Synthetic Macrocyclic Di- and Tetraester Compounds

JERALD S. BRADSHAW,* GARREN E. MAAS, REED M. IZATT, and JAMES J. CHRISTENSEN

Departments of Chemistry and Chemical Engineering and Contribution No. 146 from the Thermochemical Institute, Brigham Young University, Provo, Utah 84602

Received March 13, 1978 (Revised Manuscript Received September 11, 1978)

Contents

١.	Introduction	37
١١.	Synthetic Methods	38
	A. From Dibasic Acids or Diesters and Glycols	38
	B. From Salts of Dibasic Acids and Alkyl Dihalides	38
	C. By Depolymerization of Linear Polyesters	39
	D. From Diacid Chlorides and Glycols	39
	E. By Oxidative Coupling of Diacetylenes Containing	
	a Diester Unit	40
	F. Miscellaneous Methods	40
Ш.	Listing of Compounds Together with Physical	
	Properties	41
IV.	Applications	41
V.	Addendum	52
VI.	References	52

I. Introduction

The first macrocyclic compound prepared from a diacid was dimeric ethylene succinate reported by Vorländer in 1894.¹

Subsequently, very little work was done with macrocyclic diesters until the 1930's when Carothers and his co-workers commenced a study of polyesters including the macrocyclic monomeric and dimeric carbonates, oxalates, etc.²⁻⁵ The main interest in macrocyclic diester compounds involved their use in the preparation of perfumes.⁶ Carothers and his co-workers also studied the theoretical aspects of reactions producing both cyclic and polymeric products.⁴

Following the Carothers work, there was little reported interest in macrocyclic diester compounds until the past decade. Recently, however, many new and interesting cyclic di- (and tetra-) ester compounds have been prepared to study the theoretical aspects of medium- and large-size ring formation; to study the rigidity of the paracyclophane ring system; and to compare metal cation complexation properties of synthetic macrocyclic multidentate compounds with those of naturally occurring macrocyclic antibiotics.

Drewes and his associates commenced a study of the steric factors which control the formation of medium and large rings in 1970.⁷ They prepared a number of macrocyclic di- and tetraesters from phthalic⁷⁻⁹ and maleic acids¹⁰ and from ali-

ate o-x

0009-2665/79/0779-0037\$05.00/0

phatic diacids but using the o-xylylene moiety as a rigid steric factor.¹¹ Their results are discussed in other sections of this review.

Sakamoto and Oki have published a series of papers covering the preparation of hetera-*p*-cyclophanes.¹²⁻¹⁶ They studied a

number of interesting physical properties of those compounds, including internal rotation, ^{12-14} long-range asymmetry ^{15} and binding sites. ^{16} $\,$

Within the past year, macrocyclic multidentate polyetherdiester compounds have been prepared which exhibit metal cation complexation properties similar to those of certain naturally occurring macrocyclic antibiotics.¹⁷⁻¹⁹ Log *K* values for the reaction of **56c** with Na⁺, K⁺, and Ba²⁺ in methanol are

smaller than corresponding values for the reaction of these cations with 18-crown-6. On the other hand, the stabilities of the corresponding complexes of **75c** with these cations are comparable to those of 18-crown-6. In addition, the stability sequences of several cations pairs (e.g., Na⁺, Rb⁺; K⁺, Ba²⁺) are altered markedly in going from one ligand to another.^{18,19} More details of the interactions of metal cations with these multi-dentate compounds will be given in section IV.

Macrocyclic polyethers, particularly derivatives of 18crown-6, have received considerable attention in recent years because of the ability of these compounds to complex with metal cations.²⁰ Some of the properties of the synthetic macrocyclic polyethers are similar to those of certain naturally occurring cyclic antibiotics.²¹⁻²⁴ Some of the more interesting properties include the selective transport of metal cations across liquid and naturally occurring biological membranes²⁵ and chiral recognition.²⁶⁻²⁸

This review is the first to cover the synthesis and use of macrocyclic di- and tetraester compounds derived from dibasic acids. The macrocyclic lactones (and lactides), which are defined as "a class of inner esters of hydroxy carboxylic acids..., characterized by the carbonyl-oxy grouping –OCO– in a ring, and classed according to the position of the hydroxyl group in the parent acid",²⁹ have not been included; however, separate reviews concerning these compounds have been published.³⁰⁻³³ Also not included are compounds in which the ester functions are not an integral part of the macro-ring.

The following sections will discuss synthetic methods employed and give an extensive table in which we have attempted to list all of the compounds which have been reported together with their physical properties, and the applications which have been found for these compounds. The numbers used for individual compounds correspond to the number in Table I. The compounds in Table I are listed in order of the complexity of the corresponding dibasic acid, i.e., carbonates, oxalates, malonates, succinates, glutarates, adipates, higher aliphatic dicarboxylates, maleates, diglycolates, phthalates, pyridinedicarboxylates, and many miscellaneous dicarboxylates.

II. Synthetic Methods

A. From Dibasic Acids or Diesters and Glycols

The earliest reported macrocyclic compound prepared from a dibasic acid was dimeric ethylene succinate which was described by Vorländer in 1894.¹ The same compound has been prepared by others in the intervening years.^{2,34,35} Since that time

a variety of macrocyclic diesters have been made from the dibasic acids or open-chain diesters. Vögtle and Neumann have prepared some macrocyclic di- and tetraesters from *m*-phenylenediacetic acid and various glycols.³⁶ Hahn and co-workers

have prepared two unusual macrocyclic "Paddlanes" with four ester units from the reaction of either 1,4-bis(hydroxymethyl)bicyclo[2.2.2] octane and sebacoyl chloride or 1,4-dicarboxylbicyclo[2.2.2] octane and 1,10-decanediol.³⁷

By reacting various glycols with aliphatic dibasic acids, Stoll and Rouvé obtained both cyclic one-to-one (monomeric) and two-to-two (dimeric) adducts.³⁸ Stueben isolated a macrocyclic

tetraester containing the cyclobutane unit when he polymerized *trans*-1,2-cyclobutanedicarboxylic acid and ethylene glycol.³⁹

B. From Salts of Dibasic Acids and Alkyl Dihalides

Drewes and co-workers have prepared a number of macrocyclic di- and tetraesters by reacting the salts of dibasic acids with various dihalides.⁷⁻¹¹ When dipotassium phthalate was used, they obtained dimer **63** where n = 2, 3, 7, 9, 11 and monomer **61** where n = 4, 5, 6, 8, 10, 12.⁸ The rings contained

even numbers in all cases except where n = 5. Drewes suggested that for intermediate rings (ring size 8 to about 18), odd-numbered rings are more difficult to prepare than the even-numbered owing to greater interferences during ring closure.⁸ Spanagel and Carothers also observed this general phenomenon in their synthesis of macrocyclic diesters.⁵

One steric factor which seems to control ring formation is the incorporation of a rigid structure comprising four atoms in a plane with angles of 120°.⁴⁰ The macrocyclic phthalates that Drewes and co-workers prepared^{7,8} are good examples of this requirement. Baker, McOmie, and Ollis suggested that ortho-di-substituted benzene derivatives should easily form 8-, 12-, 16-, and higher membered ring systems.⁴⁰ That the rigid structure is an important factor in ring formation was shown by the work of Pedersen where he obtained dibenzo-18-crown-6 in 45 or 80% yields depending on reactants employed while 18-crown-6 (no rigid groups) was obtained in only a 2% yield.²⁰ The un-

substituted 18-crown-6 compound has since been obtained in high yields and ring closure reactions to form the crown compounds seem to be controlled more by a complexation or template effect than by other factors.⁴¹

The rigid structure effect for ring formation is also shown by the synthesis of macrocyclic compounds from α , α' -dibromoo-xylene and the salts of various aliphatic dibasic acids.¹¹ The

work of Drewes and Riphagen showed that ring sizes of 16, 20, 28, and 32 were most easily prepared as suggested by Baker and co-workers.⁴⁰ The other even-numbered ring systems (sizes 18–30) were also isolated, but in much diminished yields, i.e., 0.6% for the 18-membered ring compound vs. 35.3% and 16% for the 16- and 20-membered ring compounds, respective-ly.¹¹

Drewes and Riphagen also prepared macrocyclic tetraester compounds from dipotassium maleate, citraconate, and phthalate with diacetylenic dibromides.¹⁰ These compounds were all either 20- or 24-membered rings.

The steric effect of rigid structures did not operate in a twostep synthesis of macrocyclic diphthalates.⁹ The yields of all

n and m=various

rings both even and odd numbered were 10% or below except 19-, 20-, and 22-membered rings where the yields were slightly higher. One notable exception to these low yields was found in the preparation of compound **63h**, a 20-membered ring, where the yield was 31.7%. This compound has a new rigid group in the form of a double bond.⁹

Kaplan and Truesdale prepared *p*-xylylene-1,4-benzenediacetate by heating the disilver salt with α , α' -dibromo-*p*-xylene.⁴² The resulting macrocyclic diester was irradiated with ultraviolet light to yield the [2.2]paracyclophane.

