# Construction of Synthetic Macrocyclic Compounds Possessing Subheterocyclic Rings, Specifically Pyridine, Furan, and Thiophene

GEORGE R. NEWKOME,\* JOE D. SAUER, JERRY M. ROPER, and DAVID C. HAGER

Department of Chemistry, Coates Chemical Laboratories, Louisiana State University, Baton Rouge, Louisiana 70803

Received August 3, 1976 (Revised Manuscript Received November 3, 1976)

#### Contents

| ١.    | Introduction                                                                       | 513 |
|-------|------------------------------------------------------------------------------------|-----|
| ١١.   | Nomenclature and Numbering                                                         | 513 |
| III,  | Historical Examples                                                                | 514 |
| IV.   | Synthesis of Macrocycles Possessing a                                              |     |
|       | Subheterocyclic Ring                                                               | 514 |
|       | A. Pyridine as the Subunit                                                         | 514 |
|       | 1. 2.6-Pyridino                                                                    | 514 |
|       | 2. 2.5-Pyridino                                                                    | 550 |
|       | 3. 2,4-Pyridino                                                                    | 551 |
|       | 4. 2.3-Pyridino                                                                    | 552 |
|       | 5. 3.5-Pyrídino                                                                    | 553 |
|       | 6. 3.4-Pyridino                                                                    | 554 |
|       | B. Furan as the Subunit                                                            | 554 |
|       | 1. 2.5-Furano                                                                      | 554 |
|       | 2. 2.4-Furano                                                                      | 557 |
|       | 3. 2,3-Furano                                                                      | 557 |
|       | 4. 3.4-Furano                                                                      | 558 |
|       | C. Thiophene as the Subunit                                                        | 559 |
|       | 1. 2,5-Thiopheno                                                                   | 559 |
|       | 2. 2,4-Thiopheno                                                                   | 569 |
|       | 3. 2,3-Thiopheno                                                                   | 570 |
|       | 4. 3,4-Thiopheno                                                                   | 570 |
| V.    | Synthesis of Macrocycles Possessing Two or More<br>Different Subheterocyclic Rings | 571 |
|       | A. Combination of 2.6-Pyridino and<br>2.5-Furano Subunits                          | 571 |
|       | B. Combination of 2,5-Furano and                                                   |     |
|       | 2.5-Thiopheno Subunits                                                             | 576 |
|       | C. Combination of 2,5-Furano and<br>2,5-Pyrrolo Subunits                           | 577 |
|       | D. Combination of 2,5-Thiopheno and<br>2,5-Pyrrolo Subunits                        | 578 |
|       | E. Combination of 2,5-Furano, 2,5-Thiopheno,                                       |     |
|       | and 2,5-Pyrrolo Subunits                                                           | 578 |
| VI.   | Miscellaneous Multiple Ring Systems                                                | 579 |
|       | A. Miscellaneous Six-Membered Rings                                                | 579 |
|       | B. Miscellaneous Macrocycles with<br>Five-Membered Subunits                        | 588 |
| VII.  | Conclusions                                                                        | 589 |
| VIII. | Addendum                                                                           | 589 |
| IX.   | References                                                                         | 593 |

#### I. Introduction

Although synthetic procedures for the construction of macrocycles containing subheterocyclic units have been known for about a century, it has only been within the past score that these compounds have been shown to possess unique chemical and biochemical properties. Numerous reviews have dealt with various limited aspects of these compounds;<sup>408</sup> however, none has presented the detailed preparative procedures to specific macrocycle systems. We herein attempt to review both the historical as well as modern methodology leading to the construction of these macrocycles.

This review will be limited in scope to the synthetic aspects leading to macrocycles possessing, specifically, pyridine, furan, and thiophene subunits. For convenience a macrocyclic ring will be defined by a 11- or larger atom ring; however, several smaller (9- and 10-) membered rings have been included in order to define the lower limits in a specific synthesis. Macrocycles of biological origin are not included, unless they were synthesized or degraded to smaller important fragments. Porphyrins and related systems have been omitted because of the vastness of the area; however, several very simple pyrrole macrocycles have been included.

This review attempts to tabulate the majority of the known literature examples of these macrocycles through December 1976. Section II defines the numbering system used throughout the text and tables. Section III presents the first historical examples of the four main subheterocyclic classes. Sections IV and V review the major synthetic routes to macrocycles possessing pyridine, furan, and/or thiophene. Section VI deals with a limited number of important miscellaneous subheterocyclic classes which have, for the most part, been prepared from a key intermediate described in sections IV and V.

#### II. Nomenclature and Numbering

Numerous nomenclature and numbering rules have been proposed and adapted for the easy identification of the structures of organic molecules. In general when the conventional IUPAC rules<sup>288</sup> are applied to the herein described macrocycles, extremely complicated and nearly impossible names can result. In order to partially circumvent this problem. Phane nomenclature<sup>289-291</sup> has been used, in part, in this review and appears to be a move in the right direction. However, since a drawn structure is unambiguous, this review will skirt the greatest part of the problem of communication by inclusion of the parent structures and will indicate the site(s) of substitution by adopting a modified numbering scheme proposed by Gol'dfarb et al.233 as well as others.<sup>292</sup> Thus, when the location of substituents is necessary, the atom adjacent to the subheterocyclic ring will be designated as atom number one with all atoms in the largest continuous ring being numbered in succession with substituted positions taking preference when necessary (see examples).



The numbering scheme is shown on the parent structures in the tables.

#### III. Historical Examples

Although macrocycles which possess the pyrrole subunit are not within the primary objective of this review. It is interesting to note that the first documented macrocycle possessing a (pyrrole) subheterocyclic ring (**405b**) was synthesized in 1886 by Baeyer<sup>323</sup> via the condensation of pyrrole and acetone in the presence of mineral acid. Shortly thereafter, Dennstedt<sup>324</sup> and then Chelintzev and Tronov.<sup>325</sup> in a series of papers, reported numerous modifications to the original Baeyer procedure. Although in these early papers most macrocyclic products possessed the tetrazaquaterene structural backbone, at least one misassignment<sup>326</sup> was made for the product from the reaction of pyrrole and cyclohexanone: the structure was later reassigned.<sup>303</sup>



In 1906, the first probable macrocycle, which included a furan ring, was isolated from the reaction of ethyl 2-furanoate and ethylmagnesium iodide:<sup>195</sup> even though the compound originally was identified as 3-(2'-furanyl)pent-2-ene. Wright et al.<sup>169</sup> and then Beals and Brown<sup>194</sup> synthesized "tetraoxaquaterene" **204b** by polycondensation of furan and 3-pentanone in the presence of mineral acid (the Baeyer procedure<sup>323</sup> except for the substitution of furan for pyrrole): direct comparison<sup>194</sup> of the original 1906 sample<sup>195</sup> with **204b** established the macrocyclic skeleton, thus confirming the structure of the first macrocycle containing a furan subunit.



In 1930. Steinkopf proposed<sup>294</sup> the first macrocycle which incorporated a thiophene ring. However, he later corrected<sup>299</sup> his assignment of this cyclic structure to a nonmacrocyclic analog. In another series of classical papers, Steinkopf proposed cyclic mercury-bridged thiophenes.<sup>293,295,296</sup> Recently. Meth-Cohn<sup>298</sup> has suggested that Steinkopf's mercury compounds were probably polymeric, rather than macrocyclic compounds, in view of the imposed degree of strain in the mercury bond angles. In 1941, Steinkopf reported the synthesis of the first



reasonable cyclic thiophene macrocycle **268b** through a standard coupling reaction.<sup>297</sup>

In 1933, the first macrocycle which incorporated a pyridine ring (**163**a) was prepared by Ruzicka et al.<sup>122</sup> from cyclopentadecanone (commonly known as Exalton) and 2-aminobenzaldehyde via a base-catalyzed condensation. The first nonbenzo-fused analog **159**a was synthesized 12 years later by Prelog and Geyer.<sup>118</sup> Although the 2.3-bridged backbone was constructed first, the most widely known pyridine macrocycle is that of "muscopyridine". Prelog et al. isolated **5j** in 1946 from the odoriferous constituents of natural musk from the musk deer (*Moschus moschiferus*),<sup>21</sup> and later Büchi et al. synthesized **5i** from cyclododecanone in a lengthy ten-step sequence.<sup>17</sup>



# IV. Synthesis of Macrocycles Possessing a Subheterocyclic Ring

Tables I-IV are compilations of the majority of reported macrocycles containing one or more pyridine, thiophene, and/or furan subheterocyclic ring(s). Each table contains the parent structure, location and type of substitution, compound number for easy text reference, reported physical data, an indication of the spectral information cited in the literature, and general comments which may be of importance for specific listing. Certain macrocycles possess complexation properties; therefore, the metal ions that have been reported to be incorporated in that ligand have been abbreviated in these tables. Tables V and VI contain selected macrocycles which possess either a sixor five-membered subunit, respectively, as well as a limited number of representative compounds that contain only the pyrrole subunit. These miscellaneous examples are included since they were cited in one of the included references.

#### A. Pyridine as the Subunit

Macrocycles possessing only the pyridine subunit are tabulated in Table I.

#### 1. 2,6-Pyridino

The classical example of a *carbon-bridged* 2,6-disubstituted pyridine unit contained within a macrocycle was constructed by Büchi et al.<sup>17</sup> The Stobbe condensation of cyclododecanone with ethyl succinate gave an exocyclic carboxylic acid, which was subsequently cyclized with either zinc chloride in acetic acid or preferably polyphosphoric acid to a  $\delta$ -keto  $\beta$ , $\gamma$ -unsaturated ester. Hydrolysis and concomitant decarboxylation generated the expected  $\alpha$ , $\beta$ -unsaturated ketone. Wolff–Kishner reduction of bicyclo[10.3.0]pentadec-1(12)–en-13-one<sup>462</sup> gave two isomeric olefins, from which, fortuitously, the trisubstituted olefin was isolated as the major (70%) isomer. A subsequent Schmidt reaction followed by dehydrogenation over 10% palladium on carbon at ca. 250 °C afforded an equal mixture of macrocycles: 5a and its 2.3-isomer 158, both in about 4% overall yield.

Conversion of 5a into muscopyridine (5j) was accomplished<sup>17</sup> by  $\alpha$ -substitution of the corresponding pyridine *N*-oxide in the presence of acetic anhydride.<sup>300</sup> Hydrolysis of 5e afforded 5d,

#### TABLE I. Macrocycles Containing the Pyridine Subunit<sup>a</sup>

(CH2)0

| Compound                           | n  | Substituents                                       | Compd<br>no. | Physical data<br>Mp [bp (mm)], °C | Spectral<br>data available <sup>a</sup> | Metal complex(es)<br>general comments <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ref                          |
|------------------------------------|----|----------------------------------------------------|--------------|-----------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| In+3)                              | 6  | Η                                                  | 1            |                                   | A, C, D                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93 <i>b</i>                  |
|                                    | 7  | Н                                                  | 2a           | [70–73 (3)]                       | A–C                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2, 4, 14,<br>93 <sup>b</sup> |
|                                    |    | 4-D                                                | 2b           | [103 (7)]                         | А                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                            |
| <sup>2</sup> CH <sub>2</sub>       |    | 1-CO,Me                                            | 2c           | [84 (0.03)]                       | А                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                            |
| $\sim$ (CH <sub>2</sub> ) $_{n-2}$ |    | 1-OH                                               | 2d           | 53.5–54.0 [95<br>(0.01)]          | Α                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                            |
|                                    |    | 1-(=O)                                             | 2e           | 33.5-34.5                         | А                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,14                         |
|                                    |    | 1-(OMe),                                           | 2f           | [85 (0.06)]                       | А                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                            |
|                                    |    | 1-(=0); 2,2-(Me),                                  | 2q           | 77 (0.07)                         | B-D                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                            |
|                                    |    | 2.2-(Me)                                           | 2h           | [49 (0.2)]                        | A-D                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                            |
|                                    |    | $1 - (= CH_{2})$                                   | 2i           | 70 (2.0)1                         | A–D                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                           |
|                                    |    | $1-(=CMe_{3})$                                     | 2i           | [117-118 (0.5)]                   | A–D                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                           |
|                                    |    | $1-(=C(C,H_{c})_{c})$                              | 2k           | 116–118                           | A-D                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                           |
|                                    |    | 1-C(C,H,),OH                                       | 21           | 162–163                           | A.B                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                           |
|                                    | 8  | H                                                  | 3            |                                   | 7110                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 936                          |
|                                    | 9  | Н                                                  | 4            | · · · · · ·                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 936                          |
|                                    | 10 | Н                                                  | 5a           | 15.6–16.6 [152–158<br>(3.7)]      | В, С                                    | <i>N</i> -Oxide (79–80.5°); pi-<br>crolonate (183–185°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 93b                       |
|                                    |    | 12-OH                                              | 5b           | 201-202                           | BC                                      | Subl: $125-130^{\circ}$ (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                           |
|                                    |    | 12-0Ac                                             | 50           |                                   | 5, 6                                    | 5051. 125-150 (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                           |
|                                    |    | 1-OH                                               | 5d           | 88-89                             | ВС                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                           |
|                                    |    | 1-OAc                                              | 5e           | 00 00                             | 5, 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                           |
|                                    |    | 1-(=0)                                             | 5¢<br>5f     | 47-48                             | ВС                                      | DNP (191-192°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                           |
|                                    |    | $1 - (= 0) \cdot 2 - Me$                           | 50           | A) AS                             | B, C                                    | $Picrolonate (113-115^{\circ})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                           |
|                                    |    | $1_{-}(=0): 2 2_{-}(M_{e})$                        | 59<br>5h     | [150-160, (0, 36)]                | BC                                      | 1 (cloidiate (115–115 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                           |
|                                    |    | (+)-2-Me                                           | 51           | [138-143 (2 2)]                   | B,C                                     | Picrolonato (163-166°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                           |
|                                    |    | (+)-2-Me                                           | 5j           | [150-145 (2.2)]                   | В, С                                    | $[\alpha]_{25}^{25} + 13.31^{\circ}; picrolon-ate (162 - 166^{\circ})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 21                        |
|                                    |    | 13-Me                                              | 54           | 103-105                           | R C                                     | Bigrolopate [274° dec]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 / 89                       |
|                                    |    | 13-1016                                            | JK           | 105-105                           |                                         | Isolated < 1% viold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,405                        |
|                                    |    | 2.2 (Ma)                                           | 51           | Oil                               | A-D                                     | $\frac{1501}{100} = \frac{170}{100} =$ | 17                           |
|                                    |    | $1.2910 \text{ De/H} \cdot \text{N} \rightarrow 0$ | 500          | Oli                               | D                                       | Picroionale [170-172 dec]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                           |
|                                    | 12 | 1,2,3,10-De(11)₄.14→O                              | 5            |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                           |
|                                    | 26 |                                                    | 7            |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 930                          |
| o<br>II                            | 20 | 23-0111 <sub>2</sub>                               | /            |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94                           |
| $\bigwedge$                        | 26 | R ≈ H                                              | 8a           | 184–185                           | В                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94                           |
| ΛN<br>I                            | 26 | $R = NH_2$                                         | 8b           | 129–130                           | В                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94                           |

| т | Α | в | L | Ε | 1 | (Continued) |
|---|---|---|---|---|---|-------------|
|---|---|---|---|---|---|-------------|

.

| Compound | n                        | Substituents                                                                               | Compd<br>no.      | Physical data<br>Mp  bp (nm) ,°C | Spectral<br>data available <sup>a</sup> | Metal complex(es)<br>general comments <sup>d</sup> | Ref                              |
|----------|--------------------------|--------------------------------------------------------------------------------------------|-------------------|----------------------------------|-----------------------------------------|----------------------------------------------------|----------------------------------|
| 0        |                          |                                                                                            |                   |                                  |                                         |                                                    |                                  |
|          | $m \approx n \approx 11$ | R ≈ H                                                                                      | 9                 | 177–178                          | В                                       |                                                    | 94                               |
|          |                          | н                                                                                          | 10                |                                  | A                                       | VTNMR study                                        | 6, 37                            |
| 10       |                          | н                                                                                          | 11a               | 80.5–81.5<br>83–84               | A. B, D                                 | VTNMR study <sup>*</sup> .                         | 9<br>7                           |
|          |                          | 1(2),7(8)-(SMe) <sub>2</sub><br>1(2),7(8)-[S <sup>+</sup> (Me) <sub>2</sub> ] <sub>2</sub> | 11b               | 152–153                          | A, D                                    |                                                    | 9                                |
|          |                          |                                                                                            | llc               | 170 102                          | A . C                                   |                                                    | 9                                |
| 5 4      |                          | 16-H (BF, <sup>-</sup> )                                                                   | 11d               | 1/9-183                          |                                         |                                                    | 9                                |
|          |                          | 16 N→O                                                                                     | 11e               | 165-167                          | A, B, D                                 |                                                    | 9                                |
|          |                          | $1,2,7,8-De(H)_4$                                                                          | 111               | 157-158                          | Α, Ϲ, Ο                                 | V row study                                        | 9                                |
|          |                          | 1,2,7,8-De(H)₄<br>16-H (BF₄ ¯)<br>1,2,7,8-De(H)₄                                           | 11g<br>11h<br>11j | 207–210                          | A, C                                    | A-ray study                                        | 9                                |
|          |                          | 16-BF <sub>3</sub>                                                                         | 11j               | 204–206                          | A, C                                    |                                                    | 9                                |
|          | 1                        | н                                                                                          | 12a               | 256–258                          |                                         | PES <sup>262</sup>                                 | 11–13, 16.<br>18, 19,<br>37, 98, |
|          |                          |                                                                                            |                   |                                  | Δ                                       | ъ.                                                 | 6715                             |
| 6        | 1                        | trans-1.8-(SMe)                                                                            | 12h               | 234-235                          | ~                                       | lsomer A                                           | 12                               |
| 5        | 1                        | 1.8(9)-(SMe)                                                                               | 120               | 167-168                          |                                         | Isomer B                                           | 12                               |
|          | 1                        | 1.8(9)-(SMe_),*                                                                            | 12d               | -07 -00                          |                                         |                                                    | 12                               |
|          | -                        | 1,2,8,9-De(H),                                                                             | 12e               | 127.5-128                        | A.C                                     |                                                    | 12                               |
|          | 2                        | H                                                                                          | 13                | 191-192                          | A                                       |                                                    | 13                               |
|          | 3                        | н                                                                                          | 14                |                                  | А                                       | Subl: 150–160° (0.01)                              | 13, 19                           |
|          |                          |                                                                                            |                   | 205–206                          | А                                       | . ,                                                | 16                               |
|          | 4                        | н                                                                                          | 15                | 158–159                          | А                                       | Subl: 200–210° (0.01)                              | 13                               |
|          | · 5                      | Н                                                                                          | 16                | 160–161                          | А                                       | · · ·                                              | 13, 16                           |
|          | 6                        | Н                                                                                          | 17                |                                  |                                         |                                                    | 13                               |
|          | : 7                      | Н                                                                                          | 18                |                                  |                                         |                                                    | 16                               |

.



|   | Н                         | 19a—d |                                    |         |                             | 405b          |
|---|---------------------------|-------|------------------------------------|---------|-----------------------------|---------------|
| ) | 13, 28-(Me) <sub>2</sub>  | 20    | 103–105                            | В       |                             | 3             |
|   |                           |       |                                    |         |                             |               |
|   | н                         | 21    | 134 5-135                          | ΔR      |                             | 102           |
|   |                           | 21    | 154.5-155                          | А, В    |                             | 102           |
|   |                           |       |                                    |         |                             |               |
|   | Н                         | 22    | 176–178                            | A, B    |                             | 102           |
|   | н                         | 23    | 185–187                            | А, В    |                             | 102           |
|   | н                         | 24    | 196–199 dec                        | А       |                             | 102           |
|   | Н                         | 25    | 218–221                            | А       |                             | 102           |
|   |                           |       |                                    |         |                             |               |
|   | R ≈ OMe                   | 26    | 154.5-156.5                        | А, В    | Lythraceous alkaloids       | 134–136       |
|   |                           |       |                                    |         |                             |               |
|   |                           |       |                                    |         |                             |               |
|   |                           |       |                                    |         |                             |               |
|   | R ≈ (–CH=CH–)             | 27    |                                    | B–D     | Light sensitive             | 308           |
|   |                           |       |                                    |         |                             |               |
|   | R ≈ (–CH=CH–)             | 28    | 450; subl: 400 (10 <sup>-₄</sup> ) | A, B, D | Co, Cu. Ni                  | 90, 91, 103,  |
|   |                           |       |                                    |         |                             | 308           |
|   |                           |       |                                    |         |                             |               |
|   | н                         | 29    |                                    |         | X-ray analysis              | 22            |
|   |                           |       |                                    |         |                             |               |
|   |                           |       |                                    |         |                             |               |
|   | Н                         | 30a   | 40-41                              | Δ       | nK = 4.8 (+0.2)             | 22.24         |
|   | 3,4:12,13-Dibenzo         | 30b   | 132 dec                            | A       | $K = C_0 = N_0 + C_0 = C_0$ | 23, 24<br>371 |
|   |                           |       |                                    |         | Rb. Ba. Ho                  | 574           |
|   | 3,4:12,13-Dibenzo;<br>N→O | 30c   | 159 dec                            | A       | K                           | 374           |

# TABLE | (Continued)

-----

| Compound                                                        | n                     | Substituents               | Compd<br>no. | Physical data<br>Mp[bp (mm)], °C | Spectral<br>data available <sup>a</sup> | Metal complex(es)<br>general comments <sup>d</sup> | Ref     |
|-----------------------------------------------------------------|-----------------------|----------------------------|--------------|----------------------------------|-----------------------------------------|----------------------------------------------------|---------|
|                                                                 | m = n = 4             | Н                          | 31           |                                  |                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~            | 93b     |
| (CH <sub>2</sub> ) <sub>m</sub> (CH <sub>2</sub> ) <sub>n</sub> |                       |                            |              |                                  |                                         |                                                    |         |
| lÔ                                                              | n = 0; m<br>= 2       | Н                          | 32a          | 83-84                            | А, В                                    |                                                    | 25, 487 |
| COLUN OF                                                        | n = 0; m = 2          | (±)-2-Me                   | 32b          | 54–55                            | A, B. D                                 | CMR                                                | 487     |
|                                                                 | n = 0; m              | Н                          | 33           | 76–78                            | A, B, D                                 |                                                    | 25, 487 |
|                                                                 | n = 0; m = 4          | Н                          | 34           | [155–160 (0.15)]                 | A. B, D                                 |                                                    | 487     |
| $\checkmark$                                                    | n = 1; m $= p = 0$    | Н                          | 35           | 215–216                          | А, В                                    |                                                    | 25, 487 |
|                                                                 | n = 1; m = 0; n = 1   | Н                          | 36           | 94.5-95.5                        | A–C                                     |                                                    | 25,487  |
|                                                                 | n = 1; m = p = 1      | н                          | 37           | 111–112                          | A–C                                     |                                                    | 25, 487 |
|                                                                 | n = 1; m =<br>p = 2   | н                          | 38a          | 117–120                          | A                                       |                                                    | 25, 487 |
|                                                                 | n = 1; m<br>= $n = 2$ | 2,17(24)-(Me) <sub>2</sub> | 38b          | 109-110                          | A, B, D                                 | Isomer A                                           | 487     |
|                                                                 | P -                   |                            | 38c          | Oil                              | A, B, D                                 | lsomer B                                           | 487     |
|                                                                 |                       |                            | 38d          | Oil                              | A, B, D                                 | Isomer C                                           | 487     |
|                                                                 | n = 1; m = 2; p = 3   | Н                          | 39           | 71–72                            | A, B, D                                 |                                                    | 487     |
|                                                                 | n = 1; m = p = 3      | Н                          | 40           | 83-84                            | A, B, D                                 |                                                    | 487     |
|                                                                 | n = 1; m = $n = 4$    | Н                          | 41           | 90-91                            | A, B, D                                 |                                                    | 487     |
| $\widehat{\bigcirc}$                                            | n = 2; m = p = 1      | н                          | 42           | 120.5-121.5                      | А. В                                    |                                                    | 25, 487 |
| N O                                                             |                       | R ≈ CO.H                   | 43a          | 172-181                          | A. D                                    |                                                    | 34      |
| Q P Q                                                           |                       | $R = CO_2Me$               | 43b          | Oil                              | A, D                                    |                                                    | 34      |





| 1                         | н                                                            | 44<br>45       | 172-175                       | A              | $pK_a$ 7.9 (<3)                                 | 23, 24         |
|---------------------------|--------------------------------------------------------------|----------------|-------------------------------|----------------|-------------------------------------------------|----------------|
| L                         |                                                              |                | 123 120                       | ~              | <i>tert</i> -Butylammonjum<br>thiocyanate (1:1) | 23, 24         |
| 3                         | н                                                            | <b>4</b> 6     | 173-176                       | А              | $pK_a$ 4.8 (>3)                                 | 23, 24         |
| <i>n</i> = 1;             | Н                                                            | 47             | Oil                           | А, В           |                                                 | 39             |
| m = 1<br>n = 2;<br>m = 1  | Н                                                            | 48             |                               | А, В           |                                                 | 39             |
| m = 1 $n = 1;$ $m = 2$    | н                                                            | <b>4</b> 9     | 145-146                       | А, В           |                                                 | 39             |
| m = 2;<br>m = 2;<br>m = 2 | н                                                            | 50             |                               | А. В           |                                                 | 39             |
| 1<br>1                    | H<br>3,4:14,15-                                              | 51a<br>51b     | 147–148<br>184–186            |                | pK <sub>a</sub> 5.3 (3.6)                       | 23, 24<br>23   |
| 1                         | 3(R),4(R),14(R),<br>15(R)-(CONMe <sub>2</sub> ) <sub>4</sub> | 51c            | 224                           |                | $[\alpha]_{D}^{25}$ +107°                       | 100            |
|                           | H                                                            | 52             |                               |                | (Impure sample)                                 | 23             |
|                           |                                                              |                |                               |                |                                                 |                |
| 1<br>2<br>3               | 4,5:17,18-Dibenzo<br>4,5:17,18-Dibenzo<br>4,5:17,18-Dibenzo  | 53<br>54<br>55 | 142–143<br>129–130<br>108–109 | A, C<br>C<br>C | NaSCN (195–196°)                                | 26<br>26<br>26 |
| 4                         | 4,5:17,18-Dibenzo                                            | 56             | 104–105                       | C              |                                                 | 26             |
|                           | н                                                            | 57             | 288–292 dec                   | A              | [α] <sup>25</sup> <sub>546</sub> -302°          | 23, 92         |
|                           |                                                              |                |                               |                |                                                 |                |

.

| Τ. | Δ | R | ı. | F | L. | (C)  | on   | ti | nu | ed | ) |
|----|---|---|----|---|----|------|------|----|----|----|---|
|    |   | D | _  | _ |    | ~~ . | •••• |    |    |    | , |

| Compound            | n | Subs | Comp<br>ctituents no. | d Physical data<br>Mp [bp (mm)],°C | Spectral<br>data available <sup>a</sup> | Metal complex(es)/<br>general comments <sup>d</sup> | Ref     |
|---------------------|---|------|-----------------------|------------------------------------|-----------------------------------------|-----------------------------------------------------|---------|
| Q                   |   | Н    | 58                    |                                    |                                         | $[\alpha]_{578}^{25}$ -283°                         | 92      |
| \$<br>0             |   |      |                       |                                    |                                         |                                                     |         |
|                     |   | Н    | 59                    |                                    |                                         | [α] <sup>25</sup> <sub>578</sub> -2 <b>4</b> 2°     | 92      |
|                     |   | Н    | 60                    |                                    |                                         | [α] <sup>25</sup> <sub>578</sub> -250°              | 92      |
| (CH <sub>2</sub> )s | 1 | H    | 61                    | 209–211                            | A, B                                    |                                                     | 39, 102 |
|                     | 2 | Н    | 62                    | 161–163                            | А, В                                    |                                                     | 39      |
|                     |   | н    | 63                    | 122–124                            | А, В                                    |                                                     | 39, 102 |
| ST N PO             |   | н    | 64                    |                                    | А, В                                    |                                                     | 39      |
|                     |   |      |                       |                                    |                                         |                                                     |         |

1 1

2

(*m* = 2) 4

(*m* = 3) 4

(*m* = 3) 2

(CH2)0 (CH2),



| н                                                                                                                   | 65a        |                                                                                                                                                                            | Fe. Mn. Zn                                                                                                   | 279                                                     |
|---------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 1,12-(Me) <sub>2</sub> (abr:"B")                                                                                    | 65b        | (B, C, Mossbauer <sup>s9</sup> ) <sup>c</sup>                                                                                                                              | Fe[x-ray], <sup>279</sup> Mn, Zn                                                                             | 55–59, 275,<br>279, 392–<br>397                         |
|                                                                                                                     |            | (B, C, x-ray <sup>97</sup> ) <sup>c</sup>                                                                                                                                  | Mg                                                                                                           | 97                                                      |
| 1,12-(Me) <sub>2</sub> : 3,4;9,10-<br>dibenzo                                                                       | 65c        |                                                                                                                                                                            | Mn, Zn [x-ray: Mn-<br>(C10₄)₂]                                                                               | 36                                                      |
| $1,12-(Me)_2; 1,2,11,12-(H)_4 (abr: pyane N_5)$<br>$1,12-(Me)_2 (abr: 'A'')$                                        | 650        | (B,C) <sup>c</sup>                                                                                                                                                         | Fe, Co, NI, Cu                                                                                               | 55                                                      |
| $1,12-(1010)_2(dD1: A)$                                                                                             | 60         |                                                                                                                                                                            | i e                                                                                                          | 55                                                      |
| H<br>1,11-(Me) <sub>2</sub> (formerly                                                                               | 67a<br>67b | (B, C) <sup>c</sup><br>(A–C) <sup>c</sup>                                                                                                                                  | Zn<br>Co                                                                                                     | 40<br>40–44, 277                                        |
| сур <sup>4</sup> '; СR <sup>**</sup> )<br>1,11-(Me) <sub>2</sub> ; 6-СН <sub>2</sub> СӉ <sub>2</sub> -              | 67c        | (A–C. ESR,<br><sup>48</sup> x-ray <sup>49,322</sup> ) <sup>c</sup><br>(B, C, ESR) <sup>c</sup><br>(B, C) <sup>c</sup><br>(B) <sup>c</sup>                                  | Ni<br>Cu<br>Zn<br>Ni                                                                                         | 40, 45–49,<br>52, 322<br>45, 278<br>40, 44<br>342       |
| N(Me)₂<br>1,11-(Me)₂; 1,2,10,11-<br>(H)₄ (Abr: CRH or<br>CR + 4H)                                                   | 67d        | (B, C) <sup>c</sup>                                                                                                                                                        | D isomer (131–134°)                                                                                          | 52                                                      |
| -                                                                                                                   |            | (B, C) <sup>c</sup><br>(A–C) <sup>c</sup><br>(A–C,ESR <sup>48</sup> ,<br>x-ray <sup>322</sup> ) <sup>c</sup><br>(B, C, Mossbauer) <sup>c</sup><br>(B, C, ESR) <sup>c</sup> | Meso isomer(83–85°)<br>From.meso: Co <sup>d</sup><br>From.meso: Ni<br>Fe                                     | 52<br>44, 50, 51<br>46–48, 53,<br>322<br>54, 274<br>278 |
| 1,11-(Me) <sub>2</sub> ; 1,2,10,11-<br>(H) <sub>4</sub> ; 6-CH <sub>2</sub> CH <sub>2</sub> N-<br>(Me) <sub>2</sub> | 67e        | (2, 0, 20.)                                                                                                                                                                | Ni[(CIO <sub>4</sub> ) <sub>3</sub> -(diamagnetic);<br>(CIO <sub>4</sub> ) <sub>2</sub> (naramag-<br>netic)] | 342, 501                                                |
| 1,11-(Me) <sub>2</sub> ; 1,2-di(H)                                                                                  | 67f        | (A–C, ESR⁴ <sup>8</sup> ) <sup>c</sup>                                                                                                                                     | Ni                                                                                                           | 47 48                                                   |
| 1,6,11-(Me)₃(Abr: N-<br>Me CR)                                                                                      | 67g        | (B, C) <sup>c</sup>                                                                                                                                                        | Zn, Cu                                                                                                       | 40                                                      |
| 1,11-(Me) <sub>2</sub> : 5,6-de(H)                                                                                  | 67h        | (A–C, ESR <sup>48</sup> ) <sup>c</sup>                                                                                                                                     | Ni                                                                                                           | 47,48                                                   |
| 1,11-(Me) <sub>2</sub> (abr: 2,4-<br>CR)                                                                            | 68         | (B, C) <sup>c</sup>                                                                                                                                                        | Ni, Cu                                                                                                       | 460                                                     |
| 1,12-(Me) <sub>2</sub> (abr: 3,4-<br>CR)                                                                            | 69         | (B, C) <sup>c</sup>                                                                                                                                                        | Ni, Cu, Zn                                                                                                   | 40                                                      |
| 1,10-(Me)₂ (abr: 3, 2-<br>CR)                                                                                       | 70         | (B, C) <sup>c</sup>                                                                                                                                                        | Attempted                                                                                                    | 40                                                      |
| 1,14-(Me) <sub>2</sub>                                                                                              | 71         |                                                                                                                                                                            | Mn                                                                                                           | 394                                                     |

| TABLE t (Continu |
|------------------|
|------------------|

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n | Substituents                                                                              | Compd<br>no. | Physical data<br>Mp[bp (mm)],°C | Spectral<br>data available <sup>a</sup>    | Metal complex(es)<br>general comments <sup>d</sup> | Ref                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------|--------------|---------------------------------|--------------------------------------------|----------------------------------------------------|------------------------------------|
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}  } \\ \end{array}  } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}  } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}  } \\ \end{array} \\ \end{array} \\ \end{array} \\  } \\ \end{array} \\ \end{array} \\ \end{array} \\  } \\ \end{array} \\ \end{array} \\ \end{array} \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\ |   | 1,9,15,23-(C=O)₄                                                                          | 72           | >360                            |                                            |                                                    | 431                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 6-Me;                                                                                     | 73           | 164–166                         |                                            | Cu [mp 196—198°<br>dec]                            | 29                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | н                                                                                         | 74           | 226–228                         |                                            |                                                    | 29                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | H<br>1,13-(Me), (abr:''C'')                                                               | 75a<br>75b   |                                 | (B, C, x-ray <sup>279</sup> ) <sup>C</sup> | Fe, Mn, Zn<br>Mg, Fe, Mn                           | 279<br>97. 275,<br>279,<br>393–395 |
| $ \begin{array}{c} 17 \\ 16 \\ 15 \\ 14 \\ 13 \\ 12 \\ 12 \\ 14 \\ 13 \\ 12 \\ 12 \\ 14 \\ 13 \\ 12 \\ 12 \\ 14 \\ 15 \\ 14 \\ 15 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 3,4:14,15-Dibenzo<br>(abr: HADA)<br>1,6,12,17-(Me)₄, 3,4:<br>14,15-dibenzo<br>(abr: tmed) | 76a<br>76b   | 300/1 mm (subl)                 | (B–D, ESR) <sup>c</sup>                    | Theoretical calculations<br>Cu                     | 61<br>60                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | $X = Y = \sum_{s}^{s}$                                                                    | 77a          |                                 |                                            |                                                    | 65                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | X = Y = S                                                                                 | 77b          |                                 | С                                          |                                                    | 63, 64                             |

522 Chemical Reviews, 1977, Vol. 77, No. 4

Newkome, Sauer, Roper, and Hager



С

С

С

С

(B, C, x-ray)<sup>c</sup>

(C, D)<sup>c</sup>

Cu

Cu

Cu

Cu

Fe

Ni, Cu, Au





1,4,10,13-(Me)₄

81

80

62

62

62

62

96

272

| т | Α | в | L | Е | 1 | Continued | ļ |
|---|---|---|---|---|---|-----------|---|
|---|---|---|---|---|---|-----------|---|

.

| Compound                                  | n                                          | Substituents                                                                                                                                                                                                        | Compd<br>no.                                               | Physical data<br>Mp[bp (mm)],°C                                                               | Spectral<br>data available <sup>a</sup>   | Metal complex (es)<br>general comments <sup>d</sup>                  | Ref                                                                 |
|-------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|
| H = N + N + N + N + N + N + N + N + N + N |                                            | 3,5.5-(Me) <sub>3</sub>                                                                                                                                                                                             | 82                                                         |                                                                                               |                                           | Ni                                                                   | 280                                                                 |
|                                           |                                            | Н                                                                                                                                                                                                                   | 83                                                         |                                                                                               | C, D                                      | Cu                                                                   | 321                                                                 |
|                                           |                                            | R ≈ (2-cyano-<br>phenyl)                                                                                                                                                                                            | .84                                                        |                                                                                               | B–D                                       | Cu                                                                   | 321                                                                 |
|                                           |                                            | R ≈ OH                                                                                                                                                                                                              | 85                                                         |                                                                                               |                                           | Cu, Co                                                               | 384                                                                 |
| S<br>(CH <sub>2</sub> )                   | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | $N \rightarrow O$<br>H<br>$N \rightarrow O$<br>$N \rightarrow O$ | 86<br>87a<br>87b<br>88<br>89<br>90<br>91<br>92<br>93<br>93 | 152–154<br>78–79<br>107–109<br>98–99<br>147–148<br>138–140<br>89<br>73–75<br>117–120<br>54–55 | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | VTNMR<br>VTNMR<br>VTNMR<br>VTNMR<br>VTNMR<br>VTNMR<br>VTNMR<br>VTNMR | 27<br>28<br>27<br>27<br>27, 283<br>27<br>27<br>27<br>27<br>27<br>27 |

•

524 Chemical Reviews, 1977, Vol. 77, No. 4

Newkome, Sauer, Roper, and Hager

.

