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/. Introduction 
The optical activity of chiral transition metal complexes has 

occupied the attention of coordination chemists and theoretical 
spectroscopists for many years. The optical rotatory properties 
of coordination compounds have played a prominent and ven­
erable role in the development of inorganic stereochemical 
analysis and structure elucidation, and experimental and theo­
retical research in this area has been particularly intense over 
the past 20 years. The first observation of circular dichroism (CD) 
in the visible absorption bands of transition metal complexes 
was reported by Cotton in 1895.1 Over the period 1911-1919, 
Werner2 resolved into optical isomers a wide range of bis- and 
tris-chelated complexes containing achiral ligands and transition 
metal ions from each of the three transition metal series of the 
periodic table. This work established the octahedral structure 
of hexacoordinated complexes and posed the problems of 
molecular stereochemistry and absolute configuration of metal 
coordination compounds. The optical rotatory properties of the 
Werner complexes were the subject of considerable study in 
the 1930's, most notably by Jaeger,3 Mathieu,4 and Kuhn.5-7 The 
first purely theoretical examination of the origins of optical ac­
tivity in chiral transition metal complexes was made by Kuhn and 
Bein.5 6 Their treatment of these systems was based on the 
general coupled-oscillator model of molecular optical activity 
proposed earlier by Kuhn.8-10 This model was purely classical, 
and it was used to relate the absolute configuration to the sign 
and the form of the visible Cotton effects observed for tris-
chelated complexes. 

The first definitive determination of the absolute configuration 
of a chiral metal complex was made by Saito and co-workers11 

in 1955, using the anomalous X-ray scattering method. Saito and 
co-workers11 found that the tris(ethylenediamine)cobalt(lll) 
isomer which is dextrorotatory at the sodium D-line, (+)-
[Co(en)3]3+, has the A configuration.12 This finding was contrary 
to the configurational assignment predicted according to the 
Kuhn and Bein coupled-oscillator model for tris-chelated com­
plexes.56 

Moffitt13 introduced the first quantum mechanical theory of 
optical activity in chiral transition metal complexes. He adopted 
a crystal-field model on which to represent the spectroscopic 
states of the metal ion d electrons, and used the "one-electron" 
theory of molecular optical activity proposed by Condon, Altar, 
and Eyring14 to develop expressions for the rotatory strengths 
of the metal d-d transitions. Moffitt applied his theory specifically 
to tris-chelated complexes of Co(III) and Cr(III) which have exact 
trigonal dihedral (D3) symmetry. An error in sign in the d-d 
transition matrix of the angular momentum operator led Moffitt 
to incorrect conclusions regarding the optical rotatory properties 
of these systems, and Sugano15 subsequently demonstrated that 
Moffitt's model could not account for the net optical activity 
observed for the 1A1g —»• 1T1g transition in trigonal dihedral 
complexes of Co(III) and for the 4A2g —*• 4T2g transition in Cr(III) 
complexes of trigonal dihedral symmetry. However, the general 
aspects of Moffitt's model remained intact, and his work provided 
an important stimulus for much of the subsequent theoretical 
effort in this area. 

The availability of improved optical rotatory dispersion (ORD) 
and circular dichroism ( CD) instrumentation in the early 1960's 
signaled a great resurgence in the study of molecular optical 
activity and in the use of optical rotatory properties as probes 
of molecular stereochemistry and electronic structure. Bio-
polymer systems, organic carbonyl compounds, and chiral 
transition metal complexes received, perhaps, the most ex­
perimental and theoretical attention during this time. The rather 
highly developed state of ligand-field theory, in its applications 
to sorting out the optical spectra associated with the d-d tran­
sitions of transition metal complexes, was especially important 
to providing a theoretical framework (albeit, approximate) within 
which d-d optical activity could be interpreted or rationalized. 
Spectra-structure relationships were, and remain, somewhat 
less well defined for chiral transition metal complexes than for 
the n —* 7T* optical activity of carbonyl compounds (for example), 
but they are sufficiently good to provide valuable working hy­
potheses and guidelines for researchers in the field. 

Developments in the theory of optical activity of chiral tran­
sition metal complexes have been enormously aided by the very 
large quantity of experimental data reported over the past 15 
years on a wide variety of metal complex structural types 
(classified with respect to metal ion, ligand donor atoms, ligand 
chelation, chelate bridging groups and side chains, and general 
symmetry characteristics). Furthermore, the dramatic increase 
in the number of metal complexes whose detailed structural 
features have been elucidated by single-crystal X-ray diffraction 
techniques has been important to developing reliable spectra-
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structure correlations.16 Finally, Improvements and refinements 
in the quantum mechanical descriptions of d-d spectroscopic 
states have, over the past 15 years, led to some refinement in 
the d-d optical activity models developed subsequent to Moffitt's 
simple crystal-field model.13 

The plan for this paper is to briefly review and describe the 
major developments in the theory of optical activity of chiral 
transition metal complexes, to discuss in some detail the models 
and theories of current interest, to survey the spectra-structure 
relationships associated with the chiroptical properties of chiral 
transition metal complexes, to discuss special effects arising, 
for example, from vibronic interactions, solvent perturbations, 
and crystalline environments, and, finally, to assess the current 
status and future prospects of the field. The focus will be on the 
d-d or so-called ligand-field transitions of the metal complexes, 
and only indirect references will be made to the optical activity 
associated with the ligand-ligand and metal-ligand charge-
transfer transitions. 

//. Background Review 

As was mentioned in the Introduction, Kuhn and Bein56 pro­
posed the first theoretical model for the optical activity of chiral 
transition metal complexes. Selecting the tris complexes, 
Co(en)3

3+ and Co(Ox)3
3-, as model systems, Kuhn and Bein56 

postulated that electronic transitions localized on the metal ion 
gained optical activity by coupling with electric dipole oscillators 
localized on the three bidentate ligands. More specifically, they 
represented the optical electron on the metal ion as a three-
dimensional isotropic harmonic oscillator with a characteristic 
frequency (say, vM) and the ligands by three linear oscillators of 
frequency vL (vL > vM) directed along the edges of the octahedron 
spanned by the chelate rings. On this model, the spatial ar­
rangement of the three ligand oscillators is dissymmetric (chiral) 
and their coupled motions give rise to a dissymmetric force field. 
If the metal ion (three-dimensional) oscillator is, in turn, coupled 
to the ligand oscillators via this dissymmetric force field, then 
optical activity will be observed at the frequencies of the per­
turbed metal oscillator (i.e., in the metal ion absorption bands 
near i>M), as well as at the frequencies of the perturbed ligand 
oscillators (i.e., in the ligand absorption bands near eL). In the 
Kuhn and Bein model, the metal ion oscillator represented linear 
displacements of the optical electron and the metal-ligand 
coupling mechanism was assumed, therefore, to be electric 
dipole-electric dipole. This model was entirely classical in its 
details and did not take into account the detailed nature of the 
electronic transitions responsible for the visible absorption bands 
of the metal complexes. Subsequent characterization of these 
transitions as essentially parity-forbidden d-d excitations pointed 
to the necessity of treating the optical electrons as circular, 
rather than linear, oscillators. In quantum mechanical language, 
the d-d transitions may be characterized in general as having 
substantial magnetic dipole character and only very weak 
electric dipole character. 

Moffitt13 introduced the first theory of optical activity in tran­
sition metal complexes based on quantum mechanical princi­
ples. This theory was introduced in 1956 and it made use of the 
Rosenfeld expression for electronic rotatory strengths,17 the 
"one-electron" theory of molecular optical activity as proposed 
by Condon, Altar, and Eyring,14 and the crystal-field theory of 
transition metal ion d-d absorption spectra.18 The central 
problem was to calculate the rotatory strength, R11, associated 
with a specific d-d transition, / -*• /, of the transition metal 
complex. The Rosenfeld expression for rotatory strength is given 
by 

fl(, = l m ( ^ | A | ^ ) . < ^ | i f i | ^ > (D 

where A is the electric dipole operator, m is the magnetic dipole 
operator, and \m{A + /S) = B. Considering only hexacoordinate, 

tris-chelated complexes of exact trigonal dihedral (D3) symmetry, 
Moffitt adopted a crystal-field perturbation model in which, to 
zeroth order, the d electrons of the metal ion were subjected to 
a crystal-field potential of exact octahedral (Oh) symmetry. The 
magnetic dipole transition moments of eq 1 were then calculated 
using the d-electron eigenstates of the zeroth-order (octahedral) 
crystal-field Hamiltonian. Using first-order perturbation theory, 
he then introduced the ungerade components of the trigonal 
dihedral (D3) crystal field and permitted mixing of the metal ion 
d and p orbitals. This admixture of metal ion d and p orbitals re­
sulted in nonvanishing values for the electric dipole transition 
moments (calculated to first order) of eq 1. The d-d optical ac­
tivity was assumed to arise, then, from (dissymmetric) crystal-
field-induced mixing of the metal ion d and p orbitals. 

Moffitt applied his model to tris-chelated complexes of Co(III) 
and Cr(III) and predicted strong optical activity within the 1A1g 

-» 1T1g transition of Co(III) and within the 4A2g - * 4T29 transition 
of Cr(III). These transitions are both magnetic dipole allowed 
under octahedral (Oh) selection rules. The magnetic dipole for­
bidden transitions, 1A19 -»• 1T29 for Co(III) and 4A2g -»• 4T1g for 
Cr(III), were predicted to be optically inactive within the ap­
proximations of the Moffitt model. These predictions were in 
good qualitative agreement with experimental observation since 
the magnetic dipole allowed transitions (referring to selection 
rules based on the octahedral parentage of the ground and ex­
cited states) do, in fact, exhibit substantially stronger optical 
activity than do the magnetic dipole forbidden transitions in the 
tris(oxalato) and tris(ethylenediamine) complexes of Cr(III) and 
Co(III). However, Moffitt's predictions were based on calculations 
which included an error in sign in the d-d transition matrix of the 
angular momentum operator (and, consequently, the magnetic 
dipole operator). Sugano15 showed that when this error is cor­
rected, Moffitt's model leads to zero net rotatory strength within 
the 1A19 ->• 1T1g and 4A2g ->• 4T29 transitions of Co(III) and Cr(III), 
respectively. Sugano15 further showed that in order for Moffitt's 
model to yield a net rotatory strength in these transitions, the 
crystal-field expansion would have to include at least one un­
gerade term with £ > 9. More specifically, the chiral (D3) trigonal 
crystal-field perturbation potential must include at least one term 
which transforms as the pseudoscalar A1u irreducible repre­
sentation of the Oh point group. The lowest order term trans­
forming as A1u in Oh has £ = 9. In his calculations, Moffitt 
truncated the (D3) trigonal crystal-field expansion after the 
leading ungerade term {£ = 3) which transforms as T2u in the Oh 

point group. Sugano's conclusions were based on the uniquely 
deduced arguments of group theory and therefore depended on 
the physical model only insofar as the zeroth-order basis states 
of the perturbation model were taken to be eigenstates of an 
octahedral (Oh) crystal-field Hamiltonian. A crystal-field potential 
term with £ = 9 can mix d orbitals {£ = 2) only with metal orbitals 
of azimuthal quantum numbers £ = 7, 9, or 11, a most unrealistic 
condition. Moffitt's ungerade trigonal potential (£ = 3) can mix 
the metal d orbitals with p and f orbitals, but to first-order the 
rotatory strengths associated with the two trigonal (D3) com­
ponents of the 1A19 —* 1T19 transition of Co(III) will be equal in 
magnitude and opposite in sign. The net 1A19 —• 1T1g rotatory 
strength will, therefore, vanish. The same result is obtained for 
the 4A29 - • 4T29 transition of Cr(III). 

Hamer19 extended Sugano's analysis15 of Moffitt's one-
electron crystal-field perturbation model to show that for any 
metal complex assumed to be centrosymmetric to zeroth order, 
a first-order net d-d rotatory strength is generated only by a li­
gand-field potential possessing at least one component which 
transforms under the pseudoscalar irreducible representation 
of the point group of the zeroth-order complex. 

Despite the initial failure of the one-electron crystal-field 
model (often referred to as the "ionic" model) to account for the 
net optical activity observed in the d-d transitions of tris-chelated 
Cr(III) and Co(III) complexes, the elegance and simplicity of this 
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model inspired numerous additional efforts to adapt its basic 
physical and symmetry-determined features to the problem at 
hand.20"31 Poulet20 modified Moffitt's treatment of tris-chelated 
Co(III) and Cr(III) complexes by allowing some trigonal splitting 
to occur within the triply degenerate octahedral excited states. 
It was postulated that a gerade component of the D3 crystal-field 
potential lifted the degeneracy of the zeroth-order octahedral 
states and, as in Moffitt's treatment,13 the lowest order (£ = 3) 
ungerade component of the D3 potential induced the optical 
activity. This, of course, resulted in a predicted CD spectrum for 
the Cr(III) 4A 2g —• 4T2g transition with two closely spaced com­
ponents of identical intensities and opposite signs. The net CD 
intensity was calculated to be zero (as required by Sugano's 
analysis). Piper and Karipedes21 extended Moffitt's treatment 
to include 3d, 4p, and 4f orbitals in the zeroth-order metal orbital 
basis set for calculations on tris-chelated Co(III) and Cr(III) 
complexes. Restricting their perturbation treatment to first order 
in the £ = 3 component of the D3 crystal field, they too found 
the net d-d rotatory strength to be zero. 

The first extension of Moffitt's ionic model which led to a 
nonvanishing net d-d rotatory strength for tris-chelated transition 
metal complexes was reported by Sugano and Shinada.22,32 In 
their physical model, Sugano and Shinada22,32 represented the 
ligand environment by two sets of point-dipoles located on the 
ligand atoms coordinated directly to the metal ion. One set 
produced a trigonal (D3) potential of odd (ungerade) parity (and 
with £ = 3 transformation properties), and the other set produced 
a trigonal (D3) potential of even (gerade) parity (and with £ = 2 
transformation properties). The gerade potential is effective in 
mixing the metal d orbitals among themselves and in lifting the 
degeneracy of the (D3) trigonal components of the octahedral 
(zeroth-order) parent states. The ungerade potential is effective 
in mixing zeroth-order octahedral states of opposite parities (or 
in promoting d-p and d-f orbital mixing on the metal ion). The 
gerade and ungerade perturbation potentials employed by Su­
gano and Shinada22'32 transformed as T2g and T2u, respectively, 
under the symmetry operations of the Oh point group. The direct 
product representation spanned by products of the ungerade (T2u) 
and gerade (T2g) potentials includes in it one component which 
transforms as the pseudoscalar A1u irreducible representation 
of the 0^ point group. Carrying out their perturbation calculations 
to second-order in the rotatory strength, Sugano and Shinada22,32 

found that the net second-order rotatory strength contributions 
were nonvanishing and that the signs of these contributions were 
dependent upon the sign of the trigonal splitting parameter (as 
determined by the gerade perturbation potential) and upon the 
detailed nature of the ungerade perturbation potential. The 
dominance of one trigonal field component rotatory strength over 
the other was predicted to be entirely determined by the sign and 
magnitude of the trigonal field splitting parameter. 

