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The understanding of electron localization and solvation in 
liquids and glassy disordered media is a fundamental problem 
in the chemistry and physics of condensed phases. This problem 
is particularly relevant to a variety of chemical areas, including 
charge conduction in dielectrics, radiation chemistry, and electron 
transfer in condensed phases. The wide interest and relevance 
of electron solvation are related to the fact that these "excess" 
electrons are solvated in a variety of polar and nonpolar media 
and are highly reactive.1 Optical, photoconductivity, and electron 
magnetic resonance techniques have been most exploited to 
develop an experimental description of solvated electrons. Early 
optical spectroscopic data showed that solvated electrons are 
characterized by a broad, asymmetric, and structureless band. 
The position of this band depends on the medium but generally 
falls in the visible and near-infrared spectral regions. The optical 
absorption band and the wavelength dependence of the pho-
tocurrent determine the general features of the energy level 
structure of excess electrons in various media.2 Structural 
information has been obtained by electron spin resonance (ESR). 
The ESR line for the solvated electron consists of a single, 
inhomogeneously broadened line at a g value that is very close 
to that for the free electron. This suggests that the electron 
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is trapped in a potential well surrounded by a number of sym­
metrically oriented solvent molecules. By analysis of second-
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moment ESR line shapes, forbidden spin-flip satellite transitions, 
electron spin-echo modulation patterns, and pulse radblysis data, 
a detailed description of the electron localization sites and 
solvation mechanisms has been developed.3 

Here we review the theoretical models that have been ad­
vanced to describe solvated electrons in disordered systems. 
Electron solvation in polar or nonpolar media has a superficial 
resemblance to the well-known particle-in-a-box problem. Early 
theoretical models attempted to describe the interactions be­
tween the electron and the solvent molecules in terms of a 
spherical box type potential.4 These models do not give good 
agreement with experimental results even with the box size as 
a parameter. These models emphasize the short-range inter­
actions. These are very important but are not sufficient. 

An adequate description of the solvated electron problem must 
include both short- and long-range interactions to properly de­
scribe the role the medium plays. In principle, an ab initio 
molecular orbital (MO) theory would "solve" the problem of 
electron solvation. This is true only if a sufficient number of 
solvent molecules are included in the model since here we are 
dealing with liquid and glassy disordered states. Unfortunately, 
this number of molecules seems to be very large and is beyond 
the scope of present day computational methods. Thus far, the 
largest system that has been treated by ab initio methods 
consists of five water molecules plus an electron (41 electrons).6 

As we will see later, the excess electron density even in polar 
media extends into the second solvation shell. Furthermore, even 
more distant molecules are polarized by the electron charge. 
Therefore, a realistic theoretical model must include more 
molecules than is practical with present day ab initio methods. 

The ab initio method has thus far only been used to investigate 
short-range interactions.8 Even then, these calculations are 
extremely expensive. A number of approximate molecular orbital 
methods such as CNDO and INDO7 have been used by several 
research groups.8 Unfortunately, these methods are also limited 
in the number of solvent molecules they can handle and 
therefore emphasize the short-range interactions. 

Long-range interactions are emphasized in the continuum 
model which uses the concept of polarization from classical 
electrostatics to obtain a potential. This potential is used with 
a hydrogenic wave function and the quantum mechanical var­
iational principle to treat electron solvation in polar media.9 Both 
adiabatic and self-consistent-field (SCF) approximations have 
been used to effectively reduce an /V-electron problem to a 
one-electron system. In the adiabatic approximation the excess 
electron is assumed to be moving slower than the solvent 
molecule electrons, while in the SCF approximation the excess 
electron is assumed to be under the average influence of all 
other electrons. The methods of calculation using these two 
approximations are very similar. The whole medium is repre­
sented by the static and optical dielectric constants and the 
potential has the form of r 1 mediated by the medium properties. 
The amount of computation involved in this model is tractable, 
and the model can easily be adapted to various polar systems. 
However, the experimentally observed optical absorption 
maximum is reproduced by parameterizing a cavity radius for 
the solvated electron so no prediction of experimental data is 
achieved. In addition, the continuum model does not even 
account for the stability of solvated electrons, primarily due to 
the neglect of the short-range interactions between the electron 
and the nearest solvent molecules. 

Attempts to include both short- and long-range interactions 
led to the semicontinuum model10,11 which builds on the con­
tinuum model by introducing a fixed number of symmetrically 
situated solvent molecules in the first solvation shell and 
short-range electron-solvent interactions. This adds a few 
medium-dependent parameters which can be measured ex­
perimentally. The semicontinuum model is more molecular in 

nature, but computationally it is still about as simple as the 
continuum model. The semicontinuum model has been applied 
to a large number of different systems under different conditions, 
with results that compare favorably with those observed in 
experiments.1,12 The model has also been extended to explain 
excess electron solvation in nonpolar systems with reasonable 
success.13 The semicontinuum model has been made more 
rigorous by incorporating an ab initio framework to treat the 
short-range interactions.5 The basic physical picture regarding 
solvated electrons provided by the semicontinuum model seems 
to be sound. However, the particular formulation of the short-
and long-range interactions14 and the balance between them 
require further improvement to better explain all existent ex­
perimental data. 

In this review we describe molecular orbital, continuum, and 
semicontinuum models of electron solvation, including recent 
attempts to improve on these different approaches. Finally, 
several current problems that do not seem to be satisfactorily 
treated by these models are discussed. 

2. Molecular Orbital Models 

As mentioned in the introduction, molecular orbital methods 
are good at providing information concerning interactions that 
are short-ranged, particularly where the overlap of orbitals is 
significant. Whether the electron is localized on a single atom 
or delocalized over several atoms can be seen directly from the 
calculated spin density on each atom. Furthermore, it has been 
demonstrated that molecular orbital methods account quite 
successfully for the variation in excitation energy observed 
experimentally for the solvated electron in mixtures such as 
water and ammonia.8b 

The solvated electron is an open-shell problem. It is therefore 
inherently a difficult task to be handled by molecular orbital 
theory. Consider a system such as (H2O)n" where n denotes 
the number of H2O molecules strongly interacting with the 
solvated electron. With approximate molecular orbital methods, 
CNDO or INDO, n as large as six15 (the octahedral configuration) 
has been tried. But a complete ab initio calculation has thus 
far only been attempted for the dimer model with n = 2.6 It 
is, however, important to investigate such small systems like 
the dimer model to check the applicability of the method and 
the possible importance of dimeric interactions. The results of 
these studies may serve as a means to simplify more complex 
interactions encountered in larger systems. 

2.1. Dimer Model 

Raff and Pohl performed the first semiempirical MO calculation 
on the solvated electron in liquid ammonia.18 In their model the 
electron is assumed to be sandwiched between two protons from 
the solvent molecule. The wave function is thus approximated 
to be that of H2

+. The effect of the solvent is incorporated in 
the parameter of the trial wave function. If the energy of the 
isolated dimer molecules is taken as reference level by analogy 
to H2

+,17 the model predicts that the electron is only slightly bound 
in liquid ammonia and that the ground to excited level transition 
is really a bound-continuum transition. Electrons are known to 
be trapped very stably in liquid ammonia, and experimental 
results also suggest that the excited state for the solvated 
electron in water is bound.2 In view of the primitive nature of 
the model, the poor results are not all that unexpected. 

Before proceeding with the discussion we will define two 
energy notations to facilitate the comparisons of the various 
calculated results. Let n be the number of solvent molecules 
S around the electron. E(nS) is then the sum of the energies 
of n isolated solvent molecules; E(S)n is the energy of a system 
composed of n solvent molecules arranged with a specific ge­
ometry {n = 1, monomer; n = 2, dimer; /7=4, tetramer; n = 
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TABLE I. Naleway and Schwartz6 ab Initio Calculations on the Hydrated Electron Using a Dimer Model" 

conformers 
R(OH), 

A 

0.957 

0.957 

R(OO), 
A 

2.65 

2.65 

B(H2O)2, 
au 

-152.0178 

-152.0147 

B(H2O)2", 
au 

- 1 1 S > 

eV eV 

A. 0—H---0,,, 

/ H 

B. o—-

H 

c. f 
H 
H 

\ 

H 

\ 
- - - 0 

/ 
H 

----'o 

0.957 

0.957 

3.18 

3.18 

-151.9947 

-151.9994 

-151.8009 

-151.7951 

5.90 

5.97 

-151.8415 4.17 

-151.8292 4.63 

-1.14 

-0 .99 

-2.25 

-1 .91 

\ 
E. 0 — H - -H—0 

\ 
1.16 3.70 -151.9319 -151.8748 1.55 3.16 

" B(2H 2 0)=-152 .0068 au, B(H2O) + JE(H2O)" =-151 .7588 au. b B5
1 = B(H2O)2" - B(H2O)2. c Bs

2 = B(H2O)2 
[B(H 2 O) + B(H2O)"]. 

5, pentamer; etc.). The charged species of these systems are 
given by E(nS)~ and E(S)n", respectively. 

Various other dimeric models have also been suggested 
without much success. However, the model of Naleway and 
Schwartz6 will be discussed before we terminate the discussion 
on dimeric molecular orbital models. They focused on the 
hydrated electron system and performed the first ab initio study. 
Their main purpose was to examine the energetic stability of 
the electron with two solvent molecules around it. Five different 
arrangements of the water molecules are considered (see Table 
I). Groups of Gaussian functions18 were used as the basis set; 
they have been applied quite successfully to the study of 
ground-state energies for a range of atomic systems.19 The 
energy for the dimeric system, E(H2O)2", was calculated as a 
function of the oxygen-oxygen separation fl0-o> DUt in some 
cases the O-H bond length R^ was also varied to attain lower 
energy. By comparing the values of E(H2O)2 and E(H2O)2", it 
is interesting to note that the most stable neutral conformer does 
not give the most stable charged conformer. Conformer E, 
which is the one also used by Raff and Pohl,16 gives the lowest 
energy for the charged system. Clearly in all cases studied the 
charged species are unstable relative to E(H2O)2. The charged 
species are also unstable with respect to E(2H20). However, 
(H2O)2" is stable relative to the separated H2O and H2O". Again 
conformer E gives the maximum stability. It appears that, at 
least for dimers, the charged species are not as stable ener­
getically as their neutral counterparts, although the difference 
in energy is small. Also (S)2" is stable relative to S + S-. Similar 
results are obtained when approximate MO methods are used.813 

2.2. Tetramer and Pentamer Models 

Since experimental evidence gives strong support for a 
solvation number greater than two, we will proceed directly to 
tetramer models. In view of the complexity involved in the 
calculation when four or more solvent molecules are around the 
electron, researchers who attempted this problem all resorted 
to approximate molecular orbital theory. CNDO and INDO 
methods, which essentially involve solving the Hartree-Fock 
self-consistent-field (SCF) equations with varying degrees of 
approximation, have been used. 

Using the CNDO method Weissmann and Cohan8" examined 
the situation when four and five water molecules surround the 

-J'~-, 

.S-\ 
(a) 

0 - H 

C ' 
/ 

H 

,^ 0 

;.0 

H 

/ 

\> 

(b) 

Figure 1. Tetramer (a) and pentamer (b) models for the hydrated 
electron used by Weissmann and Cohan. 

TABLE II. Weissmann and Cohan8d CNDO Calculations 
on the Hydrated Electron, (H2O)n" 

E(H1O)n-
E(H2O)n, 

geometry0 eV 
Eno~, 

eV 

1 
4 
5 

tetramer 
pentamer 

0.65 
-0 .52 
-0 .84 

0.65 
-0 .39 
-0 .57 

° See Figure 1 for geometrical structures. b The highest 
occupied orbital energy of the charged system. 

solvated electron. The structures of these models are shown 
in Figure 1 and some of the results are included in Table II. It 
is interesting to note that as the number of H2O molecules around 
the solvated electron is increased, E(S)n" - E(S)n becomes more 
negative, which means that the system becomes more stable. 
Based on this result Weissmann and CohanM argued that the 
normal ice structure (Figure 1b) is a more likely configuration 
for the hydrated electron that the tetrahedral structure. Such 
a hydrogen-bonded icelike cluster is also predicted by Ray.20 

However, the experimental results do not support this type of 
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TABLE III. Howat and Webster8b INDO° Calculations on the Hydrated and Ammoniated Electron with 
a Tetrahedral Model 

R. E(S)4, au E(S)4-, au E(4S), au £(3S) + E(S)-, au SD,b eV AE,C eV 

H2Od 

N H / 
0.95 
1.70 

-77.008 -76.8241 
-53.8888 

-77.0076 
-54.1196 

-76.7424 
-53.8652 

-2.22 
-0.64 

2.08 
0.72 

° Valence basis set is used. -E(H2O) = -19.252 au, E(K2OY = -18.987 au, .E(NH3) = -13.5299 au, E(NH3)" = -13.2756 
au. b SD = E(S)n- - E((n - I)S) + E(S)', stability criterion. c Energy difference between the lowest unoccupied and 
highest occupied molecular orbitals. d OH-bond-oriented tetrahedral model as in Figure 2a. e Molecular-dipole-oriented 
tetrahedral model as in Figure 2c. 