0 1

1 1 2

 $\bigcirc$  $\bigcirc$ s Ls Ş (O)`N″

| H<br>H             | 95<br>96a            | 74–77<br>162–163   | A<br>A    | Ag (mp 217–219° ; A)<br>Hg (mp 198–200° dec ; / | 431<br>29, 431<br>A) 29 |
|--------------------|----------------------|--------------------|-----------|-------------------------------------------------|-------------------------|
| N→O<br>5-sulfoxide | 96b<br>96c           | 151–152<br>171–174 | A, D<br>A | Ag. Hg. Au, Pd. Pt, Co                          | 431<br>283<br>431       |
| н                  | 97                   | 131–133            | A         | Cd, Co, Ni                                      | 29, 431                 |
| н                  | 98                   | 151—153 (subl)     | A         | Zn                                              | 431                     |
| н                  | 99                   | 172–173            | A         |                                                 | 30, 31                  |
| Н                  | 100                  |                    | А, В      |                                                 |                         |
|                    |                      | -                  |           |                                                 |                         |
| Н                  | 101a                 | 195–196            | А         | · .                                             | 20 27                   |
| 15-Me              | 101b                 | 129–131            | A         |                                                 | 33                      |
| 15-OMe<br>15-F     | 101c                 | 206-208            |           |                                                 | 33                      |
| 15-Cl or Br        | 101 <b>u</b><br>101e | 142-144            | A         | (Attempted)                                     | 30<br>30                |
| Н                  | 102                  | 228–229            | А         |                                                 | 30                      |
| н                  | 103                  | 213–216            | A         | Fe, Co, Ni                                      | 431                     |
|                    |                      |                    |           |                                                 |                         |
| H<br>17-Me         | 10 <b>4</b> a        | 173-175            | A         |                                                 | 32                      |
| 17-F               | 104b<br>104c         | 135–136<br>174–175 | A         |                                                 | 33                      |
| 17-NO <sub>2</sub> | 1 <b>04</b> d        | 159–160            | ~         |                                                 | 32<br>99                |
|                    |                      |                    |           |                                                 |                         |

# TABLE | (Continued)

| Compound                                                                                    | n | Substituents                                           | Compd<br>no. | Physical data<br>Mp[bp (mm)],°C       | Spectral<br>data available <sup>a</sup>                 | Metal complex(es)<br>general comments <sup>d</sup> | Ref              |
|---------------------------------------------------------------------------------------------|---|--------------------------------------------------------|--------------|---------------------------------------|---------------------------------------------------------|----------------------------------------------------|------------------|
|                                                                                             |   | H<br>2,9-[SMe(BF₄)] ₂                                  | 105a<br>105b | 177–178                               | A, C, D                                                 |                                                    | 7, 9<br>9        |
|                                                                                             |   | 2-Sulfone<br>N→O;2,9-bis-<br>(sulfone)                 | 105c<br>105d | 228–230<br>>340                       | A, B (D <sup>429</sup> )<br>A, B, D (D <sup>429</sup> ) |                                                    | 428<br>9, 428    |
|                                                                                             |   | N→O; 2-sulfoxide                                       | 105e         | 226–228 dec                           | A, B (D <sup>429</sup> )                                |                                                    | 428              |
|                                                                                             |   | 2-sulfoxide; 9-sulfone<br>N→O; 2,9-bis(sul-<br>foxide) | 105f<br>105g | >250 dec<br>220—250 (color<br>change) | A, B, (D <sup>429</sup> )<br>A (D <sup>429</sup> )      | Sublimed: 220–245°<br>(0.002)                      | 428<br>428       |
|                                                                                             |   | N→O; 2-sulfoxide; 9-<br>sulfone                        | 105h         | >300                                  | A. B (D <sup>429</sup> )                                | ,                                                  | 428              |
|                                                                                             | 1 | н                                                      | 106a         | 220–222<br>230–230.5                  | A                                                       |                                                    | 18, 32<br>12, 98 |
| S S                                                                                         |   | $(N \rightarrow O)_2$                                  | 106b         | 211 d                                 | A                                                       |                                                    | 27               |
|                                                                                             |   | Bis(sulfone)                                           | 106C<br>106d |                                       |                                                         |                                                    | 18               |
| $\bigcirc$                                                                                  |   | [SMe(BF <sub>4</sub> )] <sub>2</sub>                   | 106e         |                                       |                                                         |                                                    | 12               |
|                                                                                             | 2 | Н                                                      | 107          | 105 100                               |                                                         |                                                    | 18               |
| ~                                                                                           |   |                                                        |              | 185-188                               | A, D                                                    |                                                    | 98               |
| S<br>S<br>N                                                                                 |   | н                                                      | 108          |                                       | A, D                                                    |                                                    | 98               |
| S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S |   | н                                                      | 109          | 150–152                               | A. D                                                    | ·                                                  | 98               |
| $ \begin{array}{c}                                     $                                    | 1 | 3,4:9,10-Dibenzo                                       | 110          |                                       |                                                         | Mn, Zn                                             | 36               |



| 0           | 1,12-(C=O) <sub>2</sub><br>1,12-(C=O) <sub>2</sub><br>H                                                                                   | 111a<br>111b<br>112                          | 275–276<br>185–186<br>95–96                                    | A<br>A. D, CMR                                       | pK <sub>a</sub> 8.31; Li. Na. K,<br>Rb, Cs, Mg, Ca. Sr. Ba | 427<br>427<br>427                                                         |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|
| 0<br>1<br>2 | H; X = O<br>2,11-(Tos) <sub>2</sub> ; X = H<br>H; X = O<br>2,11-(Tos) <sub>2</sub> ; X = H<br>H; X = O<br>2,11-(Tos) <sub>2</sub> ; X = H | 113a<br>113b<br>114a<br>114b<br>115a<br>115b | 228–230<br>175–177<br>200–201<br>184–185<br>127–129<br>163–165 | A. D<br>A. D<br>A. D<br>A. D<br>A. D<br>A. D<br>A. D |                                                            | 29, 374<br>29, 374<br>29, 374<br>29, 374<br>29, 374<br>29, 374<br>29, 374 |
|             | Н                                                                                                                                         | 116                                          | 338–340 (subl)                                                 | A, D                                                 |                                                            | 29, 374                                                                   |

| 0        | Н                  | 117  | 133-135           | A, D                  |                   | 35, 374 |
|----------|--------------------|------|-------------------|-----------------------|-------------------|---------|
| 1        | Н                  | 118  | 90-91             | A, D                  | Na                | 35, 374 |
| 2        | Н                  | 119a | 58-59             | A, B <sup>c</sup> , D | Na, Co, Cu, K, Ba | 35, 374 |
|          | N→O                | 119b | Oil               | A, B <sup>c</sup> , D | Na, K, NH₄⁺, Ba   | 35, 374 |
|          | N→O; bis (sulfone) | 119c | 198–201           | A, D                  | •                 | 374     |
| 3        | Н                  | 120  |                   |                       |                   | 35      |
| 1; m = 1 | Н                  | 121  | 92-94; 110-112374 | A, D                  |                   | 29, 374 |
| 2; m = 1 | н                  | 122  | 75–77             | A, D                  |                   | 29, 374 |
| 3; m = 1 | н                  | 123  | 73–76             | A, B <sup>c</sup> , D | Ag                | 29, 374 |
| 1; m = 2 | Н                  | 124  | 168–170           | A, D                  | •                 | 374     |
|          |                    |      |                   |                       |                   |         |
|          | Н                  | 125  |                   | А                     |                   | 39      |

## TABLE I (Continued)

| Compound                                                       | n | Substituents                           | Compd<br>no. | Physical data<br>Mp[bp (mm)],°C | Spectral<br>data available <sup>a</sup> | Metal complex (es)<br>general comments <sup>d</sup> | Ref        |
|----------------------------------------------------------------|---|----------------------------------------|--------------|---------------------------------|-----------------------------------------|-----------------------------------------------------|------------|
|                                                                |   | 5 -Me                                  | 126          | 67–69                           | А                                       | Cu, Fe                                              | 431        |
|                                                                |   | 1.9-(C=O) <sub>2</sub>                 | 127          | 242–243                         | A                                       |                                                     | 431        |
|                                                                |   | 1,10-(C=O) <sub>2</sub>                | 128          | 234–236                         | A                                       |                                                     | 431        |
| $ \begin{array}{c} 12 \\ 11 \\ 12 \\ 5 \\ 5 \\ 7 \end{array} $ | 1 | 3,4:9,10-Dibenzo                       | 129          |                                 |                                         | Mn, Zn                                              | 36         |
|                                                                |   |                                        | 130          |                                 |                                         | Cu, Co, Ni, Zn                                      | 38         |
|                                                                |   | 1,14-(Me)₂ 3,4:7,8:<br>11,12-Tribenzo- | 131          |                                 |                                         | Zn, Cd                                              | 276        |
| B 7<br>ONO<br>B R<br>R R                                       | 2 | R ≈ Et<br>R ≈ <i>i-</i> Pr             | 132a<br>132b | >300 dec<br>250 dec             |                                         |                                                     | 137<br>137 |

528 Chemical Reviews, 1977, Vol. 77, No. 4

.

|    | 1.11-(Me) <sub>2</sub><br>1.11-(Me) <sub>2</sub> : 1,2,10,<br>11-(H) <sub>4</sub> (abr: pn <sub>2</sub> - | 133a<br>133b  |                   |                                          | Ni<br>Ni                                             | 67<br>67 |
|----|-----------------------------------------------------------------------------------------------------------|---------------|-------------------|------------------------------------------|------------------------------------------------------|----------|
|    | H <sub>4</sub> )["meso"]<br>1,11-(Me) <sub>2</sub> ; 1,2,10,<br>11-(H) <sub>4</sub> ; 6-S                 | 1 <b>3</b> 3c |                   | D                                        |                                                      | 67       |
|    | (abr: P <sub>cc</sub> BF)                                                                                 | 1 <b>34</b>   |                   |                                          | Fe, Zn, Ni, Co                                       | 68       |
|    |                                                                                                           |               |                   | X-ray <sup>c</sup><br>X-ray <sup>c</sup> | Fe<br>Ní                                             | 69<br>70 |
|    |                                                                                                           |               |                   |                                          |                                                      |          |
| 8  | н                                                                                                         | 135a          | [70-75 (0.01)]    | A–C                                      |                                                      | 84       |
| -  | 1-(=0)                                                                                                    | 135b          | 43-48 [105-110    |                                          |                                                      |          |
|    |                                                                                                           |               | (0.02)]           | A–C                                      |                                                      | 84       |
|    | 1-OH                                                                                                      | 135c          | [125–135 (0.02)]  | А, В                                     | Isomeric mixture                                     | 84       |
|    | 1-OAc                                                                                                     | 135d          | [110–115 (0.01)]  | A                                        | Isomeric mixture                                     | 84       |
| 9  | (±)-H                                                                                                     | 136a          | [80-81 (0.04)]    | A–C                                      |                                                      | 84       |
|    | (+)-H                                                                                                     | 136b          | [80 (0.01)]       |                                          | [α] <sub>D</sub> +152°, [α] <sub>365</sub><br>+1074° | 84       |
|    | 1-OH                                                                                                      | 136c          | [145–146 (0.03)]  | Α, Β                                     | Mixture                                              | 84       |
|    |                                                                                                           |               | Oil               | Α, Β                                     | Isomer B                                             | 84       |
|    |                                                                                                           |               | 96–97             | Α, Β                                     | Isomer A                                             | 84       |
|    | 1-OAc                                                                                                     | 136d          | 47-59 [135-140    |                                          |                                                      |          |
|    |                                                                                                           |               | (0.01)]           |                                          | Mixture                                              | 84       |
|    |                                                                                                           |               | 70-72             | А                                        | Isomer A                                             | 84       |
|    |                                                                                                           |               | 66-68             | А                                        | Isomer B                                             | 84       |
|    | 1-(=0)                                                                                                    | 136e          | [105-115 (0.03)]  | A–C                                      |                                                      | 84       |
| 10 | -, -,<br>Н                                                                                                | 137a          | [75-78 (0 01)]    | A–C                                      |                                                      | 84       |
|    | 1-OH                                                                                                      | 137b          | [155-160, (0.02)] | A.B                                      | Mixture                                              | 84       |
|    | 1-0Ac                                                                                                     | 137c          | [125-130, (0.01)] | A                                        | Mixture                                              | 84       |
|    | 1-(=0)                                                                                                    | 137d          | 79-82 [140-150    |                                          |                                                      |          |
|    | - ( 0)                                                                                                    | 2074          | (0.01)]           | A-C                                      |                                                      | 84       |
|    |                                                                                                           | 120-          |                   | A-C                                      |                                                      | 04       |
| 11 | Н                                                                                                         | 138a          |                   | AR                                       |                                                      | 04       |
|    | I-OH                                                                                                      | 1380          | [140-145(0.03)]   | Δ                                        | Mixture                                              | 84       |
|    | 1-UAC                                                                                                     | 1380          | [110-115 (0.02)]  |                                          | MIX lure                                             | 84       |
|    | 1-(=0)                                                                                                    | 138g          | 35-37 [120-130    |                                          |                                                      | <u> </u> |
|    |                                                                                                           |               | (0.03)]           |                                          |                                                      | 84       |
| 12 | Н                                                                                                         | 139a          | [100 (0.01)]      | A-U                                      |                                                      | 84       |

A–C A, B A, B

A-C

139a 139b

139c

139d

[140-150 (0.03)]

[140 130 (0.03)] [100–110 (0.02)] 45–48 [120–130 (0.02)]

.

н 1-он

1-OAc

1-(=0)

84 84

84

84

## TABLE | (Continued)

| Compound                                                                                         | n                              | Substituents                                      | Compd<br>no.                 | Physical data<br>Mp [bp (mm)],°C   | Spectral<br>data available <sup>a</sup> | Metal complex(es)<br>general comments <sup>d</sup>                                                                 | Ref                                  |
|--------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------|------------------------------|------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                                  |                                | н                                                 | 1 <b>40</b>                  | 256–258                            | A                                       |                                                                                                                    | 85, 89                               |
|                                                                                                  |                                |                                                   | 141                          |                                    | A                                       | 4 isomers(separable)                                                                                               | 85–88                                |
| $(CH_2)_{n-1}$                                                                                   | 8<br>9                         | 1 = 1' = (=0),<br>1 = 1' = (=0),<br>H             | 142<br>143a<br>143b          | 107–108<br>147–148<br>94.5-97.5    | A–C<br>A–C<br>A–C                       |                                                                                                                    | 84<br>84<br>84                       |
|                                                                                                  | 1. m = 9<br>m = 12<br>2. m = 9 | н<br>н<br>н                                       | 1 <b>44</b><br>145<br>146    | 103–104<br>38–40<br>72–73          | A, B<br>A, B<br>A, B                    |                                                                                                                    | 84<br>84<br>84                       |
| <sup>2</sup> CH <sub>2</sub> N<br>(CH <sub>2</sub> )<br>(CH <sub>2</sub> )<br>(CH <sub>2</sub> ) | 2                              | 2-(=O); 9, 10, 11,<br>12,13,14-[carpaine]<br>(H), | 147                          | 119–120 [subl: 120<br>(0.05)]      | D                                       | [α] <sup>'2</sup> <sub>D</sub> + 24.7° : <i>N</i> . <i>N</i> '-(Me) <sub>2</sub><br>[mp 79–81°]                    | 104, 105.<br>130<br>127, 128.<br>468 |
| $10 \xrightarrow{1}{10} \xrightarrow{1}{10} \xrightarrow{1}{3} \xrightarrow{n}{10}$              | 1<br>2                         | H<br>2,9-Bis(sulfone)<br>H                        | 148a<br>148b<br>149          | 204–205<br>330 dec<br>217–218      | A<br>A                                  | Two isomers                                                                                                        | 89<br>85,89<br>89                    |
| 9S<br>8<br>CH <sub>2</sub><br>(CH <sub>2</sub> ) <sub>n-2</sub>                                  | 9                              | H<br>12-Me                                        | 150a<br>150b                 | [115–120 (0.3)]<br>[105–110 (0.2)] | А<br>А. В                               | Mel (127—128°)                                                                                                     | 107, 108<br>106                      |
| $(CH_2) = (CH_2) = (CH_2) = 2$                                                                   | 6<br>8                         | H<br>16-CI<br>H<br>18-CI                          | 151a<br>151b<br>152a<br>152b | 62–63<br>67–68<br>44–45<br>64.5–66 | A, C<br>A. C<br>A, C<br>A, C            | HCI (230–234°)<br>Picrate (192.5–193.5°)<br>Picrate (166.5–167.5°)<br>Picrate (201–203°);<br>pK <sub>a</sub> 5.03) | 110<br>110<br>109, 110<br>110        |

| н                                         | 153a           | 62–63     | A.C  | HCI (230–234°)                           | 109, 110  |
|-------------------------------------------|----------------|-----------|------|------------------------------------------|-----------|
| N→O                                       | 15 <b>3</b> b  | 119–121   | ,    |                                          | 117       |
| 1-CI (syn)                                | 15 <b>3</b> c  | 109–110   | А    |                                          | 117       |
| 20-CI                                     | 153d           | 81.5-82.5 | A.C  | Picrate (176—178°);                      | 110, 113, |
|                                           |                |           | , -  | pK 2.88                                  | 114       |
|                                           |                |           | A-C  | HCI (194–221°)                           | 109, 113  |
| 20-CI: 1-d (svn)                          | 153e           | 81-82     | A    | $N \rightarrow O(122.5 - 123.5^{\circ})$ | 111       |
| 20-CI; N→O                                | 15 <b>3</b> f  | 125-127   | A.C  | ,                                        | 109, 113, |
|                                           |                |           |      |                                          | 117       |
| 20-Cl; 1,1,10,10-(d)                      | 153 <b>g</b>   |           |      |                                          | 129       |
| 20-CI; 1-OH                               | 15 <b>3</b> ĥ  | 139–158   |      |                                          | 109       |
| Syn isomer                                | 15 <b>3</b> i  | 160–162   | A.C  |                                          | 129, 109, |
| <b>,</b>                                  |                |           |      |                                          | 113, 114, |
|                                           |                |           |      |                                          | 116       |
| N→O                                       | 15 <b>3</b> j  | 174–175   | А    |                                          | 113       |
| Anti isomer                               | 153k           | 205.5-207 | A.C  |                                          | 129, 109, |
|                                           |                |           |      |                                          | 113, 114, |
|                                           |                | •         |      |                                          | 116       |
| N→O                                       | 1531           | 220-230   | А    |                                          | 113       |
| 20-CI: 1-(=O)                             | 153m           | 136–137.5 | A-C  |                                          | 109,132   |
| 20-CI: 1-Br (syn)                         | 15 <b>3</b> n  | 149.5–151 | A.C  | N→O (186–188°)                           | 109, 114, |
|                                           |                |           |      |                                          | 129       |
| 20-Cl; 1-Br (anti)                        | 1530           | 152-153   | А    |                                          | 114, 129, |
|                                           |                |           |      |                                          | 132       |
| 20-CI; 1,10-(Br),                         | 153p           | 133.5–135 | A, C | Picrate (183.5—185°)                     | 109       |
| 20-CI; 1-OAc (syn)                        | 153 <b>q</b>   | 116–118   | A    | Labeled d                                | 112, 114  |
|                                           |                | 118–119   |      |                                          | 129       |
| 20-CI; 1-OAc (anti)                       | 153r           | 149–150   | А    | Labeled d                                | 112, 114, |
|                                           |                |           |      | -                                        | 129       |
| 1(anti), 20-(CI),                         | 15 <b>3</b> s  | 140-140.5 | A, D |                                          | 112, 132  |
| 1 (syn), 20-(CI),                         | 153t           | 144—145   | A, C |                                          | 112, 113  |
| N→O                                       | 153u           | 189.5–191 | A    |                                          | 113       |
| 20-CI; 1-OTos (syn)                       | 153v           | 104–107   | A–D  | Recryst: CHCl <sub>3</sub> —pet.         | 112–114,  |
|                                           |                |           |      | ether                                    | 129       |
|                                           |                |           |      | recryst: ether                           | 112       |
| N→O (syn)                                 | 153w           | 145       | А    |                                          | 113       |
| 20-CI; 1-OTos (anti)                      | 153 <b>x</b>   | 122–123   | А, В |                                          | 113, 114, |
|                                           |                |           |      |                                          | 129       |
| N→O (anti)                                | 15 <b>3</b> y  | 166–167   | A    |                                          | 113       |
| 20-CI: 1-OCH,CH <sub>3</sub> (syn)        | 153z           | Oil       | A, C | Picrate (189—191.5°)                     | 116, 129  |
| N→O (syn)                                 | 153aa          | Oil       | A    |                                          | 113       |
| 20-CI: 1-OCH,CH,                          | 1 <b>5</b> 3bb | 107.5-110 | A, C |                                          | 116, 129  |
| (anti)                                    |                |           |      |                                          |           |
| N→O (anti)                                | 153cc          | 176–178   | А    |                                          | 113       |
| 20-CI: 1-OCOC, H.                         | 153dd          | 147–148   | A–C  |                                          | 113       |
| (syn)                                     |                |           |      |                                          |           |
| N→O (syn)                                 | 153ee          | Oil       | А    | HCI (146–150°)                           | 113       |
| 20-CI; 1-OCOC <sub>6</sub> H <sub>5</sub> | 15 <b>3</b> ff | 116–118   | A–C  |                                          | 113       |
| (anti)                                    |                |           |      |                                          |           |

#### TABLE t (Continued)

| Compound                      | n  | Substituents                                                            | Compd<br>no.   | Physical data<br>Mp[bp (mm)] .°C | Spectral<br>data available <sup>a</sup> | Metal complex (es)<br>general comments <sup>d</sup> | Ref        |
|-------------------------------|----|-------------------------------------------------------------------------|----------------|----------------------------------|-----------------------------------------|-----------------------------------------------------|------------|
|                               |    | N→O (anti)                                                              | 153qq          | 176–178                          | Α                                       |                                                     | 113        |
|                               |    | 20-CI; 1-OPO(OCH <sub>2</sub> -<br>CH <sub>2</sub> ) <sub>2</sub> (syn) | 153hh          | 84.5-86.5                        | A–D                                     |                                                     | 113        |
|                               |    | 20-CI: 1-OCHO (svn)                                                     | 153ii          | 122-122.5                        | A, B                                    |                                                     | 114        |
|                               |    | 14.20-(Cl)                                                              | 153ii          | 77–79                            | A                                       |                                                     | 117        |
|                               |    | $N \rightarrow O$                                                       | 153kk          | 159-160                          |                                         |                                                     | 117        |
|                               |    | 14,20-(CI) <sub>2</sub> ; 1-OPO-                                        | 15311          | 114–116                          | A–C                                     |                                                     | 113        |
|                               |    | 14-Br: 20-Cl                                                            | 153mm          | 96-98                            |                                         |                                                     | 114        |
|                               |    | 14,16,20-(CI) <sub>3</sub>                                              | 153 <b>n</b> n | 159–160                          | А                                       |                                                     | 117        |
| $\bigcirc$                    | 6  | 10-Br: 20-CI                                                            | 154            | 187_189                          | C                                       |                                                     | 116        |
| CH ICH.)                      | 10 | 10-Bi; 20-Сi                                                            | 154            | 120 121                          | BC                                      |                                                     | 113        |
|                               | 10 |                                                                         | 1004           | 129-131<br>200 201 F             | B, C                                    |                                                     | 115        |
|                               |    | 14-Br; 24-Cl                                                            | 1550           | 200-201.5                        | B                                       |                                                     | 115        |
|                               |    | 14-UN: 24-UI                                                            | 1550           | 231-232                          | В                                       |                                                     | 115        |
| ſſſŢŢŢŇſŢĊĤ₂                  |    | $14-COCH_2N(C_4H_9)_2$                                                  | 1550           |                                  | 0                                       | Unstable                                            | 115        |
| $\bigcirc$                    |    | 14-COCI; 24-CI                                                          | 155e           | 202-206                          | В                                       |                                                     | 115        |
|                               |    | $14-COCH_2N(C_7H_{15})_2$                                               | 155f           |                                  | -                                       | Unstable                                            | 115        |
|                               |    | 14-CO₂H; 24-CI                                                          | 155g           | 280–282                          | В                                       |                                                     | 115        |
|                               |    | 14-COMe; 24-CI                                                          | 155h           | 212-212.5                        | В                                       |                                                     | 115        |
|                               |    | 14-COCHBr <sub>2</sub> ; 24-CI                                          | 155i           | 164                              | В                                       |                                                     | 115        |
|                               |    | 14-COCH <sub>2</sub> Br; 24-CI                                          | 155j           | 207–208                          | В                                       |                                                     | 115        |
|                               |    | 14-CHOHCH₂N-                                                            | 155k           | 130-131                          | В                                       | Isomer A                                            | 115        |
|                               |    | (C <sub>7</sub> H <sub>15</sub> ) <sub>2</sub> ; 24-CI                  |                | Oil                              | В                                       | Isomer B                                            | 115        |
|                               |    | 14-CHOHCH <sub>2</sub> N-<br>(C <sub>4</sub> H <sub>2</sub> ),          | 1551           | Oil                              | В                                       | Mixed racemates                                     | 115        |
|                               |    | 14-(2-pyrCHOH);<br>24-Cl                                                | 155m           | 173–186<br>174–176               | A, B<br>A, B                            | Isomer A<br>tsomer B                                | 115<br>115 |
|                               |    | 14-(2-ɒyrCO); 24-Cl                                                     | 155n           | 147–149                          | В                                       |                                                     | 115        |
|                               | 9  | $R_3 \approx R_5 \approx (CI)_2$ ;<br>$R_c \approx F$                   | 156            | Oil                              | A, D                                    |                                                     | 131        |
|                               | 12 | $R_3 = R_5 = (CI)_2;$<br>$R_6 = F$                                      | 157            | [175–180 (3.5)]                  | A, D                                    |                                                     | 131        |
| H<br><sup>(n+2)</sup> (CH₂)≈1 | 10 | н                                                                       | 158            | [165-175 (3 7)]                  |                                         |                                                     |            |
| 3)                            | 20 |                                                                         | 100            | 21.8–23.4                        | B, C                                    | Picrate (154-155°)                                  | 17         |
| M CH                          | 13 | Н                                                                       | 159a           | [125–127 (0.007)]                | •                                       | Picrate (137–138°)                                  | 118, 119   |
| 10.12                         |    | 17-CI                                                                   | 159b           | 130–131                          |                                         | Picrate (130–131°)                                  | 118        |
|                               |    | 17-OH                                                                   | 159c           | 189-190                          |                                         |                                                     | 118        |
|                               |    | 17-OH; 16-CN                                                            | 159d           | 210-211                          |                                         |                                                     | 118        |
|                               |    | 15.18-(H).: 17.19-                                                      | 15 <b>9</b> e  | 247-248                          |                                         |                                                     | 118        |
|                               |    | (OH) <sub>2</sub> ; 16-CN                                               |                | 217 270                          |                                         |                                                     | 110        |

(CH2)

(CH2),-1

| 15,17-(OH)₂; 16-<br>CO.CH.CH.                  | 159f          | 280-300          |        |                                       | 118 |
|------------------------------------------------|---------------|------------------|--------|---------------------------------------|-----|
| (H) <sub>6</sub> (cis)                         | 159q          |                  |        | Picrate (194–195°)                    | 118 |
| (H) <sub>6</sub> (trans)                       | 159ĥ          |                  |        | Picrate (202–203°)                    | 118 |
| н                                              | 160a          | [255 (25)] : 75  |        | Picrate (185°)                        | 124 |
| 15-Me                                          | 160b          | [238(11)]:61     |        | Picrate (196°)                        | 124 |
| 15-Br                                          | 160c          | [260 (13)] : 91  |        | Picrate (231°)                        | 124 |
| 15.16-(Me)                                     | 160d          | 93               |        | Picrate (221°)                        | 124 |
| 12-CO <sub>2</sub> H                           | 160e          | 314              |        | ,                                     | 124 |
| 15-Me. 12-CO <sub>2</sub> H                    | 160f          | >365             |        |                                       | 124 |
| 15-Br. 12-CO.H                                 | 160g          | >365             |        |                                       | 124 |
| 15,16-(Me),: 12-                               | 160h          | >365             |        |                                       | 124 |
| CO.H                                           |               |                  |        |                                       |     |
| H                                              | 161a          | 80               |        | Picrate (175°)                        | 120 |
| 13-CO_H                                        | 161b          | >320 (subl)      |        | ,                                     | 120 |
| H                                              | 162a          | 76               |        | Picrate (159°)                        | 121 |
| 14-CO-H                                        | 162b          | 310              |        |                                       | 121 |
| H                                              | 163a          | [200-205 (0 15)] |        | Picrate (169–171°)                    | 122 |
| 18-Me                                          | 163h          | Oil              |        | Picrate (165°)                        | 121 |
| 18-Me: 15-CO.H                                 | 1630          | 307              |        | · · · · · · · · · · · · · · · · · · · | 121 |
| 18-Br                                          | 163d          | 55               |        | Picrate (194–195°)                    | 123 |
| 15-Me                                          | 163e          |                  |        | (TCNQ complex: mp                     |     |
| 10                                             |               |                  |        | 147–153°)                             | 338 |
| 15-CO H                                        | 163f          | 297-298          |        |                                       | 337 |
| Н                                              | 16 <b>4</b> a | 207 200          |        | Picrate (173°)                        | 121 |
| 19-CO.H                                        | 164h          | 280              |        | ,                                     | 121 |
| H                                              | 165a          | 201              |        | Picrate (172°)                        | 121 |
| 20-CO.H                                        | 165b          | 250 dec          |        |                                       | 121 |
| 8 9-De(H)-                                     | 1650          |                  |        | Picrate (161°)                        | 121 |
| 8.9-De(H),: 17-CO,H                            | 165d          | 256              |        |                                       | 121 |
| 8.9-De(H).: 17-CO.H:                           | 165e          | 270 dec          |        |                                       | 123 |
| 20-Br                                          |               |                  |        |                                       |     |
| H                                              | 166           | 262-264          | B-D    | Co, Cu                                | 126 |
|                                                |               |                  |        |                                       |     |
|                                                |               |                  |        |                                       |     |
|                                                |               |                  |        |                                       |     |
|                                                |               |                  |        |                                       |     |
| $(X = N \cdot Y = CH)$                         | 167a          |                  |        |                                       |     |
| $(X = CH \cdot X = N)$                         | 167h          | 320              | B, D   | Cu                                    | 126 |
|                                                |               |                  |        |                                       |     |
|                                                |               |                  |        |                                       |     |
|                                                |               |                  |        |                                       |     |
| 9,11(Me) <sub>2</sub>                          | 168           |                  | A(CMR) | Picrate (171—172°),                   |     |
|                                                |               |                  |        | Picrolonate (259°)                    | 432 |
| 11,13-(Me) <sub>2</sub>                        | 169a          | Oil              | A      |                                       | 71  |
| 11,13-(Me) <sub>2</sub> ; 12-NH <sub>2</sub> - | 169b          | 249              | А      |                                       | 72  |
| (CIO₄ ¯)                                       |               |                  |        |                                       |     |
| 11,12,13-(Me) <sub>3</sub> -                   | 169c          | 226              | А, В   |                                       | 72  |
| (CIO <sub>4</sub> ~)                           |               |                  |        |                                       |     |
|                                                |               |                  |        |                                       |     |

## TABLE t (Continued)

| Compound           | n | Substituents                                                                                            | Compd<br>no.                  | Physical data<br>Mp[bp (mm)],°C | Spectral<br>data available <sup>a</sup> | Metal complex (es)<br>general comments <sup>d</sup> | Ref      |
|--------------------|---|---------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|-----------------------------------------|-----------------------------------------------------|----------|
|                    | 9 | 11,13-( <b>M</b> e) <sub>2</sub> ;<br>12-C <sub>6</sub> H <sub>5</sub> (CIO <sub>4</sub> <sup>-</sup> ) | 169 <b>d</b>                  | 174                             | А, В                                    |                                                     | 72       |
| N                  |   | H                                                                                                       | 1 <b>70</b> a                 | 2 <b>4</b> 9–25 <b>0</b>        | A, D                                    |                                                     | 75       |
| "[O]" <sup>6</sup> |   | 15,18-(H),                                                                                              | 170b                          | Mp (dec)                        | A, D                                    | K (anion formation)                                 | 75–77    |
|                    |   | 15-Me; 18-H                                                                                             | 17 <b>0c</b>                  | Mp (dec)                        | A, C, D                                 |                                                     | 75       |
| X                  |   | 15-CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ;<br>18-H                                            | 1 <b>70d</b>                  | Mp (dec)                        | A, D                                    |                                                     | 75       |
|                    |   | 15-COCH₃;<br>18-CH₄CH₃                                                                                  | 1 <b>70e</b>                  |                                 | A                                       |                                                     | 78       |
|                    |   | 15-COCH <sub>1</sub> ; 18-H                                                                             | 1 <b>70f</b>                  | Mp (dec)                        | A, D                                    |                                                     | 75       |
|                    |   | 15-CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ;<br>18-CH <sub>2</sub> CH <sub>3</sub> ;            | 1 <b>70g</b>                  | Mp (dec)                        | A                                       |                                                     | 78       |
|                    |   | 15.18-(Me),                                                                                             | 1 <b>70</b> h                 | 230 dec                         | В                                       |                                                     | 76       |
|                    |   | 15-Me; 18-CH,CH,                                                                                        | 1 <b>70</b> j                 | 230 dec                         | А                                       |                                                     | 76, 78   |
|                    |   | 15 <b>-M</b> e; 18-CH <sub>2</sub> CH <sub>2</sub> -<br>CH <sub>2</sub>                                 | 1 <b>70</b> j                 | 2 <b>00</b> dec                 | A                                       |                                                     | 76       |
|                    |   | 15-Me; 18- <i>n</i> -Bu                                                                                 | 1 <b>70k</b>                  | 220 dec                         | A                                       |                                                     | 76       |
|                    |   | 15-H; 18-CH <sub>3</sub>                                                                                | 1 70t                         | Mp (dec)                        |                                         | K (anion formation)                                 | 77       |
|                    |   | 15-H; 18-CH <sub>2</sub> CH <sub>3</sub>                                                                | 1 <b>70</b> m                 | Mp (dec)                        |                                         | K (anion formation)                                 | 77, 78   |
|                    |   | 2 <b>0</b> -H; 1 <b>7</b> -CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                              | 171                           | Mp (dec)                        | A, C                                    |                                                     | 79       |
| -0                 |   | U                                                                                                       | 172-                          |                                 |                                         |                                                     | 90       |
|                    |   | п<br>22-Н; 19-СО <sub>4</sub> СН <sub>2</sub> СН <sub>3</sub>                                           | 172a<br>172b                  | Mp (dec)                        | A<br>A, C                               |                                                     | 80<br>80 |
|                    |   |                                                                                                         |                               |                                 |                                         |                                                     |          |
| 11 N 13            |   | 11,13,15,16-(Me) <sub>4</sub><br>8,9-(H) <sub>2</sub> ; 11,13,15,16-                                    | 1 <b>73a</b><br>1 <b>7</b> 3b | 89.1-89.6                       | A–C                                     | HCI; <b>K</b> ½ ~ 8 s (MeOH)                        | 73<br>73 |
|                    |   | (W:e)4<br>1,2,8,9-(H)4                                                                                  | 1 <b>7</b> 3c                 | 169–171[subl: 60–<br>65 (0.3)]  | A                                       |                                                     | 74       |



<sup>*d*</sup>Spectral data cited in the literature: A = PMR; B = IR; C = UV; D = MS. <sup>*b*</sup>Samples were isolated by preparative gas—liquid chromatography and characterized by NMR, IR, MS, and elemental analysis. <sup>93b c</sup>Spectral data of the complex. No corresponding data available for ligand. <sup>*d*</sup>Temperatures given in °C.

#### TABLE 11. Heterocycles Containing the Furan Subunit<sup>a</sup>

| Compound            | Double bond position | Substituents                    | Compd<br>no. | Physical data<br>Mp {bp (mm)], °C | Spectral<br>data available | Complex (es)/comments             | Ref                                     |
|---------------------|----------------------|---------------------------------|--------------|-----------------------------------|----------------------------|-----------------------------------|-----------------------------------------|
| $(\mathcal{D})$     | 4,5:5,6              | n = 7; 2-(=0)                   | 182          | 69–70                             | A–D                        | Reactions of DNP<br>(mp 202–203°) | 1 <b>7</b> 7, 26 <b>0</b> , 18 <b>3</b> |
| (CH <sub>2</sub> ), |                      | n = 8; H                        | 183a         | [104–106 (11)]                    | A–C                        |                                   | 176, 187                                |
|                     |                      | $n = 8; (H)_{\bullet}$          | 183b         | [96 (2)]                          |                            |                                   | 370, 454                                |
|                     |                      | $n = 8; (H)_{4}; 1, 8-(Br)_{7}$ | 183c         | 116-118                           | A–D                        | Exo, exo isomer                   | 454                                     |
|                     |                      |                                 | 183d         | 74.5-75.5                         | A–D                        | Endo,exo isomer                   | 454                                     |
|                     |                      | n = 8; 3, 6 - (=0),             | 183e         | 109-110                           | A–C                        | VTNMR study <sup>471</sup>        | 184                                     |
|                     | (Z)-4,5              | $n = 8; 3, 6-(=0)_2^2$          | 183f         |                                   |                            | Proposed intermedi-<br>ate        | 373                                     |

| Compound   | Double bond position | Substituents                                                             | Compd<br>no.  | Physical data<br>Mp [bp (mm)], °C | Spectral<br>data available | Complex(es)/commentsg                                  | Ref                                                            |
|------------|----------------------|--------------------------------------------------------------------------|---------------|-----------------------------------|----------------------------|--------------------------------------------------------|----------------------------------------------------------------|
| 11         |                      | н                                                                        | 184a          | 68–68.5                           | A <sup>217</sup> , C       | Reactions of 498                                       | 179–181, 217                                                   |
|            |                      | 4,14- <i>d</i> ,                                                         | 184b          | 66.5-67.0                         | А                          |                                                        | 178                                                            |
|            |                      | 4,14-(Me),                                                               | 184c          | 63-64.5                           | A, C                       | VTNMR                                                  | 188                                                            |
| $\square$  |                      | 4,5-Benzo                                                                | 184d          | 164-165                           | A, D                       |                                                        | 189,268                                                        |
| 7 5        |                      | 4,5: 13,14-Dibenzo                                                       | 1 <b>8</b> 4e | 170–174                           | С                          | DMAD adduct (mp<br>212-213.5°)                         | 190                                                            |
| ~          |                      | 4,5-(2,3-Naphtho)                                                        | 184f          | $\sim\!154~\text{dec}$            | A, D                       |                                                        | 191                                                            |
| -0         |                      | <i>n</i> = 8                                                             | <b>18</b> 5   | Oil                               |                            |                                                        | 259                                                            |
|            |                      | n = 10                                                                   | 186           | 74–75                             |                            | Reactions of <sup>485</sup> ;<br>Chiral <sup>485</sup> | 259                                                            |
|            |                      | R = R' ≈ H                                                               | 187a          | 117–118                           | A.C.                       |                                                        | 217                                                            |
|            |                      | R ≈ R' ≈ Me                                                              | <b>18</b> 7b  | 127-128                           | A, C_                      | VTNMR                                                  | 188, 486                                                       |
|            |                      | н                                                                        | 188           | 176–178                           | A, C                       |                                                        | 217                                                            |
|            |                      | н                                                                        | 189a          | 189—190° dec                      | A-C                        | D <sub>2h</sub> . symmetry <sup>186</sup>              | 6, 88, 180, 181,<br>186, 188, 189<br>190, 259, 485             |
|            |                      | н                                                                        |               |                                   |                            | Reactions of                                           | 497<br>165, 166, 181,<br>186, 218, 268<br>373, 484,<br>496–498 |
|            |                      | н                                                                        |               |                                   | А                          | VTNMR studies                                          | 15                                                             |
|            | (Z)-1,2              | 1-CI                                                                     | 189b          | Oil                               | А                          |                                                        | 167                                                            |
|            |                      | 1,(2 or 7)-(Me),                                                         | 189c          | 146-148                           | в, С                       | Mixture of isomers                                     | 186                                                            |
|            |                      | 1,(2 or 7)-(CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> | 189d          | 182–186                           | ·                          | Mixture of isomers                                     | 186                                                            |
| Kol<br>Kol |                      | Н                                                                        | 190           | 125–126                           | A, D                       | Bis adduct (mp 224°)                                   | 165                                                            |
|            |                      | Π                                                                        | 190           | 123-126                           | A, D                       |                                                        | 105                                                            |

