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/. Introduction 
This review deals with aspects of the thermodynamics of 

capillary systems, that is, systems where surfaces are important. 
Examples of such systems include those where the surface to 
volume ratio is high and those containing colloidal and other 
disperse phases. Most systems involving solids are, in fact, 
capillary systems, because any interaction between the bulk 
solid and the remainder of the system takes place via the surface 
region, convection effects being precluded. The thermodynamics 
of the surface region plays a greater role for solids than for liq­
uids. It is surprising therefore, but regrettably true, that solid 
surface thermodynamics is inadequately dealt with in most 
standard texts. Further, at the present time, knowledge of the 
physical and chemical behavior of solid surfaces has outstripped 
general understanding of the basic thermodynamics of this re­
gion. Commerical instruments have become available for a wide 
variety of techniques. Low-energy electron diffraction, Auger 
electron spectroscopy, x-ray and UV photoelectron spectros­
copy, secondary ion mass spectrometry, and other surface 
analytical probes have enabled the solid surface to be studied 
in intimate detail. Considerable advances in areas of academic 
and industrial importance such as catalysis, solid-solid reactions, 
alloy behavior, powder sintering, and electronic device behavior 
have resulted from experimental studies using these tech­
niques. 

These advances in surface experimentation have not been 

accompanied, however, by a corresponding increase in under­
standing of the thermodynamics of the solid surface region on 
the part of all surface scientists. Even those who are conversant 
with surface thermodynamics may not be fully aware of the quiet 
progress in this area that has accompanied the more spectacular 
advances in the experimental field. The subject has been clar­
ified conceptually by two recent developments, the increasing 
use of the Kramers energy function and the introduction of the 
generalized surface function. These have enabled a number of 
apparently disparate equations to be unified and consequently 
the whole subject to be simplified. They have also made it less 
difficult to grapple with the question of which surface thermo­
dynamic parameter is measured by a particular thermodynamic 
experiment. 

The purpose of this review is to set out the thermodynamics 
of solid surfaces simply and concisely, taking advantage of re­
cent theoretical advances. With honorable exceptions, the 
treatment of solid surface thermodynamics in textbooks is often 
brief, sometimes ambiguous, and occasionally misleading. It is 
not part of the aim of this paper to deal in depth with experi­
mental thermodynamic techniques or calculation of solid surface 
thermodynamic properties as these topics have been reviewed 
elsewhere.1-8 The effects of adsorption and of orientational 
dependence have also been covered recently5 and will not be 
dealt with here. 

An understanding of the thermodynamics of solid surfaces 
is of importance to all surface scientists. It is hoped that this is 
not without interest for the general reader, because thermody­
namics is the study that relates quantities that can easily be 
measured to different quantities that are needed for the purposes 
of understanding or calculation. Consequently some emphasis 
has been given to elucidating which parameter is actually 
measured by a variety of experimental techniques. 

The approach to the derivation of thermodynamic equations 
is only one of several that could have been used. In particular, 
no attempt has been made to incorporate a statistical me­
chanical treatment as exemplified, for example, by the work of 
Buff.9 Although there are many advantages to such a treatment, 
it is conceptually and mathematically simpler to consider a 
macroscopic approach. Certainly when dealing with the use of 
thermodynamic equations for calculation and understanding, 
there is much to commend the comment of Hildebrand10 that "it 
may be less 'correct' but more accurate to use macroscopic 
parameters to describe macroscopic properties, rather than 
integrating uncertain interatomic properties over an imprecise 
distribution function." 

This article also does not deal with the irreversible thermo-
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Figure 1. 

dynamics of the surface region. Such an approach, which has 
been applied with considerable success by Defay and his co­
workers11 especially to adsorption problems, explicitly treats 
the entropy production terms which are the central quantities 
of any irreversible formulation. It differs from the presentation 
given here not only in using entropy rather than Kramers energy 
as the basic parameter but, more importantly, by utilizing the 
concept of local equilibrium of the surface region. This leads to 
a problem, described as "non-autonomy", which arises because 
the surface thermodynamic properties then depend not only on 
surface region compositions but also on those in the surrounding 
bulk phases. Defay overcomes this with the device of "cross 
chemical potentials", which are the partial derivatives of the 
surface energy with respect to component concentrations, not 
in the surface region but in the adjacent bulk phases. These are 
calculated from molecular models. 

It should be noted that, in the approach used in this article, the 
use of the Kramers function modifies the definitions of enthalpy 
and Gibbs energy that are customary in bulk thermodynamics. 
This is discussed in detail below (section II.B.2). 

//. Surface Thermodynamic Parameters 

The surface thermodynamics of liquid or solid systems re­
quires a more detailed description of mechanical parameters 
than is normally demanded in the thermodynamics of bulk sys­
tems; use of the Kramers energy function is felt to be the sim­
plest approach to fulfilling this requirement. For solid systems 
there is an additional complication, first noted by Gibbs,12 that 
the work required to create unit area of surface by cleavage 
differs from the work required to form unit area by stretching. 
Consequently, more than one parameter is required but recent 
work13,14 has ingeniously circumvented some of the difficulties 
arising from the presence of two parameters by proposing a 

single path-dependent parameter, the generalized surface en­
ergy function. 

In this section, the definition and properties of these param­
eters will be set out, but it is necessary first to clarify certain 
terms that will be used subsequently in describing the solid 
surface. 

A. The Solid Surface 
1. Topography and Surface Area 

With few exceptions, such as mica, solid surfaces are not flat. 
The superficial area, as represented by the product of the length 
and breadth of a rectangle enclosing part of a surface, is not the 
same as the actual surface area which takes into account the 
areas of the hills and valleys within the rectangle. If the surface 
is very rough, with very pronounced and irregular asperities, the 
superficial area is considerably smaller than the actual area. 
Such a surface is unlikely to be in a state of equilibrium and 
caution should be exercised when considering systems con­
taining such surfaces. The properties of a portion of surface are 
dependent on orientation, and if there are many portions of dif­
ferent orientation, correct summation over the whole surface 
may be a difficult task. 

Consideration will be restricted here to systems in which the 
difference between superficial and actual areas is not of over­
riding importance and, unless otherwise stated, the area, fi, will 
refer to superficial, not actual, area. This complication is not 
always dealt with in standard texts because they tend to con­
centrate on the surface thermodynamics of liquid systems which 
usually possess smooth surfaces. 

2. Types of Surface 

A surface does not exist in isolation. It is the interface region 
in a two-phase system and valid thermodynamic conclusions 
can only be drawn by considering the system, namely, the in­
terface and the two bordering regions, as a whole. 

There are many types of surface. External surfaces include 
those found in liquid-gas, liquid-vapor, solid-vapor, solid-(vapor 
+ gas), and solid-vacuum systems. The last category might 
initially appear a surprising inclusion in a thermodynamic article 
concerned with systems in equilibrium, as one would expect a 
solid to be accompanied by its own vapor, even in the absence 
of other components. Certain substances such as tungsten, 
however, have such a low vapor pressure that, at room tem­
perature, the whole of the earth's atmosphere is insufficiently 
large in volume to contain a single atom of vapor and conse­
quently in these cases it is meaningful to consider a system 
where the solid is truly bounded by vacuum. Internal surfaces 
are those within the dense bulk phases of the system and include 
liquid-liquid, solid-liquid, and solid-solid interphase boundaries, 
and special cases of the last category such as grain boundaries. 
A complicated system may well include more than one type of 
surface. 

Satisfactory treatments of liquid-gas and liquid-vapor systems 
are given in many standard texts, e.g., Adamson15 and Lewis and 
Randall;16 solid-liquid systems have been discussed by Chad-
wick17 and grain boundary energies have also been re­
viewed. 2'1S>19 This article therefore concentrates in its treatment 
on solid-vapor, solid-(vapor + gas), and solid-vacuum sys­
tems. 

3. Gibbs Dividing Surfaces and the Guggenheim 
Surface Region 

Many properties of a system, for example, concentration of 
a particular species, vary as a function of the distance perpen­
dicular to the surface, as shown in Figure 1a. Gibbs12 found it 
mathematically convenient to consider an idealized system, 
depicted in Figure 1b, with properties identical with those of the 
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whole real system. The "surface of discontinuity" or "dividing 
surface" in the idealized system is a two-dimensional region 
whose position is determined by the requirements that the 
property under consideration should maintain a uniform value 
in each bulk phase right up to the dividing surface. This corre­
sponds to equating the two shaded areas in Figure 1b. A disad­
vantage of this approach is that the position of the dividing sur­
face alters according to the property considered. This is of 
particular importance when considering adsorption.5,15 

An alternative approach is that of Guggenheim;20 here the 
surface is visualized as a region possessing thickness and hence 
volume, the boundaries of which lie at the positions where the 
actual bulk phase properties cease to be uniform, as shown in 
Figure 1c. In this approach two dividing surfaces, one at each 
boundary, are in fact employed as revealed in Figure 1d. A further 
disadvantage is that, in principle, terms dependent on surface 
volume are present in the equations, but it is difficult to assign 
values to these terms. This was of greater importance before 
the discovery of the modern surface analytical techniques 
mentioned in the introduction than it is now. 

