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/. Brief History of Vibronic Coupling 
The quantum-mechanical treatment of coupling between the 

electronic and vibrational motions in molecules (vibronic cou­
pling) was first given by Born and Oppenheimer (BO) in 1927.1 

They showed that there exist states of molecules which can be 
approximately represented by products of electronic and nuclear 
functions 

4>„Ax.Q * On(x,Q)Xnv(Q) (1) 

where 8n(x,Q) is an eigenfunction of the electronic Hamilto-
nian 

H(X1Q)On(X1Q) = En(Q)On(X1Q) (2) 

and the vibrational function satisfies the differential equation 

[TN+En(Q)]xnv= WnvXnv (3) 

Here TN and Wnv are nuclear and vibronic energies, respec­
tively. 

A necessary (but not sufficient) condition for the validity of 
approximation 1 is that the electronic function On(x,Q) must be 
nondegenerate at any point in the relevant O-space (e.g., dis­
placements attained during zero-point vibrations). Description 
of electronically degenerate states (dynamical Jahn-Teller (JT) 
and Renner effects2-4 proceeded along different lines than those 
proposed by BO for nondegenerate states. Techniques of dealing 
with the degenerate states were also applied to the so-called 
pseudo-Jahn-Teller effect5'6 where several closely spaced (but 
nondegenerate) states are assumed to behave in a similar 
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manner as the JT states. Further generalization leads to a whole 
series of problems ranging from the "strong" (JT) to the "weak" 
(BO) coupling cases. A smooth transition in the theories of these 
two limiting behaviors is expected. This, however, did not ma­
terialize satisfactorily and is the source of much confusion which 
exists today about the nature of vibronic coupling.7 

It is worthwhile to elaborate on the procedures used to handle 
the (pseudo) JT problem. The standard approach has been to 
assume an expansion of the vibronic wave function in terms of 
a small number of fixed electronic states, O0^X) = Ok(x,Q0), with 
energies E°k = Ek(Q0), where Q0 represents the symmetrical 
configuration of the nuclei.2,5,6'8"12 Then the electronic basis 
is [01,0[J], and the vibronic wave function for two (nearly) de­
generate functions at Q0 is 

^A (x,Q) = 0°(X)X
CAQ) + e\(x)xt\Q) (4) 

where following the usual terminology the superscript CA stands 
for "crude adiabatic".2,7,13 The vibrational functions are deter­
mined by a pair of coupled equations whose potential terms are 
the matrix elements of H in the basis [0°,6' 

Hkl(Q)= SOl(X) 'H(x,Q)0o(x) dx 

li­
fe, / = 1,2 (5) 

The method derives its appeal from these matrix elements 
whose functional form in Q may be deduced by an expansion 
of H into nuclear displacements around Q0. Symmetry aspects 
of this analysis are well known from the Herzberg-Teller (HT) 
theory of forbidden transitions.14 

One source of confusion can be traced to the application of 
usual perturbation methods to the solution of the coupled 
equations. Thus under the "weak-coupling" condition 

(6) 

one has 

|H12/AE§I| « 1 

[rN+H11(Q)Jx??= Mftxft 

(7) 

(8) 

The "crude-adiabatic" approximation for nondegenerate states 
as summarized by eq 7 and 8 is frequently listed as a possible 
starting point for the treatment of vibronic interactions.713'15 

Under the same conditions, the dominant part of the BO wave 
function 1 is ^ 1 v « 0°Xi v, where Xi v is determined from eq 3. 
It appears that the weak coupling condition 6 amounts to ap­
proximating the adiabatic potential E1(Q) by Hi1(Q). Explicit 
numerical calculations16 show that this assumption is not even 
qualitatively correct. To see where the problem lies, write E1 

in the following form17 

^ 2 v- rfk E 1 ( O ) = H 1 1 -
AEi1 *5.2 A£°M 

+ order (Q- Q0)
3 (9) 

valid whenever E1 can be deveJoped into a Taylor series in dis­
placements around Q0. Since the second term(s) of (9) may be 
of the same order of magnitude as H1 , (actually H11-E^) without 
violating condition 6, conventional perturbation methods cease 
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to be applicable. In section III, we show how this dilemma can 
be removed by passing from the coupled equations to the ef­
fective eigenvalue equation (3). 

Similarly, the reasoning behind truncating the electronic basis 
for the JT problem to just two states, as in eq 4, is based on 
assumptions similar to (6). But we have seen that a coupling 
which is weak on the scale of electronic energies (condition 6) 
may not be so on the scale of vibrational energies (eq 9). The 
influence of the weakly coupled electronic states on the vibra­
tional levels must then be incorporated into the equations de­
scribing the (pseudo) JT effect. 

A refinement in the theory for the case of exact degeneracy 
was made by Moffitt and Liehr.18 The accuracy of their equations 
is comparable with that of the BO eq 3 for nondegenerate states. 
However, they did not give much detail, and it is unclear how to 
deal with nearly degenerate states. Lack of detail and a cum­
bersome notation seem to be the reasons why this paper never 
received the recognition it deserves. The Moffitt-Liehr equations 
will be derived in section IV. 

A number of treatments2,19"22 of the (pseudo) JT effect start 
with a truncated Born expansion23 for the wave function. The 
method consists of replacing the fixed basis [0°,0°] by the 
corresponding adiabatic basis [O1(X1Q), 02(x,Q)]. Instead of the 
wave function 4, 

t(x,Q) = O1(X1Q)Xi(Q) + 02(x,Q)x2(Q) (10) 

The simple appearance of (10) is deceiving, for it is difficult to 
predict the Q dependence of the electronic matrix elements 
which appear in the coupled equations for the vibrational motion. 
The major difficulty is associated with the rapid variation in O1 

and O2 with Q for nearly degenerate states. According to Lon-
guet-Higgins,24 they even become singular in case of exact 
degeneracy. Consequently, a semiempirical formulation of the 
problem (which is the main attraction of the CA method) is not 
straightforward since power series expansions of the matrix 
elements cannot be assumed. 

There have been several attempts to introduce adiabatic 
potentials into the theory of the (pseudo) JT effect. A common 
feature of all of these formulations is the use of "crude adiabatic" 
results at some point in the procedure. The eigenvalues and 
eigenfunctions of the 2 X 2 matrix 5 define the "crude adiabatic" 
potentials and electronic functions 

£?,2 = V2(H11 + H22) T
 1/2[(H22 - H11)

2 + 4H12
2]1/2 (11) 

and 

0?A(x,Q) = C1(QW(X) + C2(Q)Ol(X) (12a) 

dc
2
A(x,Q) = -C2(Q)00

1(x) + C1(Q)Ol(X) (12b) 

In the immediate neighborhood of the point Q0, the functions 
12a,b have a singular behavior similar to the exact adiabatic 
states. On the other hand, when the inverse of the transformation 
in (12a,b) is applied to ffiA,0%A], the singularity disappears since 
the fixed functions [0°,0°] are regenerated. McLachlan19 used 
this property to obtain equations of the "crude adiabatic" type 
by subjecting the coupled equations of the Born23 method to the 
(unitary) inverse transformation of (12a,b). Unfortunately, the 
matrix elements in the original Born equations are not known. 
Hence one cannot be sure about the conditions which render the 
nonadiabatic matrix elements (i.e., those involving TN) in the 
transformed equations negligible. 

