Δ_{R} Ring Contributions to ³¹P NMR Parameters of Transition-Metal–Phosphorus Chelate Complexes

PHILIP E. GARROU

Dow Chemical, Central Research—New England Laboratory, Wayland, Massachusetts 01778

Received August 11, 1980

Contents

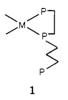
1. Introduction	229
1.1. Previous Methods of Determining Chelation	229
in Phosphine Complexes	
1.2. Discovery of Δ_{R}	230
1.3. Anomalous ³ P Chemical Shifts in Cyclic	231
Organophosphorus Compounds	
1.4. Scope, Delinition of Terms, and List of	231
Structural Abbreviations	
2. Diphosphines	232
2.1. Group 5B: Vanadium	232
2.2. Group 6B: Cr. Mo. W	232
2.3. Group 7B: Mn. Re	233
2.4. Group 8	233
2.4a. Fe. Ru. Os	233
2.4b. Co. Rh. Ir	234
2.4c. Ni. Pd. Pt	236
3. Alkenylphosphine Complexes	237
3.1. Butenylphosphines	237
3.2. Allylphosphines	239
3.3. Styrylphosphines	239
4. Orthometalated Phosphines	240
5. Phosphides	241
6. Effects	243
6.1. Of Position In the Period C Group	243
6.2. OI Heteroatoms	243
6.3. OI R Group on Phosphorus	244
6.4. OI Backbone Unsaturation	244
7. Ring Contributions Observed	244
7.1. In P-P Coupling	244
7.2. In M-P Coupling	245
8. Comparison of ³ P NMR to NMR of Other	246
Nuclei	
8.1. ³³ C	246
8.2. ⁹⁹⁵ Pt	246
8.3. ⁵ '∨	246
9. Relationships	247
9.1. To Catalytic Reactions	247
9.2. To Polymer-Anchored Reagents	247
10. Conclusions	247
11. Appendix	247
12. References	265

1. Introduction

One of the basic problems of the organotransitionmetal chemist is the determination of the structure and stereochemistry of complex molecules. Organophosphines are building blocks which have wide use in the stabilization of a variety of such molecules, many of which catalyze processes which are now of great importance to the chemical industry. In recent years the widespread appearance of relatively cheap NMR

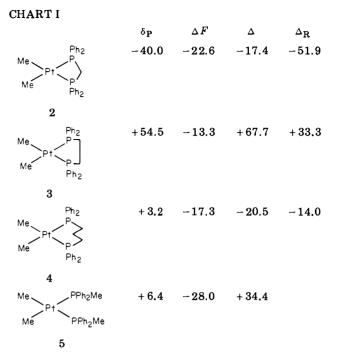
P. E. Garrou was born in New York City In 1949 and received hIs Ph.D. at Indiana University in 1974. During postdoctoral work with Dick Heck in Delaware, he studied the mechanism of CO insertion into organo-Ni, -Pd, and -Pt complexes and discovered and proposed the general utility of $\Delta_{\rm R}$ for ³¹P spectroscopy. He then joined Dow Chemical's New England Laboratory where he is presently leading the catalysis group. His research interests include homogeneous catalysis, supported organometallics, and synthesis gas chemistry.

equipment with Fourier transform capabilities has led to a great deal of ³¹P data aimed at exploring the potential of this technique for such structural and stereochemical elucidations. In the early '70s Shaw and co-workers¹ pointed out that there is a good linear correlation between the chemical shift of a tertiary phosphine, δF , and the change in the chemical shift upon coordination to a metal, Δ . From the relationship $\Delta = A\delta F + B$, coordination shifts of phosphines can actually be predicted, for a given complex, once enough analogues are known for calculation of the constants A and B. This relationship faltered, however, upon ex_{\bullet} amination of the ${}^{31}P$ chemical shifts of a number of phosphorus chelate complexes. Yet the determination of the mode of bonding in potentially chelating ligands or ligands which are metalated is possible through knowledge of the empirical relationship of ring chelation to the δP values.


1.1. Previous Methods of Determining Chelation in Phosphine Complexes

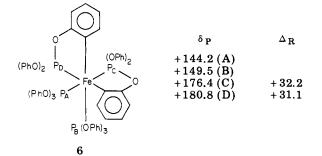
The three basic classes of potential phosphine chelate ligands are diphosphines, alkenylphosphines, and ligands with the potential to be cyclometalated. By far the largest number of problems have been encountered in the structural determination of cyclometalated complexes, while enough specific problems have arisen in both other categories to make it clear that one should have as many means of structural analysis available as possible.