C. By Depolymerization of Linear Polyesters

Probably the most interesting early development in the synthesis of macrocyclic diester compounds was the discovery by Carothers and co-workers that linear polyesters could be depolymerized using certain metal catalysts to yield the cyclic monomeric and dimeric adducts.^{4,5} The latter adducts prevailed when the unit lengths were 8–11 and the monomeric cyclic adducts for unit lengths of 13 or greater. For example, when polymeric trimethylene succinate (unit length 9 atoms) was depolymerized, a 46% yield of a crude distillate was isolated which contained 9% of the cyclic monomer and 89% of the cyclic dimer whereas with octamethylene succinate (unit length

14 atoms), the crude distillate contained 55% monomer and only 5% dimer.⁵ The best depolymerization catalysts were the di-

valent salts of tin, manganese, iron, magnesium, and cobalt.⁵

Spanagel and Carothers also observed that the odd-membered rings were relatively more difficult to prepare.⁵ This alternating effect of yields was also observed by Hill and Carothers in the preparation of macrocyclic anhydrides⁴³ and by Ziegler and Aurnhammer in the synthesis of large cyclic ketones.⁴⁴

A typical procedure to prepare the cyclic di- or tetraester is to first synthesize the polyester by heating an equivalent amount of the dibasic acid (or diester) and glycol until the water (or al-cohol) is completely removed. The polyester is then mixed with 1 to 2% of the catalyst (SnCl₂·2H₂O or MgCl₂·6H₂O, for example) and heated to 270 °C at ~1 mm pressure. The cyclic monomer or dimer slowly distills from this mixture. The distillate is then purified usually by recrystallization from alcohol.^{5,45}

Many different macrocyclic di- and tetraesters have been prepared using this method, either from the polyester or from reaction mixtures containing various oligomers and polymers. The glycols used in these reactions were mostly the oligo-(methylene glycols). The dibasic acid units include carbonic,⁴ oxalic,^{3,4,46} malonic,⁴ succinic,^{2,4,5} glutaric,^{5,47} adipic,^{5,47} and the higher alkanedicarboxylic acids^{4,5,47} as well as phthalic,⁴⁸ and resorcinol and hydroquinone diacetic acids.⁴⁵

D. From Diacid Chlorides and Glycols

Although esters are often easier to prepare from acid chlorides, only recently has this technique been generally used to synthesize macrocyclic diester compounds. Zahn and coworkers in 1970 reported the preparation of macrocyclic terephthalates and bis(terephthalates) from terephthaloyl chloride.^{49,50} Sakamoto and Oki described the synthesis of a series of hetera-*p*-cyclophanes from substituted 1,4-phenylenediacetyl chloride and various glycols.¹²⁻¹⁶ They studied the interesting

correlations among the NMR spectra, size, and rigidity of the paracyclophane rings.

Bradshaw and co-workers have described a large variety of compounds prepared from diacid chlorides. Their work has concerned the synthesis of macrocyclic multidentate polyether-diester compounds from various diacid chlorides and oligo(ethylene glycols), some of which contained sulfur atoms. Their first compounds were prepared from aliphatic diacid chlorides and oligo(ethylene glycols). These include examples

of oxalates,⁴⁶ malonates,^{17,51,52,54} succinates,^{35,52,54} glutarates,^{52,54} and adipates.⁵⁴ More than 25 of these compounds have been prepared.

Another series of compounds have been prepared from the diglycolyl and thiodiglycolyl chlorides and various oligo(ethylene glycols), some of which contain sulfur atoms.^{17,18,53} Some 15-

and 18-membered rings in this series which contain two or four methyl substituents have also been prepared.⁵⁷

A third series of macrocyclic diesters comprising more than 25 compounds have been prepared from aromatic diacid chlorides. Compounds have been prepared from the following aro-

matic diacids: 2,6-pyridinedicarboxylic, ^{18,56,57} 3,5-pyridinedicarboxylic, ⁵⁶ phthalic, ^{54,55} isophthalic, ⁵⁵ and terephthalic acids. ⁵⁵ Vögtle and co-workers have also prepared some of these compounds. ¹⁹ Complexation of the macrocyclic multidentate polyether-diesters with various cations ^{17,18} will be discussed in section IV.

Similar macrocyclic multidentate compounds have been prepared by Drewes and Riphagen from 2,2'-dithiodibenzoyl chloride.⁵⁸

E. By Oxidative Coupling of Diacetylenes Containing a Diester Unit

Oxidative coupling of diacetylenic compounds containing a diester unit has been used by Nakagawa and Toda,^{59,60} Eglinton and Galbraith,^{61,62} and Bohlmann and co-workers⁶³ to prepare macrocyclic diester–diacetylenic compounds. Nakagawa and Toda^{59,60} found 2,2'-dibenzofuranyl as a by-product in their

preparation of cyclic derivatives of o, o'-dihydroxydiacetylene. It is interesting to note that even though this system is highly strained, the 16-membered ring (n = 4) was isolated in a relatively high yield (40% vs. 21% or less for the other rings).

Eglinton and Galbraith prepared 20-membered cyclic monomers and 40-membered cyclic dimers when they coupled α, ω -diacetylenic compounds containing diester groups.^{61,62}

Again it is instructive to note that Eglinton and Galbraith could not isolate products where n = 1 or 2. This may only be fortuitous, however; the products that were formed (n = 4) had 20-or 40-ring members.

Bohlmann and co-workers also isolated a highly unsaturated

macrocyclic diester compound by the diacetylene coupling process.⁶³

F. Miscellaneous Methods

A few macrocyclic diesters have been prepared by oxidative reactions of alkenes, dienes, and glycols. Yukawa and Sakai reported that styrene reacts with lead bis(dicarboxylate) to form a cyclic diester.⁶⁴ Kammerer and Pachta have shown that

2,2'-azobisisobutyronitrile reacts with a diene which contains two ester groups to form two macrocyclic diesters.^{65,66} Another

oxidative process to form cyclic diesters was reported by Suga and Matsuura.⁶⁷ They isolated a cyclic diester when *trans*-1,2-cyclohexanediol was oxidized with *tert*-butyl chromate.

van Bergen and Kellogg were able to prepare macrocyclic polyether-diester compounds containing one or two pyridine moleties by reacting the bis(acetoacetic) ester of various oligo(ethylene glycols) with ammonium carbonate and formaldehyde.⁶⁸ Their compounds were then converted into *N*-methyl-

1,4-dihydropyridine molety by treatment with a methylating agent and reduction. This latter compound displays NAD(P)H-like character by donating hydride to sulfonium salts.⁶⁹

III. Listing of Compounds Together with Physical Properties

Table I is an effort to list all the macrocyclic di- and tetraester compounds that have appeared in the chemical literature. The authors have conducted a search of the literature through *Chemical Abstracts* and *Current Abstracts of Chemistry*. The esters of every conceivable diacid were reviewed to see if macrocyclic diesters were listed. The table is organized by acid complexity with the aliphatic esters first (carbonate, oxalate, etc.) followed by the aromatic esters (phthalates, etc.). Physical properties and other data as well as references are listed in the table.

IV. Applications

The most important early use of the macrocyclic diester compounds was in the production of perfumes. Carothers, Spanagel, and co-workers prepared nearly 100 diesters, many of which were directly used in perfume preparations,⁶ In one paper dealing with macrocyclic ester formation by the degradation of polyesters, they remarked that rings of 18–20 members were practically odorless, but all 17-atom rings had a musk-like odor.⁵ It is interesting that when extracts from pine-needle wax were depolymerized, ethylene glycol cyclic brassylate, also a 17-atom ring with a musk-like odor, was isolated.⁸⁶ The stated reason to prepare cyclic diynes containing two ester groups was to provide a flexible preparation of potential synthetic musks.⁸¹

Carothers and co-workers found that at least one of the macrocyclic diesters was unstable and readily transformed to a high polymer.³ Indeed others also found that cyclic diesters of high purity could be used in the preparation of high polymers and as plasticizers.^{2,4,74,88}

Workers at Kodak in 1961 reported the synthesis of various sulfur-containing macrocyclic di- and tetraesters such as **3a** and **59b**. These compounds increased the sensitivity of silver halide emulsions already sensitized with gold compounds.⁷¹

An interest in studying macrocyclic compounds containing strained ring systems prompted Drewes and co-workers to prepare these compounds from phthalic acid and other rigid

moleties.⁷⁻¹¹ Their results are discussed at some length in section II.B. Toda and Nakagawa were also interested in strained systems in their preparation of macrocyclic diacetylenic diesters.⁶⁰