A more detailed discussion of the relative merits of the Gibbs 
and Guggenheim approaches together with an alternative for­
malism of Goodrich,21 has been given elsewhere.5 It is perhaps 
true to say that consideration of the relative niceties of the al­
ternative dividing surface approaches has less bearing on the 
solid surface region than the giving of proper weight to decisions 
as to the correct surface parameter to use in a particular situa­
tion. 

The approach used here roughly follows that of Guggenheim 
in considering a closed system shown in Figure 2 and consisting 
of a denser phase (denoted by superscript a) separated from a 
less dense phase (superscript /3) by a three-dimensional surface 
region (superscript TT); terms involving the surface volume V 
or the thickness of the surface phase, 6, are usually neglect­
ed. 

4. Surface Excess Quantities 

An extensive property, X, of the closed system shown in 
Figure 2 may be apportioned into three parts, one for each region 
of the system 

X = Xa + X3 + X* (1) 

The quantity X* is referred to as the surface excess of X. For 
example, the surface excess amount of substance of the /th 
component, nf, is by definition 

n,» = n, - n,a - nfi (2) 

where the lack of a superscript denotes the value of the property 
for the whole system. 

5. Superficial Quantities 

A superficial quantity, x71", is a surface excess quantity, X*, 
per unit area U, the area being the superficial area as defined 
in section II.A. 1. Thus the superficial Helmholtz energy, a17, is 
defined as 

The use of the symbol Q for area is to preserve the internationally 
agreed symbol, A, for Helmholtz energy. The whole question of 
nomenclature and symbolism in this field leaves much to be 
desired.22,23 With the exception of amount of substance, upper 
case letters here denote surface excess parameters, and lower 
case letters are used for superficial quantities. In order to retain 
a symbol originally proposed by Gibbs, the superficial amount 
of substance of the /th component, nf/Q, is denoted by T,, and 
by convention T i is the superficial concentration of the major 
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component of the whole system. Because surface segregation 
of minor impurities from the bulk is of great importance in solid 
systems, T i may well be much smaller than the values of T1 for 
some of the impurities, although in the bulk solid phase a, 
component 1 completely predominates. 

Superficial quantities have also been called4,5 ,8 ,23 specific 
surface quantities. From their definition it can be seen that they 
are functions of the properties of the whole system rather than 
of the surface region alone. 

6. Elastic and Plastic Surface Strains 

If one distorts the surface of a liquid, there is no barrier to 
prevent molecules from entering or leaving the surface. A new 
state of equilibrium can be reached, in which each surface 
molecule covers the same area as in the original undistorted 
state. The number of molecules in the surface region has 
changed, but the area per surface molecule has not. The surface 
strain, de, i.e., the change in surface area per unit area, is said 
to be plastic in this case; plastic strains can also arise in solids 
near their melting points. 

In the presence of long-range order, for example, in a solid 
far from its melting point, a distortion of the surface can be 
thought of as resulting in a change of area which cannot be ac­
commodated by migration of atoms to and from the surface. 
While the distortion persists the number of molecules in the 
surface region therefore remains constant but the area occupied 
by each molecule differs from that in the undistorted case. Such 
a surface strain is said to be elastic. 

If the stress causing a plastic strain is removed, the original 
state is regained by change in the number of molecules at the 
surface, whereas if an elastic strain is removed, the area oc­
cupied by each molecule returns to its original value, no mi­
gration taking place. It can be seen that the work required per 
unit area to produce new surface under plastic strain conditions 
is independent of the new area formed, because the new area 
is similar in nature to the existing area. Under elastic strain 
conditions, the work required is a function of area formed, be­
cause the greater the area formed, the greater the deviation from 
equilibrium intermolecular lattice spacing at the surface. 

The above is a summary of what may be termed the historical 
approach to the subject, which is dealt with in detail else­
where.4"8 ,24 -27 A more persuasive approach is to regard elastic 
and plastic strains as extreme cases of a generalized strain, in 
much the same way as ionic and covalent bonds may be con­
sidered as limiting descriptions of electron distribution between 
pairs of atoms. This idea has been developed by Couchman, first 
as a student in the school of Kuhlmann-Wilsdorf (

28 ,29 and sub­
sequently in collaboration with Everett,13,14 and is discussed in 
detail later (section III.B; section IV.A). 

7. Stretching and Cleavage 

Gibbs12 pointed out that when considering the interface be­
tween two perfectly fluid masses "the work spent in increasing 
the surface infinitesimally by stretching is identical with that 
which must be spent in forming an equal infinitesimal amount 
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of new surface. But when one of the masses is solid, and its 
states of strain are to be distinguished, there is no such equiv­
alence between the stretching of the surface and the forming 
of new surface." He elaborated on the difference for solids be­
tween stretching and forming a surface or interface in the fol­
lowing words. "Let us consider a thin plane sheet of a crystal 
in a vacuum (which may be regarded as a limiting case of a very 
attenuated fluid), and let us suppose that the two surfaces of the 
sheet are alike. By applying the proper forces to the edges of 
the sheet, we can make all stress vanish in its interior. The 
tensions of the two surfaces are in equilibrium with these forces, 
and are measured by them. But the tensions of the surfaces, thus 
determined, may evidently have different values in different di­
rections, and are entirely different from the quantity which we 
denote by. a, which represents the work required to form a unit 
of the surface by any reversible process, and is not connected 
with any idea of direction." 

The work required to form unit area of new surface, <r, is a 
scalar quantity and is called the superficial work; it has previously 
been named the specific surface work,45 '823 the surface en­
ergy,30,31 the surface tension,6'7'26'26 and the surface free en-
e rgV 1,2,21,24,27 T h e a n a | 0 g o u s quantity that applies in a stretching 
situation is tensoriai in nature and is here called the surface 
stress Tif, other workers6-8'25'26'28'29 have employed the sarr^ 
name but some1'2'24,27 have preferred to use surface tension 
to refer to this parameter. It is clear that the name "surface 
tension" is unsafe to use when applied to solid surfaces; for liquid 
surfaces, on the other hand, where stretching, which can be an 
elastic process, is indistinguishable (at low rates of distortion) 
from cleavage, essentially a plastic process, the quantities c 
and Tij are identical and the customary name "surface tension" 
is quite unambiguous. 

B. The Kramers Energy Function 

7. Definition 
Much early controversy revolved around the question of 

whether a was identical with the superficial Helmholtz energy 
aT, and if not whether <x or a*' was the appropriate parameter 
to use in a number of classical surface thermodynamic equa­
tions. A thorough discussion is given by Johnson.32 Such a 
problem never arises if Herring's approach,7 in which the su­
perficial work is identified with the superficial Kramers energy, 
is employed. 

It is unlikely that the general reader will have previously en­
countered the Kramers energy, also called the Legrand function 
or mechanical work function, and it is therefore worthwhile to 
discuss its origin. We begin with the definition of the internal 
energy, U of a reversible system in terms of heat, q, and work 
w 

dU = dq-dw (4) 

Both q and w are path dependent and are here defined for a re­
versible path. Equation 4 is a statement of the first law of ther­
modynamics; by combination with the second law 

dS = dqlT (5) 

where S is entropy and T is temperature, 

6U- TdS = dA = -dw (6) 

which always serves as a definition of the Helmholtz energy, 
A. 

It is invariably helpful to divide the work, —d w, into two por­
tions, which are normally the physico-chemical work 2/u,-d/7/ 
(where ju/ and n,- are the chemical potential and amount of sub­
stance of the /th species) and the work of expansion, -Pd V, 
where P is pressure. Thus 

dA = 'Znt&n,- PdV (7) 

and hence 

dA + PdV= ZfMidn,= dG (8) 

which normally serves as a definition of the Gibbs energy. 
In the case of systems in which work other than work of ex­

pansion and physico-chemical work is involved, the definition 
of the Gibbs energy becomes ambiguous. Let us involve other 
terms, for example: (a) electrochemical work EdQ, where E is 
the potential and Q is the total charge; (b) magnetic work W^dM, 
where H™ is the field strength and M the magnetization; (c) 
gravitational work pgdx, where p is the density, gthe acceler­
ation due to gravity, and x the vertical displacement; (d) surface 
work 7sdfi, where 7s is a symbol chosen so as not to preempt 
a decision as to whether a or T,y would be appropriate, and 0 
is, as usual, area. 

Now, we divide the work into two portions as before; to do this 
we must decide the essential attributes pertaining to each por­
tion. In eq 7, the first portion, in that case solely the physico-
chemical work term, was useful in the context of a chemical 
reaction whereas the second portion, the work of expansion, 
although capable of being harnessed by an appropriate machine, 
was an expender of energy in the context of a chemical reaction. 
A working criterion for deciding in which of the two categories 
a given work term belongs is that the first category contains work 
terms useful in the context of a chemical reaction and the second 
contains terms of a more mechanical nature. Thus 

-dw = -dwusefU| - dwmechariicai = d/A (9) 

where 
-dwuseful = (ZM/dfl/ + EdQ) = dG (10) 

and 

-dwm6Chanical = (-PdV+ysdQ + HFdM+ pgdx) = dV 
(11) 

Thus, combining eq 9, 10, and 11 

dA = dG+dV (12) 

which, with eq 11, serves to define the Kramers energy or me­
chanical work function V. 