(a) 

(b) 

(C) 

Figure 2. Bond-dipole (a) and dipole-oriented (b, c) tetrahedral models 
for the hydrated and ammoniated electron used by Howat et al.8b and 
Ishimaru et al.'5 R is taken as the cavity radius. 

molecular structure.2 Also, Newton5 pointed out in his more 
extensive calculation that such a structure is not the most stable 
when the cluster is embedded in a dielectric continuum. 

Howat and Webster8" and Ishimaru et al.15 have separately 
studied the hydrated and ammoniated electron with the INDO 
approximation. Howat and Webster examined only the tetra­
hedral model (see Figure 2), while Ishimaru et al. studied a 
tetrahedral model and an octahedral model. With these models, 
they examined a series of isoelectronic solvent molecuels: 
water, ammonia, and hydrogen fluoride. We will limit discussion 
to the results on eaq and eai calculated on the basis of the 
tetrahedral model. 

Howat and Webster calculated the total energy of the neg­
atively charged system E(S)n" as a function of R for the three 
configurations shown in Figure 2. For all the configurations a 
minimum value for E(S)n" was found along the R coordinate. 
Table I I I shows that eaq~ and eam" both attain stability relative 
to E(3H20) + E(H2O)" but not relative to E(4H20). The stabi­
lization energy for the OH-bond-oriented water tetramer (Figure 
2a) is -2.2 eV (see Figure 3), while for the molecular-dipole-
oriented water tetramer (Figure 2b) it is only -1.63 eV. All 
detailed results shown for water in the paper are for the OH-
bond-oriented model. However, similar comparison in orienta­
tions for ammonia was not made. Thus, the validity of comparing 
the results for OH-bond-oriented water with molecular-dipole-
oriented ammonia is not clear. In particular, the R values in 
Table I I I are defined differently, as shown in Figure 2, and are 
not comparable. 

Ishimaru et al. also studied the energetics of the eaq
_ and eam~ 

using the same configurations as those shown in Figure 2. They 
used a larger basis set than Howat et al. but fixed the 0 - 0 and 
N-N distances (2.92 and 3.01 A) to those determined by X-ray 

Q . 

0.8 IO 

R1J 

I.2 

Figure 3. Total energy of the hydrated electron using model (a) shown 
in Figure 2.8b The energy reference level is assumed to be the sum 
of the energy corresponding to 3H2O and H2O". 

data. These distances are expected to be too large for the 
stable solvated electron. For all the stable systems the spin 
density on the protons is calculated to be negative. It would 
be interesting to use Ishimaru's basis set and perform a cal­
culation similar to that of Howat and Webster and observe the 
effect of the basis set on the configurational minimum. 

Recently Noell and Morokuma21 studied the hydrated electron 
in the framework of a fractional charge model. The first solvation 
shell is treated on the basis of the ab initio method. Second 
and third solvation shells are included by representing the 
molecules by functional charges.22 The two protons and two 
lone pairs of electrons in each water are simulated by two 
negative charges Ne' where e~ is the electronic charge and N 
is the fractional charge which reproduces the experimental dipole 
moment of water. The number of water molecules in the second 
and third shells is determined by forming two hydrogen bonds 
with each inner shell oxygen. In this calculation only the 
electronic energy is calculated variationally. The medium re­
arrangement energies due to surface tension of cavity formation 
and hydrogen-bond breaking are estimated separately and 
combined with the electronic energy to get the overall energy. 

Two geometries were considered. Geometry A has a tetra­
hedral first shell with the positive end of each water dipole 
directed toward the cavity center. The water molecules are 
oriented so that the total complex has C2v symmetry. There 
are 8 molecules in the second solvation shell and 16 in the third. 
Geometry B has an octahedral first solvation shell with one OH 
bond of each water molecule oriented toward the electron and 
D2 symmetry. There are 12 molecules in the second solvation 
shell and 24 in the third. 

Calculations were carried out for the tetrahedral model with 
the distance from the e~ to the oxygens of the first solvation 
shell equal to 2.5, 3.0, 3.5, and 4.0 A. For the octahedral model 
calculations were made for a single distance, 3.086 A. For the 



Theoretical Models for Solvated Electrons 

tetrahedral model a configurational minimum total energy is found 
at 3.0 A. However, the total energetics indicate no stabilization 
for the electron; the energy required to form the neutral cluster 
is greater than the stabilization obtained by adding the electron. 
For example, let us consider the tetrahedral model for R = 3.0 
A. The electronic energy required to arrange 4 water monomers 
into a tetrahedral geometry is 7.7 kcal/mol. Placing an electron 
in this prearranged cluster lowers the electronic energy by -10.3 
kcal/mol. Thus, the electronic energy for the reaction e" + 4H2O 
~* (H2O)4" is -2.6 kcal/mol. However, the surface tension 
energy (11.9 kcal/mol) and hydrogen-bond-breaking (22.5 
kcal/mol) medium rearrangement energies must be added to 
get the total energy of this reaction, which becomes 31.8 
kcal/mol. Thus, the total reaction is endothermic. The addition 
of a second and third solvation shell gives 30.4 and >65.3 
kcal/mol for the total reaction endothermicity. It is interesting 
that little extra energy is required to orient the second solvation 
shell. 

It is of interest to evaluate the relative calculated energies 
of the tetrahedral and octahedral models, although since both 
are unstable the significance is unclear. The tetrahedral, mo-
lecular-dipole-oriented model is favored over the octahedral, 
bond-dipole-oriented model at R = 3.0 A according to their 
reaction endothermicities of 31.8 and 54.8 kcal/mol. This result 
occurs primarily because the neutral tetrahedral conformation 
requires less energy per molecule to form than the neutral 
octahedral conformation. However, once the neutral clusters 
are formed the octahedral cluster binds the electron more tightly 
than the tetrahedral cluster (-4.94 kcal/mol per molecule vs. 
-4.68 kcal/mol per molecule). Thus, these calculations suggest 
that the octahedral model binds electrons more strongly but it 
is energetically less favorable to construct the neutral oriented 
cluster. 

We recall that the experimental electron magnetic resonance 
results indicate that the solvated electron in aqueous systems 
does have an octahedral, OH-bond-oriented configuration. It 
would be interesting to carry out calculations with the fractional 
charge model for two different octahedral configurations, one 
with molecular dipole orientation and the other with bond dipole 
orientation. 

From a second moment23,25 and spin-echo analysis2627 of 
the ESR spectrum of the solvated electron in alkaline ice glass 
at 77 K, doped with deuterium and oxygen-17, Schlick et al.25 

found the spin density of the nearest proton to be positive. All 
the calculations thus far indicate that it is negative.5'14,21 Noell 
et al.21 calculated an unstable trapping system (H2O)" and found 
that the proton spin density for this configuration is positive. 
Based on this, the authors suggested that for electrons trapped 
in very shallow potentials it is possible to see positive spin 
densities on the protons due to extensive spin delocalization. 
Ishimaru et al.14b found that under certain conditions a positive 
spin density on the proton is obtained (see the results for model 
I obtained by method I in Table V of ref 14b). However, no 
attempt was made to distort the first shell water molecules and 
decrease the potential to explore this problem. It is interesting 
that Ishimaru et al.14b did find positive spin densities for one of 
their calculational methods but rejected it because they thought 
the spin densities should be negative. This discrepancy between 
experiment and theory remains unresolved. 

Some observations can be made on the results for the 
solvated electron obtained from molecular orbital treatments. 
(1) The solvated electron is not calculated to be stable relative 
to one or two solvation shells compared to unoriented solvent 
molecules. (2) A molecular-dipole-oriented geometry seems to 
be favored over a bond-dipole-oriented geometry, although no 
detailed studies of this particular question have been made. (3) 
The spin density on the first solvation shell protons is calculated 
to be negative. 
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Figure 4. The tetrahedral molecular model for the hydrated electron 
as proposed by Natori and Watanabe.28 

The disappointing aspect is that none of these results agree 
with experiment. It seems clear that long-range interactions 
must be included in some fashion. The one calculated feature 
that is at least consistent with experiment is the approximate 
size of the first solvation shell. 

3. Molecular Field Model 

Natori and Watanabe28-30 have formulated a solvated electron 
model which is somewhat intermediate between a molecular 
orbital model and continuum models. They treat only short-range 
interactions, but they construct a potential from the wave 
functions of water molecules and treat the solvated electron 
independently of the electrons in the medium molecules. Thus 
they reduce a many-electron problem to a one-electron problem, 
as is done in continuum and semicontinuum models. The three 
papers of Natori and Watanabe discuss the same basic model 
with increasing rigor. Thus, only the last paper will be discussed 
here. 

The trapping site is assumed to be created by four tetrahe-
drally oriented OH-bond-directed water molecules (see Figure 
4). Neglecting the 1s electrons on the oxygen atom, we assume 
the remaining eight electrons in a water molecule to be allocated 
in pairs to two sets of two equivalent orbitals, xOi)> x(k) and 
X(bi), x(b2). x('i) and x(y are equivalent and are used to locate 
the two lone pairs on oxygen. The other equivalent pair, x(bi) 
and x(b2), are bonding orbitals assumed to be directed along 
the O-H bonds. The orbital directional parameters for a water 
molecule are determined by matching the calculated dipole 
moment with the experimental gas phase value, which is 1.840 
D. The trial wave function of the hydrated electron is then 
assumed to be a combination of the Is and 2s orbitals on the 
inner hydrogens and the 2s and 2p orbitals on the oxygens which 
are orthogonalized with the four water molecular wave functions. 

The potential function V that enters into the Schrodinger 
equation is constructed from the wave function of the water 
molecule and, due to the symmetry of the system, is spherically 
symmetric. Using ice data for the OH bond distance and HOH 
bond angle, a singlet ground-state Ea and a triply degenerate 
higher energy state are obtained by applying the variational 
principle. The difference in the two energy levels is used to 
compare with the experimental optical absorption energy of the 
hydrated electron. Several other icelike structures are also 
calculated. The energy levels, oscillator strength, and hyperfine 
splitting constant are shown in Table IV. As the table shows, 
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TABLE IV. Calculated Results of the Molecular Field Model0 for the Hydrated Electron 

water structure calcd obsd 

b(OH), A e(HOH), deg l / A 

2.76 
2.76 
2.76 
2.62 
2.65 

Ea, eV 

-1 .94 
-1 .41 
-1 .32 
-1 .83 
-1 .73 

Et, *V 

-0 .05 
-0 .02 
-0 .05 
-0 .08 
-0 .05 

f 
1.98 
0.82 
0.83 
4.22 
4.63 

hv, eV 

1.89 
1.39 
1.28 
1.74 
1.68 

A,G 

3.05 
3.33 
2.94 
2.63 
2.70 

A, G fa hv,b eV 

1.10 
1.08 
1.10 
1.10 
1.10 

109.5 (ice)' 
^ ^ ) distorted 

116( 
116; 

5.6 0.65 1.72 

ice 
structure 

a M. Natori and T. Watanabe; see ref 28-30. The results in this table are obtained from ref 30. b See ref 30. 0 L . 
Pauling, "The Nature of Chemical Bond", 3rd ed., Cornell University Press, 1960, p 466. d One-half the diagonal distance 
between opposite corners of a tetrahedron. 

there is no unique geometry of the trapping sites which can 
account for the observed values, although the calculated values 
are of the correct order of magnitude. Consequently, the results 
show that the interactions between the electron and the first 
solvation shell molecules are insufficient to account fully for what 
is observed. This point is consistent with the pure molecular 
orbital results. 

4. Continuum Model 

In the molecular field model28"30 the excess electron is as­
sumed to be under the influence of a fixed number of surrounding 
solvent molecules. In the continuum model this influence is 
extended to cover the entire medium, and the solvent molecules 
are only treated in an averaged manner. Consequently, the most 
striking difference between these two models is in the manner 
in which the trapping potentials are constructed. 

In the molecular field model the potential only includes 
short-range interactions between the electron and the nearest 
four water molecules. These molecules can be viewed as 
forming the first solvation shell around the electron. All other 
interactions are assumed to be small and are neglected. In 
contrast, the continuum model makes no distinction between 
the nearest or further solvent molecules. The medium as a 
whole is represented by a continuous dielectric which is char­
acterized by the macroscopic optical dielectric constant D0^ and 
static dielectric constant D8. When an electron is present at 
some point in the dielectric medium, the assumption is made 
that it will polarize its surroundings. The net effect of this po­
larization is the creation of a screened Coulomb potential well 
in which the electron can be trapped. This is the idea of 
self-trapping and was first introduced by Landau.31 As will be 
seen later, the main advantage the continuum model has over 
all other models is its ability to handle a wide range of solvent 
media. Early application of the self-trapping concept resulted 
in a problem similar to a particle in a spherical box. 

Jortner put electron binding in polar media on a sound theo­
retical basis. Combining the classical electrostatic idea on 
polarization with quantum mechanical methods and concepts, 
Jortner formulated the continuum model.98 In this model, the 
medium is assumed to be a polarizable continuous dielectric 
which is represented by static and optical dielectric constants. 
The electron is assumed to be located in a physical cavity which 
is spherically symmetric. At long distance the electron interacts 
with the continuous dielectric through a 1/rCoulombic potential 
while within and at the cavity boundary R the potential remains 
constant. This potential is assumed to be set up through the 
polarization of the medium, induced by the presence of the 
electron. The reference level for this potential is therefore the 
polarized medium. 