Newkome, Sauer, Roper, and Hager

536 Chemical Reviews, 1977, Vol. 77, No. 4

| 13     | ۲, |
|--------|----|
| 11     |    |
| ₽<br>Ţ |    |





|                                                                    | 1-(=O)                                        | 191a                 |                         |                        |                                          | 141                       |
|--------------------------------------------------------------------|-----------------------------------------------|----------------------|-------------------------|------------------------|------------------------------------------|---------------------------|
| (%)-1,2; (Z)-4,5; (%)-<br>10, 11                                   | Н                                             | 191b                 | 110                     | A–D                    |                                          | 14 <b>0</b> , 1 <b>44</b> |
| (E)-1.2; (Z)-4,5; (Z)-<br>10, 11                                   | 3-(=0)                                        | 191c                 | Red oil                 | A–D                    | Nonplanar; non-<br>diatropic             | 164,173                   |
| (Z)-1,2; (Z)-4,5; (Z)-                                             | 3-(=0)                                        | 191d                 | 158–160                 | A–D                    | Nonplanar; non-<br>diatropic             | 164, 173                  |
| (E)-1,2; $(E)$ -4,5; $(Z)$ -                                       | $3-(=0); 2, 4-(CO_2Me)_2$                     | 191e                 | 170                     | A–D                    |                                          | 142, 164                  |
| (E)-1,2; $(E)$ -4,5; $(Z)$ -                                       | 3-(=0); 2,4-(COOCO) <sub>2</sub>              | 1 <b>91</b> f        | >300                    | A–D                    | Appreciable diamag-                      | 142, 164, 173             |
| (E)-1,2; $(E)$ -4,5; $(Z)$ -                                       | 3-(=0); 2,4-(CO <sub>2</sub> H) <sub>2</sub>  | 191g                 | >300                    | A–C                    | netic ring carron                        | 142, 164, 173             |
| (E)-4,5; (Z)-10,11                                                 | 3-(=O); 2,4-(CO <sub>2</sub> Me) <sub>2</sub> | 191h                 | 155–156                 | A–D                    |                                          | 164                       |
| (Z)-5,6; (Z)-11,12<br>(Z)-5.6; (Z)-11,12<br>(Z)-1,2; (Z)-5,6; (Z)- | 2-OH; 4-(=O)<br>2,4-(OH) <sub>2</sub><br>H    | 192a<br>192b<br>192c | 150–152<br>145          | A, D<br>A–D<br>A, C, D | Decoupling                               | 143<br>1 <b>43</b>        |
| 11,12<br>(Z)-1,2; (Z)-5,6; (Z)-                                    | 3,4-(Br) <sub>2</sub>                         | 1 <b>92</b> d        | 138                     | D                      | studies<br>Not isolated                  | 150<br>150                |
| (Z)-2,3; (Z)-5,6; (Z)-                                             | 4-(=O)                                        | 1 <b>92</b> e        |                         |                        |                                          | 143                       |
| (Z)-2,3; (E)-5.6; (Z)-                                             | 4-(=O); 3,5-(CO <sub>2</sub> Me) <sub>2</sub> | <b>192</b> f         |                         | A-D                    |                                          | 143                       |
| (Z)-2,3; (E)-5,6; (Z)-                                             | 4-(=0); 3.5-(CO <sub>2</sub> H) <sub>2</sub>  | 192g                 | >300                    |                        |                                          | 143                       |
| (Z)-2,3; (Z)-5,6; (Z)-                                             | 4-(=O); 3-CO₂H                                | 192h                 |                         |                        |                                          | 143                       |
| (Z)-1,2; (E)-3,4; (Z)-5,6; (Z)-11,12                               | Н                                             | 192i                 | 167–170                 | A–D                    |                                          | 150                       |
| (Z)-1,2; (Z)-5,6                                                   | 11-(=0)                                       | 193a                 | 148–150                 | A–D                    |                                          | 158                       |
| (Z)-1,2; (Z)-5,6<br>(Z)-1,2; (E)-3,4; (Z)-                         | 11-(=O); 3-Br<br>11-2H                        | 193b<br>193c         | Unstable oil<br>103–105 | A–D                    | Not identified<br>Decoupling studies     | 158<br>158                |
| 5,6<br>(Z)-1,2; (E)-3,4; (Z)-<br>5,6                               | 11-(=0)                                       | 193d                 | 212–215                 | A–D                    | Conformationally<br>mobile, VTNMR        | 158                       |
| ( )-1,2; ( )-6,7;<br>(Z)-12,13                                     | н                                             | 194                  | 94–96                   |                        | Probably <i>Z</i> , <i>Z</i> orientation | 150                       |

| T/ | ٩B | LE | tt | (Continued) |
|----|----|----|----|-------------|
|----|----|----|----|-------------|

| Compound                                                                                                                                 | Double bond position                                           | Substituents       | Compd<br>no.  | Physical data<br>Mp [bp (mm)], °C | Spectral<br>data available | Complex(es)/commentsg                           | Ref                  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------|---------------|-----------------------------------|----------------------------|-------------------------------------------------|----------------------|
|                                                                                                                                          | ( )-1,2; ( )-7.8;<br>(Z)-13,14                                 | Н                  | <b>19</b> 5   | 146–148                           |                            | Probably <i>Z</i> , <i>Z</i> orientation        | 150                  |
|                                                                                                                                          |                                                                |                    |               |                                   |                            |                                                 |                      |
|                                                                                                                                          | (E)-6,7; (Z)-8,9; (Z)-                                         | n ≈ 1; 1-2H        | 196a          | 130–133                           | A, C, D                    |                                                 | 163                  |
|                                                                                                                                          | (E)-6,7; $(Z)$ -8,9; $(Z)$ -                                   | n = 1; 1-(=O)      | 196b          | 171-174                           | A, C, D                    |                                                 | 163                  |
| 8 <sup>7</sup>                                                                                                                           | (E)-6,7; $(Z)$ -8,9; $(Z)$ -                                   | $n = 2; 1-(H)_2$   | 196c          | 141–143                           | A, C, D                    |                                                 | 163                  |
| (CH <sub>2</sub> ) <sub>n</sub>                                                                                                          | 12,13; (E)-14,15<br>(E)-6,7; (Z)-8,9; (Z)-                     | n = 2; 1-(=O)      | 1 <b>9</b> 6d | 165–168                           | A, C, D                    |                                                 | 163                  |
|                                                                                                                                          | 12,13; (E)-14,15<br>(E)-6,7; (Z)-8,9; (Z)-                     | $n = 3; 1-(H)_2$   | 196e          | 173–177                           | A, C, D                    |                                                 | 163                  |
|                                                                                                                                          | 13,14; (E)-15,16<br>(E)-6,7; (Z)-8,9; (Z)-<br>13,14; (E)-15,16 | n = 3; 1-(=0)      | 196f          | 114–120                           | A, C, D                    |                                                 | 163                  |
|                                                                                                                                          | (E)-1,2; (Z)-3,4; (E)-<br>5,6; (E)-11,12; (Z)-                 | 2,4,13,15-(Me),    | 197a          |                                   |                            | Unsuccessful Wittig<br>cyclization <sup>b</sup> | 175                  |
|                                                                                                                                          | (Z)-1,2; (Z)-5,6; (Z)-11,12; (E)-15,16                         | 3,4: 13,14-Dibenzo | 197b          | 230–234                           | A–D                        | Nonplanar                                       | 154                  |
|                                                                                                                                          | $(2)^{-1,2}; (E)^{-5,0}; (E)^{-1}$<br>11,12; (E)-15,16         | 3,4: 13,14-Dibenzo | 197c          | 202-204                           | A-D                        | Nonplanar                                       | 154                  |
| 0                                                                                                                                        | (Z)-1,2; $(E)$ -5,6; $(Z)$ -<br>11,12; $(E)$ -15,16            | 3,4: 13.14-Dibenzo | 19/d          | 209-211                           | A–D                        | Nonplanar                                       | 154                  |
|                                                                                                                                          | (E)-1,2; (E)-5,6; (E)-<br>11,12; (E)-15,16                     | 3,4: 13,14-Dibenzo | 197e          | 330–332                           | A–D                        | Sublimed [180°<br>(0.1)]                        | 154,17 <b>4</b>      |
| 19 20 1 3 4                                                                                                                              |                                                                |                    |               |                                   |                            |                                                 |                      |
| $ \begin{array}{c} 17 \\ 16 \\ 16 \\ 13 \\ 14 \\ 13 \\ 12 \\ 11 \\ 13 \\ 12 \\ 13 \\ 12 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13$ | (E)-6,7; (E)-16,17<br>(E)-6,7; (E)-16,17                       | 1-(H)₂<br>1-(≕O)   | 198a<br>198b  | 270–271 dec<br>>270 dec           | A, D<br>A, C, D            | Atropic (NMR)                                   | 163, 172<br>163, 172 |
|                                                                                                                                          | (Z)-6,7; (Z)-12,13                                             | 1-(=0)             | 199a          | 236–237<br>23 <b>3</b> –236       | A–D<br>A–C                 | Paramagnetic ring                               | 162                  |
|                                                                                                                                          | (Z)-6,7; (Z)-12,13                                             | 1-(H) <sub>2</sub> | 1 <b>99</b> b | 90–92                             | A, D                       | current<br>No paramagnetic<br>ring current      | 160<br>160, 162      |

| (Z)-6,7; (Z)-12,13                                  | 1-OMe                                                            | 199c                  | 141–142     | A, D     | Small paramagnetic                                        | 160, 162                                |
|-----------------------------------------------------|------------------------------------------------------------------|-----------------------|-------------|----------|-----------------------------------------------------------|-----------------------------------------|
| (E)-6,7; (E)-12,13                                  | $1-(=0); 7, 12-(CO_2-Me)$                                        | 19 <b>9d</b>          | 206–208     | A, D     | ning current                                              | 160, 162                                |
| (E)-6,7; (E)-12,13                                  | 1-(=0); 7,12-(CO <sub>2</sub> H) <sub>2</sub>                    | 199e                  | 295 dec     | D        |                                                           | 162                                     |
| (Z)-1,2; (Z)-7,8; (Z)-<br>13,14                     | Н                                                                | <b>2</b> 0 <b>0</b> a | 215–216     | A–C      | Peripheral conjugation, aromatic stability <sup>434</sup> | 146–148, 155                            |
| (E)-1,2; (Z)-7,8; (Z)-<br>13 14                     | 1-CO₂Me                                                          | <b>200</b> b          | 89–91       | D<br>A–C |                                                           | 149<br>1 <b>4</b> 7                     |
| (E)-1,2; $(E)$ -7,8; $(E)$ -                        |                                                                  |                       |             |          | Limited peripheral                                        | 146. 147                                |
| 13,14                                               | 1,7,14-(CO,Me),                                                  | 200c                  | 147-150     | A–C      | conjugation                                               |                                         |
| (E)-1,2; (E)-7,8; (E)-<br>13,14                     | 1,14-(CO <sub>2</sub> H) <sub>2</sub> ; 7-<br>CO <sub>2</sub> Me | 200d                  | Dec         | A–C      |                                                           | 147                                     |
| (E)-1,2; (E)-7,8; (E)-<br>13,14                     | 1,7,14-(CO <sub>2</sub> H) <sub>3</sub>                          | 200e                  | >360        | В, С     |                                                           | 146, 147                                |
| (Z)-6,7; (E)-12, 13;<br>(Z)-14,15                   | 1-2H                                                             | <b>2</b> 01a          | Yellow gum  | A, D     |                                                           | 163, 172                                |
| (Z)-6,7; (E)-12,13;<br>(Z)-14,15                    | 1-(=0)                                                           | 201b                  | 208–209     | A, C, D  | Diatropic (NMR)                                           | 163, 172                                |
| (Z)-6,7; (E)-8,9; (Z)-<br>14.15: (E)-16.17          | 1-(=0)                                                           | <b>202</b> a          | 218–221     | A, C, D  |                                                           | 163                                     |
| (Z)-6,7; $(E)$ -8,9; $(E)$ -<br>14,15; $(Z)$ -16,17 | 1-(=0)                                                           | <b>2</b> 0 <b>2</b> b | Red gum     | A, C, D  | Atropic (NMR)                                             | 163, 172                                |
| (Z)-6,7: (E)-8,9; (E)-<br>14,15: (Z)-16,17          | 1-2H                                                             | 202c                  | 142–144     | A        |                                                           | 172                                     |
|                                                     | н                                                                | 203                   | 212.5–213.5 | A-D      | Synthesized from                                          | 391                                     |
|                                                     |                                                                  |                       |             |          | Pukalide                                                  |                                         |
|                                                     | 1.1,6,6,11.11.16,16-<br>(Me) <sub>8</sub>                        | <b>2</b> 04a          | 243         | A, D     | X-ray;<br>perhydro <sup>168,343,C</sup>                   | 168, 169, 199,<br>266, 303, 343,<br>344 |
|                                                     | 1,1,6,6,11,11,16,16-<br>(Et)。                                    | <b>20</b> 4b          | 249         |          |                                                           | 169, 194, 195                           |
|                                                     | $1,11-(Et)_2$ ; 1,6.6,11,<br>16,16-(Me)                          | <b>2</b> 04c          | 178.5       | В        | X-ray trans isomer<br>(0 D)                               | 169                                     |
|                                                     |                                                                  | <b>2</b> 04d          | 204         | В        | X-ray cis isomer<br>(0.77 D)                              | 169                                     |
|                                                     |                                                                  |                       |             |          | ()                                                        | 160                                     |

18 1

6

∠ \<sub>СН₃</sub>

| Compound | Double bond position                       | Substituents                                                                                   | Compd<br>no.  | Physical data<br>Mp [bp (mm)], °C | Spectral<br>data available | Complex(es)/comments <sup>g</sup>                      | Ref          |
|----------|--------------------------------------------|------------------------------------------------------------------------------------------------|---------------|-----------------------------------|----------------------------|--------------------------------------------------------|--------------|
|          |                                            | 1-Et; 1,6,6,11,11,16,<br>16-(Me)                                                               | 204e          | 195–195.5                         |                            |                                                        |              |
|          |                                            | 1,1-(Et) <sub>2</sub> ; 6,6,11,11,<br>16,16-(Me)                                               | <b>204</b> f  | 209–209.5                         |                            |                                                        | 169          |
|          |                                            | 1,6,11,16-(Me)₄; 1,6,<br>11,16-(Ft),                                                           | <b>2</b> 04g  | 174                               |                            |                                                        | 169, 192     |
|          |                                            | 1-CO <sub>2</sub> Me: 1,6,6,11,11,<br>16 16-(Me)-                                              | 2 <b>04</b> h | 172.5                             |                            |                                                        | 192          |
|          |                                            | 1-CO <sub>2</sub> Et; 1,6,6,11,11,<br>16,16-(Me)                                               | <b>20</b> 4i  | 169.5                             |                            |                                                        | 192          |
|          |                                            | 1-[(CH <sub>2</sub> ) <sub>5</sub> ]; 6,6,11,11,<br>16,16-(Me),                                | 204j          | 182.3-183.3                       | А, В                       |                                                        | 303          |
|          |                                            | 1,11-[(CH <sub>2</sub> ) <sub>5</sub> ] <sub>2</sub> ; 6,6,<br>16,16,-(Me),                    | 204k          | 208.2-209.2                       | А, В                       |                                                        | 303          |
|          |                                            | 1.6.11.16-[(CH <sub>a</sub> ) <sub>2</sub> ]                                                   | 2041          | 268-269                           | А. В                       |                                                        | 3 <b>0</b> 3 |
|          |                                            | 1-CO <sub>2</sub> H; 1,6,6,11,11,<br>16.16-(Me)-                                               | 204m          | 250 dec                           |                            |                                                        | 192          |
|          |                                            | 1-CH <sub>2</sub> CO <sub>2</sub> Me; 1,6,6,<br>11,11,16,16-(Me),                              | 204n          | 179                               |                            |                                                        | 192          |
|          |                                            | 1-CH <sub>2</sub> CO <sub>2</sub> Et: 1,6,6,<br>11,11,16,16-(Me),                              | <b>204</b> o  | 165                               |                            |                                                        | 192          |
|          |                                            | 1-CH <sub>2</sub> CO <sub>2</sub> H; 1,6,6,<br>11,11,16,16-(Me),                               | 204p          | 248.5-249.5                       |                            |                                                        | 192          |
|          |                                            | 1-CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> Me; 1,<br>6,6,11,11,16,16-                   | 204q          | 157.5                             |                            |                                                        | 192          |
|          |                                            | (Me),<br>1-CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> Et; 1,<br>6,6,11,11,16,16-<br>(Me), | 204r          | 153                               | А, В                       | Perhydro-[isomers;<br>oil]                             | 192, 500     |
|          |                                            | 1-CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> H; 1,6,<br>6,11,11,16,16-<br>(Me)-           | 204s          | 225.5–226                         |                            |                                                        | 192          |
|          |                                            | 1-CH <sub>2</sub> CI; 1,6,6,11,11,<br>16.16-(Me) <sub>2</sub>                                  | 204t          | 219.5-220                         |                            |                                                        | 192 .        |
|          |                                            | 1,11-(CH <sub>2</sub> Cl) <sub>2</sub> ; 1,6,6,<br>11,16,16-(Me) <sub>6</sub>                  | <b>204</b> u  | 211–211.5                         |                            |                                                        | 192          |
|          | (E)-1,2; (Z)-7,8; (E)-<br>13,14; (E)-19,20 | <i>n</i> ≈ 1; H                                                                                | <b>20</b> 5a  | 216–217                           | A–C                        | Isomer A; <sup>d</sup><br>paramagnetic ring<br>current | 148, 155     |
|          | (E)-1,2; (E)-7,8; (E)-<br>13,14; (E)-19,20 | <i>n</i> = 1; H                                                                                | <b>20</b> 5b  | 269–270                           | A–C                        | isomer B; para-<br>magnetic ring<br>current            | 148, 155     |

540

Chemical Reviews, 1977, Vol. 77, No. 4

TABLE II (Continued)

Newkome, Sauer, Roper, and Hager

| (Z)-1,2; (E)-7.8; (Z)-13.14; (E)-19.20                                                               | $n \approx 1; H$                                       | <b>2</b> 05c      |                                |              |                                                     | 155                            |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------|--------------------------------|--------------|-----------------------------------------------------|--------------------------------|
| 1,2; 7,8; 13,14; 19,<br>20; 25, 26                                                                   | n = 2; H                                               | 206               | 218-220 dec                    | A–C          | lsomer A, confign un-<br>known                      | 148, 155                       |
|                                                                                                      |                                                        |                   | 192–194 dec                    | A–C          | Isomer B, confign                                   | 148 155                        |
| 1,2; 7,8; 13,14; 19,<br>20; 25,26; 31,32                                                             | <i>n</i> ≈ 3; H                                        | <b>20</b> 7       | 250–252                        | A, C         | Confign unknown; no<br>paramagnetic ring<br>current | 155                            |
|                                                                                                      | n = 1; H<br>n = 2; H                                   | <b>208</b><br>209 | [150 (0.01)]<br>~0 [150(0.01)] | A, D<br>A, D | Pt <sup>e</sup><br>DMAD adduct (mp                  | 170, 171, 467<br>24, 167, 170, |
|                                                                                                      | $n \approx 3$ : H                                      | 210               |                                |              | 55–60° )                                            | 467<br>171                     |
|                                                                                                      | n ≈ 4; H                                               | 211               | [230 (0.1)]                    | A, D         |                                                     | 170, 467                       |
| (Z)-1,2: (Z)-4.5: (Z)-<br>10, 11                                                                     | н                                                      | 21 <b>2</b>       | 255 dec                        | A–D          | Paramagnetic ring<br>current                        | 140, 144                       |
|                                                                                                      | H                                                      | 213               | 69–70                          |              |                                                     | 167                            |
|                                                                                                      | n = 1; H<br>n = 1; 3(R), 12(R),                        | 214a<br>214b      | 109–111                        |              | Proposed synthesis                                  | 24,167<br>223                  |
|                                                                                                      | $13(R) \cdot (CONH_2)_4$<br>n = 2; H<br>n = 3; H       | 215<br>216        | 250 (0.01)                     |              |                                                     | 24<br>170, 467                 |
|                                                                                                      | н                                                      | 217               | <b>124–12</b> 6                |              |                                                     | 24. 167                        |
|                                                                                                      |                                                        |                   |                                |              |                                                     |                                |
| ( <i>E</i> )-5,6; ( <i>E</i> )-11,12;<br>( <i>E</i> )-15,16<br>( <i>E</i> )-5,6; ( <i>E</i> )-11,12; | 1,2·Oxa; 3,4: 13,14<br>-Dibenzo<br>1-(=0): 3,4: 13,14- | 218a              | 180–181                        | B–D          |                                                     | 174                            |
| (E) - 15, 16<br>(E) 5.6. (E) 11.12                                                                   | Dibenzo                                                | 218b              | 289 <b>-291</b>                | A-D          |                                                     | 174                            |
| (E)-15,16                                                                                            | 3,4: 13,14-DIDenzo                                     | 218C              | 200                            | A-D          |                                                     | 1/4                            |

| TABLE | tt ( | Continued) |
|-------|------|------------|
|       |      |            |

| Compound   | Double bond position                                                     | Substituents                                                                                 | Compd<br>no. | Physical data<br>Mp [bp (mm)], °C     | Spectr <b>al</b><br>data av <b>aila</b> ble | Complex (es)/comments <sup>g</sup>                            | Ref                         |
|------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------|---------------------------------------|---------------------------------------------|---------------------------------------------------------------|-----------------------------|
|            | (E)-1,2; (E)-3,4; (Z)-<br>9, 10; (E)-15, 16;<br>(E)-17,18; (Z)-<br>23,24 | Н                                                                                            | 219          | 305                                   | B–D                                         |                                                               | 174                         |
| 10-9       | (Z)-6,7; (Z)-12,13                                                       | н                                                                                            | 220a         | 9 <b>7</b> –99                        | A–D                                         | No diamagnetic ring                                           | 157 161                     |
|            | (E)-6,7; (E)-12,13<br>(E)-6,7; (E)-12,13                                 | 7,12-(CO <sub>2</sub> Me) <sub>2</sub> <sup>a</sup><br>7,12-(CO <sub>2</sub> H) <sub>2</sub> | 220b<br>220c | 2 <b>0</b> 5–206<br>>26 <b>0 de</b> c | A–D                                         | current                                                       | 157, 161<br>157, 161<br>157 |
|            | (Z)-6,7; (Z)-16,1 <b>7</b>                                               | н                                                                                            | 221          | 170–171                               | A–D                                         | No diamagnetic ring<br>curr <b>e</b> nt                       | 157, 161                    |
|            |                                                                          | n = 6; R = R' = H<br>n = 7; R = R' = H                                                       | 222<br>223   |                                       |                                             | Attempted synthesis<br>Attempted synthesis;<br>dimer isolated | 229<br>2 <b>2</b> 9         |
| <b>≻</b> 0 |                                                                          | $n = 9; R \approx R' = H$                                                                    | 224a         | [65–7 <b>0</b> (0.05)]                | A                                           |                                                               | 205                         |
|            |                                                                          | n = 9; R = H; R =<br>Me                                                                      | 224b         | [72-75 (1.5)]                         | A–C                                         | V INMR <sup>206</sup>                                         | 206, 229                    |
|            |                                                                          |                                                                                              |              | [91-92 (0.05)]                        | A–B                                         |                                                               | 228                         |
|            |                                                                          | n = 10; R = Me; R' =<br>H 1                                                                  | 225          | [104–1 <b>0</b> 8 (0.9)]              | A. B, D                                     | $n_{\rm D}^{20}$ 1.5089                                       | 221                         |
|            |                                                                          | n = 10; R = R' = H;                                                                          | 226a         |                                       |                                             | Ketolactones via                                              | 219                         |
|            |                                                                          | R'' = OAc<br>n = 10; R = R' =<br>[-CH = CH-] <sub>2</sub> ;<br>R'' = OAc                     | 226b         |                                       |                                             | ozonolysi <b>s</b><br>Ketolactones via<br>ozonolysis          | 219                         |
| 9 2<br>3   | (E)-1,2; (Z)-3,4; (Z)-<br>7,8; (E)-9,10                                  | 4,7-(Me)₂                                                                                    | 227          | 100–102                               | A, C, D                                     |                                                               | 208                         |

|                                                                     | (E)-1,2; $(Z)$ -3,4; $(Z)$ -                                                | 4,9-(Me) <sub>2</sub>                                                                              | <b>22</b> 8a | 134–135  | A, C, D           |                                                | 209                                         |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------|----------|-------------------|------------------------------------------------|---------------------------------------------|
|                                                                     | 9,10; (E)-11,12<br>(E)-1,2; (E)-11,12                                       | 4,9-(Me) <sub>2</sub> ; 3,10-(OH) <sub>2</sub>                                                     | 228b         |          |                   |                                                | 209                                         |
| <sup>9</sup> ₄                                                      | (Z)-1,2; (E)-7,8 <sup>f</sup>                                               | R ≈ H                                                                                              | 229a         |          | А                 | NMR of both                                    | 214                                         |
|                                                                     | (Z)-1,2; (E)-7,8                                                            | R ≈ CH(Me)₂                                                                                        | 229b         | Oit      | A, C, D           | conformers                                     | 214                                         |
|                                                                     | (E)-1,2; (E)-7,05                                                           | К ~ П                                                                                              | 2290         | 115      | A-D               | (major)                                        | 207, 215                                    |
| R ~ ~                                                               |                                                                             |                                                                                                    |              | 100–101  | A–C               | lsomer B (lower R <sub>f</sub> )<br>(major)    | 207, 215                                    |
|                                                                     | ( <i>E</i> )-1,2; ( <i>Z</i> )-3,4; ( <i>Z</i> )-<br>7,8; ( <i>E</i> )-9,10 | 4,7-(Me) <sub>2</sub>                                                                              | 230          | 131–132  | A, C, D           |                                                | 208, <b>4</b> 58                            |
| $\dot{\gamma}$                                                      | (E)-1,2; (Z)-3,4; (Z)-<br>9,10; (E)-11,12                                   | 4,9-(Me) <sub>2</sub>                                                                              | 231a         | Dec      | A, C, D           | Weakly diatropic <sup>210,213</sup>            | 209, 21 <b>0</b> ,<br>212–21 <b>4, 4</b> 58 |
| $10 \begin{pmatrix} 11 & 12 \\ 9 & - \equiv - = -4 \end{pmatrix}^3$ | (E)-1.2; (E)-11,12<br>(E)-1,2; (Z)-3,4; (Z)-<br>9, 10; (E)-11,12            | $4,9-(Me)_2$ ; 3,10-(OH) <sub>2</sub><br>3,4: 9,10-[(CH <sub>2</sub> ) <sub>4</sub> ] <sub>2</sub> | 231b<br>231c | Dec      | A, C, D           | Weakly diatropic, con-<br>formationally mobile | 210<br>211                                  |
|                                                                     | (E)-1,2; (Z)-3,4; (Z)-<br>9,10; (E)-11,12;<br>(E)-13,14                     | 4,9-(Me) <sub>2</sub>                                                                              | 232          | 137–140  | А                 | Weakly paratropic                              | 458                                         |
|                                                                     | (E)-1,2; (E)-3,4; (Z)-<br>5,6; (Z)-11,12; (E)-<br>13,14; (E)-15,16          | 6,11-(Me) <sub>2</sub>                                                                             | 233          | >150 dec | A–D               | Weakly diatropic                               | 458                                         |
|                                                                     |                                                                             | R ≈ CO₂Et                                                                                          | 234          | 2130     | А, В              |                                                | 204                                         |
| ୄ<br>ୄ<br>୧~ୖ <u>ୖ</u>                                              |                                                                             | n = 0; m = 1; H                                                                                    | 235          |          | A, CMR            | Na, K                                          | 304                                         |
|                                                                     |                                                                             | n = 1; m = 1; H<br>n = 2; m = 1; H                                                                 | 236          |          | A, CMR            | Na, K                                          | 304                                         |
|                                                                     |                                                                             | $n = 2; m = 1; \square$<br>$n = 3; m = 1; \square$                                                 | 238          |          | A, CIVIR<br>A CMR | Na K                                           | 304                                         |
|                                                                     |                                                                             | n = 4; m = 1; H                                                                                    | 239          |          | A. CMR            | Na. K                                          | 304                                         |
| $\sim$                                                              |                                                                             | n = 5; m = 1; H                                                                                    | 240          |          | A, CMR            | Na, K                                          | 304                                         |
|                                                                     |                                                                             | n = 0; m = 2; H                                                                                    | 241          |          | A, CMR            | Na, K                                          | 304                                         |
|                                                                     |                                                                             | n = 1; m = 2; H                                                                                    | 242          |          | A, CMR            | Na, K                                          | 304                                         |
|                                                                     |                                                                             | n = 2; m = 2; H                                                                                    | 243          |          | A, CMR            | Na, K                                          | 304                                         |

| Compound                                                                                                              | Double bond position                                                                                                                   | Substituents                                                                                   | Compd<br>no.                                            | Physical data<br>Mp [bp (mm)], °C                                                                                        | Spectral<br>data available                         | Complex (es)/comments <sup>g</sup>                                          | Ref                                |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------|
| <b>∝</b> →2 Z                                                                                                         |                                                                                                                                        | R = Et<br>R = Pr<br>R = Bu                                                                     | 244a<br>244b<br><b>244</b> c                            | 78–79<br>47–48 [165–167 (1)]<br>63–63.5                                                                                  | A <sup>436</sup><br>A <sup>436</sup>               | (Mel), (242–244 dec)<br>(Mel), (267–268 dec)<br>(Mel), (255–257 dec)        | 433<br>433<br>433                  |
| -" ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                              | ( <i>E</i> .)-1,2; ( <i>Z</i> )-8,9                                                                                                    | I                                                                                              | 245                                                     | 125.5–127                                                                                                                | A-D                                                | Reactions of                                                                | 216                                |
|                                                                                                                       |                                                                                                                                        | I                                                                                              | 246                                                     | 174–175                                                                                                                  | A <sup>436</sup>                                   |                                                                             | 435                                |
| <sup><math>a</math></sup> Spectral data cited in the I mixture greatly improved the reported the di- $E$ configuratic | iterature: A = PMR: B = IR: C = U<br>: Vield, <sup>168</sup> also see ref 266. <sup>d</sup> Isome<br>on; the reassignment of this comp | JV: D = MS. $b$ The bisphose<br>of A thermally isomerized to<br>bund to the $E_i Z$ configurat | phonium salt eli<br>the all-E confi<br>ion has been rep | ninated triphenylphosphine, r<br>guration (isomer B). <sup>e</sup> NMR da<br>sorted. <sup>214</sup> 8 Temperatures giver | esulting in polym<br>ta also available o<br>in °C. | er formation. $^c$ The presence of salon the platinum complex. $^f$ Referen | ts in reaction<br>Ices 207 and 215 |

TABLE II (Continued)

which was oxidized with chromium trioxide to give ketone **5f**. Direct alkylation of **5f** with potassium *tert*-butoxide and methyl iodide followed by a Wolff-Kishner reduction gave the desired racemic muscopyridine (**5**I). This racemic base was resolved by means of di-*p*-toluoyl-L-tartaric acid to give **5j**, whose picrolonate derivative was identical with that of the natural muscopyridine.<sup>21</sup>



More recently, the one-step construction of racemic muscopyridine has been accomplished via cyclocoupling the di-Grignard of 2-methyl-1,10-dibromodecane with 2,6-dichlo-ropyridine in the presence of a catalytic amount of a nickel-phosphine complex [Ni(dppp)Cl<sub>2</sub>].<sup>93</sup> A 20% yield of **5**I was realized by this procedure. Further application of this cyclo-coupling was successful in the preparation of several [*n*]-(2,6)pyridinophanes (n = 6-10. 12; 10-33%), [*n*]metacyclo-phanes (n = 8-10, 12; 3-22%). as well as an oxamethylene bridged pyrldinophane (**31**).<sup>93</sup>



Balaban et al. have utilized a bicyclic pyrylium salt, 4methyl-2,6-decamethylenepyrylium perchlorate, as a convenient intermediate in a synthesis of an isomer of muscopyridine.<sup>1</sup> These pyrylium salts are prepared by diacylation of isobutene with the corresponding diacyl chloride in nitromethane in the presence of anhydrous aluminum chloride.<sup>301</sup> Treatment of the pyrylium perchlorate with ammonia in *tert*-butyl alcohol<sup>302</sup> gave substituted [10](2.6)pyridinophane (5k) in low yield. Several years later, Georgi and Rétey<sup>3</sup> repeated this procedure and ascertained that the isolated pyrylium salt was not monomeric in nature, but rather dimeric. Thus, the macrocycle originally isolated by Balaban et al.<sup>1</sup> was not 5k but rather its dimer. The mass spectrum of this product has confirmed its dimeric structure.<sup>3</sup> Besides dimer 20, a second pyridine macrocycle was isolated (0.5%) and shown to be the desired monomer 5k.<sup>3</sup> An analogous reaction sequence has been utilized to prepare [7](2,6)pyridinophane (2a).<sup>2,4</sup>



An alternate route to the construction of a pyridine ring involves precursors to pyrylium salts, that is, the macrocyclic 1,5-diketones; therefore, treatment of cyclododecane-1,5-dione with hydroxylamine afforded [7](2,6)pyridinophanes (2a).<sup>4</sup> The desired 1,5-dione was prepared (30%) from boraperhydrophenalene by treatment with 1 equiv of acetic acid followed by a chromic acid oxidation.



Carbon-carbon  $\sigma$ -bond formation is typically accomplished by reaction of an organometallic reagent with an activated site possessing a good leaving group. After the attempted simple condensation of 2,6-pyridinedicarboxaldehyde with 2.6-dimethylpyridine in the presence of acetic anhydride failed to cyclize to the desired **12e**,<sup>11,305</sup> Baker et al. in a classic paper



described the preparation of the first example of a [2.2](2.6)pyridinophane (12a) through cyclization of 1.2-bis(6'-bromomethyl-2'-pyridyl)ethane by action of either butyllithium in ether or phenyllithium in benzene-ether. 11,346 [2.2] Metacyclo-2,6pyridinophane (10) was prepared in a similar manner upon treatment of the corresponding dibromide with butyllithium.<sup>6</sup> The reaction of 2.6-bis(bromomethyl)pyridine with phenyllithium gave 12a in 25% yield.<sup>12</sup> Cyclization of 1,2-bis(6'-halomethyl-2'pyridyl)ethane by means of sodium and tetraphenylethylene in tetrahydrofuran afforded a separable mixture of 2.6-bridged pyridinophanes.<sup>13,16</sup> Kauffmann et al. modified these procedures by initial selective metalation of the readily available 2.6-dimethylpyridine with butyllithium. followed by copper transmetalation, and subsequent oxidative coupling.<sup>19</sup> Repetition of this metalation procedure on 1.2-bis(6'-methyl-2'-pyridyl)ethane gave 12a, as well as dimer 14.19

This selective metalation-nucleophilic displacement sequence has been demonstrated in the synthesis of a degradation product from the alkaloid *O*-methyllythranidine (from *Lythrium anceps* Makino. a herb grown in Japan).<sup>306</sup> Condensation of a substituted dichloride with 2,6-lutidine in the presence of potassium amide in liquid ammonia gave the desired macrocycle **26**, thus establishing the gross structure of the natural product.<sup>135</sup>



Several different syntheses of pyridinophanes from dithiacyclophane precursors by a ring contraction have been reported to proceed by either: (1) two-step extrusion of sulfur by a Stevens rearrangement, followed by a Hofmann elimination; (2) thermal expulsion of sulfur dioxide from the corresponding sulfone; or (3) irradiation of sulfides in the presence of a trialkyl phosphite. Preparation of 12e via procedure 1 has been reported by Boekelheide and Lawson<sup>12</sup> in which the reaction of 2,6-bis-(bromomethyl)pyridine with sodium sulfide gave a dithia[3,3]pyridinophane (106a).32 Dimethylation of 106a using either Meerwein's reagent or dimethoxymethyl fluoroborate afforded the crude methylated product 106e which upon treatment with potassium tert-butoxide effected a Stevens' rearrangement to give 12c. Modification of this two-step procedure by using 2.6-di(tert-butyl)phenoxide, as the base in the elimination step, gave rise to [2.2](2.6)pyridinophane (12e). 12 This technique for ring contraction and olefin formation has been applied to other pyridinophanes, such as 11f.<sup>9</sup> Martel and Rasmussen<sup>18</sup> applied the second procedure (2) in the conversion of 106a into [2.2]-(2,6)pyridinophane (12a). Oxidation of 106a with 4 equiv of pertrifluoroacetic acid gave the bis-sulfone bis-N-oxide 106c. Selective reduction of the N-oxide groups with iron in trifluoroacetic acid afforded the desired bis-sulfone 106d in high yield. After failure of 106d to undergo a Ramberg-Bäcklund reac-









0.







•



ဂူ Ň 0 Ο ő 21b

**"**0

'N

Β̈́r

Вr

Ο

0

63

(2)

tion.<sup>307</sup> sulfur dioxide extrusion (procedure 2) under pyrolytic conditions (680 °C/0.01 mm) gave (46%) pyridinophane **12**a.<sup>18</sup> [2.2](2.6]Pyridinoparacyclophane (**11**a) was prepared (66%) in an analogous manner from **105**d.<sup>9</sup> The most convenient synthesis of pyridinophanes is by photochemical extrusion of sulfur from a sulfide (procedure 3) as demonstrated by the irradiation of **103**a in trimethyl phosphite at room temperature for 48 h to generate **11a** (49%).<sup>7</sup> Galuszko demonstrated that disulfides undergo similar sulfur extrusion-ring contraction.<sup>98</sup>

A novel approach to these macrocycles was recently demonstrated by Isele and Scheib by the formation of the pyridine nucleus from a disubstituted diynone. followed by a subsequent copper-catalyzed second cyclization of a terminal diyne.<sup>94</sup> Reduction of the triple bonds and O-amination with chloroamine and sodium hydride gave 7 (see eq 1).

The construction of a new series of pyridine macrocycles linked solely by carbonyl groups has been reported.<sup>102</sup> 2.6-Dibromopyridine was metalated with butyllithium in tetrahydrofuran at -100 °C to afford 2-bromo-6-lithiopyridine. which was reacted with 0.5 equiv of methyl 2,6-pyridinedicarboxylate at -90 to -100 °C to give 2.6-bis(6'-bromo-2'-pyridoyl)pyridine. The resultant diketone was ketalized with bromoethanol in the presence of lithium carbonate<sup>309</sup> affording (60%) the diketal along with an unexpected ethereal macrocyclic diketal 61. Hydrolysis of 61 gave the cyclic diketone 63, whose PMR spectrum showed an eight-bond long-range W coupling between positions 12 and 7(18), thus, indicating the planar nature of this ring system. The dibromo diketal was dimetalated with butyllithium at - 100 °C, treated with ethyl chloroformate, and hydrolyzed to generate 21 in 3.5% overall yield (eg 2). This general procedure has been applied successfully to the synthesis of 21c (a corrin model), 21b (a porphyrin model), and 22.310

An efficient nontemplate synthesis of the novel carbonbridged macrocycle **27**, in which the pyridine rings are confined within 1.10-phenanthroline units, was reported by Ogawa. wherein 2.9-dimethyl-1.10-phenanthroline and 2,9-dichloro-1.10-phenanthroline are thermally condensed at 260 °C for 4 h.<sup>308</sup> This procedure had been previously used for the preparation of the only known *nitrogen-bridged* pyridine macrocycle **28**,<sup>90,91,103</sup>



The only *sulfur-bridged* pyridine macrocycle **29** has been prepared by Undheim et al. through an intermolecular condensation of 6-chloropyridine-2-thione in the presence of  $P_2S_5$  at  $130^{\circ}$ .<sup>22</sup> Although no physical data have been cited, an x-ray analysis has established that **29** possesses a nonplanar conformation.<sup>22</sup>



The majority of *carbon–oxygen-bridged* pyridine macrocycles can be divided into two general classes: (1) those possessing bridging oxygen atoms that are isolated from the pyridine nucleus and (2) those in which the bridging oxygen atoms are directly attached to the pyridine ring. The facile preparation of **53**, as well as its oligiomers. was accomplished by treating 2.6-bis(hydroxymethyl)pyridine with sodium hydride in dimethoxyethane followed by dropwise addition of  $\alpha$ . $\alpha'$ -dibromo-o-xylene.<sup>26</sup> Cram et al. have applied this general procedure to the construction of not only achiral, but also chiral compounds.<sup>23,24,34,92,488</sup> Utilization of the bis(*N*,*N*-dimethylamide) of L-(+)-tartaric acid as the oxygen source in a modification of this cyclization procedure permitted the construction of **51c** in 15% yield.<sup>100</sup>



51c. R = CONMe<sub>2</sub>

Newkome et al. have constructed the carbon–oxygen bridges via direct nucleophilic displacement of the 2.6-dihalo substituents of 2.6-dihalopyridine.<sup>25,102,487</sup> When 2,6-dibromopyridine was subjected to the dianion of tetra(ethylene glycol) in xylene at 140 °C. the desired 1:1 macrocycle was isolated along with the 2:2 cyclic ether and numerous acyclic intermediates.<sup>25,487</sup> Further application of this procedure has been demonstrated in the construction of tetraoxamuscopyridine **32b**<sup>39</sup> as well as various macrocycles which possess other types of subheterocyclic ring(s).



Carbon-sulfur-bridged pyridine macrocycles are also divided into two general classes: (1) those with isolated bridging sulfur

atoms and/or (2) those with bridging sulfur atoms which are directly connected to the subunit. Vögtle first demonstrated the construction of class (1) sulfur-bridged macrocycles, by treating 2,6-bis(bromomethyl)pyridine with dithioresorcinol to produce (29%) the desired **99**.<sup>31</sup> Vögtle et al.,<sup>27–29,32,33,283,374,431</sup> Boekelheide et al.,<sup>12</sup> Martel and Rasmussen.<sup>18</sup> and Galusz-ko<sup>98,428,429</sup> have utilized this procedure, whereas, Boekelheide et al.<sup>7.9</sup> have also modified this procedure by condensation of 2.6-bis(mercaptomethyl)pyridine with a suitable dihalide. Vögtle et al.<sup>29,33,374</sup> have successfully condensed 2,6-pyridinedithiol with an appropriate polymethylene dihalide, thus demonstrating a route to class (2) carbon–sulfur macrocycles, exemplified by **101**a.



*Carbon-nitrogen-bridged* pyridine macrocycles generally have been produced by a Schiff-base condensation of either 2,6pyridinedicarboxaldehyde or 2,6-diacetylpyridine and a substituted bis(primary amine). Curry and Busch reported the first



penta- and hexadentate macrocycles (**65b** and **66**, respectively) to be prepared in this series through the utilization of metal ion catalysis.<sup>55</sup> It has been demonstrated that metal ions can cause striking improvements in the formation of macrocyclic products over competing linear polymerization: this general phenomenon is known as the *template effect*. Application of the varied template effects to the synthesis of macrocyclic ligands has been reviewed.<sup>311-315</sup> This metal ion intervention in a Schiff-base condensation has been utilized by numerous researchers in the preparation of tetra- (ref 40, 42, 44–47, 52, 96, 272, 277, 278), penta- (ref 36, 55–57, 97, 273, 275, 392–395), and hexadentate (ref 55, 60) pyridine macrocycles. Catalytic reduction of the imine bonds in these bis-Schiff bases has afforded an additional series of related saturated tetra- (ref 41, 44, 48, 50, 52, 53, 274) and pentadentate (ref 273) ligands.

Vögtle et al.<sup>29,374,427,431</sup> have synthesized a series of azabridged dilactams. e.g., **74a**, through the reaction of 2,6-pyridinedicarbonyl chloride with numerous diamines under high dilution conditions according to the procedure of Stetter and Marx.<sup>316</sup>



Borodkin et al. have reported the preparation of different macroheterocycles containing the pyridine subunit via the direct heating of either a dicarbonyl compound (an imide)<sup>38,64,65,95</sup> or a dichloride<sup>62</sup> with 2,6-diaminopyridine.