The allotting of certain terms such as the magnetic work and 
the electrochemical work is, to an extent, dependent on cir­
cumstances; if, for example, in a particular situation the former 
can be harnessed within the context of a chemical reaction, then 
the term 1-TdM belongs in eq 10 rather than eq 11. 

Integration of eq 12 gives the relation 

V = A-G (13) 

2. Modification of Definition of Enthalpy and Gibbs 
Energy 

The Gibbs energy function is defined in this formalism by eq 
10 and 13, which differ but little from the normal definition, eq 
8. A problem arises when considering enthalpy H, normally 
defined by the two following equations 

H= U+PV (14) 

H= G+ TS (15) 

For the simple situation where eq 6 and 8 are true, eq 14 and 
15 are both valid. In the presence of other work terms such as 
(a) to (d) above, either eq 14 or eq 15 must be untrue. It has been 
found more helpful to retain eq 15 as a definition and to discard 
eq 14 in the general case. Thus, eq 15 serves as a definition of 
enthalpy, and in combination with eq 13 gives 

H= A-V+TS (16) 

which with the integral of eq 6 gives 

H=U-V (17) 
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Combining eq 17 with the integral of eq 11 

H = U + PV - 7SQ - hTM - pgx (18) 

A useful formalism to distinguish between the "conventional" 
definitions of G and H applicable to simple systems, and the 
wider definitions set out here, has been proposed by Prigogine, 
Defay, et a l .3 3 They use 

but 

giving 

where 

G = U - ^ - TS= H- TS 

G' = U+ PV- TS= H'- TS 

G' = G + ST/' and H' = H + V 

vf' = \V + PV 

(19) 

(20) 

(21) 

This point has also been discussed by Barnes.34 

Occasionally,35 an open system comprising bulk solid phase 
plus the surface region, which can exchange both energy and 
material with the surroundings, is employed in considering ad­
sorption. Here a parameter, the open system energy function, 
J, is used where 

J= U-Zn1Hj 

so that, from eq 8 and 19 

<f = J+ TS 

(22) 

(23) 

The above is also compatible with the definition of enthalpy, 
H, as being the sum of the internal energy U and the "external 
energy", V, the latter arising from coupling with external me­
chanical forces.36 

To summarize, eq 6, 9-13, and 15-19 are universally valid 
and will be used in this work, eq 7, 8 and 14 are not universally 
valid and will not be used here, and eq 20 and 21 are correct but 
will not find further application in this paper. 

C. Definition of Surface Thermodynamic 
Parameters 

It is only after the above preliminary considerations that it is 
possible to give definitions of the major surface thermodynamic 
parameters. Even at this stage the reasons for some of the 
constraints stated in the definitions will not be obvious. These 
will become clear in section III, and it was felt helpful to approach 
that section with some informed precognition of the terms em­
ployed! 

1. Superficial Work, a 

The superficial work, a, is identical with the superficial Kra­
mers energy 

<j = \pw (24) 

where 

= v£ _ A T T _ Qw _ ( A _ Aa _ A0) ^ ( G - G ^ - G 3 ) 

(25) 

as described in sections II.A.4 and II.A.5. 
As will be seen from section III.C.2, the superficial work may 

be defined as the reversible work at constant temperature, 
electric field, chemical potential, and elastic strain required to 
form unit area of new surface. It is a scalar quantity. 

2. Surface Stress, T,y 

The surface stress is the reversible work required to form unit 
area of new surface by stretching with a linear stress, or a force 

lyy 

>T» 

Figure 3. 

per unit length, acting in the /th direction on an edge normal to 
the /th direction, / and / being in the plane of the surface, and 
conditions of constant temperature, electric field, and chemical 
potential applying. It is a tensorial quantity; for those unfamiliar 
with tensorial notation, reference to Figure 3 may be helpful. 

For an isotropic solid, the directional dependence of the 
surface stress disappears, and in this case the surface stress 
becomes T, the half-sum of the diagonal components of the 
surface stress tensor. The relationship between surface stress 
and superficial work will be discussed in sections III.B.1 and 
III.B.3. 

3. The Generalized Surface Intensive Parameter, ys 

This is a superficial tensorial property14 which is conjugate 
to the general (part plastic and part elastic) surface area change, 
and may be formally defined in terms of the superficial work, a, 
and surface stress, T, by the equation 

detat detot 
(26) 

where dep, dee are the plastic and elastic contributions to the total 
strain detot-

It is of great conceptual use, as will be seen in connection with 
equations derived from the Gibbs-Duhem relation for a surface 
region. It is accurately but unmemorably named; a preferable 
alternative might well be the simple form "surface energy". This 
latter name is customarily used by metallurgists and materials 
scientists to denote some form of surface parameter. It is not 
unfair to say that they are often unclear as to precisely which 
parameter (a, a"', T, etc.) they intend the term to refer, and ys 

would be as appropriate as any other alternative. Consequently 
the name "surface energy" will be used for 7 s in the remainder 
of this article. The relationship between surface energy and other 
parameters will be discussed in section III. 

4. Surface Free Energy, a* 

As is customary, this name will be given to the superficial 
Helmholtz energy, aT, which has already been defined by eq 3. 
The surface free energy is related to the superficial work, a, by 
the fundamental surface thermodynamic equation 

= a* - 2,HiT 1 - Eq* (27) 

the derivation of which is given in section III.C.1. The surface 
free energy is not an important parameter in solid systems. 

5. Surface Tension 

As has been mentioned in section II.A.7 above, it is the 
present author's opinion that this name should not be used for 
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solid surface parameters as it has been variously used for both 
a and T/y. As terminology in this field has not yet been authori­
tatively established, however, it is possible that in the future the 
use of the name "surface tension" for 7s may be suggested, as 
an alternative to the present usage, "generalized surface in­
tensive parameter" or "surface energy". The problem of dif­
ferentiating between the name and the parameter that it denotes 
has been discussed elsewhere,23 in terms of the distinction, 
analyzed in the White Knight's song in "Through the Looking 
Glass" 37 between the name of the song and the song itself. 

For liquids, the term "surface tension" is not without its 
complications. In experiments such as the ripple method, it has 
been suggested25 that more than one parameter is required on 
mechanical grounds. In less esoteric situations, it is also true 
that two parameters are necessary, but for compositional rather 
than mechanical reasons. Thus, one may carry out experiments 
on a static, reproducible liquid system in which complete equi­
librium has been achieved throughout, so that the superficial 
excess concentration terms, T1, T2, etc., assume their equi­
librium values. The parameter in eq 27 is then the equilibrium 
surface tension and is clearly not equal to the surface free en­
ergy, unless (a) the term EqT is zero; (b) there is no elastic strain 
(section IV.A.1); and (c) the system contains but one component, 
and a dividing surface for which I \ = 0 is chosen; or (d) in a 
multicomponent system, a dividing surface for which Sju,r, = 
0 is chosen. 

One may also carry out experiments on an alternative system 
in which the surface is created and studied so rapidly that 
compositional equilibrium is not achieved. In such a dynamic 
system, the surface has the composition of bulk phase a, and 
cr in eq 27 is equated to cr^n, the dynamic surface tension. If now 
(a) the term Eqr is zero and (b) /7,a » n/3 so that n( =n nf, and/or 
(c) nf » nj" so that ns =n n/3, and consequently T, = T1 = 0 
for all /and jthen, from eq 27 

and 

(Tdyn = a* (28) 

which means that under certain conditions for liquid systems the 
surface free energy can be determined. 

For solid systems, the distinction between equilibrium and 
dynamic properties cannot be made on compositional grounds 
alone, as the mechanical considerations concerned with 
cleavage and stretching assume a great importance. 

6. Other Surface Thermodynamic Parameters 

It is, of course, possible to define superficial and surface 
analogues of all the conventional extensive thermodynamic 
parameters; thus 

V U-W-* ( 2 g ) 

" n n 
where (F and LF are the superficial internal energy and the 
surface internal energy, respectively. Care must be taken not 
to confuse LF with the surface energy, or generalized surface 
intensive parameter, 7s, defined above. Further 

_ IF H- hP- H3 

h * = — = (30) 

where hw and hF are the superficial enthalpy and surface en­
thalpy, respectively. 

