺ MeNSO ₂ C ₆ H ₄ -p-Cl	- 2.55	112
$m - NO_3 C_6 H_4 S^+ Me \tilde{N} Ts$	-2.85	112
$p-NO_2C_6H_4S^+Me\overline{N}Ts$	-2.93	112
PhS+MeNSO ₂ C ₆ H ₄ -p-NO ₂	-3.00	112
$Ph_2S^+\overline{N}Ts$	-3.60 ^c	d

a N. Furukawa, T. Yoshimura, T. Omata, and S. Oae, Chem. Ind. "N. Furukawa, 1. Yoshimura, 1. Omata, and S. Oae, Chem. Ind., (London), 702 (1974). b Rate constants for hydrogen—deuterium exchange are also reported. ^c The procedure used to obtain these values has been criticized: D. Landini, G. Modena, G. Scorrano, and F. Taddei, J. Am. Chem. Soc., 91, 6703 (1969). d K. Andersen, W. H. Edwards, J. B. Biasotti, and R. A. Strecker, J. Org. Chem., 31, 2859 (1966).

intermediate. N-Benzoyl-S,S-dimethylsulfilimine gives N-acetylbenzamide (44%) with acetic anhydride, probably by a similar mechanism.21

Me₂S⁺—NCOMe
$$\xrightarrow{\text{MeCOX}}$$
 Me₂S⁺—N(COMe)₂ → X⁻
21

MeSCH₂X + HN(COMe)₂

N-Tosylsulfilimines PhS+RNTs (R = Me, CH₂Ph, Ph) are quantitatively reduced to sulfides by reaction with acetyl chloride; 124 2 mol of acetyl chloride is required, and chlorine is also formed. It is suggested that the N-acetylsulfonium salts rearrange to the S-chlorosulfonium salts PhS+RCI NTsCOMe which are then attacked by a second mole of acetyl chloride.

The synthetically important nucleophilic addition reactions of sulfur-carbon vlides to electrophilic carbon centers have so far found relatively few parallels in sulfilimine chemistry. Reactions with simple carbonyl groups have not been observed, but addition to α,β -unsaturated carbonyl compounds has been reported both for N-unsubstituted55,60 and for N-benzylsulfilimines.⁵⁹ In these reactions the sulfide is eliminated and formal "nitrene-transfer" products are isolated. These are of two types: aziridines and enamines. Two examples are shown in Scheme ٧.

With highly electrophilic acetylenes such as dimethyl acetylenedicarboxylate, nucleophilic addition occurs readily with

$$R^{1}_{2}\ddot{S}\ddot{N}R^{2} + XC = CX$$
 $R^{1}_{2}\ddot{S}\ddot{N}R^{2} + XC = CX$
 $R^{1}_{2}\ddot{S}\ddot{N}R^{2} + XC = CX$
 $R^{1}_{2}\ddot{S}\ddot{N}R^{2} + XCH = C(X)NHR^{2}$
 $R^{1}_{2}\ddot{S}\ddot{N}R^{2}$
 $R^{1}_{2}\ddot{S}\ddot{N}R^{2}$
 $R^{1}_{2}\ddot{S}\ddot{N}R^{2}$
 $R^{1}_{2}\ddot{S}\ddot{N}R^{2}$
 $R^{1}_{2}\ddot{S}\ddot{N}R^{2}$

SCHEME V

N-aryl-, ^{118,125} *N*-benzyl-, ⁵⁹ and *N*-phthalimidosulfilimines. ¹¹⁸ The course of the reaction is the same in all cases and is analogous to the reaction of dimethyl sulfoxide with acetylenic esters. ¹²⁶ The addition reaction appears to involve a four-center sulfurane intermediate, and the sulfide fragment is retained in the products, which are 1:1 adducts having the sulfonium ylide structures **22.** Products **23** arising from the hydrolysis of such intermediates are isolated in some cases, for example, with *N*-ethoxycarbonyl-*S*, *S*-dimethylsulfilimine. ¹²⁵

A somewhat similar mechanism can account for the ''exchange'' reaction between S,S-diphenyl-N-methylsulfilimine and phenyl isocyanate (eq 12). 28

$$Ph_2\dot{S}$$
— $\bar{N}Me + PhNCO$ \longrightarrow $Ph_2\bar{S}$ — $NPh + MeNCO$ (12)

p-Tosyl isocyanate reacts with arenesulfonylsulfilimines in the presence of triphenylphosphine, all three components being required for reaction, giving arenesulfonylphosphinimines, triphenylphosphine oxide, and tosyl amide after hydrolysis.³¹ These reactions appear to involve termolecular mechanisms similar to that shown in Scheme II for the conversion of sulfoxides into *N*-tosylsulfilimines.

Diphenylcyclopropenone is another highly electrophilic carbonyl compound which reacts with several sulfilimines. With *N*-aryl-¹²⁷ and with *N*-benzylsulfilimines,⁵⁹ diphenylcyclopropenone gives the enamines **24** and **25** in methanolic solution. *S.S-*Dimethyl-*N*-2-pyridylsulfilimine and related sulfilimines give simple 1:1 adducts (e.g., **26**) in good yields. ¹²⁷ It is likely that these reactions involve ketene intermediates such as **27** which are intercepted either by the solvent or by internal nucleophiles.

N-Aryl-*S*, *S*-dimethylsulfilimines also react with nitrile oxides at room temperature or below, giving 1,2,4-benzoxadiazines **28** in moderate yields. 128,129 In one such reaction (R¹ = CI, R² = CO₂Et) a *C*-nitrosoimine intermediate **29** was intercepted as a

Diels–Alder adduct of the nucleophilic diene thebaine; in the absence of a diene, the intermediate undergoes electrocyclic ring closure to the 1,2,4-benzoxadiazine. ¹³⁰ A similar reaction occurs with the nitrile imine **30**, but in this case the open-chain azoimine intermediate is stable enough to be isolated. ¹²⁸

$$\begin{array}{c} \stackrel{\bar{\mathsf{N}} \longrightarrow \dot{\mathsf{S}} \mathsf{Me}_2}{\mathsf{N}} + \mathsf{RC} \Longrightarrow \stackrel{\bar{\mathsf{N}} \longrightarrow \bar{\mathsf{O}}}{\longrightarrow} \\ & & & & & & \\ \mathsf{Ph} & \stackrel{\bar{\mathsf{N}} \longrightarrow \dot{\mathsf{S}} \mathsf{Me}_2}{\mathsf{N}} + \mathsf{RC} \Longrightarrow \stackrel{\bar{\mathsf{N}} \longrightarrow \bar{\mathsf{O}}}{\longrightarrow} \\ & & & & & \\ \mathsf{Ph} & \stackrel{\bar{\mathsf{N}} \longrightarrow \dot{\mathsf{S}} \mathsf{Me}_2}{\longrightarrow} + \mathsf{RC} \Longrightarrow \stackrel{\bar{\mathsf{N}} \longrightarrow \bar{\mathsf{O}}}{\longrightarrow} \\ & & & & & \\ \mathsf{Ph} & & & & & \\ \mathsf{Ph} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

2-Pyridyl- and benzimidoylsulfilimines also react with nitrile oxides, and from these reactions, triazole N-oxides 31 and 32 have been isolated. 117 It is likely that C-nitrosoimines are also intermediates in these reactions, 130 but that they cyclize to give the aromatic five-membered ring products rather than sixmembered ring isomers.

S,S-Dimethyl-N-ethoxycarbonylsulfilimine is reported to give triazolones 33 with lpha-chloro hydrazones 34; 125 azoimine intermediates can also be invoked to account for the formation of these products.

$$Me_2$$
\$\(\frac{1}{5}\)—\(\text{NCO}_2\)Et + Ar^1\(\text{C}\)—\(\text{NHAr}^2\)

34

Ar^1

NH

N

Ar^2

33

C. Thermal Reactions

The type of reaction which occurs when a sulfilimine is heated depends to a large extent upon the nature of the substituents on sulfur. With S,S-diarylsulfilimines and with a few other systems a major reaction involves simple cleavage of the sulfur-nitrogen bond to give a sulfide, but in most cases the substituents on sulfur participate in the reactions.

1. S-Allylsulfilimines. [2,3] Sigmatropic Shifts

S-Allylsulfilimines (35, X = SO₂R) rearrange to sulfenamides 36 on mild heating, or slowly at room temperature. 131-133 The

reaction is first order and involves inversion of the allyl group, 131 as expected for an intramolecular [2,3] sigmatropic shift. Similar rearrangements occur spontaneously in S-allyl-N-phthalimidosulfilimines 134 and in the S-propargylsulfilimine 37.56

$$Ph$$
 $HC = CCH_2S^+ - NH \rightarrow PhSNHCH = C = CH_2$
37

A variant of the reaction is used as a method of "allylic amination" of alkenes (eq 13). 135,136

$$R$$
 + TsN=S=NTs

-NTs
-NTs
-NTs
NHTs
NTs
(13)

2. S-Alkylsulfilimines with a β -Hydrogen Atom. Cycloelimination

Sulfilimines bearing an S-alkyl group with a β -hydrogen atom commonly undergo an olefin-forming elimination reaction when they are heated at 80-150 °C. The mechanism of the reaction has been investigated with several N-arenesulfonvlsulfilimines. and all the evidence points to a concerted syn (Ei) elimination (Scheme VI). Thus, the eliminations are first order with respect to sulfilimine and show a deuterium kinetic isotope effect 96, 137

 $(k_{\rm H}/k_{\rm D}=3.03~{\rm at~80~^{\circ}C~for~PhS^{+}EtNTs}).^{137}$ Change of solvent has relatively little effect on the reaction rate. The eliminations show high syn stereoselectivity, as illustrated for the three and erythro isomers 38 and 39.138

The ease of thermal syn elimination of these sulfilimines is greater than for the corresponding sulfoxides, 138, 139 the stereoselectivity is slightly higher, and the yields of olefins are good, so that the reaction is a useful way of introducing double bonds. An example of its synthetic use is the production of [2,n] paracyclophan-(n + 7)-enes 40 from the corresponding S-methyl-N-tosylsulfilimines. 140

The direction of elimination in the sulfillimine 41 depends upon the solvent: in dimethyl sulfoxide or in the absence of solvent. Hofmann elimination to give 1-butene is the major reaction pathway, but in benzene 2-butene is the major product. 139

Similar cycloeliminations occur with appropriately S-substituted N-ethoxycarbonyl, 99 N-acetyl, 141 N-benzoyl, 102 N-carbamoyl, 104 and N-H57 sulfillimines; for example, N-acetyl-S,S-diethylsulfilimine (42) gives ethylene and N-(ethylthio)acetamide when heated under reflux in xylene. 141 N-Arylsulfilimines normally undergo Sommelet-Hauser rearrangement as the major thermal process (see section IV.C.3), but those derived from sulfides bearing β -hydrogen atoms can also give cycloelimination products. 142