Carbon-nitrogen-oxygen (sulfur)-bridged pyridine macrocycles generally have been prepared by the previously discussed Schiff-base procedure. Alcock et al. have applied the template effect of  $Mn^{2+}$  and  $Zn^{2+}$  to the preparation of a series of pen-
tadentate (N and O or S) macrocyclic Ilgands, e.g., **110.**<sup>36</sup> The x-ray analysis of the **65c** manganese complex demonstrated that the donor atoms define the five equatorial positions of a distorted pentagonal bipyramid.<sup>36</sup> Vögtle et al. have reacted 2,6-pyridinedlcarbonyl chloride with dlversifled ether*e*al bis(primary amines or amides) to get variable yields of the lactam-type macrocycles, e.g., **115**<sup>29,374,431</sup> as well as pyridinophane cryptates, e.g., **111**,<sup>427</sup>



Recently, Londoy<sup>327</sup> and Busch<sup>311</sup> have shown that aldehydes and ketones react with 2-aminobenzenethiol to generate predominately the corresponding benzothiazolines. When 2,6diacetylpyridine was reacted with 2-aminobenzenethiol, the expected bis(benzothiazoline) was isolated.<sup>276,403</sup> Treatment of this bisadduct with either zinc or cadmium acetate caused a shift in the bis(benzothiazoline)-bis(Schiff base) equilibrium favoring the Schiff base, which precipitated in the form of a pentadentate complex.<sup>461</sup> Subsequent reaction of this complex with  $\alpha$ , $\alpha'$ -dibromo- $\sigma$ -xylene gave rise to a novel ring-closing S-alkylation, thus generating macrocycle **131.**<sup>276</sup>

Borodkin et al. prepared **130** by heating 2.5-diamino-1,3.4thiadiazole with an appropriate 1-iminoisolndolinylidene derivative in boiling butanol for 40 h.<sup>38</sup>



*Carbon-sulfur-oxygen-bridged* pyridine macrocycles have been reported by Vögtle et al. to be formed from 2,6-pyridinedithiol and the appropriate ethereal terminal dihalide or ditosylate.<sup>29</sup> Newkome et al. have approached the synthesis of these same molecules via direct nucleophilic substitution on the pyridine ring with an appropriate bismercaptide.<sup>39</sup>



Vögtle and Weber prepared a related series of mixed heteroatom ligands (e.g., **119a**) under high-dilution conditions without the use of the template effect.<sup>35,374</sup> The details concerning the mode of construction were not presented in the communication: however, **119**a will instantaneously solubilize the sodium ion (e.g., sodium permanganate) whereas potassium permanganate remains completely undissolved.<sup>35,374</sup>



Phosphorus-bridged pyridine macrocycles have been guite limited in scope. Holm et al. reported the synthesis of a most unusual six-coordinate complex (134) with nonoctahedral stereochemistry.68 2.6-Dibromopyridine was converted to 2bromo-6-lithiopyridine, then reacted with dimethylformamide at -80 °C to afford 6-bromo-2-pyridinecarboxaldehyde. Treatment with ethylene glycol and p-toluenesulfonic acid yielded the corresponding ketal, which, after metalation at -100 °C with butyllithium, was quenched with phosphorus trichloride to give tris[2-(1'.3'-dioxolan-2'-yl)-6-pyridyl]phosphane. Anaerobic acid hydrolysis and subsequent treatment with hydroxvlamine vielded (90%) tris(2-aldoximo-6-pyridyl)phosphine. Encapsulation was accomplished by homogeneous anaerobic reaction of the metal (Fe<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, or Zn<sup>2+</sup>) fluoroborate complex with distilled boron trifluoride etherate. The procedure of initial complexation of the metal ion within the ligand framework followed by "stitching up" the opening was certainly a novel approach to the encapsulation of metal lons.



134

The first tetradentate macrocyclic ligand containing the 2.6-pyridino molety and a phosphine bridging donor (133a) was



prepared by refluxing an ethanolic solution of 2.6-diacetylpyridine, bis(3-aminopropyl)phenylphosphine, and nickel bromide hydrate.<sup>67</sup> Upon addition of ammonium hexafluorophosphate, the desired macrocyclic five-coordinate complex crystallized. Reduction of the imine bonds was easily carried out by treatment of **133a** with methanolic sodium borohydride.<sup>67</sup>

#### 2. 2,5-Pyridino

*Carbon-bridged* [*n*](2,5)pyridinophanes were first constructed by Gerlach and Huber in 1968.<sup>84</sup> In general, bis( $\beta$ -aminovinyl)diketones were subjected to an acid-catalyzed cyclization generating the [*n*](2,5)pyridinophan-*n*-ones (**135b**). which were converted to the [*n*](2,5)-pyridinophanes by standard Wolff-Kishner reduction. Numerous reactions and conformational stability studies were carried out on the lower members of this series, especially [*n*] < 12.<sup>84</sup> The smallest bridged (2,5)pyridinophane yet reported possesses an eight-carbon atom bridge.<sup>84</sup> (±)-[9](2,5)Pyridinophane (**136a**) was resolved with the aid of (+)-2,2'-dihydroxy-1,1'-binaphthyl-3,3'-dicarboxylic acid and was shown to be thermally stable.<sup>84</sup>



Bruhin and Jenny synthesized [2]paracyclo[2](2,5)pyridinophane by a thermal 1.6-Hofmann elimination from an intimate



mixture of (4-methylbenzyl)trimethylammonium hydroxide and (5-methyl-2-picolinyl)trimethylammonium hydroxide via the crossed condensation of the intermediates.<sup>85</sup> Isomeric [2.2]-(2,5)pyridinophanes were also isolated from this reaction<sup>85</sup> as well as from thermolysis of either (2-methyl-5-picolinyl)trimethylammonium hydroxide<sup>87,88</sup> or (5-methyl-2-picolinyl)trimethylammonium hydroxide.<sup>86</sup>

Application of the previously mentioned ring contraction of a *sulfur-bridged* cyclophane has been successfully carried out by Bruhin and Jenny in their quest for **140**. Thermolysis<sup>85</sup> of **148b** prepared by the procedure of Vögtle.<sup>328</sup> or the photolysis<sup>89</sup> of **148**a in the presence of triethyl phosphite gave the desired [2]paracyclo[2](2.5)pyridinophane (**140**).



#### 3. 2,4-Pyridino

The *carbon-bridged* [9](2,4)pyridinophane was first synthesized by Italian workers<sup>107</sup> from 2-cyclododecenone by initial treatment with ethyl cyanoacetate under Michael conditions. The resultant cyano keto ester was hydrolyzed under alkaline conditions and subsequently decarboxylated to the  $\gamma$ -cyano ketone. Reduction of this cyano ketone with lithium aluminum hydride gave a diastereomeric mixture of amino alcohols, which spontaneously cyclized to the disubstituted  $\Delta^1$ -piperideine. Dehydrogenation of the tetrahydropyridine nucleus with a catalytic amount of Pd–C in xylene and nitrobenzene gave **150**a. PMR spectral studies on **150**a failed to show the expected shielding effect of the  $\pi$  electron cloud upon the bridge methylene protons.<sup>107</sup>



An alternate approach to substituted [9](2,4)pyridinophanes Is via the corresponding pyrylophanium salt.<sup>106</sup> 3-Cyanomethylcyclododecanone<sup>107</sup> was ketalized under standard conditions and treated with methylmagnesium bromide in tetrahydrofuran; upon hydrolysis, the 3-acetonylcyclododecanone was isolated. Reaction of this diketone with trityl perchlorate in boiling acetic acid afforded the 12-methyl[9](2.4)pyrylophanium perchlorate. which upon treatment with ammonium acetate gave **150b** in 80% yield. When the intermediary pyrylophanium salt was reacted with hydrazine. the first [9](4.6)pyridazinophane (**356**) was isolated.<sup>106</sup>



Parham and co-workers synthesized a large series of benzo [2.4] pyridinophanes through a novel ring expansion reaction.<sup>110</sup> The starting fused indoles were readily prepared by the Fischer indole synthesis:<sup>329-331</sup> treatment of these indoles with 2 equiv of phenyl(trichloromethyl)mercury afforded reasonable yields of the benzopyridinophanes. Both spectral and chemical evidence support the presence of a distorted aromatic system when the bridge is equal to or less than six carbon atoms. This general procedure has been applied to the synthesis of numerous [n](2.4) pyridinophanes.<sup>109,110,115,116</sup> Hydrodechlorination of **153c** was easily accomplished by action of hydrazine and palladium on charcoal.<sup>332,333</sup>



The only *carbon-nitrogen-bridged* (2.4)pyridinophane was recently synthesized by Wakefield et al.,<sup>131</sup> when 3,5-dichlorotrifluoropyridine was treated with an appropriate long-chained (9 or 12 carbon atoms) primary diamine. The intermediate diamines can be isolated, and, when subjected to heating in *N*.*N*-dimethylformamide or *N*,*N*-dimethylaniline for an unspecified time, the cyclized compounds (e.g., **156**) were isolated.



# 4. 2,3-Pyridino

The *carbon-bridged* 2.3-pyridino macrocycles were generally synthesized by a base-catalyzed condensation reaction in order to construct a 2.3-disubstituted pyridine nucleus. 2.3-Tride-camethylenequinoline (**163**a) was synthesized by condensation of cyclopentadecanone (Exaltone) with 2-aminobenzaldehyde.<sup>122</sup> These original macrocycles were prepared in order to permit evaluation of their physiological properties: **163a** was reported to be physiologically inactive. 2.3-Polymethylenebenzopyridines have been recently reviewed.<sup>443</sup>



Prelog and Geyer also utilized a base-catalyzed condensation to generate the desired substituted pyridine nucleus **159d**.<sup>118,119</sup> The substituents were removed by standard methods.



An alternate procedure to these macrocycles possessing the 2.3-pyridino molety was recently described by Breitmaier and Bayer in which a cycloalkanone was reacted with 3-aminoacrolein in the presence of triethylamine and a trace of piperidinium acetate.<sup>334</sup> Although their reported examples were limited to cyclic ketones of eight or less carbon atoms, this general procedure should be applicable to the construction of larger 2,3-polymethylenepyridines.



The classic Pfitzinger condensation<sup>335,336</sup> has been utilized by Buu-Hoi et al. to synthesize 2,3-polymethylenequinolines.<sup>120,121,123,124,337</sup> The condensation of isatin with cycloheptadecanone (dihydrocivetone) gave **165d**, which subsequently was decarboxylated to afford **165a**. Remote unsaturation within the macrocyclic ring **165a** can also be achieved via this condensation reaction through the use of the appropriate unsaturated cyclic ketone.<sup>123,124</sup>



During the course of the synthesis of muscopyridine, bicyclo[10.3.0]pentadec-12-ene was subjected to Schmidt reaction conditions ( $HN_3$  in CHCl<sub>3</sub>), followed by oxidation, affording an equal mixture of both the anticipated macrocycle **5a** as well as the unwanted 2,3-isomeric macrocycle **158**,<sup>17</sup> An explanation for the product distribution has been given.<sup>17</sup>



*Carbon-nitrogen* 2,3-pyridino macrocycles were prepared by Müller and Wöhrle from 2,3-diaminopyridine and propynal in a 1:1 ratio with or without the aid of a metal ion template.<sup>126</sup> The reaction proceeded through an intermediate (complex) and then cyclized to the 14-membered macrocycles **167a** or **167b**. Several metal complexes of **167a** and **167b** have been reported.<sup>126</sup>



#### 5. 3,5-Pyridino

*Carbon-bridged* 3,5-pyridino macrocycles have been synthesized by Balaban through the intermediary 3.5-bridged pyrylium salt.<sup>71,72,432</sup> Diacetylation of cyclododecene was accomplished by addition of perchloric acid to an olefin in excess acetic anhydride without cooling. The black viscous residue (after extraction of the reaction mixture with ether) was extracted with boiling water affording 2.6-dimethyl-3,5-nonamethylenepyrylium perchlorate. Treatment of this salt with ammonia afforded the desired pyridine macrocycle **168**a,<sup>71</sup> whereas. treatment with methylamine, aniline, or hydrazine gave the corresponding pyridinium perchlorate salts.<sup>72</sup>



Boekelheide and Pepperdine synthesized the metapyridinophane **175b** via the Wurtz coupling of the appropriate dihalide.<sup>73</sup> A more tedious route was employed by these researchers in the preparation of the related cyclophane **173**a.<sup>73</sup> 5-Ethoxycarbonyl-2,4.6-trimethylpyridine-3-carboxaldehyde underwent a smooth Wittig reaction with (3-methoxymethyl-2-methylben-





zyl)triphenylphosphonium bromide to afford a cis- and transstilbazole mixture. Photoisomerization converted the trans-rich product mixture (1:15) to a favorable 4:1 cis-trans ratio. The ester functionality was quantitatively reduced with lithium aluminum hydride and then subsequent conversion of both this alcohol group as well as simultaneous cleavage of the ether function to the dibromide was accomplished by reaction with acetyl bromide and boron trifluoride etherate in the presence of excess lithium bromide. Treatment of the dibromide with phenyllithium gave the metacyclophan-1-ene 173b. Oxidation of 173b with ruthenium and molecular oxygen in the presence of HCl gave a salt. which upon treatment with base generated the trans-1,3,15,16-tetramethyl-2-azadihydropyrene. Photoisomerization of the substituted dihydropyrene to the metacyclophane-1.9-diene (173a) was a facile process; however, a dark thermal isomerization has been shown to be an equally rapid reaction ( $K_{1/2}^{MeOH} = 8 \text{ s at } 17 \text{ °C}$ ).<sup>73</sup>

Jenny and Holzrichter synthesized [2.2](3.5)pyridinophane (**174**) in a manner analogous to that presented in their previous papers specifically via the reaction of 3,5-bis(chloromethyl)-pyridine with sodium in the presence of tetraphenylethylene.<sup>81,82</sup> Not only was the [2.2] member isolated (2%), but the [2.2.2]-and [2.2.2.2](3.5)pyridinophanes were also isolated in 4.2 and 1.5% yield, respectively.



Sondheimer et al. in a series of elegant papers have described the synthesis of several new aromatic macrocyclic heteroannulenes.<sup>75-80</sup> The general mode of construction can be demonstrated by the synthesis of **170b**.<sup>75</sup> The di-Wittig reagent prepared from 3.5-bis(bromomethyl)pyridine was reacted with 2 equiv of the appropriate ynenealdehyde to afford an isomeric mixture of olefins. The desired trans.trans isomer was isolated and oxidized with cupric acetate in pyridine at 55–60 °C for 1.5 h generating the polyunsaturated macrocycle **170a**. 1.4-Reduction of **170a** followed by the utilization of various trapping agents afforded a novel series of aza[17]annulene derivatives (**170b**). This synthetic route to the aza[17]annulenes has also



been applied to the synthesis of diatropic oxygen and sulfur analogs.<sup>78,341</sup>

Carbon-sulfur-bridged 2.11-dithia[3]metacyclo[3](3.5)pyridinophane has been synthesized by a standard procedure and upon photolysis in the presence of triethyl phosphite gave **179** and then **173c**.<sup>74</sup>



*Carbon-nitrogen* 3,5-pyridino macrocycle **178c** was synthesized by Overman<sup>83</sup> via a high-dilution cyclization of 3,5-pyridinedicarbonyl chloride and a substituted diamine.<sup>493</sup> following the procedure of Stetter.<sup>339</sup>



#### 6. 3,4-Pyridino

Freeman and Ito have reported the simple conversion of 2acylcyclanones into substituted 5*H*-2-pyridines. as well as 3,4-polymethylene pyridines.<sup>125</sup> The reaction of 2-acetylcy-



clododecanone with 2-cyanoacetamide in the presence of diethylamine gave (50%) macrocycle **181.** The functionality can be removed by literature procedures.<sup>340</sup>

#### B. Furan as the Subunit

Macrocycles possessing only the furan subunit are tabulated in Table II.

#### 1. 2,5-Furano

Of the carbon-bridged furanophanes, [2.2](2,5)furanophane (189a) has been the most widely investigated. Winberg et al. were the first to synthesize 189a via the pyrolysis of (5methyl-2-furfuryl)trimethylammonium hydroxide at 150 °C at 3-4 mm pressure.<sup>186</sup> The intermediate 2.5-dimethylene-2.5dihydrofuran was isolated from this reaction by trapping at -78°C. Although this intermediate was stable at -78 °C. upon warming in the presence of radical inhibitors it dimerized (72%) to form 189a as well as a 1,6-coupled polymer possessing rearomatized furan rings. Both 5-ethylidene-2-methylene-2,5-dihydrofuran and 5-benzylidene-2-methylene-2,5-dihydrofuran were generated and dimerized separately: the stereochemistry of the(se) dimeric product(s) was (were) not ascertained.<sup>186</sup> This procedure of Winberg<sup>186</sup> has been successfully utilized by numerous researchers (ref 167. 178. 180, 181, 189-191. 281). The chemistry of 189a has also been widely investigated in cycloaddition reactions (ref 165, 166, 268) in conformational studies, <sup>15</sup> and as a source of other cyclophanes (ref 181, 184, 186, 218, 281, 496-498). Photolysis of 189a with a low-pressure mercury lamp leads to a [6+6] photocleavage and thus generation of 2,5-dimethylene-2,5-dihydrofuran, which can be isolated at -78 °C.437



Cross-cycloadditions of 2,5-dimethylene-2,5-dihydrofuran with numerous other reactive trienes or tetraenes have been reported. These 1.6 to 1,6 cycloaddition reactions have afforded a vast array of mixed cyclophanes: [2.2](2,5)furanoparacyclo-



phanes.  $^{178,180,181,184}$  [2.2](2,5)furano(1,4)naphthalenophanes.  $^{184,189}$  [2.2](2,5)furano(9,10)anthracenophane,  $^{190}$  [2.2](2.5)furano(1,4)anthracenophane,  $^{191}$  and multilayered furanophanes.  $^{188,217,259,485,486}$ 

These furanophanes have afforded a novel form of latent functionality of a 4- (or 6-) carbon atom molety possessing varied substituents.<sup>347,348</sup> In their molecular asymmetry studies, Cope and Pawson<sup>179</sup> utilized the procedure of Cram and Knox<sup>180</sup> to obtain **184a** as the convenient source to paracyclophanes, in which **184a** was oxidatively cleaved (bromine in methanol at -30 °C, followed by hydrolysis),<sup>180,181</sup> then reduced with excess lithium aluminum hydride and aluminum chloride (1:3 ratio). Simple hydrolysis of the furan ring has also afforded a source of the **1,4**-dione moiety (ref 178, 181, 184, 259, 281, 485).



Synthesis of (2.5)furanophanes by dehydration of cyclic 1,4-diones has been reported. [8](2.5)Furanophane (**183**a) has been prepared (81%) from 1.4-cyclododecanedione<sup>176,187</sup> upon treatment with phosphorus pentoxide in ethanol (the Paal–Knorr synthesis) according to the general procedure of Mukaiyama and Hata.<sup>350</sup> In studies related to the reactions of cyclophanes, Helder and Wynberg needed large quantities of the starting 1,4-cyclododecanedione.<sup>220</sup> Repetition of the earlier literature procedures<sup>349,370-371</sup> resulted, however, in only moderate yields of the desired dione. Utilization of the Jones oxidation on the cyclobutanol intermediate afforded (55% overall) a much improved route to the dione: the mechanistic aspects of this conversion are not understood.<sup>220</sup> Cycloadditions utilizing **183**a have afforded several novel structures, such as: a "paddlane"<sup>177</sup> and an octano-bridged oxaquadricyclane.<sup>260</sup>



In search of monocyclic allenes, Garrett, Nicolaou, and Sondheimer isolated a novel allenic, macrocyclic tetraether, which upon treatment with 80% sulfuric acid in ether gave (63%) the unexpected furanophane **182**.<sup>183</sup> Catalytic hydrogenation of **182** afforded the reduced bicyclic ketone in 69% yield. Furanophane **182** "appears to be the first bridged aromatic system containing an allene group".<sup>183</sup> Mechanisms have been proposed for this novel transformation.<sup>183</sup>

One of the largest classes of furan-containing macrocycles is that of ''tetraoxaquaterene''. [''Quaterene'' denotes a macrocycle composed of four methylene-bridged 1.4-disubstituted cyclopentadienes.]<sup>169</sup> The 16-membered macrocycle **204** was synthesized in low yield by simple acid-catalyzed condensation of furan and a dialkyl ketone (e.g., acetone).<sup>169,192-194,303,500</sup> In general, such condensations have given rise to predominantly polymeric products; however, more recently. enhanced yields (~20%) of the desired macrocycles can be realized when metal ions are added to the reaction mixture (the template effect).<sup>168,266,343,344</sup> Numerous intermediates have been isolated from these reactions and in certain cases can be converted to the macrocyclic system when subjected to additional acidic condensation conditions.<sup>169,192,194,500</sup>



Over the past decade, studies of the physical and chemical properties of completely conjugated monocycles (annulenes) and ketones (annulenones) have been in vogue. Construction of these macrocycles generally has been via a base-catalyzed cyclocondensation. The [18]annulene trioxide synthesis will exemplify the basic mode of construction.<sup>146,147</sup> The key intermediates. furan-2.5-diacetic acid and methyl  $cis-\alpha,\beta$ -bis(5formal-2-furyl)acrylate, were subjected to a Perkin reaction (acetic anhydride and triethylamine) affording a low (1.05%) yield of annulene **200**a. The key intermediate methyl  $cis-\alpha,\beta$ -bis(5formyl-2-furyl)acrylate was prepared by (1) base-catalyzed condensation of 2-furylacetic acid with furfural; (2) esterification; and (3) direct formylation with phosphorus oxychloride and Nmethylformanilide. Other formylation conditions caused either isomerization of the double bond, limited yields of the diformylated product. or a mixture of monoformylated products. Removal of the carboxylic acid groups was accomplished through initial saponification of 200c to the triacid, then decarboxylation by treatment with quinoline and copper chromite at 200-205 °C to afford the desired unsubstituted [18]annulene trioxide (200a). This general cyclocondensation procedure utilizing either the Perkin reaction (an aldehyde and substituted acetic acid)<sup>110,162</sup> or aldol condensation<sup>142,164</sup> has been applied to the construction of numerous related annulenes. 142, 160, 162, 164

An alternate, shorter procedure, albeit more convenient sy-



thesis of the parent annulene structure, is via bis-Wittig reagents (reviewed in ref 351). A typical illustration of this cyclization was reported for the Wittig reaction of a diacrolein<sup>352</sup> with an appropriate bis-phosphonium salt<sup>162</sup> in the presence of lithium ethoxide to afford (15%) annulenone **202b**.<sup>172</sup> The bis-Wittig reagents have been used in the synthesis of varied annulenes (ref 140, 144, 150, 154, 174, 175) and annulenones (ref 158–160, 162, 163).



Elix has reported a synthesis of annulenes from sucrose<sup>148</sup> via an appropriately substituted Wittig reagent prepared from 5-chloromethyl-2-furfural.<sup>353</sup> The slow addition of lithium ethoxide to this phosphonium salt in dimethylformamide resulted in an intermolecular cyclocondensation to give (0.07%) trioxide **200**a along with two isomeric [24]annulene tetraoxides, two isomeric [30]annulene pentoxides, and an [36]annulene hexoxide of unknown configuration.<sup>148,155</sup>

With the availability of polyunsaturated bis-aldehydes, Saikachi et al. prepared several novel *carbon-nitrogen-bridged* furan macrocycles.<sup>174</sup> When di-*trans*-1,2-bis [ $\beta$ -(5'-formyl-2'-



furyl)vinyl]benzene was condensed with *o*-phenylenediamine, the expected annelated diaza[20]annulene dioxide was not formed but rather **218c**, **218b**, and **218a** were isolated in 15, 1, and 15.7%, respectively. However, when *cis*- $\alpha$ , $\beta$ -bis(5'-formyl-2'-furyl)ethylene was reacted with hydrazine, the dimer **219** was isolated and no monomer or other disproportionation products were obtained.<sup>174</sup>



Several *carbon–oxygen-bridged* furan macrocycles have been reported. Ogawa et al.<sup>140,144</sup> prepared hetero[15]annulenone **212** by the Wittig reaction of a known dialdehyde<sup>174</sup> and (dimethyl ether)- $\alpha$ , $\alpha'$ -bis(triphenylphosphonium bromide)<sup>354</sup> with lithium methoxide. Spectral data have excluded the occurrence of valence tautomeric isomerism.

A large series of host compounds has been reported by Timko and Cram.<sup>167</sup> The pivotal starting material. 2,5-bis(hydroxy-



methyl)furan was prepared (55% overall) via a two-step sequence from sucrose. Macrocycle **209** was prepared (36%) by treatment of tetra(ethylene glycol) ditosylate with this diol in tetrahydrofuran in the presence of potassium *tert*-butoxide. The unique complexing properties of these ethereal furano macrocycles have been reported.<sup>24</sup> This general procedure has also been utilized by Reinhoudt and Gray in the synthesis of related crown ethers.<sup>170,467</sup> and a modified procedure has been suggested to be applicable for the construction of chiral macrocyclic polyethers **214b**.<sup>223</sup>



The *carbon–sulfur-bridged* furan macrocycle related to **220**a has been prepared by a Perkin condensation of a known dialdehyde<sup>355</sup> with furan-2,5-diacetic acid.<sup>356</sup> followed by decarboxylation to afford only traces of the thia[17]annulene (**220**a).<sup>161</sup> However, when the same dialdehyde was reacted with the appropriate bis-Wittig reagent,<sup>175</sup> the desired macrocycle was prepared in 10 % yield. The Wittig procedure has also been applied to the synthesis of thia[21]annulene (**221**).<sup>157</sup>





*Carbon-bridged* furanophanes have been prepared by two similar procedures. When a mixture of *cls- and trans-2-cyclo*dodecenone<sup>358</sup> was treated with lithium acetylide. 1.2-addition gave 1-ethynyl-2-cyclododecen-1-ol, which underwent an acid-catalyzed isomerization to 3-ethynyl-2-cyclododecen-1-ol. Subsequent treatment of this latter alcohol with mercuric sulfate under acidic conditions afforded 11-methyl-[9](2,4)-furanophane.<sup>206,229</sup> 3-Acetylcyclododecanone was isolated as a byproduct from the hydration of the alkyne bond as well as from the acidic hydrolysis of **224b.** It should be noted that application of the Paal-Knorr reaction of 1,4-diketones via dehydrative conditions (P<sub>4</sub>O<sub>10</sub>) failed in the attempted preparation of [6]- and [7](2,4)furanophanes from the corresponding diones:<sup>229</sup> however, 3-acetylcyclododecanone was converted to **224b** under these reaction conditions.<sup>228</sup> In the attempted synthesis of [7](2.4)furanophane, a crystalline dimer was isolated: however, its structure was never elucidated.<sup>229</sup>



The unsubstituted [9](2.4)furanophane was prepared<sup>205</sup> from the same cyclododecen-2-one by initial treatment with acetone cyanohydrin in aqueous alcohol in the presence of sodium carbonate to afford 3-cyanocyclododecanone. Direct conversion of the nitrile to the methyl ester was accomplished by treatment with hydrochloric acid in methanol: then saponification gave the corresponding  $\gamma$ -keto acid, which when subjected to acetic anhydride and sodium acetate gave a mixture of four components. [9](2,4)Furanophane was obtained (15%) from the mixture by distillation.



#### 3. 2,3-Furano

Only a limited number of *carbon-bridged* 2.3-furano macrocycles have been reported. McAndrew and Russell cyclized an appropriate chloro ketone in the presence of 90% sulfuric acid, according to the procedure of Nienhouse et al.,<sup>359</sup> to generate **225** (66%).<sup>221</sup> The necessary chloro ketone was synthesized (62%) from cyclododecanone and 2,3-dichloroprop-1-ene in the presence of sodium amide.



In a recent communication, macrocyclic keto lactones were synthesized from the corresponding benzo- and naphthofurans,<sup>219</sup> which were in turn synthesized by the procedure of Domschke.<sup>360</sup> No physical or spectral data were cited in this communication for these furans.<sup>219</sup> In general, the furan nucleus was prepared by the Michael addition of a macrocyclic enamine with a quinone, followed by cyclization, and subsequent  $\beta$ -elimination.<sup>360</sup>



Sondheimer et al. prepared both [12]- and [14]annuleno[*b*]furans via a novel application of the Wittig reaction. The appropriate bis-Wittig reagent [prepared in 55% from the corresponding diol:  $-CH_2OH \rightarrow -CH_2Br \rightarrow -CH_2P^+(Ph)_3Br$ ] was



reacted with butyllithium in tetrahydrofuran. followed by addition of furan-2,3-dicarboxaldehyde to afford **227** in 0.6% isolated yield.<sup>208</sup> The related [14]annulene<sup>209</sup> **228a** was synthesized from the same dialdehyde by initial conversion<sup>352</sup> to the bisvinylogue, which was reacted with 1-methyl-2-propynyl-magnesium bromide in ether at -30 °C to give a mixture of diols. Coupling of the bisacetylene was accomplished by treatment with oxygen in the presence of cuprous chloride (Glazer coupling). The bis- $\beta$ -elimination was carried out by treatment of the crude macrocyclic diol with mesyl chloride and triethylamine in dimethoxyethane at 0 °C under an inert atmosphere to afford **228a**. Overall conversion of the bis- $\alpha$ , $\beta$ -unsaturated aldehyde to **228a** was 15%.<sup>209,210</sup>

#### 4. 3,4-Furano

Sondheimer et al. applied the same synthetic modes of construction as shown directly above for the preparation of both the *carbon-bridged* 3,4-furano macrocycles **230**,<sup>208</sup> **231a**<sup>210,212</sup> and related annulenes.<sup>458</sup> The bimolecular rate constants for the Diels-Alder reactions of maleic anhydride with the dehydroannuleno[*c*] furans have afforded reactivity criterion of aromaticity and antiaromaticity in macrocyclic annulenes.<sup>458</sup>



The Wittig reaction has been utilized in the preparation of other 3.4-furano macrocycles. Synthesis of **229a** was accomplished by condensation of biphenyl-2,2'-dicarboxaldehyde and 3,4-furan bis(methylenetriphenylphosphonium chloride)<sup>361</sup> with lithium ethoxide in dimethylformamide.<sup>207,214,215</sup> It is of particular interest to note that, in both the preliminary letter<sup>207</sup> and full paper.<sup>215</sup> the products from this reaction were reported to be two conformational isomers which both possess the *E,E* configuration; however, in a later paper<sup>214</sup> the configurational assignment of these isomers was corrected to *E.Z.* Use of 3.4-furanbis(methyltriphenylphosphonium chloride) has been reported in the construction of several related medium-ring furan containing compounds,<sup>362</sup> as well as in the preparation of a *carbon–sulfur-bridged* thia[11]annulene **245.**<sup>216</sup>



The main reaction product of 3.4-bis(chloromethyl)furan with sodium sulfide was the expected bicyclic compound; however, the ten-membered dithiecine **246** was also isolated in 16%

yield.<sup>435</sup> The same macrocycle **246** was obtained from the reaction of 3,4-bis(chloromethyl)furan and 3,4-bis(mercaptomethyl)furan.<sup>435</sup> The corresponding *carbon-nitrogen-bridged* analog **244** was prepared from 3,4-bis(chloromethyl)furan and a primary amine.<sup>433,436</sup>



Treatment of dipropargyl ether with freshly prepared potassium *tert*-butoxide in *tert*-butyl alcohol at 0 °C led to the formation of bisfuranocyclooctadiene, the intermediacy of a diallenyl ether. and then diradical: macrocyclic products were not reported, however, as expected.<sup>453</sup>



Only a limited number of *carbon-oxygen-bridged* 3,4-furano macrocycles has been reported. Recently, Reinhoudt et al. described the synthesis of a series of crown ethers which incorporated the 3,4-furano moiety.<sup>304</sup> When 3,4-bis(chloromethyl)-furan was reacted with a poly(ethylene glycolate), variable yields (6-43%) of the desired crown ether were realized. When small (n = 1 and 2) poly(ethylene glycolates) were used, the corresponding dimers were isolated: however, when n > 2, the 1:1 monomers were isolated exclusively.<sup>304</sup>



The methylation of diethyl 3,4-dihydroxy-2,5-furandicarboxylate with bromochloromethane in the presence of potassium carbonate gave (25%) **234** as well as a complex mixture of high molecular weight compounds.<sup>204</sup>



## C. Thiophene as the Subunit

Macrocycles possessing only the thiophene subunit are tabulated in Table III. Certain limited aspects of thiophene macrocycles have been reviewed.<sup>298,367,375</sup> Several of the procedures utilized in the synthesis of furan-containing macrocycles have also been applied to construction of the thiophene analogs; thus, where duplication has occurred, only a brief description will be used to illustrate the general mode of construction.

#### 1. 2,5-Thiopheno

Dehydration of the appropriate cyclic 1,4-diketone in the presence of phosphorus pentasulfide at 80 °C afforded a *carbon-bridged* 2,5-thiopheno macrocycle:<sup>176,187,430</sup> for example. **247**a was prepared (51%) via this procedure from 1.4-cyclo-dodecanedione.<sup>220</sup> Attempted Friedel–Crafts alkylation of **247**a with *tert*-butyl chloride in the presence of SnCl<sub>4</sub> in carbon disulfide at ambient temperature afforded **305b** rather than the expected 3,4-dialkylated product.<sup>220</sup> A monoalkylated, intermediary rearrangement product was also isolated.<sup>220</sup> Thus, care must be exercised when subjecting strained thiophenophanes to stringent reaction conditions!



Thiophenophanes can be prepared in low yield by the procedure of Winberg et al., in which (5-methyl-2-thienyl)trimethylammonium hydroxide was pyrolyzed at 150 °C.<sup>186</sup> The 2.5-dimethylene-2.5-dihydrothiophene intermediate was not isolated in this reaction: however, it has been isolated (at liquid nitrogen temperatures) from the pyrolysis of 2-ethyl-5-methylthiophene at 825 °C<sup>372</sup> and has been shown to undergo spontaneous polymerization. The x-ray analysis of the 1:1 adduct of benzotrifuroxan and **268**a has been determined; **268**a has a trans- or step-like configuration.<sup>253</sup> Cross-condensation of this intermediate with other reactive trienes has afforded a unique series of heterocyclophanes.<sup>188.191</sup>



Steinkopf et al. reported the first purported thiophenophane example: when 3,4-dibromo-2,5-di(phenylbromomethyl)thiophene was treated with copper-bronze at elevated temperatures. a coupling reaction product **268b** was isolated.<sup>297</sup> Since this compound (**268b**) was an amorphous solid for which a wide melting point. no spectral data. and suspicious analytical data were reported. a better characterization of the reaction products seems to be in order.

| Compound                        | Double bond position | Substituents                                                    | Compd<br>no.          | Physical data<br>Mp [bp (mm)],°C                            | Spectral data<br>available | Complexes(es)/comments             | b Ref                                    |
|---------------------------------|----------------------|-----------------------------------------------------------------|-----------------------|-------------------------------------------------------------|----------------------------|------------------------------------|------------------------------------------|
|                                 |                      | m = 1; n = 8; R = R'                                            | 247a                  | [80-81 (15)]                                                | AC                         |                                    | 176, 187, 220, 260                       |
| T-S m                           |                      | m = 1; n = 8; R = R'                                            | 247b                  |                                                             |                            | Attempted synthesis                | 220                                      |
| (CH <sub>2</sub> ) <sub>n</sub> |                      | m = 1; n = 10; R = R'                                           | 248a                  | [67.5 (0.0 <b>3)</b> ]                                      |                            |                                    | 235                                      |
|                                 |                      | = H<br>m = 1; n = 10; R = R'                                    | 248b                  | 59–60.5                                                     | С                          | Semicarbazone (mp                  | 235                                      |
|                                 |                      | = Ac<br>m = 1; n = 11; R = R'                                   | 249a                  | 51–53                                                       | A                          | 213–214°)                          | 430                                      |
|                                 |                      | = H<br>m = 1; n = 11; R = H;                                    | <b>24</b> 9b          | 45–46 [140–144                                              | A                          |                                    | 430                                      |
|                                 |                      | $R' \approx Br$<br>$m = 2; n = 10; R \approx R'$<br>$\approx H$ | <b>25</b> 0           | (5 × 10 <sup>-3</sup> )]<br>[108.5–111 (0.8)];<br>51 5–53 5 |                            |                                    | 233–235, 252, 363                        |
| R'<br>                          |                      | m = 1; n = 8; R = R'                                            | 251                   | 51.5 55.5                                                   | С                          | Semicarbazone (mp                  | 234, 285, 287, 367                       |
| R L P                           |                      | = H<br>m = 1; n = 9; R = R'                                     | 252a                  | [149–152 (1)];                                              | A, C                       | Oxime (mp 133–                     | 224, 233–236, 285,                       |
| $(CH_2)_n$                      |                      | = H<br>m = 1; n = 9; R = Me;                                    | 252b                  | 35.5-37.5<br>58.5-60                                        |                            | 134.5)                             | 240, 287, 365–367<br>224, 282            |
|                                 |                      | R = H<br>m = 1; n = 9; R = H;<br>P' = Me                        | <b>2</b> 5 <b>2</b> c | 90–91.5                                                     |                            |                                    | 224, 282                                 |
|                                 |                      | $m \approx 1; n \approx 9; R' = H;$<br>$R \approx i.Pr$         | 252d                  | 80.5-81.5                                                   | С                          | Semicarbazone (mp                  | 235                                      |
|                                 |                      | m = 1; n = 9; R' = H;<br>R = NO                                 | 252e                  | 89.5–90                                                     | С                          | 100.5–105.0 γ                      | 235                                      |
|                                 |                      | m = 1; n = 10; R = R'<br>= H                                    | 253a                  | [127.5–132 (0.05)] :<br>45–46 2                             | С                          | Semicarbazone (mp<br>193 4–195 5°) | 234, 250, 251, 285,<br>287, 363, 365-367 |
|                                 |                      | m ≈ 1; n ≈ 10; R' ≈<br>H: R ≈ Me                                | 253b                  | 40.5–42                                                     |                            | 19914 19919 1                      | 244, 282                                 |
|                                 |                      | m = 1; n = 10; R' =<br>Me: R = H                                | 253c                  | 76.5-78.5                                                   |                            |                                    | 244, 282                                 |
|                                 |                      | m = 1; n = 10; R =<br>R' = H; 2-CO <sub>2</sub> Et              | 253d                  | [189–192<br>(0.15)] : 80 (5 ×<br>10 <sup>-s</sup> ) subl    |                            |                                    | 239–242, 250, 251,<br>261, 286. 367      |
|                                 |                      | m = 1; n = 10; R =<br>R' = H; 2-Et;2-<br>CO,Et                  | <b>25</b> 3e          | 61–62                                                       |                            |                                    | 256                                      |
|                                 |                      | m ≈ 1; n ≈ 11; R ≈<br>R' ≈ H                                    | 254                   | [162–165 (0.5)];<br>31–32                                   | С                          | Semicarbazone (mp<br>214–215°)     | 234, 285, 287, 365–<br>367               |
|                                 |                      | m = 1;n = 12;R =<br>R' = H                                      | <b>25</b> 5a          | [170–171 (0.2)]                                             | С                          | Semicarbazone (mp<br>225.3–225.5°) | 234, 285, 287, 365–<br>367               |
|                                 |                      | m = 1; n = 12; R =<br>R' = H: 2-CO_Ft                           | 255b                  | [160 (0.15)];<br>52.8–55                                    |                            | n <sup>20</sup> D 1.5360           | 251, 367                                 |
|                                 |                      | m = 1; n = 12; 2-<br>Me; 2-CO <sub>2</sub> Et                   | 255c                  | 53–55                                                       |                            |                                    | 256                                      |