To reduce an /V-electron system to an effective one-electron 
problem, two approximations have been used: (1) adiabatic 
separation of the motion of the excess electron and the medium 
electrons and (2) assumption that the electron is moving in an 
average field created by the medium molecules. This latter 
approximation is the self-consistant-field method. 

4.1. Adiabatic Approximation 

In practice the two models differ in the form of the potential. 
Using the adiabatic approximation the potential takes the form 

V(R) = -(Dop-'-Ds-
:)e2/R, r> R 

V(r) = -(D0 Ds-
1)e2/r, r< R (D 

where R is the average cavity radius determined in this model 
by matching the calculated 1s —- 2p transition energy with the 
experimental optical transition energy at the absorption maxi­
mum. The term (Dop"

1 - D8"
1) indicates that the trapping po­

tential in this approximation derives only from the orientational 
polarization which cannot follow the motion of the excess 
electron and therefore is not state dependent. The energy of 
the excess electron due to orientational polarization is obtained 
by substituting the above potential in the Schrodinger equation 
and solving it variational^. The energy resulting from the 
electronic polarization S, is calculated separately. The sum of 
these two energies gives the total energy of the ground state. 

4.2. SCF Approximation 

Rather than being considered separately, in the SCF ap­
proximation the orientational and electronic polarization are 
included simultaneously in the potential. 

An electrostatic potential, fh that is consistent with the charge 
distribution of the electron, 4?2, is conveniently represented by 
Poisson's equation 

V2f, = 47TeI^, (2) 

where f depends on the /th electronic state of the excess 
electron. 

The potential energy V(r) is now proportional to (1 - D8"
1), 

which is related to both the orientational and electronic polar­
ization (eq 3). 

V(R) = (6/2X1 

V(r) = (e/2X1 

1/D8)Z(R), r< R 

1/D1Mr), r> R 
(3) 

The notations used in eq 3 have the same meaning as in the 
adiabatic approximation. The solution of the one-electron 
Schrodinger equation using this potential and hydrogenic wave 
functions gives the total energy of the excess electron in the 
ground state. 

4.3. Energy Level Calculation 

The excited-state calculations in both the adiabatic and SCF 
approximations are very similar. In both it is assumed that the 
lowest optically allowed excited state is the 2p state. The energy 
of this state must be calculated in accordance with the 
Franck-Condon principle. That is, during vertical electronic 
transitions, the medium nuclei should be assumed fixed, so in 
the excited state the orientational polarization component is the 
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same as that in the state from which the transition originates. 
However, the electronic polarization follows the excitation 
process. 

It is well-known that the energy of a particle in a box is 
inversely proportional to the box dimension. Similarly, the energy 
calculated from the adiabatic or SCF approximation decreases 
in absolute value with increasing cavity radius R. The R where 
the calculated hv just matches the experimental value is as­
signed as R0, so hv is given by (4). In principle it is always 

hv = Ep(R0) - £t
1s(fi0) (4) 

possible to get such a fit unless the experimental energy is 
greater than that calculated for R=O. 

Computations involved in the continuum model are extremely 
simple since the model is medium dependent only through the 
dielectric constants D3 and Dop. It can be readily applied to 
electrons trapped in a variety of media, both in liquids and 
glasses. Also, since the temperature dependence of dielectric 
constants is generally known, the shift of the optical absorption 
band as a function of temperature can be predicted. Calculations 
have been reported within the framework of the adiabatic ap­
proximation for electrons in liquid ammonia,90 MTHF glass,32 and 
several other glasses.33 Within the SCF approximation calculated 
results have been reported for liquid water.9"'34 

Typically, the radius which yields agreement between the 
calculated and observed hv for most systems appears to be 
quite reasonable. For example, the value of R = 3.2 A for liquid 
ammonia is consistent with the large observed volume expansion 
data for that system compared with liquid ammonia. Also, the 
blue shift of the absorption band with decreasing temperature 
is consistent with shrinkage of the cavity.90 A real test of the 
continuum model is to compare the predicted and observed 
photoionization thresholds after the bound-bound optical tran­
sition energy has been fit to the experimental value by varying 
the cavity radius. Results on trapped electrons in MTHF glass32 

appear to meet this test reasonably well, but the results should 
be reevaluated with the proper value of Ds. In more polar 
matrices such as alcohols33 and ice11,34 the continuum model 
fails because it predicts photoionization thresholds which are 
greatly in excess of those observed experimentally. In addition, 
for solvated electrons in water the continuum model implies that 
the cavity radius is zero,9 which is physically unreasonable. 

Most of the published results using the continuum model have 
used a one-term, exponential "hydrogenic" wave function. If 
the trapping potential at or very near the cavity center still has 
the form of -r~1, then the potential is very similar to the hydrogen 
atom situation and hydrogenic wave functions are suitable. 
However, this is not the case for the continuum model for a finite 
cavity radius. Thus, the question of whether a one-parameter 
hydrogenic wave function is still valid arises. Webster and 
Carmichael35 recently investigated this problem by substituting 
the adiabatic and SCF potentials into the effective one-electron 
Schrodinger equation and solving it numerically. An examination 
of the radial charge density of the solvated electron in liquid 
ammonia and water indicates that the one-parameter wave 
functions90,0,34 generally yield higher average radii and a greater 
difference in shape for the ground state than for the excited 
state. Thus, the interpretation of calculated results based on 
trial wave functions should be done with caution particularly in 
regard to such properties as oscillator strength and line shape 
which are sensitive to the "correctness" of the wave function. 
The effect on energy levels and thus the optical transition energy 
is probably less sensitively dependent on the wave function, 
especially for these polar systems where the electrons are bound 
tightly in the cavity. When the one-parameter hydrogenic wave 
function gives particularly poor results as for the solvated electron 
in water,9 a more flexible wave function may improve the sit­
uation. For example, a three-parameter wave function for the 

solvated electron in water can fit the optical absorption energy 
at a finite cavity radius.34 

The basic shortcoming of the continuum model is that no 
configurattonal stability is achieved. Furthermore the model lacks 
predictive power because usually one experimental observable 
like the optical absorption maximum is fit by one parameter in 
the wave function. These shortcomings can be overcome by 
explicitly treating short-range interactions with an oriented first 
solvation shell. This is done in the semicontinuum model. 

5. Dipole Orientation Model 

Before we discuss the semicontinuum model, we will describe 
Iguchi's36'37 oriented-dipole model. The purpose of his study 
was to investigate the temperature dependence of the solvated 
electron optical maximum in alcohols. In his model the solvated 
electron is assumed to be surrounded by a number of dipoles 
nm. This number is determined by the temperature of the system 
relative to T0 = 273 K by eq 5, where a is the thermal expansion 

coefficient and has the value 1.0 X 1(T3 K"1 for ethanol, and 
n0 is the number density which equals 1.0 X 1022 cm-3 for 
ethanol. Since the denominator of (5) is 1, nm = 1022 cm-3. 
Thus this model is essentially a molecular picture of the con­
tinuum model in which the partial orientation of all the dipoles 
is given by a Boltzmann distribution. 

The potential energy used by Iguchi is given by eq 6, where 

U{r) = -4irev,anm \ (cos 6)6r (6) 

<cos 6) = coth x - X"1, X = WkT)E100, Eloc = elr2, /x0 is 
the permanent dipole moment, and E1x is the local electric field 
at the dipole due to the excess electron. Since the local electric 
field is independent of the charge density of the excess electron, 
unit charge density is included within radius r. Since the potential 
is independent of the solvated electron charge density, it is the 
same regardless of the electronic state. Upon evaluation Iguchi 
showed that the potential is long range, similar to the continuum 
potential. 

For the medium rearrangement energy Iguchi calculated the 
dipole-dipole repulsion. In his model the number of dipoles that 
are around the electron is thermally determined and is on the 
order of 1022 cm"3. Taking the electron as the coordinate center, 
dipole-dipole repulsions are cancelled out due to thermal fluc­
tuations, and only dipoles within the first shell contribute to the 
localization of the electron. 

In Iguchi's first paper36 the potential shown in eq 6 was 
assumed to extend to the origin (r = 0). However, in the second 
paper37 the potential was taken to be constant within a radius 
R, which was set equal to the average intermolecular distance. 
The energy due to orientational polarization, W1, is calculated 
as in the continuum model with the adiabatic approximation. The 
electronic polarization energy, S1, is calculated separately and 
added to W1 to give the total energy. Although Iguchi uses the 
same notation for energies as in the continuum model, it should 
be noted that they are calculated with a different potential. 

In summary, Iguchi's oriented dipole model differs from the 
continuum model in that the former represents the polarizable 
medium by dielectric constants. The potential existing between 
the electron and the dipoles is short range (that is, dependent 
on f where n > 2) and temperature dependent. Long-range 
Coulombic interactions with potential dependent on r 1 are 
neglected. The potential used in the continuum model is tem­
perature independent except through the temperature depen­
dence of the dielectric constants, and only long-range interactions 
are included. 
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Figure 5. Distance parameters used in the FFK semicontinuum model 
for the solvated electron. The sum of the molecular radius ra and the 
void radius rv equals the electron to point dipole distance rA. R is the 
distance to the beginning of the continuum. 

6. Semicontinuum Model 

6.1. Outline of Model 

In the early development of the semicontinuum model 
Copeland et al.10 and Fueki et al.11 included both short- and 
long-range interactions between the solvated electron and the 
solvent or matrix molecules. A principal conclusion from those 
studies was that short-range attractive interactions must be 
included to properly account for the absolute value of the 
electronic energy levels. More specifically the inclusion of a 
short-range charge-dipole potential tends to move the energy 
levels toward the continuum, thus making the excited states less 
strongly bound. Satisfactory agreement between the calculated 
and experimental properties of the hydrated electron was ob­
tained by arbitrarily choosing a cavity radius that gave the best 
fit with the experimentally measured optical absorption maximum. 
Clearly a more desirable approach is to minimize the total energy 
of the solvated electron system with respect to some coordinate 
in the same spirit as for a diatomic molecular system. This way 
the configuration of the trapping system can be predicted. 

Two formulations of the improved semicontinuum model have 
been proposed.10,38,39 Both of them originated from Jortner's 
continuum model.9a The physical ideas are very similar, and 
differences can only be found in the details of the calculations. 
The first model is the Copeland, Kestner, and Jortner (CKJ) 
model10 where they assumed that the average velocity of the 
solvated electron is slower than the electrons of the solvent 
molecules. Consequently the trapping potential varies only as 
a function of solvent molecule-electron separation distance and 
not with the charge distribution of the electron. This is the 
so-called adiabatic approximation. On the other hand Fueki, 
Feng, and Kevan (FFK)38,39 utilized the self-consistent-field ap­
proximation which implies that the solvent electrons and the 
excess electrons are basically equivalent and the solvated 
electron is under the influence of the averaged potential field 
generated by all other electrons. However, the potential is in 
turn modified by the presence of the excess electron. The CKJ 
model has been discussed in detail elsewhere39 and therefore 
will not be reiterated here. The main differences between the 
two models will be pointed out later. The FFK model will be 

, ls=5 ( l"Ds ) ("r*J jrE e xP ("2 X r , ) 

NMo<cos0>|5 N«C l5(rd) 

Figure 6. Short-range well-type and long-range Coulombic potentials 
used in the FFK semicontinuum model. The energy reference level 
is the quasi-free-electron energy V0. X is a variational parameter in 
the wave function, D8 is the static dielectric constant, n0 is the dipole 
moment oriented at angle 8, a is the molecular polarizability, C1, is 
the charge enclosed within the point dipole distance rd, and N is the 
number of first solvation shell molecules. 

discussed briefly to show the formulation of the model. 
The semicontinuum model39 differs from the continuum 

model93 in that the excess electron is assumed to be a charge 
distribution located at the center of a spherical cavity. The 
distance parameters are shown in Figure 5. Surrounding the 
cavity is a fixed number N of symmetrically situated solvent 
molecules. These solvent molecules are approximated as 
idealized point dipoles. Consequently the interactions between 
the excess electron and these solvent molecules are described 
by the standard charge-dipole attractive potential. As will be 
seen later, the charge distribution of the excess electron extends 
well into the first solvation shell; thus the polarization of these 
solvent molecules by the electron is expected to play some part 
in the localization of the electron. 

Both of these interactions constitute a finite square well po­
tential due to the fact that the potential is assumed to be invariant 
when the electron is inside the cavity. This electronic short-range 
potential is denoted by Ee

s. The solvent molecules beyond the 
first solvation shell are treated in a similar manner as in the 
continuum model:9a,b namely, in this region the electron interacts 
with the solvent molecules through a screened Coulombic 
long-range polarization potential denoted by Ee' that is made 
self-consistent with the excess electron charge distribution via 
Poisson's equation. These long- and short-range interactions 
are the two leading terms in this model for the electronic com­
ponent of the total energy. Figure 6 shows the total potential 
used in the FFK model. 