Sugano and Shinada's extension22-32 of the one-electron 
crystal-field model to second order in the rotatory strength 
quantities was successful in accounting for the net d-d rotatory 
strengths observed for tris-chelated metal complexes, and it also 
accounted for the nonzero (but small) optical activity observed 
in the regions of magnetic dipole forbidden transitions such as 
the 1A1g -*

 1T2g transition of Co(III) complexes and the 4A2g -» 
4T1g transition of Cr(III) complexes. The latter feature of Sugano 
and Shinada's treatment originated with interactions (and mix­
ings) between different d-d excited states under the influence 
of the gerade trigonal potential. The simultaneous consideration 
of the lowest order gerade and ungerade components of the 
trigonal perturbation potential required only d-d and d-p metal 
orbital mixings to achieve net optical activity, and avoided the 
need for including £ > 7 metal orbitals in the zeroth-order basis 
set as was required by the original Moffitt model. The repre­
sentation of the ligand environment by sets of point-dipoles 
located on the donor atoms of the ligands provided only a crude 
physical approximation to the real structural features of the 

complexes, but it remained within the spirit of applied crystal-
field theory. 

Richardson and co-workers24"28,30'31 have carried out per­
haps the most extensive theoretical investigations on the one-
electron crystal-field model of optical activity in chiral transition 
metal complexes. These investigations have included studies 
of a wide variety of structural types, of various sources of dis­
symmetry in the ligand environment (e.g., configurational, 
conformational, and vicinal), and of the convergent nature of the 
perturbation and crystal-field expansions employed in the model. 
In this work, a pure crystal-field representation of the ligand 
environment was employed in which all atoms or groups (mo­
lecular fragments) of the ligands were treated as point charge 
distributions. The signs and magnitudes of the (partial) charges 
assigned to each perturber site in the ligand environment were 
assumed to be derivable from local bond moments and formal 
charges (of ionized groups) characteristic of the ligand 
ground-state charge distributions. Each term in the crystal-field 
perturbation potential expansion was taken as a sum over all 
ligand perturber sites in the complex. This latter feature of the 
model permitted a partitioning of effects attributable to config­
urational dissymmetry (reflecting the distribution of chelate rings 
about the metal ion), conformational dissymmetry (reflecting 
conformational features and preferences within chelate rings), 
the presence of asymmetrically substituted sites in the ligands, 
and local (dissymmetric) distortions within the metal-donor atom 
cluster of the complex. 

In most (but not all) cases examined by Richardson and co­
workers, a centrosymmetric microsymmetry was assumed to 
zeroth order for the metal-donor atom chromophoric cluster, 
and rotatory strength expressions were developed to second 
order in a chiral perturbation potential. The chiral perturbation 
potential was chosen such that only the metal d, p, and f orbitals 
were required in constructing the zeroth-order basis states of 
the perturbation model. The principal focus of these studies was 
on how the net CD intensity might be expected to distribute itself 
among the various d-d transitions of a given metal complex, and 
on how the sign and intensity observables of a given CD spec­
trum may be related to specific stereochemical and electronic 
structural features of a metal complex. The latter problem was 
addressed through the formulation of detailed "sector" or "re­
gional" rules for metal complex CD spectra. 

Sector (or regional) rules in chiroptical spectroscopy are used 
to correlate the sign and, in some cases, the intensity observ­
ables of a CD spectrum with the relative positions or spatial 
arrangements of the chromophoric and extrachromophoric 
atoms (or groups) of a chiral molecular system. They are useful, 
therefore, in deducing stereochemical information concerning 
optically active systems. In most applications to simple optically 
active organic compounds, sector rules are applied to just one 
electronic transition at a time (e.g., the n —* x* transition of 
chiral carbonyl compounds in the famous octant rule33) and are 
based on simple pairwise (chromophore-perturber) interaction 
mechanisms.34 For transition metal complexes, however, 
Richardson24-27 proposed that the most appropriate (and reli­
able) sector rules be based on the net optical activity associated 
with all the d-d transitions in a given complex (that is, the alge­
braic sum of all d-d CD intensities), and that the sector rules must 
include consideration of three-way interactions involving the 
metal ion (chromophore) and two different ligand perturber 
groups. The latter emphasis of three-way interactions (leading 
to so-called "mixed" sector rules) is a consequence of the 
second-order nature of the perturbation model employed by 
Richardson, and the necessity for considering total or net d-d 
optical activity (rather than the optical activity of individual d-d 
transitions) arises from the assumed strong coupling (and in­
tensity borrowing) between the relatively closely spaced d-d 
transitions of most metal complexes. Detailed accounts of how 
Richardson's sector rules may be applied to the prediction and 
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interpretation of metal complex CD spectra have been 
given,2 4 - 2 7 , 3 5 and some use of them has been reported in the 
experimental literature. The general validity of the sector rules 
proposed by Richardson rests on the validity of the one-electron 
crystal-field model from which they were derived. Although the 
symmetry-determined aspects of this model are straightforward 
and valid, its completeness and its reliability in modeling the 
optical activity of transition metal complexes remain in ques­
tion. 

Strickland and Richardson28 employed the one-electron 
crystal-field perturbation model in performing detailed calcula­
tions on the d-d optical activity of Ni(II) in crystalline NiS04«6H20, 
and Richardson and Hilmes30 performed similar calculations on 
the d-d optical activity of Cu(II) in crystalline ZnSe04-6H20. The 
site symmetry at the metal ion in both of these systems is C2, 
while the microsymmetry of the MO6 clusters is very nearly 
octahedral (Oh). Second-order perturbation theory was used in 
each case to calculate the d-d rotatory strengths. In the case 
of Cu(II) in ZnSe04-6H20, vibronic interactions of the pseudo-
Jahn-Teller type were also taken into account in calculating the 
d-d CD spectrum.30 Kato36 has performed a theoretical analysis 
of the d-d optical activity observed for a series of divalent 
transition metal ions doped into single crystals of ZnSe04-6H20. 
Her analysis was based on Sugano and Shinada's22,32 model for 
d-d optical activity and included consideration of Cu(II), Ni(II), 
Co(II), Fe(II), and Mn(II). 

The deficiencies of the one-electron crystal-field perturbation 
model in properly representing the physical aspects of the ligand 
environment and its interactions with the metal ion are readily 
apparent and widely recognized. However, the more subtle 
problems with this model such as dealing with the proper con­
vergence criteria for the perturbation potential expansion and 
the order to which the perturbation calculation (of rotatory 
strengths) should be carried are not so widely appreciated. For 
six-coordinate metal complexes of near octahedral (Oh) mi­
crosymmetry, it seems clear that a first-order treatment of the 
model is inappropriate owing to the rather "unphysical" re­
quirements of including metal orbitals of £ > 7 angular mo­
mentum in the zeroth-order basis set and of using a perturbation 
potential of extremely short distance dependence ( f t - 1 0 ) . As 
shown by Sugano and Shinada2232 and by Richardson,24 a 
second-order treatment will generate net d-d optical activity 
when the metal orbital basis set is restricted to d, p, and f orbitals 
and the perturbation potential is limited to just two low-order 
terms, a gerade term with £ = 2 and an ungerade term with £ 
= 3. Richardson31 has also pointed out that if the model is carried 
to third order (in the rotatory strengths), a single ungerade term 
of £ = 3 in the perturbation potential will lead to net d-d optical 
activity. Recently, Hilmes and Richardson31 reported calculations 
of d-d optical activity in trigonal dihedral (D3) complexes based 
on the one-electron crystal-field ("ionic") perturbation model 
carried to "all-orders" in the leading noncubic (trigonal) terms 
of the crystal-field interaction potential. This was essentially a 
variational calculation in which the metal orbital basis set was 
restricted to 3d, 4p, and 4f orbitals, and the crystal-field pertur­
bation potential was restricted to the V2

0 and ( V 3
- 3 — V3

3) tri-
gonally symmetric terms. The "perturbed" wave functions were 
obtained by diagonalizing the trigonal Hamiltonian matrix, and 
these wave functions were then used to calculate the rotatory 
strengths associated with trigonally perturbed d-d transitions. 

The "ionic" or one-electron crystal-field model of d-d optical 
activity has had a very strong and useful influence on the inter­
pretation and understanding of the chiroptical spectra associated 
with dissymmetric transition metal complexes. Whatever the 
merits, or otherwise, of this very simple model, it has provided 
a convenient focus from which many aspects of the problem can 
be discussed and has served as a point of departure for more 
refined theoretical treatments. However, it seems clear at this 
point that the ionic model has little, if any, quantitative usefulness 

and that many of the qualitative deductions drawn from it should 
be considered with some circumspection. It has provided valu­
able working hypotheses for experimentalists in the field, and 
its formalism has been important in analyzing the symmetry-
determined aspects of d-d optical activity in a wide range of 
metal complex structural types. The shortcomings of the model 
lie deeper than truncation of the perturbation treatment after first-
or second-order and inclusion or exclusion of higher order terms 
(large values of £) in the expansion of the chiral parts of the li­
gand field. Modifications of the basic model to include consid­
eration of an "extended" chromophoric unit comprised of the 
metal ion and the ligand donor atoms, and the inclusion of ung­
erade metal-ligand charge-transfer states in the zeroth-order 
basis set,37 improve the physical representation of the problem 
but do not enhance its quantitative utility. 

The successes and failures of the various applications of the 
ionic model to correlating CD spectral observables to absolute 
configuration will not be reviewed here. Such correlations are 
related more directly to how the crystal-field potential constants 
are calculated and defined than to the general, formalistic as­
pects of the model. As is true in most applications of crystal-field 
theory to the absorption spectra of metal complexes, the proper 
methods for evaluating these potential constants remain am­
biguous. Mason has commented upon this problem in a previous 
review article.35 

In 1963, Burer38 suggested a ligand-field approach to the 
problem of calculating d-d rotatory strengths in tris-chelated 
complexes of the type studied by Moffitt13 and by Piper and 
Karipedes.21 In this approach it was presumed that explicit 
consideration of metal-ligand bonding (or antibonding) would 
lead to a trigonal potential of a sign opposite to that used by Piper 
and Karipedes21 in their crystal-field treatment, and would also 
yield a trigonal splitting energy with a sign opposite that assumed 
in the crystal-field calculation. Burer never reported rotatory 
strength calculations based on his proposed ligand-field model 
and this approach has not been pursued further. 

The first theoretical studies of optical activity in transition 
metal complexes to employ a molecular orbital representation 
of the spectroscopic states were reported by Liehr3940 and by 
Karipedes and Piper.41 In the latter study, the molecular orbitals 
were constructed in the LCAO (linear combination of atomic 
orbitals) approximation, the ligand orbital basis set was restricted 
to the 2s and 2ptr atomic orbitals on the ligand donor atoms, and 
only the 3d and 4p orbitals of the metal ion were included. 
Metal-ligand x-bonding was neglected. Optical activity was 
generated by chiral distortions within the metal-donor atom 
cluster of the complex. Dissymmetry in the nondonor atom parts 
of the ligand environment was presumed to contribute only in­
directly to the d-d metal ion optical activity through ligand-in-
duced distortions of the metal-donor atom cluster away from 
an achiral microsymmetry. Karipedes and Piper41 applied their 
molecular orbital model to the tris(ethylenediamine) and tris-
(oxalato) complexes of Co(III) and Cr(III) and made correlations 
between the signs of the various CD bands associated with metal 
ion d-d transitions and specific structural distortions within the 
metal-donor atom chromophoric cluster. However, since pre­
cise relationships between these distortions in the ML6 cluster 
and the distribution and structural features of the chelate rings 
could not be formulated generally or unambiguously, assign­
ment's of absolute configuration based on this model remained 
tentative. The Karipedes and Piper41 molecular orbital model 
leads to the prediction that two complexes (of a given metal ion) 
with different absolute configurations will exhibit identically 
signed rotatory strengths (and CD bands) if the chelate rings in 
the two systems induce similar (chiral) distortions within the ML6 

cluster. This result follows from the neglect of direct interactions 
between the nondonor atoms of the chelate systems and the 
chromophoric electrons of the metal ion. The nondonor atoms 
and groups in the ligand environment merely serve to "me-
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chanically" distort the ML6 cluster. 
Liehr constructed molecular orbital models for the optical 

activity of six-coordinate complexes of trigonal dihedral sym­
metry39 and four-coordinate complexes of digonal dihedral 
symmetry.40 The essential feature of Liehr's models is a "sig­
nificant angle of mismatch" between the directions of maximum 
charge density for the metal d orbitals and the donor orbitals of 
the ligand atoms. In the trigonal dihedral (six-coordinate) systems, 
the ligand donor atoms were assumed to be situated at the ver­
tices of a regular octahedron, but the donor atom a orbitals were 
taken to be "canted" with respect to the metal-donor atom in-
ternuclear axis. This angle of cant (denoted a by Liehr39) was 
assumed to reflect the detailed structural features of the chelate 
rings, and all the dissymmetry in the ligand environment was 
assumed to be communicated to the metal ion via this deviation 
of each primary metal-donor atom linkage from axial symmetry 
(about the M-L internuclear axis). In this treatment the rotatory 
strengths turn out to be proportional to sin a. Liehr's model for 
digonal dihedral (four-coordinate) systems depended similarly 
on distortions within M-L a bonds of the complex. 

Liehr did not carry out detailed calculations based on his 
models, and the conceptual basis of his work is not easily 
transformed into working hypotheses which can be tested by 
experiment. Piper and Karipedes42 calculated the d-d dipole 
strengths of the Cu(en)3

3+ system using Liehr's bent-bond model 
and concluded that it underestimates the electric dipole transition 
integrals by at least an order of magnitude. 

In 1973, Strickland and Richardson43 reported molecular 
orbital calculations on the d-d rotatory strengths of trigonally 
distorted six-coordinate complexes of Co(III) and Cr(III) with ni­
trogen and oxygen donor atoms. The electronic states of 
spectroscopic interest were constructed from molecular orbitals 
calculated on a modified Wolfsberg-Helmholz model. Calcula­
tions were carried out on ML6 clusters (M = metal atom, L = 
donor or ligator atom) in which either the nuclear geometry of 
the ML6 system had trigonal dihedral (D3) symmetry or the donor 
orbitals of the ligand atoms (L) were trigonally disposed about 
the metal atom. That is, chirality was introduced into the ML6 

cluster either by a Piper representation (trigonal nuclear ge­
ometry)41 or by a Liehr representation (ligand donor orbitals 
canted from the M-L axes in an octahedral ML6 cluster).3940 

Additional calculations were carried out in which both a trigonally 
distorted ML6 cluster and (dissymmetrically) canted donor orbitals 
were present simultaneously. Trigonal distortion parameters for 
donor atom displacements (from octahedral geometry) and for 
donor orbital directions (with respect to the M-L axes) were 
varied to simulate the various structural features known to occur 
in a variety of tris-chelated complexes of Co(III) and Cr(III). The 
atomic orbital basis set used in the molecular orbital calculations 
consisted of the 4s, 4p, and double-f 3d metal orbitals and the 
2s and 2p orbitals on each ligand atom (either oxygen or nitro­
gen). M-L a and it interactions were treated separately in the 
molecular orbital parameterization scheme. 

The results reported by Strickland and Richardson43 suggest 
that neither the Piper model41 nor the Liehr model39 provides 
an adequate representation of the source of d-d optical activity 
in trigonal dihedral metal complexes. However, the more refined 
and comprehensive molecular orbital model employed by 
Strickland and Richardson43 did prove to be useful in deducing 
qualitative information about the sensitivity of d-d rotatory 
strengths to various kinds of distortions within the ML6 cluster 
of these systems. Furthermore, since the computational pa­
rameters of the model were defined to reflect specific structural 
features of the ligand environment, rather specific spectra-
structure correlations could be deduced from the calculated 
results. 