# TABLE III. Macrocycles Containing the Thiophene Subunita

| m = 1; n = 12; 2-Et;                                 | <b>2</b> 55d          | 65–66                                 |         |                                | 256                 |
|------------------------------------------------------|-----------------------|---------------------------------------|---------|--------------------------------|---------------------|
| m = 1; n = 12; 2-                                    | <b>2</b> 55e          | 82-83.5                               |         |                                | 256                 |
| C <sub>3</sub> H <sub>7</sub> ; 2-CO <sub>2</sub> Et |                       |                                       |         |                                |                     |
| m ≈ 2; n ≈ 5; R ≈ R'<br>≈ H                          | <b>25</b> 6           | $[180-200.5 (10^{-5})],$<br>142-143 5 | С       |                                | 233, 234, 252, 367  |
| m = 2: n = 6: R = R'                                 | <b>2</b> 57           | [120 - 180 (0.005)]                   | C       |                                | 234 367             |
| = H                                                  |                       | 107.8–109.3                           | -       |                                | 201,007             |
| m = 2; n = 7; R = R'                                 | 258                   | [150-200 (10-5)];                     | С       |                                | 234,367             |
| ≈H                                                   |                       | 97–98                                 | _       |                                |                     |
| m = 2; n = 8; R = R'                                 | <b>2</b> 5 <b>9</b> a | $[150-200 (10^{-5})];$                | С       | Semicarbazone (mp              | 233, 234, 252, 367  |
| ≈ H<br>m ~ 2, n ~ 8, D ~ D'                          | <b>2</b> 5.0h         | 83.5-85                               |         | 191.5–193.5")                  | 261 261 267         |
| m = 2; n = 0; R = R<br>= H · 2 15-(CO Et)            | 2090                  | 132.3-134                             |         |                                | 251, 201, 307       |
| m = 2; n = 9; R = R'                                 | <b>26</b> 0           | [180 <b>–</b> 200 (10 <sup>−₅</sup> – |         |                                | 233, 234, 236, 252, |
| = H                                                  |                       | 10~6)]: 102-104                       |         |                                | 261                 |
| m = 2; n = 10; R = R'                                | 261                   |                                       |         |                                | 240, 261            |
| = H; 2,17-(CO <sub>2</sub> Et) <sub>2</sub>          |                       |                                       |         |                                |                     |
| m = 3; n = 5; R = R'                                 | 262                   | 89–90.5                               | C       |                                | 234, 367            |
| ~ H                                                  |                       |                                       |         |                                |                     |
| m, n = 4; R = H                                      | <b>263</b> a          | [169–178 (1)];                        |         | Positive test with             | 249, 252, 367       |
|                                                      |                       | 69.5-71                               |         | Bi <sub>2</sub> O <sub>3</sub> |                     |
| m = л = 4; R = R'<br>= Me                            | <b>263</b> b          | 117–119                               |         | Positive test with<br>Bi2O3    | 249, 367            |
| m = 5; n = 4; R = H                                  | 264                   | [167–169 (0.3)];                      |         | Positive test with             | 249, 367            |
|                                                      |                       | 62–64                                 |         | Bi <sub>2</sub> O <sub>3</sub> |                     |
| Н                                                    | <b>26</b> 5a          | 230–231 (sealed                       | A. C    |                                | 217                 |
|                                                      |                       | tube)                                 |         |                                |                     |
| 4,14-(Me) <sub>2</sub>                               | 265b                  | 125–126                               | A, C    | VTNMR                          | 188                 |
| 4,5-Benzo                                            | 265c                  | 182–183                               | A, C, D | Anti isomer                    | 191                 |
|                                                      | 265d                  | 142-143                               | A, C, D | Syn isomer                     | 191                 |
| 4,5-(2,3-Naphtho)                                    | 265e                  | ~195 dec                              | A. D    | Anti only isolated             | 191                 |
| 4.5:13.14-Dibenzo)                                   | 265f                  | $\sim 100$ dec                        | A. C. D | ,                              | 191                 |
| ····, ·····,                                         |                       |                                       |         |                                |                     |
| D = D' = H                                           | 2662                  | $\sim 1.75$ doc                       | A C     |                                | 017                 |
|                                                      | 2004                  |                                       | A, C    |                                | 217                 |
| R - R - Me                                           | 2000                  | 149–151.5 dec                         | A, C    | VINMR                          | 188                 |
|                                                      |                       |                                       |         |                                |                     |
|                                                      |                       |                                       |         |                                |                     |
| Н                                                    | 267                   | $\sim$ 195 dec                        | A, C    |                                | 217                 |



# TABLE ||| (Continued)

| Compound                                                                                    | Double bond position                  | Substituents                                                                         | Compd<br>no. | Physical data<br>Mp[bp (mm)], °C | Spectral data<br>available | Complex (es)/comments                                                | b Ref                      |
|---------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------|--------------|----------------------------------|----------------------------|----------------------------------------------------------------------|----------------------------|
|                                                                                             |                                       | Н                                                                                    | 268a         | 194.5–196                        | A–C                        | C <sub>2n</sub> symmetry <sup>286</sup>                              | 186, 188, 191, 246,        |
|                                                                                             |                                       | 1,2,7,8-(C₄H₅)₄: 4,5,-<br>10,11-(Br)₄                                                | 268b         | 250–255                          |                            | Probable structure <sup>298</sup>                                    | 200, 253<br>297            |
|                                                                                             | (Z)-1,2; (Z)-7,8; (Z)-<br>13,14       | H<br>H                                                                               | 269a<br>269b | 74.5–75.5 (subl: 70)             | A–C                        | No peripheral con-<br>jugation, aromatic<br>stability <sup>434</sup> | 191<br>151, 152            |
|                                                                                             | (E)-1,2; (E)-7,8; (E)-<br>13,14       | 1,7,14-(CO <sub>2</sub> Me) <sub>3</sub>                                             | <b>26</b> 9c | 257–259                          | D<br>A–C                   |                                                                      | 149<br>151, 152            |
|                                                                                             | (E)-1.2; $(E)$ -7.8; $(E)$ -<br>13.14 | 1.7,14-(CO <sub>2</sub> H) <sub>3</sub>                                              | <b>26</b> 9d | >360                             | B, C                       | Unsuccessful resolution                                              | 151, 152                   |
|                                                                                             | (E)-1,2; (E)-7,8; (E)-13,14           | $1,14-(CO_2H)_2;$<br>7-CO_2Me                                                        | <b>26</b> 9e | Dec                              | А                          |                                                                      | 151, 152                   |
|                                                                                             |                                       | 1,1,6,6,11,11,16,16-<br>(Me)                                                         | <b>2</b> 70a | 338                              | A, B, D                    |                                                                      | 199, 200                   |
|                                                                                             |                                       | 1,11-(OH) <sub>2</sub> ; 1,6,6,11,-<br>16,16-(Me)                                    | <b>2</b> 70b | 280 dec                          | А, В                       |                                                                      | 199, 248                   |
|                                                                                             |                                       | $1,11-(=CH_2)_2$ ; 6,6,-<br>16,16-(Me).                                              | <b>2</b> 70c | 250 dec                          |                            |                                                                      | 199, 248                   |
|                                                                                             |                                       | 1,11-(OH) <sub>2</sub> ; 1,11-<br>(H) <sub>2</sub> ; 6,6,16,16-<br>(Me) <sub>4</sub> | 270d         | 280 dec                          | A, B, D                    |                                                                      | 199, 248                   |
| S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S |                                       | n = 2                                                                                | 271          |                                  | A, D                       |                                                                      | 255, 442                   |
| $\begin{array}{c} 1 \\ S \\$                        |                                       | 1.1.6.6.11.11.16.16-<br>(Me) <sub>8</sub>                                            | 272          | 224–226                          | A, C, D                    |                                                                      | 247                        |
|                                                                                             |                                       | p = 1; m = 2; n = 5;<br>H                                                            | 273a         | 67–68                            | A <sup>224</sup> , D       | X-ray analysis499                                                    | 224, 225, 245, 363,<br>444 |
| $P + = O$ $(CH_2)_m = O$ $(CH_2)_n = O$                                                     |                                       | p = 1; m = 2; n = 5;<br>2.3-benzo                                                    | 273b         |                                  |                            |                                                                      | 364                        |
|                                                                                             |                                       | p = 1; m = 3; n = 4;<br>H                                                            | <b>2</b> 74  | 113–114                          | A <sup>224</sup>           | X-ray analysis499                                                    | 444, 224, 225, 237,<br>238 |

| p = 1; m = 3; n = 5;<br>H        | <b>2</b> 75 | 114-115   |                       |                                                                              | 237                 |
|----------------------------------|-------------|-----------|-----------------------|------------------------------------------------------------------------------|---------------------|
| p = 1; m = 4; n = 3;<br>H        | 276         | 70–71     | A, <sup>224</sup> , D |                                                                              | 224, 225, 245, 363, |
| p = 1; m = 5; n = 2;<br>H        | <b>2</b> 77 | 134–135   | D                     |                                                                              | 245, 363, 444       |
| p = 1; m = 5; n = 4;<br>H        | 278         |           | A <sup>224</sup>      |                                                                              | 224, 225            |
| p = 1; m = 1; n = 6;<br>H        | <b>2</b> 79 |           |                       |                                                                              | 245                 |
| p = 2; m = 2; n = 5;<br>H        | 280         | 166–167   | A, <sup>224</sup> , D |                                                                              | 224, 245, 444       |
| R = H; X ≈ Hg                    | 281         |           |                       | Improbable<br>structure <sup>298</sup>                                       | 295                 |
| R = H; X =                       | 282         | 130       |                       | Poor analysis;<br>amorphous powder<br>Improbable<br>structure <sup>298</sup> | 294                 |
| 1,1,7,13,13,19-(Me) <sub>6</sub> | 283         | 168.5–170 |                       | Picrate (mp<br>155.5—157°)                                                   | 243                 |
|                                  |             |           |                       |                                                                              |                     |



B

Ŕ

ИН НИ

R

ΪR

Ŕ

257

257

| Compound                                | Double bond position | Substituents                                       | Compd<br>no.        | Physical data<br>Mp [bp (mm)],°C                 | Spectral data<br>available | Complex (es)/comments <sup>b</sup>                                  | Ref              |
|-----------------------------------------|----------------------|----------------------------------------------------|---------------------|--------------------------------------------------|----------------------------|---------------------------------------------------------------------|------------------|
|                                         |                      | Bissulfone                                         | 286                 | 378–380                                          | B, C                       |                                                                     | 258 <sup>́</sup> |
|                                         |                      | <i>n</i> = 1; H                                    | <b>2</b> 87         | 127–129                                          | A                          | Cu                                                                  | 431              |
|                                         |                      | н                                                  | 288                 | 210                                              | A                          |                                                                     | 246              |
| J s s                                   |                      | Н                                                  | 289                 | 234 dec                                          | A                          |                                                                     | 246              |
| € S C C C C C C C C C C C C C C C C C C |                      | <i>n</i> ≈ 3: H                                    | <b>2</b> 9 <b>0</b> |                                                  |                            |                                                                     | 35               |
| $(\mathbf{R} (\mathbf{CH}_2)_n)$        |                      | ิ/≀ ≈ 6; R ≈ H; R' ≈<br>Me                         | <b>2</b> 91         | [68–74 (3)]                                      | A–D                        |                                                                     | 229, 230         |
| )_s                                     |                      | n ≈ 7; R ≈ H; R' ≈<br>Me                           | <b>2</b> 9 <b>2</b> | [120–(3)]                                        | A–D                        |                                                                     | 229              |
| R'                                      |                      | n = 8; R = H; R' = t.<br>Bu                        | 293                 | Oil                                              | A, C (CMR)                 |                                                                     | 220              |
|                                         |                      | n = 9; R = R' = H<br>n = 9; R = H; R' =            | 294a<br>294b        | [80-85 (0.03)]<br>[115 (3)] <sup>227</sup> [105- | A                          |                                                                     | 205<br>228, 229  |
|                                         |                      | ме<br>и ≈ 10; 10-(==0); R                          | <b>2</b> 95         | 110 (0.4)] <sup>22</sup> °<br>55–56              | A–D<br>A                   | 4-NO,PhNHNH,(Z                                                      | 227. 282         |
|                                         |                      | = H; R' ≈ Me<br>n = 11; 11-(=O); R                 | <b>2</b> 96         | 37.7-38.5                                        | A                          | isomers)<br>4-NO.PhNHNH. (mp                                        | 227 282 365      |
|                                         |                      | = H; R' = Me<br>n = 12; 12-(=O); R<br>= H; R' = Me | <b>2</b> 97         | Oil                                              | A                          | 165–168°)<br>4-NO <sub>2</sub> PhNHNH <sub>2</sub> (mp<br>178–179°) | 226, 282, 365    |
| s fs                                    |                      | Н                                                  | <b>2</b> 98         | >420                                             | А                          | Centrosymmetric<br>structure                                        | 404              |

## TABLE ||t (Continued)

| (CH <sub>2</sub> ) <sub>n-1</sub>                                   |                                                    | $n \approx 10; 10-(=0); R$                                                                                                 | <b>2</b> 9 <b>9</b> |                        |                          |                                                     | 227, 282      |
|---------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|--------------------------|-----------------------------------------------------|---------------|
| R'CH <sub>2</sub>                                                   |                                                    | H = 11, 11-(=0); R<br>= Me: R' = H                                                                                         | 300                 |                        |                          |                                                     | 227, 282, 365 |
| R                                                                   |                                                    | n = 12; 12-(=0); R<br>= Me; R' = H                                                                                         | 301                 | 48                     | A                        | 4-NO <sub>2</sub> PhNHNH <sub>2</sub><br>(reported) | 226, 365      |
| S                                                                   | (E)-1,2, $(Z)$ -3,4; $(Z)$ -<br>9,10; $(E)$ -11,12 | 4,9-(Me) <sub>2</sub>                                                                                                      | 302a                | 169–170                | A, C, D                  |                                                     | 209           |
| $10 \sqrt{\frac{1}{9} = - = -4}^{2} 3$                              | (E)-1,2; $(E)$ -11,12                              | 4.9-(Me) <sub>2</sub> : 3.10-(OH) <sub>2</sub>                                                                             | 302b                |                        |                          |                                                     | 209           |
|                                                                     |                                                    | R ≈ Me; R' = CO₂Me;<br>R'' ≈ Et                                                                                            | 303                 | 142–143                | A–D                      |                                                     | 319           |
|                                                                     |                                                    | R = Me; R' = CO <sub>2</sub> Me;<br>R'' = Et                                                                               | 304                 | 218–219                | A–D                      |                                                     | 319           |
| R"<br>R S R'                                                        |                                                    | $n \approx 8; R \approx R' \approx H$                                                                                      | 305a                | Oil                    | A, C, D                  |                                                     | 220           |
|                                                                     |                                                    | $n = 8$ , $\mathbf{R} = \mathbf{R} = t \cdot \mathbf{B}\mathbf{u}$<br>$n = 8$ ; $\mathbf{R} = \mathbf{R}' = \mathbf{CO}_2$ | 305Б<br>305с        | 96–96.4<br>129.5–130.5 | A, C (CMR), D<br>A, C, D |                                                     | 220<br>220    |
|                                                                     |                                                    | Me<br>n = 8; R = H; R' =                                                                                                   | <b>3</b> 05d        | 51-51.5                | A, C (CMR), D            |                                                     | 220           |
|                                                                     |                                                    | $n \approx 8; R \approx H; R' \approx CO_2 Me$                                                                             | <b>3</b> 05e        | 63–65                  | A. C. D                  |                                                     | 220           |
| R S R                                                               |                                                    | m = n = 5; R = Me                                                                                                          | 306                 | 105.5–107              |                          | Positive test with                                  | 249, 367      |
| (CH <sub>2</sub> ) <sub>n</sub> (CH <sub>2</sub> ) <sub>m</sub><br> |                                                    |                                                                                                                            |                     |                        |                          | Tosyl derivate (mp<br>126—128°)                     | 249           |
|                                                                     | (E)-1,2; (Z)3,4; (Z)-<br>7,8; (E)-9,10             | 4,7-(Me)₂                                                                                                                  | <b>3</b> 07         | 157–158                | A, C, D                  |                                                     | 208           |
|                                                                     | (E)-1,2; (Z)-3,4; (Z)-<br>9,10; (E)-11,12          | 4,9-(Me) <sub>2</sub>                                                                                                      | 308                 | 182 dec                | A, C, D                  |                                                     | 209           |

|                                                                         |                                            |                                           | Compd                | Physical data                    | Spectral data |                                          |                        |
|-------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------|----------------------------------|---------------|------------------------------------------|------------------------|
| Compound                                                                | Double bond position                       | Substituents                              | no.                  | Mp   bp (mm)], °C                | available     | Complex(es)/comments <sup>b</sup>        | Ref                    |
| 19 $5$ $21$ $1$ $10$ $10$ $10$ $10$ $10$ $10$ $10$                      | (E)-1,2; (E)-5,6; (E)-<br>12,13; (E)-16,17 | 3,4:14,15-Dibenzo<br>8,10,19,21-(Me)₄     | 309                  | 235–240 dec                      | A–D           | Unstable in air                          | 232                    |
| 12<br>10<br>S<br>R<br>S<br>R                                            |                                            | <i>n</i> ≈ 1; R ≈ Me                      | 31 <b>0</b>          | 244—245; 200 (subl)              | A, D          | Conformationally<br>mobile               | 231                    |
| S S S                                                                   |                                            | n ≈ 2; R ≈ Me                             | <b>3</b> 11          | > <b>370 (</b> subl 30 <b>0)</b> | D             |                                          | 231                    |
|                                                                         |                                            | $R = CO_2Et$                              | 312                  | 209–210                          | А, В          |                                          | 204                    |
|                                                                         |                                            | R ≈ Me<br>R ≈ Cl<br>R ≈ <i>t</i> -Bu      | 313a<br>313b<br>313c | 233–235<br>270–271<br>220–221    | А–С<br>А, В   | Reassignment of structure <sup>317</sup> | 357<br>317<br>317, 318 |
|                                                                         |                                            | R ≈ Br<br>R ≈ Me                          | 314a<br>314b         | 275 dec<br>173–184               | D             |                                          | 319<br>357             |
| I I<br>R R<br>R R' R                                                    |                                            | <i>n</i> = 1; R = CI; R' =                | 315a                 | 102.5–103.5                      | A–C           |                                          | <b>3</b> 19            |
| N S                                                                     |                                            | Et<br>n = 1; R = Me; R' =                 | 315b                 | 88-88.5                          |               | Picrate (250°)                           | 320, 357               |
| $ \begin{array}{c} \uparrow & \neg \uparrow \\ R & R' & R \end{array} $ |                                            | $n \approx 1; R \approx Me; R' \approx$   | 315c                 | 152–153                          |               | Picrate (186°)                           | 320, 357               |
|                                                                         |                                            | n = 1; R ≈ Me; R' =                       | 315d                 | 119–120                          |               |                                          | 357                    |
|                                                                         |                                            | n = 1; R = Me; R' =                       | 315e                 | 209–210                          |               | Dipicrate (195–<br>197°)                 | 320                    |
|                                                                         |                                            | $n = 1; R = Me; R' = -(CH_2)_5 - [2CI^-]$ | 315f                 | 242                              |               | Dipicrate                                | 320                    |





268b

[18] Annulene trisulfide (269b) has been synthesized by cyclocondensation of thiophene-2.5-diacetic acid and methyl *cis*- $\alpha$ , $\beta$ -bis(5-formyl-2-thienyl)acrylate under standard Perkin reaction conditions (acetic anhydride and triethylamine).<sup>151,152</sup> Since it was difficult to work with the diacid, 269e was converted via standard Fischer esterification to the desired triester 269c. Alkaline hydrolysis of 269c gave the triacid 269d, which was decarboxylated with copper chromite in quinoline at 210–220 °C affording the unsubstituted [18]annulene trisulfide 269b.<sup>151,152</sup> All experimental evidence supported the fact that 269b is a nonplanar, nonaromatic system in which the thiophene subunits are bridged by olefinic vinylene groups.<sup>151</sup>



269b

Although pyrrole and furan reacted with acetone and hydrochloric acid to generate porphyrinogen<sup>323-325</sup> and tetraoxaquaterene.<sup>169, 194, 195</sup> respectively. initial attempts to prepare tetrathiaquaterene in an analogous manner failed. However, under more rigorous reaction conditions (thiophene. acetone, and 72% sulfuric acid),<sup>200</sup> the residue was shown to contain the desired macrocycle **270a**.<sup>199</sup> Ahmed and Meth-Cohn also prepared several other members of this series by condensation of 2,2-bis(5'-lithio-2'-thienyl)propane with 2,2-bis(5'-formyl-2'thienyl)propane to yield **270d**.<sup>199,248</sup> Similarly when this dilithio reagent was reacted with 2.2-bis(5'-acetyl-2'-thienyl)propane, the corresponding hexamethyl analogue was prepared: dehydration of **270b** afforded diolefin **270c**.<sup>248</sup>

Gol'dfarb et al., in a series of papers, have described the utilization of 2,5-thiophene macrocycles as precursors to bio-



logically important sulfur-free macrocyclic compounds, for example, naturally occurring perfumes (Exaltone and related macrocyclic keto lactones) and macrolide antibiotics. These Russian workers have described three general procedures to these macrocycles: (a) Friedel–Crafts acylation; (b) acyloin condensation of a diester; and (c)  $S_N^2$  cyclization. The initial overview of their procedures was surveyed in 1959;<sup>233</sup> however, since then numerous supportive papers have been published.

The Friedel-Crafts acylation of an appropriate terminal 2thienyl straight-chain acyl chloride gave rise to both monomeric (intramolecular) and dimeric (intermolecular) products when subjected to either alumInum chloride/etherate in carbon disulfide (ref 233, 234, 238), stannic chloride in benzene at +5 °C (ref 233, 234, 252), aluminum chloride in ether (ref 252), aluminum chloride in chloroform (ref 234. 236, 238, 244, 245. 285, 287, 364), or aluminum chloride-ether in the presence of neutral alumina or silica gel (ref 236-238, 244, 282). In general, when n = 3-5, 2,3-disubstituted thiophenes were isolated: n =8-12, 2,5-disubstituted monomeric thiophenes were obtained: and n = 5-9, 2,5-disubstituted dimeric thiophenes resulted.<sup>234</sup> Interestingly, by the addition of silica gel (or alumina) to these Friedel-Crafts acylations and utilizing high-dilution conditions. intramolecular cyclization products were favored. As an important synthetic preparative note,236 addition of these adsorbents permitted: (1) increased addition rates of the acid chlorides. (2) reduction of solvent volumes, and (3) increased intramolecular cyclization products in the case of carbon bridges. It was assumed that when adsorbents are present in this reaction mixture,



the adsorbent surface takes an active part in the intramolecular acylation reaction.<sup>238</sup>

The acyloin condensation has been applied to construction of these macrocycles, however, to a much more limited extent than one would expect! When methyl thiophene-2.5-dialkanoates were treated under high-dilution conditions in the presence of sodium in xylene/ether at 60 °C<sup>249,252</sup> or of potassium/sodium alloy in the same solvent,<sup>249</sup> the desired acyloin products were isolated (25–30%).



The third procedure utilized by these Russian workers was the intramolecular cyclization of an activated methylene group with an iodomethylene group in the presence of finely pulverized potassium carbonate (ref 240, 241, 250, 251, 261, 286) in methyl ethyl ketone, potassium *tert*-butoxide.<sup>239</sup> or other alkali metal carbonates.<sup>242</sup> In general, no intermolecular cyclization products were isolated when potassium carbonate was used as the base.<sup>241</sup> In the presence of various alkali metal carbonates, the intramolecular cyclization rate increased with the radius of the alkali metal cation and surface area of the carbonate.<sup>242</sup>



Conversion of these thiophene macrocycles to sulfur-free macrocycles via Raney-nickel desulfurization has been reported by Gol'dfarb et al. (ref 233, 235, 237, 244, 250–252, 256, 285, 365).

The only known *sulfur-bridged* thiophene macrocycle was reported by Todres et al. when 5-thiocyanato-2-thienyl mercaptide (stable in absolute tetrahydrofuran) was treated with acetic acid.<sup>255</sup> This mercaptide probably decomposed through the unstable trithiomaleic anhydride intermediate. which underwent facile polymerization. The tetrameric disulfide macrocycle **271** was isolated in low yield from the mixture of oligomers.<sup>255</sup>



Kauffmann and Kniese reported the synthesis of a *silicon*bridged macrocycle (silathiophenophane) **272** through the treatment of 2,2-bis(5'-lithio-2'-thienyl)-2-silapropane with dichlorodimethylsilane in tetrahydrofuran at 0 °C.<sup>247</sup>

*Carbon–oxygen-bridged* thiophene macrocycles were prepared by Gol'dfarb et al. in the search for a convenient source of macrocyclic keto lactones. Thiophene macrocycles were constructed (40-60%) by intra- and intermolecular cyclization of the corresponding acid chlorides in the presence of aluminum chloride<sup>225,237,238,245</sup> (see **273–279**).



Gol'dfarb. et al. also reported the construction of a novel 2.5-*carbon-nitrogen-bridged* thiophene system by the reaction of 2.2-bis(5'-methylaminomethyl-2'-thienyl)propane with 2.2-bis(5'-chloromethyl-2'-thienyl)propane under very mild conditions (benzene at 40 °C); the proposed macrocyclic structure **283** was marginally supported by physical data.<sup>243</sup>



A thiophenedicarbonitrile derivative, prepared (48%) by the reaction of 1-amino-3,3-diethoxyisoindollne with 2,5-diamino-3,4-dicyanothiophene, was treated with a second equivalent of the diamine to give (58%) the desired heteromacrocycle **284.** The corresponding benzene derivative **285**<sup>257</sup> as well as numerous other related derivatives<sup>387,388</sup> were prepared in a similar manner.

The *carbon-sulfur-bridged* heterophanes **289** and **288** were prepared by the reaction of 2,5-bis(mercaptomethyl)thiophene with either 2,5-bis(chloromethyl)thiophene or 1,3-bis(bro-momethyl)benzene. respectively, under high-dilution conditions.<sup>246</sup>



A *carbon–sulfur–oxygen-bridged* thiophenophane **290** has been reported by Vögtle and Weber; no experimental details were presented.<sup>35</sup> However, **290** was probably synthesized in a manner similar to their previous heterocyclic examples.<sup>27–29,31–33</sup>



#### 2. 2,4-Thiopheno

To date. all of the 2,4-thiopheno macrocycles possess a carbon bridge. The simplest general procedure to [n](2,4)thiophenophane was the treatment of an appropriate 3-acetylcycloalkanone with phosphorus pentasulfide.<sup>228,230</sup> The smallest (2.4)thiophenophane yet reported contains a six-membered carbon bridge.<sup>229,230</sup> As considered earlier in this review. [8]-(2,5)thiophenophane **247**a underwent monoelectrophilic substitution to rearrange to a substituted [8](2.4)thiophenophane.<sup>220</sup>



Bradamante et al. reported the preparation of the unsubstituted [9](2.4)thiophenophane **294**a by the gentle warming of the sodium salt of 3-ketocyclododecanecarboxylic acid with  $P_2S_5$ .<sup>205</sup>



Gol'dfarb et al. prepared a series of (2,4)thiophenophan-1ones by an intramolecular Friedel–Crafts acylation reaction of  $\omega$ -(5-methyl-2-thienyl)alkanoyl chlorides in the presence of aluminum chloride.<sup>226,227</sup> Substitution at the 3 or 4 position occurred since the **5** position was blocked with an alkyl group; in light of Helder and Wynberg's recently reported rearrangement of substituents at positions 2 and 5 on the thiophene nucleus under acylation conditions,<sup>220</sup> care must be taken in the structural assignments of products derived by electrophilic substitution!



## 3. 2,3-Thiopheno

Gol'dfarb et al. reported the isolation of both the 2,4- as well as 2,3-disubstituted (*carbon-bridged*) acylation products (see above)<sup>226,227</sup> via their standard reaction procedures.

Me

Me

[14]Annuleno[b]thiophene **302b** has been prepared by Sondheimer et al. from thiophene-2.3-dicarboxaldehyde.<sup>209</sup> Their procedure was essentially the same as for the construction of **228a** (see section B.3).<sup>210</sup>



Kauffmann has recently described the synthesis of numerous cyclopolyaromatics via the oxidative coupling of organometallic intermediates with copper salts at reduced temperatures.<sup>405a</sup> Cyclotetrathiophene was prepared by two similar procedures utilizing either 3-bromothiophene or 2,3-dibromothiophene;<sup>407</sup> a small amount of **298** was isolated and characterized.<sup>404</sup> A review by Kauffmann described the utilization of oxidative coupling reactions for the construction of heterocyclic arene (heteroaromatic) nuclei.<sup>405a,c</sup>

An isomeric mixture of *carbon–nitrogen-bridged* 2.3-thiopheno macrocycles was isolated when methyl 4.5-bis(chloromethyl)-3-methylthiophene-2-carboxylate was reacted with ethylamine in acetonitrile.<sup>319</sup> The yields of both isomeric dimers **303** and **304** were low (<4%).



#### 4. 3,4-Thiopheno

304

Trimeric and tetrameric 3.4-disubstituted thiophene cyclic units coupled by a *carbon bridge* have been reported by Meth-Cohn. When an equimolar mixture of 2.5-dimethylthiophene and formaldehyde in acetic acid was added dropwise to refluxing acetic acid containing zinc chloride and a little mineral acid. upon cooling, both the 9- and 12-membered (**311**) cyclic structures were isolated.<sup>231</sup>

303



Reaction of *o*-phthalaldehyde with 2.5-dimethylthiophene-3,4-bis(methylenetriphenylphosphonium chloride) in the presence of lithium ethoxide afforded an easily oxidizable (purported) macrocycle **309** along with three geometrical isomers of *o*-bis[2-(2.4,5-trimethyl-3-thienyl)vinyl]benzene.<sup>232</sup>



Sondheimer et al. reported the synthesis of both [12]annuleno[c]thiophene<sup>208</sup> (**307**) and [14]annuleno[c]thiophene<sup>209</sup> (**308**) by previously discussed procedures (section B.3. except that thiophene was substituted for furan).



Gol'dfarb et al, have applied their acyloin condensation procedure to the construction of **306**. Cyclization of the appropriate diester was conducted in the presence of finely divided potassium-sodium alloy in xylene at 60–65 °C; the yield of **306** was an amazing 70%.<sup>249</sup>



[8](2.5)-Thiophenophane (**247a**)<sup>176</sup> underwent a stepwise rearrangement to **293**, then to the substituted [8](3.4)thiophenophane nucleus (**305b**) upon treatment with *tert*-butyl chloride under Friedel–Crafts conditions.<sup>220</sup>



Recently, Zwanenberg and Wynberg treated 2,5-di-*tert*butyl-3,4-bis(chloromethyl)thiophene with water, according to the procedure of Gol'dfarb and Kondakova.<sup>318</sup> isolating not the originally proposed substituted thieno[3.4-*c*] furan.<sup>318</sup> but rather the *carbon-oxygen-bridged* dimer **313c**.<sup>317</sup> The corresponding

tetrachloro<sup>3 17</sup> and tetramethyl<sup>357</sup> derivatives have been prepared in a similar manner.



Methylation of ethyl 3.4-dihydroxy-2,5-thiophenedicarboxylate with bromochloromethane and potassium carbonate in dimethylformamide gave macrocycle **312** as a minor product, along with ethyl 3.4-methylenedioxy-2,5-thiophenedicarboxylate as well as its S,S-dioxide,<sup>204</sup>



Zwanenburg and Wynberg reported the preparation of both *carbon–sulfur-* and *carbon–nitrogen-bridged* 3,4-disubstituted thiophene macrocycles. Treatment of 2,5-disubstituted bis(3,4-halomethyl)thiophene with either sodium sulfide or a primary amine derivative afforded, along with monomeric products, the expected dimers.<sup>319</sup> These studies parallel the original work of Gol'dfarb and co-workers some 8 years earlier.<sup>320</sup>



# V. Synthesis of Macrocycles Possessing Two or More Different Subheterocyclic Rings

Table IV is a compilation of the macrocycles which possess a combination of pyridine, furan. and/or thiophene subheterocyclic rings.

# A. Combination of 2,6-Pyridino and 2,5-Furano Subunits

Wong and Paudler have recently reported the first mixed heterocyclophane which is composed of both a  $\pi$ -deficient pyridine subunit and a  $\pi$ -excessive furan ring.<sup>88</sup> Construction

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Double bond position                                                                                                                                                                                                                                            | Substituents                                                                                                                                                                                                                             | Compd<br>no.                                 | Physical data<br>Mp[bp (mm)], °C                               | Spectral<br>data available                  | Complex(es)/comments                                                   | Ref                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|
| Jon .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 | Н                                                                                                                                                                                                                                        | 327                                          | 86–87                                                          | A, C                                        | No VTNMR changes,<br>x-ray <sup>448</sup>                              | 88                                                                |
| for significant in the second |                                                                                                                                                                                                                                                                 | н                                                                                                                                                                                                                                        | 328                                          |                                                                | A                                           | Conformational studies                                                 | 6                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Z)-6,7; (Z)-12,13                                                                                                                                                                                                                                              | 1-(=O)                                                                                                                                                                                                                                   | <b>32</b> 9a                                 | 148–150                                                        | A–D                                         | No paramagnetic ring                                                   | 160, 162                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Z)-6,7; (Z)-12,13<br>(Z)-6,7; (Z)-12,13                                                                                                                                                                                                                        | 1-(H)₂<br>1-H; 1-OMe                                                                                                                                                                                                                     | 329b<br>329c                                 | Yellow oil<br>Orange oil                                       | A, D<br>A, D                                |                                                                        | 162<br>162                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Z)-1.2; (Z)-7.8; (Z)-13.14                                                                                                                                                                                                                                     | н                                                                                                                                                                                                                                        | 330                                          | 250–251 dec                                                    | A–C                                         | Aromatic (NMR),<br>aromatic stability <sup>434</sup>                   | 145, 254                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (E)-1,2; $(E)$ -7,8; $(E)$ -13,14<br>(E)-1,2; $(E)$ -7,8; $(E)$ -13,14 | 2,8,13-( $CO_2H$ ) <sub>3</sub><br>2,8,13-( $CO_2Me$ ) <sub>3</sub><br>13,8-( $CO_2H$ ) <sub>2</sub> : 2- $CO_2Me$<br>2,7,14-( $CO_2Me$ ) <sub>3</sub><br>2,7,14-( $CO_2H$ ) <sub>3</sub><br>2,7-( $CO_2H$ ) <sub>2</sub> : 13- $CO_2Me$ | 331a<br>331b<br>331c<br>331d<br>331e<br>331f | >360<br>192–193<br>>250 dec<br>210–212<br>>360 dec<br>>250 dec | D<br>A-C<br>A-C<br>A-C<br>A-C<br>A-C<br>A-C |                                                                        | 149<br>145, 254<br>145, 254<br>254<br>145, 254<br>145, 254<br>254 |
| 6 <b>5 5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Z)-1,2; (Z)-7,8; (Z)-13,14                                                                                                                                                                                                                                     | н                                                                                                                                                                                                                                        | 332                                          | 103–103.5                                                      | A–C                                         | No peripheral conjuga-<br>tion, aromatic sta-<br>bility <sup>434</sup> | 146, 153                                                          |
| 14 ( S 7<br>13 11 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( <i>E</i> )-1,2; ( <i>E</i> )-7,8; ( <i>E</i> )-13,14<br>( <i>E</i> )-1,2; ( <i>E</i> )-7,8; ( <i>E</i> )-13,14<br>( <i>E</i> )-1,2; ( <i>E</i> )-7,8; ( <i>E</i> )-13,14                                                                                      | 2-CO <sub>2</sub> Me; 8,13-(CO <sub>2</sub> H) <sub>2</sub><br>2,8,13-(CO <sub>2</sub> Me) <sub>3</sub><br>2,8,13-(CO <sub>2</sub> H) <sub>3</sub>                                                                                       | 333a<br>333b<br>333c                         | dec<br>256–257<br>>340 dec                                     | D<br>A–C<br>A–C                             |                                                                        | 149<br>153<br>153<br>153                                          |
| 15 S 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Z)-6,7; (Z)-12,13                                                                                                                                                                                                                                              | н                                                                                                                                                                                                                                        | 334                                          | 81-83                                                          | A, C                                        | No diamagnetic ring<br>current                                         | 161                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ( <i>E</i> )-6.7; ( <i>E</i> )-12,13<br>( <i>E</i> )-6.7; ( <i>E</i> )-12,13                                                                                                                                                                                    | 7.12-(CO <sub>2</sub> Me) <sub>2</sub> <sup>b</sup><br>7.12-(CO <sub>2</sub> H) <sub>2</sub>                                                                                                                                             | 335a<br>335b                                 | 84.5–85.5<br>193–195<br>>300 dec                               | A–D<br>A–C                                  |                                                                        | 157<br>157, 161<br>157                                            |
| Con H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 | H<br>2,2,4,5,7,7-(D) <sub>6</sub>                                                                                                                                                                                                        | 336a<br>336b                                 | 131–132                                                        | A–D<br>A                                    | VTNMR studies<br>VTNMR conforma-<br>tionally rigid                     | 8, 184<br>185                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Z)-6,7; (Z)-12,13                                                                                                                                                                                                                                              | 1-(H) <sub>2</sub>                                                                                                                                                                                                                       | 337a                                         | 126-128                                                        | A, D                                        | Paramagnetic ring                                                      | 159, 162                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Z)-6,7; (Z)-12,13                                                                                                                                                                                                                                              | 1-(=0)                                                                                                                                                                                                                                   | 337b                                         | 299–300 dec                                                    | A–D                                         | Paramagnetic ring<br>current                                           | 159, 162                                                          |

# TABLE IV. Macrocycles Containing Combinations of Pyridine, Furan, Thiophene, and/or Pyrrole Subunits<sup>a</sup>









Chemical Reviews, 1977, Vol. 77, No. 4 573

Synthetic Macrocyclic Compounds Possessing Subheterocyclic Rings

| TABLE IV (Continued)     | BLE IV (Continued)   |                                                                                                           |              |                                  |                             |                                                                |                           |  |  |
|--------------------------|----------------------|-----------------------------------------------------------------------------------------------------------|--------------|----------------------------------|-----------------------------|----------------------------------------------------------------|---------------------------|--|--|
| Compound                 | Double bond position | Substituents                                                                                              | Compd<br>no. | Physical data<br>Mp[bp (mm)], °C | Spectral<br>data available  | Complex (es)/Comments                                          | Ref                       |  |  |
|                          |                      | 3,8,14-(Me),: 4,9,13-(Et),                                                                                | 344          | >300                             | A, C<br>(C, D) <sup>d</sup> | HBr (mp >300°)<br>Ni (mp >300°, para-<br>magnetic)             | 197, 202<br>197, 202      |  |  |
|                          |                      |                                                                                                           |              |                                  | (A, C) <sup>d</sup>         | Zn (mp > 300°)<br>Cu                                           | 197, 202<br>202           |  |  |
| 9 8<br>19 22<br>18 22 23 |                      | 3.4,8.9.13,14-(Me) <sub>6</sub>                                                                           | 345a         |                                  | D                           |                                                                | 182, 198                  |  |  |
|                          |                      | 3,9,14-(Me) <sub>3</sub> : 4,8,13-(Et) <sub>3</sub>                                                       | 345b         | >300                             | A<br>A. C                   | Large ring current (NMR)<br>Dihydro perchlorate<br>(mp > 300°) | 182, 196, 201, 202<br>196 |  |  |
|                          |                      |                                                                                                           |              |                                  |                             |                                                                |                           |  |  |
|                          |                      | 3.4.8.13-(Me) <sub>4</sub> : 9.12-(H) <sub>2</sub><br>4,8.13-(Me) <sub>3</sub> : 3.9.12-(Et) <sub>3</sub> | 346a<br>346b | >300<br>>300                     | C, D<br>A, C, E             |                                                                | 196, 202<br>196, 202      |  |  |
|                          |                      |                                                                                                           |              |                                  |                             |                                                                |                           |  |  |
| ssa .<br>S∽S∽            |                      | R = R' = Me                                                                                               | 347a         |                                  |                             | "Probable precursor"                                           | 182                       |  |  |
|                          |                      | R ≈ Me; R' = Et<br>R ≈ R' ≈ Et                                                                            | 347b<br>347с |                                  |                             | "Probable precursor"<br>"Probable precursor"                   | 182<br>182                |  |  |
|                          |                      |                                                                                                           |              |                                  |                             |                                                                |                           |  |  |
| Los L                    |                      | Н                                                                                                         | 348          |                                  |                             | " Probable precursor"                                          | 196                       |  |  |
|                          |                      |                                                                                                           |              |                                  |                             |                                                                |                           |  |  |

|                       | (Z)-1.2; (Z)-7.8; (Z)-13,14                                            | Н                                                                                                       | 349a         | 129–130         | A, C, D     | Nonaromatic; nonplanar;           | 156                |
|-----------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------|-----------------|-------------|-----------------------------------|--------------------|
| ô                     |                                                                        |                                                                                                         |              |                 | D           | aromatic stability <sup>434</sup> | 149                |
| ,                     | (E)-1,2; $(E)$ -7,8; $(E)$ -13,14<br>(E)-1,2; $(E)$ -7,8; $(E)$ -13,14 | 1-CO <sub>2</sub> Me; 8,13-(CO <sub>2</sub> H) <sub>2</sub><br>1,8,13-(CO <sub>2</sub> Me) <sub>3</sub> | 349b<br>349c | >180 dec<br>288 | A, B<br>A–D |                                   | 156<br>156         |
|                       | (E)-1,2; (E)-7,8; (E)-13,14                                            | 1,8,13-(CO <sub>2</sub> H) <sub>3</sub>                                                                 | 349d         | >360 dec        | A–C         |                                   | 156                |
|                       |                                                                        | 3,14-(Me) <sub>2</sub> : 4,13-(Et) <sub>2</sub>                                                         | 350          | >300            | A, C, D     | "Aromatic macrocycle"             | 197, 201, 202, 222 |
| <b>)</b> <sup>3</sup> |                                                                        |                                                                                                         |              |                 |             |                                   |                    |
|                       |                                                                        |                                                                                                         |              |                 |             |                                   |                    |
|                       |                                                                        | 3,8,14-(Me) <sub>3</sub> ; 4,9,13-(Et) <sub>3</sub>                                                     | 351a         | 263–264         | A, C, D     | Zn (unstable)                     | 197, 202           |
| ~3                    |                                                                        | 1,6,11,16-(C <sub>6</sub> H <sub>5</sub> ) <sub>4</sub>                                                 | 351b         | >350            | B–D         | Fe                                | 222                |
| 4                     |                                                                        |                                                                                                         |              |                 |             |                                   |                    |
|                       |                                                                        |                                                                                                         |              |                 |             |                                   |                    |
| R<br>⊳i               |                                                                        | R = Et; R' = Me                                                                                         | 352          | >300            | A, C, D     |                                   | 196                |
| R                     |                                                                        |                                                                                                         |              |                 |             |                                   |                    |
|                       |                                                                        |                                                                                                         |              |                 |             |                                   |                    |
| R'                    |                                                                        |                                                                                                         |              |                 |             |                                   |                    |
|                       |                                                                        | 3,14-(Me) <sub>2</sub> ; 4,13-(Et) <sub>2</sub>                                                         | 353          | >300            | A, C        |                                   | 197, 202           |
|                       |                                                                        |                                                                                                         |              |                 |             |                                   |                    |

<sup>*a*</sup>Spectral data cited in the literature: A = PMR; B = IR; C = UV; D = Ms. <sup>*b*</sup> In ref 157, this compound was drawn incorrectly (e.g., 17). <sup>*c*</sup> Reference 182b is a correction to the previous article. <sup>182a</sup> <sup>*d*</sup> Spectral data of complex. <sup>*e*</sup> Reference 171.

of this mixed heterocyclophane utilized the original Winberg procedure, <sup>186</sup> in which an equimolar mixture 2-methyl-5-trimethylaminomethylpyridinium hydroxide and 5-methyl-2-furfuryltrimethylammonium hydroxide (generated from the corresponding iodides) was heated in refluxing toluene to afford **327**, **189**a, and **141** as well as bis(5-methyl-2-picolyl) ether.