Et₂
$$\overset{+}{\text{S}}$$
— $\overset{-}{\text{NCOMe}}$ \rightarrow CH₂= $\overset{-}{\text{CH}}_2$ + EtSNHCOMe
42 (51%) (95%)

An attempt to prepare the sulfillimine 43 by heating ethyl azidoformate with penicillin G methyl ester gave instead the elimination product 44 in low yield;46 reaction of chloroamine-T

with penicillin esters resulted in the formation of 2:1 adducts **45** which underwent a similar cycloelimination when heated in toluene. ¹⁴³ A related reaction takes place when the sulfilimine **46** is heated in benzene: cycloelimination is followed by a Pummerer rearrangement, leading to the formation of dimeric sulfenamide **47** in high yield. ¹⁴⁴

3. S-Alkylsulfilimines with an α -Hydrogen Atom. [1,2] Shifts and Sommelet-Hauser Rearrangements

A Pummerer-type rearrangement can occur with sulfilimines bearing an S-alkyl group with an α -hydrogen atom, the key step being the equilibration of the sulfilimine with an isomeric sulfonium ylide. A subsequent 1,2-shift of the nitrogen substituent to the carbanionic center gives 48, the primary product of rearrangement.

$$R^{1}CH_{2}\overset{+}{S}R^{2}\overset{-}{N}X \rightleftharpoons R^{1}\overset{+}{C}H\overset{+}{S}R^{2}NHX \rightarrow R^{2}SCHR^{1}NHX$$
48

Good evidence for this mechanism comes from attempts to prepare *N*-tosylsulfillimines from sulfoxides containing activated methylene groups, by reaction of the sulfoxides with *N*-sulfinyltosylamide. ¹⁴⁵ The sulfillimines were not isolated, but, from reactions performed at 35 °C, their products of Pummerer rearrangement **49** could be isolated in good yields. At 80 °C these products disproportionated to **50** and **51**.

TsNSO + MeSOCH₂R
$$\rightarrow$$
 [RCH₂SMeNTs]

35 °C
 \rightarrow MeSCHRNHTs $\xrightarrow{80}$ °C
(TsNH)₂CHR + (MeS)₂CHR

49
50
51

R = PhCO, p-MeOC₆H₄CO, MeOCO, C₅H₁₁CO, CN

The primary products of Pummerer rearrangement 48 have not usually been isolated in other systems, although they are implicated as reaction intermediates. *N*-Benzyltosylamide is formed when the *N*-tosylsulfilimines **52** (R = Ph, CH_2Ph) are heated at 180–200 °C; the sulfilimine **52** (R = Me) is stable even at these temperatures. ¹³² Similarly, *N*-acetyl-*S*,*S*-dimethylsulfilimine decomposes at 120–125 °C to give, as major products, compounds **53** and **54**, which are almost certainly formed by a mechanism involving Pummerer rearrangement. ¹⁴¹

PhCH₂SRNTs
$$\xrightarrow{+}$$
 RSCHPhNHTs → PhCH₂NHTs

52

Me₂SNCOMe $\xrightarrow{120~^{\circ}\text{C}}$ MeSCH₂NHCOMe → (Me₂S)₂CH₂

53 (62%)

+ (MeCONH)₂CH₂

54 (38%)

The reaction of *N*-aminophthalimide with *N*-chlorosuccinimide and dibenzyl sulfide gave *N*-(benzylideneamino)phthalimide (55) (95%) instead of the sulfillimine 56, which was not detected. ¹⁹ A possible mechanism for this reaction also involves a [1,2] shift.

$$(PhCH2)2SNR → PhCH2SCHPhNHR → PhCH=NR$$

56

 $R = phthalimido$

When the *N*-arylbenzimidoylsulfillimines **57** were heated in solution at 190 °C, quinazolines **58** and triphenyl-s-triazine were isolated. ¹⁷ It is likely that these compounds are derived from the

intermediates 59 since an attempted independent synthesis of 59 (R = H) gave the same final products.

A [1,2] shift is also reported when *N-p*-chlorophenyl-*S,S*-diethylsulfilimine is heated in cyclohexane with triethylamine; the aniline **60** is isolated in high yield. 146 Normally, however,

$$Et_2\dot{S} - N - CI$$

$$Et_3N - EtSCHMeNH - CO$$
60 (98%)

N-arylsulfilimines undergo a different type of rearrangement, the Sommelet–Hauser rearrangement, when heated in aprotic solvents with a base^{22,146,147} or in protic solvents without a base. ^{146,147} This reaction (Scheme VII) also involves proton transfer from the α -carbon atom to nitrogen as a first step; an allowed [2,3] sigmatropic rearrangement of the resulting sulfonium ylide then leads to the formation of 2-substituted anilines.

The reaction has been shown to go in good yield with a wide range of *N*-arylsulfilimines, including compounds in which both ortho positions are blocked by methyl groups. From the latter

SCHEME VII

compounds the unstable 2,4-cyclohexadienone imines 61 were isolated. 146

The rate of rearrangement depends upon the rate of proton abstraction from the S-alkyl group and upon the position of equilibrium for protonation on nitrogen; thus, the reaction shows a kinetic isotope effect (k_H/k_D for the rearrangement of N-pchlorophenyl-S,S-dimethylsulfilimine and for the S,S-perdeuterated compound is 2.5-3.3), and the rate of rearrangement is decreased by electron-withdrawing para substituents. 147 The concertedness of the rearrangement has been demonstrated for the isomers 62 and 63, which give only the products expected for a suprafacial [2,3] sigmatropic shift. 148

Me

$$NH_2$$
 NH_2
 NH_2

The Sommelet-Hauser rearrangement has been developed by Gassman and his co-workers into a general method of

ortho-alkylation of anilines. The sulfilimine is not normally isolated in their procedure; the aniline is converted in situ into an azasulfonium salt by reaction with tert-butyl hypochlorite and a sulfide, and the salt is then treated with a base to give the rearrangement product, 142 Synthetically useful extensions of the method include the alkylation of 2-aminopyridines at the 3 position, 149 the ortho-formylation of anilines by using 1,3-dithiane as the sulfide. 150a and the formation of indoles 64 from anilines and β -keto sulfides. 150b

4. Other Reactions

Sulfilimines unsubstituted on nitrogen give the corresponding sulfide, ammonia, and nitrogen when they are heated; several additional minor products have been detected in the decomposition of S-alkyl derivatives. 57,83,114 S,S-Diphenyl-N-methylsulfilimine decomposes to give diphenyl sulfide when it is heated at 175 °C.28 N-Chloro-S.S-diphenylsulfilimine gives diphenyl sulfide and diphenyl sulfoxide, together with the salt 65, in benzene and in other solvents.62

There is good evidence that S, S-dimethyl-N-phthalimidosulfilimine gives phthalimidonitrene when it is heated at 80 °C. In the presence of olefins, aziridines, e.g., 66, can be isolated in good yield, and in their absence, cis-phthaloyltetrazene (67) is a major product. 19 The tetrazene is also formed when N-ami-

nophthalimide is oxidized in the presence of diphenyl sulfide, and S,S-diphenyl-N-phthalimidosulfilimine has been proposed as an intermediate in this reaction. 151

When the conjugatively stabilized sulfilimines 68, 69, and 70 are heated, an intramolecular displacement of sulfide takes place and heterocyclic products are isolated.

$$Ph_{2}\dot{S} = \bar{N} \qquad O$$
 $R = 68$
 $heat, CHCl_{3} \rightarrow Ph_{2}S + N \rightarrow Ph \qquad (ref 55)$
 $Me_{2}\dot{S} = \bar{N} \qquad O$
 $R = 152$

Me₂
$$\stackrel{\circ}{S}$$
 $\stackrel{\circ}{N}$ $\stackrel{\circ}{N}$

Nitrogen is eliminated from the cyclic sulfillimine **71** when it is heated at 80–105 °c. From its solution pyrolysis in toluene, the amidine **72** is isolated in high yield; ¹⁵³ a radical mechanism for the decomposition seems likely.

Pyrolysis of the $\beta\text{-lactam}$ sulfillimines 73 in toluene gave the fused oxazolines 74. $^{143\mathrm{b}}$

R1CONH +SMe₂ Me
$$CO_2R^2$$
73

R1

Me
 CO_2R^2
 CO_2R^2
 CO_2R^2

74

D. Photochemical Reactions

The known photochemical reactions of sulfillimines almost invariably involve cleavage of the sulfur–nitrogen bond. Where comparisons have been made, the reactions are found to be very similar to those of the corresponding azides. Thus, *N*-benzoyl-*S*,*S*-dimethylsulfillimine and benzoyl azide both form *N*-benzoylaziridines stereospecifically when irradiated in *cis*- and *trans-4*-methylpent-2-ene;⁴³ phenyl isocyanate is also produced. Singlet benzoylnitrene is proposed as the precursor of the *N*-benzoylaziridines. Photolysis of the sulfillimine in methanol gives benzamide (47%) and methyl *N*-phenylcarbamate (33%) as the major products.²⁴ *S*,*S*-Dimethyl-*N*-ethoxycarbonylsulfillimine and ethyl azidoformate also show very similar photochemical behavior.⁴⁴

N-Arylbenzimidoylsulfilimines give benzimidazoles in high yield (eq 14) when they are irradiated in acetonitrile. ¹⁷ This reaction parallels the photochemical behavior of 1,5-diaryltetrazoles, which also give 2-arylbenzimidazoles. The similarity also

Ph
$$h_{\nu}$$
, MeCN h_{ν} , MeC

extends to sulfilimines and tetrazoles in which the ortho position of the *N*-aryl group is blocked. Thus, the sulfilimine **75** and the tetrazole **76** both give as a photolysis product the pyrimidine **77**, which is probably derived from an intermediate 3a*H*-benzimidazole **78**, by a series of [1,5] sigmatropic shifts.

Other examples of sulfur–nitrogen bond cleavage in the photolysis of sulfillimines are reported with S,S-diphenyl-N-methylsulfillimine²⁸ and with S,S-dimethyl-N-tosylsulfillimine. The latter when irradiated in methanol gave p-toluenesulfonamide and ammonium p-toluenesulfonate as the major products.