From eq 17, it can be seen that 

h* = u" - a (31) 

The superficial entropy and surface entropy are defined as 

S* S- S" - S13 

and, as expected 

Q 

a* = u* — 

Q 

TsT 

(32) 

(33) 

g* = hT — Ts" (34) 

It is possible to relate S* to independently measurable heat 
capacities. If xCp( T) denotes the heat capacity of a finely divided 
sample, then 

(Sf+S?+ S")-S0= f 7 , r C p ( 7 ) ^ 
Jo T 

(35) 

where S0 is the residual entropy at absolute zero. 
If 0CP( T) denotes the heat capacity for another solid sample 

identical in all respects to the first except that the surface area 
is minimized, then 

(36) 

so that 

where 

(S"+SC)-SP= j y o C p ( D y 

CT df 
S-= J 0 AJCp(T) — (37) 

AJCp(T) = -C p (7 ) - 0 C P ( 7) 
In a similar manner 

1 f 298.15 

/J*- (^)0 = jj J 7 AJCp(T)dT 

(38) 

(39) 

where (ft*-)0 is the standard superficial enthalpy, namely hr at 
T= 298.15 K and P = 101325 Pa. 

Surface parameters of a rather different nature include the 
following. 

a. The Effective Fracture Surface Energy, 7EFSE 

This applies to an experimental situation in which a block of 
material is cleaved by initiating and subsequently propagating 
a crack. Initiation can be achieved by spark machining or cutting 
with a blade, propagation by pulling on either side of the crack 
with a tensile testing machine or similar device. The work needed 
to propagate the crack can be measured; this work is utilized 
in two ways: firstly to form the two new surfaces for which an 
energy of a per unit area is required and, secondly, and indeed 
predominantly, for plastic deformation around the crack tip. 
TEFSE is defined38 as the energy expended in such an experiment 
per unit area of surface formed at constant temperature. Nu­
merically it is much larger than a. 

b. The Surface Layer or Cuticular Energy 

This parameter is uniquely used by Bikerman.39 It is difficult 
to do justice to his pungently expressed and idiosyncratic views 
which include repudiation of the majority of the concepts and 
definitions conventionally used in this subject. The interested 
reader is referred to his undeniably stimulating paper for further 
consideration of this parameter. 

c. The Heat of Adsorption 

When a gas or vapor is adsorbed on a surface, the energy of 
the system changes as a function of coverage. This energy 
change can be expressed15 as a differential or an integral 
quantity and is of great importance in adsorption studies, but 
detailed consideration is outside the scope of this article. 

d. The Surface Pressure, I I 

The surface pressure15 is the difference between the surface 
energy of a solution and the surface energy of the solvent. It is 
very useful in the surface thermodynamics of liquid systems, but 
plays a much smaller role in the solid systems discussed here. 
It is possible to construct surface pressure-area isotherms for 
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surface liquid film formation, and Barnes34 has shown that the 
integral J l l d f i is related to the quantity - A G ' defined in eq 20, 
whereas J*QdII is related to AG. 

Further surface parameters such as the disjoining pressure, 
which are of utility in such fields as colloidal systems, adhesion, 
and thin film studies, are also reviewed by Barnes.34 

e. Surface Elasticity Modulus, E x 

As will be seen in a later section (III.B.1), the superficial work 
a and the mean surface stress T are related by the Shuttleworth 
equation 

T = a + Q - ^ - = " + " ^ = a+E* (40) 
(di2)e d In tt 

The quantity, doVd In Q = E*, the surface elasticity modulus, 
is of considerable use in the study of surfactant solutions40 and 
colloidal systems34 and is a major stability parameter in irre­
versible surface mechanics of solid systems, but considerations 
of space preclude detailed consideration here. Er is sometimes 
referred to11 as the Gibbs elasticity. It should be noted that only 
elastic area changes are involved. 

///. Surface Thermodynamic Equations 
Having defined the parameters necessary to describe the 

thermodynamic behavior of a system containing a solid surface, 
it is now possible to examine their interrelationships in detail. 
This section contains a consistent set of derivations of the major 
surface thermodynamic equations. 

A. The Gibbs-Duhem Equation for a Surface 
The Gibbs-Duhem relation is arguably the major equation of 

chemical thermodynamics. It is obtained by comparing the 
fundamental relationship involving the derivative of the internal 
energy, eq 41, with the integrated Euler relation for the internal 
energy, eq 42. In bulk-phase thermodynamics, a combination 
of the first and second laws gives, on ignoring magnetic and 
gravitational terms 

da = TdS + Sjtt/dn, + EdO - Pd V (41) 

and integration of this relation yields 

U= TS+ 2 jit A +EQ-PV (42) 

Differentiating eq 42 leads to 

6U= TdS+ SdT+ S^/dn, + 2/7,-djU/ 
+ EdO + O d E - PdV - VdP (43) 

and consequently, from eq 41 and 43 

0 = SdT+ 2n,djii/ + O d E - VdP (44) 

so that, at constant electric field, E, 

2n,d/Lt/= V d P - SdT (45) 

which is the normal form of the Gibbs-Duhem equation. 
For systems containing surfaces, the predominant difficulty 

is to decide the nature of the surface terms that should appear 
in eq 41 and 42. This has been resolved by Everett and Couch-
man1314 who established that the appropriate term for incor­
poration in eq 41 is 7sdfi whereas the surface term in eq 42 is 
oti. Substitution of these terms in eq 41 and 42, and conversion 
to surface excess quantities by use of eq 1 therefore gives 

dUw = TdS* + Sju/dn^ + EdQ^ + 7sdQ (46) 

and 

LF = TS* + Znin,* + EQ* + oQ (47) 

tained, from differentiation of eq 47 and subtraction of eq 46, 
in the form 

O = S*dT+ 2/Vdj t ; + Q^dE + (TdQ + tide - 7sdfi (48) 

Conversion to superficial quantities may be achieved by di­
viding by Q, noting that 

dti/U = detot 

where detot is the total area strain; 

O = s 'dT+ 2r,dM; + q%dE + <rd€tot + da - 7sdetot (49) 

where the superficial charge, qv, is defined by 

Q-Qfx-Q3 

<T S (50) 

The total strain may be divided into two contributions, the 
plastic strain dep and the elastic strain dee, so that 

detot = dtp + dee (51) 

and substituting eq 26 and 51 into eq 49 gives 

0 = s^d T + Srjd/u,- + O/'dE + da + (a - T)dee (52) 

This is a most versatile form of the Gibbs-Duhem equation for 
a surface, from which three major thermodynamic equations, 
namely the Shuttleworth equation (section III.B.1), the Gibbs 
adsorption equation (section III.C.2) and the Lippman equation 
(section III.A.1) may be immediately obtained. 

1. The Lippman Equation 

This equation is frequently used in electrocapillarity theory, 
and follows directly from eq 52 as pointed out by Couchman and 
Davidson42 

(d<T/d£)r,M,ee = - c r (53) 

The more conventional form of the Lippman equation involves 
the quantity (balbE)T§m which is related to q* by 

(balbEiT,m =-cT-(o- T)(dee/dEW (54) 

The magnitude of the second term is highly uncertain, in view 
of the difficulty of obtaining unambiguous values of T and also 
(beeloE)mJ. 

B. Elastic and Plastic Strain Interrelationships 

1. The Shuttleworth Equation 
This equation was first derived in a classic paper by Shuttle-

worth27 for solids of threefold or greater symmetry. He obtained 
from a cyclic approach 

T = a + fi(d<7/dQ) (40) 

As Eriksson24 originally showed, the final term in this equation 
should embody a partial derivative; Couchman and co-work­
ers28,29 also revealed that the strain term was solely elastic in 
nature. Thus, as can be seen clearly from eq 52 

T = a + (ba/bee)T^,E (55) 

2. The Couchman-Everett Equation 

From eq 49 

7s = a + (bolbe*&T.n.E (56) 

which was first derived by Couchman and Everett.14 Considering 
eq 26 and 56, eq 55 can be seen to be a limiting case of eq 56, 
and likewise it is clear that 

so that the surface Gibbs-Duhem relation may be initially ob- (bo/bep)LllhE = 0 (57) 
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3. The Herring-Mullins Equation 

This is the tensor equivalent of the Shuttleworth equation and 
can be derived7,8 by equating the work required initially to stretch 
and subsequently to cleave a unit solid cube with the work re­
quired to carry out the two processes in the reverse order. This 
gives, at constant T, HI, and E 

Txx = o + d<T/d(6e)x* (58) 

and likewise for the yy and zz stretching process. Further, the 
work required initially to shear and subsequently to cleave a unit 
cube can be equated to that required to carry out the processes 
in the reverse order, giving 

Txy = 6a/6(ee)xy (59) 

and likewise for yz and zx shear processes. Equations 58 and 
59 may be combined by using the Kroenecker delta function 5,y 
to suppress the a term in the shear case. This function has the 
property 

5/y- = i if / = y (6Q) 

bjj = 0 otherwise 

Hence 

T,y = 8 Ij(T + (d(7/d(ee)/y){ee)/rM//,r,M(.E < 6 1 ) 

which is the Herring-Mullins equation. 
The surface energy 7s is tensorial in nature, and consequently 

a tensorial equivalent of the Couchman-Everett equation can 
be derived.43 

C. Equations Embodying the Surface Excess 
Concentration 

1. The Fundamental Surface Thermodynamic Equation 

From eq 24 and 25 

a = a* - g* (62) 

Integrating eq 10 for the whole system gives 

G = 2,HiP, + EQ (63) 

and similar equations hold for the solid, a, and vapor, /3, 
phases 

G« = S/u,"/?/" + EaQa (64) 

Q3 = 2 M / < V + EPQV (65) 

For physicochemical and electrochemical equilibrium, the 
conditions are 

H, = ma = nP = Hf (66) 

E = Ea = E8 = E* (67) 

Hence 

rr_Q-GF-Gfi _ y, (nt - n,<* - nfi) 

+ E ( Q - ^ - Q g ) (68) 

Therefore 

g« = 2IX1T1+ Eq' (69) 

and 

o- = a* - g* = a* - 2mT, - Eq" (27) 

which is the fundamental surface thermodynamic equation. The 
conditions under which u and a*" may be equated have been 
considered (section II.C.5). It should be noted that if the surface 
elastic strain is not zero, there is a depletion of material in the 
surface region. Hence, even for a one-component system, I \ 

R. G. Linford 

is not zero in the presence of an elastic strain, and consequently, 
even in the absence of the electrochemical term Eq* 

a ^ a , if dee ^ 0 (70) 

It must be remembered that the choice of dividing surface af­
fects1533 the values of a* and T1. 