In 1974, Evans, Schreiner, and Hauser44 reported molecular 
orbital calculations on the d-d optical activity of the tris(ethy-
lenediamine) complexes of Co(III) and Cr(III). The level of ap­

proximation and general features of the molecular orbital model 
employed in this study44 were similar (but not identical) to those 
of Strickland and Richardson's model.43 However, whereas 
Strickland and Richardson43 considered only distorted ML6 

clusters, Evans, Schreiner, and Hauser (ESH)44 included all 
atoms (M, C, N, and H) in their calculations. ESH used structure 
parameters derived from the X-ray crystallographic study of 
D-Co(en)3Br3-H20 reported by Nakatsu.45 The only structure 
variations considered in the ESH study were " Ie I " -»• " o b " ge­
ometry changes within the metal-ethylenediamine chelate rings. 
ESH did, however, thoroughly investigate the sensitivity of their 
rotatory strength calculations to various computational features 
of their molecular orbital model and to various operator repre­
sentations of the rotatory strength quantity. They also carried 
out comparative rotatory strength calculations using complete 
multicenter operator matrices (angular momentum, dipole ve­
locity, and dipole length) and successively approximate ones. 
The ESH calculations proved successful in relating the absolute 
configurations of Co(en)3

3+ and Cr(en)3
3+ to the natural CD 

observed for the magnetic dipole allowed 1 A i 9 —- 1T1g and 4A2g 

- * 4T2g transitions in the Co(III) and Cr(III) complexes, respec­
tively. Furthermore, the calculations correctly accounted for the 
relative signs of the trigonal components of the rotatory strengths 
(associated with the magnetic dipole allowed transitions), as well 
as the net 1A1g -»• 1T19 and 4A2g -*•

 4T29 rotatory strengths. The 
model also showed sensitivity of d-d rotatory strength to ligand 
(chelate ring) conformation. 

Richardson and co-workers4647 have reported additional 
"all-atom" molecular orbital calculations of d-d rotatory 
strengths for a number of four-coordinate and six-coordinate 
Cu(II) complexes of variable ligand type and coordination ge­
ometry. These calculations were based on a modified 
Wolfsberg-Helmholz molecular orbital model, and they included 
consideration of all atoms in the metal complex system. The 
rotatory strengths associated with ligand-to-metal charge-
transfer transitions and with ligand-ligand transitions were also 
calculated and reported in these studies.4647 

Schaffer48 reported a theoretical analysis of optical activity 
in chiral transition metal complexes based essentially on the 
angular overlap model4 9 5 0 of metal-ligand interactions. This 
model focused primarily on chiral distortions within the metal-
donor atom cluster of tris-chelated and cis-bis-chelated com­
plexes of d3 and low-spin d6 transition metal ions. 

Perhaps the most generally applicable and useful theoretical 
treatments of d-d optical activity in transition metal complexes 
are those based on the so-called independent systems/pertur­
bation (ISP) model as developed by Mason and co­
workers29 '3551"53 and by Richardson and co-workers.2554 The 
basic concepts of this model derive primarily from the work of 
Tinoco55 (on polymer systems) and of Hohn and Weigang56 (on 
small organic molecules). According to this model, the metal 
complex is partitioned into a chromophoric unit (either the metal 
ion or the metal-donor atom cluster) and a set of extrachro-
mophoric perturber atoms (or groups) situated in the ligand en­
vironment. To zeroth-order in the perturbation representation, 
the chromophoric and extrachromophoric groups are treated 
as noninteracting (independent) subsystems. Interactions be­
tween the subsystems are then treated by first- or second-order 
perturbation techniques. The interaction potential is generally 
expressed in terms of electrostatic interactions between 
nonoverlapping charge distributions localized on the various 
subsystems, and is commonly represented by a bicentric elec­
trostatic multipolar expansion. This model subsumes the crys­
tal-field representation of metal complexes insofar as it includes 
all interactions arising from point-charge distributions in the li­
gand environment interacting with the various multipolar com­
ponents of metal localized charge distributions and transition 
densities. This aspect of the ISP model leads to the so-called 
static-coupling (SC) interaction terms in the final spectroscopic 
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expressions which arise from ligand ground state point-charge 
interactions with multipolar components of the metal ion (or 
chromophoric) electronic transition densities. The d-d optical 
activity generated in the one-electron crystal-field (or " ionic") 
model described previously can be associated entirely with this 
static-coupling mechanism. 

In addition to the SC interaction terms, the general ISP model 
also includes so-called dynamic-coupling (DC) interaction terms 
arising from multipole-multipole interactions between transition 
densities located on the various subsystems of the metal com­
plex. The DC terms arise from the correlated (or "complemen­
tary") motions of electrons on different subsystems undergoing 
(virtual) transitions induced by the electrostatic interaction po­
tential operating between the subsystems. In most applications 
of the ISP model reported to date,2 5 2 9 '3 5 5 1 - 5 4 expansions of the 
extra-chromophoric (perturber) group charge distributions have 
been truncated after the (electric) dipolar term and only the 
multipole (metal)-dipole (ligand) DC terms have been retained. 
To first order in perturbation theory, these multipole (metal)-
dipole (ligand) DC terms lead to rotatory strength expressions 
(for the metal ion d-d transitions) which depend upon ligand 
(perturber) group polarizabilities (and polarizability anisotropies), 
perturber group positions relative to the metal ion, and multipolar 
transition matrix elements characteristic of the metal ion 
chromophoric electrons. 

Sector rules based on the DC mechanism for generating d-d 
optical activity within the ISP model have been worked out and 
proposed by Mason2935 and by Richardson.2554 In general, these 
sector rules are different (qualitatively and quantitatively) from 
those based on the SC mechanism leading to considerable 
ambiguity in the use of sector rules for sorting out spectra-
structure correlations in metal complex CD spectra. Calculations 
and spectral interpretations based solely on the DC aspects of 
the ISP model have enjoyed considerable success as reported 
in several recent studies,51-54 and it would appear that the DC 
mechanism is perhaps dominant over the SC mechanism in 
complexes possessing no charged groups. 

Although the ISP model neglects all exchange interactions 
between the chromophoric and extrachromophoric subsystems 
of the complex, this neglect is not so serious when the 
chromophoric subsystem is defined to include the metal ion and 
the ligand donor atoms. However, consideration remains re­
stricted to through-space vs. through-bond interactions, and thus 
the physical representation of the model must be considered 
highly approximate. 

Very recently, Schipper57 has reported a theory of d-d optical 
activity based on what he calls the associate-induced circular 
dichroism (AICD) theory. This theory is based essentially on the 
general ISP model carried to second order in perturbation theory. 
The derived rotatory strength expressions include SC, DC, and 
"mixed" SC/DC contributions, and the theory was applied in a 
general way to a wide variety of metal complex types. 

This review article is focused primarily on the various formal 
and computational theoretical models proposed for explaining 
or interpreting the optical activity associated with the ligand-field 
(d-d) transitions of chiral transition metal complexes. The nu­
merous empirical and semiempirical spectra-structure rela­
tionships and rules developed for this purpose lie outside the 
scope of this article. Most of the semiempirical spectra-structure 
relationships developed for d-d optical activity are based on (or 
are related to) at least one of the theoretical models discussed 
so far. However, by necessity, the semiempirically based rela­
tionships are generally more flexible and are designed to ac­
commodate a number of "special cases" or "exceptions". It 
appears that none of the purely theoretically models proposed 
to date is sufficiently general or complete to be applicable to all 
d-d transitions in all the various classes of chiral transition metal 
complexes. This is particularly true in those cases where vibronic 
coupling effects, solvent perturbations, and spin-orbit coupling 

are expected to be especially strong. In all the theoretical models 
discussed up to this point, these effects have been ignored. 

Concern about the possible influence of vibronic interactions 
upon the CD spectra of metal complexes was first expressed 
by Denning.58 Denning58 proposed that the 1T1g excited state 
of Co(en)3

3+ undergoes a strong (tetragonal) Jahn-Teller dis­
tortion via coupling to an eg vibrational mode of the CoN6 cluster. 
This strong tetragonal Jahn-Teller (JT) distortion was then pre­
sumed to be effective in "quenching" the crystal-field-induced 
trigonal splitting of the 1T1g state (a manifestation of the so-called 
Ham effect59) in Co(en)3

3+. Denning58 further suggested that the 
two CD bands observed in the 1A1g - » 1T1g region arose from 
two different JT vibronic states derived from 1T1 g -eg coupling, 
rather than from the two trigonal components (1E and 1A2) of the 
1T1g electronic state. The influence of Jahn-Teller and 
pseudo-Jahn-Teller (PJT) interactions upon the CD spectra of 
d-d transitions has been studied in considerable detail (theo­
retically) by Richardson and co-workers.24'30,60"63 These studies 
included consideration of metal complexes belonging to trigo-
nally symmetric structural classes24 '61 as well as metal com­
plexes of pseudo-tetragonal try symmetry.30,60 '62 '63 The main 
conclusion of these studies was that whereas vibronic interac­
tions of the JT and PJT types (within the manifold of d-d excited 
states) will not, in general, alter the net d-d rotatory strength for 
a given system, they can play a dominant role in determining how 
CD intensity is distributed throughout the d-d transition region. 
These studies thus pointed to an additional reason why only net 
d-d CD intensity (or rotatory strength) can be safely used in 
making spectra-structure correlations. In the presence of strong 
JT or PJT interactions among the d-d states, it becomes im­
possible (or meaningless) to assign specific features in the CD 
spectra to specific d-d electronic transitions. The individual CD 
bands, in such cases, will generally reflect "mixed" electronic 
parentage. 

Vibronically induced coupling of the d-d spectroscopic states 
to odd-parity (ungerade) electronic states of metal complexes 
plays a significant (and sometimes dominant) role in determining 
the observed dipole strengths and absorption intensities of d-d 
transitions. The possible influence of these vibronic interactions 
upon d-d rotatory strengths has been considered qualitatively 
by Harding64 using the vibronic coupling formalism of Weigang 
and co-workers.65"68 

Hilmes, Caliga, and Richardson63 investigated the influence 
of (simultaneous) spin-orbit and vibronic interactions upon the 
chiroptical properties of nearly degenerate d-d transitions in 
metal complexes of pseudo-tetragonal symmetry. A model 
system was considered in which three nearly degenerate d-d 
excited states are coupled via both spin-orbit and vibronic in­
teractions. Vibronic interactions among the three nearly de­
generate d-d electronic states were assumed to arise from a 
PJT coupling mechanism involving three different vibrational 
modes of the undistorted metal complex system. The model 
adopted was conservative with respect to the total (or net) ro­
tatory strength associated with transitions to the vibronic sub-
levels of the three perturbed d-d excited states. The vibronic 
rotatory strengths and simulated CD spectra calculated in this 
study63 again demonstrated the extreme sensitivity of d-d CD 
intensity distributions to vibronic and spin-orbit coupling within 
the manifold of d-d excited states. 

The (essential) role of spin-orbit coupling in generating optical 
activity in the spin-forbidden d-d transitions of chiral transition 
metal complexes has been studied by a number of workers.69"74 

Most of the experimental data reported to date on CD within 
spin-forbidden transitions have been acquired on Co(III) and Cr(III) 
complexes. As might be expected for metal ions belonging to 
the first row of the transition metal series, the AS = O spin se­
lection rule remains rather strong (owing to relatively small 
spin-orbit coupling constants), and the CD intensities observed 
for the spin-forbidden transitions are generally found to be 
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several orders of magnitude weaker than those observed for the 
corresponding spin-allowed transitions. One might expect 
stronger spin-forbidden optical activity in complexes involving 
metal ions belonging to the second and third rows of the transi­
tion metal series (where the spin-orbit coupling constants are 
larger). All the theoretical work reported to date on spin-orbit 
induced optical activity in spin-forbidden transitions has been 
based on perturbation models involving single-center (metal 
atom) spin-orbit interactions. The possible influence of 
metal-ligand bonding effects has been ignored. 

Solvent perturbations on the d-d optical activity of chiral 
transition metal complexes have been studied extensively and 
present particularly difficult problems in establishing generally 
applicable theories of metal complex optical activity.75 Solvent 
perturbations arising from specific complex:solvent adduct 
formation with solvent molecule binding within the first coordi­
nation sphere may be easily accommodated in most of the extant 
theoretical models. In this case, the bound solvent molecules 
are simply treated as additional perturber groups in the ligand 
environment and are sensed directly by the metal ion chromo-
phore. However, the influence of solvent molecules bound only 
in the second, or more distant, coordination sphere, or not 
specifically bound at all, presents a much more difficult and 
subtle problem to quantitative (or even qualitative) theoretical 
analysis. In these cases, the solvent may serve to alter chelate 
ring conformations, distort the geometrical (structural) param­
eters of the metal-donor atom cluster, or exert subtle pertur­
bations on the ligand charge distributions. Although a variety of 
empirical and semiempirical methods and rules have been de­
vised to handle this problem for specific cases, a generally ap­
plicable and reliable theory of solvent-dependent d-d optical 
activity has not yet been formulated. 

This review is intended to deal with transition metal complexes 
which are inherently chiral within their first coordination sphere 
(defined to include all ligands with donor groups coordinated 
directly to the metal ion). For this reason we shall not comment 
extensively on the optical activity induced in achiral metal 
complexes dissolved in chiral solvents or embedded in chiral 
matrices or crystals. A great deal of progress has been made 
recently in the development of theories related to the induction 
of optical activity in achiral systems by chiral media. This work 
has been done primarily by Schipper,76-81 Mason,82 and Craig 
and co-workers.83-85 

Special effects associated with the d-d optical activity of 
transition metal ions (or complexes) situated in enantiomorphic 
single-crystal systems have been dealt with (theoretically) by 
a number of workers.2830'3686 The special effects referred to 
in these cases concern contributions from localized excitations 
vs. delocalized excitations (exciton motion), dominance of site 
symmetry vs. unit cell symmetry, and the relative importance 
of electric quadrupole-electric dipole vs. magnetic dipole-
electric dipole molecule-radiation interactions. 

///. General Independent Systems/ Perturbation 
Model 

A. General Aspects 

As was mentioned in the previous section (II), the general 
independent systems/perturbation (ISP) model of d-d optical 
activity in chiral transition metal complexes subsumes both the 
one-electron crystal-field (or static-coupling) model and the 
dynamic-coupling ligand-polarization model. Its attractiveness 
derives in large part from the relative simplicity of its underlying 
physical representation, the simplicity of its associated (per­
turbation) formalism, and its flexibility in applications to real 
systems. Its limitations derive primarily from its incomplete and 
highly approximate representation of metal-ligand interactions 
(especially of the covalent bonding type). Despite its inherent 
limitations, the ISP model provides the most promising approach 

for developing reliable and useful spectra-structure relationships 
applicable to metal complex d-d optical activity. For this reason, 
we shall outline the major features of the general ISP model in 
this section. Various aspects of this model (as applied to metal 
complex optical activity) have been presented previously (ref 
25, 29, 35, 51-54, 57), and each of these will be included in the 
present general treatment. 

B. Description of Model 

The basic assumption of the independent systems/pertur­
bation model is that the metal complex may be partitioned into 
a chromophoric subsystem (the metal ion or the metal-donor 
atom cluster) and a set of extrachromophoric subsystems. To 
zeroth order the spectroscopic properties of the chromophoric 
unit are assumed to be independent of the remainder of the 
complex. Interactions between the chromophoric and ex­
trachromophoric subsystems are then treated by perturbation 
techniques and the spectroscopic properties of the perturbed 
chromophore are calculated from the resultant (perturbed) wave 
functions of the chromophoric subsystem. Pairwise interactions 
between the chromophoric and extrachromophoric (perturber) 
subsystems are generally expressed in terms of bicentric mul­
tipolar expansions representing the electrostatic interactions 
between charge distributions localized on the respective (in­
teracting) subsystems. Exchange interactions (due to overlap) 
are neglected. Terms in the interaction potential which influence 
the energies of the d-d spectroscopic states but which do not 
contribute to d-d rotatory strengths are generally neglected or 
are absorbed into the zeroth-order representation of the sys­
tem. 