The study of the proton magnetic resonance as a method to determine rotational barrriers in hetera-*p*-cyclophanes caused Sakamoto and Oki to prepare a number of macrocyclic diesters.¹²⁻¹⁶ They found that ΔG for rotation of the aromatic ring in compound **90** was 11.0 kcal/mol where X = CH₃ (**90** ℓ) and 21.7 kcal/mol where X = OCH₃ (**90m**). These were the first specific

data indicating that the methoxy group is bulkier than a methyl group.¹² Sakamoto and Oki also found that the barrier to rotation greatly increased as the size of the paracyclophane ring was

reduced.¹⁴ The effects of oxygen and sulfur-atoms in the paracyclophane ring system was also studied. In compound **92** for example, the barrier to rotation increased for X = sulfide < sulfoxide < sulfone.¹³

The most recent use of the macrocyclic diesters involves the multidentate properties of those compounds prepared from the oligo(ethylene glycols).¹⁷⁻¹⁹ These compounds resemble the macrocyclic polyethers or so-called "crown" compounds which exhibit unique metal cation complexing properties. Excellent reviews of the crown compounds and their complexing ability have been published.²¹⁻²⁶ The crown-metal cation complexes have been shown to be of the inclusion type with the cation situated in the center of the crown cavity.^{93,94} This type of com-

plexing ability has been compared to that for valinomycin, a natural antibiotic.¹⁷

The metal cation complexing properties of some of the macrocyclic multidentate polyether-diester compounds have been studied.¹⁷⁻¹⁹ Compounds **9c** and **56c** exhibited complexing

properties similar to that for 18-crown-6 (i.e., they formed strong complexes with Ba²⁺ and K⁺ in methanol with log K for Ba²⁺ > log K for K⁺).^{17,95} Compound **16e**, on the other hand, formed a stronger complex with K⁺ (log K = 2.55) than with Ba²⁺ (log K = 1.41).¹⁷ This compound was one of the first examples reported in which the K⁺ complex was more stable than the corresponding Ba²⁺ complex. The cations have nearly identical crystal radii.

A potassium thiocyanate salt of compound **56c** has been isolated.⁵³ The infrared spectra for compound **56c** and its complex are instructive. Compound **56c** exhibited two carbonyl bands at 1715 and 1730 cm⁻¹. The metal complex exhibited only one band at 1740 cm⁻¹. These observations show that (i) since the carbonyl stretch of the complex has been shifted to a higher resonance frequency, the complex probably does not involve the carbonyl oxygen atoms, and (ii) the molecule is organized in a planar arrangement around the central K⁺ ion.⁵³ Preliminary X-ray crystallographic results of compound **56c** and its complex are consistent with the IR analysis in that one of the carbonyl oxygen atoms of compound **56c** is about 90° out of plane while the other is nearly coplanar with the ether oxygen atoms.⁹⁶

Compound 75c formed strong complexes with Na⁺, K⁺, Ba²⁺,

TABLE I

compound	n	substituents	compd no.	physical dat mp (bp/mm). °C	a other ^a	general comments	ref
Carbonates			1				
0	6	н	1a			attempted synthesis, only	4
·0 · 0,	e	5 9 di o nonhthui	16	109 110		dimer isolated	70
ICH2In	7	ə,o-αi-α-napritnyi H	1 c	106-110		attempted synthesis, only dimer isolated	4
•	8	н	1d	21.5-23 (74-76/0.5)	Е		4
	9	н	1e	34-35 (63-64/0.1)	Ē		4
	10	H	1f	10-11 (92-93/1)	E		4
	11	н	1g	40-41 (104.5/7)	E		4
	12	Н	1h	11–12 (118–119/3)	E		4
	13	н	1	23–24.5 (149–150/ 4.5)	E		4
	14	н	1j	21-22 (144-146/2)	E		4
	16	н	1k	31 (135/0.5)			86
	18	н	11	36-37 (165-169/1)	E		4
0 li /m	2, <i>m</i> = 1	X = 0	2a	liquid	E	mixture with dimer	4
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3, <i>m</i> = 1	x = 0	2b	42–44 (128–130/1)	E		4
$\langle \rangle$	1, <i>m</i> = 2	x = s	3a		_	photosensitizer	71
( <u>x</u> _),	2, <i>m</i> = 2	x = 0	3b	liquid	E	mixture with monomer	4
2,3 О Цг	2	н	<b>4</b> a			attempted synthesis, only	4
	3	н	4b			attempted synthesis, only	4
	A	ц	40	175-176		monomer isolated	4
	4	5 6:12 13-dicyclobutano	4d	209-210	BF	polymerized on beating	39
0	5	H	4e	117-118	E	perymenzed on neuring	4
4	6	H	<b>4</b> f	128-129	E		4
	7	Ĥ	4g	97–98	E		4
	8	н	4h	116-117	E		4
	9	н	41	95-95.5	Е		4
	10	н	4j	105–106	E		4
	11	Н	4k	97-97.5	E		4
	12		41 5 o	93-95			4
Ļ			58 55	2/4.0-2/0			72-14
		$R = M_{e} R' = Cl$	50	330-333			72
R LOL	R'			000 000			
"YAY YAY	R/						
5							
	2	$\times - \langle 0 \rangle - \dot{\mathbf{c}} + \langle 0 \rangle - \langle 0 \rangle $	6	335-340		polymerizes at the melting	73, 74
T x		С, сн, С				point	
∖₀,∠_n	3	×0-1-0-	7a	375			75
л О		сн, —					
6,7	-						
	3	×<0><0>	7Ь			polymerizes spontaneously at 330 °C	75
		сн,				4,000 0	
	3	×0	7c	301-303			75
		сн, сн, сн,					
	3		7d	420			75
	Ū						
	3	x{0}-s-{0}-	7e	320-322			75
Oxalates		<u> </u>	_		-		
) L	10	н	8a	(125-126/0.2)	E F		4 4
0'''	11	н	00	0.5)	-		
,CH,In	11	8,12-dithia	<b>8</b> c	101-102	A,B,E		57

8

### TABLE | (Continued)

compound	n	substituents	compd no.	physical data mp (bp/mm), ^e C	a other ^a	general comments	rəf
$\rightarrow$	2	Н	9a	,,,,		attempted synthesis, only dimer isolated	46
	3	н	9Ь	45-46 (154-166/2)	A,B,E		46
9 9	4	н	9c	84–85	A.B,E	forms stable complexes in MeOH with alkali metal ions	46
	5	н	9d	liquid	A.B.E	10.10	46
° – 4°		X = O, Y = S	10a	88-90	A,B,E		46
		X = S, Y = O	10b	45–47	A,B.E		46
		н	11		A,B,E		76
li -				107	F		•
° • • • • • • • • • • • • • • • • • • •	3 4	H 6,7:14,15-dibenzo	12a 12b	187 233–235	e A,B,D		3 11
$\rightarrow$							
12							
$\sim$	1	X = Y = O	1 <b>3</b> a	162.5-164	A,B,E		46
	1	X = 0, Y = S	13b	195-203	A.B.E		46
	1	x = 3, 1 = 0 x = y = 3	13C 13d	108-1094	A,B,E A B		40 46
⟨r x x x r x x x r	2	X = Y = 0	13e	68–72	A,B,E		46
l3 Malonates							
R R	1	$R = H, X = (CH_2)_{10}$	1 <b>4</b> a	(117-118/0.5)	E		4
	1	$R = Et, X = -CH(CH_3)-$ CONHCH ₂ NHCOCH(CH ₃ )-	1 <b>4b</b> ,c			methyl groups are cis on 14b and trans on 14c	77
$(X \mathcal{Y}_n)$	2	R = H, X = o-xylylene	15	215-218	A,B,D		11
14,15							
a to	2	R = H	16a	51.5-52.5	A,B.E		51, 52
	3	R = H $R = E_{1}$	160	67-68 (146 149/0 17)	A,B.E		51, 52 54
K N	3	B = phenyl	16d	(140-146/0.17)			54
( <u>-0</u> /) _n 16	4	R = H	16e	65-66	A,B.E	forms stable complexes in MeOH with Na ⁺ , K ⁺ , and Ba ²⁺	17, 51, 52
	4	R = Et	1 <b>6</b> f	(176–182/0.6)	A.B.E		57
	4	R = n-heptyl	16g	(198-203/1.3)	A,B,E		57
	4	R = phenyl	16h	69-70	A,B.E	t	57
		н	17	liquid	A,B,E	decomposes on heating	52
		н	1 <b>8</b>	liquid	A.B.E		52
Succinates							
° <b>~~~~~</b> °	3	н	19a	81 ( <b>94</b> -100/2)	E		5,6
~•••	4	H	19b	42 (95-96/2)	E		5,6
	e e	н	19C 104	19 (88-89/1)	E		5,6 5,6
19	7	н	19e	49 (116-118/2)	F		5.6
	8	Н	19f	71	Ē		5,6
	8	4,7-dithia	1 <b>9g</b>	102–103	A,B.E		57
	9	н	19h	71	E		5,6