# B. Combination of 2,5-Furano and 2,5-Thiopheno Subunits

The simplest member (**328**) of these subunits was prepared by Fletcher and Sutherland<sup>6</sup> when the corresponding quaternary hydroxides were refluxed in xylene according to the Winberg procedure.<sup>186</sup> A 1:1:1 mixture of the three heterocyclophanes (**328, 189a, 268a**) was obtained in 26% overall yield: the physical data for **189a** were not reported.<sup>6</sup>



Badger and co-workers carried out the synthesis of two "cross-breed" [18]annulenes in order to ascertain the aromatic character of the  $(4n + 2) \pi$ -electron systems. Both the [18]-annulene trisulfide<sup>151,152</sup> and trioxide<sup>146</sup> had been previously reported by these workers, and the general mode of construction of **330** and **332** reflects their earlier procedures. The appropriate



diacetic acid was condensed with a *cis*-diformyl acrylate under Perkin reaction conditions (acetic anhydride and triethylamine). Esterification of the diacid afforded the triester, which was saponified and decarboxylated with copper chromite in quinoline at 195–200 °C to afford the desired [18]annulene. Extensive NMR<sup>153,254</sup> and mass spectral data<sup>149</sup> have been reported for these compounds: **330** was shown (via NMR) to be aromatic.<sup>145,254</sup> whereas **332** was shown to be nonaromatic.<sup>146,153</sup>

Cresp and Sargent reported the preparation of a related series of [17] annulenes, which incorporated either a carbonyl group or sulfur atom. This replacement of a double bond (e.g., in **334a**) with a heteroatom possessing a lone pair of electrons will lead to a peripherally conjugated  $(4n + 2)\pi$ -electron annulene. Annulenone **329a** was prepared by reaction of bis(5-formyl-2-furyl) ketone with the appropriate thiophene bis-Wittig reagent.<sup>160,162</sup> Although **329a** was isolated in 8% yield, the analogous reaction of bis(5-formyl-2-thienyl) ketone with 2,5-furanbis(methyltriphenylphosphonium chloride) failed to give the desired annulenone A.<sup>162</sup> The heteroannulene **334a** was prepared by two



routes: (a) Perkin condensation, esterification, saponification, and decarboxylation; and (b) a diformyl compound<sup>355</sup> with a bis-Wittig reagent.<sup>161</sup> The degree of aromatic character of **329**a and **334**a has been determined by NMR analyses.



# C. Combination 2,5-Furano and 2,5-Pyrrolo Subunits

Cresp and Sargent extended the above bis-Wittig reaction sequence (of **329**a) to the preparation of [17]annulenone **337b**.<sup>159,162</sup> A Wittig reaction between the ketonic bis-Wittig reagent and pyrrole-2.5-dicarboxaldehyde afforded (13.8%) 8.11-imino-2.5:14.17-diepoxy[17]annulenone (**337b**). Annulenone **337b** was reduced to homoannulene **337a** by lithium aluminum hydride and aluminum chloride in anhydrous ether.<sup>159,162</sup>



[2.2](2.5)Furanophane **189a** was partially hydrolyzed under acidic conditions in the absence of light and air to generate **183a** which was conveniently cyclized upon treatment with ammonia or a primary amine (Paal–Knorr reaction), by the procedure of Wasserman and Bailey.<sup>218</sup> to afford **336.**<sup>184,185</sup>



The synthesis of tetraoxaquaterenes has been considered earlier (section IV.B.1). Numerous intermediates were isolated and characterized in these studies:<sup>169</sup> subsequent treatment of these intermediates with pyrrole and acetone under acid conditions generated a series of "cross-breeds".<sup>193</sup> By use of var-





Grigg et al. have reported two procedures for construction of new aromatic macrocyclic systems, which are related to porphin and corroles.<sup>182</sup> utilizing the MacDonald porphin synthesis.<sup>376</sup> The more direct approach to 341 was via the acid-catalyzed condensation of a 5,5'-diformylbifuran with a substituted dipyrrolylmethane diacid to give the expected product 341 along with a second macrocycle 346, which had arisen from a cleavagerecombination process.<sup>182</sup> A better synthesis of **346** was accomplished (27-30%) by the acid-catalyzed condensation of bis(5-formyl-2-furyl) sulfide with the same pyrrole diacids; only traces of the recombination product were detected. 182, 198, 201 Sulfur extrusion from the nonaromatic  $20-\pi$ -electron intermediate 347 probably proceeded to generate the 18- $\pi$ -electron aromatic system 341, since B has the correct symmetry for a disrotatory ring contraction with concerted expulsion of sulfur. 182,201 These synthetic procedures have been applied to the synthesis of other 18- $\pi$ - and 22- $\pi$ -electron macrocyclic possessing furan. pyrrole, and thiophene subunits. 196-198,202,203

ious combinations. 338, 340, and 339 were prepared via this procedure.<sup>193</sup>



# D. Combination of 2,5-Thiopheno and 2,5-Pyrrolo Subunits

Porphin analogues which possess the thiophene subunit have been reported by Grigg et al.; construction of these systems (e.g., **351**) via the above procedures have been described above (see section V.C).<sup>196,197,201,202</sup>



Badger et al. have reported the synthesis of **349a** by their previously discussed procedures (see section V.B) from pyrrole-2,5-diacetic acid and methyl *cis*- $\alpha$ , $\beta$ -bis(5-formyl-2-thlenyl)acrylate.<sup>156</sup> The electron impact studies of **349a** have been reported, <sup>149</sup> and NMR studies have indicated that **349a** Is a stable, nonaromatic system.

Ulman and Manassen have reported the second example of a dithiaporphin,<sup>222</sup> which was synthesized by a scheme differing from that of Grigg et al.<sup>197</sup> The key compound, 2.5-bis(phenylhydroxymethyl)thiophene, prepared by a known procedure,<sup>377</sup> was reacted with pyrrole in either chloroacetic acid/benzene, chloroacetic acid/toluene, or propionic acid to afford (4–10%) the desired substituted dithiaphorphyrin **350**.<sup>222</sup>



# E. Combination of 2,5-Furano, 2,5-Thiopheno, and 2,5-Pyrrolo Subunits

Although Badger et al.<sup>156</sup> suggested that C was under investigation in their laboratories, to the best of our knowledge the synthetic details for this compound have never been reported. Grigg et al. have reported the only example of a porphin analogue which possesses these three different subunits.<sup>197</sup> The basic mode of preparation followed the previously discussed "3 + 1 approach" to the synthesis of these macrocycles. A convenient Friedel–Crafts reaction of 2 equiv of a substituted ethyl 2-pyrrolecarboxylate with 2,5-bis(chloromethyl)thiophene generated.



after hydrolysis. the necessary starting diacid. Condensation of this diacid with furan-2,5-dicarboxaldehyde gave (6%) the substituted porphin **353**.



#### VI. Miscellaneous Multiple Ring Systems

Tables V and VI are collections of miscellaneous macrocycles which possess six- and five-membered subheterocyclic rings. respectively. No exhaustive literature search has been made; rather, if previously considered intermediates were converted into a macrocycle with a novel subunit, these macrocycles have been included.

## A. Miscellaneous Six-Membered Rings

The diaza analog (**354**a) of [8] paracyclophane was synthesized from cyclododecane-1.4-dione by treatment with hydrazine hydrate in ethanol for 6 h, followed by facile dehydrogenation.<sup>133</sup> Oxidation of [8](3.6)pyridazinophane (**354**a) with 1 equiv of perbenzoic acid gave the mono-*N*-oxide **354b**; this is a chiral ansa compound.<sup>133</sup>



An alternate approach to cycloalka[c]pyridazines has utilized an appropriate enamine intermediate. 1-pyrrolidinylcyclododecene, which reacted with ethyl bromoacetate to give ethyl cyclododecanone-2-acetate. Cyclization with hydrazine gave a pyridazin-3-one, which was dehydrogenated and chlorinated to generate **357**.<sup>380</sup>



Parham et al. have described the facile ring opening of cyclopropyl acetates upon treatment with 95% hydrazine to afford a new substituted pyrazole nucleus.<sup>270,271</sup> Treatment of the 1-acetoxy-13,13-dichlorobicyclo[10.1.0]tridecane with guanidine afforded 2-amino-4.5-decamethylenepyrimidine.<sup>345,422</sup>



The Dimroth rearrangement has been utilized in the conversion of ethoxyhexahydroazocines. by treatment with aminomethylenemalononitrile, to two major products, the hexahydroimino-4*H*-pyrimidoazocinecarbonitrile and its  $\beta$  isomer **360**.<sup>377</sup> The isolated imine was the favored product with short reaction time and was easily rearranged into **360** by prolonged boiling in butanol, possibly proceeding through a monocyclic intermediate.<sup>377</sup>



A pyrimidine phototetramer **366** has been isolated from prolonged photolysis (water with either 360 or 313 nm source) of 6.4'-[pyrimidin-2'-one]thymine via a possible 1.6 head-to-head-tail-to-tail dimerization.<sup>278</sup> The crystal and molecular structure of **366** has been confirmed.<sup>279</sup>



| Compound                                                                                         | n  | Substituents             | Compd<br>no.  | Physical data<br>Mp  bp (mm) ,°C | Spe <b>ctr</b> al<br>data<br>available | Metal complex(es)/general comments                          | Ref           |
|--------------------------------------------------------------------------------------------------|----|--------------------------|---------------|----------------------------------|----------------------------------------|-------------------------------------------------------------|---------------|
| $\mathbb{N}_{\mathcal{N}}^{N}$ (CH <sub>2</sub> ) <sub>n</sub>                                   | 8  | H<br>N→O                 | 354a<br>354b  | 59–60<br>[140–150 (0.1)]         | A–C<br>A, B, D                         | Temperature-dependent NMR<br>"Chiral ansa compound"         | 133<br>133    |
| Me<br>Me<br>HN <sup>-N</sup> H-NH                                                                |    | н                        | 355           |                                  | В                                      | Ni                                                          | 438           |
| HN NH N'NH<br>Me                                                                                 |    |                          |               |                                  |                                        |                                                             |               |
|                                                                                                  | 9  | R ≈ Me                   | 356           | 92                               | А, В                                   | Di- and tetrahydro intermediates isolated and characterized | 106           |
|                                                                                                  | 10 | $R \approx (NH = CMe_2)$ | <b>3</b> 57   |                                  |                                        |                                                             | 380           |
|                                                                                                  | 10 | $R \approx NH_2$         | 358           | 198–200                          | А, В                                   |                                                             | 345           |
| HN                                                                                               | 6  | R ≈ CN                   | <b>3</b> 59   | 103                              | A.C.D                                  | р <i>К</i> а 4.39                                           | 377           |
| $R  N (CH_2)_n$                                                                                  | 7  | R ≈ CN                   | 360a          | 126                              | A, C. D                                | pK <sub>a</sub> 4.18                                        | 377           |
|                                                                                                  | 7  | $R = CONH_2$             | 36 <b>0</b> b | 245                              | A, C, D                                | pK <sub>a</sub> 5.74                                        | 377           |
| N Contraction                                                                                    | 7  | $R \approx CO_2Et$       | 360c          | ~94                              | A, C                                   | $pK_{a}$ 6.12; picrate (184°)                               | 3//           |
|                                                                                                  |    | R ≈ Me                   | 361           |                                  |                                        |                                                             | 426           |
| H H<br>Me<br>OHC<br>N<br>S<br>H<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | Ме |                          | 362           | 284–289                          |                                        |                                                             | 386, 459, 466 |
| Me <sup>2</sup> N H S CHO<br>HOH <sub>2</sub> CH <sub>2</sub> C Me                               | 0  | u                        | 263           | 177 (cubly 100                   | ٨                                      |                                                             | 108           |
|                                                                                                  | 9  |                          | 505           | (0.1))                           | ~                                      |                                                             |               |
| õ, т                                                                                             |    |                          |               |                                  |                                        |                                                             |               |

# TABLE V. Partial List of Macrocycles Containing a Six-Membered Subheterocyclic Ring<sup>a</sup>

. . ......



Synthetic Macrocyclic Compounds Possessing Subheterocyclic Rings

| T. | AB | LE | V | (Continued) |
|----|----|----|---|-------------|
|----|----|----|---|-------------|

| Compound | n              | Substituents                                                                             | Compd<br>no.                 | Physical data<br>Mp  bp (mm)],°C | Spectral<br>data<br>available | Metal complex(es)/general comments | Ref                                         |
|----------|----------------|------------------------------------------------------------------------------------------|------------------------------|----------------------------------|-------------------------------|------------------------------------|---------------------------------------------|
|          | 10<br>11       | 6-Me<br>6-Me                                                                             | <b>378</b><br>379            | 101.5<br>99                      | A–D<br>A–D                    |                                    | 264<br>264                                  |
|          | 11<br>11<br>12 | R ≈ R' ≈ H<br>R ≈ Me; R' ≈ Ac<br>R ≈ R' ≈ H                                              | 380a<br>380b<br>381          | 97–98<br>84–85<br>67°            | A-D<br>A-D<br>A-D             |                                    | 264, 267<br>264, 267<br>264                 |
|          |                | R ≈ NH₂<br>R ≈ PhNH<br>R ≈ p·HO₂CC <sub>6</sub> -<br>H₄NH·<br>R ≈ piperidino             | 382a<br>382b<br>382c<br>382d |                                  |                               |                                    | 139, 382, 383<br>139, 381–383<br>382<br>382 |
|          |                | R ≈ 4-sulfo-]-<br>naphthyl-<br>amino<br>R ≈ p-NHC <sub>6</sub> H <sub>4</sub> -<br>N=NPh | 382e<br>382f                 |                                  |                               |                                    | 382<br>382                                  |
| R<br>I   |                | R ≈ OH; R' ≈                                                                             | 383a                         |                                  |                               | Cu, Ni, Co                         | 384                                         |
|          |                | $1,3-C_6H_4-$<br>R = CI; R' = 1,3-                                                       | 383b                         |                                  |                               | Cu                                 | 385                                         |
|          | an seathairt   | R = CI; R' = 4-<br>chloro-2,6-<br>pyrimidine-                                            | 383c                         |                                  |                               | Cu .                               | 384                                         |
|          |                | pyrimiainediyl<br>R ≈ CI; R' ≈<br>HNNH                                                   | 383d                         |                                  |                               | Ni, Cu, Co                         | 384                                         |
| N N      |                | $R = C_6H_5$                                                                             | 384                          |                                  | C, D                          | Cu                                 | 441                                         |

R HN R

|    | R ≈ OH                                          | <b>38</b> 5   |         | С | Co. Ni | 439 |
|----|-------------------------------------------------|---------------|---------|---|--------|-----|
|    |                                                 |               |         |   |        |     |
|    |                                                 |               |         |   |        |     |
|    |                                                 |               |         |   |        |     |
|    |                                                 |               |         |   |        |     |
|    |                                                 |               |         |   |        |     |
|    | R ≈ H                                           | 386           | 475–477 | A |        | 406 |
|    |                                                 |               |         |   |        |     |
|    |                                                 |               |         |   |        |     |
|    |                                                 |               |         |   |        |     |
|    |                                                 |               |         |   |        |     |
| 8  | 1-C <sub>6</sub> H <sub>5</sub> ; 3-OH;<br>4-H  | 387a          | 252     |   |        | 449 |
| 8  | 1-C <sub>6</sub> H <sub>5</sub> ; 3-OH;<br>4-Me | 387b          | 283     |   |        | 449 |
| 8  | 1-C <sub>6</sub> H <sub>5</sub> ; 3-H;<br>4-OH  | 387c          | 271     |   |        | 449 |
| 8  | 1-C <sub>6</sub> H <sub>5</sub> ; 3-Me;<br>4-OH | 387d          | 289     |   |        | 449 |
| 8  | 1-C <sub>6</sub> H <sub>5</sub> ; 3-H;<br>4-OMe | <b>38</b> 7e  | 155     |   |        | 449 |
| 9  | 1-C <sub>6</sub> H <sub>5</sub> ; 3-OH;<br>4-H  | 388a          | 245     |   |        | 449 |
| 9  | 1-C <sub>6</sub> H <sub>5</sub> : 3-OH;<br>4-Me | 388b          | 289     |   |        | 449 |
| 9  | 1-C <sub>6</sub> H <sub>5</sub> ; 3-H;<br>4-OH  | 388c          | 268     |   |        | 449 |
| 9  | 1-C <sub>6</sub> H <sub>5</sub> ; 3-Me;<br>4-OH | 388d          | 291     |   |        | 449 |
| 9  | 1-C <sub>6</sub> H <sub>5</sub> ; 3-H;<br>4-OMe | 388e          | 153     |   |        | 449 |
| 10 | 1-C <sub>6</sub> H₅; 3-OH;<br>4-H               | <b>38</b> 9a  | 252     |   |        | 449 |
| 10 | 1-C <sub>6</sub> H <sub>5</sub> : 3-OH:<br>4-Me | 3 <b>8</b> 9b | 286     |   |        | 449 |
| 10 | 1-C <sub>6</sub> H <sub>5</sub> ; 3·H;<br>4-OH  | 389c          | 252     |   |        | 449 |
| 10 | 1-C <sub>6</sub> H <sub>5</sub> ; 3-Me;<br>4-OH | <b>38</b> 9d  | 297     |   |        | 449 |
| 10 | 1-C <sub>6</sub> H₅; 3-H;<br>4-OMe              | <b>38</b> 9e  | 167     |   |        | 449 |

| Compd<br>no. | Physical data<br>Mp [bp (mm)], °C | Spectral<br>data<br>available | Metal complex(es)/general comments | Ref |
|--------------|-----------------------------------|-------------------------------|------------------------------------|-----|
| <b>3</b> 90  |                                   |                               | Data in patent                     | 457 |
|              |                                   |                               |                                    |     |
|              |                                   |                               |                                    |     |
|              |                                   |                               |                                    |     |
|              |                                   |                               | ·                                  |     |

# TABLE VI. Partial List of Macrocycles Containing a Five-Membered Subheterocyclic Ring<sup>a</sup>

<sup>*a*</sup>Spectral data cited in the literature: A = PMR; B = IR; C = UV; D = MS.

n

10

Substituents

R = alkyl, Ph,c-Pr, EtOCH<sub>2</sub>-CH<sub>2</sub>-, Me-OCH<sub>2</sub>-,

EtOCH<sub>2</sub>-, C<sub>6</sub>H<sub>5</sub>OCH<sub>2</sub>

TABLE V (Continued)

Compound

| Compound  | п | Substituents                                     | Compd<br>no.          | Physical data<br>Mp  bp (mm) , °C | Spectral<br>data<br>available | Metal complex(es)/<br>general comments                 | Ref           |
|-----------|---|--------------------------------------------------|-----------------------|-----------------------------------|-------------------------------|--------------------------------------------------------|---------------|
| <u>~</u>  | 8 | R = H                                            | 391a                  | 154–154.5                         | A–C                           | NMR study                                              | 176, 187      |
|           |   | R ≈ Me                                           | 391b                  | [95–97 (3)]                       | A, B                          | -                                                      | 176           |
| $(H_2)_n$ |   | $R \approx -CH, CH = CH,$                        | <b>391c</b>           | [75-78 (0.095)]                   | A, B                          |                                                        | 176           |
| H/        |   | $R \approx C_6 H_5$                              | <b>3</b> 91d          | 54-54.5                           | A–C                           |                                                        | 176           |
|           |   | $R \approx 4 - MeC_6H_4$                         | 391e                  | 94-94.5                           | A–C                           |                                                        | 176           |
|           |   | $R = 3.4.5 - Me_3C_6H_2$                         | <b>3</b> 91 f         | 95–95.5                           | A–C                           |                                                        | 176           |
|           |   | R ≈ 2-MeC <sub>6</sub> H <sub>4</sub>            | 391g                  | [140-150 (0.02)]                  | A–C                           |                                                        | 176           |
|           |   | $R = 1.4 - C_6 H_4 - $                           | <b>3</b> 91h          | 180 dec                           | A–C                           |                                                        | 176           |
|           |   | $R = 1.4 - (2.5 - Me_2C_6H_2) - $                | <b>3</b> 91i          | 250 dec                           | A–C                           |                                                        | 176           |
|           |   | $R \approx 1.4 - (2.3 - Me_{2}C_{6}H_{2}) -$     | <b>3</b> 91 j         | 250 dec                           | A–C                           |                                                        | 176           |
|           |   | R ≈ Me; 3.6-(=0),                                | 391k                  | 97–98                             | A, B, D                       |                                                        | 218           |
|           |   | $R = 4-BrC_{6}H_{4}$ ; 3.6-<br>(=O) <sub>2</sub> | <b>3</b> 911          | 137–139                           | A, B, D                       |                                                        | 452           |
| B'        |   | R ≈ R' ≈ H                                       | 392a                  | <b>90–9</b> 2                     | A, B, D                       |                                                        | 446           |
|           |   | R ≈ H; R' ≃ Et<br>_OCH <sub>3</sub>              | 3 <b>92</b> b         | [109–111 (0.2)];<br>59–61         | A, B, D                       |                                                        | 399, 445, 447 |
|           |   |                                                  | 392c                  | 219–221                           | A–D                           | (dl)-''Metacyclo-<br>prodigiosin''                     | 399, 400, 447 |
|           |   | R' ≈ Et                                          |                       | 208–209                           | A–D                           | HCI (218–220°); $\left[\alpha\right]_{10}^{20}$ -2370° | 400, 445, 447 |
|           |   | R = CHO; R' ≈ Et                                 | <b>3</b> 9 <b>2</b> d | 109-112                           | А                             | с • р                                                  | 400, 447      |
|           |   | R ≃ Me; R' ≈ H                                   | 39 <b>2</b> e         | 107-107.5                         | A–D                           | Conformational studies                                 | 229           |
|           |   | R ≈ Me; R' ≈ H; N-Ph                             | <b>3</b> 9 <b>2</b> f | [145 (0.095)]                     | A–D                           | Conformational studies                                 | 229           |
|           |   | R ≈ Me; R' ≈ H; N- <i>o</i> -<br>tolyl           | <b>3</b> 9 <b>2</b> g | [150 (0.1)]; 46.5–47.5            | A–D                           | Conformational studies                                 | 229           |
|           |   | R = Me; R' = H; N-p-<br>tolyl                    | 39 <b>2</b> h         | [150 (0.08)]; 39–40               | A–D                           | Conformational studies                                 | 2 <b>2</b> 9  |
|           |   | R' ≈ H; R ≈ CO,Et                                | <b>3</b> 9 <b>2</b> i | 127–129                           | A–D                           |                                                        | 446           |
|           |   | R' ≈ H; R = CO,H                                 | <b>3</b> 92j          | 120 (–CO <sub>2</sub> )           | AD                            |                                                        | 446           |
| $R \rightarrow N$                                                                                                                                                                              |                                                                | R = R' = Me<br>R = R' = H<br>R = R' = $-CO_2Et$<br>R = R' = $-(CH_2)_2-$<br>R = Me; R' = H<br>R = $4$ -BrC <sub>6</sub> H <sub>4</sub> ; R' = H<br>R = $-CH_2C_6H_5$ ; R' = H                                                                                                                                          | 393a<br>393b<br>393c<br>393d<br>393e<br>393f<br>393g | 144—145<br>163—165<br>198—202 dec<br>78—79<br>137—140 dec (anti)<br>84—85 | A, B, D<br>A–D<br>A, D<br>A–D<br>A, D<br>A–D | Attempted synthesis<br>Suggested synthesis <sup>402</sup><br>Syn and anti isomers | 218,402<br>402<br>402<br>452<br>402<br>452<br>402<br>452<br>402 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|
| NH<br>NH<br>HN                                                                                                                                                                                 |                                                                | н                                                                                                                                                                                                                                                                                                                      | <b>3</b> 94                                          |                                                                           | A, C, D                                      | Isolation and characterization                                                    | 401,480                                                         |
| $ \begin{array}{c} 10 \\ 10 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 14 \\ 7 \\ 14 \\ 7 \\ 4 \\ 14 \\ 7 \\ 4 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 7 \\ 4 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 $ |                                                                | R ≈ H<br>R = Me<br>R = H; 4,5-benzo                                                                                                                                                                                                                                                                                    | 395a<br>395b<br>395c                                 | 197–198<br>212–214<br>111–112                                             | A–D<br>A, C, D<br>A–D                        | VTNMR study<br>VTNMR study<br>VTNMR study                                         | 8, 184<br>8, 184<br>8, 184                                      |
|                                                                                                                                                                                                | 8<br>9<br>10                                                   | 1-C <sub>6</sub> H <sub>5</sub><br>1-C <sub>6</sub> H <sub>5</sub><br>1-C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                  | 396<br>397<br>398                                    | 225–227<br>213<br>196                                                     |                                              |                                                                                   | 449<br>449<br>449                                               |
|                                                                                                                                                                                                | 8<br>9<br>9<br>10<br>10                                        | $1-C_{6}H_{5}$ ; 3-OMe<br>$1-C_{6}H_{5}$ ; 3-OEt<br>$1-C_{6}H_{5}$ ; 3-OMe<br>$1-C_{6}H_{5}$ ; 3-OEt<br>$1-C_{6}H_{5}$ ; 3-OEt<br>$1-C_{6}H_{5}$ ; 3-OMe<br>$1-C_{6}H_{5}$ ; 3-OEt                                                                                                                                     | 399a<br>399b<br>400a<br>400b<br>401a<br>401b         | 82<br>62<br>71<br>61–63<br>76<br>57                                       |                                              |                                                                                   | 449<br>449<br>449<br>449<br>449<br>449                          |
|                                                                                                                                                                                                | 8<br>9<br>9<br>10<br>10                                        | 1-C <sub>6</sub> H <sub>5</sub> ; 3-OCH <sub>3</sub><br>1-C <sub>6</sub> H <sub>5</sub> ; 3-OEt<br>1-C <sub>6</sub> H <sub>5</sub> ; 3-OMe<br>1-C <sub>6</sub> H <sub>5</sub> ; 3-OEt<br>1-C <sub>6</sub> H <sub>5</sub> ; 3-OEt<br>1-C <sub>6</sub> H <sub>5</sub> ; 3-OMe<br>1-C <sub>6</sub> H <sub>5</sub> ; 3-OEt | 402a<br>402b<br>403a<br>403b<br>404a<br>404a         | 95<br>87<br>102~104<br>91<br>106<br>95                                    |                                              |                                                                                   | 449<br>449<br>449<br>449<br>449<br>449<br>449                   |
| IE N I                                                                                                                                                                                         |                                                                | 1,6,11,16.[-(CH <sub>2</sub> ) <sub>5</sub> -] <sub>4</sub>                                                                                                                                                                                                                                                            | 405а<br>405ь                                         | 272–272.5                                                                 | А. В                                         | Incorrect structural assignment <sup>326</sup>                                    | 303<br>323                                                      |
|                                                                                                                                                                                                |                                                                | (Me) <sub>8</sub><br>N,N,N,N·(Me)₄: 3,4,<br>8,9,13,14,18,19-<br>(CH₂CO₂H) <sub>8</sub>                                                                                                                                                                                                                                 | 405c                                                 | 233                                                                       | A, D                                         | Octamethyl ester<br>(mp 218°)                                                     | 451                                                             |
|                                                                                                                                                                                                | m = 1; n = 10<br>m = 1; n = 12<br>m = 2; n = 5<br>m = 2; n = 6 | н<br>н<br>н                                                                                                                                                                                                                                                                                                            | 406<br>407<br>408<br>409                             | 129–130<br>107–108<br>173<br>211                                          |                                              | Li, Ca, Sr, Ba, NH4<br>Ca                                                         | 398, 389<br>389, 398<br>263, 389<br>263, 389                    |

| TA | BL | E. | ٧L | (Continued) |
|----|----|----|----|-------------|
|----|----|----|----|-------------|

| Compound                        | п             | Substituents                                | Compd<br>no.  | Physical data<br>Mp [bp (mm)], °C | Spectral<br>data<br>available | Metal complex (es)/<br>general comments  | Ref      |
|---------------------------------|---------------|---------------------------------------------|---------------|-----------------------------------|-------------------------------|------------------------------------------|----------|
|                                 | m = 2; n = 7  | Н                                           | 410           | 102-105                           |                               | Li, Ca                                   | 263, 389 |
|                                 | m = 2; n = 8  | Н                                           | 411           | 189–190                           |                               |                                          | 263, 389 |
|                                 | m = 2; n = 10 | н                                           | 412           | 139–140                           |                               | Ca, NH                                   | 263, 389 |
|                                 | m = 3; n = 4  | Н                                           | 413           | 218-,219                          |                               | Ca, Sr                                   | 263, 389 |
|                                 | m = 3; n = 6  | Н                                           | <b>41</b> 4   | 151-152                           |                               |                                          | 389      |
| <u> </u>                        | m = 1; n = 2  | Н                                           | 415           | 117–118                           |                               | Li, Na, Ca, Sr, K, Cs                    | 263, 389 |
|                                 | m = 1; n = 5  | Н                                           | 416           | [95–100 (0.05)]                   |                               | Mg, Li, Na, Ca, Sr, K,<br>Ba, Cs         | 263, 389 |
| - n to                          | m = 2; n = 0  | Н                                           | 417           | 197–199                           |                               | Mg, Li, Na, Ca, Sr, Ba.<br>NH₄⁺          | 263, 389 |
|                                 | m = 2; n = 1  | Н                                           | 418           | 114                               |                               | Mg, Li, Na, Ca, Sr, Ba                   | 263, 389 |
| (CH <sub>2</sub> ),             | 9             | н                                           | 419           | [100–105 (0.2)]                   | A                             |                                          | 205      |
| R                               | 10            | R ≈ Me                                      | 420a          | 63–65                             | A. C                          |                                          | 269      |
| $\sim$                          |               | R≈Et                                        | 4 <b>20</b> b | 79—80 (glass)                     | A.C                           |                                          | 269      |
| H <sub>2)n</sub> N H            |               | R≈H                                         | <b>42</b> 0c  | [160(0.025)];<br>88.5–89°         | А, В                          | $n_{12}^{28}$ 1.5305                     | 271      |
|                                 |               | R = C <sub>6</sub> H <sub>5</sub> ; R' = Me | 421           |                                   |                               | Ni (also isomers)                        | 450      |
|                                 |               |                                             |               |                                   |                               |                                          |          |
| (CH <sub>2</sub> I <sub>n</sub> | 6             | R = H                                       | 422           | [~106–107 (0.01)]                 | A–D                           | Mixture of isomers                       | 270      |
| N-N                             | 7             | R ≈ H                                       | 423a          | 71.5–72                           | A–D                           | Conformational<br>study <sup>229</sup>   | 229, 390 |
|                                 |               | N-C <sub>6</sub> H₅; R ≈ H                  | 4 <b>2</b> 3b | [125–128 (0.08)] ;<br>33–34.5     | A–D                           | Conformational<br>study <sup>2 2 9</sup> | 229, 390 |
|                                 | 9             | R = H                                       | 424           | [130–135 (0.05)];                 |                               |                                          |          |
|                                 |               |                                             |               | 107                               | А, В                          | HCI                                      | 205      |
|                                 |               |                                             |               | 109–109.7                         | A–D                           |                                          | 206      |
|                                 | 10            | R ≈ H                                       | 425           | 92.5–93                           | A–C                           |                                          | 271      |
|                                 | 11            | R ≈ H                                       | 426a          | 150–151                           | A, C                          |                                          | 269      |
|                                 |               | R ≈ Me                                      | 426b          | 137                               | A C                           |                                          | 269      |



<sup>*a*</sup>Spectral data cited in the literature: A = PMR; B = IR; C = UV; D = MS.

Vitamin B<sub>1</sub> derivatives (e.g., **362**) have been easily synthesized (55%) from thiamine hydrochloride upon treatment with aqueous sodium hydroxide, formaldehyde, and diethylamine.<sup>386</sup>

The synthesis of numerous macroheterocyclic systems **382**, **383**, **130**, and **85** has been reported by Borodkin et al. by the condensation of diamines with substituted triazines<sup>381-385,387</sup> or diazines.<sup>439</sup>

Karpf and Dreiding synthesized macrocyclic 2-pyrones **379** and **380** from 1-morpholinocyclododec-1-ene<sup>264</sup> via the procedure of Hünig and Hoch.<sup>423</sup> Pyrone **380a** was converted into racemic muscone by saponification and subsequent hydrogenation.<sup>264</sup>



Htay and Meth-Cohn have described the preparation of Nbridged macroheterocycles (e.g., **376**) by the simple treatment of an amide (quinoxaline-2.3-dione) with either a  $\alpha.\omega$ -dibromoalkane or a  $\alpha.\omega$ -dichloro ether in the presence of sodium hydride: the yield data seem to vary greatly depending upon both the initial heterocycle used as well as size of the bridging ring.<sup>263,389</sup> This general procedure has also been applied to the inclusion of other heterocycles, such as benzimidazolones and uracils.<sup>263,389,464</sup>



Synthesis of heterocyclic cyclopolyaromatics containing the pyrimidine moiety has been demonstrated by the preparation of a cyclohexaaromatic compound **386** via the copper-catalyzed cyclization of a dilithio intermediate.<sup>406</sup> This procedure described by Kauffmann should prove to be a very useful route to many novel macrocycles possessing diversified subunits.<sup>463</sup>

## B. Miscellaneous Macrocycles with Five-Membered Subunits

The general preparation of pyrrolophanes is via reaction of an appropriate 1.4-diketone with a primary amine: Hirano et al. demonstrated this procedure in the conversion of 2-acetylcycloalkanones into (2.4)pyrrolophanes (**392e**) by treatment with substituted anilines.<sup>229</sup> Other heterophanes have been synthesized from suitable macrocyclic 1.4-diones: pyrazolophanes (ref



184, 205, 229, 390). isoxazolophane (ref 205) and pyrrolophanes (ref 176, 187, 218, 445, 446).



Parham's procedure for the synthesis of pyrazoles from cyclopropanes has proven to be a convenient route to pyrazolophanes **420c** and **425**.<sup>270,271</sup> **420c** was also prepared from 2hydroxymethylenecyclododecanone.<sup>271</sup>



[9](3.5)Pyrazolophane **424** was easily synthesized from cyclododec-2-en-1-one upon treatment with hydrazine hydrate.<sup>206</sup>



Reactions with numerous heterocyclic compounds with aldehydes and ketones in the presence of either mineral acid or base have generated a variety of unusual macrocyclic compounds. Sawa et al. reported the reaction of arylimidazoles with formaldehyde in the presence of base to generate the trimer **427** and tetramer **428**,<sup>265</sup> whereas numerous investigators have condensed pyrrole with aldehydes and ketones in the presence of acid to generate a porphyrin ring system. e.g., pyrrole with acetone afforded **405b**.<sup>326</sup>



### VII. Conclusions

This review has been concerned primarily with the synthetic routes to the known macrocycles which have incorporated subheterocyclic units, especially pyridine, furan, and/or thiophene. We have attempted to present the current technology for their construction and have tabulated the reported physical and chemical data. We have also pointed out both the synthetic generalities as well as the pitfalls for the known procedures. But most importantly, the tabulation of these macrocycles has indicated that the vast majority of synthetic as well as complexation studies have concentrated on a limited number of the now easily constructed compounds. Thus, from a complete review of the literature, the indications for future research in this area point in the direction of devising new synthetic methodology which will afford convenient routes to new classes of specifically designed macrocycles and the utilization of these compounds for specific metal ion complexation, phase-transfer reagents. general and specific catalysts, biological mimics, semiconductors, drugs, antibiotics, to mention just a few potential applications.

# VIII. Addendum (see Table VII)

IV.A.1. 4-Methyl-[10](2,6)pyridinophane (5k) was synthesized (25%) by a novel intramolecular cyclization of an cyclododecanone oxime derivative upon treatment with POCl<sub>3</sub> in pyridine at 80 °C under an inert atmosphere.<sup>489</sup>

IV.A.1. Azimine, isolated from the leaves of *Azima tetracantha* Lam. (Salvadoraceae), has been shown spectrometrically to be a 22-membered analog of carpaine (147).<sup>468–470</sup>

IV.A.1. The condensation of 1.2:5.6-di-*O*-isopropylidene-D-mannitol with 2.6-bis(bromomethyl)pyridine in dimethyl sulfoxide at 50 °C for 50 h with sodium hydride as base gave (7.5%) the dipyridyl-18-crown-6 (51d).<sup>491</sup> The temperature dependence of the <sup>1</sup>H NMR spectrum of the 1:1 complex between **51d** and benzylammonium thiocyanate in solution has been interpreted in terms of slow dissociation of the complex.<sup>491</sup>

IV.A.2. Recently, a new series of substituted 2.(n+3)-dithia [*m*](2.5)-pyridinophanes (**452–456**) have been prepared by the reaction of 1.*n*-alkanedithiols with 5'-deoxy-2'.5'-dichloro-3.4'-*O*-isopropylidenepyridoxine.<sup>478</sup> Phane **148e** was synthesized from **148c**.<sup>478</sup> The functionalized (2.5)pyridinophane derivatives (**452**, **453**) with ring sizes equal to or less than 14 members could be optically resolved into enantiomers.<sup>478</sup> IV.A.4. An interesting study of the lithiation of cycloalkeno[*b*]quinolines by phenyllithium has shown that with small fused cycloalkeno rings (e.g., **160**; n = 3. 4), the  $\alpha$ -lithiated product predominated, whereas, in the cases of larger rings (**160**, n = 5. 6), an increasing percentage of 1.2-addition products resulted.<sup>479</sup> If this trend continues with fused macrocyclic rings, 1.2-addition products would be predicted.