In our present treatment of the general ISP model, we shall 
find it convenient to express the total electronic Hamiltonian of 
the metal complex as 

y/ = HA + HB + VA + VAB (2) 

where HA denotes the electronic Hamiltonian of the achiral 
chromophoric subsystem (A), HB denotes the total electronic 
Hamiltonian of the collection of extrachromophoric subsystems 
(B) in the ligand environment, VA allows for a local (chiral) dis­
tortion within the chromophoric subsystem (A), and VAB repre­
sents all pairwise A-B interactions within the overall complex. 
In general, the chromophoric subsystem (A) will be taken as a 
metal-donor atom cluster of an idealized geometry (with, for 
example, Oh, D4h, or Td symmetry). Deviations from this ideal­
ized (zeroth-order) geometry of A are taken into account by the 
interaction term, VA, in eq 2. The B subsystems will be taken as 
atoms, groups of atoms, or chemical bonds in the ligand envi­
ronment. The Hamiltonian HB may be further partitioned as 

HB=Zhr (3) 
r 

where r labels individual perturber subsystems. 
Defining hf = HA + H3 as the zeroth-order Hamiltonian op­

erator in our general ISP model, the zeroth-order basis states 
of the model may be expressed as product functions of the 
type: 
Ground State 

I A0B0)= lAoITbrt,) (4) 
r 

Excited States (singly excited) 

|AmB 0 )= |Amn£>rt)) (5a) 
r 

IA0Bn)= I A0br,nbs0) (5b) 
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Excited States (doubly excited) 

|A m B„- )= |A m b„n t> s o) 

|AoB r i,sy)= |A0b„bsy n bw) 

ttr.s 

(6a) 

(6b) 

where (r,s,f) label individual B subsystems, (i,f) label excited 
states localized on the B subsystems, m denotes an excited state 
of the chromophore (A), and 0 denotes ground state. We note 
that, 

and 

H A | A Q ) = E „ | A a ) 

hr\bry) - Erj\brj) 

(7a) 

(7b) 

+ EZ 
a'^mff' 

The inclusion of doubly excited states in the zeroth-order basis 
set is necessary only if the perturbation expansion of the wave 
functions is carried to second order. 

Applying nondegenerate perturbation theory to second order 
in H' = VA + VAB, we obtain for the | AmB0 ) state: 

|Ame0> = K B 0 ) + E E ' ^ " ' K B O ) 
«*m ji tm — (ba + tfj) 

^ ^ (Aa.B t f.| H'\A„BtfX A t tBtf lH ' |AmB 0 ) 
«*m /3 (Em — £«' — Efj')(Em - E n - Eg) 

(4 m B 0 |H ' |A m B 0 ) (A a .B d - |H ' |A m B 0 )1 . 

(tm =«' S3') J 

where a(a') and /8(/3') are used as generic indexes for zeroth-
order states on the A and B subsystems, respectively. Rounded 
kets denote zeroth-order state functions and pointed kets denote 
perturbed wave functions. An expression similar to (8) may be 
written for the perturbed ground state, | A0B0 ) , of the metal 
complex. Equation 8 is appropriate only for nondegenerate 
systems. However, if we redefine our state indexes (such as m, 
n, i, j, a, /3, etc.) to reflect components of degenerate states and 
further choose zeroth-order degenerate states with components 
diagonal in H', then we may use eq 8 with the understanding that 
the summations are taken over states and (degenerate) state 
components. 

C. Electronic Rotatory Strengths (General 
Expressions) 

The quantity of primary interest is the electronic rotatory 
strength. For the 0 -*• m transition localized on the chromophore 
(A): 

Rom = lm(A 0 B 0 | £ |A m B 0 ) • (A m B 0 |m |A 0 B 0 ) (9a) 

= Im(P0n, • M^0) (9b) 

where P0m and Mm0 denote the electric and magnetic dipole 
transition vectors, respectively. To second order in perturbation 
theory, the rotatory strength may be reexpressed as: 

where 

Rom = Rom{0) + Rom{1) + R0m
<2) 

fl0m<o) = im (p0m(0). M1110(O)) 

(10) 

(11a) 

(11b) flom<1) = Im (P0m<°» • M J 1 ) + P0m
<1> • Mm0<°>) 

and 

Rom(2) = lm(P0m«» • H J 2 I 

+ P0m
(1) • M J 1 ) + P0m

(2» • Mm/ " ) (11c) 

In eq 10, 11a, 11b, and 11c, the superscripts refer to zeroth (0), 
first (1), and second (2) order contributions to the rotatory 
strengths and/or transition moments. 

Restricting our treatment to systems with centrosymmetric 
chromophoric units (A), both P0m

(0) and R0m
i0) will vanish for all 

d-d transitions. The appropriate rotatory strength expression 
is, therefore, given (to second order) by: 

Rom = flom(1) + Rom{2) (12a) 

= lm(P0m
<1) • Mmo(0)) + lm(P0m

(1) 

• M j H P o / t . M ^ I ) (12b) 

To calculate the rotatory strength, eq 12, it is first necessary 
to evaluate P0m

<1)' Pom(2)' Mmo(0)' and M j 1 ' using the pertur­
bation model outlined in section III.B. This requires explicit 
consideration of the perturbation Hamiltonian, H' = VA + VAB, 
as well as specification of the zeroth-order basis states to be 
included in the perturbation expansion. 

D. Interaction Hamiltonian 

We have defined the interaction (perturbation) Hamiltonian, 
H', as comprised of two parts: VA and VAB. The operator VAB 

represents electrostatic interactions between charge distribu­
tions localized in the extra-chromophoric ligand environment 
(B) and transition densities associated with (virtual) electronic 
excitations localized on the chromophore (A). The operator VA 

represents all chiral components of the metal-ligand interactions 
within the metal-donor atom chromophoric cluster (A). As­
suming nonoverlap between the A and B charge distributions and 
representing VAB in terms of a sum of bicentric multipolar ex­
pansions, the VAB interaction potential may be expressed as: 

ÂB = E E E vAr(^A,-^) 
r ek=o e,=o 

(13) 

where 

VAr(£A,£r) = E E Tm„mr^r)(r)Dm/(^(A)Dmyr){r) {U) 
mA mr 

In eq 13 and 14, the summation 2 r is taken over all ligand per-
turber sites, mA runs from —£A to +£A, and mr runs from —£r 

to +£r. The quantity Tm^myA^r) is the {mA,mr) component of 
a (£A + ^ r) th rank tensor which describes the orientational de­
pendence of the interaction between a 2^A multipole on A and 
a 2£r multipole on perturber r. The multipole components of the 
charge distributions on A and r are denoted, respectively, by 
DmA

(^A)(A) and Dmr
{e'\t). The general form of the tensor operator, 

7"mA,m/A"^. is given by: 
/ _ i / r+m r +m A 

' /7 IA, m r R / A + ^ + 1 

\£A + £r + mA + mr)!(lA + £r - mA - mr)\ 
(£A + mA)\(£A - mA)\(£r + mr)\{£r - mr)\ 

X C_m A -m/ A + ^»(e r , $ r ) (15) 

The multipole moment operators, DmA
(^A)(A) and Dmy*-Xr), may 

be expressed as: 

Dm/A>(A) = E - e r / *C m /A>( f l t ,0 e ) (16) 

and 

Dmr
(e'Xr) = E eZir^C^KOi^i) (17) 

5 

The electrons on A are labeled by e with coordinates (r(, 6t, <f>(). 
The charged particles on perturber r axe labeled by 5 with 
coordinates (rj, 6s, fo) and charge Zbe (where e is the magnitude 
of the electron charge). The position of ligand perturber group 
r with respect to the chromophoric center (A) is defined by the 
set of coordinates (Rr, Qn $ r ) . The general form of the Cm

(e\d,(j>) 
operator is: 

Cm
(e\e,4>) = [4ir/(2£ + 1)]1/2V/,m(0.0) (18) 
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where V7,m(0,<£) is a spherical harmonic function of rank £. In 
eq 14, DmA

iiA\A) and Dm}e,(r) are pure electronic operators 
while Tm^my*<e\i) is a factor determined entirely by the po­
sition of perturber r relative to the chromophoric group A. 

In dealing with chiral distortions within the metal-donor atom 
cluster, we shall assume it possible to express VA in precisely 
the same form as VAB. In this case, however, the extrachro-
mophoric perturber sites rare replaced by ligand donor atoms 
(denoted by L) displaced with respect to the centrosymmetric 
reference geometry assumed in our zeroth-order representation 
of the metal complex. This construct makes less clear the de­
tailed nature of the zeroth-order basis states of the chromophoric 
subsystem (A), but it should preserve the essential symmetry-
determined aspects of the general ISP model. 

It is convenient now to partition the interaction potential VAB 

into its so-called static-coupling (SC) and dynamic-coupling (DC) 
components. We define the static-coupling component of VAB 

to be: 

<VA E E VA^A.0) (19) 

or 

<V AB Z I I 7"mA,0
(' 

r A mA 

»'0)(r)Dm/*>(A)D0<°>(r) (20) 

The operator "VA6 represents the electrostatic interactions 
between the chromophore (A) multipoles, DmA

(^A)(A), and the 
net charges (monopoles), D0

{0){r), of the perturber groups. V A 6 

thus contains the familiar "crystal-field" potential and is the 
operator employed in the original one-electron crystal-field 
models of d-d optical activity.13'20'21'24'31 The dynamic-coupling 
component of VAB is defined by: 

^ A B = E L Z VAr(£A,£r) 
r (A er>\ 

(21) 

In our subsequent treatment, we shall restrict £r to £r = 1 (dipole 
components) so that: 

W A B = I I E E Tm„my^\r)Dmy*\k)Dmy\r) (22) 
' CA "IA m r 

The total interaction potential, VAB, is given by: 

VA ^AB + VA (23) 

The interaction operator VAB describes the (coulombically) 
correlated motions of electrons in the A and B subsystems, thus 
the designation "dynamic-coupling". 

Expressions similar to (19)—(23) may be written down for the 
distortion operator VA, replacing 2 r with 2L where L denotes 
displaced donor atoms of the ligands. 

The interaction operator VAB (as well as VAB and ^/AB) must 
transform as the totally symmetric irreducible representation 
of the point group describing the full metal complex. Thus the 
functions 

E E F(£A,mA) = E E E U ' ^ f ) (24) 
IA mA r (A mA 

In the present context, this implies that the function F must 
contain at least one pseudoscalar term (with respect to the 
symmetry operations contained in the point group of A) in order 
for the electronic transitions of A to exhibit optical activity to first 
order. Precisely the same requirement obtains for F if the dy­
namic-coupling model is carried to just first order.2535 More 
succinctly, the net first-order rotatory strength associated with 
any electronic transition of the achiral chromophore (A) will 
vanish unless either F or F contains at least one term which 
transforms as a pseudoscalar under the symmetry operations 
of the A point group (which we shall denote by GA). 

Extension of the ISP model to second order (in the wave 
functions and rotatory strengths) leads to interaction terms whose 
symmetry transformation properties may be evaluated from 
product functions of the type: 

FX F ' = E E F(£A,mA) E E F'(£A',mA>) 
CA mA' 

FX F = 

FXF' = 

E E F(£A, mA) 
CA mA 

E E E F(£A,mA,mr) 
PA mA inr 

E E E F(£A,mA,mr) 

X E E E F'(£a',mA',mr') 
BA ITIA m/ 

(26a) 

(26b) 

(26c) 

Second-order rotatory strength contributions will result only jf 
the_direct product representations generated by FX F', FX F1 

or FXF' include a pseudoscalar representation (defined within 
the GA point group).24'25'3557 To second order, then, neither F 
nor F need transform as a pseudoscalar within the point group 
of the achiral chromophore. Note that eq 26a pertains to the 
static-coupling mechanism carried to second order, eq 26c 
pertains to the dynamic-coupling mechanism carried to second 
order, and eq 26b pertains to a (simultaneous) static-coupling/ 
dynamic-coupling combination mechanism. 

Just as the functions F and F reflect the symmetry properties 
of "VAB and 1Z/AB, respectively, so do the functions, 

' = 1 1 f(£A,mA) = E E E Dm/A)(A)D0<°>(r) 
HA mA r CA mA 

(27) 

and 

' = E E E ^A,mA,mr) = E E E Dm/A>(A)Dm/1>(r) (28) 
CA T\A rr>r ' IA mr 

The symmetry restrictions of f and f (and on products of these 
functions) in the generation of optical activity in the electronic 
transitions^ A are precisely the same as those discussed above 
for Fand F. Whereas Fand Fare defined in terms of nuclear 
positional coordinates, f and rare defined in terms of functions 
of electronic coordinates. For our "fixed-nuclei" model, the 
electronic symmetry of the complex must at all times be identical 
with the symmetry of the nuclear framework. 

Sector (or "regional") rulesJor metal complexes may be 
derived directly from the Fand Ffunctions upon application of 
the appropriate symmetry restrictions, whereas the details of 
the chiral metal-ligand electronic interactions responsible for 
observed optical activity are best analyzed using the f and f 
functions (and the appropriate symmetry restrictions). 

F = E I I F(£A,mA,mr) = 1 1 1 1 U ' » ^ 0 (25) 
£A ITIA (TIr T BA TIA (Tlr 

must also transform as the totally symmetric irreducible repre­
sentation of this point group. Referring back to the Schellman's 
general symmetry analysis of the one-electron theory of optical 
activity (carried to first-order in perturbation theory),34 optical 
activity can be induced in the electronic transitions of the sym­
metric (achiral) chromophore (A) only if the perturbation potential 
contains at least one component which transforms as the 
pseudoscalar irreducible representation in the point group of A. 

E. First-Order Rotatory Strengths 

To first order on our ISP model, the rotatory strength of the 
0 ~* m electronic transition is given by: 

R0m<1) = Im(Pcn^-AW0 ' ) (29) 

where 

Mmo<°> = (Am |rh|A0) (30) 

The electric-dipole transition moment, Pom
(1'> rnay be expressed 
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in terms of a static-coupling (SC) part and a dynamic-coupling 
(DC) part as follows: 

P0m
(1) = Pom

(1)(SC) + P0m'1»(DC) (31) 
where 

Pom(1)(SC) = - E (A11IAlAJ(AnB0I^AB + ^ I A 0 B 0 ) E n - 1 

«*0 

- E (A0IAlA0XAaB0IVAB+ VA\AmBo)(Ea -En,)-' (32) 

and 

P0m
<1)(DC)= E (B0IAlBflXAoB^AB 

+ '? /A |AmB 0)[2E / 3 / (Em
2-E^)] (33) 

The 0VA and Il A operators are, respectively, the static-coupling 
and dynamic-coupling components of the distortion potential VA. 
The set of states (A„) are taken from the set of ungerade states 
localized on the achiral (centrosymmetric) chromophore. These 
may be described in terms of metal ion excitations (such as, for 
example, d-p and d-f transitions), ligand-metal charge-transfer 
states within the metal-donor atom chromophoric cluster, or 
(composite) ligand-ligand excitations localized on the donor 
atoms of the chromophoric cluster. The sets of states (B1^) rep­
resent excited states localized in the perturbing (extrachromo-
phoric) ligand environment. The first-order rotatory strength may 
now be expressed as: 

where 

and 

RoJ1) = R0J
1KSC) + fl0m

(1)(DC) (34) 

R0m
(1)(SC) = Im[P0^)(SC) • Mn^o)] (35a) 

fl0m<1>(DC) = lm[P0m
(1>(DC) • M^W] (35b) 

To first-order, the SC and DC contributions to the rotatory 
strength are additive and may be treated separately. 