TABLE	L	(Continued)

			compd	physical dat	a	general	
compound	n	substituents	no.	mp (bp/mm), °C	other ^a	comments	ref
	9	4.8-dithia	19	55-56	A.B.E		57
	10	H	19 <b>j</b>	58 (135-140/2)	E		5, 6
	10	5,8-dithia	19k	38.0-38.5	A,B,E		57
	12	н	191	12 (156–159/2)	E		5,6
	13	н	19m	13 (154/2)	E		5,6
	14	н	1 <b>9</b> n	11 (167/2)	E		5
R	18		190	13 (199–201/2)	E		5,6
0,	2		20a 20b	57-58 (169-170/2) liquid			78 52
	3	R = Me	200	(146-154/0.2)	A.B.F		54
···· ()²	3	B = H. 15.16-cvclohexano	20d	liquid	A.B.E		54
20	3	R = phenyl	20e	liquid	A,B,E		54
	4	R = H	20f	30-31	A,B,E		52, 57
$^{\circ}$		н	21	liquid	A,B		52
( ^{-s s-} )							
0. ~ 0							50
		н	22	liquid	А,В		52
$\langle \cdot \cdot \cdot \rangle$							
$\langle \rangle$							
<u>s</u> s							
22							
0, 10	2	ц	23.0	131			2 6 35
Ň Ň.	2	⊓ 6.7≠14.15-dicyclobutano	23h	185_186.5	A.D.C F		2, 0, 33
	3	H	230	138	F		5.6
ICHIN ICHIN	4	н	23d	121	F		5,6
Ù 0 ['] //**2	4	3.4:13.14-dibenzo	23e	217	A.B.D		11
	5	Н	23f	87	E		5, 6
23	6	н	23g	110	E		5,6
	7	н	23h	86	E		5, 6
	8	н	23i	109	E		5,6
	10	н	23j	109	E		4, 5
		$X = -CH_2(CH_2OCH_2)_2CH_2 -$	24a	liquid	A,B,E		35
		$X = -CH_2CH_2N(CH_2C_6H_5)-$	24b	liquid	A,B,E		35
X		CH ₂ CH ₂ -					
	,						
24							
u v	0	н	25a	190-192	A.B.E		35
NH OT	1	H	25b	167-168	A.B.E		35
0	2	н	25c	159-161	A.B.E		35
NH OS							
of to							
25							
Glutarates							
$a a a a^{0}$	3. <i>m</i> = 1	н	26a	85	BE		47
$\gamma \gamma \gamma$	4, m = 1	3.4-dimethylene	26b	95-96	D,C C F		79
~~°°	8, <i>m</i> = 1	2,3:8,9-dibenzo-4,6-diyne	26c	135-136	B.C.F		59 60
`ICH _e In∕ m̀	10, <i>m</i> = 1	H	26d	14 (136-139/1)	E.		5.6
26,27	4, $m = 2$	3.4:14,15-dibenzo	27	173	A.B.D		11
XXXX	3	R = X = H	28a	(155-157/0.65)	A.B.E		54
$\sim$ $\times$ $\sim$ $\sim$	3	R = X = F	28b	(135–143/0.3)	A.B,E		54
RX 0	3	R = Me, X = H	<b>28</b> c	(130–142/0.12)	A,B.E		54
4-0-1	4	R = X = H	28d	(175–180/0.8)	A,B,E		52, 57
28							
یں R	2	$R = -C(CH_3)_2CN. 2.3(2'.3'-$	29a		B,E		65
_ н,сўн,ясн, _	-	naphthano)					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	$R = -C(CH_3)_2CN, 2,3:4,5-$	29b		B,E		65
		dibenzo					
ICH24.	5	$R = -C(CH_3)_2CN, 2,3:5.6-$	29 c	160	A-E		66
29		di(4'-methylbenzo)					
Adipates	•			105 105 5	-		67
	2, <i>m</i> = 1	2,3-trans-cyclonexano	30a 205	125-125.5	ы Бе		01 47
٩ ١	4, m = 1	n H	300	90 70 (117/2)	в,с F		5.6
∕ _{ICH₂In} ∽m	6 m = 1	3-ene-5-vne	30d	35 (136-145/2)	-		80
30.31	8. $m = 1$	2.3:8.9-dibenzo-4.6-divne	30e	123.5	B.C.E		59.60
	-, /	_, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

TABLE I (Continued)

co mpound	n	substituents	compd no.	physical da mp (bp/mm), °C	ata otherª	general comments	ref
	9 <i>m</i> = 1	н	30f	26 (144-146/2)			5
	10, m = 1	5-ene-7-yne	30g	(130–140/0.2)	-		81
	4, <i>m</i> = 2	3,4:15,16-dibenzo	31	144	A,B,D		11
° ↓	1	н	32a				82
	2	Н	32b	59 (162/2)	A.B,E		5, 54, 78
X0	3	н	32C	(154–155/0.07)	A,B,E		54
32 ŖÇH, ŖÇH,		$B = -C(CH_0) CN$	33a	93.3	BE		65
		$X = p-phenylene$ $B = -C(CH_0)cCN$	33h	00.0	D,C		65
×_		X = 2,3-naphthylene $B = -C(CH_0) cN$	330		BE		65
33		$X = 2.2' - biphenylene$ $B = -C(CH_0) - CN$	334	132			66
		сн, сн,	554	152	A-C		00
		×- 00					
Pimelates							
0 (CH2), 0	5, <i>m</i> = 1	н	34a	59	B,E		47
	8, <i>m</i> = 1	2,3:8,9-dibenzo-4,6-diyne	34b	120.5-121.5	B,C,E		5 9 , 60
\ _{ICH₂In} Xm	4, m = 2	3,4:10,17-dibenzo	35	121	A,B,D		11
34,35							
	6 m = 1	L	26.0	64	BE		47
	7, m = 1	H	36b	47 (158–160/2)	E E		5.6
	4, $m = 2$	3,4:17,18-dibenzo	37	134	A,B,D		11
36,37 A 70 atos							
	2. <i>m</i> = 1	н	38a	52	F		5.6
···· Q Q·	2, <i>m</i> = 1	2-phenyl	38b		-		64
VICH.Jn Xm	4 , <i>m</i> = 1	н	38c	9 (123–124/2)	Е		5
38,39	6, m = 1	H	38d	59	E		5
	7, m = 1 8. $m = 1$	□ 2 3:8.9-dibenzo-4 6-divne	380 381	62 125-127	B,E B,C,E	forme two polymorphe	47
	0,	2,010,0-01001/20-4,0-019110	301	125-127	B,0,2	(lower melting form	80
	9, <i>m</i> = 1	н	38g	10-12 (147-148/ 0.01)			38
	2, <i>m</i> = 2	н	39a	-145	Е		5,6
	4. <i>m</i> = 2	3,4:18,19-dibenzo	39b	11 9	A,B,D		11
Sebacates	9, $m = 2$	н	39c	70			38
0 CH21, 0	2, <i>m</i> = 1	н	40a	42 (119-123/2)	Е		4, 5, 83, 84
I [n+2Q Q.	2, <i>m</i> = 1	2-phenyl	40b	,	-		64
Lich-in Xm	3, <i>m</i> = 1	Н	40c	7 (130–133/2)	E		5, 6, 38, 78
40.41	4, m = 1	H	40d	6 (136–138/2)	Ę		5
10,11	5, m = 1	н	400	37 (159–160/2)	E		5
	6, $m = 1$	3-ene-5-yne	40a	(140 - 145/0.3)	E		5.65
	8, <i>m</i> = 1	н	40h	68	B,E		47
	8, <i>m</i> = 1	4,6-diyne	40	54-55	B,C,E		61, 62
	10, m = 1	5-ene-7-yne	40j	(140/10.5)			81
	10, m = 1	3,9-diene-5,7-diyne H	40k	200	B,C		63
	3, m = 2	н	41b	113-113 5	E		4,5 4,5,38
	4, $m = 2$	3,4:19,20-dibenzo	41c	135	~ A.B.D		-, 3, 38 11
	8, <i>m</i> = 2	4,6,24,26-tetrayne	41 d	109-110	B,C,E		61,62
U 1 CH21	1	H	42a	15 (156-157/2)	Е		5, 78
Kot	2	Π	42b	(202–204/3)			78
42 0 (CH2)	1	н	43			attempted synthesis only	37
 	-		70			dimer isolated	01
\checkmark	2	н	44	50-52	A,B		37
43.44							