A different approach had been taken earlier by Renner,4 

Sponer and Teller,22 and Longuet-Higgins.2 Starting with the Born 
equations, they appear to have evaluated the matrix elements 
of TN directly. However, as pointed out in ref 21, this part of the 
calculation is based on the functions 12a,b, while matrix ele­
ments of the electronic Hamiltonian are found using the exact 
adiabatic functions O1(X1Q) and O2(X1Q) (i.e., exact potential 
surfaces are assumed). Such use of different basis sets to cal­

culate different parts of a Hamiltonian is not completely satis­
factory. 

In a recent series of papers25"34 Siebrand and co-workers 
criticize the usual power series taken for the Q dependence of 
the off-diagonal matrix element H12 and suggest that a better 
functional form for H12 can be obtained by solving the pair of eq 
11. This procedure gives H12 in terms of H11, H22, E1

5*, and £fA. 
The latter two functions are subsequently replaced by the exact 
adiabatic potentials. Thus this approach suffers from the limi­
tations of the crude adiabatic model. An additional problem arises 
from the use of the usual power series for the diagonal elements 
H1! and H22. Since the Q dependence of HM is entirely due to 
the Hamiltonian, their procedure, which results in different an­
alytical properties of the off-diagonal vs. diagonal elements, 
would seem to need further study. 

//. Scope of Review 

By the above history, we have hoped to convince the reader 
that the nature of vibronic interactions is not as clearly under­
stood today as it seemed to be half a century ago when Born and 
Oppenheimer published their famous paper, and Herzberg and 
Teller applied their results to spectroscopic transitions! The 
objective of this article is to develop a unified treatment of the 
coupling between vibrational and electronic motions. This is 
carried out by a simple reinterpretation of the ideas of BO using 
ordinary perturbation theory. Such an approach leads to a con­
sistent theory, for it handles nondegenerate and (nearly) de­
generate states on an equal footing. It also throws new light into 
the nature of the BO method itself. 

Section III presents a new derivation of the BO approximation. 
The vibronic Schrodinger equation is formulated in the fixed 
electronic basis {Ok(x,Q0)\ leading to an infinite set of coupled 
differential equations. We next attempt an iterative solution of 
these equations and show that under weak coupling conditions 
the original equation system may be replaced by the BO eq 
3. 

Unlike the BO K method, extension of this procedure to deal 
with the (pseudo) JT problem is straightforward. A general for­
mulation of vibronic interactions is presented in section IV using 
the multidimensional partitioning technique well known in ordi­
nary perturbation theory.35 

The intent of this article is not an encylopedic review. Our goal 
is to provide a clearer insight into the conditions of validity of the 
BO approximation and remove some of the misconceptions 
present in the literature on vibronic coupling. As an illustration 
of the coupled equations, a two-state, two-mode vibronic cou­
pling model involving nontotally symmetric and Franck-Condon 
modes for the triplet states of aromatic aldehydes is discussed 
in section V. Exact solutions are obtained for a wide range of the 
triplet state energy gap and compared with the BO solutions. 

A selective list of reviews on vibronic coupling includes the 
following. Longuet-Higgins2 discusses the dynamical JT and 
Renner effects. The term "crude adiabatic" is first introduced 
in this paper. A very extensive treatment of the JT effect, along 
with many examples, may be found in Englman's book.36 Various 
approaches to vibrational borrowing of intensity are reviewed 
by Ballhausen and Hansen.13 Some ambiguities associated with 
the term "vibronic coupling" are pointed out by Azumi and 
Matsuzaki.7 

///. The Born-Oppenheimer Approximation 

A. Preliminary Formulation 

Neglecting spin-dependent terms, the vibronic Hamiltonian 
of a molecule consists of two parts: 

Ji= TN+ H(X1Q) (13) 

where TN is the nuclear kinetic energy operator, and H is the 
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electronic Hamiltonian. So defined, Hcontains the kinetic energy 
operator for the electrons, their potential energy in the field of 
the nuclei, and the mutual repulsions of the electrons and the 
nuclei. The symbols x and Q denote the set of electronic and 
nuclear variables, respectively. The Schrodinger equation is 

ft(x,Q)\p(x,Q) = IMP(X1Q) (14) 

For each value of Q1 the electronic Hamiltonian has a set of 
eigenfunctions (assumed normalized to unity), defined by eq 2. 
At a given Q, they presumably form a complete set in the con­
figuration space of the electrons. 

In this section, the BO approximation for electronically non-
degenerate states is rederived. To be definite, it is assumed that 
the nth electronic state is under consideration. Let Q0 be an 
arrangement of the nuclei where En(Q) takes a minimum value. 
Solutions of (2) at Q0 are designated by the special symbols: 

Bl(X) = dk(x,Q0) 

E* = Ek(Qo) 

(15a) 

(15b) 

The functions d°k are independent of nuclear displacements and 
have well-defined symmetry properties pertinent to the config­
uration Q0. 

The exact wave function \p can be expanded in the form 

\p{x,Q) = E 0°k(x)Xk(Q) (16) 

Substituting (16) into (14), one obtains a system of linear dif­
ferential equations, determining the vibrational amplitudes 

(TN+ Wm)Xn+ E HnkXk 
k^n 

WXn 

HknXn + (TN+ Hkk)Xk + E Hk,x, = WXk 
l^k.n 

(17a) 

(17b) 

and so on. Here 

Hkl(Q) = S6°k(x)'H(x,Q)0°(x)dx= (dllHld0,) (18a) 

Following Born and Oppenheimer,1 H(x,Q) is expanded into 
a power series in nuclear displacements around Q0. This gives 
the analytical Q dependence of Hk/(Q) as 

Hkl(Q) = E°8kl + HtV + « $ + • • • (18b) 

where hfk}(Q) are homogeneous functions (degree indicated by 
the superscript p) of the displacements. Explicitly, 

"itV = E HklQr 
r 

"£> = V2 E W1QrQ. 
' i s 

etc. The constants Hr
kl, H'kl, etc., are defined as 

Hki — 
dHJ 
dQrjo 

d2H 

0O1 

(19a) 

(19b) 

(20a) 

(20b) 
\dQrdQsjo 

and so on. The subscript zero indicates that the derivatives are 
to be evaluated at Q0. In eq 19a,b, summation is over the (3/V 
— 6) internal displacement coordinates Qr (measured relative 
to Q0), which may be taken to be the symmetry coordinates of 
the configuration Q0. 