IV.A.5. The transesterification of ethyl acetoacetate with poly(ethylene glycols) afforded quantitatively a new series of diketo diesters which upon treatment with a 40-fold excess of ammonium carbonate and aqueous formaldehyde (Haotzsch condensation), followed by dehydrogenation of the intermediary 1.4-dihydropyridine, gave monomers 444 and 445 as well as the corresponding dimers 446–449.<sup>492</sup> In this communication,<sup>492</sup> the authors indicated that other aldehydes can be substituted for formaldehyde, thus affording an opportunity to incorporate diverse substituents into the 4 position of the pyridine ring. Macrocycle 445 was quaternized with MeOSO<sub>2</sub>F in chloroform, followed by treatment with sodium perchlorate and reduced with sodium dithionite to generate the NADH model (450), which undergoes facile isomerization to the isomeric 1.2-dihydro compound 451.<sup>492</sup>

IV.A.5. An improved high-dilution procedure was recently devised to increase the yields of macrocyclic products from the condensation of  $\alpha, \omega$ -alkyldiamines and the acid chloride of 2.6-pyridinedicarboxylic acid.493 For example, 437 was prepared in 41% yield by this new technique. Quaternization of the pyridine unit was accomplished by treatment with 2.6-dichlorobenzyl bromide and subsequent reduction of the resultant salt with sodium dithionite afforded the corresponding dihydro pyridine derivative.<sup>493</sup> Diverse functionality has been introduced into the macrocyclic bridge and the effect of these substituents which are in the close proximity of the 4 position of either a dihydropyridine or pyridinium salt has been evaluated. No evidence was obtained to support either an intramolecular hydrogen transfer from the dihydropyridine moiety to a bridge carbonyl or hydride transfer from a bridge alcohol function to the pyridinium ring.493

**IV.A.** Vögtle and Frensch have recently described the synthesis of papaverine crown ethers.<sup>494</sup>

**IV.B.1.** A series of macrocyclic compounds possessing tetrahydrofuran subunits (perhydro **204**a,r,v–y) have been synthesized by an acid-catalyzed condensation of furan and carbonyl compounds followed by reduction.<sup>500</sup> The macrocycles were shown to extract alkali metals, ammonium, and silver ions from aqueous media via the formation of a 1:1 macro-ring-metal complex with an estimated binding constant of more than  $10^6$ in chloroform.<sup>500</sup>

IV.B.1. The synthesis of chiral benzene-furan "hybrid" [2.2]paracyclophanes has been reported.<sup>485</sup>

**IV.C.3.** The Wittig reaction of 2.2'-bis(triphenylphosphiomethyl)biphenyl dibromide and thiophene-2.3-dicarboxaldehyde afforded an 18% yield of 9.13-dihydrotriphenyleno[2.3-*b*]thiophene via the intermediacy of 1.2:3.4-dibenz[7.8-*b*]thieno[10]annulene (**457**), which was too unstable for isolation under the reaction conditions.<sup>464</sup>

VI.A. The reaction of 1-( $\omega$ -bromobutyl)uracil with the sodium salt of *p*-toluenesulfamide gave (10%) **458** as a high-melting crystalline compound.<sup>465</sup>

VI.B. Reactions of 1-phenyl-5-pyrazolidinone with various cyclic ketones gave 5-(3-aminopropanoyl)-5*H*-cycloalk[*b*]indoles (e.g., **459**).<sup>472</sup>

**VI.B.** The structure of griseoviridin (**460**a).<sup>473.474.476</sup> a metabolite of *Streptomyces griseus*, has been revised<sup>475</sup> as based on the chemical and detailed <sup>1</sup>H and <sup>13</sup>C NMR and mass spectral studies. The relationship of **460**a to other related cyclic microbial peptides and possible biogenetic implications are considered.<sup>475</sup> A related Antibiotic A-23[5 (**462**), isolated from *Actinoplanes philippinesis*, has been tentatively assigned.<sup>477</sup>

| TABLE | VII. | Addendum | Table |
|-------|------|----------|-------|
|-------|------|----------|-------|

| Compound           | n   | Substituents                                                                                        | Compd<br>no. | Physical data<br>Mp [bp (mm)] ,°C | Spectral<br>data<br>available | Metal complex(es)/<br>general comments                                                                                                                                                            | Ref |
|--------------------|-----|-----------------------------------------------------------------------------------------------------|--------------|-----------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                    | ,,, |                                                                                                     | To Tabl      | e l                               |                               |                                                                                                                                                                                                   |     |
|                    | 1   | 3,14- H Me;                                                                                         | 51d          | 147–149                           | A                             | $[\alpha]_{D}$ (CHCl <sub>3</sub> ) –22° : $K_{a}$ : C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> NH <sub>3</sub> <sup>+</sup><br>(SCN <sup>-</sup> ) : <i>t</i> ·BuNH <sub>3</sub> <sup>+</sup> | 491 |
|                    |     | 4,15-<br>H<br>H<br>O<br>Me                                                                          |              |                                   |                               |                                                                                                                                                                                                   |     |
|                    | 1   | R' = 0<br>R = 0 Me                                                                                  | 140b         |                                   |                               |                                                                                                                                                                                                   | 478 |
|                    | 1   | Me<br>R' ≈ CH₂OAc;<br>R ≈ OAc                                                                       | 140c         |                                   |                               |                                                                                                                                                                                                   | 478 |
| R' 1               | 1   | R' = 0<br>$R \approx 0$ Me                                                                          | 148c         |                                   |                               |                                                                                                                                                                                                   | 478 |
| S T                | 1   |                                                                                                     |              |                                   |                               |                                                                                                                                                                                                   |     |
|                    | 1   | $R \approx OAc$                                                                                     | 148d         |                                   |                               |                                                                                                                                                                                                   | 478 |
|                    | 1   | R' = CHO; R ≈ OH                                                                                    | 148e         | 218–219 dec                       |                               |                                                                                                                                                                                                   | 478 |
| ( <i>n</i> +7)     | 7   | 14-(2.6-CL.C.H.CH.)(Br <sup></sup> )                                                                | 178a         | 288-290                           | A.B                           |                                                                                                                                                                                                   | 493 |
| o O o              | 7   | 6-OH; 14-(2,6-Cl <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CH <sub>2</sub> )<br>(Br <sup>-</sup> ) | 178h         | 254-255                           | A. B                          |                                                                                                                                                                                                   | 493 |
| N N 2              | 7   | 6-(=O)                                                                                              | 178i         | 313–316                           | А, В                          |                                                                                                                                                                                                   | 493 |
| ( <sub>CHa</sub> ) | 7   | $6-(=0); 14-2, 6-Cl_2C_6H_3CH_2)$                                                                   | 178;         | 267 260                           |                               |                                                                                                                                                                                                   | 103 |
| (01 12 <i>in</i>   | 7   | י ים)<br>פר                                                                                         | 176j<br>178k | 266-267                           | А, В                          |                                                                                                                                                                                                   | 493 |
|                    |     | 6-                                                                                                  | .,           | 200 -01                           | , 5                           |                                                                                                                                                                                                   |     |
|                    | 5   | Н                                                                                                   | 435          | 236-238                           | А. В                          |                                                                                                                                                                                                   | 493 |
|                    | 6   | Н                                                                                                   | 436          | 298-300                           | A, B                          |                                                                                                                                                                                                   | 493 |
|                    | 8   | Н                                                                                                   | 437          | 341-343                           | A, B                          |                                                                                                                                                                                                   | 493 |
|                    | 9   | 7-OH                                                                                                | 438a         | 352-354                           | A.B                           |                                                                                                                                                                                                   | 493 |
|                    | 9   | 7-OH; 16-(2,6-Cl,C,H,CH,)                                                                           | 438b         | 224-226                           | A, B                          |                                                                                                                                                                                                   | 493 |
|                    |     | (Br )                                                                                               |              |                                   |                               |                                                                                                                                                                                                   |     |
|                    | 9   | 7-(=O)                                                                                              | 438c         | 323-325                           | А, В                          |                                                                                                                                                                                                   | 493 |
|                    | 9   | 7-(=0); 16-(2,6- $Cl_2C_6H_3CH_2$ )                                                                 | 438d         | 221–223                           | A, B                          |                                                                                                                                                                                                   | 493 |
|                    | Q   | (D)<br>7-(=0)·16-CH (1 <sup>-</sup> )                                                               | 1280         | 262-266                           |                               |                                                                                                                                                                                                   | 102 |
|                    | 3   | 9                                                                                                   | 4206         | 202-200<br>217 261 dec            | л, Б<br>Л Р                   |                                                                                                                                                                                                   | 433 |
|                    | J   | 7-                                                                                                  | 4301         | 547-551 Uec                       | А, В                          |                                                                                                                                                                                                   | 493 |





| 7                          | $6-(=0); 14-(2,6-Cl_2C_6H_3CH_2)$                                               | 439                   | 265–268     | A–C  |                                         | 493 |
|----------------------------|---------------------------------------------------------------------------------|-----------------------|-------------|------|-----------------------------------------|-----|
| 8                          | 15-(2 6-CLC/H <sub>2</sub> CH <sub>2</sub> )                                    | 440                   | 230–231 dec | A-C  |                                         | 493 |
| 9                          | 7-(=0); 16-(2.6-Cl <sub>2</sub> C <sub>4</sub> H <sub>2</sub> CH <sub>3</sub> ) | 441a                  | 215-217     | A–C  |                                         | 493 |
| 9                          | 7-(=0); 16-CH <sub>3</sub>                                                      | 441b                  | 231–234     | A–C  |                                         | 493 |
|                            |                                                                                 |                       |             |      |                                         |     |
| m = n = 3                  | 14-н                                                                            | <b>442</b> a          |             | С    |                                         | 493 |
| m = 1 = 3                  | 15-OH: 16-H                                                                     | 442b                  |             | С    |                                         | 493 |
| $m \approx n \approx 4$    | 16-H                                                                            | 443                   |             | С    |                                         | 493 |
|                            |                                                                                 |                       |             |      |                                         |     |
| m = 1; n = 2               | Н                                                                               | 444                   | 167–169     | A, C | $M_{2}(C O_{\sim})$ colt (mp. 100_102°) | 492 |
| m = 1; n = 3               | H                                                                               | 445                   | 90-92       | A C  | $Me(CIO_4)$ sait (mp 190–195)           | 492 |
| m = 2; n = 0               | H                                                                               | 446                   | 196-198     | А, С |                                         | 492 |
| m = 2; n = 1               | H .                                                                             | 44 /                  |             |      |                                         | 492 |
| m = n = 2                  | н                                                                               | 448                   |             |      |                                         | 452 |
| m = 2; n = 3               | Н                                                                               | 449                   |             |      |                                         | 452 |
| n = 3                      | Н                                                                               | <b>45</b> 0           | 110–113     |      |                                         | 492 |
| n = 3                      | н                                                                               | 451                   | 131.5–133   |      |                                         | 492 |
| m = 1; n = 4               | R ≈ R' ≈ H                                                                      | 452a                  | Oil         |      |                                         | 478 |
| m = 1; n = 4               | $R = \bigcirc Me$<br>$R' = \bigcirc Me$                                         | 452b                  | 145         |      |                                         | 478 |
| <i>m</i> ≈ 1; <i>n</i> ≈ 6 | Me<br>R ≈ R' ≈ H                                                                | 453a                  | 129         |      |                                         | 478 |
| m = 1; n = 6               | R = 0                                                                           | 4.5.0.                | 160         |      |                                         | 170 |
|                            | R <sup>e</sup> = _oMe                                                           | 453b                  | 163         |      |                                         | 470 |
| m = 1; n = 6               | $R = CH_2OAc; R' = OAc$                                                         | <b>4</b> 5 <b>3</b> c | 122         |      |                                         | 478 |
| m = 1; n = 8               | R = R' ≈ H                                                                      | 454a                  | Oil         |      |                                         | 478 |
| <i>m</i> = 1; <i>n</i> = 8 | R = 0 $R' = 0$ $Me$                                                             | 454b                  | Oil         |      |                                         | 478 |
|                            | ме                                                                              |                       |             |      |                                         |     |

| TABLE V | /II (Continued) |
|---------|-----------------|
|---------|-----------------|

| Compound                                | n                            | Substituents                                                                       | Compd<br>no.    | Physical data<br>Mp [bp (mm)],°C | Spectral<br>data<br>available | Metal complex(es)/<br>general comments | Ref        |
|-----------------------------------------|------------------------------|------------------------------------------------------------------------------------|-----------------|----------------------------------|-------------------------------|----------------------------------------|------------|
|                                         | m = 1; n = 8<br>m = 2; n = 4 | $R' = CH_2OAC; R = OAC$ $R = O$ $R' = O$                                           | 454c<br>455     | Oil<br>150                       |                               |                                        | 478<br>478 |
|                                         | m = 2; n = 6                 | $R = \bigcirc Me \\ R' = \bigcirc Me \\ Me \end{bmatrix}$                          | 456             | Oil                              |                               |                                        | 478        |
|                                         |                              |                                                                                    | To Table        | e II                             |                               |                                        |            |
|                                         | 1                            | Н                                                                                  | 204v            | 140-142                          | А, В                          | Perhydro [isomers; oil]                | 500        |
|                                         | 1                            | 1,11-(CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> Et);<br>1.6.6.11.16.16-(Me). | 204w            | 126-128                          | А, В                          | Prehydro [isomers; oil]                | 500        |
|                                         | 2                            | 1,1,6,6,11,11,16,16,-<br>21,21-(Me)                                                | <b>2</b> 04x    | Oil                              | А, В                          | Prehydro [isomers; oil]                | 500        |
|                                         | 3                            | 1,1,6,6,11,11,16,16<br>21,21,26,26-(Me) <sub>12</sub>                              | <b>2</b> 04y    | 182                              | А, В                          | Perhydro [isomers (!); mp 75–80°]      | 500        |
|                                         |                              |                                                                                    | To Table        | e 111                            |                               |                                        |            |
| S C C C C C C C C C C C C C C C C C C C |                              | н                                                                                  | 457             |                                  |                               | Proposed intermediate                  | 464        |
| 0                                       |                              |                                                                                    | To Table        | e V                              |                               |                                        |            |
|                                         |                              | н                                                                                  | 458             | >340                             | В, С                          |                                        | 465        |
|                                         | 10                           | R = COCH <sub>2</sub> CH(Me)NH <sub>2</sub>                                        | To Table<br>459 | 2 VI<br>231–233                  | A–D                           |                                        | 472        |



VI.B. 4.5-Decamethyleneoxazole (463)<sup>484</sup> was prepared in 46% yield by treatment of 2-hydroxycyclododecanone with formamide in sulfuric acid by a modification of the procedure of Bredereck and Gompper.502

Acknowledgments. We wish to gratefully acknowledge the numerous researchers, who furnished their unpublished results as well as obscure literature references to various aspects of this diversified topic. We also wish to thank Professor J. G. Traynham for critically reading the manuscript. Research endeavors associated with this review have been supported by grants given to one of the authors (G.R.N.) by the Petroleum Research Fund, administered by the American Chemical Society. the Research Corporation, the National Science Foundation, the National Institutes of Health and Merck Sharp and Dohme. Finally, we thank Ms. Charyn C. Wright for her drafting and typing talents as well as her limitless patience throughout the writing of this article.

### IX. References

- (1) A. T. Balaban, M. Gavăt, and C. D. Nenitzescu, Tetrahedron, 18, 1079 (1962)
- (2) H. Nozaki, S. Fujita, and T. Mori, Bull. Chem. Soc. Jpn., 42, 1163 (1969).
- (3) U. K. Georgi and J. Rétey, Chem. Commun., 32 (1971).
- S. Fujita and H. Nozaki, Bull. Chem. Soc. Jpn., 44, 2827 (1971).
   S. Fujita, K. Imamura, and H. Nozaki, Bull. Chem. Soc. Jpn., 46, 1579 (4) (5) (1973)
- J. R. Fletcher and I. O. Sutherland, *Chem. Commun.*, 1504 (1969). V. Beekelheide, I. D. Reingold, and M. Tuttle, *Chem. Commun.*, 406 (6)(7)
- (1973). S. M. Rosenfeld and P. M. Keehn, Tetrahedron Lett., 4021 (1973)
- V. Boekelheide, K. Galuszko, and K. S. Szeto, J. Am. Chem. Soc., 96, (9)
- 1578 (1974). (10) L. H. Weaver and B. W. Matthews, J. Am. Chem. Soc., 96, 1581
- (1974). W. Baker, K. M. Buggle, J. F. W. McOmie, and D. A. M. Watkins, J. Chem. Soc., 3594 (1958). (11)
- V. Boekelheide and J. A. Lawson, Chem. Commun., 1558 (1970). (12)
- W. Jenny and H. Holzrichter, Chimia, 23, 158 (1969) (13)
- (14) S. Fujita, K. Imamura, and H. Nozaki, Bull. Chem. Soc. Jpn., 45 1881 (1972)
- I. Gault, B. J. Price, and I. O. Sutherland, *Chem. Commun.*, 540 (1967). W. Jenny and H. Holzrichter, *Chimia*, 22, 306 (1968). (15)(16)
- (17) K. Biemann, G. Büchi, and B. H. Walker, J. Am. Chem. Soc., 79, 5558 (1957)
- (18) H. J. J-B. Martel and M. Rasmussen, Tetrahedron Lett., 3843 (1971).
- Th. Kauffmann, G. Beissner, W. Sahm, and A. Woltermann, Angew. Chem., (19)Int. Ed. Engl., 9, 808 (1970).
- (20) E. Doomes, 167th National Meeting of The American Chemical Society, Los Angeles, Calif., April 1974, No. ORGN-124.
- (21) H. Schinz, L. Ruzicka, U. Geyer, and V. Prelog, Helv. Chim. Acta, 29, 1524 (1946)
- (22) K. R. Reistad, P. Groth, R. Lie, and K. Undheim, J. Chem. Soc., Chem. Commun., 1059 (1972).
- (23) M. Newcomb, G. W. Gokel, and D. J. Cram, J. Am. Chem. Soc., 96, 6810 (1974)
- (24) J. M. Timko, R. C. Helgeson, M. Newcomb, G. W. Gokei, and D. J. Crarn, J. Am. Chem. Soc., 96, 7097 (1974).
- (25) G. R. Newkome, G. L. McClure, J. Broussard-Simpson, and F. Danesh-Khoshboo, J. Am. Chem. Soc., 97, 3232 (1975).
- (26) G. R. Newkome and J. M. Robinson, J. Chem. Soc., Chem. Commun., 831 (1973)

- (27) F. Vögtle and H. Risler, Angew. Chem. Int. Ed. Engl., 11, 727 (1972).
  (28) F. Vögtle, *Tetrahedron*, 25, 3231 (1969).
  (29) F. Vögtle, E. Weber, W. Wehner, R. Nätscher, and J. Grütze, *Chem.-Zig.*. 98, 562 (1974); *Chem. Abstr.*, 82, 72964h (1975).
  (20) F. Vögtle and H. E. Weber, W. Wehner, R. Nätscher, and J. Grütze, *Chem.-Zig.*. 98, 562 (1974); *Chem. Abstr.*, 82, 72964h (1975).
- (30) F. Vögtle and A. H. Effler, Chem. Ber., 102, 3071 (1969).
  (31) F. Vögtle, Tetrahedron Lett., 3623 (1968).
  (32) F. Vögtle and L. Schunder, Chem. Ber., 102, 2677 (1969)
- (33) F. Vögtle and P. Neumann, Tetrahedron, 26, 5299 (1970).

- M. Newcomb, unpublished results.
   F. Vögtle and E. Weber, Angew. Chem., Int. Ed. Engl., 13, 149 (1974).
   N. W. Alcock, D. C. Liles, M. McPartlin, and P. A. Tasker, J. Chem. Soc.
- Chem. Commun., 727 (1974). (37) D. Hefelfinger and D. J. Cram, J. Am. Chem. Soc., 93, 4767 (1971). (38) N. A. Kolesnikov, V. F. Borodkin, and L. M. Fedorov, *Izv. Vyssh. Uchebn.* Zaved., Khim. Khim. Tekhnol., 16, 1084 (1973); Chem. Abstr., 79, 105222h (1973).
- A. Nayak (LSU), unpublished data.
- (40) R. H. Prince, D. A. Stotter, and P. R. Woolley, Inorg. Chim. Acta. 9, 51 (1974)
- (41) E.-i. Ochiai and D. H. Busch, Chem. Commun., 905 (1968). E.-i. Ochiai, K. M. Long, C. R. Sperati, and D. H. Busch, J. Am. Chem. Soc., 91, 3201 (1969). (42)
- (43) K. Farmery and D. H. Busch, Chem. Commun., 1091 (1970).

- (44) K. M. Long and D. H. Busch, *Inorg. Chem.*, 9, 505 (1970).
   (45) R. L. Rich and G. L. Stucky, *Inorg. Nucl. Chem. Lett.*, 1, 61 (1965).
- (46) J. L. Karn and D. H. Busch, Nature (London), 211, 160 (1966).
- (47) E. K. Barefleid, F. V. Lovecchio, N. E. Tokel, E. Ochiai, and D. H. Busch, Inorg. Chem., 11, 283 (1972). Lovecchio, E. S. Gore, and D. H. Busch, J. Am. Chem. Soc., 96, 3109 (48) F. V.
- (1974)
- (49) E. B. Fleischer and S. W. Hawkinson, Inorg. Chem., 7, 2312 (1968).
   (50) E.-i.Ochlai and D. H. Busch, Inorg. Chem., 8, 1474 (1969).
- (51) R. H. Prince and D. A. Stotter, Nature (London), 249, 286 (1974).
- (52) J. L. Karn and D. H. Busch, *Inorg. Chem.*, 8, 1149 (1969).
  (53) E.-i. Ochlai and D. H. Busch, *Inorg Chem.*, 8, 1798 (1969).
  (54) P. H. Merrell, V. L. Goedken, D. H. Busch, and J. A. Stone, *J. Am. Chem.* Soc., 92, 7590 (1970).

- (55) J. D. Curry and D. H. Busch, *J. Am. Chem. Soc.*, **86**, 592 (1964).
  (56) S. M. Nelson and D. H. Busch, *Inorg. Chem.*, **8**, 1859 (1969).
  (57) S. M. Nelson, P. Bryan, and D. H. Busch, *Chem. Commun.*, 641 (1966).
- (58) E. Fleischer and S. Hawkinson, *J/ Am. Chem. Soc.*, 89, 720 (1967).
   (59) W. M. Reiff, G. J. Long, and W. A. Baker, Jr., *J. Am. Chem. Soc.*, 90, 6347
- (1968).
- (60) R. W. Stotz and R. C. Stoufer, Chem. Commun., 1682 (1970)
- (61) C. L. Honeybourne, Tetrahedron, 29, 1549 (1973).
  (62) V. F. Borodkin, V. A. Gnedina, and I. A. Grukova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 16, 1722 (1973); Chem. Abstr., 80, 70791j (1974)
- (63) V. F. Borodkin and R. D. Komarov, *Izv. Vyssh. Uchebn. Zaved.*, *Khim. Khim. Tekhnol.*, **16**, 1304 (1973); *Chem. Abstr.*, **79**, 137113q (1973). (64) V. F. Borodkin and R. D. Komarov, Izv. Vyssh. Uchebn. Zaved., Khim.
- Khim Tekhnol., 16, 1764 (1973); Chem. Abstr., 80, m. 59924i (1974).
   (65) V. F. Borodkin and R. D. Komarov, USSR Patent 411,087; Otkrytiya, Izobret., Prom. Obraztsy. Tovarnye Znaki, 51, 77 (1974); Chem. Abstr., 005000
- 80, 108593m (1974).
- (66) A. Snegireva and V. Borodkin, *Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.*, 17, 1364 (1974); *Chem. Abstr.*, 80, 97999m (1974). (67) J. Riker-Nappier and D. W. Meek, J. Chem. Soc., Chem. Commun., 442
- (1974). (68) J. E. Parks, B. E. Wagner, and R. H. Holm, J. Am. Chem. Soc., 92, 3500
- (1970); Inorg. Chem., 10, 2472 (1971). (69) M. R. Churchill and A. H. Reis, Jr., J. Chem. Soc., Chem. Commun., 1307
- (1971)(70) M. R. Churchill and A. H. Reis, Jr., J. Chem. Soc., Chem. Commun., 879
- (1970). (71)A. T. Balaban, Tetrahedron Lett., 4643 (1968).
- (72) A. T. Balaban, *Rev. Roum. Chim.*, 18, 1609 (1973).
   (73) V. Boekelheide and W. Pepperdine, *J. Am. Chem. Soc.*, 92, 3684 (73) (1970).
- J. Bruhin, W. Kneubühler, and W. Jenny, Chimia, 27, 277 (1973
- (75) P. J. Beeby and F. Sondheimer, J. Am. Chem. Soc., 94, 2128 (1972).
   (76) P. J. Beeby and F. Sondheimer, Angew. Chem., Int. Ed. Engl., 11, 833
- (1972).
- (77) P. J. Beeby, J. M. Brown, P. J. Garratt, and F. Sondheimer, Tetrahedron Lett., 599 (1974).
- J. M. Brown and F. Sondheimer, Angew. Cem., Int. Ed. Engl., 13, 337 (78) (1974)
- (79) P. J. Beeby and F. Sondheimer, Angew. Chem., Int. Ed. Engl., 12, 411 (1973)
- (80) P. J. Beeby and F. Sondheimer, Angew. Chem., Int. Ed. Engl., 12, 410 (1973).
- W. Jenny and H. Holzrichter, Chimia, 21, 509 (1967) (81)
- (82) W. Jenny and H. Holzrichter, *Chimia*, 22, 139 (1968).
  (83) L. E. Overman, *J. Org. Chem.*, 37, 4214 (1972).
- (84) H. Gerlach and E. Huber, Helv. Chim. Acta, 51, 2027 (1968).
- (85) J. Bruhln and W. Jenny, *Chimia*, 26, 420 (1972).
   (86) J. Bruhin and W. Jenny, *Chimia*, 25, 238 (1971).
   (87) J. Bruhin and W. Jenny, *Chimia*, 25, 308 (1971).

- (a) S. Bruhin and W. Selniy, Chinna, 23, 506 (1971).
  (88) C. Wong and W. W. Paudler, J. Org. Chem., 39, 2570 (1974).
  (89) J. Bruhin and W. Jenny, Teirahedron Lett., 1215 (1973).
  (90) S. Ogawa, T. Yamaguchi, and N. Gotoh, J. Chem. Soc., Chem. Commun., 577 (1972).
- (91) S. Ogawa and N. Gotoh, Seisan-Kenkyu, 24, 56 (1972); Chem. Abstr., 78, 43324m (1973).
- (92) G. W. Gokel, J. M. Timko, and D. J. Cram, J. Chem. Soc., Chem. Commun., 444 (1975)
- (93) (a) K. Tamao, S.-I. Kodama, T. Nakatsuka, Y. Kiso, and M. Kumada, J. Am. Chem. Soc., 97, 4405 (1975); (b) M. Kumada, unpublished data; (c) K. Tamao, S. Kodama, I. Nakajima, T. Nokatsuka, A. Minato, and M. Kumada, Iamao, S. Kodama, I. Nakajima, I. Nokatsuka, A. Minato, and M. Kumada, *Hukusokan Kagaku Toronkai Koen Yoshishu, 8th*, 174 (1975); *Chem. Abstr.*, **85**, 54689 (1976).
  (94) G. L. Isele and K. Scheib, *Chem. Ber.*, **108**, 2313 (1975).
  (95) V. F. Borodkin, R. D. Komarov, and O. A. Aleksandrova, *Tr. Ivanov. Khim.-Teknol. Inst.*, **141** (1972); *Chem. Abstr.*, **79**, 115546f (1973).
  (96) V. L. Goedken, Y-ae. Park, S.-M. Peng, and J. M. Norris, *J. Am. Chem. Soc.*, **96**, 7693 (1974).
  (93) M. G. D. Row, *A. H. D. Otheran*, S. C. MaSoll, and S. M. Nelson, *J. Chem.*

- (97) M. G. B. Drew, A. H. b. Othman, S. G. McFall, and S. M. Nelson, J. Chem. Soc., Chem. Commun., 818 (1975).
- K. Galuszko, Rocz. Chem., 49, 1597 (1975).
   F. Vögtle, J. Grütze, R. Nätscher, W. Wieder, E. Weber, and R. Grün, Chem. (99) F. Voglie, J. Gruze, R. Natscher, W. Wieder, E. Weber, and R. Gruh, Chem. Ber., 108, 1694 (1975).
   (100) J.-M. Girodeau, J.-M. Lehn, and J.-P. Sauvage, Angew. Chem., Int. Ed. Engl., 14, 764 (1975); Angew. Chem., 87, 813 (1975).
   (101) W. Jenny and H. Holzrichter, Chimia, 22, 247 (1968).

- (102) J. D. Sauer (LSU), dissertation, 1976.
   (103) S. Ogawa, T. Yamaguchi, and N. Gotoh, J. Chem. Soc., Perkin Trans. 1, 976 (1974)
- (104) H. Rapoport and H. D. Baldridge, J. Am. Chem. Soc., 73, 343 (1951).

Newkome, Sauer, Roper, and Hager

- (105) H. Rapoport and H. D. Baldridge, J. Am. Chem. Soc., 74, 5365 (1952).
   (106) S. Bradamante, G. Pagani, A. Marchesini, and U. M. Pagnoni, Chim. Ind. (Milan), 55, 962 (1973); Chem. Abstr., 80, 95861v (1974).
- (107) A. Marchesini, S. Bradamante, R. Fusco, and G. Pagani, Tetrahedron Lett., 671 (1971).
- (108) G. A. Pagani, J. Chem. Soc., Perkin Trans. 1, 2050 (1974). (109) W. E. Parham, R. W. Davenport, and J. B. Biasotti, J. Org. Chem., 35, 3775
- (1970)(110) W. E. Parham, R. W. Davenport, and J. B. Blasotti, Tetrahedron Lett., 557
- (1969). (111) W. E. Parham, P. E. Olson, and K. R. Reddy, J. Org. Chem., 39, 2432 (1974).
- (112) W. E. Parham and P. E. Olson, *J. Org. Chem.*, **39**, 2916 (1974).
   (113) W. E. Parham, K. B. Sloan, K. R. Reddy, and P. E. Olsen, *J. Org. Chem.*,
- 38, 927 (1973).
- (114) W. E. Parham, P. E. Olson, K. R. Reddy, and K. B. Sloan, J. Org. Chem., 39, 172 (1974).
- (115) W. E. Parham, D. C. Egberg, and S. S. Salgar, J. Org. Chem., 37, 3248 (1972). (116) W. E. Parham, K. B. Sloan, and J. B. Biasotti, *Tetrahedron*, **27**, 5767
- (1971)
- W. E. Parham and K. B. Sloan, Tetrahedron Lett., 1947 (1971). (117)
- (118) V. Prelog and U. Geyer, *Helv. Chim. Acta.* 28, 1677 (1945).
  (119) V. Prelog and S. Szpilfogel, *Helv. Chim. Acta.* 28, 1684 (1945).
  (120) Ng. Ph. Buu-Hoi, *J. Chem. Soc.*, 2882 (1949).
- (121) Ng. Ph. Buu-Hoi and R. Royer, Recl. Travi Chim. Pays-Bas, 66, 300 (1947).
- (122) L. Ruzicka, M. W. Goldberg, and M. Hürbin, Helv. Chim. Acta, 16, 1335
- (1933). (123) P. Jacquignon and Ng. Ph. Buu-Hoi, *J. Org. Chem.*, **22**, 72 (1957). (124) P. Jacquignon, Ng. Ph. Buu-Hoi, and M. Dufour, *Bull. Soc. Chim. Fr.*, 2765 (1966)
- (125) F. Freeman and T. I. Ito, J. Org. Chem., 34, 3670 (1969)
- (126) R. Müller and D. Wöhrle, Makromol. Chem., 176, 2775 (1975)
- (127) M. Spiteller-Friedmann and G. Spiteller, Monalsh, Chem., 95, 1234 (1964)

- (128) J. L. Coke and W. Y. Rice, Jr., J. Org. Chem., 30, 3420 (1965).
  (129) W. E. Parham and P. E. Olson, J. Org. Chem., 39, 3407 (1974).
  (130) T. M. Smalberger, G. J. H. Rall, H. L. DeWaal, and R. R. Arndt, Tetrahedron, 24, 6417 (1968).
- (131) D. Moran, M. N. Patel, N. A. Tahir, and B. J. Wakefield, J. Chem. Soc., Perkin Trans. 1, 2310 (1974). (132) W. E. Parham and Y. Sayed, J. Org. Chem., 40, 3142 (1975).
- (133) T. Hiyama, S. Hirano, and H. Nozaki, J. Am. Chem. Soc., 96, 5287 (1974).
- (134) E. Fujita and K. Fuji, J. Chem. Soc. C, 1651 (1971).
   (135) E. Fujita, K. Fuji, and K. Tanaka, J. Chem. Soc. C, 205 (1971).
- (136) E. Fujita, K. Fuji, K. Bessho, A. Sumi, and S. Nakamura, Tetrahedron Lett., 4595 (1967)
- (137) D. A. Kochkin and I. B. Chekmareva, Zh. Obshch. Khim., 31, 3010 (1961).
- (138) L. Garanti, A. Sala, and G. Zecchi, J. Org. Chem., 40, 2403 (1975).
  (139) R. P. Smirnov, V. A. Gnedina, V. F. Borodkin, and N. A. Mekhanikova, USSR Patent 436,822; Chem. Abstr., 81, 152279h (1974).
  (140) H. Ogawa, M. Kubo, and H. Saikachi, Tetrahedron Lett., 4859 (1971).
- (141) H. Ogawa, M. Yoshida, and H. Saikachi, Chem. Pharm. Bull.,
- (142) H. Ogawa, N. Shimojo, and M. Yoshida, Tetrahedron Lett., 2013 (1973).
- (143) H. Ogawa, I. Tabushi, H. Kato, and Y. Taniguchi, Tetrahedron Lett., 5065 (1973).
- (144) H. Ogawa and M. Kubo, *Tetrahedron*, **29**, 809 (1973). (145) G. M. Badger, G. E. Lewis, U. P. Singh, and T. M. Spotswood, *Chem*.
- Commun., 492 (1965). (146) G. M. Badger, J. A. Elix, G. E. Lewis, U. P. Singh, and T. M. Spotswood, *Chem. Commun.*, 269 (1965).
- (147) G. M. Badger, J. A. Elix, and G. E. Lewis, Aust. J. Chem., 19, 1221 (1966).
- (148) J. A. Elix, Chem. Commun., 343 (1968) (149) G. M. Badger, J. H. Bowie, J. A. Elix, G. E. Lewis, and U. P. Singh, Aust.
- J. Chem., 20, 2669 (1967). (150) H. Ogawa, M. Kubo, and I. Tabushi, Tetrahedron Lett., 361 (1973) (151) G. M. Badger, J. A. Elix, and G. E. Lewis, Aust. J. Chem., 18, 70

(152) G. M. Badger, J. A. Elix, and G. E. Lewis, Proc. Chem. Soc., London, 82

(1964). (153) G. M. Badger, G. E. Lewis, and U. P. Singh, *Ausl. J. Chem.*, 19, 257

(157) T. . Cresp and M. V. Sargent, J. Chem. Soc., Perkin Trans. 1, 1786

(158) H. Ogáwa, H. Kato, N. Ibii, T. M. Cresp, and M. V. Sargent, *Tetrahedron Lett.*, 3889 (1974).

(159) T. M. Cresp and M. V. Sargent, J. Chem. Soc., Chem. Commun., 807

(162) T. M. Cresp and M. V. Sargent, J. Chem. Soc., Perkin Trans. 1, 2961 (1973). (163) T. M. Cresp and M. V. Sargent, J. Chem. Soc., Perkin Trans. 1, 2145

(164) H. Ogawa, N. Shimojo, H. Kato, and H. Saikachi, Tetrahedron, 30, 1033

(165) L. A. Kapicak and M. A. Battiste, J. Chem. Soc., Chem. Commun., 930

T. M. Cresp and M. V. Sargent, *Chem. Commun.*, 1457 (1971). T. M. Cresp and M. V. Sargent, *Chem. Commun.*, 1458 (1971).

 (154) J. A. Élix and M. V. Sargent, J. Am. Chem. Soc., 90, 1631 (1968).
 (155) J. A. Elix, Aust. J. Chem., 22, 1951 (1969). (156) G. M. Badger, G. E. Lewis, and U. P. Singh, Aust. J. Chem., 20, 1635

(1965)

(1966)

(1967)

(1973).

(1972).

(1974).

(1974).

(160)

(161)

#### Synthetic Macrocyctic Compounds Possessing Subheterocyctic Rings

- (1973)
- (166) M. A. Battiste, L. A. Kapicak, M. Mathew, and G. J. Palenik, Chem. Commun., 1536 (1971).
- (167) J. M. Timko and D. J. Cram, J. Am. Chem. Soc., 96, 7159 (1974).
- (168) M. Chastrette and F. Chastrette, J. Chem. Soc., Chem. Commun., 534 (1973).
- (169) R. G. Ackman, W. H. Brown, and G. F. Wright, J. Org. Chem., 20, 1147 (1955)
- (170) D. N. Reinhoudt and R, T. Gray, *Tetrahedron Lett.*, 2105(1975).
   (171) R. T. Gray and D. N. Reinhoudt, *Tetrahedron Lett.*, 2109 (1975)
- (172) T. M. Cresp and M. V. Sargent, J. Chem. Soc., Chem. Commun., 101 (1974).
- (173) H. Ogawa, M. Yoshida, and H. Saikachl, Tetrahedron Lett., 153 (1972).
- (174) H. Salkachi, H. Ogawa, and K. Sato, Chem. Pharm. Bull., 19, 97 (1971)(175) H. Salkachi, H. Ogawa, Y. Minami, and K. Sato, Chem. Pharm. Bull., 18,
- 465 (1970). (176) H. Nozaki, T. Koyama, and T. Mori, Tetrahedron, 25, 5357 (1969).
- (177) R. Helder and H. Wynberg, Tetrahedron Lett., 4321 (1973).
  (178) G. M. Whitesides, B. A. Pawson, and A. C. Cope, J. Am. Chem. Soc., 90, 639 (1968).
- (179) A. C. Cope and B. A. Pawson, J. Am. Chem. Soc., 90, 636 (1968).
- (180) D. J. Cram and G. R. Knox, J. Am. Chem. Soc., 83, 2204 (1961).
- (181) D. J. Cram, C. S. Montgomery, and G. R. Knox, J. Am. Chem. Soc., 88, 515 (1966).
- (182) (a) M. J. Broadhurst, R. Grigg, and A. W. Johnson, *Chem. Commun.*, 23 (1969); (b) erratum, *Chem. Commun.*, 1080 (1969).
  (183) P. J. Garratt, K. C. Nicolaou, and F. Sondhelmer, *J. Org. Chem.*, 38, 864
- (1973)
- (184) J. F. Haley, Jr., and P. M. Keehn, Tetrahedron Lett., 4017 (1973).
- (185) S. M. Rosenfeld and P. M. Keehn, J. Chem. Soc., Chem. Commun., 119 (1974)
- (186) H. E. Winberg, F. S. Fawcett, W. E. Mochel, and C. W. Theobald, *J. Am. Chem. Soc.*, 82, 1428 (1960).
   (187) H. Nozaki, T. Koyama, T. Mori, and R. Noyori, *Tetrahedron Lett.*, 2181
- (1968).
- (188) S. Mizogami, T. Otsubo, Y. Sakata, and S. Misumi, Tetrahedron Lett., 2791 (1971)
- (189) H. Wasserman and P. M. Keehn, *Tetrahedron Lett.*, 3227 (1969).
  (190) H. Wynberg and R. Helder, *Tetrahedron Lett.*, 4317 (1971).
  (191) S. Mizogami, N. Osaka, T. Otsubo, Y. Sakata, and S. Misumi, *Tetrahedron*
- Left., 799 (1974). (192) W. H. Brown and W. N. French, *Can. J. Chem.*, **36**, 537 (1958)
- (193) W. H. Brown and W. N. French, Can. J. Chem., 36, 371 (1958).
- (194) R. E. Beals and W. H. Brown, J. Org. Chem., 21, 447 (1956)
- (195) W. J. Hale, W. D. McNally, and C. J. Pater, J. Am. Chem. Soc., 35, 72 (1906).
- (196) M. J. Broadhurst, R. Grigg, and A. W. Johnson, J. Chem. Soc., Perkin Trans. 1. 2111 (1972).
- (197) M. J. Broadhurst, R. Grigg, and A. W. Johnson, J. Chem. Soc. C, 3681 (1971).
- (198) M. J. Broadhurst, R. Grigg, and A. W. Johnson, J. Chem. Soc., Perkin Trans. 1, 1124 (1972).
- (199) M. Ahmed and O. Meth-Cohn, *Tetrahedron Lett.*, 1493 (1969). (200) M. Sy and M. Malliet, *Bull. Soc. Chim. Fr.*, 2253 (1966).
- (201) M. J. Broadhurst, R. Grigg, and A. W. Johnson, Chem. Commun., 807 (1970)
- (202) M. J. Broadhurst, R. Grigg, and A. W. Johnson, Chem. Commun., 1480 (1969).
- (203) M. J. Broadhurst, R. Grigg, G. Shelton, and A. W. Johnson, Chem. Commun., 231 (1970).
- (204) F. Dallacker and V. Mues, Chem. Ber., 108, 569 (1975).
- (205) S. Bradamante, R. Fusco, A. Marchesini, and G. Pagani, Tetrahedron Lett., 11 (1970).
- (206) S. Fujita, T. Kawaguti, and H. Nozaki, Bull. Chem. Soc. Jpn., 43, 2596 (1970).
- (207) A. P. Bindra, J. A. Elix, and M. V. Sargent, Tetrahedron Lett., 4335 (1968). (208) R. H. Wightman and F. Sondheimer, Tetrahedron Lett., 4179 (1975).
- (209) R. R. Jones, J. M. Brown, and F. Sondheimer, Tetrahedron Lett., 4183
- (1975). (210) T. M. Cresp and F. Sondheimer, J. Am. Chem. Soc., 97, 4412 (1975)
- (211) P. J. Beeby, R. T. Weavers, and F. Sondheimer, Angew. Chem., Int. Ed. Engl., 13, 138 (1974). (212) R. T. Weavers and F. Sondheimer, *Angew. Chem., Int. Ed. Engl.*, 13, 139
- (1974)
- (213) R. T. Weavers and F. Sondheimer, Angew. Chem., Int. Ed. Engl., 13, 141 (1974).
- (214) A. P. Bindra, J. A. Elix, and M. V. Sargent, Aust. J. Chem., 24, 1721 (1971).
- (215) A. P. Bindra, J. A. Elix, and M. V. Sargent, Aust. J. Chem., 22, 1449 (1969).
- (216) A. B. Holmes and F. Sondhelmer, *Chem. Commun.*, 1434 (1971). (217) N. Osaka, S. Mizogami, T. Otsubo, Y. Sakata, and S. Misumi, *Chem. Lett.*.
- 515 (1974).