TABLE I (Continued)
-----------	------------

compound	n	substituents	compd	physical da	ta other	general	ref
Undecanedioates							
	2, m = 1	H	45a 45b	30 73	BF		4 17
ι L	9, m = 2	n H	450	143	F.		4
ICH ₂)n ¹ m	2, 111 2			140	-		-
45,46							
Dodecanedioates	0 1	4	470	18/120-141/2)	F		4.5
	2, m = 1		47a 47h	10(109-14(/2)	-		85
ι L	0 m = 1	H	47c	80	B,E		47
ICH, In m	2, m = 2	н	48	95-96	E		4, 5
47,48	_,						
Tridecanedioates			40	-9 (120 142/1)	E		5 82 85 86
0 + 1 CH2) + + 0	1	H	49 50	-0 (139-142/1) 145-146	F		4 5
	2	•	50	143-140	-		4, 3
49,50							
Tetradecanedioates							
O ICH, Ia		н	51	102–103			4
o o							
ot to							
IC □ 2/12							
Octadecanedioates							
		н	52	60	E		5
					-		U U
$\langle \rangle$							
ICH21							
52							
Maleates, Fumarates, and							
R	4 1		50.	160			11
0,+0	4, m = 1	$R = M_{0} - 3 A_{-}benzo$	538 526	100			11
1 r n+20 0'	4 m = 2	B = H	54a	100	A.D.D		87
$(\lambda_m$	4, m = 2	R = H. 3.13-divne	54b	184	A.B.C.D		10
(CH ₂)	4, m = 2	R = Me. 3.13-divne	54c	254	A.B.C.D		10
53,54	6, $m = 2$	R = H, 3,5, 15, 17-tetrayne	54d	160 d	A,B,C,D		10
	6, <i>m</i> = 2	R = Me, 3,5, 15, 17-tetrayne	54e	160 d	A,B,C,D		10
	1	R = H	55a	127.5-128	A,B,E		35
	1	R = Me	55b	liquid	A,B,E		35
$\langle \rangle$	3	R = H	55c	67–71	A,B,E	forms from fumaroyl	54
						dichloride, double	
\mathcal{L}_{n}						bonds are trans	
0 toto							
R							
55							
Diglycolates							
0-0-0-0	2	R = H	56a	100.5-101.5 (145/	A.B.E		53
0 0	•	D - M.		0.2)			57
RK-0-JA	2		56b	116-118	A,B,E	forma atable complexes	07 17 18 53
()n	3	R = H	500	78.5-79.5 (14670.10)	A,D,C	in MeOH with Na ⁺	11, 10, 55
56						K^+ Ba ²⁺ and Ad ⁺	
						(KSCN complex mp	
						169–169.5 °C)	
	3	R = Me	56d	(172/1)	A.B.E	·	57
0~~~0	4	R = H	56e	(200/0.2)	A.B,E		53
R_O O_R		R = H, R' = Me, X = Y = C	57 a	(163–166/1)	A.B,E		57
		R = R' = Me, X = Y = O	57b	(150/0.8)	A,B.E		57
Î, v, Î		R = R' = H, X = 0, Y = S	57C	113.5-115	A.B,E		53
1 I R' R'		$\mathbf{n} = \mathbf{K} = \mathbf{H}, \mathbf{X} = \mathbf{S}, \mathbf{Y} = \mathbf{O}$	9/Q	30-30.5	A,8,5		55
57							
Thiodiglycolates							
0-5-5-0	1	В = H	58a	93.5-94.5 (155/1)	A.B.E		53
0 0	2	R = H	58b	85.5-86.5 (156/0.15)	A,B,E		53
R K-O-XR	2	R = Me	58c	120-121	A,B,E		57
··· (~ - ~),	3	R = H	58d	43.5–44.5 (181/0.4)	A.B.E	forms a stable complex	18. 53
58						in MeOH with Ag ⁺	

TABLE | (Continued)

				physical da		general -	
compound	n	substituents	no.	mp (bp/mm), °C	other ª	comments	ref
	<u>,</u>			(100/0 7)			E 7
	3	R = Me	588	(180/0.7)	A,B,E		57
0 0	4		501	(204/0.2)			53
s~€0		$R = H_2, X = 0, Y = S$	59a	106-107	A,B,E		23
\sim		R = 0, X = 0, Y = S	590	150.5-151.5			71
× ×		$R = H_2, X = S, Y = O$	59C	liquid	A,B,E		53
RXX							
59 °\$~~~~~°		н	60	(163–165/0.7)	A,B,E		57
Phthalates							
\bigcirc	3	2-Me	61a	78.6-78.8	B,E		48
	4	н	61b	111	A,B,D		7,8
	4	3,4-dibenzo	61c	148	A,B,D		11
()	5	н	61d	101	A,B,D,E		7, 8, 48
ICH2In	6	н	61e	64	A.B.D.E		8, 48
61	8	н	61f	liquid	A.B.D		8
	10	н	61a	liquid	A.B.D		8
	12	н	61h	liquid	ABD		8
	1	$\mathbf{X} = \mathbf{O}$	62a	615_625	BE		48 88
$\langle o \rangle$	1	X = S	62h	107 2-107 7	BE		48,00
\sim	1	X = 0 2.5-diMe	620 d	120 5 131 5	0,0	two diasteromers	40 88
0 0	1	X = 0, 2,3-dime	02C,U	105 0 107 1		two diasteromers	40,00
X X	0	X = 0	6 0-	105.6-107.1			40.00.00
(<u> x)</u> _	2	X = 0	62e	119.5-121	B,E		48, 88, 98
62	3	x = 0	62f	70-75	A,B,E		54
,	4	X = 0	62g	liquid	A,B,E		55
	5	X = 0	62h	liquid	A,B,E		55
	n = m = 2	н	63 a	198	A,B,D		6,8
$\langle \circ \rangle$	n = 2, m = 4	н	63b	104	A.B.C.D		9
$\sim \sim$	n = 2, m = 6	н	63c	147	A.B.C.D		9
,o o'	n = m = 3	н	63d	193	ABD		8
1CH21n CH21m	n = 3 m = 4	н	63e	131	ABCD		å
`ဝု ဝု်-+>	n = 3, m = 5	 L	626	165			0
	n = 0, m = 0		031	100	A,B,C,D		9
$\langle \mathbf{o} \rangle$	n = m = 4		63g	140	A,B,C,D		9
\smile	n = m = 4	3-ene	63h	149	A,B,C,D		9
63	n = m = 4	3,13-diyne	631	280	A,B,C,D		10
	n = 4, m = 5	н	63j	100	A,B,C,D		9
	n = 4, m = 6	н	63k	108	A,B,C,D		9
	n = 4, m = 7	н	631	115-117	A.B.C.D		9
	n = 4, m = 8	н	63m	138	A.B.C.D		9
	n = 4, m = 9	н	63n	112	ABCD		ů.
	n = m = 5	н	630	120			õ
	n = m = 6		60-	109			9
	n = m = 0		63p	00	A,B,C,D		9
	n = m = 6	0.0.10,1/-tetrayne	63q	160 0	A,B,C,D		10
	n = 6, m = 7	н	63r	60	A,B,C,D		9
	n = 6, m = 8	н	63s	93	A,B,C,D		9
	n = m = 7	Н	63t	163	A,B,D		8
	n = 7, m = 8	н	63 u	89	A,B,C,D		9
	n = m = 8	н	63v	64–65	A.B,C,D		9
	n = 8, m = 9	н	63w	75	A.B.C.D		9
	n = 8, m = 12	н	63x	95	A.B.C.D		9
	n = m = 9	н	63V	140_141	ABD		8
	n = 9 $m = 10$	H	60J	56			ä
	n = 0, m = 10		60	70 70	A.B.O.D		9
	n = 10 - 10	н Ц	osaa	10-13			9
	n = 10, m = 11		0300	04	A,B,C,D		9
	n = m = 11	n	63cc	138-139	A,B,D		8
	n = 11, m = 12	н	63dd	75	A.B,C.D		9
lsophthalates	n = m = 12	н	63ee	84	A.B,C,D		9
R L	2	R = R' = H	64a	138–140	A,B,E		55
$\widehat{\mathbf{O}}$	2	$R = NO_2, R' = H$	64b	161–163	A,B,E		55
	3	R = R' = H	64c	95.5–96	A,B.E	(NaSCN complex mp	19, 55, 98
Kat	3	$R = NO_2, R' = H$	64d	157–158	A,B.E	173.3-174.3 °C)	55
v /n	3	$R = NH_2$, $R' = H$	64e	140 d	A,B,E		57
64	3	$R = H, R' = NO_2$	64f	124–126		(NaSCN complex mp 158– 162 °C)	19