It proves convenient to explicitly separate the electronic 
energies E0. from the diagonal matrix elements Hkk. For this 
purpose we introduce the notation 

HuAQ) = HuAQ) ~ Hkk(Q0) = M$ + Hg> + . . . (21) 

so that Hkk=E°k+ Hkk. 
A perturbation approach to solutions of eq 17 can be formu­

lated by splitting the exact molecular wave function, \p into \p° 
+ ip^, where 

r = e°nXn 

V = E 61XK 
k^n 

(22a) 

(22b) 

We now look for solutions of eq 17 assuming the "weak 
coupling" condition 

< ^ 1 > « < W > (23) 

Equation 17b may be formally solved for x* (k ^ n) 

1 .. , 1 
Xk 

W- TN — Hk 
Hk„Xn + 

W-
— E «wX/ 

rikk l^k-\n 

(24) 

Our present goal is to determine the primary vibrational 
function Xn and total energy W. Unfortunately, eq 24 as it stands 
is of little use for that purpose because of the presence of the 
differential operator TN and the unknown energy W in the de­
nominator. Equation 24 will be discussed in section III.D. 

B. Solutions of the Basic Equations by Iteration 

A manageable equation for Xn and Wcan be obtained from 
(24) by rearranging the terms. If the total energy is measured 
relative to E°n by W = Ê  + en (where en is a purely vibrational 
energy), the desired change in the form of (24) will be obtained 
by means of the identity 

1 1 
W- TN- Hkl AEV (TN + Hkk ~ £n) 

1 1 ITN+ Hkk' 

+ AE° A E V W Hki 
(25) 

The notation of eq 21, and A E ^ = E°„ — E°k has been em­
ployed. 

Using eq 25 in 24 gives (k ^ n) 

Xk = Xn + -
^cnk -^cnk 1 ^ * 1 " 

E HklX, 

1 

+ A E 0 (TN+ HKK-en)Xk (26) 

This equation is now iterated by means of the formula 

Hki 

AE°n, 
Xn + 

1 

A E ^ M/tm 

+ 

E Hk,X [P) 

TN T Hf!, 6, 

AE* 
v (P) 
Xk 

k^ n; p= 0, 1, 2, 

starting with 

For example, 

Xk k ^ n 

Xk 
Hkn 

AE^k 
Xn 

(27a) 

(27b) 

(28a) 

v(2) = Xk 1 + 
TN + Hkk ^n 

AE°„k 
Hkn 

AE°ni 

+ 

Xn 

HkiHi, 

A£°n nk I^ /<1 n AE0 , , 
Xn (28b) 

and so on. 
By means of the iteration process, the small components Xk 

of the wave function are expressed in terms of the (yet unknown) 
unperturbed vibrational function Xn and energy e„.37 The latter 
two quantitfes are determined by substituting the pth iterate x{t 
into eq 17a: 
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[TN + H0n]Xn + E HmtXf « tnXn (29) 
k^n 

This is an effective eigenvalue equation for the vibrational motion 
of the molecule in its nth electronic state. Using the first iterate 
28a for Xk< retaining up to quadratic terms in Hnn, and the linear 
term in Hnk, it yields the well-known harmonic approximation 
for vibrational levels 

Lfi v 0 _ , 0 V 0 , v n n A n ^ n A n 

where K°nn = TN+ E*2', and 

£!?' = «!?,!+ E 
U(Dl 2 
"nk\ 

k^n &E°nk 

(30a) 

(30b) 

is the quadratic part of the adiabatic potential.13'17 

In higher orders of the iteration process, eq 29 must be solved 
by perturbation theory as the unknown energy €„ and nuclear 
kinetic energy operator TN appear in a complicated manner. It 
will become apparent that the procedure based on eq 27 and 29 
is equivalent to the BO expansion method. 

In order to obtain the energy correct to fourth-order terms 
in the BO parameter K39 the third iterate x * is used in eq 29, 
giving 

[K°„„+ KUCn)]Xn = *n\n ( 3 1 ) 

where K°nn is the harmonic Hamiltonian, and Knn((n) denotes the 
remaining terms in eq 29 with p = 3. Taking K°nn as the unper­
turbed Hamiltonian, the energy in the next two approximations 
is given by 

c n v ' \ A nv\ ^nn^nvl] Knvl 

+ E 
v'?± v 

(Y0 /IK -1 (e0
 ) I Y ° ) 2 

\ A nv'\ nnnyznvl\ Any/ / o o \ 
,0 0 ^^1 
^nw *- nv' 

where the vibrational quantum number v has been introduced 
to distinguish between different eigenvectors of K°nn (assuming 
that x°nvis normalized to unity). We will show that env, taken to 
K4 terms, is the same result as obtained by Born and Oppen-
heimer. 

An analysis of the explicit expression for K„n shows, by 
comparison with the formulas given in ref 17, that the term cubic 
in displacements is just the cubic part ^n

3' of the adiabatic po­
tential. The quartic part Ej4' also appears if, in the function 
Kln(t°nv)X°nw tne terms involving TN and e°„ are rearranged: 

(T N + Hkk — (nv)HknXnv = [Hkk— Pn ]HknXnv 
+ [TN,Hkn]X°„v (33) 

where [ . . . , . . . ] denotes the commutator. Proceeding in this 
manner, one concludes that 

K1 (f° )y° = T£<3> + £<4)1Y0 
'^nn\^nv/A.nv L'-n ' *-n \A,nv 

+ ( E S-2[TN,tik
1)

n])xl+--. (34) 
\k*n±t"nk j 

valid to fourth order terms in K. Use of (34) in eq 32 yields the BO 
result for the energy: 

e°+C+ (x° If*4'! Y 0 ) 
c n v ' ^n ' \*nv\ c n I A n v / 

+ L 
\ X nv'\ En \ Xnv) 

+ (35) 

where Cn is the diagonal correction to the energy arising through 
the nuclear kinetic energy, 

Cn = [Xl 
H1' 

E A ,-02 [ TN,lrkn] 
k^n ^.tnk 

Xnv] Z -
h2 IdOn 

7 2Mr \dQr Qr 0 

Higher order corrections to the vibrational function Xn can 
be similarly expressed in terms of the matrix elements of the 
adiabatic potential. We apply standard perturbation theory to 
solve eq 31 for Xn to second order in K1

nn(e°nv), and use relation 

34. Omitting the terms which are of third and higher order in the 
BO parameter K, the result may be written 

where 

Y = Y U + Y 1 1 ' + V™ + 7 Anv A nv ' A nv ' A n v T *-t 

(V0 ,lf<3)l Y 0 ) 
v ( 1 ) = V^ \ A nv I '-n I A nv/ 0 
X-nv Z - o , 0 Xnv 

(36) 