E. Oxidation

Sulfilimines can be oxidized to the corresponding sulfoximines in good yields by reaction with potassium permanganate in basic or neutral media. Such reactions have been reported for Nunsubstituted sulfilimines⁵⁷ and for N-alkyl, ²⁸ N-aryl, ^{16,116} N-acyl, ^{24,155} and N-arene sulfonyl derivatives. N-Tosylsulfilimines have also been converted into sulfoximines by their reaction with m-chloroperbenzoic acid. ³⁵ The oxidation of N-arenesulfonylsulfilimines proceeds with retention of configuration at sulfur, ^{32,35,39a,156}

S,S-Diphenylsulfillmine reacts with chloramine-T in methanol at room_temperature to give $Ph_2S^+(NH)NTs$ (54%) and $Ph_2S^+(O)NTs$ (39%). ¹⁵⁷

F. Reduction

A wide range of methods is available for the reduction of *N*-arenesulfonylsulfillimines to the corresponding sulfides. Catalytic hydrogenolysis is the established method; ¹⁵⁸ this and other methods of reduction are summarized in Table XVI. The kinetics of the reduction by thiophenol are consistent with a mechanism involving fast reversible protonation of the sulfillimine followed by slow attack of thiophenoxide ion on the cation. ¹⁵⁹ When potassium thiophenoxide is used as the reducing agent in dimethylformamide solution, a different reaction may occur with *N*-tosylsulfillimines bearing an *S*-alkyl group: this involves nu-

TABLE XVI. Methods of Reduction of N-ArenesulfonyIsulfilimines

Reducing agent	Conditions	Yields, %	Ref
Н,	Pd, 1 atm, room temp	55-75	158
Sn/HCl ag	100 °C	73-95	132
H,NC==NH.SO,H	NaOH, $R_4P^+Br^-$, 70°	26-100	а
(R O),PS,H	Room temp	~100	b
Bu ₃ SnH	AIBN, THF, reflux	30-40	c
MeCS,H	Room temp	~100	d
Nal/HCIO, aq	25 °C	~100	159. e
MeĆOCI	Room temp	~100	124
PhSH	MeOH, room temp	~100	159

 a G. Borgogno, S. Colonna, and R. Fornasier, Synthesis, 529 (1975). b S. Oae, A. Nakanishi, and N. Tsujimoto, Tetrahedron, **28**, 2981 (1972). c S. Kozuka, S. Furumai, T. Akasaka, and S. Oae, $Chem.\ Ind.\ (London)$, 496 (1974). d S. Oae, T. Yagihara, and T. Okabe, Tetrahedron, **28**, 3203 (1972). e C. Dell'Erba, G. Guanti, G. Leandri, and G. Poluzzi Corallo, $Int.\ J.\ Sulfur\ Chem.$, **8**, 261 (1973).

cleophilic attack by thiophenoxide ion on the lpha-carbon atom, giving an alkyl phenyl sulfide (eq 15). 160,161 The reaction has been shown to go with inversion of configuration at the α -carbon atom, as would be expected for an S_N2 process. 160

ArSRNTs + PhS
$$\frac{\text{Me}_2\text{NCHO}}{20-25\text{ °C}}$$
 PhSR + ArSNTs $\frac{\text{PhS}^-}{\text{PhSSAr}}$ PhSSAr (15)

It is likely that a four-covalent (sulfurane) intermediate is produced in systems where the initial nucleophilic attack is at sulfur. The sulfilimine (CH₂)₄S⁺NTs reacts with thiophenolate ion to give tetrahydrothiophene in high yield; 160 here the structure of an intermediate sulfurane 79 would be particularly favorable, 162 with the five-membered ring bridging equatorial and axial positions.

Similar nucleophilic attack on sulfur probably occurs in the reduction of N-tosylsulfilimines by heating with cyanide ions in dimethylformamide or dimethyl sulfoxide 163-165 and in the reaction of S-phenyl-N-tosylsulfilimines with phosphines. 164, 166a, 167 The products derived from the tosylsulfilimine-phosphine system depend upon the conditions: the sulfide and N-tosylphosphinimine are produced in anhydrous dimethylformamide at 100-130 °C, but in the presence of water a phosphine oxide-tosylamide complex is formed (eq 16). The tosylsulfilimine-triphenylphosphine system can act as a dehydrating agent, converting carboxylic acids to anhydrides, and mixtures of an acid and an alcohol to the corresponding ester. 168

$$\begin{array}{c} \text{Ph$\bar{\$}R$\bar{\mathsf{N}}$\mathsf{Ts}$} + \text{PPh}_3 \longrightarrow \text{Ph$\bar{\$}R$\bar{\mathsf{P}}$\mathsf{Ph}_3} \\ \downarrow_{-} \\ \text{NTs} \\ \downarrow_{-} \\ \text{NTs} \end{array} \tag{16}$$

$$\begin{array}{c} \text{Ph$\bar{\$}R$} + \text{Ph}_3 \text{PO} \cdot \text{H}_2 \text{NTs} \\ \text{Ph$\bar{\$}R$} + \text{Ph}_3 \text{PO} \cdot \text{H}_2 \text{NTs} \\ \end{array}$$

S,S-Diaryl-N-tosylsulfilimines also give good yields of diaryl sulfides in their reaction with arylmagnesium bromide 169 and aryllithium 166 derivatives; nucleophilic attack on sulfur to give a sulfurane intermediate again appears to be a likely first step. Triarylsulfonium chlorides have been isolated when the reaction mixtures are quenched with aqueous hydrochloric acid. 170

Other reported reductions of sulfilimines include the catalytic hydrogenolysis of N-alkylsulfilimines²⁸ and the reaction of Ncarbamoylsulfilimines with thiophenol. 104

G. Hydrolysis and Other Reactions with Bases and Nucleophiles

Many of the reactions which result in the reduction of Ntosylsulfilimines (section IV.F) involve nucleophilic attack at sulfur to give a sulfurane intermediate. The reactions of this type can give a variety of products other than sulfides, depending upon the conditions. The reactions of N-tosylsulfilimines with thiophenolate anions illustrate another possible mode of attack of nucleophiles, that is, attack at the α -carbon atom of the S-alkyl group with displacement of the ion RSNTs. A third type of reaction can take place with nucleophiles which are also good bases: the reagent can abstract a proton from the S-alkyl group, usually an α -proton. As a result of this variety of possible reaction pathways, the products of reaction of N-tosylsulfilimines with nucleophiles are very sensitive to the nature of the substituents on sulfur, the reaction conditions, and the structure of the nucleophile.

The variety of possible reactions is illustrated by the action of methanolic potassium hydroxide on different N-tosylsulfilimines. The chiral sulfilimine 80 is hydrolyzed to methyl p-tolyl sulfoxide by reaction with a saturated solution of potassium hydroxide in methanol at room temperature.35 The reaction goes

Me NTs
$$\stackrel{\text{OH, MeOH}}{\longrightarrow} := \stackrel{\text{NP}}{\longrightarrow} \stackrel{\text{NP}}{\longrightarrow}$$

in good yield and with high stereoselectivity, leading to the formation of the sulfoxide of inverted configuration. Cram and his co-workers have proposed that an intermediate sulfurane is formed in which both the incoming and leaving groups occupy equatorial positions (eq 17); this allows intramolecular proton transfer to take place.

A later investigation by Furukawa, Oae, and their co-workers has shown that high yields of sulfoxides are obtained from Ntosylsulfilimines and methanolic potassium hydroxide only in exceptional cases. 171,172 Diaryl N-tosylsulfilimines do not normally react, whereas dialkyl or alkyl aryl derivatives give the sulfoxides and the α -methoxy sulfides 81 as the major products, the latter being favored by sulfilimines with bulky S-alkyl substituents. The mechanism proposed by the authors for the formation of the α -methoxy sulfides involves α -proton abstraction, elimination of tosyl amide anion to give a sulfur-stabilized carbonium ion, and attack by methoxide. 171 Alternatively, the reaction can be formulated as a rearrangement, followed by nucleophilic displacement of tosyl amide anion by methoxide (Scheme VIII).

SCHEME VIII

The cyclic sulfillimine **82** gives benzothiophene with potassium hydroxide in methanol;³² here, elimination of tosyl amide from the product of rearrangement is favored, since the final product is aromatic.

A similar reaction takes place when acyclic *N*-tosylsulfilimines with a β -hydrogen atom are treated with potassium *tert*-butoxide in benzene; vinyl sulfides are produced in useful yields (eq 18). ¹⁷³

Chloride ion can also function as a nucleophile which attacks the α -carbon atom of N-tosylsulfillimines. When S-methyl-S-phenyl-N-tosylsulfillimine is heated with lithium chloride in a dipolar aprotic solvent, N-methyltosylamide and diphenyl disulfide are formed in high yield. The kinetics of the reaction are consistent with a rate-determining attack of chloride ion at the S-methyl group, followed by alkylation of the sulfenamide ion; the chloride ion therefore acts as a catalyst for the decomposition.

PhSMeNTs + CI⁻
$$\xrightarrow{\text{Me}_2\text{SO}, 110}$$
 °C PhSNTs + MeCI

→ PhSNMeTs + CI⁻ → TsNHMe + PhSSPh

(93%) (88%)

N-Arenesulfonylsulfilimines can be hydrolyzed in acidic conditions. 20,32,35,175 A kinetic study of the reaction has shown that in most cases the rate-determining step is nucleophilic attack by water on the protonated sulfilimine. 175 Other types of sulfilimines may be hydrolyzed in acidic, basic, or neutral conditions, depending upon the nature of the nitrogen substituent. N-Unsubstituted- and *N*-alkyl-*S*,*S*-diphenylsulfilimines have been hydrolyzed with aqueous acid, 28 and *N*-carbamoylsulfilimines by warming in acidic, basic, or neutral solution. 104 *N*-Acetyl-*S*,*S*-dimethylsulfilimine is slowly hydrolyzed in water at 20 $^{\circ}$ C. 141

S,S-Dimethyl-N-(2,4-dinitrophenyl)sulfilimine (83) undergoes a series of ligand exchange reactions when it is heated with malononitrile and similar activated methylene compounds in dimethylformamide: 68 the products are sulfonium ylides (eq 19). The reaction is most successful when the p K_a of the attacking nucleophile is lower than that of 2,4-dinitroaniline. Even S,S-dimethyl-N-tosylsulfilimine undergoes the exchange reaction to some extent (12%) with malononitrile.

H. Miscellaneous Reactions

1. Reactions of S-Alkyl Substituents

In addition to those reactions described in earlier sections, there are a few reactions of tosylsulfillimines which primarily occur at the *S*-alkyl substituents. *S*-Alkyl-*S*-phenyl-*N*-tosylsulfillimines undergo hydrogen–deuterium exchange in aqueous dioxane containing sodium hydroxide; the rates of exchange are, surprisingly, greater than for the corresponding sulfoximines. ¹⁷⁶ The anions of these sulfillimines can also be generated in anhydrous conditions using dimsylsodium, and they undergo carbanion transfer to aldehydes, ketones, and Schiff bases. ¹⁷⁷ The reactions are illustrated in Scheme IX with examples of methylene transfer using *S*-methyl-*S*-phenyl-*N*-tosylsulfillimine.