2. The Gibbs Adsorption Equation 

From eq 52 

da = - s ' d T - Sr,dM/ - q*dE+C£ - a)dte (71) 

which is the full form of the Gibbs adsorption equation. It can now 
be seen that, as stated in the definition (section II.C.1), a is a 
function of T1 HI, E, and ee. 

It is common but incorrect to omit the last two terms of eq 71. 
A definition of the superficial entropy in terms of the variation 
of (T with T immediately follows from eq 71 

s* = -(d(r/dDM,,£,ee (72) 

emphasizing a point originally made by Herring7 that the de­
pendence of (T on temperature, and indeed on chemical potential, 
should only be measured under conditions of constant elastic 
strain if the results are to be meaningful. 

3. The Gibbs Adsorption Isotherm 

This takes the general form 

r , = -(d<r/dM/)r,E,«.,^. (73) 

The superficial excess of component /, T,-, is related to the 
coverage of species /, 6, which is adsorbed from the gas or vapor 
phase. The chemical potential of species /', HI< is related to its 
partial pressure P1 and consequently eq 73 is an isotherm similar 
in nature to the Langmuir, BET, Freundlich, and other adsorption 
isotherms which also relate 0, to P1. 

Equation 73 is frequently applied to a particular idealized 
two-component system consisting of a solid phase a, entirely 
composed of component 1 of negligible vapor pressure and a 
gas or vapor phase /3, consisting entirely of component 2 which 
is insoluble in the solid phase a, but which can be adsorbed in 
the surface region w. 

Now 

M2 = M20 + FtT\n f2 (74) 

where fe is the fugacity or escaping tendency of component 2. 
At low pressure, or for an ideal gas, f% equals P2, the partial 
pressure, so that 

dju2 = RTdInP2 (75) 

and 

RTT2IP2 = -(ocloP2)T,E,(a,m (76) 

It can be seen from eq 76 that the more gas that is adsorbed, 
the greater the reduction in <r, thus illustrating that adsorption 
lowers the superficial work and that dirty surfaces have lower 
values of the superficial work than clean surfaces. 

D. Equations Applying to Curved Surfaces 

In what has gone before, it has been implicitly assumed that 
the surface region is flat. Frequently, however, it is necessary 
to consider the vapor pressure or solubility of small solid parti­
cles, or their behavior on sintering, or the properties of gas or 
vapor bubbles entrapped in a solid matrix. In situations of this 
type, it is not permissible to ignore the surface curvature. 

7. The Laplace Equation 

This equation, first derived in 1806 for a liquid-vapor system, 
relates the hydrostatic pressures inside and outside a bubble to 
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the bubble radius and to a surface thermodynamic parameter. 
It probably will not surprise the reader that the correct choice 
of surface thermodynamic parameter has been a matter of some 
uncertainty. If one considers a system where the hydrostatic 
pressure in the solid phase a, P", is not equal to the hydrostatic 
pressure in phase /3, then under conditions of mechanical 
equilibrium, i.e., of constant Kramers energy for the whole 
system, ignoring changes in gravitational and magnetic work it 
can be seen from eq 11 that 

ignoring the surface volume term. Now, if the volume of the 
whole system remains constant 

so that 

dV = 0 = dVa + dV3 

7sdQ = d VP(PP - P") 

(78) 

(79) 

which is an analogous equation to that arrived at by Couchman 
and Jesser29 from consideration of equilibrium conditions, 
without recourse to the concept of Kramers energy. The problem 
is now to ascertain the nature of 7s . Couchman and Jesser take 
it as axiomatic that mechanical equilibrium of static systems 
concerns strain equilibrium solely of an elastic nature, so that 

hence 

etot = «e and «P = 0 (80) 

(81) 

Their assumption is persuasive, but it is fair to say that it is not 
adopted by all authors.44 

Their conclusion is substantiated, however, if one starts from 
the integrated Euler relationship for the Kramers energy of the 
whole system, namely 

^ =-PV+ail (82) 

Differentiating eq 82 gives, on noting that V" = O 

d ^ = O = - P a d Va - P^d V& 

- V(CiP" + dP*3 + dPw) + adil + ilda (83) 

If the pressure is assumed to be constant in all regions, so 
that 

dP" = dP0 = dP^ = O 

then eq 83 reduces to 

d V a ( p o _ p/3) = ^Q + Qdff 

But, from the Shuttleworth equation (eq 40) 

adil + ilda = Tdil 

d yc^pcc _ p/3) = Xdf i 

(84) 

(85) 

(86) 

confirming the conclusion reached on combining eq 79 and 
8 1 . 

The Laplace equation is normally applied to a spherical drop 
of radius r, in which case 

so that 

dil/dVa = 2Ir 

AP= Pa- P& = 2T/r 

(87) 

(88) 

For a soap bubble, which is a duplex film containing an inner 
and an outer surface, the difference in pressure between the 
inside and the outside of the bubble is 4 T / r 

2. The Kelvin Vapor Pressure Equation 

The vapor pressure P, of small radius solid or liquid particles 
is greater than the vapor pressure P» of a flat surface of the 
same phase and the same composition. To show this, consider 
a one-component, two-phase system consisting of a spherical 
drop of radius r of bulk phase a surrounded solely by its own 
vapor in phase /3. At equilibrium 

Cl^ = 0 = Pd V + ysdil = - P a d Va - P$d V*3 + y*dil (77) and hence 

dna = dj 

(89) 

(90) 

Applying eq 44 to the a and /3 phases in turn, and ignoring the 
electrochemical work term QdE 

dixa = — dP" - — dTa = Vm
adPa - Sm

adTa (91) 
na na 

and 

d^ = ~dpP-—,dP= VjdPV - SJdP (92) 
rr na 

where the subscript m denotes mean molar quantities. At ther­
mal equilibrium 

Hence 

and 

Vm
adPa = VJdPP 

Vj =
d Z ! _ 1 

Vm
a dPP 

Vj - Vm
a dP01 - dPP 

Vm
a dP? 

From the Laplace equation, eq 88 

Hence 

j jp« _ dp/3 = d ( 2 T / r ) 

VJ ~ Vma _ . (2T/r) 

Vm
a dPP 

(93) 

(94) 

(95) 

(96) 

(97) 

which is the rigorous form of the Kelvin equation. It may be 
transferred to a more usual form by making two assumptions 
identical with those used in deriving the Clapeyron-Clausius 
equation from the Clapeyron equation. They are: 

Vj » Vm" so that Vj - VJ* ai Vj 

the vapor is ideal, so that VJ = RTIP8 

These in conjunction with eq 97 give 

RTdPP/ Vm
apP = d(2r/r) 

and on integrating 

(98) 

(99) 

(100) 

RTIVn? C'dPPlPl3= J d(2r/r) (101) 

P r/P„ = exp[2rVm
a/Rr/-] (102) 

which is the Kelvin equation. 
A similar equation, with activities or concentrations replacing 

pressures, governs the relative solubility of a small particle to 
the bulk material. The greater solubility of small particles is 
utilized in the coarsening of fine precipitates by digestion. The 
small particles dissolve, making the solution supersaturated with 
respect to large particles which then reprecipitate. A similar 
phenomenon is observed with gases, where nonequilibrium 
solubility can be observed, either if small gas bubbles are forced 
into a liquid or small liquid droplets are sprayed into a gas. Be­
cause of the surprisingly slow mixing of gases and vapors and 
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Figure 4. 

also the limited diffusion of gases in liquids, anomalous solu­
bilities can persist for several hours.45 

3. The Lattice Contraction Equation 

The compressibility of a solid or liquid spherical one-com­
ponent particle k' is defined as 

V\dP/T VAP 
(103) 

Kuhlmann-Wilsdorf and co-workers25 related the compres­
sibility to the surface stress for a cubic solid of lattice constant 
a by assuming that 

AV/V ^ 3Aa/a (104) 

where Aa is the difference in lattice constant between that for 
a system subjected solely to ambient pressure and that for the 
bulk region of a small particle for which the pressure exceeds 
ambient by AP. But AP is given by the Laplace eq 88, and so 

2 a k' 
(105) 

which provides a means of determining T. The contraction is 
very small; even for a relatively compressible material such as 
gold, the contraction Aa/a for particles of radius as small as 10 
nm is of the order of 0.1 %. 