(37a) 

v ( 2 ) _ y - \ X n v ' l ^n \ Xnv) n 

+ E 
v'=^ v 

\ X n v ' l ^n 1 X nv) 
XS/ (37b) 

and 

Znv ~ 12 L^ [X nv' 
v'^ v 

M.V 
k^n \AE°nk] 

Xnv] X nv (37c) 

The function Znv is a contribution coming from the last term in 
eq 34. In arriving at eq 37c the identities 

W [TN.Wn] = 1/2[7-N,41»2] ~ V 2 [ I ^ H ) M ' ] 

(the double commutator is simply Cn when summed over k), 
and 

are used. 
[TN,tik

Vn2]X°nv= (KrIn- t M W n * 

C. The Complete Wave Function 

The total wave function is 

^m=Vnv+Vnv (38) 

Now that the primary function Xnv and tnv are determined, the 
vibrational amplitudes Xk of 4*lv can be evaluated from eq 28. 
In the lowest approximation keeping only the linear term in 
Hkn, 

u(D nkn 
Xk 

M?nl 
X nv k^ n 

from eq 28a. Using eq 22a,b with Xnv 
comes 

$nv l°n+ E I 
k^n 

L / D 
"kn 

AfS, 

X nv> 

X nv 

(39) 

eq 38 be-

(40) 

yielding the (first-order) HT form of the wave function.14 

Higher order approximations to Xk are found from eq 28b and 
similar equations for p > 2. The results are conveniently ex­
pressed by ordering the matrix elements according to the powers 
of K.39 Through terms of order K2, eq 28b gives (noting that in 
(TN + Hkk - env)Hkn, only i-fk

]
khfk

]
n contributes to the K2 terms) 

\Xnv ' X nv) 

U(Du(I) nkl nln 

Xk 
A£°„* 

1 
AE°nk 

Wn+ E X nv 

The coefficients of x°nvm this equation have a simple inter­
pretation. We display the Taylor series of the adiabatic electronic 
function 6n(x,Q) around Q0 as On = Bn + B^ + B{2) + .. ., 
where B^ = 2r(dBn/dQr)0Qr, B^ = 1 / 2 2 r , s (d 2 ^ / 
dQrdQs)0QrQ$, etc. It may be verified (e.g., from ref 17) that 
HfnV&E°nk = (B0J Bn^) and that the coefficient of Xnv quadratic 
in Q is simply (Bk\B

(2)), k ^ n. The total wave function 38 be­
comes 

tnv = NlBn(Xl + X(nl + X{nl + Znv) + ( X l + x2) 

x E 0o,< |̂̂ 1»> + xo
n, E BWm) 

k^n k^n 

(41) 
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where N is a normalization constant. As (6°n\ #
(
n
1)) = 0, the first 

sum in braces is 0'J1, follows from the completeness of \9°k}. The 
constant N = \(Xnv\Xnv) + ?>k*n(Xk\ XK)\~VZ correct to 

> terms of order N = 1 - VM (i)i v ( i ) 

V2(XnJ 2^n (Hl1»/A£°n , )2 |x°n ,>- The third term in N when 
multiplied by 8°„Xnv and added to d°nZnv (cf. eq 37c) yields a 
function which may be identified as (6°n\ #

(„2)) XnJ^t Adding the 
latter to the second sum in (41) gives #(2> x°v- Thus the nor­
malized wave function through terms of order K2 is 

*m = (xl + x W + OW) - y2<x
(
n

1i| x',,1') e°nXl 
+ Xffl°n+XWl? (42) 

in agreement with the BO result.113,17 

In the BO classification39 with respect to the powers of /c, TN 

and env contribute toward the third-order approximation for Xk-
Here one uses relation 33 to separate the adiabatic (the first term 
on the right side of eq 33) from the nonadiabatic terms. The 
details are left to the reader. 

D. Discussion 
We now examine the limitations of the method. Basic to the 

procedure is the "weak coupling" condition. In a first approxi­
mation, (39) is used to express condition 23 in the form 

\Xnv E 
k^n 

H*1> nkn IxU « 1 (43) 
A£° n k 

imposing constraints on the constants Hr
kn, which occur in the 

power series expression for hfkn (cf. eq 18-20). Implicit in (43) 
is the slowly varying nature of the adiabatic function On(x,Q) with 
nuclear displacements. 

Condition 43 does not necessarily imply that the harmonic 
potential En^ can be approximated by the crude potential H ^ as 
^k^n^kn2^E°nk may be comparable to H^ . Weak interactions 
among electronic states can lead to strong perturbations in the 
vibrational states because of the disparity between the vibra­
tional and electronic energy differences. Calculations16 show 
that the approximation E^ ~ /-Zn

2J is not valid even for the ground 
state, normally well separated from the other electronic 
states. 

In arriving at the BO results 35 and 42, perturbation theory has 
been used at two points. The first application, displayed in the 
iteration formula 27, resulted in an approximate decoupling of 
equation system 17, and led to the effective equation 29. Con­
dition 43 provides a rough justification for this step. The method 
of successive approximations was again applied to find solutions 
of eq 29 using the harmonic Hamiltonian as the unperturbed 
Hamiltonian. This is justified only if anharmonicities in the adi­
abatic potential En(Q) are sufficiently small in the neighborhood 
of its minimum. In summary, we expect the BO method to work 
if the adiabatic function On(X1Q) is a slowly varying function of 
nuclear displacements, and the potential En(Q) is a smooth 
function of displacements around Q0. 

It is important to understand clearly that the procedure em­
ployed solves the vibronic Schrodinger equation only in a very 
limited region in Q space. This is the essence of the BO method, 
and is suggested by the classical concepts of molecular structure 
and infinitesimal vibrations of the nuclei from an equilibrium 
structure O0 (see Woolley and Sutcliffe40). Wave functions which 
result from the theory are localized around Q0. In general, Q0 

is neither unique nor are the exact wave functions localized 
about any preferential point in Q space.40 Thus the exact wave 
functions have the full symmetry of the vibronic Schrodinger 
equation, whereas our localized functions belong to the (much 
smaller) molecular point group. A plausible explanation of this 
apparent contradiction is to represent the exact wave function 
as a linear superposition of BO functions localized around 
equivalent conformations. If overlap between different "struc­
ture" functions is small, localized and delocalized descriptions 

of the molecule are equivalent (note the implication of a multitude 
of accidental degeneracies in the exact eigenvalues). These 
considerations are consistent with the assumptions about the 
power series expansions of En(Q) and 6n(x,Q). Candidates which 
fulfill the above conditions are "r ig id" molecules, the minima 
of whose potential surfaces are separated by high barriers. In 
systems exhibiting the (pseudo) JT effect, the hypothesis of a 
localized wave function needs to be relaxed (section IV). 