SCHEME IX

N-Tosyl-*S*-vinylsulfilimines undergo conjugate addition to the vinyl group with a wide range of nucleophiles (eq 20).¹⁷⁸

$$TsNRSCH=CH_2 + BH \rightarrow TsNRSCH_2CH_2B$$
 (20)

2. Reaction with Dimethyl Sulfoxide

S-Methyl-*S*-phenyl-*N*-tosylsulfilimine and several related sulfilimines react with dimethyl sulfoxide at 180 °C.¹⁷⁹ The major products are disulfides and aldehydes derived from the *S*-alkyl group by oxidation. Diphenyl-*N*-tosylsulfilimine does not react.

PhSMeNTs
$$\xrightarrow{\text{Me}_2\text{SO}}$$
 PhSSMe + PhSSPh + CH₂O (40%) (30%) (33%)

$$(PhCH_2)_2 \stackrel{+}{SNTs} \xrightarrow{Me_2SO} PhCH_2SSMe + PhCHO$$

The mechanism proposed for the reaction involves the thermal elimination of TsNH and the attack of the sulfoxide, via oxygen, at the α -carbon atom (Scheme X).

SCHEME X

$$\begin{array}{c}
\bar{\text{NHTs}} \\
\text{PhS} \longrightarrow \bar{\text{CH}}_2 \\
\text{PhS} \longrightarrow \bar{\text{CH}}_2 \\
\text{Me}_2 \stackrel{\downarrow}{\text{S}} \longrightarrow \bar{\text{O}} \\
\text{Me}_2 \stackrel{\downarrow}{\text{S}} \longrightarrow \bar{\text{O}}
\end{array}$$

$$\begin{array}{c}
\text{PhS} \longrightarrow \bar{\text{CH}}_2 \\
\text{Me}_2 \stackrel{\downarrow}{\text{S}} \longrightarrow \bar{\text{O}} \\
\text{Me}_2 \stackrel{\downarrow}{\text{S}} \longrightarrow \bar{\text{O}}
\end{array}$$

$$\begin{array}{c}
\text{CH}_2 \text{O} + \text{PhS} \stackrel{\downarrow}{\text{S}} \text{Me}_2 \\
\text{Me}_2 \stackrel{\downarrow}{\text{SO}} \longrightarrow \bar{\text{PhSSMe}} + \bar{\text{CH}}_2 \text{O} + \bar{\text{Me}}_2 \\
\text{Me}_2 \stackrel{\downarrow}{\text{SO}} \longrightarrow \bar{\text{PhSSMe}} + \bar{\text{CH}}_2 \text{O} + \bar{\text{Me}}_2 \\
\text{Me}_2 \stackrel{\downarrow}{\text{SO}} \longrightarrow \bar{\text{PhSSMe}} + \bar{\text{CH}}_2 \text{O} + \bar{\text{Me}}_2 \\
\text{Me}_2 \stackrel{\downarrow}{\text{SO}} \longrightarrow \bar{\text{CH}}_2 \\
\text{Me}_2 \stackrel{\downarrow}{\text{SO}} \longrightarrow \bar{\text{CH}}$$

3. Reaction with Potassamide

N-Unsubstituted S,S-diethyl- and S,S-dimethylsulfilimines form potassium salts with potassamide in liquid ammonia below 0 °C. 180 When the dimethylsulfilimine salt is heated in an autoclave at 110 °C with an excess of potassamide in ammonia, potassium pentaazadisulfite (84) is obtained, together with methane

$$Me_{2}\tilde{S}\tilde{N}H + 5KNH_{2}$$

$$\longrightarrow K_{5}\begin{bmatrix} \tilde{N} \\ H\tilde{N} \end{bmatrix}S - \tilde{N} - S\begin{bmatrix} \tilde{N} \\ \tilde{N} \end{bmatrix} + 4CH_{4} + 2NH_{3}$$
84

V. Uses

Herbicidal activity has been reported for arenesulfonylsulfilimines having the general structures 85 181 and 86, 182 and for N-cyanosulfilimines.49

Sulfilimines which are claimed to have physiological activity include those of the general structure 87, which show diuretic, natriuretic, and hypotensive properties, 183 and compounds related to 88, which are antidepressants and stimulants of the central nervous system. 184 Bis(2-chloroethyl)- N-tosylsulfilimine is reported to be an inhibitor of tumor growth, 133 although it also shows toxic properties. 185

$$R^{5}$$
 $R^{6}R^{7}SNSO_{2}$
 $R^{6}R^{7}SNSO_{2}$

Several arenesulfonylsulfilimines with an amino or substituted amino group at the 4 position have shown activity against streptococcus species. 186 Sulfilimines which are reported to be useful antimicrobial agents include 89 187 and compounds of the type 90, where Q is a heteroaromatic group.23

N-Unsubstituted sulfilimines 187 and N-arenesulfonyl derivatives 188 are useful as antioxidants for plastics.

VI. Related Compounds

Compounds of the type XYS=NR, in which either or both of the groups X and Y are attached to sulfur through a heteroatom, are described briefly in this section. Examples of the most important groups of such compounds are shown in Table XVII. They have been subjected to relatively little systematic investigation, but their known reactions are not usually those characteristic of sulfilimines, the major reaction being nucleophilic displacement of the substituents attached to sulfur. Some of these compounds are, however, commonly named as sulfilimines, as indicated in Table XVII. Two classes will be considered: those based on imidosulfurous acid, in which both X and Y are attached to sulfur through a heteroatom, and sulfinimidic acid derivatives, in which one sulfur substituent is bonded through a carbon atom. The known six-membered heterocyclic analogues of these systems are also described.

TABLE XVII. Compounds Related to Sulfilimines

Formula	IUPAC name
(OH) ₂ S=NH (NH ₂) ₂ S=NH F ₂ S=NH CI ₂ S=NH Ph(NH ₂)S=NH Ph(CI)S=NH	Imidosulfurous acid ^a Imidosulfurous diamide ^b Imidosulfurous difluoride ^a Imidosulfurous dichloride ^a Benzenesulfinamidine ^b Benzenesulfinimidoyl chloride ^a

a Names of derivatives in Chemical Abstracts are usually based on these parent names. b Derivatives of these compounds are usually indexed as sulfilimines in Chemical Abstracts: thus, compound 91 is named as S, S-dimorpholino-N-p-nitrophenylsulfilimine and 92 is S-dimethylamino-S-phenyl-N-p-tolylsulfonylsulfillimine.

$$\begin{pmatrix}
O & N \\
2
\end{pmatrix} S = N & NO_2 Ph(NMe_2)S = NTs$$
91

A. Imidosulfurous Acid Derivatives

The best known derivatives of imidosulfurous acid are the imidosulfurous dihalides, particularly the difluorides and dichlorides. Their chemistry has been reviewed by Levchenko and Markovskii, 189 and a survey of the most important methods for their preparation has been presented by Roesky. 190 For imidosulfurous difluorides, most preparations use sulfur tetrafluoride with an amine or amide, 191, 192 or with a derivative such as an isocyanate, 66, 193 N-trimethylsilylamine, 194 or phosphinimine. 195 Few reactions of imidosulfurous difluorides with organic substrates have been reported: they are readily hydrolyzed and react with nucleophiles with displacement of fluoride. Thus, N-phenylimidosulfurous difluoride gave the dimethyl ester 93 with sodium methoxide and 2,1,3-benzothiadiazole (94) with o-phenylenediamine.66 With primary amines, sulfurdiimides RN= S=NR are formed. 192

A general method of preparation of imidosulfurous dichlorides involves the reaction of a substance containing an NH₂ group with sulfur dichloride. Good yields of products are obtained with arylamines, ^{196,197} aminopyridines, ¹⁹⁷ amides, ¹⁹⁷ tertiary alkylamines, ¹⁹⁸ and with stabilized primary enamines (CN)₂-C—C(X)NH₂. ¹⁹⁹ An improved procedure for *N*-acyl derivatives uses imidate esters with sulfur dichloride. ²⁰⁰ Chloramine-T and *N*,*N*-dichloroamines or -amides also give imidosulfurous dichlorides with sulfur dichloride, and with sulfur in the presence of a Lewis acid. ²⁰¹ An alternative synthesis of these compounds uses the reaction of sulfinylamines, RNSO, with phosphorus pentachloride. ^{202,203}

The chemistry of these compounds is governed by the ready displacement of chloride by other nucleophiles. They are readily hydrolyzed, and reaction with secondary amines or *N*-trimethylsilylamines results in the replacement of one or both chlorides by amino groups (eq 21).^{203,204}

$$Cl_2S = NR^1 \xrightarrow{R^2_2NH} CI(R^2_2N)S = NR^1 \xrightarrow{R^2_2NH} (R^2N)_2S = NR^1$$

(21)

An alternative synthesis of *N*-arenesulfonylimidosulfurous diamides, $(R_2N)_2S$ —NSO $_2Ar$, is the reaction of the appropriate sulfide with an *N*-chlorosulfonamide. Sulfur diimides are formed in the reaction of imidosulfurous dichlorides with primary amines. 198,203

Examples are reported of the reaction of imidosulfurous dichlorides with aldehydes and with dimethylformamide, in which imines are formed together with thionyl chloride (eq 22 and 23). 40,199

$$CI_2S = NC(CI) = C(CN)_2 + RCHO$$

 $\rightarrow RCH = NC(CI) = C(CN)_2 + SOCI_2$ (22)

 $Cl_2S=NAr + Me_2NCHO \rightarrow Me_2NCH=NAr + SOCl_2$ (23)

B. Sulfinimidic Acid Derivatives

Compounds of the type RS(NHTs)—NTs are readily available from the reaction of chloramine-T with thiols^{206,207} or with a variety of thiol derivatives RSX (X = COR¹,^{206,207} SR¹,^{207,208} SO₂R¹,²⁰⁹ CI,²¹⁰ and (EtO)₂PO²¹⁰). Chloramine-T also reacts with various N-substituted sulfenamides (eq 24),²¹¹ *N*-haloamides²¹² and *N*-bromoamidines^{213,214} react in a similar manner.

$$R^1SNHR^2 + TsNNaCI \rightarrow RS(NHR) = NTs + NaCI$$
 (24)

Sulfurdiimides have been found to undergo 1,4-cycloaddition with dienes (eq 25) 204,215 and the ene reaction with monoenes (eq 26), 41,135 both of which lead to the formation of sulfinamidines. The cyclic sulfinamidines **95** have been used as a source of α -free pyrroles, 215 while the allylic sulfinamidines **96** undergo rearrangement and elimination on further heating (see eq 13).