TABLE I (Continued)

compound	n	substituents	compd no.	physical da mp (bp/mm), °C	ta otherª	general comments	ref
	4 4 4 5 5	R = R' = H $R = NO_2, R' = H$ $R = NH_2, R' = H$ $R = NHCOCH_3, R' = H$ R = R' = H $R = NO_2, R' = H$ R = H $R = NO_2$	64g 64h 64i 64j 64k 64i 65a 65b	103.5-104.5 104-105 128-12 9 148.5-150.5 106.5-108.5 90-92 Ilquid Ilquid	A,B,E A,B,E A.B,E A,B,E A,B,E A,B,E A,B,C,E		55 55 55 55 55 55 55 55 55
		н	66	325–327	E		89
66 Terephthalates							
° Vichula CHula	12. <i>m</i> = 1 12. <i>m</i> = 2 4. <i>m</i> = 4	6,8-diyne 6,8,26,28-tetrayne H	67 68 69	145–148 210–211 247–249	C B.C.E B		62 62 49
67,68,69	3, <i>m</i> = 1	н	70a	96		(NaSCN complex mp 174-	19
70,71	4, <i>m</i> = 1 5, <i>m</i> = 1 3, <i>m</i> = 2	н н н	70b 70c 71	108–109.5 69–70 93.5–95	A,B.E A,B.E A,B,E	176 <i>.</i> 5 °C)	55, 9 8 55, 9 8 55
	1 2 3 4 5 6	н н н н н н н н н н н н н н н н н н н	72a 72b 72c 72d 72e 72f 73	229 314-316 324-325 264 304-305 238-240 165-167	B,D.E B,E B,E B.E B,E B,E B,E		90 49,50 49,50 50 50 50 49,91
	1	н	74a			attempted synthesis only dimer isolated	19
	2	Н	74b	156–158			19
74 n + 0 n + 0	2 2 3	R = H R = Me R = H	75a 75b 75c	139–140 (165/1) 86.5–87.5	A,B,E A.B,E A.B,E	forms stable complexes in MeOH with Na ⁺ , K ⁺ , Ba ²⁺ , and Ag ⁺ (NaSCN complex mp 170.5–172.5 °C; KSCN complex mp 198.5–200.5 °C; Ca(SCN) ₂ ·H ₂ O complex mp	56 57 18, 19, 56
Q	3 4 5	R = Me R = H R = H H	75d 75e 75f 76	80-83 143-144.5 110-111 135-138	A.B,E A.B,E A.B,E	203–206 °C)	57 56 56 19

TABLE I (Continued)

87

compound	n	substituents	compd no.	physical dat mp (bp/mm), °C	a other ª	general comments	ref
		R = H, R' = Me, X = Y = Z = 0	77a	9 7–100	A,B,E		57
		R = R' = Me, X = Y = Z = O	77b	(175/1)	A,B,E		57
, z		R = R' = H, X = O, Y = O, Z = S	77c	96–97.5	A,B,E		56
R' R' 77		R = R' = H, X = O, Y = S, Z = O	77d	127–129	A,B,E		56
		R = R' = H, X = S, Y = 0, <u>Z</u> = 0	77e	146–148			19
	2, m = 1 2, m = 1	R = H R = Me	78a 78b	137–137.5 167–169	A,B,D,E A,C,D		56, 9 8 68
	3, m = 1	R = H	78c	112-113	A,B,E		56, 98
Kal	3, <i>m</i> = 1	R = Me	78d	9 0–92	A,C,D		68, 69 , 98
$(2 - 1)^n$	4, <i>m</i> = 1	R = H	78e	54.5-55.5	A,B,E		56, 98
78,79	5. <i>m</i> = 1	R = H	78f	50-51	A,B.E		56, 9 8
	0, <i>m</i> = 2	R = Me	79a	196–198	A.C.D		68
	1, m = 2	R = Me	79b 70c		A,C		68
	2, m = 2 3, m = 2	R = Me R = Me	79C 79d		A,C		68
Miscellaneous	0, /// 2				/ ()0		
		н	80	141–145	A		68
		н	81	124–126	A,B.C	¹³ C NMR	68
NH NH S		Н	82	177–178			71
\sim	1	н	83			attempted synthesis only	37
	2	н	84	57.5-58	A,B		37
		н	85	110–113. ⁶⁸ 90– 9 2 ⁶⁹	A,C,D	forms a complex with Na ⁺ ClO ₄ ⁻ which cocrystallizes with one molecule of solvent, ⁶⁹ mp of complex: (acetonitrile) 176–180 °C, (acetone) 172.5–175 °C (methyl acetate) 169.5–171.5 °C	68, 69
сн, н,с _ , х _ сн,		$X^{-} = BF_{4}^{-}$	86a				6 9
×-		$X^- = CIO_4^-$	86b	1 9 0–193	A.C.D		68
		н	87	131.5–133	D		68

TABLE	(Continued)
-------	-------------

······			compd	physical data		general	····.
compound	n	substituents	no.	mp (bp/mm), °C	other *	comments	ref
$\widehat{\mathbf{O}}$	5, m = 1	X = H	88	80-81	A		36
ſ Ţ Ţ Ţ	4, m = 2	X = H X = C	89a	92-93	A		36
	4, 111 – 2	x = 01	890	163-164	A		36
ICH ₂ In							
86,89 R	5	R = H	909	147_148			14
	5	R = Me	905	80-81	A.B.D		14
	6	R = H	90c	135.5-136.5	A.B.D		14
	6	R = Me	90d	92.5-93.5	A.B.D		14
ICH.In	7	R = H	90e	110-111	A,B,D		14
90	7	R = Me	90f	51.5-53	A,B,D		14
	8	R = H	90g	94-95	A,B.D		14
	8	R = Me	90ĥ	78-79	A,B,D		14
	9	R = H	901	45-46	A,B,D		14
	9	R = Me	90j	87-88	A,B,D		14
	10	R = H	90k	38-39	A,B.D		14
	10	R = Me	901	89-90	A,B,D		12, 14
	10	R = OMe	90 m	63-64	A.B,D		12
R >	1	R = H	91 a	158.5-159.5	A,B,D		16
	1	R = Me	9 1b	9 6–97	A,B,D		16
	2	R = H	91c	39-40	A,B,D		16
407	2	R = Me	91 d	70.5–71	A,B,D		16
\ /n	3	R = H	91e	95.5-96.5	A,B,D		16
91	3	R = Me	91f	85.5-86.5	A,B,D		16
-	3	R = OMe	91g	94.5-95	A,B,D		16
[₩] ∕	1	R = H, X = p-phenylene	92a	238-239	A.B,C,D		42
	4	R = Me, X = S	92b	70-71	A,B,D		13
2774 0 R O	4	R = Me, X = SO	92C	134-134.5	A,B,D		13
I I ICH ₂ In ICH ₂ In	4	$R = Me, X = SO_2$	92d	123-124	A,B,D		13
	э	R = R, X = 5, 4, 5; 9, 10-	926	125-125.5	A,D		15
× ×		albenzo					
92	•				_		
$\widehat{\mathbf{O}}$	2	Н	93a	100	E		45
	3	н	93b	134	E		45
	4	н	93c	112	E		45
	6	н	93d	115	E		45, 85
CH21n	9	н	93e	86	E		45
93	10	н	93f	86	E		45
$\sim \sim $	4	н	94 a	140	E		45
of the	6	н	94b	124	E		45, 85
Ĭ, Ĵ	10	н	94c	58	E		45
ICH2In							
× ^ ^	A	ч	05 -	157			50
[0] <u> </u>	4		95a 056	107	A,D		58
J ^s J	4	J-yne	950	146-100	A,D		58
0 0 0	5	н ы	950	00-07	A,D		50
ICH,In	7	н Ц	950	147	A.D		20
95	8	н Н	95e 05f	186			50
\land	2	н	951	103			58
	3	н	90a 96h	141_142			58
	0		200	171-172	Α,υ		56
ᡣ᠆᠆᠆᠆᠕							
96 R			07-		E		••
C lo ot a			978 076		E		92
		R = Me R' = Ac	970	216 217			92
		$\mathbf{R} = \mathbf{M}\mathbf{e}, \mathbf{R} = \mathbf{A}\mathbf{c}$	9/6	210-217			92
Ų võ							
97 ·							
		R = H	98a				92
\neg		R = Ac	98b	208–20 9			92

 a A = NMR, B = IR, C = UV, D = MS, E = mol wt.

98

TABLE II. Addendum Table

				physical	data	general	
			compd	mp (bp/mm),			
Compound	n	substituents	no.ª	°C	other ^b	comments	ref
AcQ							
T'N O							
A tos			260	158–15 9		Baever-Villiger oxidation	9 9
$-_{0}$			206	100-100		Babyor villiger exited ton	
1							
O ICH, In O	4		30h	215-217.5	A,B,D	[2 + 2] photocyclization of the bls(7-	100
j j						coumarinyi) ester	
	5		34c	229-233	A,B,D	[2 + 2] photocyclization of the bls(7-	1 0 0
						coumarinyl) ester	
ó√–↓~¦	6		36 c	229.5-232	A,B,D	[2 + 2] photocyclization of the bls(7-	100
5 S	-		0.01	010 5 010		countaringl) ester	400
	(38n	216.5-218	A,B,D	[2 + 2] photocyclization of the bis(7-	100
0 0						coumariny) ester	
			34d	237-241	A.B.D	[2 + 2] photocyclization 100 of the bls(7-	100
						coumarinyl) ester	
$\sim \gamma 0$							
of							
R	9	R = OMe	90n	61.5-62.5	A.B.D		101
\succ	10	R = OEt	900	oil	A,B,D		101
<o></o>	11	R = OMe	90p	74.5-75.0	A,B,D		101
	11	R = OMe	90q	50.0-51.0	A.B,D		101
	11	R = O-n-Pr	90r	oil	A,B,D		101
(CH ₂) _n	12	R = OEt	9 0s	oil	A,B,D		101
	12	R = O-n-Pr	90t	oil	A,B,D		101
Pt Pt							
	3		9 9 a	β -isomer	В	mixt of eta and δ truxinic acid moieties	102
° Y Y Y				162–163			
	4		99b		В	exclusively the δ truxinic acid molety	102
(CH ₂)n							
Ph Ph		$X = (CH_2)_3$	100a	159-161	A,D		103
		$X = (CH_2)_{10}$ $X = (CH_2)$	1005		A		104
°¥ ¥°		$X = (\nabla \Box_2)_{12}$ $X = CH_0CH_0CH_0CH_0$	1000		A 4		104
$\langle \circ \circ \rangle$		$\mathbf{X} = \mathbf{CH}_{2}(\mathbf{CH}_{2}\mathbf{O}\mathbf{CH}_{2})_{2}\mathbf{CH}_{2}$	1000		Δ		104
$\succ \prec$		0.12/01/2001/2/2011/2					104
lo ol							
Ŭ Ŭ							