The perturbed part of the wave function is needed in the dis­
cussion of forbidden electronic transitions.41-45 Provided the 
primary vibrational function Xn and energy en are known, a more 
accurate expression for the remaining amplitudes Xk Cf ^ n) 
may be obtained from eq 24 by a perturbation formula analogous 
to eq 27. Thus in a first approximation, the contribution of the 
sum in eq 24 is neglected to obtain 

Xk 
HrI TN ~ Hk 

' HknX nv 

E (4>kv'\Hkn\Xnv) 

and W°ni/ = 
, - A 
El + 

fas (44) 
kv' 

Here it is where ( TN + Hkk)<pkv = \kv(pkv, 
assumed that the interaction Hkn is sufficiently small so that it 
is legitimate to calculate Xn and W via eq 30a. 

IV. Strong Vibronic Coupling 

A. Generalized Iteration Solution by the 
Partitioning Method 

A powerful method of finding approximate solutions of 
equation system 17 is provided by the partitioning technique.35 

It will be seen below that the iteration formulas 27 and 29 leading 
to eq 35 and 42 are special cases of this more general for­
malism. 

The procedure is best described by collecting the functions 
Xk into a column vector X- Equations 17 can then be compactly 
written 

[TNI + H]x= Wx (45) 

where 1 is the unit matrix and elements of the matrix H are given 
by eq 18. 

In a molecule with closely spaced interacting electronic 
states, we desire to treat the coupling among these nearby states 
by an exact method. For this purpose, it is convenient to divide 
the basis set \Ok\ into two subsets (a) and (b). A finite number, 
say L, of strongly interacting states are placed in subset (a) in 
ascending order of energy. For practical reasons L is a small 
number, rarely exceeding 3. Because it is convenient to measure 
the vibrational energy relative to E°n (see below), this is desig­
nated as the lowest energy member of this subset. The remaining 
(infinite number of) functions are contained in subset (b). The idea 
is to treat the coupling between the two groups (a) and (b) by 
perturbation methods, while fully taking into account interactions 
within the primary group (a). To this end, the unperturbed and 
perturbed parts of the molecular wave function are split as be­
fore, with 

r= E Bix* 
k in (a) 

(46a) 

and 

V = E Six* (46b) 
k in (b) 

Since the groups (a) and (b) are disjoint, (1^0I \i-1) = O. E.g., if 
L = 1 so that (a) contains only one function, Xn, we have the 
weak coupling case, and eq 46 reduces to eq 22. Similarly, for 
L = 2 subset (a) consists of 0° and 0°m (E°m Ss E°„, Hmn ^ 0), 
and 

r = enXn + e°mXr, (47a) 
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and 

^= L 6%Xk (47b) 

The unperturbed wave function ^ 0 will be normalized to 
unity 

< W > > = E <X*|Xfc> = 1 (48a) 
k in (a) 

For the coupling between the two groups of states (a) and (b) 
to be characterized as weak, the perturbed part ^ 1 of the wave 
function must be small when compared to ^ 0 , i.e., (t^1\\p1) « 
1. Using eq 46b, the condition 

L < X k l x * ) « i 
k in (b) 

(48b) 

should be satisfied. When L = 1, conditions 48 reduce to 23. 
With the division of the basis set into two groups (a) and (b), 

matrices T N 1, H, and the column vector x are partitioned ac­
cording to 

TNI 
0 

1b, 
H (49) Ha a Ha6j _ Jx 

\ H 6 a H66J \Xbj 
Subscripts a and b on all submatrices indicate their dimensions. 
ThusHa a is a L X L matrix, and Ha 6 = H 6 a contains L rows and 
an infinite number of columns. Where a matrix is diagonal only 
one subscript is kept. The column vector x a contains the L un­
perturbed vibrational functions in eq 46a, and Xb has all of the 
remaining amplitudes entering into the definition of eq 46b. 

Using eq 49, eq 45 may be displayed as 

[ T N 1 a + Haa ]Xa + HabXb = WXa 

HbaXa + [TN1b + »bb]Xb = WXb 

Formally solving (50b) for Xb gives 

1 
Xb = 

WAb - TN1b - Hbb 
H6aXa 

(50a) 

(50b) 

(51) 

Substituting eq 51 into eq 50a results in a pseudo-eigenvalue 
equation for Xa 

K-aaXa = ^ X a (52) 

where 

— T N I 0 + H = 
Wtb - TNAb - Hbb 

The matrix operator (WAb — T N I 6 — H66) is nonsingular if 
Wis different from all eigenvalues of (TNIb + H66), in which 
case its inverse exists. We shall assume this to be the case and 
look for perturbation solutions of eq 51 and 52 subject to con­
ditions 48a,b. As in section III.B, it is convenient to separate the 
vibrational energy e from W, and we set 

W= E°n+ e (54) 

The electronic index n is dropped from e, because when L > 1 
(strong coupling of 0°n to other states), n is no longer a good 
quantum number. 

Equations 51 and 52 are exact. Perturbation aspects of the 
problem emerge in the calculation of ( W l b — TNA b— H64,) -1. 
For this purpose, we use the iteration formula: 

_ L _ = l + i B _ ^ 
A - B A A A - B 

= 1 + 1 B 1 + 1 B 1 B _ J _ 
A A A A A A - B 

1 °° / 1)*< 

A k=o 
(55) 

valid for any two square matrices A and B with identical di­
mensions.46 The pth approximation to (A — B ) - 1 is defined as 
the expression obtained by retaining the first p terms in the 
geometric series in eq 55, where p = 1, 2, 3 Clearly, for­
mula 55 is useful only if A - 1 is known. In the particular problem 
at hand, it will be necessary to choose A diagonal and inde­
pendent of nuclear variables. Employing an obvious general­
ization of the notation introduced in eq 18b and 21, power series 
of the matrices Haa , Hbb, and Hab around Q0 are 

= Ea° + H<1» + H g + . . . = E° + Ha a (56a) H3 

i&b 

and 

Hah — H ah + H 3h + . . . 

(56b) 

(56c) 

Here E° and E° are diagonal matrices whose diagonal entries 
are the electronic energies of the states belonging to groups (a) 
and (b), respectively. 

Using definitions 54 and 56b, we now apply eq 55 to calculate 
(WAt TNA b • 

1 

Hfc with A = ?n1b- E°h 

W l 6 - T N I 6 - H t 

1 1 

+ 

(En^b ~ E6) — (TNAb + H6 6 — e 1 6 / c „ i 6 

1 . _ . , . - . . . 1 

E°„1„-E5 

E°nAb- E 
o ( T ^ l 6 + H 6 6 - e 16) 

WAb - TNAb - H 
(57) 

bb 

The pth iterate of the small components Xk (k in (b)) of the 
wave function is obtained by using the pth approximation to ( IV I 6 
— TNAb — H 6 6 ) - 1 in eq 51. For example, 

v<1> = Xb -
1 

£n"lfc E6 

H6aXa 

v<2) 
X 6 ^n - Ib E 6 

X 1 + ( T W 1 6 + H t e - e l , , ) ^ E 0 H 6 a X 

(58a) 

(58b) 

etc. For L = 1, Xa = X n and eq 58a,b reduce to the perturbation 
formulas 28. 