Arenesulfinimidoyl chlorides, Ar(Cl)S—NR, can be prepared from thiols²¹⁶ or from their trimethylsilyl derivatives²¹⁷ with *N.N-*dichloroamides; sulfenyl chlorides and disulfides have also been used as precursors.²¹⁸ Their reaction with amines provides an alternative route to sulfinamidines (eq 27).²¹⁹ Displacement of chloride by sulfur nucleophiles has also been observed.²²⁰

$$R^{1}N = S = NR^{2} + R^{3}$$

$$R^{1}N = S$$

$$R^{1}N = S$$

$$R^{1}N = S$$

$$R^{3} = R^{3}$$

$$R^{3} =$$

TsN=S=NTs + R1CH2CR2=CH2

$$Ar^{1}(CI)S = NSO_{2}Ar^{2} + R^{1}R^{2}NH$$

 $\rightarrow Ar^{1}(NR^{1}R^{2})S = NSO_{2}Ar^{2} + HCI$ (27)

C. Benzo-1,2,4-thiadiazines and 1*H*-1,2,4,6-Thiatriazines

Two groups of cyclic ylides which incorporate the same structural features as the compounds described above are the benzo-1,2,4-thiadiazines **97** and **98** and the 1*H*-1,2,4,6-thiatriazines **99**. Compounds **97** are prepared by the reaction of *N*-arylamidines with sulfur dichloride or by chlorination of 100.²²¹ The chlorine atom attached to sulfur can be displaced by morpholine. The related benzothiadiazines **98** are also prepared from *N*-arylamidines, by reaction with di-*N*-tosylsulfurdiimide or with *N*-tosylsulfinylamine.²²²

$$R = CCI_3$$
, Ph. $C_6H_3CI_2$ 98

 R^2
 R^3
 R^3
 R^4
 R^4

1,3,5-Trichloro-1,2,4,6-thiatriazine (**99**, R¹ = R² = R³ = CI) is the product of the reaction of sodium dicyaniimide with thionyl chloride; ²²³ other thiatriazines can be prepared from this compound by successive displacement of chloride by nucleophiles. ²²⁴ Other syntheses of 1,2,4,6-thiatriazines (R¹ = alkyl or aryl) are based on the reactions of *N*-bromoamidines with thiol salts and with sulfenamidines. ^{214,225}

Both groups of these cyclic ylides are readily hydrolyzed, and there is no evidence for aromatic character from their properties. 226

VII. Addendum

X-Ray crystal structure determinations have been reported for three more sulfillimines: *S,S*-dimethyl-*N*-4-nitrophenylsulfillimine, ²²⁷ *N*-benzoyl-*S,S*-dimethylsulfillimine, ²²⁸ and the ylide **45**²²⁹ derived from penicillin G methyl ester and chloramine-T.

The S-N bond length in the N-4-nitrophenyl ylide is short (1.651 Å) indicating that there is substantial double bond character. The structure of the N-benzovl ylide is similar to that of other Nacylsulfilimines, with a S-N bond length of 1.659 Å and a planar SNCO system. The S-N bond length in the ylide 45 is 1.592 Å. Dipole moments have also been determined for a series of Nary Isulfilimines 4-XC₆H₄ $\overline{\text{NS}}^+\text{Me}_2$.²²⁷ The values range from 5.53 D for the 4-fluoro derivative to 10.1 D for the 4-nitro derivative and are consistent with structures which have about 40-60% ionic character in the S-N bond. The value of 5.88 D for the 4chloro derivative is much higher than that reported earlier for this compound.92

The preferred conformations of sulfillimines derived from thianes and 1,3-dithianes have been reinvestigated by NMR.230 N-Tosyl-, N-4-chlorophenyl-, and N-benzoylsulfilimines derived from 1,3-dithiane all show a strong preference for the equatorial conformation, but of the corresponding thiane derivatives only the N-4-chlorophenylsulfilimine exists preferentially in the equatorial conformation. Rates of racemization²³¹ and absolute configurations 232 of a series of sulfillimines MeOC₆H₄S⁺PhNX have also been determined.

2-Substituted 1,3-dithianes and related compounds can be conveniently converted into the corresponding aldehydes and ketones by reaction with chloramine-T to give the corresponding sulfilimines, followed by hydrolysis. 233 If the 2-substituent bears a β -hydrogen atom, elimination takes place on reaction with base, and ketene thioacetals can be obtained in good yields.²³⁴ Reaction of N-tosylsulfilimines derived from 2-unsubstituted 1,3-dithianes and related compounds with the nucleophiles ROand RS⁻ provides a route to triorthoformates.²³⁵

Sulfilimines form charge-transfer complexes with tetracyanoquinone, the strength of the interaction being related to the basicity of the sulfilimine. 236 This paper includes a brief description of a new method for preparing N,S,S-triarylsulfilimines, namely the reaction of the N-bromosulfilimines with aryllithium derivatives. A method of preparing sulfinimidoyl chlorides RS=NR¹CI is the reaction of sulfenamides RSNHR¹ with chlorine and base.237

Acknowledgment. We thank Professor C. W. Rees, F.R.S., for helpful comments.

VII. References

- (1) B. M. Trost and L. S. Melvin, "The Chemistry of Sulfur Ylides", Academic Press, New York, N.Y., 1975.
- Press, New York, N.Y., 1975.
 (2) International Union of Pure and Applied Chemistry, "Nomenclature of Organic Chemistry", Section C, Butterworths, London, 1965, p. 158.
 (3) P. D. Kennewell and J. B. Taylor, Chem. Soc. Rev., 4, 189 (1975).
 (4) A. Schobert and A. Wagner, Methoden Org. Chem. (Houben-Weyl), 9, 220 (1955); F. Challenger in "Organic Sulfur Compounds", Vol. 1, N. Karasch, Ed., Pergamon, Oxford, 1961, p. 339; A. W. Johnson, "Ylid Chemistry", Academic Press, New York, N.Y., p. 356; "Organic Compounds of Sulphur, Selenium, and Tellurium," D. H. Reid, Sr. Reporter, The Chemical Society, London; 1970, p. 299; Vol. 2, 1973, p. 322; Vol. The Chemical Society, London: 1970, p 299; Vol. 2, 1973, p 322; Vol. 3, 1975, p 363; N. Yoshikawa, *Kagaku No Ryoiki*, **25**, 78 (1971); N. Furukawa, Yuki Gosei Kagaku Kyokai Shi, 29, 922 (1971); H. W. Roesky in "Sulfur in Organic and Inorganic Chemistry", Vol. 1, A. Senning, Ed., Marcel Dekker, New York, N.Y., 1971, p 13; L. Field, Synthesis, 101
- (5) H. S. Raper, Report to the British Chemical Warfare Dept., May 1917.
- (6) B. H. Nicolet and I. D. Willard, Science, 53, 217 (1921)
- (7) F. G. Mann and W. J. Pope, J. Chem. Soc., 121, 1052 (1922).
 (8) H. Yoshino, Y. Kawazoe, and T. Taguchi, Synthesis, 713 (1974).
- (9) A. Heesing and G. Imsieke, *Chem Ber.*, 107, 1536 (1974).
- (10) (a) J. Benes, Collect. Czech. Chem. Commun., 28, 1171 (1963); (b) K. Tsujihara, N. Furukawa, K. Oae, and S. Oae, Bull. Chem. Soc. Jpn., 42, 2631 (1969); (c) F. Ruff and A. Kucsman, J. Chem. Soc., Perkin Trans. 2, 509 (1975). (11) A. Kucsman, I. Kapovits, and B. Tanacs, *Tetrahedron*, **18**, 79 (1962).
- (12) A. Le Berre, C. Renault, and P. Giraudeau, Bull. Soc. Chim. Fr., 3245
- (13) (a) T. Ohashi, K. Matsunaga, M. Okahara, and S. Komori, Synthesis, 96 (1971); (b) M. Okahara, K. Matsunaga, and S. Komori, ibid., 203 (1972)
- J. I. G. Cadogan and I. Gosney, J. Chem. Soc., Perkin Trans. 1, 466 (1974).
- (15) E. Vilsmaier and W. Sprügel, Tetrahedron Lett., 625 (1972).
- (16) P. K. Claus, W. Rieder, P. Hofbauer, and E. Vilsmaier, Tetrahedron, 31,

- 505 (1975).
- (17) T. L. Gilchrist, C. J. Moody, and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1964 (1975)
- (18) E. J. Corey and C. U. Kim, J. Am. Chem. Soc., 94, 7586 (1972).
- (19) M. Edwards, T. L. Gilchrist, and C. W. Rees, unpublished observations.
- (20) D. S. Tarbell and C. Weaver, J. Am. Chem. Soc., 63, 2939 (1941) (21) A. K. Sharma, T. Ku, A. D. Dawson, and D. Swern, J. Org. Chem., 40, 2758
- (1975). (22) P. Claus and W. Vycudilik, *Monatsh. Chem.*, 101, 396 (1970).
- (23) H. Berger, R. Gall, M. Thiel, W. Voemel, and W. Sauer, German Offen. 2,147,013; Chem. Abstr., 78, 159647 (1973).
 (24) U. Lerch and J. G. Moffatt, J. Org. Chem., 36, 3391 (1971).
 (25) U. Lerch and J. G. Moffatt, J. Org. Chem., 36, 3861 (1971).
 (26) U. Lerch and J. G. Moffatt, J. Org. Chem., 36, 3861 (1971).