4. Capillary Rise 

This phenomenon is observed in liquid but not solid systems. 
It is included here for completeness. At a reference surface just 
above the flat liquid surface shown in Figure 4 the applied 
pressure P8 is equal to the pressure of liquid in the capillary; this 
latter is the sum of P", the pressure immediately below the 
curved surface, radius r, of the liquid in the capillary, and xApg 
where x is the vertical displacement, Ap the difference in den­
sities between the a and /3 phases, and g the acceleration due 
to gravity. Since r is related to the tube radius rx by 

vapour 

solid SL 

Figure 5. 

vapour 

SV 
solid 

Figure 6. 

and 

Therefore 

pB- pa = 211 r = xApg 

xApgrt 
T = 

2 cos 6 

(107) 

(108) 

Corrections for imperfections of meniscus shape can be ap­
pl ied.1 5 3 3 

E. Equations Concerning Spreading and Wetting 

7. Young's Equation 

This equation was derived by Thomas Young in 1805 and 
relates the "interfacial tensions" and the contact angle in a 
three-phase system, comprising a flat solid surface, above part 
of which is vapor and above another part of which is a liquid drop. 
The contact angle, 6, is defined in Figure 5; it has been studied 
by statistical mechanics.46 The interfacial tensions T8SV, T8SL> 
and 7 \ v . relating to the solid-vapor, solid-liquid, and liquid-
vapor interfaces, respectively, are classically related to the 
tensions required to keep the terminating surfaces in equilibrium. 
One might therefore suppose that they are identical with surface 
stresses, but all major workers7,15 write such an equation in 
terms of superficial work. This is not the only conceptual diffi­
culty surrounding this equation. The derivation is simple, the 
tensions being resolved horizontally to give 

Tssv = Y8SL + TSLV cos 6 (109) 

r = r t/cos I (106) 

which is Young's equation. If one resolves horizontally, it can 
be seen that there is no force component to balance the term 
7S

LV sin 6 and the situation appears to be one of partial me­
chanical equilibrium. If the liquid drop indents into the solid as 
shown in Figure 6, then eq 109 becomes 

Tssv = TSSL cos (f> + TSLV cos 6 (110) 

and in addition, by resolving vertically 

YSSL sin 4> = T8Lv sin 6 (111) 

For a further discussion on this point, the reader is referred 
elsewhere.5-15 '33 

A final conceptual difficulty with the Young's equation relates 
to the magnitude, if any, of the surface pressure I I . This relates 
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to the difference between 7S
SV for a solid surmounted solely by 

its own vapor, and y'SVl the surface energy of a solid in the 
presence of its own vapor and of the vapor of the components 
of the liquid drop. Thus y'sv is the quantity that should appear 
in eq 109, and hence by substitution 

Tssv = T8SL + T8LV cos 6 - n (112) 

is often helpful to hope that I I is equal to zero. 

2. Zisman 's Equation and Rhee 's Method 

When a drop of liquid is placed on a solid surface, or indeed 
on another liquid with which it is immiscible, in some cases the 
liquid "wets" and spreads over the surface and in other cases 
it does not. A liquid that wets has a contact angle of zero, and 
one that forms drops has a contact angle greater than zero. 

From a series of experiments, Zisman47 found many cases 
of a linear relationship between the cosine of the contact angle 
and TSLV for a homologous series of organic liquid drops on 
polymer solid surfaces. He noticed that, for a given solid surface, 
different homologous series of liquids gave lines of different 
slope but that they had the same value of TSLV at cos 6 = 1. He 
referred to this value, i.e., the surface tension of a hypothetical 
liquid that had a contact angle of exactly zero, as the critical 
surface tension yc. It is clearly a property of the solid surface. 
Zisman's relationship is 

cos e = 1 - «T S LV - Tc) (113) 

where b, the slope of the Zisman plot, is characterized by the 
nature both of the solid surface and of the homologous se­
ries. 

Rhee48 related 70 to Tssv. the surface energy of the polymer, 
in the following way. Substituting the Zisman relationship eq 113 
into Young's equation, eq 112, and assuming the surface pres­
sure is zero, gives 

T8SL = T 8 S v - C O s A p 1 " ^ + T ° ] (114) 

This shows the parabolic dependence of T8SL on cos 6. Now 

d7
8sL = _ l + 2 _ c o s 0 c 

d(cosfl) b b y ( ' 

and from eq 115, (cos 0)m, the value of cos 6 at the minimum, 
is given by 

0 = _ 1 + ( 2 c o s ^ _ T C (116 ) 

b b 

Rhee assumed that at the minimum 7s
Si_ was, in fact, zero, 

an assumption supported by experimental evidence. Hence from 
eq 114 

0 = T 8 Sv- (cos fl)m[(1-(C;SeU
 + T ° ] (117) 

giving ys
Sv in terms of the experimental parameters b and yc. 

In a later paper Rhee49 makes use of surface energy temperature 
dependence, i.e., surface entropy terms, to derive further rela­
tionships of this kind. 

3. The Young-Dupre Equation and the Work of 
Adhesion 

The work of adhesion WAB between two phases A and B is 
defined as 

WAB = T8AV + T8BV - T8AB (118) 

where AV, BV, and AB refer to the interfaces between the bulk 
phase A and the corresponding vapor phase, between the bulk 
phase B and its vapor phase, and between the A and B phases 
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in intimate contact. In a similar way the work of cohesion, WAA, 
is defined as 

WAA = 2T
S

AV (119) 

For a solid-liquid interface, where the subscript A is replaced 
by S and B by L, 

WAB = T8Sv + T8LV - TSSL (120) 

and substitution of Young's equation, eq 112, ignoring the sur­
face pressure term, gives 

WAB = T8LVd + cos d) (121) 

which is the Young-Dupre equation. 

4. The Spreading Coefficient 

Spreading has already been considered in connection with 
the Zisman relationship. An alternative approach is to note that 
a liquid will spread on a solid or on the surface of a denser im­
miscible liquid if the work of adhesion exceeds the work of 
cohesion. The spreading coefficient SB/A is then defined as 

SB/A = WAB - WBB = T8AV ~ TSBV - TSAB (122) 

A positive value of SB/A indicates that B will spread on A. 
Thus, benzene can be expected to spread on water at 20 0C, 
because 

^benzene/water ~ T water-water vapor 

T benzene-benzene vapor T water-benzene 

= 72.8 - 28.9 - 35.0 = +8.9 mJ rrT2 at 20 0C (123) 

Experimentally this is initially found to be the case. After a short 
time, however, the benzene retracts to form a lens or drop, 
floating on the liquid surface. This apparently puzzling behavior 
can be understood when it is realized that benzene and water 
are not totally immiscible and that mutual saturation occurs. The 
surface tension values for water saturated with benzene, and 
benzene saturated with water, then have to be used in eq 123, 
which gives 

^"benzene/water = 62.2 - 28.8 - 35.0 

= - 1 . 6 m J m - 2 (124) 

The negative spreading coefficient indicates that spreading will 
not take place in the saturated system. 

Combination of the Young-Dupre equation, eq 121 with eq 
122, gives 

SB/A = T8LV (cos A - 1 ) (125) 

which is, of course, meaningful only for negative or zero 
spreading coefficients. In the case of the former, values of 
spreading coefficient can be obtained from contact angle 
measurements. 

IV. Parameters Obtained from Experimental 
Techniques 

Detailed descriptions of the many techniques that have been 
used to measure the surface energy, 7s, can be found else­
where. 2.3.5.3o,5o-54 |t j s ^ 6 j n t e n t j 0 n n e r e to concentrate on 
elucidating whether it is possible to identify 7s with either the 
superficial work, CT, or the surface stress T for certain prominent 
techniques. Values of the various parameters for different 
substances will then be summarized. 

A. Techniques and Parameters 
1. Zero Creep Method 

This is the most common and most precise method for ob­
taining data on metal surfaces. Thin metal foils and wires shrink 



92 Chemical Reviews, 1978, Vol. 78, No. 2 R. G. Llnford 

when maintained at a constant high temperature because of the 
influence of surface forces. As pointed out by Hondros,55 this 
was observed as long ago as 1857 by Faraday, who found that 
gold foil held between sheets of glass became transparent when 
hot, and correctly attributed this phenomenon to shrinkage and 
consequent tearing of the foil. The method depends on finding 
the tensile load needed exactly to counterbalance the effect of 
the surface forces, i.e., to produce a condition of zero creep, 
at which the strain rate is zero. 