The repulsion between the excess electron and the medium 
molecule electrons is approximated by Eq = V 0 ( I - C,(/-d)), 
where V0 is the quasi-free-electron energy and Ct(ra) is the 
charge density for the /th state enclosed within radius rd. For 
rare gas systems Springett, Jortner, and Cohen40 have shown 
that V0 can be calculated from the Wigner-Seitz model in which 
each atom is replaced by a sphere so that a spherical symmetric 
pseudopotential can be obtained. This pseudopotential is sub­
stituted into an eigenvalue equation whose solution is V0. They 
showed that this term can be split up into two components, L/p 

and Tp, where U? represents the attractive component due to 
long-range electronic polarization and 7"p is the short-range 
repulsive scattering energy between the excess electron and 
the medium. By use of gas-phase scattering cross sections the 
results agree with experimentally measured V0 values for rare 
gas systems and appear to correlate with electron mobility 
data.41 Such a model has also shown to be valid for the tem­
perature dependence of V0 in liquid alkanes.42,43 Due to the 
lack of accurate electron scattering data, V0 for electrons in 
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TABLE V. Properties of Solvated Electrons in Polar Matrices Calculated by the Semicontinuum Model 

Matrix 

water 

methanol 

ethanol 

ice 

methanol 

ethanol 

2-methyltetrahydrofuran 

2-methyl-n-amylamine 
diisopropylamine 
triethylamine 
alkaline ice 

T, K 

298 

298 

298 

77 

77 

77 

77 

77 
77 
77 
77 

V0, eV 

- 1 . 0 

-0 .2 

0.2 

- 1 . 0 

0.5 

1.0 

- 0 . 5 

0.3 
0.3 
0.3 
0.0 

JV 

4 
6 
4 
6 
4 
6 
4 
6 
4 
6 
4 
6 
4 
6 
4 
4 
4 
4 
6 

rd°,A 

1.93 
2.46 
2.28 
2.92 
2.54 
3.23 
1.93 
2.46 
2.32 
2.95 
2.54 
3.28 
2.87 
3.61 
3.24 
3.19 
3.19 
2.04 
2.56 

hv, 

calcd 

2.15 
1.94 
1.85 
1.56 
1.79 
1.46 
1.84 
1.85 
2.09 
1.82 
2.15 
1.70 
1.04 
0.89 
1.02 
0.90 
0.83 

,eV 

obsd 

1.72° 

1.87b 

1.806 

1.9C 

2.3d 

2.3 d 

1.0e 

1.1' 
0.87' 
0.75 ' 

calcd 

0.70 
0.83 
0.71 
0.86 
0.72 
0.90 
0.39 
0.64 
0.51 
0.89 
0.58 
0.94 
0.45 
0.65 
0.35 
0.36 
0.37 

f 
obsd 

0.71° 

0.78* 

0.87* 

0.33h 

0.73d 

0.66d 

0.58e 

calcd 

3.63 
3.51 
3.23 
3.03 
3.10 
2.88 
2.36 
2.45 
2.73 
2.74 
2.71 
2.70 
1.42 
1.28 
1.28 
1.16 
1.08 
1.04 
1.45 

J", eV 

obsd 

2.3 ± 0 .1 c 

2.4 ± 0 .1 d 

2.4 ± 0.1' 

1.6 ± 0.2' 

(1.2 ± 0.1)ft 

1.0 ± O.lfc 
0.9 ± O.lfc 
1.5 ± 0.1 c 

AH, 
eV 

2.75 
2.36 
2.09 
1.83 
1.77 
1.50 
2.08 
1.72 
1.33 
1.13 
1.02 
0.80 
1.35 
0.96 
0.66 
0.57 
0.50 
0.30 
0.21 

e, 
deg 

14.1 
16.9 
16.6 
20.4 
17.9 
22.0 

7.2 
8.6 
8.3 

10.1 
10.0 
10.0 
10.3 
12.7 
14.1 
16.0 
18.3 

7.4 
8.7 

a E. J. Hart and M. Anbar, "The Hydrated Electron", Wiley-lnterscience, New York, 1970. b M. G. Robinson, K. N. Jha, 
and G. R. Freeman, J. Chem. Phys., 55, 4974 (1971). c K. Kawabata, J. Chem. Phys., 55, 3672 (1971); L. Kevan, J. Phys. 
Chem., 76, 3830 (1972). d A. Habersbergerova, Lj. Josimovic, and J. Teply, Trans. Faraday Soc, 66, 656, 669 (1970). 
e T. Shida, J. Phys. Chem., 73, 4311 (1969). f S. Noda, K. Fueki, and Z. Kuri, Chem. Phys. Lett, 8, 407 (1971). * M. C. 
Sauer, Jr., S. Arai, and L. M. Dorfman, J. Chem. Phys., 42, 708 (1965). h G. Nilsson, H. Christensen, P. Pagsberg, and S. O. 
Nielsen, J. Phys. Chem., 76, 1000 (1972). '' A. Bernas, D. Grand, and C. Chachaty, Chem. Commun., 1667 (1970). ' T. 
Huang, I. Eisele, D. P. Lin and L. Kevan, J. Chem. Phys., 56, 4702 (1972). k S. Noda, K. Fueki, and Z. Kuri, Can. J. Chem., 
50, 2699(1972). 

polar media cannot be evaluated theoretically. Also, V0 in polar 
liquids cannot be measured directly by the usual photoelectric 
threshold experiments43-46 because of high background currents. 
Very recent experiments show that V0 can be measured in­
directly in polar liquids,47 but these data have not yet been used 
in semicontinuum model calculations. In any case V0 can be 
reasonably estimated to be in the range -1 to +1 eV. So V0 

is treated as a limited adjustable parameter in the semicontinuum 
model. Note that the attainment of configurational stability is 
independent of the choice of V0 since V0 merely shifts the 
ground and excited energy levels. 

To obtain configurational stability and therefore a uniquely 
determined cavity radius, appropriate work energy must be 
performed by the medium molecules for the formation of the 
cavity. To describe this situation the first shell dipole-dipole and 
induced-dipole-induced-dipole interactions are included as the 
short-range medium rearrangement energy, Em

s. The long-range 
medium rearrangement energy involves the same polarization 
potential dependent on D3 and D0^ as in the continuum model; 
it is denoted by £m'. At the boundary of the cavity, the energy 
is roughly approximated by the void energy Ev which depends 
on the surface tension of the medium. The sum of all these 
energy components together with the kinetic energy Ek of the 
electron yields the total energy of the system as given by eq 

Et(/) = Ek(/) + Ee
s(/) + Em

s(/) + Ej(I) + E Ji) + E01U) + 

E,(i) (7) 

7 for the /th state. A one-parameter hydrogenic wave function 
is used in this energy expression with the variational method to 
obtain E, as a function of rd which gives a configurational co­
ordinate diagram. 

During an electronic transition the Franck-Condon principle 
must be obeyed. In the semicontinuum model this means that 
the orientational polarization potentials due to the first shell and 
the continuum are the same in the excited state as in the ground 
state. Only the electronic component of the polarization changes 
with the electronic state of the excess electron. Using the same 
concept, other states such as the relaxed 2p, 2s, and conduction 
states can be formulated easily. This provides a general outline 

of the semicontinuum model. The explicit expressions used in 
the calculations for the ground, first excited, and other none-
quilibrium states can be found in ref 12. 

6.2. Applications of the Semicontinuum Model 

6.2.1. Matrix Polarity 

The attractive points of the semicontinuum model are as 
follows. (1) It seems to give the correct order of magnitude for 
the energy levels of the solvated electron. (2) For all the systems 
investigated a ground-state minimum energy is obtained along 
the configurational coordinate. This is the result of a delicate 
balance between negative electronic and positive medium re­
arrangement energies. (3) Most important of all the model can 
be used to investigate both polar and slightly polar systems with 
great ease. 

The calculated results in general explain the experimental 
results due to changes in matrix polarity. For intermediate 
polarity systems such as the alcohols, the agreement is par­
ticularly good. The systems12 that have been investigated by 
the above method are given in Tables V through VII along with 
the experimental results. The symbols in these tables are defined 
as follows. r£ is the value of the electron to first solvation shell 
point dipole distance at the configurational minimum, hv is the 
1s —* 2p bound-bound optical transition energy, f is the oscillator 
strength, J is the bound-continuum transition energy for the 
photoionization threshold, AH is the heat of solution which is 
the negative of the total ground-state energy at the configura­
tional minimum, 6 is the average point dipole orientation angle, 
and C,(rt) is the charge density for electronic state /enclosed 
within a sphere of radius rt. Figure 7 shows a typical config­
urational coordinate diagram, in this case for solvated electrons 
in an ether glass, methyltetrahydrofuran. In addition to the 1s, 
2p, and conduction levels which are used in determining the 
properties tabulated in Tables V-VII, equilibrium 2s' and 2p' 
states are also shown in Figure 7. 

Since the calculated properties of solvated electrons in dif­
ferent matrices are generally affected by several of the matrix 
properties summarized in Tables V-VII, it is not so simple to 
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TABLE VI. Charge Distributions of Solvated Electrons in Polar Matrices Calculated by the Semicontinuum Model 

ground state excited state 

matrix 

water 

methanol 

ethanol 

ice 

methanol 

ethanol 

2-methyltetrahydrofuran 

2-methyl-n-amylamine 
diisopropylamine 
triethylamine 
alkaline ice 

T, K 

298 

298 

298 

77 

77 

77 

77 

77 
77 
77 
77 

N 

4 
6 
4 
6 
4 
6 
4 
6 
4 
6 
4 
6 
4 
6 
4 
4 
4 
4 
6 

C18 (rv°) 

0.050 
0.174 
0.076 
0.218 
0.083 
0.232 
0.048 
0.172 
0.092 
0.250 
0.094 
0.273 
0.083 
0.206 
0.052 
0.042 
0.040 
0.075 
0.217 

C15 OV) 
0.571 
0.646 
0.631 
0.688 
0.675 
0.722 
0.563 
0.642 
0.666 
0.726 
0.710 
0.764 
0.650 
0.678 
0.702 
0.683 
0.671 
0.602 
0.684 

C15(H0) 

0.886 
0.893 
0.913 
0.911 
0.935 
0.930 
0.881 
0.891 
0.929 
0.929 
0.949 
0.947 
0.922 
0.907 
0.954 
0.949 
0.945 
0.895 
0.909 

c 2 P Ov") 
0.000 
0.011 
0.001 
0.021 
0.001 
0.030 
0.000 
0.005 
0.001 
0.037 
0.001 
0.060 
0.000 
0.006 
0.000 
0.000 
0.000 
0.000 
0.000 

C2P (rd°) 

0.070 
0.198 
0.100 
0.260 
0.134 
0.341 
0.018 
0.105 
0.068 
0.361 
0.121 
0.487 
0.036 
0.110 
0.036 
0.028 
0.026 
0.000 
0.000 

C2P (B0) 

0.322 
0.529 
0.396 
0.610 
0.482 
0.713 
0.118 
0.348 
0.301 
0.727 
0.454 
0.838 
0.191 
0.352 
0.214 
0.183 
0.172 
0.000 
0.000 

TABLE VII. Various Energy Contributions to the Total Energy of Solvated Electrons in the Excited State Calculated 
by the Semicontinuum Model 

matrix T1K N £ k , e V £ e
! , eV Em*, eV Ee\eV ,eV £ v , eV £ q , e V Ex, eV 

water 

methanol 

ethanol 

ice 

methanol 

ethanol 

2-methyltetrahydrofuran 

2-methyl-n-amylamine 
diisopropylamine 
triethylamine 

298 

298 

298 

77 

77 

77 

77 

77 
77 
77 

4 
6 
4 
6 
4 
6 
4 
6 
4 
6 
4 
6 
4 
6 
4 
4 
4 

1.208 
1.491 
1.074 
1.307 
1.059 
1.350 
0.566 
0.963 
0.823 
1.705 
0.992 
1.873 
0.370 
0.461 
0.290 
0.263 
0.252 

-0.417 
-1.110 
-0.405 
-1.002 
-0.460 
-1.142 
-0.566 
-0.592 
-0.269 
-1.486 
-0 .425 
-1 .781 
-0 .094 
-0.284 
-0.048 
-0.030 
-0.022 

0.743 
1.204 
0.442 
0.756 
0.380 
0.710 
0.698 
1.143 
0.406 
0.923 
0.386 
0.927 
0.216 
0.389 
0.069 
0.043 
0.027 

-3.066 
-3.075 
-2.754 
-2.696 
-2.588 
-2.510 
-1.462 
-1.772 
-1.755 
-2 .013 
-1 .721 
-1 .801 
-1.109 
-1.180 
-0.864 
-0.828 
-0.812 

1.762 
1.636 
1.538 
1.410 
1.403 
1.289 
0.912 
0.962 
0.983 
1.024 
0.778 
0.795 
0.623 
0.626 
0.468 
0.453 
0.446 

0.099 
0.231 
0.047 
0.106 
0.056 
0.126 
0.138 
0.320 
0.099 
0.218 
0.112 
0.263 
0.166 
0.354 
0.150 
0.138 
0.138 

-0.930 
-0.802 
-0.180 
-0.148 

0.173 
0.132 

-0.982 
-0.895 

0.466 
0.320 
0.236 
0.513 

-0.482 
-0 .445 

0.289 
0.292 
0.292 

-0 .601 
-0.426 
-0 .238 
-0.266 

0.024 
0.045 

-0.237 
0.130 
0.755 
0.690 
1.133 
0.900 

-0.309 
-0.079 

0.354 
0.331 
0.332 

describe separately the way that each of these properties affects 
the properties of the solvated electrons. Nevertheless, some 
general comments are extremely useful from an experimental 
point of view and are attempted here. The energies of solvated 
electrons are rather insensitive to values of the surface energy 
term and of Dop because they do not vary much between 
matrices. The energies are also largely insensitive to the ef­
fective molecular radius of the solvent molecules within a few 
tenths of an angstrom. 