- (27) D. Martin and H.-J. Niclas, Chem. Ber., 102, 31 (1969).
- (28) J. A. Franz and J. C. Martin, J. Am. Chem. Soc., 97, 583 (1975).
 (29) J. C. Martin and J. A. Franz, J. Am. Chem. Soc., 97, 6137 (1975).
- (30) C. King, J. Org. Chem., 25, 352 (1960).
- (31) D. C. Garwood, M. R. Jones, and D. J. Cram, J. Am. Chem. Soc., 95, 1925
- (32) F. G. Yamagishi, D. R. Rayner, E. T. Zwicker, and D. J. Cram, J. Am. Chem. Soc., 95, 1916 (1973).
- (33) G. Schulz and G. Kresze, *Angew. Chem., Int. Ed. Engl.*, 2, 736 (1963).
 (34) E. S. Levchenko and B. N. Ugarov, *Zh. Org. Khim.*, 4, 1413 (1968).
 (35) D. J. Cram, J. Day, D. R. Rayner, D. M. von Schriltz, D. J. Duchamp, and
- D. C. Garwood, J. Am. Chem. Soc., 92, 7369 (1970); J. G. Tillett, Chem. Rev., 76, 747 (1976).
- (36) R. Neidlein and E. Heukelbach, Arch. Pharm., 299, 64 (1966).
- (37) B. A. Arbuzov, N. N. Zobova, and O. V. Sofronova, Izv. Akad. Nauk SSSR, Ser. Khim., 1206 (1975).
- (38) (a) B. W. Christensen, Chem. Commun., 597 (1971); (b) B. W. Christensen
- and A. Kjaer, *ibid.*, 934 (1969). (39) (a) C. R. Johnson and J. J. Rigau, *J. Org. Chem.*, **33**, 4340 (1968); (b) R. Cook, M. D. Glick, J. J. Rigau, and C. R. Johnson, J. Am. Chem. Soc., 93, 924 (1971)
- (40) L. N. Markovskii, G. S. Fedyuk, and E. S. Levchenko, Zh. Org. Khim., 8, 286 (1972).
- (41) G. Kresze and N. Schönberger, Justus Liebigs Ann. Chem., 1721
- (1975). (42) (a) O. P. Studzinskii, A. V. El'tsov, N. I. Rtischev, and G. V. Fomin, *Russ*. Chem. Rev., 43, 155 (1974); (b) L. Horner and A. Christmann, Chem. Ber., 96, 388 (1963)
- (43) Y. Hayashi and D. Swern, J. Am. Chem. Soc., 95, 5205 (1973).(44) Y. Hayashi and D. Swern, Tetrahedron Lett., 1921 (1972).
- (45) W. Ando, N. Ogino, and T. Migita, Bull. Chem. Soc. Jpn., 44, 2278
- (46) M. Numata, Y. Imashiro, I. Minamida, and M. Yamaoka, Tetrahedron Lett., 5097 (1972).
- (47) W. Ando, H. Fujii, T. Takeuchi, H. Higuchi, Y. Saiki, and T. Migita, Tetrahedron Lett., 2117 (1973).

- (48) R. Riemschneider and A. Kluge, *Monatsh. Chem.*, **84**, 522 (1953).
 (49) F. D. Marsh, U.S. Patent 3,505,401; *Chem. Abstr.*, **72**, 132102 (1970).
 (50) (a) T. J. Maricich and V. L. Hoffman, *Tetrahedron Lett.*, 729 (1971); (b) T. J. Maricich and V. L. Hoffman, *ibid.*, 5309 (1972); (c) *J. Am. Chem. Soc.*, 96, 7770 (1974).
- (51) J. Sauer and K. K. Mayer, *Tetrahedron Lett.*, 319 (1968).(52) M. Okahara and D. Swern, *Tetrahedron Lett.*, 3301 (1969)
- (53) D. J. Anderson, T. L. Gilchrist, D. C. Horwell, and C. W. Rees, J. Chem. Soc. C, 576 (1970).
- (54) T. Yoshimura, T. Omata, N. Furukawa, and S. Oae, J. Org. Chem., 41, 1728 (1976)
- (55) Y. Tamura, K. Sumoto, H. Matsushima, H. Taniguchi, and M. Ikeda, J. Org. Chem., 38, 4324 (1973).
- (56) Y. Tamura, H. Matsushima, J. Minamikawa, M. Ikeda, and K. Sumoto, Tetrahedron, 31, 3035 (1975).
- (57) R. Appel and W. Büchner, Chem. Ber., 95, 849 (1962).
 (58) R. Appel and W. Büchner, Chem. Ber., 95, 2220 (1962).
- (59) Y. Tamura, H. Matsushima, M. Ikeda, and K. Sumoto, Tetrahedron, 32, 431 (1976).
- (60) N. Furukawa, S. Oae, and T. Yoshimura, Synthesis, 30 (1976)
- (61) Y. Tamura, T. Miyamoto, J. Eiho, H. Taniguchi, T. Nishimura, and Y. Kita, J. Chem. Soc., Perkin Trans. 1, 105 (1974).
- (62) N. Furukawa, T. Yoshimura, and S. Oae, Tetrahedron Lett., 2113 (1973).
- (63) R. Appel and W. Büchner, Chem. Ber., 95, 855 (1962).
- (64) J. MacCordick and R. Appel, Z. Naturforsch. B, 24, 938 (1969).
 (65) (a) B. K. Bandlish, A. G. Padjilla, and H. J. Shine, J. Org. Chem., 40, 2590 (1975); (b) S. R. Mani and H. J. Shine, ibid., 40, 2756 (1975).
 (66) W. C. Smith, C. W. Tullock, R. D. Smith, and V. A. Engelhardt, J. Am.
- Chem. Soc., **82**, 551 (1960).
 (67) S. S. Trach and N. S. Zefirov, *Zh. Org. Khim.*, **10**, 219 (1974).
 (68) T. Yamamoto, Y. Harigaya, and M. Okawara, *Chem. Lett.*, 1009
- (1972).
- (69) C. C. Price and S. Oae, "Sulfur Bonding", Ronald Press, New York, N.Y., 1962, Chapter 1 (70) R. Hoffmann, D. B. Boyd, and S. Z. Goldberg, J. Am. Chem. Soc., 92, 3929
- (1970).
- (71) A. Streitwieser and J. E. Williams, J. Am. Chem. Soc., 97, 191 (1975); F. Bernardi, I. G. Csizmadia, A. Mangini, H. B. Schlegel, M.-H. Whangbo, and S. Wolfe, ibid., 97, 2209 (1975).
- (72) R. S. Glass and J. R. Ducheck, J. Am. Chem. Soc., 98, 965 (1976).
 (73) S. G. Clarke, J. Kenyon, and H. Phillips, J. Chem. Soc., 188 (1927); J.
- Holloway, J. Kenyon, and H. Phillips, ibid., 3000 (1928).
- (74) B. W. Christensen and A. Kjaer, Chem. Commun., 784 (1975)(75) B. C. Menon and D. Darwish, Tetrahedron Lett., 4119 (1973).
- (76) P. Mezey, A. Kucsman, G. Theodorakopoulos, and I. G. Csizmadia, Theor.

- Chim. Acta, 38, 115 (1975).
- N. Furukawa, K. Harada, and S. Oae, Tetrahedron Lett., 1377 (1972).

- (78) D. Darwish and S. K. Datta, Tetrahedron, 30, 1155 (1974).
 (79) A. Kálmán, Acta Crystallogr., 22, 501 (1967).
 (80) P. Mezey and Á. Kucsman, J. Chem. Soc., Faraday Trans. 2, 68, 2060
- (81) P. Mezey and A. Kucsman, Chem. Commun., 1448 (1971).
 (82) F. Ruff, A. Kucsman, I. Schuster, and I. Kapovits, Acta Chim. Acad. Sci. Hung., 58, 85 (1968).
- (83) J. B. Lambert, C. E. Mixan, and D. S. Bajley, J. Am. Chem. Soc., 94, 208 (1972); J. B. Lambert, C. E. Mixan, and D. S. Bailey, Chem. Commun., 316
- (84) P. K. Claus, W. Rieder, F. W. Vierhapper, and R. L. Willer, Tetrahedron
- Lett., 119 (1976). (85) A. F. Cameron, N. J. Hair, and D. G. Morris, *J. Chem. Soc., Perkin Trans.* 2, 1951 (1973).
- (86) A. Kálmán, B. Duffin, and Á. Kucsman, Acta Crystallogr., Sect. B, 27, 586 (1971).
- A. Kálmán and K. Sasvari, Cryst. Struct. Commun., 1, 243 (1972).
- (88) A. Kucsman, A. Kalman, and I. Kapovits, Acta Chim. Acad. Sci. Hung., 53, 97 (1967).
- (89) A. Kalman, K. Sasvari, and A. Kucsman, Chem. Commun., 1447 (1971).
- (90) A. Kálmán, K. Sasvári, and Á. Kucsman, Acta Crystallogr., Sect. B, 29, 1241 (1973).
- (91) H. Goetz and J. Schmidt, Tetrahedron Lett., 2089 (1971)
- (92) P. Claus and W. Vycudilik, *Monatsh. Chem.*, 101, 405 (1970)
- (93) C. E. Mixan and J. B. Lambert, J. Org. Chem., 38, 1350 (1973)
- (94) A. Kucsman, F. Ruff, and I. Kapovits, Tetrahedron, 22, 1575 (1966).
 (95) J. J. Shah, Can. J. Chem., 53, 2381 (1975).
- (96) S. Oae, K. Harada, K. Tsujihara, and N. Furukawa, Bull. Chem. Soc. Jpn., 46, 3482 (1973).
- (97)A. Kucsman, I. Kapovits, and F. Ruff, Acta Chlm. Acad. Sci. Hung., 54, 153 (1967).
- (98) A. Wagner and R. Banholzer, Angew. Chem., 71, 311 (1959)
- G. F. Whitfield, H. S. Beilan, D. Saika, and D. Swern, J. Org. Chem., 39, 2148 (1974)
- (100) H. Kise, G. F. Whitfjeld, and D. Swern, Tetrahedron Lett., 1761 (1971).
- (101) A. Kucsman, F. Ruff, I. Kapovits, and J. G. Fischer, Tetrahedron, 22, 1843
- (102) A. J. Papa, J. Org. Chem., 35, 2837 (1970).
 (103) G. Matsubayashi, M. Toriuchi, and T. Tanaka, Bull. Chem. Soc. Jpn., 47, 765 (1974).
- (104) S. Oae, T. Masuda, K. Tsujihara, and N. Furukawa, Bull. Chem. Soc. Jpn., **45**, 3586 (1972). (105) K. Tsujihara, N. Furukawa, and S. Oae, *Bull. Chem. Soc. Jpn.*, **43**, 2153
- (106) A. Kucsman, F. Ruff, and I. Kapovits, Acta Chim. Acad. Sci. Hung., 50, 325 (1966).
- (107) G. F. Whitfield, H. S. Beilan, D. Saika, and D. Swern, Tetrahedron Lett., 3543 (1970).
- (108) H. W. Roesky and G. Holtschneider, Z. Anorg. Allg. Chem., 378, 168 (1970)
- (109) İ. K. Njelsen and A. Kjaer, Acta Chem. Scand., 26, 852 (1972)
- (110) F. Knoll, J. Gronebaum, and R. Appel, *Chem. Ber.*, **102**, 848 (1969). (111) H. Kjse, G. F. Whitfield, and D. Swern, *J. Org. Chem.*, **37**, 1121 (1972).
- (112) I. Kapovits, F. Ruff, and A. Kucsman, Tetrahedron, 28, 4413 (1972).
- (113) A. Kucsman, F. Ruff, S. Sólyom, and T. Szirtes, Acta Chim. Acad. Sci. Hung., 57, 205 (1968).
- (114) N. Furukawa, T. Omata, T. Yoshimura, T. Aida, and S. Oae, Tetrahedron Lett., 1619 (1972).
- (115) R. Appel, W. Büchner, and E. Guth, Justus Liebigs Ann. Chem., 618, 53 (1958).
- (116) P. K. Claus, P. Hofbauer, and W. Rieder, Tetrahedron Lett., 3319 (1974)
- (117) T. L. Gilchrist, C. J. Harris, D. G. Hawkins, C. J. Moody, and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 2166 (1976).
- (118) P. Barraclough, M. Edwards, T. L. Gilchrist, and C. J. Harris, J. Chem. Soc.,
- Perkin Trans. 1, 716 (1976).
- (119) R. Appel and H. Rittersbacher, Chem. Ber., 97, 852 (1964)
- (120) G. Matsubayashi, M. Toriuchi, and T. Tanaka, Chem. Lett., 985 (1973); M. Toriuchi, G. Matsubayashi, H. Koezuka, and T. Tanaka, Inorg. Chim. Acta, 17, 253 (1976).
- (121) C. R. Johnson, J. J. Rigau, M. Haake, D. McCants, Jr., J. E. Keiser, and A. Gertsema, *Tetrahedron Lett.*, 3719 (1968).
- (122) C. R. Johnson and W. G. Phillips, J. Am. Chem. Soc., 91, 682 (1969)
- (123) H. Kise, G. F. Whitfield, and D. Swern, Tetrahedron Lett., 4839 (1971). (124) T. Numata and S. Oae, Chem. Ind. (London), 277 (1973).
- (125) Y. Hayashi, Y. Iwagami, A. Kadoi, T. Shono, and D. Swern, Tetrahedron Lett., 1071 (1974).
- (126) E. Winterfeldt, Chem. Ber., 98, 1581 (1965); E. Winterfeldt and H. J. Dil-
- linger, *ibid.*, **99**, 1558 (1966). (127) T. L. Gilchrist, C. J. Harris, C. J. Moody, and C. W. Rees, *J. Chem. Soc.*, *Perkin Trans.* 1, 1969 (1975).
- (128) T. L. Gilchrist, C. J. Harris, and C. W. Rees, Chem. Commun., 485 (1974)
- (129) T. L. Gilchrist, C. J. Harris, F. D. King, M. E. Peek, and C. W. Rees, *J. Chem. Soc.*, *Perkin Trans.* 1, 2161 (1976).
 (130) T. L. Gilchrist, M. E. Peek, and C. W. Rees, *Chem. Commun.*, 913
- (1975)
- (131) (a) J. Petránek and M. Večeřa, Collect, Czech, Chem. Commun., 24, 2191 (1959); (b) P. A. Briscoe, F. Challenger, and P. S. Duckworth, J. Chem. Soc., 1755 (1956). (132) A. S. F. Ash, F. Challenger, and D. Greenwood, *J. Chem. Soc.*, 1877
- (1951); A. S. F. Ash, F. Challenger, T. S. Stevens, and J. L. Dunn, ibid.,