As noted previously, in writing 0 —• m we take the ground 
state (0) to be nondegenerate, and we define m to include all 
components of any excited state which may be degenerate in 
the symmetry group GA of the unperturbed achiral chromophore 
A. For example, if we specify 0 - * m to be the 1A1g -»• 1T1g 

transition of an octahedral (Oh) Co3+ chromophoric unit, then 
R0m corresponds to the total (net) rotatory strength associated 
with this transition. 

In order for fi0m
(1>(SC) to be nonvanishing, the static-coupling 

operator V = ^ A + 'VAB must contain at least one component 
which transforms as a pseudoscalar function under the symmetry 
operations of the GA point group. In order for fi0m

(1)(DC) to be 
nonvanishing, the dynamic-coupling operator %l = Il A + 6UAB 

must contain at least one component which transforms as a 
pseudoscalar function (in GA). 

The static-coupling contribution, R0m
(1)(SC), arises from the 

dissymmetric components of the "Stark field" created at the 
metal ion by the ligand environment (represented as a distribution 
of point charges). Symmetry considerations dictate that only 
those components which transform as a pseudoscalar function 
under the symmetry operations of the GA point group will make 
nonvanishing contributions to fl0m

<1)(SC). Referring back to eq 
24, the lowest order F(£A,mA) functions contributing to 
ff0m

(1)(SC) are listed below for several centrosymmetric GA 

groups. 
GA F(eA, mA) £„ 

oh 
D6h 

Dih 

02h 

Cth 

F(9,mA) 
F(7,mA) 
F(5,mA) 
F(3,mA) 
F(1,mA) 

7, 9, 11 
5, 7,9 
3 ,5 ,7 
1, 3, 5 
1,3 

£a denotes the angular momentum quantum numbers allowed 
among the ungerade A1, states to be mixed into the d-d spec­
troscopic states. The large values of £a for GA = Oh suggest why 
the first-order SC mechanism Is quite often referred to as "un-
physical" in its applications to complexes of erstwhile Oh 

symmetry. Sector rules pertaining to fl0m
,1) (SC), expressed in 

terms of the Cartesian coordinates of the perturber groups, have 
been listed by Schellman34 for a wide variety of achiral 
chromophoric point groups (GA). 

The first-order electric dipole transition moment P0m
<1) (SC), 

defined in eq 32, may be written more explicitly as eq 36, 

Pom(1)(SC) = 
- E EEE(Av|Dp<1'(A)|Am)(A(V|Dm/A)(A)|A0)E„-1 

n * 0 q (A mA 

X I d r W w ^ ) + EQJ%owW 

E EEE(Ao|Dq
(1)(A)|A„)(A„|Dm/*)(A)|Am) 

a^m q £A HIA 

X (E1x - Em)~1 Eaw/A'0,w+lQtW40lw (36) 

where q denotes the (spherical) components of the electric di­
pole operator (fiq = Dg(1)), 2 r runs over all perturber sites in the 
extrachromophoric ligand environment, 2L runs over the donor 
atoms (distorted from the chromophore reference geometry), 
and G> and QL denote, respectively, charge parameters for the 
rth and Hh perturbers. 

The dynamic coupling contribution to the first-order rotatory 
strength, R0m

<1)(DC), arises from a dissymmetric coupling be­
tween electric dipole transition vectors located in the ligand 
environment with multipolar transition moments associated with 
the chromophoric d-d transitions. The physical basis of this 
mechanism can be viewed in terms of an induction of (virtual) 
electric dipole transitions in the ligand environment by (radiation) 
field-induced excitation localized in the chromophoric group (A). 
The entire first-order electric dipole transition moment, 
P0m

(1)(DC), appearing in eq 35 is located in the ligand environ­
ment. Equation 33 for P0m

(1)(DC) may be written more explicitly 
as, 

>om(1)(DC) = E E E E E E TW*- 1 >(r) 

X (B0| D„<1>(r)| Sn)(A0I Dm/A)(A)| Am)(Br/| Dm/1>(r)| B0) 

X [2EJ(En* - Er/
2)] +ZZZZZZ T W ^ 1 ' 

L y * 0 fA mA mL q 

X(/.)(B0|Dq<1)(q|BL/)(A0|Dm/A)(A)|Am) 

X ( S y | DmL<1>(L)|B0)[2EL/<Em
2 ~ E1/)] (37) 

where q denotes the (spherical) components of the electric di­
pole operator (fiq = D17*

1'), 2 r runs over all perturber sites in the 
extrachromophoric ligand environment, 2, runs over all excited 
states localized on the perturbers {/•}, 2 L runs over the donor 
atoms (distorted from the chromophore reference geometry), 
and 2y runs over all excited states of the donor atoms L. 
P0m

(1)(DC) represents a vector sum of electric dipole transition 
moments arrayed in the ligand environment of the metal com­
plex. 

For spherically symmetric perturber groups, only the mr = 
q and m^ = o; terms in eq 37 survive. We define 

ar(q,q) = ~ Z (B0| D„<1'(r)|Bn) 

X (Br,| DqV\r)\B0)[2Er,/(Em2 - E/)] (38) 

as the qth diagonal component of the polarizability tensor for 
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the rth perturber group at the frequency vm = Em/h. We define 
a similar set of quantities, aL(q,q), for the L donor atoms. Re­
stricting our attention to spherically symmetric perturber groups 
(/•and L), we replace ar(q,q) and aL(q,q) by "average" polar-
izabilities, ar(pm) and aL(vm), and rewrite eq 37 as, 

where 

Om;q <
1»(DC) 

Pom(1,(DC) = E P0m;q<
1>(DC) (39) 

= - L E L Wq^'1>(r)a,(A0|Dm/*>(A)|Am) 
r Ik /DA 

" L L E Wq<^W,(A0 |Dm/A)(A)|Am) 
L ^ A TlA 

(40) 

Pom;q(1)(DC) is the qfth (spherical) component of the first-order 
DC electric dipole transition moment of the 0 - * m transition. 
In this approximation, the first-order dynamic-coupling rotatory 
strength is given by 

R0J
1XDC) = - I m £ E E ( A 0 | D m / A ) ( A ) | A m ) 

I q Â mA 

X (Am I mq I A0) L «rTf T>A'<7 
1HD 

+ L«Lv/*-i)(z.) (41) 

where mq represents the cflh component of the magnetic dipole 
moment operator (with an origin within the A chromophoric 
group). 

In the general case (where the perturber groups are not 
necessarily spherically symmetric), we have: 

Pom<1)(DC) = E Pom;g(1)(DC) (42) 

where 

Pom;,(1)(DC) = - E E E E Tm^^(r)ar(q,q') 
r A T IA p' 

X (Ao|Dm/A>(A)|Am) " E E E E W ' A , 1 ) 

L tf, m A q' 

X (L)aL(c?,g')(Ao|DmA^A)(A)|^m) (43) 

and 

« r ( a « 7 ' ) = - E(Bo|D, < 1 ) C)|B r / ) 

X (B r / | Dq^(r)\B0)[2E„7(Em
2 - En

2)] (44) 

It is clear from eq 29 that only the magnetic dipole allowed 
d-d transitions gain net rotatory strength to first order on the ISP 
model presented here. Furthermore, eq 34 expresses the fact 
that to first order the static-coupling and dynamic-coupling 
mechanisms are complementary with respect to their contri­
butions to the net rotatory strength. For a side-by-side com­
parison of the SC vs. DC mechanisms as applied to a series of 
chiral Co(III) diamine complexes, the reader is referred to an 
excellent paper recently published by Mason and Seal.53 

F. Second-Order Rotatory Strengths 

1. Magnetic Dipole Forbidden Transitions 

The second-order contribution to the rotatory strength of 
a magnetic dipole-forbidden d-d transition is given by 

Roni2) = lm(P0n
<1) • Mn0<

1>) (45) 

Proceeding as before, we may partition both P0n<
1) and Mn0

(1) 

into their respective SC and DC components so that: 

Pon<1) = Poo(1)(SC) + P0n
,1>(DC) (46) 

M„0
(1 ) = lvW1,(SC) + IvW1HDC) (47) 

and, finally 

R0n<
2> = Im[P0n(1HSC)- IvW1HSC)] + lm[P0n<

1>(DC) 

• Mn0<
1>(DC)] + lm[P0n<

1HSC) • Mn0<
1HDC) 

+ P0n(
1HDC) • IvW1HSC)] (48) 

or 

RoT<2) = «on(2)(SC) + R0n(
2HDC) + R0n(2HSCDC) (49) 

Unlike the first-order case where the SC and DC contributions 
are strictly additive, the second-order rotatory strength fi0n<

2) 

includes contributions from mechanisms involving combinations 
of (simultaneous) static-coupling and dynamic-coupling between 
the metal ion chromophore and the ligand environment. 

The first-order electric dipole transition moments, P0n'1)(SC) 
and P0n(

1HDC), appearing in eq 48 have been written down 
previously in eq 36 and 37, respectively. Collecting ail perturber 
groups (r and L) into a single set labeled by r, the first-order 
magnetic dipole transition moment, IvW1HSC), may be ex­
pressed as 

Mn0<
1Hsc) = -EEEQ r r m A , 0 ( ^> ( r ) 

r ik mA 

E (An|rh(A)|A7)(A0IDm/A>(A)|A7)E7 
7 * 0 

+ E (A7 |m(A)|A0)(An |Dm /A)(A)|A7)(E7-Enr1 

7*n 
(50) 

where m(A) denotes a magnetic dipole operator centered on the 
A chromophore and S 7 runs over a set of gerade states localized 
on A. The dynamic-coupling contribution to the first-order 
magnetic dipole transition moment may be expressed as 

IvW1HDC) = E E E E E Tm,mr^Kr) 

r A T IA T l , i+O 

X(B r , |mV) |B 0 ) (A n |D m /A ) ( A ) |A 0 ) 

X (B0 |Dm /1Hr)|B r /) [2En / (En
2 - Er/

2)] (51) 
where 

rh'(r) = rh(r) + (e/2mec)R,Xp(r) (52) 

Here, me denotes electron mass and we have used r to label all 
perturber sites. The magnetic dipole operator, m(/-), and the 
linear momentum operator, p(r), are centered on the respective 
perturber groups. The vector Rr defines the position of perturber 
site r with respect to an origin located within the A chromo­
phore. 

The magnetic dipole matrix elements in eq 51 may be re­
written as follows: 

(B r / |m'(r) |B0) = (B r i |m(r)|B0) 

+ (e/2mec)R rX(B„|p(/-)|B0) 

= m/0(r) + (/7rEr//r)c)RrXju,0(r) (53) 

where n^r) = (Br,| £(r)| B0) and mw(r) = (B r /| m(r)|B0). In writing 
eq 53 we have made use of the relation 

Wi I PI V1) = - i/1 PI id = (2ItIm9I em - E0,1 AI ŷ) (54) 

Since we are restricting the dynamic-coupling chromophore 
(A)-perturber (B) interaction potential to A (multipole) B (dipole) 
terms, the only ligand (perturber) transitions contributing to eq 
51 are those which possess nonvanishing electric dipole char­
acter. 

Considering only contributions from the r perturber groups 
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in the ligand environment, the R0n
(2)(SC) term of eq 49 may be 

expressed as eq 55, 

/W2)(SC) = Im[P0nH)(SC) • Mn0<
1>(SQ] 

E E QrQr'TmJ^°Hr)Tm^-°V) = (-0 E E E, E, 
(k m A tK mA 

XE E E (An|D„<1>(A)|A„) 
:(*0 7*0 

X (An| ^ ( A ) I A7)(A„| Dm/A) (A)| A0) 

X (A01 Dm/,,< '̂>(A)I A 7 )E n - 1 E 7 - 1 

+ E E (A0|Dq<
1)(A)|A„) 

X (A71 mq(A)I A0)(An| Dm^(A)| An) 

X (An| DmA,< '̂)(A)I A7)(En - En)~\Ey - En)"1 

+ E E A„|Dq<
1)(A)|An) 

X (A7|mq(A)|AoXA„|DmA^A)(A)|A0) 

X (An| Dm,,(^'>(A)| A7)En~1(E7 - En)"1 

+ E E (AoI D,(1)(A)|An) 

X(An|rf»,(A)|A7XAa|Dm/A)(A)|An) 

X (Ao|Dm^')(A)|A7)E7-1(En " 5.P1 (55) 

where 2 q goes over the (spherical) components of the electric 
and magnetic dipole operators. Recall that for fl0n<

2>(SC) to be 
nonvanishing, the quantity 

FXF' = LLL Wo^0Hr) 
J>n mA r 

LLL Wo^ 1 V) 
£A.' m A ' r' 

(56) 

must contain components which transform as the pseudoscalar 
representation under the symmetry operations of the GA point 
group. 

Again considering only contributions from the r perturber 
groups in the ligand environment, the ft0n

<2)(DC) term of eq 49 
may be expressed as (57). 

fl0n<
2>(DC) = lm[P0n(

1)(DC) • Mn0<
1)(DC)] 

= (-/> EE EE E E,E E, [ W^Hr)Tn ie«.v{r>)] 
r r < A m A I^ mA mr

 mr 

X E E [(Bo|A(r)|Br /).(Br7|mV)|B0)] 
/*o/*o 

X [(A0IOm/A)(A)|An)(Bri|Dmr(
1>(r)|B0) 

X (A n |D m J^ \A) \A 0 ) (B 0 ID^ rO lB , , ) ] 
4Er/En 

En
2 - E^)(En

2 - Er7
2) 

(57) 

The mixed static-coupling/dynamic-coupling term in eq 49 may 
be formed from eq 36, 37, 50, and 51 for the respective first-
order electric and magnetic dipole transition moments. 

2. Magnetic Dipole Allowed Transitions 

The second-order contribution to the rotatory strength of 
a magnetic dipole allowed d-d transition is given by 

/ W 2 ) = lm(P0m<1>. Mm0<
1> + P0m<2> • NU'0 ') (58) 

Detailed expressions for the first term in eq 58 may be developed 
in precisely the same manner as was done for eq 45 in the 
previous section (III.F. 1). The second term ineq 58 may be ex­

panded to the following form: 

R0m
(2) = lm[P0m<2>(SC) + P0m

(2)(DC) 
+ P0m<2'(SC,DC)] • Mn^0 ' (59) 

The next step is to obtain general expressions for the second-
order electric dipole transition moments, P(2>. In doing this we 
shall use the "contracted" notation listed in Table I. 

The static-coupling contribution to P0m
(2) is given by eq 

60. 

P0m(2)(SC) = E Pam (0) 

a*0 

Xl/(a '0,00)En-1E„-1 

E V(a0,a'0) 
a%0 

V(a0,00) V(OO1OO)En-

+ E P0a(0) 

-ma L-*'-ma 

£ V(aO,a'0)V(a'0,mO) 

- V(a0,mO)V{m0,mO)AEn 
- 2 

- E E P„„'(0»V(aO,00)V(00,a'0)E„-1AEma'-
1 

a*0 a£m 

- L MooWOO,aO)l/(aO,mO)En-
1AEma-

1 (60) 
a*,Om 

The dynamic-coupling contribution to P0m
<2) is given by eq 

61. 