The permanent dipole moment of the matrix molecule con­
tributes to the orientational polarization energy of the molecules 
in the first solvation shell. This orientational polarization energy 
increases in its magnitude with increase of the permanent dipole 
moment. This is seen when the properties of solvated electrons 
in glassy amines are compared to those in glassy methanol and 
ethanol. The permanent dipole moment also contributes to the 
short-range medium rearrangement energy by dipole—dipole 
repulsion between the oriented dipoles in the first solvation shell. 
This interaction partially cancels the short-range attractive in­
teraction. The clearest effect of changing the dipole moment 
is illustrated by the amine results in which all matrix properties 
except the dipole moment and V0 are the same. Both hv and 
/ increase with the dipole moment, but the fractional changes 
in hv and /are smaller than those in the dipole moments. Also, 
the increased dipole moment stabilizes the ground state but 
destabilizes the first excited and continuum states. However, 
the effect on the ground state predominates. Among methanol, 
ethanol, and MTHF glasses, the dipole moment is not the con-

Figure 7. A typical configurational coordinate diagram calculated from 
the FFK semicontinuum model. This is the case of an electron trapped 
by four MTHF solvent molecules at 77 K. 1s is the ground-state energy; 
2p and continuum(1s) refer to the nonequilibrium excited and conduction 
states respectively. 2s' and 2p' are the relaxed excited states. 
Continuum(2s') is the nonequilibrium conduction state. 

trolling factor for determining h v or /. Also V0 is not taken to 
be the same for these matrices, and this obscures the relatively 
small effect of the dipole moment on the energy levels. The 
molecular polarizability of the matrix molecule contributes to the 
electronic polarization energy of the molecules in the first 
solvation shell. The polarizability is also related to the short-range 
medium rearrangement energy, since the polarizability is included 
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TABLE VIII. Pressure Effect on the Properties of the Solvated Electron in Methanol at T = 
Semicontinuum Model Calculations 

298 K Based on 

N p, kbar V0, eV M", A /, eV AH, eV e.deg 
hv(calcd), hv(obsd),' 

eV eV 

0.001 
1.50 
2.76 
4.14 

0.001 
1.50 
2.76 
4.14 

-0 .2000 
-0 .0885 
-0 .0182 

0.0343 

-0 .2000 
-0.0885 
-0.0182 

0.0343 

2.28 
2.24 
2.18 
2.18 

2.92 
2.82 
2.76 
2.71 

0.714 
0.690 
0.674 
0.670 

0.865 
0.852 
0.842 
0.832 

3.230 
3.287 
3.332 
3.351 

3.026 
3.120 
3.168 
3.204 

2.089 
1.895 
1.743 
1.589 

1.830 
1.548 
1.330 
1.109 

16.6 
16.2 
15.8 
15.8 

20.4 
19.6 
19.3 
18.9 

1.851 
1.945 
2.009 
2.037 

1.564 
1.681 
1.742 
1.791 

1.87 
1.91 
1.98 
2.05 

! M G. Robinson and G. R. Freeman, private communication, 1971. 

in the effective dipole moment as the induced dipole moment. 
So, increased polarizability is expected to have a similar effect 
to increased dipole moment, if all other matrix properties and 
V0 are held constant. If the magnitude of the permanent dipole 
moment is about the same, there is an empirical, but not cau­
sative, trend between polarizability and V0- This apparent trend 
can be seen for solvated electrons in liquds and for trapped 
electrons in ice, glassy methanol, and ethanol. Although MTHF 
has a rather large polarizability, it was necessary to assume a 
lower value of V0 in MTHF than expected from the above trend 
to account for the low optical transition energy of trapped 
electrons in MTHF. 

The static dielectric constant of the matrix contributes to the 
long-range orientational polarization energy of the continuous 
dielectric medium. But, the static dielectric constant at 77 K 
is very similar in the different glassy matrices, so it does not 
affect the energy levels strongly. However, Ds does dominate 
the effects on the electron energy levels in liquids compared 
to 77-K solids. 

The energy of the continuum electron state, V0, is largely due 
to a balance between polarization forces, which give a negative 
contribution, and electron-molecule repulsion, which gives a 
positive contribution.10 An increase in IZ0 in the same matrix 
increases hv and decreases AW. The values of V0 used to 
give fits to experimental hv values do not appear to fit any 
general correlation with matrix properties. 

We may consider the solid matrices to decrease in general 
polarity in the order methanol, ethanol, MTHF, 2-methylamyl-
amine, diisopropylamine, and triethylamine. The values of hv 
generally decrease with decreasing polarity. The value of /also 
generally decreases with polarity, but the quantity / - hv is 
perhaps more significant. I- hv represents the stabilization 
of the first excited state with respect to the conduction state, 
and this energy generally decreases with decreasing polarity; 
I- hv averages 0.57 eV for alcohols, 0.38 eV for MTHF, and 
0.26 eV for amine glasses. 

The value of rd° may be regarded as a rough measure of the 
size of the electron wave function. In recent electron-nuclear 
double resonance experiments,48 the experimental values of the 
average size of the trapped electron wave function in several 
glassy matrices appear to be in approximate agreement with 
the r6° values. The rd° values increase with decreasing polarity, 
but this does not necessarily mean that the electron cavity size 
is increasing. Recall that rd° = rs + rv°, where rs is the radius 
of the matrix molecule and rv is the electron void radius. One 
finds that r° is reasonably constant for the matrices studied and 
equals 0.71 dfc 0.06 A. 

6.2.2. Pressure Effects 

Schindewolf et al.49 found that the optical absorption bands 
of the electron in water and in ammonia shift to higher energies 
as the pressure is increased to 1 kbar. Similar results at several 
kilobars have been seen for the solvated electron in water50 and 
in alcohols51 by pulse radiolysis. Rather than empirically at­

tributing this to the contraction of the cavity radius, the semi-
continuum model accounts for the pressure dependence with 
the following modifications. (1) At higher pressure the pres­
sure-volume work becomes significant and is written as 

£pv = V3Tr(FI3 - Nrs
3)p (8) 

(2) The pressure dependence of the optical dielectric constant 
is obtained via the density from the Clausius-Mossotti equation. 
(3) The V0 value is also a function of pressure via its density 
dependence. The calculations appear to account for the ex­
perimental results for methanol and ethanol at room temperature. 
It appears that not only a decrease of the cavity radius but also 
an increase in the quasi-free-electron energy, V0, are important 
in the interpretation of the spectral shift observation. The results 
are shown in Table VIII. 

6.2.3. Temperature Effects 

Decreasing the temperature causes the same spectral shift 
as increasing the pressure due to the density changes. The 
temperature parameter is built into the semicontinuum model 
explicitly through the Langevin function which determines the 
degree of dipole orientation at thermal equilibrium. Kestner, 
Jortner, and Gaathon52 have shown that the temperature de­
pendence of the spectral shift can not be explained by the 
Langevin factor and the temperature dependence of the static 
dielectric constant. However, Fueki, Feng, and Kevan53 have 
shown that by the inclusion of the temperature dependence of 
V0 and the dipole moment, a good correlation is obtained. These 
results are shown in Table IX. 

6.2.4. Dipole Reorientation Effect 

Hase et al.54 have observed that when ethanol glass is irra­
diated at 4 K the trapped electron spectrum peaks in the IR 
region instead of in the visible region. However, upon warming 
the spectrum shifts irreversibly to the visible region. The 4 K 
results indicate that the electron is trapped in a nonequilibrium 
environment characterized by a shallow potential while at 77 
K the electron is trapped in an equilibrium environment char­
acterized by a deeper potential. Both nano- or picosecond 
time-scale pulse radiolysis and the effect of scavengers on the 
spectral shifts give strong experimental evidence that the 
electrons initially localized in shallow traps are not thermally 
excited out of these traps and ultimately redistributed in deeper 
traps but rather that the first solvation shell molecules reorient 
around the electron to generate a deeper potential.1 To test 
this theoretically, calculations have been done within the 
framework of the semicontinuum model.55 Explicitly the transition 
energy 1s —* 2p is calculated as a function of the dipole ori­
entation angle, 6. The nonoriented shallow trap is approximated 
by 6 = 80° while the equilibrium orientation corresponds to 6 
= 0-10°. The changes of the various energy levels as a 
function of the angle 6 are shown in Figure 8. The observed 
shift is from 1500 (0.83 eV) to ~600 nm (2.1 eV) while the 



12 Chemical Reviews, 1980, Vol. 80, No. 1 Feng and Kevan 

TABLE IX. Temperature Effect on the Properties of the Solvated Electron in Methanol, Ethanol, and 1-Propanol for 
N = 4 Based on Semicontinuum Model Calculations 

T, K 

140 
160 
183 
195 
243 
294 
320 
336 
358 

140 
155 
173 
195 
234 
296 
323 
343 

129 
147 
173 
195 
227 
249 
273 
298 

M0, A 

2.28 
2.28 
2.28 
2.28 
2.28 
2.28 
2.28 
2.28 
2.28 

2.56 
2.56 
2.56 
2.51 
2.51 
2.51 
2.51 
2.51 

2.83 
2.83 
2.77 
2.77 
2.77 
2.77 
2.77 
2.77 

f 

0.723 
0.720 
0.717 
0.713 
0.707 
0.702 
0.702 
0.702 
0.702 

0.805 
0.797 
0.783 
0.737 
0.716 
0.702 
0.708 
0.697 

0.888 
0.868 
0.816 
0.787 
0.755 
0.744 
0.731 
0.720 

/ , eV AH, eV 

Methanol 
3.788 
3.751 
3.692 
3.662 
3.514 
3.362 
3.287 
3.246 
3.193 

3.708 
3.659 
3.581 
3.467 
3.275 
3.086 
3.006 
2.943 

2.220 
2.230 
2.234 
2.234 
2.209 
2.169 
2.154 
2.144 
2.134 

Ethanol 
1.845 
1.850 
1.842 
1.816 
1.777 
1.776 
1.783 
1.788 

1-Propanol 
3.555 
3.480 
3.363 
3.231 
3.081 
3.005 
2.929 
2.849 

1.623 
1.628 
1.616 
1.592 
1.576 
1.577 
1.584 
1.590 

0 th, deg 

10.1 
10.9 
11.7 
12.1 
13.8 
15.7 
16.6 
17.1 
17.8 

11.1 
11.7 
12.5 
13.4 
15.3 
17.6 
18.5 
19.1 

11.5 
12.3 
13.5 
14.7 
16.3 
17.3 
18.2 
19.2 

fcn(calcd), 
eV 

2.268 
2.243 
2.205 
2.183 
2.080 
1.974 
1.923 
1.897 
1.865 

2.201 
2.172 
2.123 
2.072 
1.936 
1.816 
1.767 
1.730 

2.049 
2.015 
1.978 
1.898 
1.805 
1.759 
1.713 
1.668 

hv(obsd),a 

eV 

2.22 
2.20 
2.07 
1.95 
1.90 
1.84 
1.75 

2.27 
2.23 
2.13 
2.03 
1.80 
1.73 
1.66 

2.25 

1.67b 

a K. N. Jha, G. L. Bolton, and G. R. Freeman, J. Phys. Chem., 76, 3876 (1972). b M. C. Saurer, S. Arai, and L. M. 
Dorfman, J. Chem. Phys., 42, 708 (1965). 

E,,eV 

Continuum 

-1.0-

8, degree 

Figure 8. Variation of the energy levels of the localized electron in 
ethanol glass at 77 K with the angle of dipole orientation 9 for four 
ethanol molecules in the first solvation shell and a quasi-free-electron 
state energy of 0.5 eV at radii corresponding to the configurational 
minimum energy of the ground state.66 

calculated values are 0.85 eV (0 = 80°) and 1.87 eV (0 = 0°). 

6.3. Comparisons of the CKJ and FFK Models 

The Copeland, Kestner, and Jortner (CKJ) semicontinuum 
model uses the adiabatic approximation. Calculations with this 
model have focused mainly on the excess electron in dilute 
metal-ammonia solutions. Where comparisons can be made 
the general features of the calculated results from the CKJ and 
FFK models are similar. Nevertheless, it is useful to summarize 
the theoretical differences between these two models. 

Figure 9. Distance parameters used in the CKJ semicontinuum model 
for the solvated electron.10 The definitions are the same as in Figure 
5 with the addition of the hard-core molecular radius a. 