The basic problem is the determination of the unperturbed 
vibrational functions Xk (k in (a)) through eq 52. Once Xa is 
found, it is a relatively straightforward matter to calculate the 
remaining components via eq 58 to any desired degree of ac­
curacy. In order to extract a tractable yet sufficiently accurate 
equation out of (52), we use expansion 57 to rewrite the 
pseudo-Hamiltonian Kaa (eq 53) as 

1 
Kaa — TNA3 + Haa + Hab rfi H c 0 

tn'b b b 
H6 

'En 1 t 

"Z^ ( TN A b + H6 6 — e 1 b) 
C h 

X 
1 

H6 (59) 
W l 6 - T N - I 6 - H6 6 

A zero-order vibrational Hamiltonian, Kaa, will be defined on the 
basis of the first three terms on the right side of (59), namely: 

1 

We set 

'E°nAt 

Kaa ~ TNAa + Ua 

-o H6a (60) 

(61) 

and define the L X L matrix potential Uaa using the second and 
third terms in (60) truncated at quadratic terms in their power-
series expansions (cf. eq 56): 

U3 E + H<1' + H 2 + H 
1 

H ab r-o H _ c 0 ba 
t „ l h Ch 

(62) 
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Elements of the matrix Uaa have the explicit form 

Hw = £?«„+HtV+ « $ + L ^ # (63) 
/ in (b) A t n / 

where both subscripts k and / refer to electronic states belonging 
to group (a). 

Equation 52 may now be written as 

[K°aa+ KlMXa=WXa (64) 

where Kaa(t) = Kaa — K°aa will be assumed to be a small per­
turbation. Zero-order solutions of (64) are determined by solving 
L simultaneous differential equations (in the JT problem, where 
all E°k (k in (a)) are the same; these are the Moffitt-Liehr equa­
tions18) 

K°„X 2 = w=xl (65) 

where W° = En + e°. The next energy correction is Aev = 
(XaJ^aa(€°) |xD. where the vibrational quantum number v 
distinguishes between the different solutions of eq 65.47 

An important feature of the present formulation is the unified 
treatment it provides in handling both nondegenerate (weak 
coupling) and nearly degenerate (strong coupling) problems on 
an equal footing. The method guarantees that as the coupling 
matrix elements become sufficiently small, there will be a 
smooth transition between these two limiting cases. 

The usual procedure of finding solutions of the vibronic 
Schrbdinger equation in the strong coupling case is based on 
the variational method using the L electronic functions of subset 
(a) as a truncated basis set.2'5'68"12 The matrix potential in this 
approach is Haa, which ignores all interactions between groups 
(a) and (b). As pointed out in section III in the comparison of 
crude, Hnn, vs. adiabatic, En, potentials, these terms have 
considerable influence on the vibrational energy levels and wave 
functions. Therefore, they should be included in the definition 
of the zero-order Hamiltonian. Note, however, that eq 65, whose 
matrix potential is Uaa, has precisely the same structure as the 
crude adiabatic model with potential Haa.19-21 In other words, 
both Uaa and Haa are power series in displacements differing only 
in the definition of their respective expansion coefficients. Thus 
the results of all (parametrized) vibronic coupling calculations, 
which were based on the crude adiabatic model, can be carried 
over here with a simple reinterpretation of the parameters. 

B. Two-State Interaction 

tions, is the possibility of obtaining the adiabatic potential En 

directly by means of eq 2. This simplifying aspect of the BO 
theory is, in general, lost upon going to the coupled equations 
66a,b. However, it may be possible to avoid definitions 67a,b, 
and calculate Unn and Umm from a knowledge of the potentials 
En, Em, and the interaction Hf1J)n if there is symmetry. 

Comparing eq 67a with eq 30b, it is seen that Ijn) = E*2' — 
I HfJ)nI

 2/AE°nm, provided | AE°nm\ ^ 0. Therefore, the difference 
between Lfn) and En^ arises in their dependence on the coupling 
modes49 (i.e., those coordinates Qr for which Hfnm ^ 0). 

As an example, consider the case where the functions 9°n and 
9°m belong to different irreducible representations. Then the in­
teraction HfJ)n has no dependence on the totally symmetric 
coordinates Qsym, i.e., HfJ)n = H<,1m(Qasym), where Qasym denotes 
the set of nontotally symmetric (asymmetric) coordinates. The 
functional dependence of Lfn) (and Ej2') on nuclear displacements 
is 

Lfn) = U iS t f t ym) + ^ ( Q a s y m ) (68) 

where Lf2)(Qsym) = L/2)(Q)\ Q^ym=0. l/„2n(QaSym) is similarly de­
fined. Since HfJ)n is a function of Qasym only, 

Lf2)(Qsm) = £<n
2,(G.ym) 

and 

^ ( O a s y m ) = £<n2)(Oasym)-(|H<,1, 

AE°„m * 0 

2VAE^) 

(69a) 

(69b) 

The other diagonal potential term, Umm = jJJJm + Lfn^)n,, can 
be similarly related to the adiabatic potential Em = EiJ) + E%) + 
. . . if the strongly coupled states d°„ and 6°m are well separated 
from the remaining states d°. That is, when | AE°,m| « | AE°nj\ 
(j ^ n, m) in eq 67b, En may be replaced by E%, and hence 

U ^ U Osym) » E ^ Qsym) (70a) 

and 

^mUQasym) * ^ * (Qasym) + | Wn
1J1I

 2IAE°nm (70b) 

|AE°nm| ^ 0 

The exact relation LfJ)n, = E{J) holds for the linear term. 
In an experimental situation described by eq 66a,b, the ob­

served energies will have no connection with either of the adi­
abatic potentials En or Em. Consequently, relations 69a,b and 
70a,b have only theoretical significance. 

In the weak coupling limit (L= 1), eq 64 leads to the BO re­
sults 35 and 42 as explained in section III. For strong coupling 
(L = 2), the dominant part of the wave function is given by eq 
47a. To a first approximation, the vibrational functions Xn and 
Xm are calculated by means of eq 65: 

(TN+Um)x°n+ Unmx°m= WX°n 

HnnXS + (TN + Umm)X°m = WX°m 

where from eq 63 

^n=En+ Hfn
2)+ T. 

j^n,m A£n ; -

Un- = E0 + Hf1) 

•-/77 • ' 'mm 
+ HlSIn+ E mi 

A£°n/ and 

AE°n/
 Un 

(66a) 

(66b) 

(67a) 

(67b) 