- 2792 (1952).
- (133) W. C. J. Ross, *Biochem. Pharmacol.*, **2**, 215 (1959). (134) R. S. Atkinson and S. B. Awad, *Chem. Commun.*, 651 (1975).
- (135) N. Schönberger and G. Kresze, Justus Liebigs Ann. Chem., 1725 (1975).
- (136) K. B. Sharpless and T. Hori, J. Org. Chem., 41, 176 (1976).
- (137) S. Oae, K. Tsujihara, and N. Furukawa, Tetrahedron Lett., 2663 (1970); N. Furukawa, T. Hatanaka, K. Harada, and S. Oae, Bull. Chem. Soc. Jpn., 49, 2337 (1976).
- (138) K. Tsujihara, K. Harada, N. Furukawa, and S. Oae, Tetrahedron, 27, 6101 (1971).
- (139) K. Tsujihara, N. Furukawa, and S. Oae, *Tetrahedron*, **2**7, 4921 (1971). (140) S. E. Potter and I. O. Sutherland, *Chem. Commun.*, 520 (1973).
- (141) H. Kise, G. F. Whitfield, and D. Swern, J. Org. Chem., 37, 1125 (1972)
- (142) P. G. Gassman and G. D. Gruetzmacher, J. Am. Chem. Soc., 96, 5487 (1974).
- (143) (a) M. M. Campbell and G. Johnson, J. Chem. Soc., Perkin Trans. 1, 1212 (1975); M. M. Campbell, G. Johnson, A. F. Cameron, and I. R. Cameron, ibid., 1208 (1975); (b) M. M. Campbell and G. Johnson, ibid., 1077 (1975).
- (144) M. Kise, M. Murase, M. Kitano, T. Tomita, and H. Murai, Tetrahedron Lett., 691 (1976); M. Murase, M. Kitano, M. Kise, and H. Murai, Chem. Lett., 849 (1976).
- (145) T. Minami, Y. Tsumori, K. Yoshida, and T. Agawa, J. Org. Chem., 39, 3412 (1974)
- (146) P. Claus, W. Vycudilik, and W. Rieder, Monatsh. Chem., 102, 1571 (1971).
- (147) P. Claus and W. Rieder, Monatsh. Chem., 103, 1163 (1972).
- (148) P. K. Claus, W. Rjeder, and F. W. Vierhapper, Tetrahedron Lett., 1335 (1976)
- (149) P. G. Gassman and C. T. Huang, *J. Am. Chem. Soc.*, **95**, 4453 (1973). (150) (a) P. G. Gassman and H. R. Drewes, *J. Am. Chem. Soc.*, **96**, 3002 (1974); (b) P. G. Gassman, T. J. van Bergen, D. P. Gilbert, and B. W. Cue, ibid., 96, 5495 (1974).
- (151) D. W. Jones, J. Chem. Soc., Perkin Trans. 1, 1150 (1976).
- (152) T. Fuchigami and K. Odo, Chem. Lett., 247 (1974).
- (153) S. I. Mathew and F. Stansfield, J. Chem. Soc., Perkin Trans. 1, 540 (1974).
- (154) T. L. Gilchrist, C. J. Moody, and C. W. Rees, Chem. Commun., 414 (1976).
- (155) A. W. Wagner and G. Reinöhl, *Justus Liebigs Ann. Chem.*, **675**, 189 (1964).
- (156) G. Kresze and B. Wustrow, Chem. Ber., 95, 2652 (1962)
- (157) N. Furukawa, T. Omata, and S. Oae, Chem. Commun., 590 (1973).
 (158) (a) M. A. McCall, D. S. Tarbell, and M. A. Havill, J. Am. Chem. Soc., 73, 4476 (1951); (b) D. S. Tarbell and M. A. McCall, ibid., 74, 48 (1952).
- (159) G. Guanti, G. Garbarino, C. Dell'Erba, and G. Leandri, Gazz. Chim. Ital., 105, 849 (1975); C. Dell'Erba, G. Guanti, G. Gaiani, and G. Garbarino, ibid., 101, 890 (1971)
- (160) S. Oae, T. Aida, M. Nakajima, and N. Furukawa, Tetrahedron, 30, 947 (1974)
- (161) T. Alda, N. Furukawa, and S. Oae, Tetrahedron Lett., 4255 (1971).
 (162) M. M. L. Chen and R. Hoffmann, J. Am. Chem. Soc., 98, 1647 (1976).
- S. Oae, T. Aida, and N. Furukawa, Int. J. Sulfur Chem., 8, 401 (1973) (164) S. Oae, T. Aida, K. Tsujihara, and N. Furukawa, Tetrahedron Lett., 1145 (1971)
- (165) T. Aida, M. Nakajima, T. Inoue, N. Furukawa, and S. Oae, Bull. Chem. Soc.
- (165) 1. Alda, M. Nakajiria, T. Iridue, N. Furukawa, and S. Oae, Bull. Chem. Soc. Jpn., 48, 723 (1975).
 (166) (a) T. Aida, N. Furukawa, and S. Oae, Chem. Lett., 121 (1974); (b) B. K. Ackerman, K. K. Andersen, I. Karup-Nielsen, N. B. Peynircioglu, and S. A. Yeager, J. Org. Chem., 39, 964 (1974).
- T. Aida, N. Furukawa, and S. Oae, Chem. Lett., 805 (1973)
- (168) T. Aida, N. Furukawa, and S. Oae, Chem. Lett., 29 (1975); S. Oae, T. Aida, and N. Furukawa, Chem. Pharm. Bull., 23, 3011 (1975).
- (169) S. Oae, T. Yoshimura, and N. Furukawa, Bull. Chem. Soc. Jpn., 45, 2019 (1972).
- (170) P. Manya, A. Sekera, and P. Rumpf, Bull. Soc. Chim. Fr., 286 (1971).
- (171) N. Furukawa, T. Masuda, M. Yakushiji, and S. Oae, Bull. Chem. Soc. Jpn., 47, 2247 (1974).
- (172) H. Kobayashi, N. Furukawa, T. Aida, and S. Oae, Tetrahedron Lett., 3109 (1971)
- (173) N. Furukawa, S. Oae, and T. Masuda, Chem. Ind. (London), 396 (1975).
- (174) S. Oae, T. Aida, and N. Furukawa, J. Chem. Soc., Perkin Trans. 2, 1231 (1974); T. Ajda, T. Akasaka, N. Furukawa, and S. Oae, Bull. Chem. Soc. Jpn., 49, 1117 (1976).
- (175) I. Kapovits, F. Ruff, and A. Kucsman, *Tetrahedron*, 28, 4405 (1972); I. Kapovits, F. Ruff, J. Gulyas, and A. Kucsman, *ibid.*, 32, 1811 (1976).
 (176) M. Kobayashi, A. Mori, and H. Minato, *Bull. Chem. Soc. Jpn.*, 47, 891
- (1974).(177) Y. Tamura, H. Matsushima, M. Ikeda, and K. Sumoto, Synthesis, 35
- (1976). (178) (a) T. Yamamoto and M. Okawara, Chem. Lett., 581 (1975); (b) S. Colonna
- and C. J. M. Stirling, J. Chem. Soc., Perkin Trans. 1, 2120 (1974). (179) K. Tsujihara, T. Aida, N. Furukawa, and S. Oae, Tetrahedron Lett., 3415 (1970).
- (180) R. Appel and B. Ross, Chem. Ber., 102, 3769 (1969); B. Ross, J. Grone-
- baum, and R. Appel, *ibid.*, 104, 2241 (1971). (181) H. O. Bayer, U.S. Patent 3,542,865; *Chem. Abstr.*, 74, 99642 (1971); U.S.
- Patent 3,653,873; Chem. Abstr., 77, 19350 (1972). (182) J. R. Beck, U.S. Patent 3,786,048; Chem. Abstr., 81, 3592 (1974); U.S. Patent 3,909,235; Chem. Abstr., 84, 89820 (1976); German Offen. 2,344,521; Chem. Abstr., 82, 170373 (1975); Eli Lilly and Co., Neth. Appl.
- 73, 11,596; *Chem. Abstr.*, **83**, 43042 (1975). (183) C. F. Huebner, U.S. Patent 3,291,794; *Chem. Abstr.*, **66**, 65533