(1) Perhaps the most significant difference between the two 
models is in the long-range potential. The long-range potential 
in the FFK semicontinuum model is self-consistent with the 
charge density of the excess electron, and it is obtained from 
the solution of Poisson's equation. The energy level calculation 
in the CKJ model involves the adiabatic approximation; the 
long-range potential is therefore created by a point charge 
located at the center of the cavity. A comparison of the results 
calculated from these two models is given in Table X. It is clear 
that the differences are not large. Although the dielectron 
problem is not discussed in this review, it should be pointed out 
that the difference in the long-range potential treatment is 
magnified when two spin-paired electrons reside in a common 
cavity. 

(2) In the distance definitions, the CKJ model introduces an 
additional parameter, namely the hard-core molecular radius a 
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TABLE X. Comparison of the CKJ and FFK Semicontinuum Models with Numerical Results on Solvated Electrons 
in Liquid Ammonia and Water 

system method potential r d , A M I s -*• 2p), eV Atf, eV V„,eV 

NH, 

H , 0 

variational" 
numerical0 

experimental 

variational6 

numerical0 

experimental 

adiabatic 
adiabatic 

SCF 
SCF 

2.75 
2.70 

1.93 
1.83 

1.03 
1.237 
0.80 

2.15 
2.717 
1.72 

0.909 
1.051 
1.7 ± 0.7 

2.75 
3.282 
1.7 

0.0 
0.0 

-1 .0 
-1 .0 

a N. R. Kestner, "Electrons in Fluids", J. Jortner and N. R. Kestner, Ed., Springer, Berlin, 1972. Here a more refined 
short-range molecular potential is used than in the original CKJ model. b K. Fueki, D. F. Feng, and L. Kevan, J. Am. Chem. 
Soc, 95, 1398 (1973). ° B. C. Webster and I. Carmichael, J. Chem. Phys.,68, 3086 (1978). 

Figure 10. Comparisons of the ground 1s state and excited 2p wave 
functions for the ammoniated electron as determined by the CKJ 
semicontinuum model using the variational method (broken curve) and 
the numerical method (solid curve).56 

(see Figure 9). This is approximated from theoretical charge 
contour data and in effect a prevents the excess electron from 
coming too close to the solvent molecules in the first solvation 
shell. There is no corresponding parameter in the FFK semi­
continuum model. However, Copeland et al.10 have shown that 
very little difference results by including this parameter. 

(3) Because the CKJ model uses the adiabatic approximation 
and the FFK model employs the self-consistent-field approxi­
mation, the method for energy evaluation in the two models is 
different. Rather than applying the variational principle to the 
total energy (electronic plus medium rearrangement energy) as 
is done in the FFK model, in the CKJ model it is applied only 
to the electronic energy. The parameters determined from the 
electronic energy calculation are subsequently used for calcu­
lating the medium rearrangement energy Em. The sum of the 
two constitutes the total energy of the system. Although the 
two models yield similar total energies (see Table X) for the liquid 
ammonia case, only the FFK semicontinuum model attains 
configurational stability for the aqueous system. 

(4) In the CKJ model an estimated hydrogen-hydrogen re­
pulsion energy is included in the total energy of the system. 

6.4. Numerical Evaluation of the Semicontinuum 
Model 

Webster and Carmichael used the semicontinuum potential 
in both the adiabatic and SCF approximations and solved the 
Schrodinger equation by using numerical integration.56 It is 
interesting to compare the wave function in terms of charge 
density obtained from the numerical method and the variational 
procedure. Figure 10 shows the ground and first excited 2p 

Figure 11. Comparisons of the ground 1s state and excited 2p state 
wave functions for the hydrated electron as determined by the FFK 
model using the numerical (solid curve) and variational methods ( , 
hydrogenic wave functions; —-, Guassian wave function).'6 

charge density of the ammoniated electron using the adiabatic 
approximation. Figure 11 shows the corresponding plots cal­
culated within the SCF approximation. It is clear from the figures 
that both the 1s and 2p hydrogenic wave functions assumed 
for the excess electron deviate considerably from the numerical 
results. With a Gaussian wave function,57 the ground state 
matches well with the numerical results at and around the 
maximum charge density; but at large distances from the 
electron in the ground state and at all distances in the excited 
state, the agreement is poor. Of course, we must remember 
that the results calculated using the numerical methods do not 
necessarily imply that better agreement with experiment should 
be attained. In fact, the agreement is not as good as with the 
variational calculation. This is due to the fact that the numerical 
results still hinge on the "correctness" of the guessed trapping 
potential. 

As expected, the total energy obtained by numerical inte­
gration as a function of the configurational coordinate is lower 
than that obtained from the variational procedure. The difference 
is greater for the ground state than for the first excited state. 
Table X summarizes these comparisons. Due to the differences 
in the ground-state energy the physical properties predicted from 
the numerical method such as Aw(Is —* 2p) and AHare greater 
than those calculated using the variational principle. 

Webster and Carmichael suggest that the polarizability of the 
solvated electron may serve as a good test of the theoretical 
model. The polarizability can, in principle, be calculated from 
a moment theory analysis of the optical absorption spectrum 
independent of any particular molecular model. However, such 
a determination depends critically on the accuracy with which 
the tails of the optical absorption are known. From the available 
data the polarizabilities of the solvated electron in liquid ammonia 
and water are estimated to be 113.4 and 26.6 A3, respectively.56 
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TABLE XI. Newton's "ab Initio" Semicontinuum Model for the Hydrated and Ammoniated Electrons5 

solvent molecules S 

hydrated electron ammoniated electron 

calculated results Ua lb 
lla IIIe Ib IIe 

£ ( S ) 4 - - £(4S), eV 

E(S)4-- E(S)4, eV 

^d". A 
C(R), ground state 

hv.eV 
AH, eV 
eH

sPm , A"3 

oH , G 

0 

0 

0 

0.34 
-0 .88 
-0 .06 
-1 .62 

2.65c 

0.72 
0.84 
1.20 
2.15 

-2 .9 X 
-4 .6 

2.5 1.93 2.75c 3.0 

0.886 
2.15 
2.75 

0.43 
0.50 
1.51 

-0 .63 X 10"3 

-1 .0 

0.210 
1.72 
2.45 

io-

a U is the polarization energy. When U - 0 it means that the dielectric continuum is neglected in the calculation. When 
U is included' in the variational calculation, the U value is omitted from the table. b Results taken from ref 5. All results 
are calculated based on V0 = 0 eV. The hydrated electron results are calculated for 298 K while the ammoniated electron is 
calculated for 240 K. c The variationally calculated cavity radius, r d° , is slightly larger than this value. This value is ob­
tained by taking into account the hydrogen-bonding effect, temperature effect, etc. d See ref 22. The 2.5-A value for 
rd° is selected for comparison only. It is not a result that comes from the variational calculation of the total energy. 
e Semicontinuum model results for the hydrated electron are from ref 58 and for the ammoniated system from ref 10. 

These values are bracketed by the continuum and the semi­
continuum potential results. 

6.5. Newton's "ab Initio" Semicontinuum Model 

As a result of the extensive studies based on the semicon­
tinuum model the following facts seem clear for solvated 
electrons in polar media. (1) To account for the unusual stability 
of the electron in condensed phases detailed interactions be­
tween the electron and its immediate neighbors must be included. 
(2) These short-range interactions are not solely responsible for 
the solvation process; the bulk medium also plays a major role 
in keeping the electron localized in a cavity. (3) To obtain a 
meaningful configurational stability of the excess electron the 
medium rearrangement energy must be included to compensate 
for the strong electron-medium interactions. 

In the semicontinuum model the short-range interactions are 
treated by a classical potential. A better representation of the 
interaction of the electron with the first solvation shell molecules 
can be achieved by ab initio methods as discussed in section 
2. However, the long-range interactions must also be included, 
and for them it seems most tractable to retain the classical 
polarization treatment used in the semicontinuum model. The 
question is how to combine the usual ab initio molecular orbital 
formalism with the classical electrostatic polarization treatment 
so that the electron and its immediate neighbors can be included 
explicitly while the bulk of the solvent molecules can be con­
sidered as a continuum characterized by such macroscopic 
parameters as the static and optical dielectric constants. 

Newton5 devised a method to link the ab initio MO method 
with an excess electron imbedded in a polarizable continuum 
and has provided the most complete calculations on the hydrated 
and ammoniated electron systems to date. In his model the 
electron is assumed to be at the center of a spherical cavity 
composed of four solvent molecules arranged tetrahedrally. The 
model assumes that in a symmetrical system the total energy 
of an excess electron in its ground state is expressed by 

E= E( + /2(1 - VDs) f ArAT'p(r)g(r,r')p(r') (9) 

E° is the usual unrestricted Hartree-Fock energy which takes 
into account the interactions between the excess electron and 
the nearest solvent electrons and also the interactions among 
the electrons of the solvent molecules. This replaces the 
short-range charge-dipole and dipole-dipole repulsion terms in 
the FFK semicontinuum model. The second term in (9) corre­

sponds to the energy of the medium beyond the first solvation 
shell as it is polarized by the charge density p(r) of the electron. 
The bulk medium is treated as a continuum as in the FFK 
semicontinuum model and is characterized by the static dielectric 
constant Ds. This part of the energy can be "switched off" to 
examine the effect of the immediate neighbors on the stabili­
zation of the excess electron in the cavity. To further generalize 
the equation, Newton added energy Eq to the total energy. This 
term approximates the repulsive interactions between the excess 
electron and the bulk solvent electrons. This term is only sig­
nificant when the electron extends well beyond the first solvation 
shell. 

It is found that it is slightly more favorable for the molecular 
dipole of the solvent to be approximately oriented toward the 
center of the cavity than for the OH or NH bonds to be so 
oriented. However the energy difference between dipote-oriented 
or bond-oriented configurations is within the calculational un­
certainty. For the hydrated electron case Newton also inves­
tigated a pentamer model in which one additional water molecule 
is placed at the center of the cavity with all the water molecules 
in an icelike structural configuration. Again the above dipole-
oriented tetramer is slightly more stable. 

Some of the calculated results are listed in Table XI. Some 
FFK and CKJ semicontinuum model results are also included 
for comparison. 

As mentioned earlier, one of the advantages of using the 
molecular orbital method is that it can give some information 
as to how stable the cavity system is with respect to E(4S) or 
E(S)4. Based on the second and third row results in Table XI 
it can be seen that the solvated electron system is unstable with 
respect to four isolated molecules, particularly if the dielectric 
continuum is neglected. However, when the continuum is in­
cluded, the solvated electron is strongly bound relative to four 
tetrahedrally oriented neutral molecules. This, coupled with the 
charge distribution, C(R), strongly supports the idea that (1) 
second or higher solvation shells are necessary for localization 
of the electron and (2) the relative energies provide a rough 
picture of what type of energy magnitudes are involved during 
the solvation process. The model provides good agreement 
between the calculated and experimental values of the optical 
absorption maximum for both the hydrated and ammoniated 
electron systems. This however requires limited adjustment of 
the quasi free electron energy, V0, to be 1 eV. The signs of 
the calculated spin density on the protons are negative for both 
systems. For the ammoniated system this may be consistent 
with experimental Knight shift data; however, the experimental 
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conclusions are not unambiguous. In the hydrated electron case, 
however, electron spin-echo data seem inconsistent with a 
negative spin density on the protons.27 Further theoretical and 
experimental work on the spin density sign inconsistency is 
desirable. 

Newton's calculations clearly support the semicontinuum 
model results that the electronic wave function extends well into 
the dielectric continuum and that the localization process must 
involve solvent molecules beyond the first solvation shell. 

6.6. Semicontinuum Model for Nonpolar Media 

It has been well documented1 that electrons generated by 
7 irradiation or photoionization of a suitable solute can be 
localized and solvated in both polar and nonpolar media. In polar 
media the electron is localized due to the strong interactions 
between the electron and the dipole moment of the solvent 
molecules. This is the cavity model, and it is generally well 
accepted. In nonpolar media the molecular dipole moment and 
the difference between the optical and static dielectric constants 
are essentially negligible. Furthermore, since the excess 
electrons in nonpolar media all absorb light at about the same 
wavelength (1700-2000 nm), the formulation of a theoretical 
model based on the extension of the semicontinuum model to 
nonpolar systems become less obvious. However, Magat58 has 
given some qualitative energetic arguments as to why electrons 
can be trapped in nonpolar media. These were based on a 
modified "bubble" model which has worked well for rare gas 
systems. 