P0m
(2)(DC) = E P«m

(0) 

«*o 

X E E V(«0,a'/?)U(a'/3,00)En'tf-
1En-1 

STo a *0,« 

+ E Po«(0) E , E 1/(«0,a'/3) 
a * m /34=0«*m,a 

X l/(a/?,/T70)AEma-1(Em-EnV3)-1 

+ EMO/J E E [W/W) 
/3To 0'¥o,0 «*0,m 

X V(a'p',m0)AEmff-\Em-Ead>r' 

+ V(mp,ap')V(af3\OO)Em0-iEa0-i] 

- L ,L P„J0) L V{ap,00) 
«4=0 « *m,0 fltO 

X V(a',p,m0)Enlr\Em - En^)"1 

- L L HS' L V(ap,00) 
/3~0 /3~0 t v f o . m 

X l/(a/?',mO)En/r
1(Em - Eap)-1 (61) 

The "mixed" static-coupling/dynamic-coupling contributions 
to Pom(2) are given by eq 62. 

Expressions 60, 61, and 62 can be reduced to simpler form 
only upon consideration of specific systems with prescribed 
symmetry properties. We note that P0m

(2'(DC) includes terms 
with metal-localized electric dipole transition moments as well 
as terms with ligand-localized electric dipole transition mo­
ments. 

3. Comments on Second-Order Rotatory Strengths 

The details of the physical mechanisms subsumed in the 
second-order contributions to the d-d rotatory strengths are 
indeed quite complex. Some discussion of these physical 
mechanisms and their implications with regard to structure 
elucidation have appeared in the literature (ref 22, 24-27, 29, 
35, 52-54, 57). Richardson and co-workers24-27 have dealt 
primarily (but not entirely) with the .fl<2)(SC) terms, whereas 
Mason and co-workers53 have dealt primarily with the dy­
namic-coupling contributions. Carrying the dynamic-coupling 
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TABLE I. Contracted Notation 

A. Interaction Matrix Elements 

1. General 

v\aP,«'P) = ( A 0 B 0 I V A + <VAB + %t„ + WAB|A„'B^) 

2. Static Coupling 

<V(«,a') = (An I V A + <VAB | AnO = (AnB01VA + 'VAB | AnB0) 

3. Dynamic Coupling 

V(a$,a'P) = (AnB0 |<WA + ^A8VAnB0O 

B. Transition Energy Sums and Differences 

EaPy = E„ + Eg + Ey 

AEn0 = En — E0 

C. Transition Dipole Matrix Elements 

1. Metal Ion Chromophore 

P„7
(0) = (An I A(A) I A7); Mn7<°> = (An | rh(A) | A7) 

2. Ligand (Perturber) Group 

Hop = (Bo I A(B) I B0); mo0' = (B01 rh'(B) | B0) 
Summations over all perturber sites rare implicit in the operators A(B) and 
rh'(B). 

P0m<2>(SC,DC) = Z 
/3*0 

Z PamMV(a0,al3) 
a*0 

X l/(a/?,00)Ea-1E„--1 
-aff 

+ Z PoJo)V(aO,aP)V(aP,mO)&Ema-\Em-Ea0)-' 
a*m 

- Z Hop[V(mO,mO)V(mO,Op)&Em0-
2 

/3*0 

+ V(OO1OO) 1/(00, m/3)Em/3 ~
2 

- 1/(00,00) V(00,m0)fm-1A£m / 3-1 

- V(m(3,m0)V{m0,00)E, ma *- m 

+ Z £MO,J[V(O/W) 
/34=0 00 

X V(0/?',mO)AEm/3-1Em/3'-1 

+ V(m/3,m/3')V(m/3',00)Em/3-1Em^-1] 

+ L E Mo/3W,aO)\/(aO,mO)AEm ,3-1AEma-1 

/3*0 a*0,m 

+ V(m/3,a0)V(a0,00)Em^-1E„-1 

- V(«/3,00)l/(aO,mO)Ea/T
1AEma-

1 

- V(a0,00)V(a^,AT70)Ea-
1(Em - Ea0)~

1] 

+ Z Mo/3 
/3*0 

S V(m/3,a/3)V(a/3,00)Em/3-1Ea/3-
2*0 

+ Z V(0(3,amaf3,m0)AEmp-\Em-Eap)-i 
«*m 

(62) 

model to second order, Strickland and Richardson54 calculated 
the d-d optical activity for a series of Cu(II) complexes of amino 
acids, dipeptides, and tripeptides. More recently, Schipper57 has 
presented a theoretical treatment of d-d optical activity based 
on the independent systems/perturbation model and focused 
his attention primarily on what we have denoted as fl<2)(DC) and 
#2)(SC,DC), that is, the second-order dynamic-coupling and 
"mixed" static-coupling/dynamic-coupling contributions. Of 
special interest in the Schipper study is the assertion that the 
rotatory strengths of magnetic dipole allowed d-d transitions 
arise predominantly from fl<2)(DC) contributions involving dipole 
(metal ion chromophore)-dipole (ligand) interactions. 
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Schipper57 discounts the "pure" static-coupling and "mixed" 
static-coupling/dynamic-coupling mechanisms as dominant 
contributors to the d-d rotatory strengths in most metal com­
plexes since the chiral components of the static part of the ligand 
field potential are generally expected to be weak. Exceptions 
to this would occur in those cases where charged ligand groups 
are dissymmetrically disposed about the metal ion chromophoric 
unit. Schipper also discounts the R^(DC) contributions as being 
dominant due to the necessity in this case of including multipolar 
(^A > 1)-dipole terms in the metal ion-ligand interaction po­
tential. The dominance of fl<2)(DC) over R<1)(DC), according to 
Schipper, may be attributed to the dominance of dipole-dipole 
over multipole (£A > 1)-dipole interaction terms in the metal ion 
chromophore-ligand dynamic-coupling mechanism. 

Although Schipper's arguments for the dominance of Fr^(DC) 
via dipole-dipole coupling would appear to be plausible from 
qualitative physical considerations, no numerical or quantitative 
calculations have yet been reported to support these arguments. 
To date, all calculations of d-d rotatory strengths based on the 
dynamic-coupling model have relied on chiral multipole (£& > 
1)-dipole metal-ligand interactions to induce optical activity. 
Furthermore, all of the sector rules proposed for d-d CD spectra 
have been based on the expressions for R<1'(SC), Ft2)(SC), 
fl<1)(DC), and the multipole (£A > 1)-dipole parts of #2)(DC). 
These theoretical analyses (in which the dipole-dipole coupling 
terms in R^(DC) have been ignored) have enjoyed some mod­
erate success in accounting for the empirically observed CD 
data, both qualitatively and semiquantitatively. However, given 
the extensive parameterization of the assumed models, this 
success cannot be taken as conclusive evidence for the cor­
rectness of the models. Quantitative analyses based on the di­
pole-dipole coupling terms in fl<2)(DC) are required before further 
conclusions can be reached regarding the dominant mechanism 
in d-d optical activity. 

An example of a dipole-dipole coupling term in R<2)(DC) is 
given by (for a magnetic dipole allowed transition 0 —* m), 

- iVM(0(3,a(3') VM(ap',m0)AEme ~1 

X(Em -E a / 3 r 1 [Mo/3-Mm 0 (°) ] 

where /3 ^ 0, f3' =̂  0,(5, and a is coupled to both the ground 
state (0) and the excited state (m) via an electric dipole operator 
A(A) located on the chromophore A. Here, l/dd denotes the di­
pole-dipole coupling term in the interaction potential. In this 
case, the matrix element product on B (the ligand environment) 
has the form 

0̂/3M/3/3'M/3'0 

and the matrix element product on A has the form 

Poa
(0)P«m(0)Mm0<

0> 

This contribution to the rotatory strength of the 0 —»• m transition 
will be maximized when 

Mc/3 X M/3/3' • M/3'o 

is maximized; i.e., the electric dipole transition moments on B 
are all strongly allowed and mutually orthogonal. A detailed 
account of the electronic selection rules and stereochemical 
sector rules inherent to the dipole-dipole coupling terms of 
Ft2XDC) may be found in Schipper's article.57 

Another example of a dipole-dipole coupling term in #2)(DC) 
is given by 

-iVM(aO,a'l3)VM(a'(5,mO)AEma~ 

X(En E.//3)-1 [Po^-NU(O)] 

where /3 + 0, u' + «, and a' is connected to both a and m via 
an electric dipole operator. In this case, an electric dipole 
transition moment (Pocv<0)) is induced on the chromophore A via 
the mediation of the ligand environment. 
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G. Assessment of Model 
The independent systems/perturbation model has been 

valuable in the development of d-d optical activity as a structure 
probe of metal complexes. In the majority of its applications it 
has provided useful qualitative guidelines and working hypoth­
eses with regard to correlating CD spectral observables with 
stereochemical and electronic structural details. In some cases, 
calculations based on this model have been of semiquantiative 
and quantitative value in understanding or rationalizing d-d CD 
spectra. The model is extraordinarily simple in its physical as­
sumptions and details, and the formalism associated with it is 
straightforward. However, it provides only a limited physical 
representation of transition metal complexes and, when carried 
to second-order, calculations based on it can become extremely 
cumbersome. It has not yet been clearly established that such 
calculations may be simplified by assuming dominance of just 
one or two mechanisms operative within the general model. 
Furthermore, sector rules based on this model are unambiguous 
and straightforward to apply only when dominant mechanisms 
can be identified for specific classes of metal complex sys­
tems. 

Improvements and refinements in the application of the in­
dependent systems/perturbation model to interpreting the d-d 
optical activity of transition metal complexes depend upon fur­
ther detailed characterization of d-d, charge-transfer, and Ii-
gand-localized spectroscopic transitions in these systems. 
Additional theoretical calculations and empirically based 
spectra-structure correlation studies are also required to identify 
the dominant metal-ligand coupling mechanisms for specific 
classes of metal complexes. 

IV. Vibronic Interactions 
In developing the theory presented in section III we dealt ex­

clusively with pure electronic transitions. The states connected 
by these transitions were taken as eigenstates of an electronic 
Hamiltonian operator defined with the nuclei "fixed" in their 
equilibrium configuration. In considering the detailed structure 
of CD spectra one must examine the rotatory strengths asso­
ciated with individual vibrational-electronic (vibronic) transitions. 
Furthermore, the possible consequences of vibronic coupling 
interactions must be considered. 

Vibronic interactions play an essential role in determining 
most of the spectroscopic properties of the d-d transitions in 
metal complexes which are centrosymmetric. All of the electric 
dipole intensity observed in the d-d absorption (and emission) 
bands of such systems arise from vibronically induced mixings 
between ungerade excited states of the metal complex and the 
gerade d-d states. In this case, the gerade and ungerade states 
mix under the perturbative influence of the ungerade vibrational 
modes of the system. Vibronic interactions retain an important 
(although, in general, a nonessential) role in determining the d-d 
absorption intensities in metal complexes which are noncen-
trosymmetric. If the deviation from centric symmetry is only 
slight, then the noncentrosymmetric components of the ligand 
field are generally small and are relatively ineffective in mixing 
the d-d gerade states with ungerade states which will lead to 
observable electric dipole absorption intensity. In most cases, 
the principal mechanism by which the ligand-field transitions 
acquire intensity is through vibronically induced mixings with 
electric dipole allowed transitions. 

Generally the gerade ligand-field states and the ungerade 
states with which they can mix via a vibronic coupling mecha­
nism are sufficiently separated in energy that the vibronic cou­
pling energy can be assumed small compared to the energy 
separation. Under these conditions the so-called Herzberg-Teller 
(HT) vibronic coupling theory can be applied to obtain a rea­
sonably reliable representation of the vibronically induced in­
tensity mechanism. The adiabatic approximation is assumed in 

the HT theory so that electronic motion is fully correlated to in­
stantaneous nuclear positions. 

When the ratio of vibronic coupling energy to energy sepa­
ration between two interacting electronic states is greater than 
or approaches unity, the adiabatic approximation is no longer 
valid and the HT theory is not applicable. Under these conditions, 
the nuclear motions are modified by the electronic motions 
leading to a deformation of the potential energy surface asso­
ciated with the coupling mode(s). In this case, a nonadiabatic 
representation is required. Manifestations of this kind of vibronic 
coupling are the Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) 
effects arising, respectively, in the presence of degenerate and 
nearly degenerate electronic states.88 PJT or JT interactions 
within the manifold of d-d states of a metal complex cannot 
produce or enhance d-d absorption (or emission) intensities. 
However, such interactions can have a significant influence on 
how the total intensity is distributed among the vibronic com­
ponents of the transitions. 

Richardson and co-workers have investigated (theoretically) 
the influence of PJT and JT vibronic interactions upon the d-d 
chiroptical spectra of dissymmetric trigonal complexes61 and 
dissymmetric pseudo-tetragonal complexes.60'6263 Additionally, 
Richardson and Hilmes30 incorporated vibronic interactions of 
the PJT type into their treatment of the optical activity of crys­
talline Cu2+:ZnSe04'6H20. In these studies, the active vibrational 
modes (i.e., those involved in vibronic coupling) were assumed 
to be localized within the metal ion-donor atom cluster (the 
so-called "skeletal" modes of the systems), and only the d-
electron states of the metal ion chromophore were allowed to 
couple via vibronic interactions. The d-electron basis states were 
taken as eigenfunctions of an electronic Hamiltonian defined for 
the (dissymmetric) equilibrium geometry of the metal complex 
under consideration. The chirality of the metal complex was fully 
reflected, therefore, in the nonvibronic representation of the 
system. The vibronic interactions operating within the manifold 
of d-electron states did not introduce any additional chirality into 
the system; their main effect was to redistribute rotatory strength 
(or CD intensity) among the perturbed vibronic components of 
d-electron state parentage. The net (or total) d-d rotatory strength 
was determined entirely by the stationary dissymmetric potential 
created by the ligand field, but how this net rotatory strength was 
distributed across the d-d CD spectrum was found to be ex­
traordinarily sensitive to the nature and strength of the vibronic 
interactions. In cases where several d-electron states are nearly 
degenerate or where the vibronic interaction energies may be 
assumed large (relative to the energy spacings between elec­
tronic energy levels), it was shown that assignments of specific 
features in the CD spectra to specific electronic transitions may 
not be valid. Under these conditions the states involved in the 
spectroscopic transitions cannot be characterized or described 
in terms of well-defined electronic quantum numbers. The only 
meaningful designations of these states are the set of vibronic 
quantum numbers, reflecting the strong vibrational-electronic 
coupling. This has important implications regarding the validity 
of procedures in which spectra-structure correlations are based 
on the use of just one (or several) CD band(s) as diagnostic in­
dicators of ligand stereochemistry. In these procedures it is 
usually assumed that each CD band can be assigned a specific 
electronic identity. The sensitivity of d-d CD intensity distributions 
to PJT vibronic interactions is demonstrated in the numerous 
simulated CD spectra calculated by Richardson and co-work­
ers.60"63 

The influence of vibronic coupling between the d-electron 
states and states outside the d-electron state manifold upon d-d 
chiroptical spectra has not yet been dealt with quantitatively. 
In this case, the adiabatic approximation is most likely valid and 
the HT theory of vibronic coupling may be applied. Harding64 has 
considered this case in a qualitative way for d-d optical activity 
using the vibronic coupling formalism of Weigang and co-
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workers.65-68 The Weigang model employs the adiabatic ap­
proximation. 

V. Spin-Orbit Interactions 
Only one study has been reported concerning the influence 

of spin-orbit interactions upon the chiroptical spectra of spin-
allowed d-d transitions. Hilmes, Caliga, and Richardson63 in­
vestigated the influence of (simultaneous) spin-orbit and vibronic 
interactions upon the rotatory strengths of nearly degenerate 
d-d transitions in metal complexes of pseudo-tetragonal sym­
metry. A model system was considered in which three nearly 
degenerate d-d excited states are coupled via both spin-orbit 
and vibronic interactions. Vibronic interactions among the three 
nearly degenerate d-d electronic states were assumed to arise 
from a PJT (pseudo-Jahn-Teller) mechanism involving three 
different vibrational modes of the undistorted metal complex 
system. The model was conservative with respect to the total 
(or net) rotatory strength associated with transitions to the vi­
bronic sublevels of the three perturbed d-d excited states. The 
rotatory strength distribution among these transitions was found 
to be sensitive to both the vibronic and spin-orbit coupling pa­
rameters. Furthermore, it was found that the vibronic and 
spin-orbit effects could be additive, subtractive, or mutually 
interactive, depending upon the transitions considered and the 
coupling parameters used. It was further concluded that spin-
orbit coupling effects upon the spin-allowed d-d transitions of 
first row metal ions would be sufficiently small to preclude their 
significantly perturbing the observed chiroptical spectral prop­
erties. 