(67c) U = «0> + w<2> + '-'nm nnm ~ nnm ^ 

The absence of the linear terms UJ) = HfJ) = En
1' from Unn is due 

to Q0 being chosen as the minimum of En(Q).48 

A feature of the BO equation 35, useful in ab initio calcula-

C. Forbidden Transitions 

We define a transition between the ground and an excited 
state represented by wave functions \p°g = 6°gXg and \p = \{/0 + 
i/'1, respectively, as electronically forbidden if matrix elements 
of M (the electronic dipole moment operator) between 6g and 
the electronic functions in \p° are zero (or very small; i.e., 
{d°g\ M\d°n) c~ 0 and <0°| M\ B°m) ^ 0 when i^0 is given by eq 
47a). Then the intensity of the transition is largely governed by 
\p1 (there will also be contributions from the HT components of 
the ground electronic state). In the lowest approximation, the 
vibrational amplitudes (k ^ n, m) of ^ 1 are given by eq 58a. 
Using the vector 

Xav 
X m 

X mvt 

in eq 58a yields 

xS?' = AEn, 
(H/tnXnv + HikmXr 

(71) 

(72) 

k ?± n, m 

The total wave function is thus (cf. eq 47a,b) 
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TABLE I. Parameters Used In Vibronic Calculations for Benzaldehyde 
Triplet States 

O)7" « 2 5 * OJ 2 6
 a 

«36 8 D7" D 2 5 ' 

So0 

T,(nir')c 

T2(7rir")
rf 

1700 

1300 

1700 

215 
185 
250 

1000 

425 
1000 

110 
115 
140 

1.7 
0.9 

0.3 
0.8 

Ha
2(ft/2wa)

1/2 = 100 cm-1 where a = V26 or V36."'' 
a In cm-1- b Dimensionless displacement parameters obtained from 

Franck-Condon factors using the experimental intensity ratio of the origin 
band and the first member of the progression. (Formal definition: Ds{k) = 
HliJhics(k)ifilijis{k))V2, where k = T1 or T2, and S = V1 or v2S.) c Data from 
ref 57 for the gaseous free molecule. d Data for v2$ and V36 from unpub­
lished work of M. Koyanagi and L. Goodman. These values are from solid-
state spectra with application of crystal to gas shift correction. The 
frequencies for W7 and O)26 are assumed unchanged from the ground-state 
values. e Ĥ 2 is as defined in eq 20a where Qa is taken to be a (mass-
weighted) normal coordinate. ' References 53 and 58. 

+ V^[O + E 
k^n,m 

Hki 

A£°„, Xnv 

,+ E Ol 
k^ n,m 

n 'km 

A£°n 
Xrtlv (73) 

Vibronic wave function 73 is the appropriate generalization of 
the HT wave function 40 to the strong coupling case (with L = 
2). 

Spin-dependent terms have been omitted from the vibronic 
Hamiltonian. By making the replacement HM -*• HM + hffi in all 
foregoing formulas, the spin-orbit (H30) interactions may be 
included. In molecules containing light atoms such as the aro­
matic hydrocarbons, spin-orbit forces are much weaker than 
vibronic interactions.50 Consequently, their effect on the energy 
levels and the zero-order wave functions may be neglected. 
Intensities of transitions between states of different multiplicities 
may then be accounted for by including the matrix elements Hft 
in the perturbed part ^ 1 of the wave function. E.g., if the two 
closely coupled states d°n and d°m are triplets, intensity of the 
transitions to the singlet ground state will be determined by the 
following part of ^ 1 

Y. Ol 
LJSO 

xl+\ze°k^\xL (74) 

where the electronic index k runs over singlets only. 

D. Vibronic Calculations 

The ideas presented in sections III and IV are illustrated in a 
series of model calculations,51 and in the chemical application 
described in the next section. The parametrization necessary 
to carry out computations using eq 66 is described in ref 51. 

V. Application. Vibronic Coupling between the 
Triplet States of Aromatic Aldehydes 

A. 3n7r* Spectrum of Benzaldehyde 

The purpose of this section is to compare the exact solutions 
of (66) with the BO solutions in an example that passes from the 
weak to strong coupling cases. There has been extensive in­
terest in vibronic coupling between the lowest triplet states of 
aromatic aldehydes,52-56 the problem having both photo­
chemical and spectroscopic ramifications. There is no intent 
to review the literature or to relate the calculations to detailed 
experiments here. The lowest energy triplet (T1) state for the 
simplest aromatic aldehyde, benzaldehyde, is 3n7r* in the free 
(assumed planar) molecule. Two weak out-of-plane (nontotally 
symmetric) vibrational bands are observed in the phosphores­
cence spectrum: v2e and ^36 corresponding to modes largely 
involving the aldehyde out-of-plane hydrogen wagging and CHO 
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Figure 1. First ten eigenvalues of eq 66 involving coupling mode V26 
and totally symmetric mode v2b, as a function of the T1-T2 energy gap 
<5.63 Level designations refer to weak vibronic coupling: —, even parity 
levels; — , odd parity levels.65 

torsional motions (ground-state frequencies near 1000 and 110 
cm-1), respectively.57 Details of the spectrum suggest that these 
modes are active because of vibronic interaction with a triplet 
TT7T* state (T2) lying some 1000 cm - 1 above T1 in the free 
molecule.53-56 

The two most prominently observed Franck-Condon modes 
in the T1 -» S0 spectrum are V7 and ^25, largely corresponding 
to the C=O stretching and the CHO in-plane wagging vibrations 
observed in the free molecule spectrum near 1700 and 215 
cm - 1 , respectively. These modes persist in other aromatic al­
dehyde spectra, but the energy gap between T1 and T2 is 
changeable including inversion of the two triplets. Different 
solid-state environments may also vary or invert the T1-T2 

gap. 
We consider the solutions of (66) as a function of the energy 

gap between T1 and T2 within an idealized (two-mode) model 
consisting of coupling modes V36 or v2&, and totally symmetric 
modes ^25 or V7. 

We presume at the outset that the coupling is weak in free 
benzaldehyde. The coupling matrix element H12 has been esti­
mated ~100 cm - 1 from phosphoresence microwave double 
resonance studies.53,58 Conclusions drawn from the calculations 
are not affected by reasonable variations from this value, al­
though applications to specific molecules in specific situations 
might be. In addition we make the simplifying assumption that 
H12 is insensitive to the energy gap. The necessary parameters 
are assembled in Table I. 

B. Energy Levels 

The first few eigenvalues of eq 66 are displayed vs. the T2-T1 

gap <563 in Figures 1-3. Even though the coupling matrix element 
is the same for both v26 and ^36, the interaction of the two states 
through each of these modes is quite different owing to the 
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Figure 2. Several eigenvalues of eq 66 around resonance points, in the 
coupling model comprised of V26 and the totally symmetric mode V1. 
Level designations refer to weak vibronic coupling: — , even parity 
levels; — , odd parity levels. 

d ispar i ty in their f requenc ies (115 c m - 1 (^36) vs . 425 c m - 1 

("26))-
Figures 1 and 2, where P26 is the active mode, are examples 

of the weak coupling case. Except for values where the vibronic 
energies are nearly degenerate (W1 ^ ~ W2v>), the two states 
behave independently of each other. Around the resonance 
points, there is a weak breakdown of the BO approximation.59 

The splittings are predictable via degenerate perturbation theory, 
taking into account only the levels which are in resonance. 