The development of the semicontinuum model to electrons 
in nonpolar media was based on a number of experimental data 
relating to such systems. For instance, recent electron spin-
echo studies on solvated electrons in 3-methylpentane glass 
suggest that there are 18-20 equivalent nearest protons ap­
proximately 3.0 A away from the solvated electron.59 The 
possibility that C-H bond dipoles may play a role in the solvation 
process is indirectly reflected from pulse radiolysis results on 
the time to reach stable optical spectra as a function of matrix 
polarity.1 The conduction electron energy V0 provides infor­
mation on the electron-medium interaction when the electron 
is mobile or in a delocalized conduction state relative to the 
vacuum state. For polar systems this parameter has been 
argued on theoretical bases to be small and in the range -1 to 
+ 1 eV. However, now a number of V0 values have been 
measured using a photoionization threshold method for a variety 
of alkanes.43-45 These values can be used directly in the 
semicontinuum model when it is properly modified for nonpolar 
systems. The mobilities of excess or quasi-free electrons in 
the delocalized conduction state also provide relevant dynamic 
information about the electron. However, the large range of 
electron mobilities over three orders of magnitude60 suggests 
that the geometrical structure of the solvent molecules around 
the electron can have important energy effects. 

Since semiquantitative understanding of electrons in polar 
solvents seems to have been achieved by the semicontinuum 
model,12 Feng, Kevan, and Yoshida61 first examined the possibility 
of electron localization in alkanes via CH bond dipoles. This 
model, which can be called the FKY microdipole model, assumes 
that the electron resides in a spherical cavity constructed from 
N symmetrically oriented CH2 fragments. In the calculations 
N = 4, 8, and 12 were considered. The various energy terms 
take the same form as for polar media with the dipole moment 
and polarizability being replaced by the CH bond dipole and CH2 

fragment polarizability evaluated from the parallel and perpen­
dicular components. The only other term that is clearly different 
from polar media is the dipole-dipole repulsion term. The re­
pulsions between finite CH bond dipoles are represented by eq 
10, where k and I refer to a pair of finite dipoles whose mag­
nitudes are |mk| and \m,\ separated by a distance |?w|. For the 

mk-m| (mk-rk|)(mV?ki) 
EmV) = - z - T - - 3 ZTB <10> 

KiI3 kkil5 

m's, both the permanent and the induced dipole moments are 
included. Although V0 values have been measured for many 
nonpolar media, in this calculation values of 0.5, 0, -0.5 eV are 
used to examine the sensitivity of the calculated results to this 
parameter. The total energy of the electron in the /th state (eq 
11) is calculated in the same manner as for polar systems using 

Et(/) = Ek(i) + Ee
s(i) + Em*(i) + EJ(O + EJl) + Eq(/) + 

£¥ (11) 

the variational principle. Energy values obtained at various r6 

values are then used to construct the configurational coordinate 
diagram. 

In addition to examining the dependence on V0 and on the 
number of solvent molecules around the solvated electron, other 
parameters were also varied. For example, distortion of the 
HCH bond angle away from the regular tetrahedral value and 
decreasing the bond dipole value by a factor of two were in­
vestigated and found to have only a minor influence on the 
results. The 1s —- 2p transition energy hv increases with V0. 
This is in the same direction, although with a lesser change in 
magnitude, as that found in polar solvents. When N is increased 
from 4 to 12, the stability factor, V0 - E, (1s), defined by Fueki 
and Kevan, drops from approximately 0.3 to 0.03. This is 
inconsistent with later spin-echo results59 which suggests N ~ 
9. 

In comparison with polar systems, all the different A/cases 
calculated are very weakly stable or unstable. This is due to 
an overestimation of the dipole-dipole repulsion term given by 
eq 10. The case for N = 4 gives the most favorable calculated 
optical absorption energy. The results of this calculation are 
listed in Table XII for comparison with other models. As one 
can see, the calculated 1s —»• 2p transition energy is only slightly 
greater than half of the observed value. 

Nishida developed a modification of the FKY microdipole model 
for electrons in nonpolar solvents. He assumed that the CH bond 
microdipoles could be neglected on the basis that the elec-
tron-microdipole attractive interaction was approximately can­
celed by the microdipole-microdipole repulsive energy. Kimura 
et al.63 simultaneously suggested the same approximation rea­
soning from new experimental data (see below). Nishida also 
assumed that each molecule could be represented by a CH 
fragment and that the exchange interaction between the carbon 
core and the excess electron was large enough to be explicitly 
included. For N CH fragments the induced dipole interaction 
energy is 

r Ne2'a C1 
EeV) = - * r — 7 - ^ / d T (12) 

Jr<ra 2rd
4 

where a is the polarizability of the CH bond, ra is the distance 
from the cavity center to the carbon atom (see Figure 10), ^1 

is the excess electronic wave function in state /, and C1 is the 
charge distribution within rd. This is the same equation as in 
the FKY microdipole model with /n(CH) = 0. By assuming M(CH) 
= 0 the short-range medium rearrangement energy arises only 
from the induced-dipole-induced-dipole interaction and is given 
by eq 13, where DN is a geometrical constant depending on how 

the N CH fragments are arranged at the surface of the cavity. 
In both (12) and (13) a point molecule approximation is used. 
The energies Eq and E j + Ej are the same as in the micro­
dipole model. 
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TABLE XII. Results on Nonpolar Systems:" 
for the Solvated Electron in Nonpolar Media 

Comparisons between the FKY Microdipole Model and the Nishida6 Model 

hv 

model system TV M" C d calcd exptl'' f 
FKY 

Nishida 

KFNK 

CH, 
fragments 
3MP 

3MP 

4 
8 
4 
8 
4 
8 

0.5 
0.0 
1.20 
1.20 
0.60 
0.60 

2.25 
2.74 
2.01 
2.10 
4.2 
5.0 

0.2092 
0.1439 
0.242 
0.247 
0.756 
0.785 

0.0006 
0.0015 
0.001 
0.001 
0.038 
0.132 

0.426 
0.168 
0.717 
0.803 
0.605 
0.623 

0.73 0.234 
0.213 
0.364 
0.568 

model system N E^ E„ EJ E i En En E-HH 

V 0 - . 
^ t ( Is ) ' 

FKY 

Nishida 

CH2 
fragments 
3MP 

KFNK 3MP 

FKY 

Nishida 

CH2 
fragments 
3MP 

KFNK 3MP 

0.6513 
0.2913 
0.679 
0.636 
1.099 
0.775 

0.1102 
0.1078 
0.140 
0.140 
0.276 
0.685 

-0.2548 
0.1918 

-0.067 
-0 .088 
-1.052 
-0 .882 

-0.0008 
-0 .0023 
-0 .000 
-0 .000 
-0.007 
-0 .181 

0.0722 
0.1706 
0.006 
0.015 
0.169 
0.270 

0.0104 
0.0321 
0.000 
0.000 
0.001 
0.067 

Ground Is State'' 
1.7200 

-1.1794 
-2.014 
-1 .948 
-1 .026 
-0 .916 

0.8600 
0.5897 
1.007 
0.974 
0.513 
0.458 

Excited 2p Stateh 

-0.4496 
-0.4395 
-1.102 
-0 .551 
-0.732 
-0.878 

0.2259 
0.2216 
0.551 
0.276 
0.366 
0.439 

0.0817 
0.1212 
0.127 
0.139 
0.089 
0.324 

0.0756 
0.1212 
0.127 
0.139 
0.089 
0.324 

0.3570 
0.0000 
0.910 
0.904 
0.191 
0.178 

0.4995 
0.0000 
1.199 
1.198 
0.930 
0.590 

-0.177 
-0.237 

0.113 
0.069 

-0.002 
-0.003 

0.113 
0.069 

0.0473 
-0.2083 

0.471 
0.395 
0.096 
0.276 

0.4737 
0.0408 
1.188 
1.198 
1.036 
1.116 

0.4527 
0.2083 
0.729 
0.805 
0.904 
0.724 

a See ref 72; all energies are in eV and distances are in A. b See ref 73. c Distance between the center of the cavity and 
the nearest carbon atom. It is the value at the configurational minimum. d Excess electron charge density enclosed with 
the radius rd°. e In Nishida's model the V0 values are experimental values taken from ref 55. ^ L. Kevan, Adv. Radiat. 
Chem., 4, 181 (1974). 8 Oscillator strength. h Various energy terms used in the FKY model are adopted here, although 
there are some differences in the Ee

s and Em
s terms in the two models (see text). ' V0 - Et(ls) gives a measure of the local­

ization stability of the excess electron. See T. Kimura, K. Fueki, P. Narayana, and L. Kevan, Can. J. Chem., 55, 1940 
(1977). 

The exchange interaction energy between the carbon core 
and the excess electron is given by eq 14, where xM/'s ^e wave 

8 
E s = -e2Z 

M ?,/h(sw)"1*' dr (14) 

function of the y'th core electron of the carbon atom located at 
the center of the /uth nearest neighbor CH fragment. This energy 
was calculated using Slater's free electron approximation with 
a correction factor ac and approximating %^i by a 1s Slater 
orbital. Nishida found this exchange energy to be relatively large 
in the ground state and essentially negligible for the more diffuse 
excited state. This could be an important point, but it is cautioned 
that the evaluation of this exchange energy is highly approximate, 
more so than the other energy terms in the model. Carmichael64 

has evaluated (14) numerically for Nishida's parameters for the 
ground state and finds values four- to fivefold smaller. He has 
also drawn attention to the fact that accurate calculation of the 
exchange interaction probably requires the excess wavefunction 
to be orthogonalized to the carbon cores. 

The results of Nishida's model for electrons in 3-methylpentane 
are included in Table XII for comparison. In the original paper6213 

the results for electrons in methylcyclohexane are also given. 
The values for V0 - E,(1s) at N= 4 and 6 are larger than the 
corresponding ones for the FKY microdipole model. These 
values are comparable to those obtained for some of the less 
polar media such as methyltetrahydrofuran, triethylamine, etc., 
but smaller than those in a polar system such as water by more 
than a factor of two. The source of the difference in V0 - E,(1s) 
can be traced by examining the various energy terms. All the 
terms that appear in both models are comparable in magnitude 
except Eex

s, Em
s, and £q. The increase in Eq is due to the V0 

value used. The exchange term F6x plus the short-range 
electronic energy of eq 12 in Nishida's model give similar values 
to E9

8 in the FKY model. Consequently, the main difference 
between the two models is in Em

s. In Nishida's model the 
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Figure 12. Comparisons between the FKY61 microdipole, KFNK,63 and 
Nishida models6 for the localized electron in the nonpolar medium, 
3-methylpentane. 

dipole-dipole repulsive energy between the oriented dipoles is 
assumed to be compensated by the decreased energy between 
the electron and these dipoles. However, in the FKY microdipole 
model all pairwise CH2 dipoles are included explicitly, and 
consequently an overestimation of the dipole repulsion is to be 
expected. When the nonequilibrium 2p excited state is calcu­
lated, Nishida's model can account for nearly the observed 
optical transition energy. Although the total energy between the 
two models is different, the physical features are surprisingly 
similar. For example, the distance between the cavity center 
and the nearest carbon atom is similar (see Table XII or Figure 
12). The charge distribution of the excess electron enclosed 
within this distance is also quite similar for both the ground 1s 
and excited 2p states. 

As pointed out earlier, electrons in most of the nonpolar media 
studied all absorb light in approximately the same region. This 
makes the comparisons between the calculated hv (1s —* 2p) 
and the experimental hvrm% an even less sensitive test of the 
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model than in polar systems. A more valid comparison may 
be how well the stability criterion ^0 - ^tCs) correlates with 
electron mobility data. 

The widely varying electron mobilities in alkanes suggested 
to Kimura et al.63 that the explicit molecular structure of the 
molecules solvating the electron must be incorporated in any 
realistic model of electron binding in alkanes. To accomplish 
this, the polarization of the solvent molecule is assumed to be 
distributed over the C-C bonds in each molecule. If there is 
one C-C bond, then the interaction potential for the /th electronic 
state between the electron and the /th C-C polarized bond of 
finite length is given by eq 15, where n is the number of C-C 

V1V) = 
ae2 ( 1 _ 1 \ 

" ^ C O S ^ \ 0 3 ( m | n ) - f y 3 ( m a J ^ < ) (15) 

bonds in the molecule, /is the C-C bond length, a is the po-
larizability of the medium molecule, 6 is the angle between the 
/th C-C bond and a specifically defined radial direction, and ry(min) 

and r/(max) are the minimum and maximum of this radial distance 
of the projected /th bond. Figure 10 clearly shows the exact 
definition of these three parameters for a particular orientation 
of the 3-methylpentane molecule. C is the charge distribution 
of the electron enclosed within the distance rj0. Within the 
framework of the semicontinuum model, this potential yields the 
short-range electronic energy where N is the number of solvent 

Ee*(i) = LNVjUmrjo) (16) 

molecules in the first solvation shell. The short-range medium 
rearrangement energy is given by eq 13. 

Since the number of hydrogens in alkanes is considerably 
greater than that in the polar systems, H2O or NH3, H-H re­
pulsions are anticipated to be greater and thus an £HH term is 
added to the total energy. The EHH term is approximated by 
the expression 

fHH(eV) = E a X 434 exp(-4.6o,) (17) 
h 

where gh is the number of hydrogen atom pairs separated by 
a distance r„(A). 