The essential role of spin-orbit coupling in generating optical 
activity in the spin-forbidden d-d transitions of chiral transition 
metal complexes has been studied by a number of workers.69-74 

These studies have employed straightforward perturbation 
techniques in which the spin-orbit interaction operator was 
assumed to mix d-electron states of different spin multiplicities. 
The spin-forbidden d-d transitions were assumed to acquire their 
optical activity by "stealing" rotatory strength from the optically 
active spin-allowed d-d transitions. Only single-center (metal 
ion) spin-spin interactions were considered. 

VI. Spectra-Structure Relationships 
A. Stereochemistry 

The sources of dissymmetry in an optically active metal 
complex may generally be classified as follows: (1) inherent 
dissymmetry within the metal ion-donor atom coordination 
cluster, (2) configurational dissymmetry due to a chiral ar­
rangement of chelate systems about the metal ion, (3) confor­
mational dissymmetry due to chiral conformations within indi­
vidual chelate rings, and (4) vicinal dissymmetry due to asym­
metric sites located within the coordinated ligands. Identification 
and separation of the contributions made by these types of dis­
symmetry to the observed d-d chiroptical spectra can provide 
at least "rough-grained" stereochemical information about a 
metal complex. 

One class of metal complexes which are inherently dissym­
metric due to the distribution of achiral monodentate ligands 
about the metal ion is represented by a//-c/'s-[M(A)2(B)2(C)2], 
where M denotes the metal ion and A, B, and C denote chemi­
cally dissimilar monodentate ligands (see Figure 1). Two ex­
amples of metal complexes of this type are: (R)-(+)-all-cis-
[Co(NHa)2(H2O)2(CN)2]+ and (S)-(+)-a//-c/s-[Co(NH3)2(H20)2-
(N02)2]+. These two complexes have recently been synthesized 
and resolved,89 and their electronic absorption and circular di-
chroism spectra have been reported.89 Mason90 has calculated 
the optical activity of the octahedral 1A1g —• 1T1g Co(III) d-
electron transition for these systems using the independent 
systems/perturbation model carried to third- and fourth-order 

B B 

B - M A A M ^- B 

C C 

R-ISOMER S-ISOMER 
Figure 1. Enantiomeric forms of an a//-c/s-[M(A)2(B)2(C)2] complex 
in which A, B, and C denote chemically dissimilar, achiral, and mono­
dentate ligands. 

in the dynamic-coupling terms. (Mason refers to the dynamical 
coupling aspects of the independent systems/perturbation model 
as the ligand-polarization model.) Mason found that the third-
order rotatory strengths vanish if the coordination octahedron 
of the complex is geometrically regular, but not those of the 
fourth-order model, which is based upon the pairwise mixing of 
the three components of the octahedral 1A1g - * 1T1g d-d tran­
sition, mediated by the Coulombic potential between the indi­
vidually correlated induced dipoles in different ligands. The sum 
of the third- and fourth-order contributions were found to re­
produce the signs and a significant fraction of the magnitude of 
the observed rotatory strengths exhibited by the two complexes 
for which data are available. In performing these calculations, 
Mason neglected all static-coupling and "mixed" static-cou­
pling/dynamic-coupling contributions. He further neglected all 
mixing between the 1T1g and 1T2g octahedral d-electron states 
of Co(III). 

Examples of complexes which possess inherent dissymmetry 
within the metal ion-donor atom cluster as well as configura­
tional dissymmetry due to chiral distributions of chelate rings are 
Co(Ox)3

3- and Cr(Ox)3
3-, where ox denotes an oxalato dianion. 

The MO6 clusters in these complexes are trigonally distorted 
octahedra possessing exact trigonal dihedral (D3) symmetry, and 
the planar ox ligands are arrayed about the metal ion with exact 
D3 symmetry. The relative contributions of the donor atoms vs. 
the chelate bridging atoms (or groups) to the optical activity of 
these systems have never been sorted out or determined con­
clusively. Trigonal distortion operations on the ML6 cluster of a 
tris(bidentate ligand) metal complex with D(A) absolute config­
uration are depicted in Figure 2. These distortion operations are 
classified as azimuthal twists about the C3 axis of the system 
or as polar elongations (or compressions) along the C3 axis.91 

As depicted in Figure 2, the azimuthal twists exert an ungerade 
perturbation upon the (erstwhile) octahedral system, whereas 
the polar distortions exert a gerade perturbation. An azimuthal 
twist within the ML6 cluster is essential to producing optical 
activity within the d-d transitions of such complexes so long as 
all the donor atoms are identical and the chelate bridging atoms 
(or groups) are ignored. The polar distortions cannot produce 
d-d optical activity in the absence of an azimuthal twist.24'31 The 
tris(oxalato) and tris(ethylenediamine) complexes of Co(III) are 
examples of systems in which the ML6 cluster suffers polar 
compression/azimuthal contraction (at least in crystalline 
media).16 The tris(malonato) complex of Cr(III) in crystalline form 
reveals a polar elongation/azimuthal expansion of the CrO6 

cluster.16 The tris(trimethylenediamine) complex of Co(III) also 
exhibits polar elongation/azimuthal expansion in its crystalline 
form.16 

All of the structures shown in Figure 2 have a D(A) absolute 
configuration defined with respect to the distribution of chelate 
rings about the metal ion. If the chelate bridging atoms determine 
(or make the dominant contributions to) the d-d rotatory 
strengths, then one may readily correlate the d-d optical activity 
observables to the absolute configuration of tris(symmetric bi-
dentate ligand) complexes. On the other hand, if the signs and 
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a, b. 
Azimuthal Contraction Azimuthal Expansion 

Polar Compression Polar Elongation 

Figure 2. Trigonal distortion operations on the ML6 cluster of a tris(bi-
dentate ligand) metal complex with D(A) absolute configuration. 

A(SSS) A(XXX) 

le i ob 
Figure 4. The "IeI" and "ob" forms of a A-[M(en)3] complex. 

,-NH. 

H/*NJB 

k ( X ) k ( S ) 

M X ) k'(8) 
Figure 3. Conformational isomers of coordinated ethyienediamine. The 
view is along a direction parallel to the C-C bonds in the en ligands. 

magnitudes of the d-d rotatory strengths are primarily determined 
by distortions within the ML6 cluster, then great care must be 
exercised in deducing absolute configurations from the optical 
activity observables. Uncertainties regarding the relative im­
portance of inherent dissymmetry (within the ML6 cluster) vs. 
configurational dissymmetry (due to the distribution of chelate 
rings) to producing optical activity in the d-d transitions of tris-
(bidentate ligand) complexes have retarded progress in devel­
oping reliable and generally applicable spectra-structure rela­
tionships for such systems. 

The independent systems/perturbation model outlined in 
section III neglects metal ion-donor atom bonding interactions 
and ignores the detailed orbital nature of the ligand electronic 
distributions. For these reasons this model is not very suitable 
for treating effects due to distortions within the ML6 cluster. 

An example of a complex in which there are three sources 
of dissymmetry (inherent, configurational, and conformational) 
is Co(en)3

3+, where en = ethyienediamine ligand. In this complex 
the CoN6 cluster is trigonally distorted with a polar compres-
sion/azimuthal contraction distortion (see Figure 2), the distri­
bution of chelate rings reflects one of two enantiomeric con­
figurations (A or A), and each five-membered chelate ring may 
exist in one of two enantiomeric conformational types, k(X) or 
k'(5). The possible configurational-conformational isomers for 
Co(en)3

3+ are: A(SSS), A(SSX), A(SXX), A(XXX), A(SSS), A(SSX), 
A(SXX), and A(XXX). The conformational isomers of coordinated 
ethyienediamine are depicted in Figure 3. In crystalline media, 
Co(en)3

3+ has been found to exist in the A(SSS) or A(XXX) en-

Figure 5. Conformational isomers of coordinated (S)-propylenediamine. 
The view is along a direction parallel to the C-C bonds in the S-pn li­
gands. 

antiomeric forms. Conformational analysis calculations indicate 
that these should be the most stable isomers of free Co(en)3

3+.92 

In the A(SSS) isomer, the axes of the C-C bonds of the en ligands 
are parallel (IeI) to the C3 axis of the complex. Likewise, in the 
A(XXX) isomer the C-C bonds of the en ligands are parallel to 
the C3 symmetry axis. In the A(XXX) and A(SSS) isomers, the 
C-C bonds of the en ligands are oblique (ob) to the C3 symmetry 
axis (see Figure 4). Conformational analysis indicates that for 
free Co(en)3

3+ the order of stability for the various isomers is 
A(SSS) = A(XXX) > A(SSX) = A(XXS) > A(SXX) = A(XSS) > 
A(XXX) = A(SSS), with A(SSS) being about 1.8 kcal/mol more 
stable than A(XXX). There remains considerable uncertainty 
regarding the relative stabilities of these isomers in solution 
media. 

Examples of metal complexes in which there are four sources 
of dissymmetry (inherent, configurational, conformational, and 
asymmetric centers within the ligands) are Co(S-pn)3

3+ and 
Co(fi-pn)3

3+, where pn = propylenediamine ligand. These sys­
tems can assume any of the eight configurational-conforma­
tional isomeric forms discussed above for Co(en)3

3+ and each 
ligand in these complexes has one asymmetric carbon atom 
(which is a bridging atom in the five-membered chelate rings). 
The methyl substituent in fi-pn is equatorial to the chelate ring 
in the X conformation and is axial to the chelate ring in the S 
conformation. The methyl substituent in S-pn is equatorial to the 
chelate ring in the S conformation and is axial to the chelate ring 
in the X conformation. The most stable isomer of Co(R-pn)3

3+ 

is A(XXX), whereas the most stable isomer of Co(S-pn)3
3+ is 

A(SSS).92 The conformational isomers of coordinated S-pn are 
depicted in Figure 5. 

Examples of complexes possessing dissymmetry only from 
chiral chelate ring conformations and asymmetric centers within 
the ligands are frans-[Co(S-pn)2(NH3)2]3+ and frans-[Co(S-
ala)2(H20)2 ]+ , where ala = alaninato ligand. An example of a 
metal complex which has only one source of dissymmetry, an 
asymmetric carbon atom in one of its ligands, is [Co(NH3)5(S-
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amH)]2+, where S-amH is an amino acid ligand coordinated only 
through its carboxylate group (i.e., it is bound unidentate). 

One of the principal objectives of theoretical research dealing 
with the d-d optical activity of chiral transition metal complexes 
is to show how each of the sources of dissymmetry discussed 
above is manifested in the observed CD spectra of these sys­
tems. More specifically, one would like to relate the band 
splittings, sign patterns, relative band intensities, and total (net) 
CD intensity to the structural characteristics of the metal com­
plex. These structural characteristics include distortions within 
the metal ion-donor atom cluster, the distribution of donor atoms 
about the metal ion, absolute configuration, conformational 
features of chelate rings, and the spatial disposition of ligand 
substituent groups. Developing such spectra-structure rela­
tionships is an ambitious task and the current theories of d-d 
optical activity are not yet entirely adequate for this purpose. The 
theories have been reasonably successful in providing a post­
eriori interpretations and rationalizations of the experimental 
data, but their predictive value has been somewhat more limited. 
However, there now exist a number of reasonably reliable 
spectra-structure relationships for several structural classes 
of chiral metal complexes. Most of the relationships may be 
considered semiempirical in the sense that they were derived 
from systematic correlations of empirical data and were made 
to conform to (or be consistent with) general theoretical prin­
ciples. 

The most comprehensive investigations of spectra-structure 
relationships within the context of the independent systems/ 
perturbation model with static-coupling (ISP-SC) were carried 
out by Richardson.24"27'31 These studies included consideration 
of all sources of dissymmetry in four-coordinate and six-coor­
dinate complexes belonging to a variety of structural and sym­
metry classes. Given the simplicity of the model employed 
(ISP-SC), these studies led to rather remarkable qualitative 
correlations between the CD observables and various structural 
features of metal complexes. Applications of the sector rules 
derived for six-coordinate dissymmetric complexes were given 
special attention in ref 27, and applications of the sector rules 
derived for four-coordinate dissymmetric complexes were 
considered in ref 26. Complexes of trigonal dihedral (D3) sym­
metry were treated in ref 24, and complexes of pseudo-tetrag­
onal symmetry were the subject of ref 25. Mason2935 has also 
examined the sector rules and other spectra-structure rela­
tionships inherent in the static-coupling parts of the general in­
dependent systems/perturbation model of d-d optical activi­
ty. 

The most comprehensive investigations of spectra-structure 
relationships within the context of the independent systems/ 
perturbation model with dynamic-coupling (ISP-DC) have been 
carried out by Mason and co-workers.29'35'51"53'90'93 Compari­
sons of the sector rules derived from the DC and SC parts of the 
general independent systems/perturbation model were given 
explicit consideration, and a number of quantitative calculations 
were carried out within the polarizability approximation for 
representing ligand contributions to the electric dipole transition 
moments of the perturbed d-d transitions. Richardson25,54 has 
also employed the ISP-DC model to examine the spectra-
structure relationships appropriate to a series of pseudo-te­
tragonal complexes. Detailed calculations based on the ISP-DC 
model carried to second order were reported for the d-d optical 
activity in Cu(II) complexes of amino acids, dipeptides, and tri-
peptides.54 

The most complete set of symmetry rules applicable to the 
d-d optical activity of chiral transition metal complexes have 
been set forth in the work of Schipper.5794,95 These symmetry 
(selection) rules apply to the spectroscopic moments appearing 
in the d-d rotatory strength expressions and may be related in 
a straightforward way to sector rules pertaining to ligand struc­
tural (stereochemical) features. Schipper's work is based on the 
general independent systems/perturbation model (which he 

refers to as the "separable chromophore model") and includes 
consideration of both static-coupling and dynamic-coupling. 

The only source of dissymmetry in metal complexes which 
poses a serious problem for the general ISP model is that of 
inherent dissymmetry within the metal ion-donor atom cluster. 
The neglect of covalent bonding interactions between the metal 
ion and the ligand donor atoms (or groups) may be expected to 
be a poor approximation when dealing with MLn dissymmetry 
(where L denotes donor atoms). However, Mason90 has achieved 
some success in treating the d-d optical activity of all-cis-
[M(A)2(B)2(C)2] complexes using the ISP-DC model, and Rich­
ardson24"27 has simply incorporated the ligand donor atoms into 
the ligand perturber set in his applications of the ISP-SC model. 
The extent to which the general ISP model can be successfully 
and usefully applied to sorting out the configurational, ligand 
conformational, and ligand vicinal contributions to d-d optical 
activity is determined in large part by how one chooses to par­
tition the ligand environment into perturber fragments. The 
greater the number of perturber fragments (atoms, groups, or 
bonds) represented in the model, the better the chances are of 
accurately reflecting all of the stereochemical subtleties of the 
ligand environment. Of course, the greater the number of ligand 
perturber fragments included, the greater the scope of the cal­
culations and the greater the demand for spectroscopic infor­
mation about the ligands (and their component parts). 