^aSee Table I. ^bA = NMR, B = IR, C = UV, D = MS, E = molecular weight.

and Ag⁺ in methanol (log K = 4.3 to 4.9).^{18,19} The macrocyclic polyether, pyridino-18-crown-6, formed even stronger complexes in the cases of K⁺, Ba²⁺, and Ag⁺.¹⁸ That the pyridine nitrogen is an integral part of the complex was shown by the fact that compound **78c** which has the nitrogen outside the polyether cavity does not complex with the alkali metal cations in methanol.⁹⁵ It is interesting that the infrared spectra of compound **75c** and its potassium ion complex were almost identical.⁵⁶ X-ray analyses of compound **75c** show that all the oxygen atoms and the pyridine nitrogen atom are in about the same plane and that the cavity is almost symmetrical.⁹⁶ No complex of potassium ion and compound **78c** could be isolated.⁵⁶

Metal cation complexation properties for compounds **58d** and **64c** have also been investigated.^{18,95} Compound **58d** formed a strong complex with Ag⁺ in methanol with a 1:1 ligand-metal ion complex being reported.¹⁸ No complexes with the alkali and alkaline earth cations were formed.¹⁸ These results are much the same as the complexation data found for the metal cation-thiacrown interactions.⁹⁷ Compound **64c** does not complex with metal cations in methanol.

van Bergen and Kellogg have prepared a macrocyclic multidentate polyether diester compound with an NAD(P)H mimic

formed from a Hantzsch 1,4-dihydropyridine segment.^{68,69} They found that compound **85** would transfer a hydride to a sulfonium

salt much the same as NAD(P)H does.⁶⁹ These types of enzymatic reactions are certain to receive future attention as new macrocyclic multidentate polyether-diester compounds are prepared.

V. Addendum

A number of compounds have been reported since this review was submitted. These compounds are listed in Table II.

Acknowledgment. Financial support of this work by the National Science Foundation (CHE76-10991) and the U.S. Public Health Service (GM-18811-05) is acknowledged.

VI. Réferences

- D. Vorländer, Justus Liebigs Ann. Chem., 280, 167 (1894).
 W. H. Carothers and G. L. Dorough, J. Am. Chem. Soc., 52, 711 (1930).
- W. H. Carothers, J. A. Arvin, and G. L. Dorough, J. Am. Chem. Soc., 52, (3)3292 (1930).
- J. W. Hill and W. H. Carothers, J. Am. Chem. Soc., 55, 5031 (1933). (5) E. W. Spanagel and W. H. Carothers, J. Am. Chem. Soc., 57, 929
- (1935). E. W. Spanagel, French Patent 796,410 (April 7, 1936); *Chem. Abst*r., (6) 30, 61381 (1936).
- L. M. R. Crawford, S. E. Drewes, and D. A. Sutton, Chem. Ind. (London), (7)1351 (1970).
- (8) S. E. Drewes and P. C. Coleman, J. Chem. Soc., Perkin Trans. 1, 2148 (1972).
- S. E. Drewes and P. C. Coleman, J. Chem. Soc., Perkin Trans. 1, 2578 (9)(1974)
- (10) S. E. Drewes and B. G. Riphagen, J. Chem. Soc., Perkin Trans. 1, 1908 (1974).
- S. E. Drewes and B. G. Riphagen, J. Chem. Soc., Perkin Trans. 1, 323 (11)(1974).
- (12) K. Sakamoto and M. Oki, *Tetrahedron Lett.*, 3989 (1973).
 (13) K. Sakamoto and M. Oki, *Chem. Lett.*, 1173 (1974).
- K. Sakamoto and M. Okl, Bull. Chem. Soc. Jpn., 47, 2739 (1974).

- (15) K. Sakamoto and M. Oki, *Bull. Chem. Lett.*, 615 (1975).
 (16) K. Sakamoto and M. Oki, *Bull. Chem. Soc. Jpn.*, **49**, 3159 (1976).
 (17) R. M. Izatt, J. D. Lamb, G. E. Maas, R. E. Asay, J. S. Bradshaw, and J. J. Christensen, *J. Am. Chem. Soc.*, **99**, 2365 (1977).
- R. M. Izatt, J. D. Lamb, R. E. Asay, G. E. Maas, J. S. Bradshaw, J. J. Christensen, and S. S. Moore, *J. Am. Chem. Soc.*, **99**, 6134 (1977).
 K. Frensch and F. Vögtle, *Tetrahedron Lett.*, 2573 (1977).
- C. J. Pedersen, J. Am. Chem. Soc., 89, 7017 (1967).
- (21) J. M. Lehn, Struct. Bonding (Berlin), 18, 1 (1973).
 (22) R. M. Izatt, D. J. Eatough, and J. J. Christensen, Struct. Bonding (Berlin), 16, 161 (1973).
- (23) J. J. Christensen, D. J. Eatough, and R. M. Izatt. Chem. Rev., 74, 351 (1974)
- J. S. Bradshaw In "Synthetic Multidentate Macrocyclic Compounds", R. M. Izatt and J. J. Christensen, Ed., Academic Press, New York, N.Y., (24)1978.
- See "Membranes", Vol. 3, "Lipid Bilayers and Biological Membranes: Dynamic Properties", G. Elsenman, Ed., Marcel Dekker, New York, N.Y., (25)1975.
- (26) D. J. Cram, R. C. Helgeson, L. R. Sousa, J. M. Timko, M. Newcomb, P. Moreau, F. de Jong, G. W. Gokel, D. H. Hoffman, L. A. Domeler, S. C. Peacock, K. Maden, and L. Kaplan, *Pure Appl. Chem.*, **43**, 327 (1975). W. D. Curtis, D. A. Laldler, J. F. Stoddart, and G. H. Jones, *J. Chem. Soc.*,
- (27) Perkin Trans. 1, 1756 (1977).
- J. P. Behr, J. M. Lehn, and P. Vierling, J. Chem. Soc., Chem. Commun.. (28) 621 (1976).
- "Websters Third New International Dictionary", G. & C. Merriam, Springfield, Mass., 1971. Y: S. Rap, *Chem. Rev.*, **76**, 625 (1976). (29)
- (30)
- (31) T. G. Beck, Tetrahedron, 33, 3041 (1977).
 (32) L. D. Bergelson, Zh. Obshch. Khlm., 32, 58 (1962), and subsequent papers In this series.
- (33) N. Sugiyama, T. Gasha, and C. Kashima, Bull. Chem. Soc. Jpn., 40, 2713 (1967), and subsequent papers in this series
- (34) M. Tillitschejew, J. Russ. Phys. Chem. Soc., 57, 143 (1925); Chem. Zen-tralbl., I, 2667 (1926).
- R. E. Asay, J. S. Bradshaw, S. F. Nielsen, M. D. Thompson, J. W. Snow, (35)D. R. K. Masihdas, R. M. Izatt, and J. J. Christensen, J. Heterocycl. Chem., 14.85 (1977)
- (36) F. Vögtle and P. Neumann, Tetrahedron Lett., 115 (1970).
- (37) E. H. Hahn, H. Bohm, and D. Ginsburg, *Tetrahedron Lett.*, 507 (1973).
 (38) M. Stoll and A. Rouvé, *Helv. Chim. Acta*, **19**, 253 (1936).
 (39) K. C. Stueben, *J. Polym. Sci.*, *Part A-1*, **4**, 829 (1966).
 (40) W. Baker, J. F. W. McOmie. and W. D. Ollis, *J. Chem. Soc.*, 200
- (1955)
- (41) R. N. Greene, Tetrahedron Lett., 1793 (1972).
- (42) M. L. Kaplan and E. A. Truesdale, *Tetrahedron Lett.*, 3665 (1975).
 (43) J. W. Hill and W. H. Carothers, *J. Am. Chem. Soc.*, **55**, 5025 (1933).
 (44) K. Zlegler and R. Aurnhammer, *Justus Liebigs Ann. Chem.*, **513**, 43 (1934)
- (45) E. W. Spanagel and W. H. Carothers, J. Am. Chem. Soc., 57, 935 (1935).
- P. E. Fore, J. S. Bradshaw, and S. F. Nielsen, J. Heterocycl. Chem., 15, (46) 269 (1978). J. Dale, J. Chem. Soc., 72 (1965). W. A. Ehrhart, J. Org. Chem., 33, 2930 (1968).
- 47)
- (4**8**)
- (49) E. Meraskentis and H. Zahn, Chem. Ber., 103, 3034 (1970).