The first zero creep experiment was carried out in 1910 by 
Chapman and Porter56 and subsequent progress has been re­
viewed by Udin57 and Hondros.58 The calculations are compli­
cated by the need to account for grain boundary effects; also a 
number of practical constraints and necessary assumptions, 
which are discussed elsewhere,5 make the experiments less 
straightforward than they might otherwise be. After making due 
allowance for grain boundary and other effects, the exactly 
counterbalancing load, divided by the length along which it acts, 
can be equated to the reversible work required to form unit area 
of new surface at constant temperature, chemical potential, and 
electric field. Following the recent papers of Everett and 
Couchman,13,14 this work is the surface energy or the general­
ized surface energy or the generalized surface intensive pa­
rameter, 7s. 

The shrinkage effect manifests itself only when the sample 
(which, being a foil or wire, has a large surface to volume ratio) 
is heated to about nine-tenths of its melting point. Under such 
conditions, it is usually assumed that the strains are purely 
plastic, and consequently, from eq 26 

and since dep = detot, therefore dee
 = 0 and 7s = 0 under zero 

creep conditions. Consequently, the superficial work, <r, appears 
to be the measured parameter. 

This point bears further examination. If the strain were not 
purely plastic in nature, then the measured parameter 7s would 
be a composite of u and T. The surface strain will be purely 
plastic only if sufficient material is free to enter the surface re­
gion from the underlying bulk phase to preserve the surface 
density of material at its equilibrium value. For a normal sample, 
the surface-to-volume ratio is low and the bulk reservoir is ef­
fectively infinite. Transfer of material from bulk to surface does 
not therefore give rise to any significant work of expansion 
(-Pd V") term, nor is it necessary to suppose that the material 
leaving the bulk sets up any elastic strains. Under the conditions 
of a zero creep experiment, foils or wires of high surface-to-
volume ratio are used. The transfer of material necessary to 
preserve plastically strained conditions at the surface can only 
be achieved at the expense of volume constancy of the bulk, or 
alternatively by setting up residual elastic strains in the bulk 
phase. It is normal5 to assume conditions of volume constancy; 
if this is truly valid, then either the bulk or the surface is elastically 
strained and consequently 7s, the measured parameter, is not 
identical with a. 

This interaction between surface and bulk strains was realized 
by Herring.7 He postulated that the surface stress, which is, of 
course, a function of surface elastic strain, is, in fact, a surface 
excess property. This means that the measured parameter, 
which must always be a property of the whole system, embodies 
terms that depend on the strain state of both bulk and surface. 
Alternatively it may be said that the bulk Kramers energy is al­
tered, and consequently the change in Kramers energy for the 
whole system is no longer described solely by the change in 
surface Kramers energy. In either case, it is clearly not sufficient 
to focus attention solely on the state of strain in the surface re­
gion when considering whether the whole system is in equilib­
rium. This argument has been developed previously5 in order 
to show that, as later demonstrated by Everett and Couch-

man,13'14 only elastic strains are significant in the Shuttleworth 
equation, eq 40. 

The objection may be advanced that, in the above discussion, 
no account was taken of the fact that under zero creep condi­
tions the strain rate is zero, regardless of whether elastic or 
plastic strains are involved. This is, of course, correct but it must 
be remembered from eq 26 that 7s can only be equated to a if 
the elastic strain, rather than the strain rate, is zero. 

The true central point to any discussion of the parameter 
measured in the zero creep experiment, and indeed in any other 
experiment carried out at temperatures near the melting point 
of the solid, is the magnitude of the surface elastic modulus term 
E* at this temperature. From eq 40 and 55 

T = a + (d<r/dee)7>;,£F = ° + (Oa/d In fi) = a + E^ (126) 

and if E* is zero, then T = a = 7s, irrespective of the nature of 
any strain involved. Arguments based on the inability of a liquid 
to support a shear stress can be advanced to show that, as the 
melting point of a solid is approached and providing the strain 
rate is low 

E* ^ - 0 as 7— Tm (127) 

Consequently, despite conceptual difficulties related to the 
state of strain and/or the applicability of conditions of volume 
constancy, it can be stated that the zero creep experiment yields 
values of the superficial work, <x. 

It should be noted that at lower temperature, EK cannot be 
taken as zero. Certain zero creep experiments on foils have 
been carried out at temperatures substantially below the melting 
point, and for these 7s cannot be identified with a. Indeed, cal­
culations of Drechsler and Nicholas60 indicate that at such 
temperatures, ET has a constant finite value irrespective of the 
size of the strain and there is no a priori reason to suppose that 
E* becomes zero at either zero strain rate or, for that matter, 
zero strain. Further consideration is at present being given41 to 
the magnitude of E^ as a function of strain, strain rate, and 
temperature. 

2. Cleavage Methods 

The chief problem with these techniques is that, although 
conceptually simple and directly in accord with the definition of 
(j, plastic deformation effects at the crack tip usually obscure 
the process of surface formation. The parameter obtained in 
practice is 7EFSE (section II.C.6); the magnitude of the plastic 
deformation term is briefly considered later (section IV.B). It is 
possible,61 with certain virtually ideal materials such as mica, 
to obtain values of 7s which are then conventionally ascribed 
to the quantity a. Nurse54 has suggested that the plastic defor­
mation term involves stresses and that it might be persuasive 
to argue that 7EFSE under appropriately controlled conditions 
could be related to the surface stress T. The more recent work 
described above, which restricts the strain terms involved in 
surface stress to those of an elastic nature, makes this 
suggestion unlikely. 

3. The Lattice Contraction Technique 

Following the discussion in sections III.D.1 and III.D.3, it is only 
necessary to state here that, providing that it is accepted that 
the appropriate, parameter in the Laplace equation is T and not 
7s or (T, then it Ts clear that this technique gives values for the 
surface stress. 

4. Vapor Pressure of Small Particles 

The Kelvin vapor pressure equation, eq 102, involves the 
surface stress T. Listgarten and co-workers44 modified this 
equation in such a way as to make it possible to obtain a surface 
thermodynamic parameter from measurement of particle radius 
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as a function of time. They made the usual assumptions of ide­
ality of the vapor surrounding the particles and of negligible 
particle volume. They also assumed, however, that the particle 
density did not change with radius.5 As the lattice contraction 
technique depends on measuring the change of density as a 
function of particle radius, this latter assumption appears 
questionable. 

Listgarten et al. assumed that the surface thermodynamic 
parameter obtained by this technique was the superficial work, 
a. Indeed, the results they obtained for solid silver particles were 
in excellent accord with values obtained from zero creep 
measurements. The primary reason for this is that the mea­
surements were carried out near the melting point, where the 
value of the surface elasticity modulus is low and values of a and 
T can be expected to approach each other. Also the neglect of 
variation of particle density obscures the true nature of the pa­
rameter obtained from this technique. 

In practice, experiments carried out at high temperatures by 
the method of Listgarten et al. and using their assumptions yield 
values near to these for a. At lower temperatures and taking 
proper account of lattice contraction, values of T would be ob­
tained. 

5. Other Methods 

a. Inert Gas Bubble Method. This has been discussed in great 
detail elsewhere.5 The essence of the arguments already pre­
sented for the zero creep technique apply here, but with the 
complication that these experiments are usually carried out at 
temperatures significantly below the melting point. The analysis 
of Lidiard and Nelson62 concludes that T is the parameter con­
trolling the formation of bubble surface but that there is an elastic 
strain energy term in the surrounding bulk material that also 
needs to be considered. They suggest, in effect, that the surface 
elasticity modulus counteracts the bulk strain energy, £b, so that 
the measured change in Kramers energy, d ^ , is given by 

d ^ = T + Eb = (a + E*) + Eb = a (128) 

Consequently the parameter measured by this technique is 
a. Similar reasoning can be applied to the time-dependent 
technique of void annealing and a is again the quantity ob­
tained. 

b. Boundary Grooving and Multiphase Equilibrium Methods. 
These techniques are based on equations analogous to that of 
Young, eq 109. The point has already been made (section III.E.1) 
that T rather than a might well appear to be the more likely pa­
rameter to be involved. Values obtained from these techniques 
accord equally well with a and T values, but this may be due to 
the paucity of accredited measurements of T with which to 
compare them. The present position is that most major author­
ities allow the assumption that these methods give values of <r 
to go unquestioned. 

c. Healing of Scratches. This is based on the study of the rates 
of competing diffusion processes, and again it is generally, but 
perhaps uncritically, accepted that c and not T is the controlling 
parameter. 

d. Equilibrium Shapes of Crystals. In this case, there is no 
serious likelihood that the parameter measured is other than 
(T. 

B. Values of Surface Parameters 

The purpose of this article is to summarize recent advances 
in the conceptual understanding of the thermodynamics of solid 
surfaces. Consequently, it is not intended in this section to 
provide an up-to-date compendium of experimental data; rea­
sonably complete tables are provided in earlier papers.563-65 

It is hoped that this section will provide an overview of typical 
values for certain of the parameters that have been men­
tioned. 