- (1967)
- (184) G. Doerhoefer, R. Heckendorn, E. Schmid, A. Storni, and A. Zuest, German Offen. 2,520,107; Chem. Abstr., 84, 121676 (1976)
- (185) L. Karel, *J. Pharmacol. Exptl. Therap.*, **93**, 287 (1948).
- (186) C. W. Todd, J. H. Fletcher, and D. S. Tarbell, J. Am. Chem. Soc., 65, 350 (1943); G. R. Collins, U.S. Patent 3,471,436; Chem. Abstr., 71, 123949
- (187) (a) H. Malz, F. Lobes, O. Bayer, and H. Scheurlen, German Offen. 1,137,206; Chem. Abstr., 62, 16461 (1965); (b) H. Berger, R. Gall, K. Stach, W. Voemel, and R. Hoffmann, German Offen. 2,261,691; Chem. Abstr., 81, 120671 (1974).
- (188) S. Oae, N. Furukawa, T. Komata, T. Ajda, and T. Yoshimura, Japan Kokaj 73,103,520; Chem. Abstr., 81, 49450 (1974).
 (189) E. S. Levchenko and L. N. Markovskii, Usp. Khim. Fosfororg. Seraorg.

- (189) E. S. Levchenko and L. N. Markovskii, Usp. Khim. Fostororg. Seraorg. Soedin., 181 (1970); Chem. Abstr., 78, 3322 (1973).
 (190) H. W. Roesky in "Sulfur in Organic and Inorganic Chemistry", Vol. 1, A. Senning, Ed., Marcel Dekker, New York, N.Y., p 13.
 (191) B. Marinjer and J. L. Boivin, Can. J. Chem., 42, 1759 (1964); O. Glemser and U. Bjermann, Inorg. Nucl. Chem. Lett., 3, 223 (1967); O. Glemser, H. W. Roesky, and P. R. Heinze, Angew. Chem., Int. Ed. Engl., 6, 710 (1967) (1967).
- (192) B. Cohen and A. G. MacDiarmid, Angew. Chem., Int. Ed. Engl., 2, 151 (1963); J. Chem. Soc. A, 1780 (1966); A. Haas and P. Schott, Angew. Chem., Int. Ed. Engl., 6, 370 (1967).
 (193) W. C. Smith, C. W. Tullock, E. L. Muettertjes, W. R. Hasek, F. S. Fawcett,
- V. A. Engelhardt, and D. D. Coffman, J. Am. Chem. Soc., 81, 3165 (1959); W. C. Smith, U.S. Patent 2,862,029; Chem. Abstr., 53, 9152 (1959); A. F. Clifford and C. S. Kobayashi, Inorg. Chem., 4, 571 (1965).
 (194) G. C. Demitras, R. A. Kent, and A. G. MacDiarmid, Chem. Ind. (London),
- 1712 (1964); W. J. Middleton, J. Org. Chem., 40, 574 (1975)
- (195) R. Appel and E. Lassmann, Z. Naturforsch. B, 26, 73, (1971)
- (196) L. N. Markovskij and E. S. Levchenko, *Zh. Org. Khim.*, **2**, 1524 (1966). (197) L. N. Markovskij, Z. I. Shokol, and E. S. Levchenko, *Zh. Org. Khim.*, **6**,
- 496 (1970)
- (198) E. S. Levchenko, L. N. Markovskii, and A. V. Kirsanov, Zh. Org. Khim., 3, 1282 (1967).
- (199) N. G. Pavlenko, V. V. Matsnev, L. S. Kuz'menko, P. P. Kornuta, L. N. Markovskii, and V. P. Kukhar, Zh. Org. Khim., 12, 782 (1976)
- (200) L. N. Markovskii, G. S. Fedyuk, and Y. A. Nuzhdina, Zh. Org. Khim., 10, 992 (1974).
- (201) E. S. Levchenko and A. V. Kursanov, Zh. Obshch. Khim., 31, 1968 (1961); L. N. Markovskii, G. S. Fedyuk, E. S. Levchenko, and A. V. Kursanov, Zh. Org. Khim., **9**, 2502 (1973).

 (202) L. N. Markovskii, G. S. Fedyuk, and E. S. Levchenko, *Zh. Org. Khim.*, **8**,
- (203) E. S. Levchenko and I. E. Sheinkman, Zh. Obshch. Khim., 36, 428 (1966).
- (204) L. N. Markovskij, G. S. Fedyuk, and Y. G. Bal'on, Zh. Org. Khim., 10, 1434
- (205) German Offen. 1,090,657; Chem. Abstr., 55, 23445 (1961).
 (206) S. G. Clarke, J. Kenyon, and H. Phillips, J. Chem. Soc., 1225 (1930).
 (207) G. Bulmer and F. G. Mann, J. Chem. Soc., 666 (1945).
- (208) J. R. Alexander and H. McCombie, J. Chem. Soc., 2087 (1932); C. E. Dalgliesh and F. G. Mann, ibid., 913 (1945).
- (209) G. Leandri and D. Spinelli, *Ann. Chim.* (*Rome*), **49**, 964 (1959); S. Kaae

- and A. Senning, Acta Chem. Scand., 22, 159 (1968).
- (210) J. I. G. Cadogan and H. N. Moulden, J. Chem. Soc., 5524 (1961). (211) J. Goerdeler and B. Redies, Chem. Ber., 92, 1 (1959); T. Kitazume and
- N. Ishikawa, *Bull. Chem. Soc. Jpn.*, **46**, 3285 (1973). (212) J. Goerdeler and W. Roose, *Chem. Ber.*, **95**, 394 (1962). (213) J. Goerdeler and K. Doerk, *Chem. Ber.*, **95**, 389 (1962); J. Goerdeler and B. Wedekind, *ibid.*, **95**, 147 (1962). (214) J. Goerdeler and K. Doerk, *Chem. Ber.*, **95**, 154 (1962).
- (215) E. S. Levchenko and E. I. Slyusarenko, Zh. Org. Khim., 11, 871 (1975).
- (216) E. S. Levchenko and L. V. Seleznenko, Zh. Org. Khim., 6, 492 (1970)
- (217) L. N. Markovskii, T. N. Dubinina, E. S. Levchenko, and A. V. Kirsanov, Zh. Org. Khim., **9**, 1435 (1973). (218) E. S. Levchenko and L. V. Seleznenko, *Zh. Org. Khim.*, **2**, 92 (1966); see
- also E. S. Levchenko and L. V. Seleznenko, ibid., 6, 486 (1970).

- (219) E. S. Levchenko and L. V. Seleznenko, *Zh. Org. Khim.*, 4, 153 (1968).
 (220) E. S. Levchenko and L. V. Budnik, *Zh. Org. Khim.*, 11, 2293 (1975).
 (221) L. N. Markovskii, E. A. Darmokhval, and E. S. Levchenko, *Zh. Org. Khim.*, 9, 2038 (1973).
- (222) G. Kresze, C. Seyfried, and A. Trede, *Tetrahedron Lett.*, 3933 (1965);
 Justus Liebigs Ann. Chem., 715, 223 (1968).
 (223) W. Schramm, G. Voss, G. Rembarz, and E. Fischer, *Z. Chem.*, 14, 471
- (1974).
- (224) W. Schramm, G. Voss, M. Michalik, G. Rembarz, and E. Fischer, Z. Chem., 15, 19 (1975); W. Schramm, G. Voss, G. Rembarz, and E. Fischer, ibid., 15, 57 (1975); G. Leonhardt, R. Scheibe, W. Schramm, G. Voss, E.
- Fischer, and G. Rembarz, *ibid.*, **15**, 193 (1975). (225) J. Goerdeler and D. Loevenich, *Chem. Ber.*, **87**, 1079 (1954); see also M. Haake, H. Fode, and K. Ahrens, Z. Naturforsch. B, 28, 539 (1973).
- (226) Cf. B. E. Maryanoff, J. Stackhouse, G. H. Senkler, Jr., and K. Mislow, J. Am. Chem. Soc., 97, 2718 (1975), and ref 3, p 205.
- (227) E. L. Eliel, J. Koskimies, A. T. McPhail, and D. Swern, J. Org. Chem., 41, 2137 (1976).
- (228) A. F. Cameron, F. D. Duncanson, and D. G. Morris, Acta Crystallogr., Sect.
- B, 32, 1998 (1976).
 (229) A. F. Cameron, J. R. Cameron, M. M. Campbell, and G. Johnson, Acta Crystallogr., Sect. B, 32, 1377 (1976).
- (230) P. K. Claus, F. W. Vierhapper, and R. L. Willer, Chem. Commun., 1002 (1976).
- (231) M. Moriyama, N. Furakawa, T. Numata, and S. Oae, Chem. Lett., 275
- (232) M. Moriyama, K. Kuriyama, T. Iwata, N. Furukawa, T. Numata, and S. Oae, Chem. Lett., 363 (1976).
- (233) D. W. Emerson and H. Wynberg, *Tetrahedron Lett.*, 3445 (1971); W. F. J. Huurdeman, H. Wynberg, and D. W. Emerson, *ibid.*, 3449 (1971); R. B. Greenwald, D. H. Evans, and J. R. DeMember, ibid., 3885 (1975); I. Degani and R. Fochi, Synthesis, 759 (1976); J. Chem. Soc., Perkin Trans. 1, 1886 (1976)
- (234) H. Yoshida, T. Ogata, and S. Inokawa, Synthesis, 552 (1976).
- (235) H. Yoshida, M. Yoshikane, T. Ogata, and S. Inokawa, Synthesis, 551
- (1976). (236) T. Yamamoto, M. Yamauchi, and M. Okawara, *Chem. Lett.*. 883 (1976).
- (237) L. N. Markovskii, T. N. Dubinina, E. S. Levchenko, and V. V. Penkovskii, Zh. Org. Khim., 12, 1049 (1976).