The molecular orbital and related methods for calculating d-d 
optical activity (ref 39-41, 43, 44, 46-48) have not proved to 
be particularly useful in sorting out spectra-structure relation­
ships. The models and calculations dealing only with the metal 
ion-donor atom cluster (MLn) have, perhaps, yielded some in­
sights regarding the sensitivity of d-d rotatory strengths to 
metal-donor atom orbital interactions (especially with regard 
to orbital overlaps and orbital hybridization—on the metal ion 
and on the ligand donor atoms).39-4143'48 These models are 
possibly the most appropriate for treating inherent dissymmetry 
within the MLn cluster. The models and calculations which have 
included all atoms of the complexes44'4647 have yielded results 
which are useful primarily as checks or tests of results obtained 
empirically or from alternative calculational methods. These 
calculations have produced few, if any, new spectroscopic or 
structural insights. 

It should be mentioned here that a great deal of experimental 
work has been done on the problem of sorting out the relative 
contributions of the various sources of dissymmetry (inherent, 
configurational, conformational, and vicinal) to the d-d optical 
activity of a variety of structural classes of transition metal 
complexes. The laboratories of Bodie Douglas (University of 
Pittsburgh), Clifford Hawkins (University of Queensland), Brice 
Bosnich (University of Toronto), and Stephen Mason (University 
of London King's College) have been particularly active in this 
regard. Additionally, a great deal of effort has been devoted to 
developing empirically based sector rules for d-d optical activity. 
Among the more active research groups in this area have been 
those of Hawkins, Bosnich, Mason, and Bruce Martin (Univeristy 
of Virginia). Discussion and comment on these empirically based 
studies lie outside the scope of this review article. However, 
these studies have played an essential role in guiding the de­
velopment of d-d optical activity theory. 

B. Characterization and Assignment of 
Transitions 

The principal utility of CD studies in the characterization and 
assignment of electronic transitions is differentiation between 
magnetic-dipole-allowed and magnetic-dipole-forbidden tran­
sitions. The CD intensity of a transition, /' -* j, is governed by the 
rotatory strength quantity 

RiI= - ' ( 'A/ I Al'/'/) • iHM^i) 
= - ifi,j • m„ = IfI11W my,I cos 8 (63) 
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where \nij\ and |m«| are, respectively, the absolute (real) values 
of nij and my/, and 6 is the angle between the electric and mag­
netic dipole transition vectors. The absorption intensity of the 
same transition Is governed by the dipole strength quantity, 

Dn = | M , / | 2 + | m „ | 2 (64) 

The rotatory strength, Rn, may be determined from CD data 
according to 

Rn = 22.9 X 1CT40 J Ae(v) dvlv esu2 cm2 (65) 

and the dipole strength, D,y, may be determined from absorption 
data according to 

Di1= 91.8 X 10"40Je(J/) dv/v esu2 cm2 (66) 

where the integrations in eq 65 and 66 are taken over the CD and 
absorption band profiles, respectively. Ae = (eL — eR) and e = 
(eL + «R)/2, where eL(R) is the molar decadic extinction coefficient 
for left (right) circularly polarized light. We may further define 

9ii = [JAt(V) dvlv]l[ft(v) AvIv] = ARnIDn (67) 

which is referred to as the dissymmetry factor, or anisotropy 
factor, of the transition. Ignoring the magnetic dipole contribu­
tions to the dipole strength of the transition, eq 67 may be re-
expressed as follows: 

Qn = 4(m/n) cos 6 (68) 

where m = |rriy,| and ̂  = \nn\-
In writing eq 68 we have assumed that both fin and m,y have 

unique and fixed (constant) polarization directions across the 
CD and absorption band profiles. This may or may not be the 
case depending upon the extent of vibronically induced mixings 
within the electronic transition / - * y.es-es.ge 

To exhibit optical activity it is not sufficient that a transition 
have nonvanishing magnetic dipole character. The transition 
must also have some electric dipole character, and the electric 
and magnetic dipole transition vectors must have a nonvanishing 
projection one upon the other (i.e., cos 6 ^ 0). Generally it is 
assumed that values of \g\ greater than 1O-2 indicate transitions 
with strong magnetic dipole character and only weak electric 
dipole character. This has been widely used as a criterion for 
establishing the inherent magnetic-dipole-allowedness of 
electronic transitions in chiral molecular systems and its validity 
has considerable empirical support. Among chiral transition 
metal complexes with near centrosymmetric MLn chromophoric 
units, it is generally found that |gf| > 1O-2 for d-d transitions 
which are magnetic-dipole-allowed (according to selection rules 
based on the symmetry of the MLn chromophore). Values of | g\ 
< 1O-3 are generally characteristic of magnetic-dipole-forbidden 
d-d transitions in these systems. For metal complexes in which 
the MLn chromophoric unit deviates significantly from centric 
symmetry, the d-d transitions may acquire substantial inherent 
electric dipole strength and, consequently, the | fif| values may 
be <10~2-10~3 even when these transitions are magnetic di­
pole allowed. 

Although values of \g\ > 1O-2 may nearly always be con­
sidered diagnostic of magnetic-dipole-allowed d-d transitions 
in metal complexes (no matter what the metal ion or the sym­
metry of the MLn chromophore), values of \g\ < 1O-2 are not 
necessarily reliable indicators of the magnetic-dipole-forbidden 
nature of transitions. The | g\ value of a transition may be small 
for reasons other than a small magnitude of the magnetic dipole 
transition moment (m in eq 68). Small values of cos 8 and/or 
large values of /u will also reduce the magnitude of g. 

The use of observed g values for differentiation between 
magnetic-dipole-allowed and magnetic-dipole-forbidden d-d 
transitions has proved to be of significant value, and it appears 
to be valid and reliable so long as it it employed with some cir­
cumspection. There are, of course, d-d transitions in metal 

complexes of certain symmetry types which are rigorously 
forbidden In magnetic dipole radiation. For example, the 
1Ai(1A19) -* 1A1(

1T20) transition in Co(III) complexes of D3 

symmetry Is rigorously magnetic dipole forbidden and exhibits 
no optical activity (g = 0). The trigonal partner of this transition, 
1Ai(1A-I9) - * 1E(1T29), is magnetic dipole allowed by D3 selection 
rules, but is magnetic dipole forbidden by On selection rules. This 
latter transition exhibits only weak optical activity (|g| < 10~2) 
in most trigonal dihedral Co(III) complexes, reflecting its strong 
octahedral parentage. The 1A1(

1A19) -»• 1A2(
1T19) and 1A1(

1A19) 
- * 1E(1T19) transitions in D3 Co(III) complexes are magnetic di­
pole allowed by both D3 and On selection rules, and they gen­
erally exhibit strong optical activity (|g| > 1O-2). 

The sign and splitting patterns observed within the d-d ab­
sorption region of a CD spectrum may also be used to identify 
and assign specific transitions. For example, nearly degenerate 
transitions split out of a common parent state (degenerate) of 
a MLn chromophoric cluster are found quite frequently to exhibit 
CD bands of opposite signs and very nearly equal magnitudes 
(couplets). This has been used frequently to identify the com­
ponents of A - * E type transitions in chiral complexes of 
pseudotetragonal symmetry. One must be very careful in making 
correlations of this kind, however, except when overwhelming 
empirical evidence is available. The d-d optical activity models 
and theories can given guidance in this regard, but they are by 
no means sufficiently refined to yield completely reliable pre­
dictions. 

VII. Single Crystal Spectra 

Let us consider a sample of fixed orientation in space having 
uniaxial (cylindrical) macroscopic symmetry about an axis y (also 
fixed in space). Let us further assume that this (macroscopic) 
sample is comprised of an assembly of noninteracting 
chromophoric units each of which is orientationally fixed. If we 
perform a CD experiment with radiation propagating along the 
7 axis of the sample, then to lowest order of the expansion of 
the vector potential of the radiation field the rotatory strength 
of an electronic transition /—*• /(localized on a chromophoric 
unit) is given by 

R(/ = (3 /2) lm[(^ |A„ |^y) (^ |m„ |V/ ) 

-(3/4X2iryc)Re[<iA ; |Aa|^> 
X W/|*J«|*/> " (HhlflX+lltyMi)] (69) 

where Cy, = (Ej — E1)Ih, the indices (a,/3,y) refer to a space-fixed 
orthogonal coordinate system, and q$y and qya are, respec­
tively, the /?7 and 7a components of the electric quadrupole 
tensor operator. If the sample is a crystal of uniaxial macroscopic 
symmetry, then 7 must correspond to the principal (or optic) axis 
of the crystal. If the sample is a crystal of cubic symmetry, then 
the choice of 7 (with respect to the crystallographic axes) is 
entirely arbitrary. The components of the electronic operators 
in eq 69 are referred to the (a,/3,7) coordinate system. Fur­
thermore, the operators may be defined within the respective 
chromophoric units since the chromophoric units have been 
assumed to be noninteracting. The wave functions, \pt and \pj, 
correspond to localized chromophoric state functions and reflect 
the site symmetry (and dissymmetry) of the chromophoric 
units. 

If the chromophoric units of the sample are interacting 
(coupled), then eq 69 must be modified to reflect excitation 
derealization (exciton motion) or electron derealization among 
the coupled chromophoric units. In this case the wave functions, 
ip 1 and \pj, reflect crystal (or unit cell) symmetry and correspond 
to crystal state functions. Furthermore, the operators in eq 69 
can no longer be defined simply with respect to origins located 
within individual chromophoric units. The general problems at-
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tendant to treating the optical activity of crystalline samples 
comprised of interacting or noninteracting chromophoric sub­
systems have been addressed elsewhere28,36,87'97 and will not 
be dealt with further here. 

Two principal questions have arisen in the theoretical analyses 
of d-d optical activity exhibited by crystalline samples of tran­
sition metal complexes. One question regards the relative 
contributions of the electric dipole-magnetic dipole vs. the 
electric dipole-electric quadrupole terms in eq 69, and the other 
question regards the relative contributions of site (local) dis­
symmetry vs. unit cell dissymmetry to the overall, observed d-d 
optical activity. In their detailed theoretical treatment (formal and 
computational) of the d-d orbital activity exhibited by crystalline 
NiS04-6H20

28 and crystalline Cu2+:ZnSe04-6H20,3° Richardson 
and co-workers concluded that the electric dipole-electric 
quadrupole terms contributed only minimally (less than 5%) to 
the rotatory strengths, even for transitions which are formally 
electric quadrupole allowed according to cubic (Oh) selection 
rules. They further concluded that the d-d states in these systems 
could be considered localized on the MO6 clusters and that site 
dissymmetry is entirely responsible for the observed optical 
activity. For NiSO4-BH2O, the d-d optical activity was attributed 
entirely to inherent dissymmetry within the Ni(H2O)6

2+ unit and 
to the dissymmetric field created at each Ni2+ site by the four 
nearest-neighbor SO4

2- anions. Similarly for Cu2+:ZnSe04-
6H2O, all of the optical activity of the Cu2+ d-d transitions was 
attributed to Cu(H2O)6

2+ dissymmetry (inherent) and to the four 
nearest-neighbor SeO4

2- anions. The calculations carried out 
by Richardson and co-workers28,30 were based on the static-
coupling variant of the independent systems/perturbation model 
carried to second order, and considerable attention was given 
to the sensitivity of the results to parameter variations within the 
constraints of this model. The calculated results were in sub­
stantial agreement with experimental observation.98-102 

Kato36 has carried out a theoretical analysis of the d-d optical 
activity of a whole series of M2+:ZnSe04-6H20 systems (where 
M2+ = Cu2+, Ni2+, Co2+, Fe2+, and Mn2+). This analysis was 
also based on the static-coupling terms of the general inde­
pendent systems/perturbation model carried to second order. 
Local (site) dissymmetry was found to be the dominant source 
of optical activity in these systems, and contributions from the 
electric dipole-electric quadrupole terms of eq 69 were found 
to be negligible. 

The optical activity caused by exciton dispersion in chiral 
crystals has been treated formally by Kato, Tsujikawa, and 
Murao,86 and crystalline CsCuCI3 belonging to the optically active 
space group D6

2(P6122) or D6
3(P6522) was considered as a case 

where such optical activity might be observed. No calculations 
were reported in this study, however. 

Barron87 has proposed that the electric dipole-electric qua­
drupole term of eq 69 may contribute significantly to (or domi­
nate) the optical activity of d-d transitions which are magnetic 
dipole forbidden (or only weakly allowed) but which are electric 
quadrupole allowed. He suggested that the 1A1(1A1J -»• 1E(1T29) 
transition of Co(III) in crystalline 2[(+)-Co(en)3CI3]-NaCI-6H20 
might be a case where the electric dipole-electric quadrupole 
contribution would dominate. Order-of-magnitude calculations 
and a comparison of solution vs. crystal CD intensity in the region 
of this transition suggest that Barron's proposal Is certainly 
plausible. Barron further suggested that the 3A2g —*• 3T1g tran­
sitions in crystalline NiS04-6H20 may acquire most of their 
optical activity via the electric dipole-electric quadrupole term 
in eq 69. This latter suggestion is not supported by the calcula­
tions performed by Strickland and Richardson.28 At this point 
it is safe to say that the relative importance of the electric di­
pole-magnetic dipole vs. the electric dipole-electric quadrupole 
terms of eq 69 in determining the optical activity of electric-
quadrupole-allowed transitions has not yet been decided for any 
particular case. 

A great deal of experimental work has been carried out on the 
optical activity of metal complexes in crystalline media. Some 
of this work has dealt with achiral molecular units, such as 
NiS04-6H20, in chiral crystals, and other work has dealt with 
chiral molecular units, such as Co(en)3

3+ and Co(Ox)3
3-, in 

(necessarily) chiral crystals. A review and discussion of this 
experimental work lies outside the scope of this article. Suffice 
it to say that these studies on single crystal systems have been 
of great value to the development of d-d optical activity theo­
ry-

VIII. Other Topics 

There are several aspects of d-d optical activity theory which 
will not be dealt with in this review article. These include (a) 
solvent-induced optical activity (achiral complex in a chiral 
solvent), (b) the Pfeiffer effect, and (c) optical activity induced 
in an achiral complex by outer-sphere association of chiral 
species. Theoretical studies related to these phenomena have 
been reported by a number of workers76"85,103-106 over the past 
five years, and significant progress has been made in under­
standing the underlying interaction mechanisms and spectro­
scopic processes. The reader is especially referred to the recent 
series of papers authored by Schipper.76-81,104-106 This series 
of papers encompasses all of the above-mentioned phenomena 
and represents the most comprehensive and detailed work on 
the related theory. 

As was mentioned in the Introduction, the optical activity 
associated with metal +-* ligand charge-transfer transitions and 
with ligand-localized transitions lies outside the scope of this 
review article. We have dealt only with the ligand-field (d-d) 
transitions localized on the metal ion chromophore. However, 
ligand-localized transitions entered into our independent sys­
tems/perturbation (ISP) model by providing electric dipole 
character to the d-d transitions via the dynamic-coupling in­
teraction mechanism. Similarly, the metal *-*• ligand charge-
transfer transitions entered into our ISP model by providing 
electric dipole character to the d-d transitions via the static-
coupling interaction mechanism. By the ISP model, therefore, 
the spectroscopic properties of the d-d, metal * * ligand 
charge-transfer, and ligand-localized transitions are related 
(interdependent), and there is some artificiality involved in dis­
cussing their chiroptical properties separately. However, the d-d 
contributions to the CD spectra of metal complexes can gen­
erally be separately identified and assigned, and it remains useful 
to treat these contributions with only indirect reference to other 
types of transitions which may occur in the complexes. 
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