The major surface thermodynamic parameter is undoubtedly 
the superficial work, a. For a metal, <r is of the order of 1-2 J 
m~2 near the melting point, and its temperature coefficient in 
that region is typically —0.5 to —1.2 mj m~2 K-1. For ionic solids 
at room temperature, values of a are 0.3 ± 0.2 J m - 2 , although 
rather higher results have been reported for cleavage mea­
surements on MgO, perhaps arising from plastic deformation 
effects at the crack tip. Polymeric materials possess low-energy 
surfaces, values in the region of 20-40 mJ m - 2 being usual for 
a. 

Values for 7EFSE vary enormously according to the experi­
mental conditions under which the crack is formed and also 
under which it is propagated. For tungsten, values66 between 
2 and 24 J m - 2 were found for a range of crack initiation and 
propagation conditions. It is clearly a difficult parameter to utilize, 
except in the context of a study of crack behavior. 

Certain measurements have been made of the mean surface 
stress, T, by the school of D. Kuhlmann-Wilsdorf who used the 
lattice contraction technique. They found67 for gold that T = 1.14 
J t r r 2 at 50 0C and T = 0.41 J r r r2 at 985 0C, which may be 
compared with the value of Hondros and Gladman68 of 1.4 J m - 2 

for (T at 1040 0C. The temperature coefficient for T is therefore 
~ - 0 . 8 m J m~2K~1, i.e., of the same order as that for (T. Their 
results imply the surprisingly high value of 1 J r r r2 for the surface 
elasticity modulus, C , at ~1000 0C. Further measurements of 
surface stress have been carried out in South Africa by former 
members of this school. For silver, a value quoted69 as 1.415 
± 0.3 J m - 2 was found for T. This was compared with the lit­
erature value for (TOf 1.14 ± 0.09 J m - 2 at 930 0C, which was 
adventurously extrapolated to a value of exactly 1.563 J m~2 at 
55 0C, yielding a value for E* of -148 mJ rrr2 at this temper­
ature. It is perhaps unfortunate that the authors omitted the error 
limits on this final value, which should have been reported as 
— 150 ± 500 mj m - 2 . Similar comments apply to their mea­
surements on platinum, for which T was found to be 2.574 ± 
0.4 J m - 2 , and a similar audacious treatment, this time involving 
a value of a for the liquid metal, yielded a value of F1" of —193 
mj tn~2. It is not possible to be as confident as the authors that 
these measurements, in fact, indicate a negative value of F" for 
these metals. 

A general difficulty that arises when examining data for sur­
face thermodynamic values of metals is that the most reliable 
values for <r are from high-temperature zero creep experiments, 
and in consequence it is not easy to be confident about the 
magnitude of a at room temperature. This makes it difficult to 
draw firm conclusions as to the relative magnitudes of <r, T, and 

V. Conclusions 

The thermodynamics of solid surfaces was studied by Gibbs,12 

who identified many of the conceptual difficulties such as those 
associated with the difference between cleavage and stretching 
parameters. During the ensuing 80 years the subject has gone 
through periods of darkness and periods of clarity. Important 
advances were made after the second world war; the work of 
Shuttleworth,27 Herring,7 and Buff9 is particularly noteworthy. 
After a period of consolidation, further progress resulted from 
the general adoption of the Kramers energy formalism and the 
development of the concept of the generalized surface energy 
function; the work of Garcia-Moliner6 and Couchman and Ev­
erett13,14 is of especial relevance. It has been the purpose of 
the present review to consider the effect of these latest devel­
opments on the formalism of the subject. Coverage of this in 
some depth has precluded the possibility of even touching upon 
alternative approaches such as those based on statistical me­
chanics or irreversible thermodynamics. 

It emerges from the subject matter covered here that the 
theoretical aspects of the subject have received some recent 
attention, but there is still an urgent need for more thermody-
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namic measurements of surface parameters. Until these have 
been carried out, a complete clarification of the parameters 
measured by the various techniques will not be possible, and 
advances in understanding comparable to those resulting from 
the recent strides in analytical and structural surface studies will 
not occur. 

Vl. List of Symbols 

A Helmholtz energy of whole system 
Aa, A13 Helmholtz energy of solid and vapor phases 
A* surface excess Helmholtz energy (II.A.4) 
a latt ice constant (III.D.3) 
a * superf icial Helmholtz energy (II.A.5) 
b slope of Z isman plot (II.E.2) 
*• Cp(T) heat capacity of f inely divided sample (II.C.6) 
oCp(7) heat capaci ty of bulk sample (II.C.6) 
E electric field 
E x surface elasticity modulus (II.C.6) 
Eb bulk elastic strain energy (IV.A.5) 
f2 fugacity of vapor component (III.C.3) 
G Gibbs energy of whole system 
G' Gibbs energy under restricted conditions (II.B.2) 
Ga, G& Gibbs energy of solid and vapor phases 
G x surface excess Gibbs energy (II.A.4) 
g acceleration due to gravity 
g* superf icial Gibbs energy (II.A.5) 
H enthalpy of whole system 
H' enthalpy under restr icted condit ions (II.B.2) 
H™ magnetic f ield strength (II.B. 1) 
Ha, H® enthalpy of solid and vapor phases 
H* surface excess enthalpy (II.C.6) 
h* superficial enthalpy (II.C.6) 
(/V)0 standard superficial enthalpy (II.C.6) 
J open system energy function (II.B.2) 
k1 bulk compressibility (III.D.3) 
M magnetization of whole system (II.B. 1) 
A),- amount of /th substance 
rija, nf amount of /th substance in solid and vapor phases 

(II.A.4) 
nf surface excess amount of /th species (II.A.4) 
P hydrostatic pressure 
Pa, pP hydrostatic pressure over curved and flat surfaces 

(III.D.2) 
Pn Pa, hydrostatic pressure over curved and flat surfaces 

(III.D.2) 
Pi partial pressure of /th species (III.C.3) 
Q electric charge on whole system 
Qa, C3 electric charge in the solid and vapor phases 

(III.A) 
C surface excess electric charge (III.A) 
q path dependent heat (II.B. 1) 
q* superf icial charge (III.A) 
R gas constant 
r radius of bubble, drop, or curved surface (III.D.1) 
r, radius of capil lary tube (III.D.4) 
S entropy of whole system 
S " , S*3 entropy of solid and vapor phases 
S* surface excess entropy (II.C.6) 
S m mean molar entropy (III.D.2) 
S 0 residual entropy at absolute zero (II.C.6) 
s* superf icial entropy (II.C.6) 
S B / A spreading coeff icient of liquid B on solid or liquid A 

(III.E.4) 
T temperature 
f m melt ing point of solid (IV.A. 1) 
U internal energy of whole system 
Ua, U@ internal energy of solid and vapor phases 
W surface excess internal energy (II.C.6) 

V//3 

IVA 

V 
Va 

V* 
vm 
WAB 

w 
X 
Xa, X s 

X* 
x 
x* 
Y 
a 

£ 
T1 
T i 

7 s 

YEFSE 

YSAV. 7SBV: 

Y8AB 

Y8SV- Y8SL, 

Y8Lv 

Y'sv 

de 
d«tot. dee, 

d€p 

8 

n 

p 
a 
Cdyn 

T 

Q 

superficial internal energy (II.C.6) 
volume of whole system 
volume of solid and vapor phases 
volume of surface region (II.A.3) 
mean molar volume (III.D.2) 
work of adhesion and cohesion (III.E.3) 
path-dependent work (II.B.1) 
any extensive property of the whole system 
any extensive property of the solid and vapor 
phases (II.A.4) 
any surface excess extensive property (II.A.4) 
vertical displacement of system (II.B. 1) 
any superficial extensive quantity (II.A.5) 
external energy (II.B.2) 
superscript denoting solid bulk phase 
superscript denoting vapor phase 
superficial amount of /th species (II.A.5) 
superficial amount of major component of whole 
system (II.A.5) 
critical surface tension (III.E.2) 
generalized surface intensive parameter or surface 
energy (II.C.3) 
effective fracture surface energy (II.C.6) 
Ys for interface between solid A and vapor, liquid 
B and vapor, and solid A and liquid B (III.E.3) 
Ys for solid-vapor, solid-liquid, and liquid-vapor 
interfaces (III.E.1) 
Ys for a solid in the presence of multicomponent 
vapor (III.E.1) 
thickness of surface region (II.A.3) 
Kroenecker delta (III.B.3) 
surface strain (III.A.6) 
total surface strain, elastic surface strain, plastic 
surface strain (II.C.3) 
contact angle (III.E.1) 
surface coverage of /th species (III.C.3) 
solid-liquid angle of contact (III.E.1) 
chemical potential of /th species 
standard chemical potential of vapor (III.C.2) 
surface pressure (II.C.6) 
superscript denoting surface region 
density 
superficial work (II.A.7; II.C.1) 
dynamic surface tension (II.C.5) 
mean surface stress (II.C.2) 
tensorial surface stress (II.A.7; II.C.1) 
Kramers energy of whole system (II.B.1) 
Kramers energy under restricted conditions 
(II.B.2) 
Kramers energy of solid and vapor phases 
surface excess Kramers energy (II.C.1) 
superficial Kramers energy (II.C.1) 
superficial area (II.A.1) 
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