By use of the various appropriate physical parameters and 
other geometrical constants that determine physically reasonable 
conformations of the first shell solvent molecules, the energy 
of the excess electron is calculated by minimization with respect 
to the trial wave function parameter. A configurational coor­
dinate diagram is obtained for each system when the energy 
is minimized at various cavity radii rd. The calculated results 
reveal that good agreement is obtained between calculated hv(1s 
-* 2p) and experimental values. More importantly, when V0 

- Et(1s) values for different systems are calculated, the 
ground-state stability of the excess electron correlates very well 
with that inferred from electron mobility data. The larger the 
electron mobility, the more delocalized is the electron in the 
conduction state and, therefore, the smaller is V0 - Et(

1s)- F ° r 

comparison, the geometries of the KFNK,63 FKY,61 and Nishida62 

models are shown in Figure 12 for electrons in 3-methylpentane; 
the actual molecular geometry is only utilized in the KFNK model. 

The results obtained from the KFNK structured semicontinuum 
model correlate well with experimental data. The model also 
accounts for the blue shift of the solvated electron spectra as 
observed by pulse radiolysis in deuterated liquid propane as the 
temperature is decreased.65 

7. Current Problems 

There are several current problems in solvated electron theory 
which deserve attention. Now that the detailed geometrical 
structure of solvated electrons is known, at least in aqueous 
systems,25 more attention should be paid to understanding this 

4.0 G Ck 
024 % H 

Figure 13. Geometrical structure of the solvated electron in aqueous 
glasses determined from electron spin-echo modulation magnetic 
resonance data. The isotropic hyperfine couplings to H and 17O are 
given along with the corresponding percentage of solvated electron 
spin density on these atoms. 

structure theoretically. A second major problem is how to 
explain the width of the optical absorption line. The existing 
theoretical models discussed in previous sections all predict a 
line shape that is too narrow and symmetric compared to ex­
periment. A third related problem is how to calculate solvated 
electron tunneling rates66,67 to scavengers for which there now 
exist much data.68 We briefly discuss the first two problems 
in this section. 

7.1. Molecular Geometry of Solvated Electrons 

In the semicontinuum model the first solvation shell molecules 
are represented by point dipoles, so no detailed geometrical 
information is obtained. It has generally been assumed that the 
molecular dipoles of the first solvation shell molecules are at 
least approximately oriented toward the excess electron. This 
would certainly be the case if the electron were a point charge 
and the first solvation shell polar molecules were far enough 
removed to be well approximated as point dipoles. However, 
the solvated electron wave function extends to some extent over 
its first solvation shell. So if the electron-molecule interactions 
are strong enough, chemical forces such as exchange will come 
into play to affect the geometry of the solvated electron. 

We can conceive of two limiting geometries for solvated 
electrons in polar media. In one the molecular dipoles of the 
solvent molecules are oriented toward the electron and in the 
other a polar or hydrogen bond of the solvent molecules is 
oriented toward the electron. Current electron magnetic reso­
nance experiments are giving the first detailed experimental 
geometries of solvated electrons in different media2569,70 which 
provide benchmarks for theoretical comparison. Two contrasting 
cases are the geometries of solvated electrons in water25 and 
ethanol.70 In water the electron is surrounded by six waters 
arranged with one OH bond of each water oriented octahedrally 
about the electron with an electron to proton distance of 2.1 
A, as shown in Figure 13. So the molecular dipole of water 
is nor oriented toward the electron. In ethanol the electron is 
surrounded tetrahedrally by four ethanols arranged with their 
molecular dipoles, which approximately bisect the COH bond 
angle,71 oriented toward the electron; the orientation of a single 
ethanol molecule with respect to the electron is shown in Figure 
14. The theoretical challenge is to account for these differ­
ences. 

The solvation geometry can be explored theoretically by 
molecular orbital methods and by the "ab initio" semicontinuum 
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Figure 14. Suggested orientation of an individual first solvation shell 
molecule with respect to the solvated electron in ethanol from electron 
spin-echo data.70 The distances are average distances to the OH, CH2, 
and CH3 protons. The entire solvation shell includes four ethanol 
molecules so oriented and arranged tetrahedrally around the electron. 
The molecular dipole of ethanol approximately bisects the COH angle 
and can be seen to be oriented approximately toward the electron. 

model. Calculations to date have only been done for water and 
usually only for tetrahedral geometries. Howat and WebsterSb 

used the INDO approximation to compare OH-bond-oriented and 
molecular-dipole-oriented tetrahedral geometries for water. They 
found that the OH-bond-oriented geometry had lower energy but, 
of course, the whole solvated electron system is unstable in that 
approximation. Noell and Morokuma21 compared a molecu­
lar-dipole-oriented tetrahedral geometry with a bond-oriented 
octahedral geometry for water in their fractional charge mo­
lecular orbital model. Again the entire system is unstable, but 
given a specific neutral arrangement of waters they found the 
bond-oriented geometry to be more stable. In the "ab initio" 
semicontinuum model of Newton5 both bond- and dipole-oriented 
tetrahedral geometries were considered. In this model the 
solvated electron is stable and the dipole-oriented geometry is 
slightly more stable. These results do not suggest that the 
existent theory can "predict" the experimental solvation geom­
etry, but no theoretical studies specifically directed toward the 
geometry problem, in light of the new experimental data, have 
yet been made. 

7.2. Optical Absorption Line Shape 

It is well-known that the optical absorption spectrum of the 
solvated electron in glasses or liquids is broad, structureless, 
and asymmetric toward the high-energy side. Regardless of the 
medium, all spectra are very similar in shape although the energy 
of the maximum differs. The gross features of the spectrum, 
such as the optical absorption maximum as a function of matrix 
polarity, temperature, pressure, is quite well understood. 
However, the simulation of the line shape directly from existing 
models still poses some problems. 

Both the FFK and CKJ models can only account for less than 
half of the experimental line width. More disturbing is the fact 
that the simulated line shape is approximately symmetric rather 
than skewed toward the high-energy side of the spectrum, as 
found experimentally. Kestner and Jortner52 explored this 
problem with a temperature-independent potential and calculated 
the total ground- and excited-state energies as a function of both 
the cavity radius and the dipole orientation angle. They called 
this the two-coordinate model. The results obtained in this 
manner are thermally averaged by introducing a Boltzmann 
weighted factor. The results are very similar to the effect of 
a Langevin function incorporated in the short-range charge-
dipole potential and the dipole-dipole repulsion term. The 
broadening effect on the line shape is still small and the asym­
metry is in the wrong direction. 
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Figure 15. Theoretical line shape for the ammoniated electron as 
calculated by the CKJ semicontinuum model.39 

Gaathon and Jortner suggested72 that the spectral width may 
be associated with a distribution of solvation shell sizes with 4, 
6, and 8 molecules, for example. Experimentally one might then 
expect to see a significant broadening of the line width as the 
density increases. However, experimental studies indicate very 
little difference in the line width as the density is changed.73 Also 
the calculation of a composite spectrum of N = 4 and N= 6 
does indeed show that the calculated line width is still well below 
the experimental one. 

Another possibility is that the line width reflects transitions to 
higher bound states. This would broaden the spectrum on the 
high-energy side. Kestner39 examines 1s - * 3p, 1s —*• 4p, and 
1s -»• continuum transitions by assuming that these higher states 
can be represented by the Rydberg formula. Unfortunately, these 
transitions are too high in energy and also the corresponding 
oscillator strengths are too small to broaden the principal 1s —»• 
2p line. Numerical solutions of the semicontinuum model also 
support this conclusion.56 The role of solvent vibrational modes 
on the ground-state energy was also estimated assuming har­
monic motion, but the line broadening remains unsufficient. 
Figure 15 summarizes these studies on the line-shape problem 
for the solvated electron in liquid ammonia. 

A variation on the idea of incorporating higher bound states 
to explain the optical band shape is to assume a statistical 
distribution of trap depths in a semicontinuum model frame­
work.74 Such a model can account for the optical band width 
of solvated electrons at the expense of adding two additional 
parameters characterizing the distribution of cavity sizes and 
short-range interaction energies. However, the physical sig­
nificance of such a model is unclear. 

Tachiya et al.75 also examined the line-shape problem based 
on the simpler continuum model.9 There the hydrated electron 
spectrum is simulated by calculating the 1s —• 2p transition 
energy with different fractions of orientational polarization. With 
this method the spectrum obtained is still symmetrical. 

By adjusting a spherical well in such a way that only one bound 
state is obtained, Kajiwara et al.76 and Huang et al.77 simulated 
the bound-continuum band shape for the solvated electron in 
ammonia, water, and alcohol. In general, these photoionization 
spectra agree well with the experimental line shape. Mazzacuratj 
et al.,78 using an exact absorbance expression for an electron 
trapped in a spherical cavity, also obtained good agreement. 
Although the potential is not very realistic and the long-range 
interactions are completely ignored, recent photoemission 
spectroscopic data do support a significant photoionization 
contribution to the optical spectrum.79 Fueki et al.80 employed 
a hydrogenic model for the photoionization probability, used 
parameters calculated from the semicontinuum model, and 
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obtained bound-free spectral shapes for electrons in several 
polar media. Their results are in reasonable agreement with 
the wavelength dependence of photobleaching and photocon­
ductivity in these systems. 

In the above models the Hamiltonian of the excess electron 
system is simplified by including only the motion of the excess 
electron. The effect of the vibrational motion of the solvent 
molecules is added in an ad hoc fashion after the calculation 
of the electronic motion to try to account for the spectral width. 
Banerjee and Simons81 have attacked the problem more rig­
orously by starting with a Hamiltonian which includes both the 
electronic and the vibrational motions of the entire system of 
electron plus solvent molecules. Their new feature is that they 
treat both the electronic and vibrational motions in a unified 
fashion. They use this Hamiltonian to develop quite general 
expressions for the time-correlation function of the dipole mo­
ment operator, {F(t)f(0)). The Fourier transform of this function 
formally gives the absorption band-shape function, /(co), through 
eq 18. This theory appears intimidatingly formal, but the authors 

J M = (2TT)-1 f e"»'df (F(OF(O)) (18) 
%J -co 

have made a number of simplifying approximations to enable 
them to apply it to solvated electrons in ethanol and anthracene. 
They finally obtain I(w) as a sum of three contributions. The 
largest contribution corresponds to a localized transition. This 
is similar to that considered in semicontinuum models with the 
addition of Franck-Condon factors for coupling of vibrational 
motions. The other contributions correspond to nonlocalized 
transitions which include transitions from the ground state of one 
site to excited states of neighboring sites. These contributions 
are equivalent to electron-hopping transitions. It is the con­
tributions from these nonlocalized transitions which can formally 
account for the skewedness of the optical band. 

The simplified theoretical expressions contain nine parameters 
which are determined by fitting a simulated band shape to the 
experimental one. These parameters include the fundamental 
frequency, the threshold frequency for the absorption, two 
geometrical displacement parameters, the localized dipole 
transition amplitude, the ratio of the nonlocalized to the nonlo­
calized plus localized dipole transition amplitude, the width of 
the inhomogeneous broadening, and two fluctuation parameters. 
It is not surprising that a fit to the experimental spectrum is 
achieved with this many remaining parameters. Also, the 
question of the uniqueness of the parameters deduced remains 
to be explored. 

The critical point is not that a fit is achieved, but what physical 
insight about the band shape can be gained from this theory in 
its present form. The physical basis for the spectral width does 
not yet seem to be succinctly elucidated. However, the 
skewedness to high energy depends physically on contributions 
from nonlocalized transitions. Such contributions seem to imply 
that the solvated electrons have a finite probability of hopping 
from site to site. Furthermore, it would seem that this probability 
is greater on the high-energy side of the spectrum. If so, this 
model bears some physical similarity to a semicontinuum model 
involving both bound-bound and bound-continuum transitions 
which can also fit the solvated electron band shape.80 

The formal model of Banerjee and Simons81 is impressive. 
Further work on its application to a variety of solvent systems 
is necessary to show whether its derived parameters show 
physically sensible trends and to clarify its physical implications 
concerning the band shape. 

8. Concluding Remarks 

The CKJ and FFK semicontinuum model appears to be a 
reasonably successful theoretical model for treating the energy 

level structure of solvated electrons. It is particularly useful 
because it is simple enough to apply to a wide variety of solvent 
systems at different temperatures and pressures. It is successful 
at predicting many experimental trends. 

Nevertheless, the model has demonstrated defects both in 
the potential14 and in the wave functions56 used. The potential 
is too long range and the wave functions are too diffuse. 

It is necessary to use the ab initio semicontinuum model to 
study the geometrical structure of solvated electrons. Since good 
experimental data now exist for solvated electrons in, at least, 
water and ethanol with greatly contrasting geometries, it is 
possible to test the success of the ab initio model for treating 
geometry. However, the ab initio modification of the CKJ and 
FFK semicontinuum model makes it expensive and time con­
suming to apply. 

The semicontinuum model is notably unsuccessful in treating 
the optical absorption band shape. A number of other models 
have been proposed, some of which claim successful fits. In 
all cases it appears that some contribution from bound-con­
tinuum transitions must be invoked. This seems consistent with 
experiment. However, none of the theories have yet been able 
to give a clear physical basis for the observed line shape. 

The development of solvated electron theory has depended 
on a continual and exciting interplay between experiment and 
theory. Many physical and chemical advances have been made 
with fallout into various other scientific fields. This interplay must 
be continued for future advancement in our knowledge of 
localized electrons in condensed media. 
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