- (218) H. H. Wasserman and D. T. Balley, *Chem. Commun.*, 107 (1970).
  (219) J. R. Mahajan and H. C. Araujo, *Synthesis*, 54 (1975).
  (220) (a) R. Helder and H. Wynberg, *Tetrahedron*, 31, 2251 (1975); (b) also see S. Bradamante, A. Marchesini, and U. M. Pagnoni, Ann. Chim. (Rome), 65, 131 (1975).
- (221) B. A. McAndrew and S. W. Russell, J. Chem. Soc., Perkin Trans. 1, 1172 (1975).
- (222) A. Ulman and J. Manassen, J. Am. Chem. Soc., 97, 6540 (1975).
- (223) J.-M. Girodeau, J.-M. Lehn, and J.-P. Sauvage, Angew. Chem., Int. Ed. Engl., 14, 764 (1975).
- (224) F. D. Alashev, A. V. Kessenikh, S. Z. Taits, and Ya. L. Gol'dfarb, Izv. Akad.

Nauk SSSR, Ser. Khim., 2022 (1974).

- (225) S. Z. Taits, A. A. Dudinov, F. D. Alashev, and Ya. L. Gol'dfarb, Izv. Akad. Nauk SSSR, Ser. Khim., 148 (1974).
- (226) S. Z. Talts, O. A. Kallnovskil, V. S. Bogdanov, and Ya. L. Gol'dfarb, *Khim. Geterotsiki. Soedin*, 1467 (1970).
  (227) O. A. Kallnovskil, S. Z. Talts, and Ya. L. Gol'dfarb, *Izv. Akad. Nauk SSSR*, *Chem. Kellin.*
- Ser. Khim., 2331 (1970).
- (228) S. Bradamante, A. Marchesini, and G. Pagani, Chim. Ind. (Milan), 53, 267 (1971).
- (229) S. Hirano, T. Hiyama, S. Fujita, T. Kawaguti, Y. Hayashi, and H. Nozaki, Tetrahedron, 30, 2633 (1974).
- (230) S. Fujita, T. Kawaguti, and H. Nozaki, *Tetrahedron Lett.*, 1119 (1971).
  (231) O. Meth-Cohn, *Tetrahedron Lett.*, 91 (1973).
  (232) W. Carruthers and M. G. Pellatt, *J. Chem. Soc.*, *Perkin Trans.* 1, 1136
- (1973) (233) Ya. L. Gol'dfarb, S. Z. Talts, L. I. Belen'kil, and N. D. Zelinskil, Zh. Obshch.
- Khim., 29, 3564 (1959). (234) Ya. L. Gol'dfarb, S. Z. Taits, and L. I. Belen'kii, Izv. Akad. Nauk SSSR, Ser.
- Khim., 1451 (1963). (235) Ya. L. Gol'dfarb, S. Z. Talts, T. S. Chirkova, and L. I. Belen'kii, *Izv. Akad.*
- Nauk SSSR, Ser. Khim., 2055 (1964). (236) S. Z. Taits, L. I. Belen'kii, and Ya. L. Gol'dfarb, Izv. Akad. Nauk SSSR, Ser.
- Khim., 1460 (1963). (237) S. Z. Taits, F. D. Alashev, and Ya. L. Gol'dfarb, *Izv. Akad. Nauk SSSR*, Ser. Khim., 566 (1968).
- (238) S. Z. Talts, F. D. Alashev, and Ya. L. Gol'dfarb, *Izv. Akad. Nauk SSSR*, Ser. Khim., 572 (1968).
- (239) S. Z. Tiats, E. A. Krasnyanskaya, and Ya. L. Gol'dfarb, Izv. Akad. Nauk
- (239) S. Z. Hals, E. A. Krashyanskaya, and Fa. L. Gordiaro, *Izv. Akad. Nauk* SSSR, Ser. Khim., 228 (1970).
  (240) S. Z. Talts, E. A. Krashyanskaya, and Ya. L. Gol'dfarb, *Izv. Akad. Nauk* SSSR, Ser. Khim., 754 (1968).
  (241) S. Z. Talts, E. A. Krashyanskaya, and Ya. L. Gol'dfarb, *Izv. Akad. Nauk* SSSR, Ser. Khim., 754 (1968).
- SSSR, Ser. Khim., 762 (1968).
- (242) S. Z. Talts, É. A. Krasnyanskaya, A. L. Klyachko-Gurvich, and Ya. L. Gol'dfarb, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1807 (1973). (243) P. A. Konstantinov, L. V. Semerenko, K. M. Suvorova, E. N. Bondar, and
- Ya. L. Gol'dfarb, Khim. Geterotsikt. Soedin., 230 (1968). (244) S. Z. Taits, O. A. Kalinovskii, V. S. Bogdanov, and Ya. L. Gol'dfarb, Khim.
- Geterotsiki. Soedin., 170 (1972). (245) Ya. L. Gol'dfarb, S. Z. Tajts, F. D. Alashev, A. A. Dudinov, and O. S. Chi-
- zhov, Khim. Geterotsikl. Soedin., 40 (1975); Curr. Abstr. Chem., 57, 228954 (1975)
- (246) F. Vögtle and R. Lichtenthaler, *Chem. Ztg.*, **94**, 727 (1970). (247) Th. Kauffmann and H.-H. Kniese, *Tetrahedron Lett.*, 4043 (1973).
- (248) M. Ahmed and O. Meth-Cohn, J. Chem. Soc. C, 2104 (197
- (249) S. Z. Taits and Ya. L. Gol'dfarb, Izv. Akad. Nauk SSSR, Ser. Khim., 1289 (1963)
- (250) S. Z. Taits and Ya. L. Gol'dfarb, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1698 (1960). (251)
- Ya. L. Gol'dfarb, S. Z. Talts, and V. N. Bulgakova, Izv. Akad. Nauk SSSR, Ser. Khim., 1299 (1963), Ya. L. Gol'dfarb, S. Z. Taits, and L. I. Belen'kii, Izv. Akad. Nauk SSSR, Otd. (252)
- Khim. Nauk., 1262 (1957).
- (253) B. Kamenar and C. K. Prout, J. Chem. Soc., 4838 (1965).
- (254) G. M. Badger, G. E. Lewis, and U. P. Singh, Aust. J. Chem., 19, 1461 (1966). (255) Z. V. Todres, F. M. Stoyanovich, Ya. L. Gol'dfarb, and D. N. Kursanov,
- Khlm. Geterotsikl. Soedin., 632 (1973). (256) S. Z. Taits, V. N. Bulgakova, and Ya. L. Gol'dfarb, Khim. Geterotsikt.
- Soedin., 16 (1973).
- (257) M. I. Al'yanov, R. P. Smirnov, E. S. Boretskii, and L. M. Fedorov, *Tr. Ivanov. Khim.*-Tekhnol. Inst., 139 (1970); *Chem. Abstr.*, 79, 126473f (1973).
   (258) P. V. Gubin and V. F. Borodkin, *Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.*, 807 (1969); *Chem. Abstr.*, 71, 101836y (1969).
   (259) M. Nakazaki, K. Yamamoto, and S. Tanaka, *Tetrahedron Lett.*, 341 (1971).
- (1971).
- (260) H. Hogeveen and B. J. Nusse, Tetrahedron Lett., 699 (1976).
- (261) S. Z. Talts, E. A. Krasnyanskaya, Ya. L. Gol'dfarb, N. F. Kononov, A. G. Pogorelov, and R. F. Merzhanova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 2536
- (1975); Chem. Abstr., 84, 59421a (1976).
   (262) F. Bernardi, F. P. Colonna, P. Dembech, G. Distefano, and P. Vivarelli, Chem. Phys. Lett., 36, 539 (1975).
   (263) M. M. Htay and O. Meth-Cohn, Tetrahedron Lett., 469 (1976).

(266) A. J. Rest, S. A. Smith, and I. D. Tyler, Inorg. Chim. Acta, 16, L1

(267) S. Hünig and H. Hoch, *Chem. Ber.*, 105, 2197 (1972).
(268) H. H. Wasserman and R. Kitzing, *Tetrahedron Lett.*, 3343 (1969).
(269) S. Hünig, H.-J. Buysch, H. Hoch, and W. Lendle, *Chem. Ber.*, 100, 3996

(1967).
(270) W. E. Parham and J. F. Dooley, J. Org. Chem., 33, 1476 (1968).
(271) W. E. Parham and J. F. Dooley, J. Am. Chem. Soc., 89, 985 (1967).
(272) P. Bamfield and P. A. Mack, J. Chem. Soc., 1961 (1968).
(273) M. C. Rakowski, M. Rycheck, and D. H. Busch, Inorg. Chem., 14, 1194 (1975).

(274) D. P. Riley, P. H. Merrell, J. A. Stone, and D. H. Busch, Inorg. Chem., 14,

(275) M. G. B. Drew, A. H. b. Othman, P. D. A. McIlroy, and S. M. Nelson, J.

(276) L. F. Lindoy and D. H. Busch, *Inorg. Chem.*, 13, 2494 (1974).
(277) K. M. Long and D. H. Busch, *J. Coord. Chem.*, 4, 113 (1974).
(278) L. F. Lindoy, N. E. Tokel, L. B. Anderson, and D. H. Busch, *J. Coord. Chem.*,

(279) M. G. B. Drew, A. H. b. Othman, W. E. Hill, P. Mcliroy, and S. M. Nelson,

Chem. Soc., Dallon Trans., 2507 (1975).

(1976).

(1975).

490 (1975).

7 (1971)

(264) M. Karpf and A. S. Dreiding, *Helv. Chim. Acta*, 58, 2409 (1976).
 (265) N. Sawa, T. Yamoto, K. Gota, and T. Suzuki, *J. Synth. Org. Chem., Jpn.*, 33, 1007 (1975).

- Inorg. Chim. Acta, 12, L25 (1975). (280) J. Lewis and K. P. Wainwright, J. Chem. Soc., Chem. Commun., 169 (1974).
- (281) H.-G. Fritz, H. Henke, and H. Musso, Chem. Ber., 107, 3164 (1974)
- (282) S. Z. Taits, O. A. Kalinovskii, B. V. Lopatin, and Ya. L. Gol'dfarb, Khim. Gelerolsiki. Soedin., 624 (1973). (283) E. Weber, W. Wieder, and F. Vögtle, *Chem. Ber.*, 109, 1002 (1976). (284) H. O. House, A. V. Prabhu, and W. V. Phillips, *J. Org. Chem.*, 41, 1209
- (1976).
- (285) Ya. L. Gol'dfarb, S. Z. Taits, and L. I. Belen'kii, USSR Patent 120,841 (1959); *Chem. Abstr.*, 54, 5694e (1960).
   (286) S. Z. Taits and Ya. L. Gol'dfarb, USSR Patent 132,221 (1960); *Chem. Abstr.*
- 55, 9309h (1961).
- Ya. L. Gol'dfarb, S. Z. Taits, and L. I. Belen'kii, USSR Patent 140,432 (1960); Chem. Abstr., 56, 10103g (1962). (287)
- (288) International Union of Pure and Applied Chemistry, "Nomenclature of Organic Chemistry", Sections A and B, 2nd ed, London, 1966; (b) "The Naming and Indexing of Chemical Compounds from Chemical Abstracts" Introduction to the Subject Index Vol. 54, Section 137, American Chemical Society, Washington, D.C., 1960; (c) A. M. Patterson, L. T. Capell, and D. F. Walker, "The Ring Index", 2nd ed, American Chemical Society, Washington, D.C., 1960.
   (289) (a) F. Vogtle and P. Neumann, *Tetrahedron Lett.*, 5329 (1969); (b) *Tetra*-
- hedron, 26, 5847 (1970).
- (290) Th. Kauffmann, *Tetrahedron*, **28**, 5183 (1972). (291) K. Hirayama, *Tetrahedron Lett.*, 2109 (1972).
- (292) W. M. Schubert, W. A. Sweeney, and H. K. Latourette, J. Am. Chem. Soc., 76, 5462 (1954). (293) W. Steinkopf and H. Augastad-Jansin, Justus Liebigs Ann. Chem., 430,
- 41 (1922). (294) W. Steinkopf and J. Roch, Justus Liebigs Ann. Chem., 482, 251
- (1930). (295) W. Steinkopf and W. Köhler, Justus Liebigs Ann. Chem., 522, 17
- (1936). (296) W. Steinkopf, R. Rösler, and L. Setzer, Justus Liebigs Ann. Chem., 522,
- 35 (1936). (297) W. Steinkopf, R. Leitsmann, and K. H. Hofmann, Justus Liebigs Ann.
- Chem., 546, 180 (1941).
- (298) O. Meth-Cohn, Q. Rep. Sulfur Chem., 5, 129 (1970).
- (299) W. Steinkopf and W. Hanske, Justus Liebigs Ann. Chem., 541, 238 (1939).
- (300) V. Boekelhelde and W. J. Linn, J. Am. Chem. Soc., 76, 1286 (1954).
- (301) A. T. Balaban and C. D. Nenitzescu, Rev. Chim. Acad. Repub. Pop. Roum., 6, 269 (1961).
- (302) K. Dimroth, Angew. Chem., 72, 331 (1960).
- (303) W. H. Brown, B. J. Hutchinson, and M. H. MacKinnon, Can. J. Chem., 49, 4017 (1971).
- (304) D. N. Reinhoudt, R. T. Gray, C. J. Smit, and Ms. I. Veenstra, Tetrahedron, 32. 1161 (1976). (305) G. R. Newkome and D. L. Koppersmith, J. Org. Chem., 38, 4461
- (1973)
- (306) E. Fujita, K. Bessho, K. Fuji, and A. Sumi, Chem. Pharm. Bull., 18, 2216 (1970).
- (307) C. Y. Meyers, A. M. Malte, and W. S. Mathews, J. Am. Chem. Soc., 91, 7510 (1969).
  (308) S. Ogawa, J. Chem. Soc., Perkin Trans. 1, submitted for publication.
  (309) G. R. Newkome, J. D. Sauer, and G. L. McClure, Tetrahedron Lett., 1599
- (1973).
- (310) H. Tavlor (LSU), unpublished data
- (311) D. H. Busch, *Rec. Chem. Prog.*, **25**, 107 (1964).
   (312) D. St. C. Black and E. Markham, *Rev. Pure Appl Chem.*, **15**, 109 (1965).
- (313) D. H. Busch, Helv. Chim. Acta, Fasciculus Extraordinarius Alfred Werner, 174 (1967).
- (314) L. F. Lindoy and D. H. Busch, Prep. Inorg. React., 6, 1 (1971)
- (315) D. St. C. Black and A. J. Hartshorn, Coord. Chem. Rev., 9, 219 (1972-1973).
- (316) B. Stetter and J. Marx, Justus Liebigs Ann. Chem., 607, 59 (1957).
- (317) D. J. Zwanenburg and H. Wynberg, J. Org. Chem., 34, 340 (1969)
- (318) Y. L. Gol'dfarb and M. S. Kondakova, Izv. Akad. Nauk SSSR, Old. Khim. Nauk, 1208 (1956). (319) D. J. Zwanenburg and H. Wynberg, *J. Org. Chem.*, **34**, 333 (1969)
- Y. L. Gol'dfarb and M. S. Kondakova, Izv. Akad. Nauk SSSR, Old. Khim. (320)
- Nauk, 501 (1961). (321) P. Barnfield and P. A. Mack, unpublished data.
- (322) R. Dewar and E. Fleischer, Nature (London), 222, 372 (1969).

- (323) A. Baeyer, Ber., 19, 2184 (1866).
   (324) (a) M. Dennstedt and J. Zimmermann, Ber., 20, 2259 (1887); (b) M. Dennstedt, ibid., 23, 1370 (1890).
- (325) V. V. Chelintzev and B. V. Tronov, J. Russ. Phys. Chem. Soc., 48, 105 (1916); Chem. Abstr., 11, 452 (1917).
   (326) V. V. Chelintzev, B. V. Tronov, and S. G. Karmanov, J. Russ. Phys. Chem.

- (326) V. V. Chelintzev, B. V. Tronov, and S. G. Karmanov, J. Huss. Phys. Chem. Soc., 48, 1210 (1916); Chem. Abstr., 11, 1418 (1917).
  (327) L. F. Lindoy, Coord. Chem. Rev., 4, 41 (1969).
  (328) F. Vögtle, Angew. Chem., Int. Ed. Engl., 8, 274 (1969).
  (329) Ng. Ph. Buu-Hoi, J. Chem. Soc., 2882 (1949).
  (330) L. M. Rice, E. Hertz, and M. E. Freed, J. Med. Chem., 7, 313 (1964).
  (331) Ng. Ph. Buu-Hoi, P. Jacquignon, and T. B. Loc, J. Chem. Soc., 738 (1958).
- (332) W. L. Mosby, Chem. Ind. (London), 1348 (1959).
- (333) P. N. Rylander, "Catalytic Hydrogenation over Platinum Metals", Academic Press, New York, N.Y., 1967, Chapter 24.
   (334) E. Breitmaier and E. Bayer, *Tetrahedron Lett.*, 3291 (1970).
- (335) F. W. Bergstrom, *Chem. Rev.*, **35**, 152 (1944).
   (336) R. H. Manske, *Chem. Rev.*, **30**, 126 (1942).
   (337) Ng. Ph. Buu-Hoi, *J. Chem. Soc.*, 795 (1946).

- (338) D. Henning and G. Kempter, Z. Chem., 10, 343 (1970).

Newkome, Sauer, Roper, and Hager

- (339) H. Stetter, L. Marx-Moll, and H. Rutzen, *Chem. Ber.*, **91**, 1775 (1958).
   (340) V. Prelog and O. Metzler, *Helv. Chim. Acia*, **29**, 1170 (1946). (341) J. M. Brown and F. Sondheimer, Angew. Chem., Int. Ed. Engl., 13, 339
- (1974).
- (342) (a) Th. A. Kaden, Chimia, 30, 207 (1976); (b) T. Lotz, Dissertation, Basel, 1976.
- (343) M. Chastrette, F. Chastrette, and J. Sabadie, Org. Synth., 54, in press. (344) J. P. Pascault, F. Chastrette, and Q. T. Pham, Eur. Polym. J., 12, 273
- (1976)(345) W. E. Parham, J. F. Dooley, M. K. Meilahn, and J. W. Greidanus, J. Org. Chem., 34, 1474 (1969).
- (346) W. Baker, Chem. Bril., 1, 250 (1965). (347) A. I. Meyers, "Heterocycles in Organic Synthesis", Wiley, New York, N.Y., 1974, pp 222-228.
- (348) D. Lednicer in "Advances in Organic Chemistry: Methods and Results" E. C. Taylor, Ed., Wiley-Interscience, New York, N.Y., 1972, pp 278-281.
- (349) B. Camerino and B. Patelli, Experientia, 20, 260 (1964).
- (350) T. Mukaiyama and T. Hata, Bull. Chem. Soc. Jpn., 34, 99 (1961).
- (351) K. P. C. Vollhardt, Synthesis, 765 (1975).
- (352) T. M. Cresp, M. V. Sargent, and P. Vogel, J. Chem. Soc., Perkin Trans. 1, 37 (1974).
- (353) W. N. Haworth and W. G. M. Jones, J. Chem. Soc., 667 (1944)
- (354) K. Dimroth, G. Pohl, and H. Follmann, Chem. Ber., 99, 634 (1966).
   (355) Z. N. Nazarova and Y. A. Babaev, Zh. Obshch. Khim., 34, 4010 (1964).
- (356) K. Y. Novitskii, Y. K. Yurev, and V. N. Zhingareva, Zh. Obshch. Khim., 32, 3303 (1962).
- (357) Ya, L. Gol'dfarb, M. S. Kondakova, E. A. Krasvanskava, and M. A. Vino-
- gradova, *Izv. Akad. Nauk SSSR. Ser. Khim.*, 2182 (1964). (358) H. Nozaki, T. Mori, and R. Noyori, *Tetrahedron*, **22**, 1207 (1966).
- (359) E. J. Nienhouse, R. M. Irwin, and G. R. Finni, J. Am. Chem. Soc., 89, 4557 (1967).
- (360) G. Domschke, J. Prakt. Chem., 32, 144 (1966).
- (361) J. A. Elix, M. V. Sargent, and F. Sondheimer, J. Am. Chem. Soc., 89, 5080 (1967)(362) J. A. Elix, M. V. Sargent, and F. Sondheimer, J. Am. Chem. Soc., 92, 973
- (1970).
- (363) Ya. L. Gol'dfarb, S. Z. Taits, F. D. Alasher, B. Tashkhodzhaev, L. G. Vo-rontrova, and O. S. Chizhov, Abstracts, 1st All-Union Conference on Organic Crystallochemistry (Riga, USSR, 1975), pp 52–53.
- F. D. Alasher, V. N. Bulgakova, Ya. L. Gol'dfarb, and S. Z. Taits, Abstracts, (364)XIVth Scientific Session on Chemistry and Technology of Organic Sulfur Compounds and Sulfur-containing Oils (Batumi, USSR, 1976), pp 194-195.
- (365) S. G. Mairanovskii, V. S. Mikhailov, S. Z. Taits, and O. A. Kalinovskii, Elektrokhimiya, 6, 1683 (1970). (366) V. I. Yakerson, S. Z. Taits, and F. D. Alasher, *Izv. Akad. Nauk SSSR, Ser.*
- Khim., 1931 (1966).
- (367) Ya. L. Gol'dfarb, S. Z. Taits, and L. I. Belen'kii, Tetrahedron, 19, 1851 (1963). (368) L. I. Belen'kii, S. Z. Taits, and Ya. L. Gol'dfarb, Dokl. Akad. Nauk SSSR,
- 139, 1356 (1961). (369) L. I. Belen'kii, *Usp. Khim.*, 33, 1265 (1964); *Russ. Chem. Rev.*, 33, 551
- (1964). (370) T. Mori, K. Matsui, and H. Nozaki, Bull. Chem. Soc. Jpn., 43, 231
- (1970). (371) K. Matsui, T. Mori, and H. Nozaki, Bull. Chem. Soc. Jpn., 44, 3440
- (1971). (372) J. L. Anderson, U.S. Patent 2,756,239 (1956); Chem. Abstr., 50, 16178h
- (1956)(373) H. H. Wasserman and A. R. Doumaux, Jr., J. Am. Chem. Soc., 84, 4611 (1962).
- (374) E. Weber and F. Vögtle, *Chem. Ber.*, 109, 1803 (1976).
  (375) J. S. Bradshaw and J. Y. K. Hui, *J. Heterocycl. Chem.*, 11, 649 (1974).
  (376) G. P. Arsenault, E. Bullock, and S. F. MacDonald, *J. Am. Chem. Soc.*, 82,
- 4384 (1960). (377) D. J. Brown and K. lenaga, Aust. J. Chem., 28, 119 (1975).
   (378) S. Y. Wang and D. F. Rhodes, J. Am. Chem. Soc., 93, 2554 (1971).

(380) E. Schenker, Swiss Patent 564,538 (1975); Chem. Abstr., 84, 31095y

(381) V. F. Borodkin and A. V. Makarycheva, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 18, 348 (1975); Chem. Abstr., 83, 28204g (1975).
 (382) R. P. Smirnov, V. A. Gnedina, Yu. G. Vorob'er, and N. A. Mekhanikova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 16, 1062 (1973);

12V. Vyssri. Ucheon. 2aveo., Knim. Knim. Teknnol., 16, 1062 (1973); Chem. Absir., 79, 105221g (1973).
 (383) R. P. Smirnov, V. A. Gnedina, V. F. Borodkin, and N. A. Mekhanekova, USSR Palent 436,822 (1974); Chem. Absir., 81, 152279h (1974).
 (384) R. P. Smirnov, V. A. Gnedina, and V. F. Borodkin, Tr. Vses. Mezhvus. Nauchno.-Tekh. Konf. Vopr. Sint. Primen. Org. Krasilelel, 17 (1970); Chem. Absir., 76, 14518f (1972).
 (385) S. P. Ponomararenko, R. P. Smirnov, and A. A Yasnikov, Izv. Vyssh. Ushaha. Zaved. Khim. Khim. Tekhool. 18, 42 (1976); Chem. Absir. 84.

(366) N. Yoneda, K. Ogino, S. Morita, T. Kobayashi, and Y. Yasuo, *Japanese Patent* 71 21,384 (1971); *Chem. Abstr.*, 75, 63851x (1971).
(387) V. F. Borodkin and Yu. G. Vorob'ev, *Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhool.*, 15, 1750 (1972); *Chem. Abstr.*, 78, 97620y (1973).
(388) V. F. Borodkin and N. A. Kolesnikov, *Khim. Geterolsikl. Soedin.*, 194

(390) S. Fujita, Y. Hayashi, and H. Nozaki, *Telrahedron Lett.*, 1645 (1972).
 (391) M. G. Missakian, B. J. Burreson, and P. J. Scheuer, *Telrahedron*, 31, 2513

(389) M. M. Htay and O. Meth-Cohn, Tetrahedron Lett., 79 (1976)

Uchebn. Zaved., Khim. Khim. Tekhnol., 19, 42 (1976); Chem. Abstr., 84,

Am. Chem. Soc., 93, 2556 (1971)

(1976).

163873h (1976).

(1971).

(379) J. L. Flippen, R. D. Gilardi, I. L. Karle, D. F. Rhoades, and S. Y. Wang, J.

#### Synthetic Macrocyclic Compounds Possessing Subheterocyclic Rings

(1975)

- (392) F. A. Deeney and S. M. Nelson, J. Phys. Chem. Solids, 34, 277 (1973).
   (393) M. G. B. Drew, J. Grimshaw, P. D. A. McIlroy, and S. M. Nelson, J. Chem.
- (393) M. G. B. Drew, J. drimshaw, P. D. A. McIroy, and S. M. Nelson, J. Chem. Soc. Dalton Trans., 1388 (1976).
  (394) M. G. B. Drew, A. H. b. Othman, S. G. McFall, P. D. A. McIroy, and S. M. Nelson, J. Chem. Soc. Dalton Trans., submitted for publication.
  (395) M. G. B. Drew, A. H. b. Othman, and S. M. Nelson, J. Chem. Soc. Dalton
- Trans., 1394 (1976).
- (396) M. G. B. Drew and S. M. Nelson, Acta Crystallogr., Sect. A., 31, S140 (1975).
- (397) M. G. B. Drew, A. H. b. Othman, P. D. A. McIlroy, and S. M. Nelson, Acta Crystallogr. Sect. B, 32, 1029 (1976).
- (398) R. J. Hayward and O. Meth-Cohn, J. Chem. Soc., Chem. Commun., 427 (1973).
- (399) H. H. Wasserman, D. D. Keith, and J. Nadelson, J. Am. Chem. Soc., 91, 1264 (1969). (400) H. H. Wasserman, G. C. Rodgers, and D. D. Keith, *J. Am. Chem. Soc.*, **9**1,
- 1263 (1969).
- (401) N. N. Gerber, Tetrahedron Lett., 809 (1970).
- (402) J. F. Haley, Jr., and P. M. Keehn, *Tetrahedron Lett.*, 1675 (1975). (403) L. F. Lindoy, D. H. Busch, and V. Goedken, *J. Chem. Soc., Chem. Com*mun., 683 (1972).
- (404) Th. Kauffmann, B. Greving, J. König, A. Mltschker, and A. Woltermann,
- Angew. Chem., Int. Ed. Engl., 14, 713 (1975). (405) (a) Th. Kauffmann, Angew. Chem., Int. Ed. Engl., 13, 291 (1974); (b) ref. 87 cited therein; (c) Angew. Chem., Int. Ed. Engl., 10, 743 (1971).
- Th. Kauffmann, B. Muke, R. Otter, and D. Tigler, *Angew. Chem., Int. Ed.* Engl., 14, 714 (1975). (406)
- Engl., 14, 714 (1975).
  (407) B. Greving, A. Woltermann, and Th. Kauffmann, Angew. Chem., Int. Ed. Engl., 13, 467 (1974).
  (408) Reviews over related areas: macrocycles with thiophene sub-units.<sup>298,367,375</sup> heterocyclophanes,<sup>409,410</sup> general cyclophanes,<sup>410-412</sup> general macrocycle synthesis,<sup>369,413,414,495</sup> annulene,<sup>415,416</sup> macrocyclic polyethers,<sup>417,418,488</sup> Ilgand design and synthesis,<sup>315,488</sup> porphyrin li-gands.<sup>419,420,424,481-483,490</sup>
  (409) S. Fujita and H. Nozaki, J. Synth. Org. Chem. Jpn., **30**, 679 (1972).
  (410) F. Vögtle and P. Neumann, Synthesis, 85 (1973).

- (410) F. Vogue and P. Neumann, Synthesis, 65 (1973).
  (411) R. W. Griffin, Jr., Chem. Rev., 63, 45 (1963).
  (412) D. J. Cram and J. M. Cram, Acc. Chem. Res., 4, 204 (1971).
  (413) J. J. Christensen, J. O. Hill, and R. M. Izatt, Science, 174, 459 (1971).
  (414) J. J. Christensen, D. J. Eatough, and R. M. Izatt, Chem. Rev., 74, 351
- (1974)
- (415) F. Sondheimer, Acc. Chem. Res., 5, 81 (1972).
   (416) M. V. Sargent and T. M. Cresp. Top. Cur. Chem., 57, 111 (1975).
- (417) C. J. Pederson and H. K. Frensdorff, Angew. Chem., Int. Ed. Engl., 11, 16
- (1972)
- (418) G. W. Gokel and H. D. Durst, Synthesis, 168 (1976), and references cited therein.
- (419) J.-H. Fuhrhop, Struct. Bonding (Bertin), 18, 1 (1974).
- (420) J.-H. Fuhrhop, Angew. Chem., Int. Ed. Engl., 13, 321 (1974).
   (421) J. E. Falk, "Porphyrins and Metalloporphyrins", Elsevier, New York, N.Y.,
- 1964.
- (422) Numerous structural errors are incorporated in this manuscript.
- (423) S. Hünig and H. Hoch, *Ber.*, **105**, 2197 (1972). (424) "Porphyrins and Metalloporphyrins", K. M. Smith, Ed., Elsevier, New York, N.Y., 1975.
- (425) J. A. Elvidge and R. P. Linstead, J. Chem. Soc., 5008 (1952).
- (426) A. Matsuyama, A. Tahara, Y. Okazawa, T. Mitsuoka, K. Igarashi, T. Mi-zutani, C. Kaneuchi, and S. Kawabata, Japanese Patent 76 08, 275 (1976); Zutani, O., Kaneuchi, and S. Kawabata, Japanese Patent 76 of Chem. Abstr., 85, 5707a (1976).
   W. Wehner and F. Vogtle, *Tetrahedron Lett.*, 2603 (1976).
   K. Galuszko, Rocz. Chem., 50, 699 (1976).
   K. Galuszko, Rocz. Chem., 50, 711 (1976).

- (430) S. Grovowitz and T. Freid, Acta Chem. Scand., Ser. B. 30, 341 (1976).
- (431) E. Weber and F. Vögtle, *Justus Liebigs Ann. Chem.*, 891 (1976).
   (432) A. T. Balaban and I. I. Badilescu, *Rev. Roum. Chim.*, 21, 1339 (1976).
- (433) K. Yu. Novitskii, G. T. Khachaturova, and Yu. K. Yur'ev, Khim. Geterotsiki. Soedin., 818 (1966).
- (434) J. V. Knop, M. Milun, and N. Trinajstic, J. Heterocycl. Chem., 13, 505 (1976).
- (435) K. Yu. Novitskii, G. T. Khachaturova, and Yu. K. Yur'ev, Khim. Geterotsikt. Soedin., 822 (1966)
- (436) K. Yu. Novitskii, G. T. Khachaturova, and Yu. K. Yur'ev, Khim. Geterotsikt. Soedin., 406 (1969).

- (437) G. Kaupp, Angew. Chem., Int. Ed. Engl., 15, 442 (1976).
  (438) W. Rosen, Inorg. Chem., 10, 1832 (1971).
  (439) R. P. Smirnov, V. A. Gnedina, and V. F. Borodkin, Khim. Geterotsikt. Soedin., 1102 (1969).
  (440) M. G. Brazhnikova, M. K. Kudinova, N. P. Potapova, T. M. Filippova, E.
- Borowski, J. Zielinski, and J. Golic, *Bioorg. Khim.*, 2, 149 (1976); *Chem. Abstr.*, 85, 5602n (1976).
   P. Bamfield and D. G. Wilkinson, *J. Chem. Soc. C*, 2409 (1968).
- (442) Z. V. Todres, S. P. Avagyan, and D. N. Kursanov, Zh. Org. Khim., 11, 2457 (1975)
- (1975).
  (443) M. E. Konshin, *Khim. Geterolsikl. Soedin.*, 291 (1975).
  (444) Ya. L. Gol'dfarb, S. Z. Taits, F. D. Alashev, A. A. Dudinov, and O. S. Chi-zhov, *Khim. Geterotsikl. Soedin.*, 40 (1975).
  (445) H. H. Wasserman, D. D. Keith, and J. Nadelson, *Tetrahedron*, 32, 1867
- (1976)
- (446) H. H. Wasserman, E. Gosselink, D. D. Keith, J. Nadelson, and R. J. Sykes, *Tetrahedron*, **32**, 1863 (1976).
- (447) H. H. Wasserman, D. D. Keith, and G. C. Rodgers, Tetrahedron, 32, 1855 (1976).
- (448) J. L. Atwood, W. E. Hunter, C. Wong, and W. W. Paudler, J. Heterocycl. Chem., 12, 433 (1975).

- (449) B. Eistert, G. W. Müller, and T. J. Arackel, Justus Liebigs Ann. Chem., 1031 (1976). (450) V. M. Dziomko and V. A. Tomsons, Khim, Geterotsiki, Soedin., 669
- (1976)
- (451) B. Franck and C. Wegner, Angew. Chem., Int. Ed. Engl., 14, 424 (1975), and references therein.
- (452) R. L. Mahaffey, J. L. Atwood, M. B. Humphrey, and W. W. Paudler, *J. Org. Chem.*, 41, 2963 (1976).
   (453) S. Braverman, Y. Duar, and D. Segev, *Tetrahedron Lett.*, 3181 (1976).
- and references cited therein. (454) J. Graefe, G. Haufe, and M. Mühlstädt, Z. Chem., 16, 180 (1976)
- (455) Yu. E. Spirichev and K. N. Solov'ev, Dokl. Akad. Nauk B SSR, 20, 402
- (1976); Chem. Abstr., 85, 77365s (1976).
   (456) N. A. Kolesnikov, V. E. Maizlish, and V. F. Borodkin, USSR Patent 505,654 (March 1976); Chem. Abstr., 85, 78136y (1976).
- (457) W. L. Albrecht, U.S. Patent 3,954,984 (May 1976); Chem. Abstr., 85, 78173h (1976).
- (458) R. H. Wightman, T. M. Cresp, and F. Sondheimer, J. Am. Chem. Soc., 98, 6052 (1976).
- (459) H. Yasuo and N. Yoneda, Chem. Pharm. Bull., 24, 1128 (1976)
- (460) H. Keypour and D. A. Stotter, *Inorg. Chim. Acta*, 19, L48 (1976).
   (461) D. C. Liles, M. McPartlin, P. A. Tasker, H. C. Lip, and L. F. Lindoy, *J. Chem. Soc., Chem. Commun.*, 549 (1976).
- (462) An improved synthesis has been reported: M. Karpf and A. S. Dreiding, *Chim. Acta*, **59**, 1226 (1976). (463) Also see: Th. Kauffmann and R. Otter, Angew. Chem., Int. Ed. Engl., 15,
- 500 (1976).
- (464) D. N. Nicholaides, Synthesis, 675 (1976)
- (465) Yu. S. Shvetsov, A. N. Shirshov, and V. S. Reznik, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1103 (1976); *Chem. Abstr.*, 85, 108609z (1976).
- (466) H. Yasuo, *Chem. Pharm. Bull.*, 24, 845 (1976).
   (467) R. T. Gray, D. N. Reinhoudt, C. J. Smit, and Ms. I. Veenstra, *Recl. Trav. Chim. Pays-Bas*, 95, 258 (1976). (468) G. J. H. Rall, T. M. Smalberger, and H. L. deWaal, Tetrahedron Lett., 3465
- (1967).
- (469) T. M. Smalberger, G. J. H. Rall, H. L. deWaal, and R. R. Arndt, Tetrahedron, 24, 6417 (1968). (470) E. Brown and R. Dahl, J. Chim. Soc., Perkin Trans. 1, 2190 (1976).
- (471) J. F. Haley, Jr. and P. M. Keehn, *Chem. Lett.*, 999 (1976).
   (472) M. K. Eberbe and L. Brzechffa, *J. Org. Chem.*, 41, 3775 (1976).
   (473) D. E. Ames and R. E. Bowman, *J. Chem. Soc.*, 4264 (1955).
   (474) D. E. Ames and R. E. Bowman, *J. Chem. Soc.*, 2925 (1956).

- (475) B. W. Bycroft and T. J. King, J. Chem. Soc., Perkin Trans. 1, 1996 (1976).
- (476) M. C. Fallone, Pide Mayo, T. C. McMorris, T. Money, and A. Stoessi, Can. J. Chem., 42, 371 (1964).
- (477) R. L. Hamill and W. M. Stark, U.S. Patent Appl. 276,546 (1972); Chem. Abstr., 81, 2390y (1974). (478) M. Iwata, H. Kuzuhara, and S. Ernoto, Chem. Lett., 983 (1976).
- (479) J. Z. Brzeziński, J. Epsztajn, and T. J. Michalski, Tetrahedron Lett., 4635 (1976).
- 3, 409 (1975); 4, 397 (1976).
- (482) Symposia on the chemical and physical behavior of porphyrin and related compounds have been conducted and compiled by the New York Academy of Science: Ann. N.Y. Acad. Sci., 206 (1973); 222 (1974).
   (483) A. Gossauer, "Die Chemie der Pyrrole", Springer-Verlag, New York, N.Y.,
- 1974.
- (484) H. H. Wasserman, J. R. Scheffer, and J. L. Cooper, J. Am. Chem. Soc., 94, 4991 (1972).
- (485) M. Nakazaki, K. Yamamoto, and M. Ito, J. Chem. Soc., Chem. Commun., 433 (1972). (486) O. Tetsuo, M. Shigeyoshi, Y. Skata, and S. Misumi, *Mem. Inst. Sci. Ind.*
- Res., Osaka Univ., 28, 121 (1971); Chem. Abstr., 75, 20072b (1971). (487) G. R. Newkome, A. Nayak, G. L. McClure, F. Danesh-Khoshboo, and J.
- (407) G. H. Newkorne, A. Nayak, G. L. McCuire, F. Danesn-Knoshood, and J. Broussard-Simpson, J. Org. Chem., 42, 1500 (1977).
   (488) D. J. Cram, R. C. Helgeson, L. R. Sousa, J. M. Timko, M. Newcomb, P.
- (408) D. J. Gram, A. C. Hergeson, L. R. Sousa, J. M. Hinko, M. Newcomo, P. Moreau, F. de Jong, G. W. Gokel, D. H. Hoffman, L. A. Domeier, S. C. Peacock, K. Madan, and L. Kaplan, *Pure Appl. Chem.*, **43**, 327 (1975).
   (489) P. Dubs and R. Stüssi, *J. Chem. Soc., Chem. Commun.*, 1021 (1976).
   (490) J.-H. Fuhrhop, *Angew. Chem., Int. Ed. Engl.*, **15**, 648 (1976).
   (491) D. A. Laidler and J. F. Stoddart, *J. Chem. Soc., Chem. Commun.*, 979
- (1976).
- (492) T. J. van Bergen and R. M. Kellogg, J. Chem. Soc., Chem. Commun., 964 (1976).
- (493) D. C. Dittmer and B. B. Blidner, J. Org. Chem., 38, 2873 (1973) (494) F. Vögtle and K. Frensch, Angew Chem., Int. Ed. Engl., 1
- 15. 685 (1976). (495) R. R. Story and P. Busch, *Adv. Org. Chem.*, 8, 67 (1972).
   (496) H. H. Wasserman, A. R. Doumaux, and R. E. Davis, *J. Am. Chem. Soc.*, 88, 4517 (1966).

(497) T. J. Katz, V. Balogh, and J. Schulman, J. Am. Chem. Soc., 90, 734 (1968). (498) H. H. Wasserman and R. Kitzing, Tetrahedron Lett., 5315 (1969) (499) B. Tashkhodzhaev, L. G. Vorontsova, and F. D. Alashev, *Izv. Akad. Nauk* SSSR, Ser. Khim., 1287 (1976).

(500) Y. Kobuke, K. Hanji, K. Horiguchi, M. Asada, Y. Nakayama, and J. Furu-(501) T. J. Lotz and T. A. Kaden, J. Chem. Soc., Chem. Commun., 15, (1977).

(502) H. Bredereck and R. Gompper, Chem. Ber., 87, 726 (1954).