The basic features of strong vibronic coupling are brought out 
in Figure 3. Here the two states are coupled through the CHO 
torsional mode C36, and the Franck-Condon mode C25. At large 
energy gaps (<5 > 800 c m - 1 corresponding to the weak coupling 
region), the BO approximation is valid. The two modes inde­
pendently form their harmonic progressions. Note, however, that 
the frequency of C36 is lower than its value at infinite separation 
of the two states. E.g., at 5 = 920 c m - 1 , OJ36 = 96 c m - 1 as 
compared with 115 c m - 1 in the absence of the coupling. The 
frequency at finite (but large) 8 values is accurately given by the 
harmonic approximation as W36(T1) = 115(1 - 2I2/AE°21)

V2 

c m - 1 , where / is the dimensionless interaction parameter, and 
<\E°21 = e> + 1/2fD2j3s

2, the vertical energy gap in units of ftw36 

= 115 c m - 1 . 6 0 

When the gap approaches 500 c m - 1 , strong breakdown of 
the BO approximation occurs, with the harmonic approximation 
completely failing at 8 = 330 c m - 1 . At this energy gap, the force 
constant of C36 becomes zero. A strong negative anharmonicity 
in the overtones of c36 appears, which may be qualitatively un­
derstood on the basis of positive quartic terms in the associated 
adiabatic potential.6162 

Owing to the rather small shift in the origin of T2 relative to 
T1 (D =* 0.4), and similar values in the frequency of C25 

(W25(T2)ZcC)2S(T1) = 1.3), the Franck-Condon mode V25 behaves 
quite regularly throughout Figure 3. The frequency of V25 in the 
progression 360

1 + 25 0
n is somewhat higher (within 4 c m - 1 ) 

than in the progression 0 + 25 0 " . This is qualitatively in agree­
ment with the BO approximation for large 5, when the anhar-
monic terms are taken into account, since U25(T2) > W25(T1). 
The only exceptions occur around 8 ~ 0 (where W25(T1) has to 
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Figure 3. Low-lying eigenvalues of eq 66 involving coupling mode C36 

and totally symmetric mode C25, as a function of the T 1 -T 2 energy gap, 
<5. Level designations refer to weak vibronic coupling, i.e., large o. At 
the left the modes are too scrambled to allow designation: — , even 
parity levels; — , odd parity levels. 
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Figure 4. Comparison of several levels from Figure 3 with solutions of 
a one-mode (^ 6 ) problem around Fermi resonance regions: —, two-
mode eigenvalues of eq 66 involving ^3 6 and v2s\ - - -, single-mode 
eigenvalues of eq 66 involving v3e. Combination levels have been 
constructed using harmonic energies of ^2S-

pass into W25(T2) and v i ce versa), and where over tones of C36 

are nearly degenerate w i th the harmon ics of V25. In the latter 
case, the two modes are scrambled, not unl ike the mix ing of the 
t w o states in Figures 1 and 2 around resonance reg ions. The 
behavior of several levels f rom Figure 3 around such points are 
compared in Figure 4 with solutions of the one-mode problem 
involving only V36. 

Thus the weak coupling assumption made for free benzal-
dehyde (8 =* 1000 c m - 1 ) is basically valid; however, the cal­
culated W36 would be depressed by about 15 c m - 1 to 98 c m - 1 

from the parameters in Table I. 
Replacement of the hydrogen atom at the aldehyde position 
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Figure 5. Deuterium effect on several eigenvalues of eq 66 involving 
v2S and V26 as a function of the T1-T2 energy gap, 8. Level designations 
refer to weak vibronic coupling: —, normal aldehyde; — , CDO mol­
ecule. 

by deuterium drops the v2% frequency from 425 to 310 c m - 1 in 
the 3n7r* state of free benzaldehyde,57 nearly the value for pure 
hydrogen motion. A possibility then exists for an important 
deuterium effect involving the V26 coupling mode. Such is not 
the case for P36 since the corresponding reduction in its fre­
quency is small.57 

The first few eigenvalues involving V26 are compared for the 
CDO and CHO systems in Figure 5. The only significant differ­
ences are in the resonance region in accord with the weak 
coupling brought about by V26. In the 100-200 cm - 1 gap region 
the V26 frequency is predicted to be less depressed by vibronic 
interaction in the CDO molecule than in the normal one. The 
progression V26 + n̂ 25 is also predicted to suffer sizable per­
turbations upon deuteration. 

Extensions of these considerations to the excited state dipole 
moments for the various vibronic levels and to band intensities 
for emission and absorption of aromatic aldehydes have recently 
been made.5564 

Vl. Partial List of Symbols and Abbreviations 
BO: Born-Oppenheimer 
HT: Herzberg-Teller 
JT: Jahn-Teller 
vibronic: vibrational-electronic 
nonadiabatic: interactions that arise due to the nonnegligibility 

of the nuclear kinetic energy operator 
x: electronic coordinate 
Q: nuclear coordinate 
Q0: a minimum point of En(Q) 
H(x,Q)/electronic Hamiltonian 
TN: nuclear kinetic energy operator 
!H = H+ TN: vibrational-electronic Hamiltonian (exclusive of 

the translational and rotational energies) 
\p = \p° + i//1: exact vibronic wave function 

dk(x,Q): eigenfunction of H(x,Q) 
Ek(Q): eigenvalue of H(x,Q) (Wh adiabatic potential surface) 
£» = Ek(Qo) 
E\2): harmonic (quadratic) part of the feth adiabatic potential 

surface 
AE°nk = El - El 
Xk- vibrational function 
X*": pth (p = 1, 2, . . . ) approximation to Xk 
e: vibrational energy 
W= E°n + c total energy 
Hu= (60Me1) 
Hl ,= <02](dH/dQr)o|0?> 
H?, = <0°*(d2H/dQrdQs)o|0?>, etc. 
H: matrix element 
Taylor series of an arbitrary function F about an arbitrary point 

Q0 is displayed as F(Q) = F(Q0) + F^ + F<2> + . . . 
The O-dependent portion of a power series is denoted by 

F= FV)+i&) + ... = F(Q)-F(Q0) 
Knn = TN+ En*

1: harmonic Hamiltonian 
Knn{()

 = K°nn + Knn(t): projection of the exact vibronic Hamil­
tonian into the subspace spanned by the single function 
0°n(x) 

Uki(Q), where k, I = 1, 2, . . . , L: projection of the electronic 
UM(Q), where k, I = 1,2 L: projection of the electronic 

Hamiltonian into the subspace spanned by the L electronic 
functions 6°k(x), k = 1,2 ,L 

K: (electron mass/average nuclear mass)1'4 
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