Bradshaw, Maas, Izatt, and Christensen

- (50) H. Zahn and J. F. Repin, Chem. Ber., 103, 3041 (1970).
- (51) J. S. Bradshaw, L. D. Hansen, S. F. Nielsen, M. D. Thompson, R. A. Reeder, R. M. Izatt, and J. J. Christensen, J. Chem. Soc., Chem. Commun., 874 (1975)
- (52) J. S. Bradshaw, C. T. Bishop, S. F. Nielsen, R. E. Asay, D. R. K. Masihdas, E. D. Flanders, L. D. Hansen, R. M. Izatt, and J. J. Christensen, J. Chem. Soc., Perkin Trans. 1, 2505 (1976).
- (53) G. E. Maas, J. S. Bradshaw, R. M. Izatt, and J. J. Christensen, J. Org. Chem., 42, 3937 (1977).
- (54) M. D. Thompson, J. S. Bradshaw, S. F. Nielsen, C. T. Bishop, F. T. Cox, P. E. Fore, G. E. Maas, R. M. Izatt, and J. J. Christensen, *Tetrahedron*, 33, 3317 (1977).
- (55) J. S. Bradshaw and M. D. Thompson, J. Org. Chem., 43, 2456 (1978).
 (56) J. S. Bradshaw, R. E. Asay, G. E. Maas, R. M. Izatt, and J. J. Christensen, J. Heterocycl. Chem., 15, 825 (1978).
- (57) J. S. Bradshaw, S. T. Jolley, M. L. Campbell, and J. R. Cragun, unpublished observations.
- (58) S. E. Dreweis and B. G. Riphagen, J. Chem. Soc., Perkin Trans. 1, 2574 (1976).
- (59) M. Nakagawa and F. Toda, Chem. Ind. (London), 458 (1959).
- (60) F. Toda and M. Nakagawa, Bull. Chem. Soc. Jpn., 33, 223 (1960).
- G. Eglinton and A. R. Galbraith, *Chem. Ind. (London)*, 737 (1956).
 G. Eglinton and A. R. Galbraith, *J. Chem. Soc.*, 889 (1959).
 F. Bohlmann, H. Schönowsky, E. Inhoffen, and G. Grau, *Chem. Ber.*, 97,
- 794 (1964).

- (64) Y. Yukawa and M. Sakai, Bull. Chem. Soc. Jpn., 36, 761 (1963).
 (65) H. Kammerer, Naturwissenschaften, 61, 325 (1974).
 (66) H. Kammerer and J. Pachta, Makromol. Chem., 178, 1659 (1977).
- (67) T. Suga and T. Matsuura, Bull. Chem. Soc. Jpn., 38, 1503 (1965).
- (68) T. J. van Bergen and R. M. Kellogg, J. Chem. Soc., Chem. Commun., 964 (1976). (69) T. J. van Bergen and R. M. Kellogg, J. Am. Chem. Soc., 99, 3882
- (1977).
- (70) E. Szarvasi, Bull. Soc. Chim. Fr., 4515 (1968).
- (71) Anon., Belgium Patent 588,242 (March 31, 1960); Chem. Abstr., 55, 1250h (1961).
- (72) Ř . J. Prochaska, Belglum Patent 648,741 (Sept 30, 1964); Chem. Abstr., 63, P16262d (1966)
- (73) L. S. Moody, U.S. Patent 3.155,683 (Nov 3, 1964); Chem. Abstr., 62, 2739c (1965).
- (74) R. J. Prochaska. French Patent 1,385,700 (Jan 15, 1965); Chem. Abstr., 62, 13269g (1965).
- (75) H. Schell and L. Bottenbruch, *Makromol. Chem.*, **57**, 1 (1962).
 (76) W. Adam and J. C. Llu, *J. Chem. Soc.*, *Chem. Commun.*, **73** (1972).
 (77) B. Bobranski and H. Sladowska, *Rocz. Chem.*, **46**, 459 (1972).
- (78) B. A. Arbuzov and V. S. Vinogradova, *izv. Akad. Nauk SSSR, Otd. Khim. Nauk*, 865 (1952); *Chem. Abstr.*, 47, 14058d (1953).
 (79) W. J. Balley and W. R. Sorensen, *J. Am. Chem. Soc.*, 78, 2287
- (1956). (80) S. Isaoka, M. Yoshida, and J. Kumanotani, Kolloid-Z. Z. Polym., 242, 1180
- (1970). (81) B. C. L. Weedon, British Patent 938,697 (Oct 2, 1963); *Chem. Abstr.*, **60**,
- 2802f (1964). (82) V. M. Shimanskil, A. F. Gaevskil, S. I. Shkolnik, and B. Yu Gordinskil, USSR
- Patent 176,403 (Nov 2, 1965); Chem. Abstr., 64, 11340a (1966). (83) T. Kuwata, S. Abe, K. Yasukawa, and T. Edo, Japanese Patent 71 29,863
- (Aug 31, 1971); Chem. Abstr., 75, 151854f (1971) (84) W. H. Carothers and J. W. Hill, U.S. Patent 2,163,268 (June 20, 1939);
- (84) W. H. Carothers and J. W. Hill, U.S. Patent 2, 163,266 (June 20, 1939); <u>Chem. Abstr.,</u> 33, 78162 (1940).
 (85) F. M. Mirabella, Jr., and D. H. Sheean, German Patent 1,929,550 (Jan 2, 1970); Chem. Abstr., 72, 78454g (1970).
 (86) S. T. Tong, Soap, Perfum. Cosmet., 27, 58 (1954).
 (87) W. J. Balley and B. D. Feinberg, Am. Chem. Soc., Div. Polym. Chem., Prepr., 8, 165 (1967); Chem. Abstr., 67, 22202c (1967).
 (88) W. A. Enrhart, U.S. Patent 3,431,279 (March 4, 1969); Chem. Abstr., 70, 87274 (1969).

- 87327d (1969).
- C. E. Berr, J. Polym. Scl., 15, 591 (1955).

(1978).

(1978).

38, 957 (1973).

- (90) H. Repin and E. Papanikolau, J. Polym. Sci., Part A-1, 7, 3426 (1969).
 (91) I. Goodman and B. F. Nesbitt, British Patent 851,369 (Oct 12, 1960); Chem. Abstr., 55, 11920h (1961).
- (92) O. T. Schmidt and W. Staab, *Chem. Ber.*, **87**, 388 (1954).
 (93) R. M. Izatt, D. P. Nelson, J. H. Rytting, B. L. Haymore, and J. J. Christensen, *J. Am. Chem. Soc.*, **93**, **1619** (1971).
 (94) N. K. Dalley in "Synthetic Multidentate Macrocycilic Compounds", R. M.
- Izatt and J. J. Christensen, Ed., Academic Press, New York, N.Y., (1978).
- (95) R. M. Izatt, J. D. Lamb, J. S. Bradshaw, and J. J. Christensen, unpublished observations.
- (96) N. K. Dalley, S. B. Larson, G. E. Maas, R. E. Asay, R. M. Izatt, and J. J. Christensen, unpublished observations. R. M. Izatt, R. E. Terry, L. D. Hansen, A. G. Avondet, J. S. Bradshaw, N.
- (97) K. Dalley, T. E. Jensen, J. J. Christensen, and B. L. Haymore, *Inorg. Chim.* Acta, 30, 1 (1978).
- (98) O. Piepers and R. M. Kellogg, J. Chem. Soc., Chem. Commun., 383 (1978) (99) A. L. J. Beckwith and T. Duong, J. Chem. Soc., Chem. Commun., 413

(100) L. H. Leenders, E. Schoutenden, and F. C. DeSchryver, J. Org. Chem.,

(101) K. Sakamoto and M. Oki, Bull. Chem. Soc. Jpn., 50, 3388 (1977). (101) K. Sakamolo and M. Oki, Buil. Chem. Soc. Jpn., 69, 356 (1977).
 (102) M. Freedman, Y. Mohadger, J. Rennert, S. Soloway, and I. Waltcher, Org. Prep. Proc., 1, 267 (1969).
 (103) J. A. Ors and R. Srinivasan, J. Am. Chem. Soc., 100, 315 (1978).
 (104) J. A. Ors and R. Srinivasan, J. Chem. Soc., Chem. Commun., 400