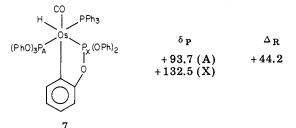
Cyclometalation or orthometalation is used to describe complexes in which the ligand has undergone an intramolecular metalation to form a chelate ring containing a metal-carbon σ bond. Such reactions have been identified for nitrogen, phosphine, and phosphite ligands. There are several relevant reviews on complexes of this type.^{2,3} The identification of cyclometalated complexes was at first accomplished by infrared spectroscopy. The regions 700-800 and ~ 1100 cm^{-1} were studied when metalation occurred on a phenyl ring; however, these assignments are tenuous at best and cannot be looked at as positive confirmation of ring formation. For example, in a series of orthometalated PPh₃ complexes of Ru the authors⁴ noted that all the complexes reveal infrared absorptions in the region characteristic of ortho-disubstituted phenyl (1500-1600, 1400-1450, 1100, 730 cm⁻¹) of an orthometalated phosphine. They further report that many of the reported complexes have extra peaks in all of these regions, and assignments based on vibrations near 1100 and 730 cm⁻¹ are complicated by vibrations from monosubstituted phenyl rings. While examination of the IR spectra of "Fe[P(OPh)₃]₄" and Ni[P(OPh)₃]₄ revealed miniscule changes, other methods were necessary to identify orthometalation in the Fe compound. ¹H NMR is also complicated by the presence of complex patterns when metalation has occurred either on a phenyl ring or an alkyl group in the presence of unmetalated ligands.^{4,5} ¹³C NMR has also been examined,⁶ but, on all but the simplest systems, this method is complicated by overlapping resonances and the inherent low intensity of the metalated carbon. Analyses of these spectra become research projects in their own right. The very fact that the structures of so many cyclometalated complexes have been solved by X-ray analysis is evidence of the need for alternate means of identification.


The structures of butenyl- and styrylphosphine complexes are usually resolved by a study of the ¹H NMR of the olefinic protons and an IR study of the olefinic region.⁷⁻⁹ Complications result with allylic phosphines which metalate,¹⁰ and with a metal such as iridium, where $\nu_{\rm C=C}$ is usually obscured by phenyl resonances and/or which orthometalates butenylphosphines as well.¹¹

Analysis of chelating phosphine complexes is usually accomplished by IR spectroscopy, if dealing with carbonyl complexes, or ³¹P spectroscopy where one observes a deshielding effect upon bonding and thus can easily tell whether a bisphosphine is functioning in a monodentate or bidentate fashion.^{12,13} Problems can arise when polydentate ligands are examined which have the potential to form different size chelate rings, as in eptp (1).

1.2. Discovery of $\Delta_{\mathbf{R}}$

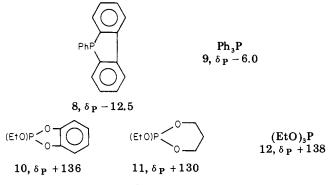

During the early 70s researchers were beginning to examine the ³¹P spectra of such complexes in an attempt to use ³¹P NMR as a structural tool. The first observation of a chelating effect in ³¹P was by Merri-


wether in 1961 during his examination of a series of nickel carbonyl-phosphine complexes.¹⁴ This observation lay dormant until the mid 70s when several authors pointed out that chemical shift values ($\delta_{\rm P}$) are directly affected by the presence of phosphorus in chelate rings of diphosphines.¹⁵⁻¹⁷ Also, we pointed out¹⁸ that this "ring contribution" was a general phenomenon, observable in all known polyphosphines, alkenylphosphines, and orthometalated complexes, and caused chemical shifts to fall outside the range predicted for the $\Delta = A\delta F + B$ relationship. In order to correlate such data a new parameter ($\Delta_{\rm R}$, the "ring contribution" to a ³¹P chemical shift) was defined as the difference between the coordination chemical shift, Δ , of a cis-disubstituted phosphine complex and the observed coordination chemical shift of an equivalent phosphorus atom in a chelate complex.

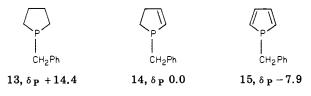
In the examples shown in Chart I, the ring contribution $\Delta_{\rm R}$ is calculated for 2, 3, and 4 based on the Δ value of complex 5 (the closest available analogue). Obviously better comparisons would be made to complexes such as Me₂Pt[Ph₂P(CH₂)_nPPh₂]₂, and in all cases where possible such data should be used for comparison, but since data for these complexes do not exist. one can obtain a good approximation using data for a molecule such as 5. The error inherent in this method stems from the chemical shift differences of the free ligands. Thus PPh₂Me with $\delta_{\rm F}$ -28.0 is a better analogue to 2 than to 3. If data become available for $Me_2Pt(PPh_2Et)_2$ with δ_F -13.5, obviously it should be used. The value of these Δ_R comparisons is thus a qualitative one where one observes that vs. a nonchelated complex, 4-membered rings are shielded more than 6-membered rings and 5-membered rings are deshielded. The best calculations are made from the chemical shift data of molecules which allow internal comparisons such as 6 and 7.

In 6, phosphorus atom P_C is metalated and trans to a triphenyl phosphite ligand. This can be directly compared to the value of δ_{P_A} which is a triphenyl phosphite ligand trans to a triphenyl phosphite ligand. Phosphorus atom P_D on the other hand is metalated but ³¹P NMR of Phosphorus Chelate Complexes

trans to a σ -bound phenyl group which allows direct comparison to the value of δ_{P_B} which is an unmetalated triphenyl phosphite ligand trans to a σ -bound phenyl group. Note the Δ_R results are within 1 ppm of each other. If comparisons are made where the trans ligands are not the same, errors of 1–10 ppm and more are possible depending on the electronic differences (trans effects) of the ligands in question. This is exemplified in 7 where an internal comparison of δ_{P_X} vs. δ_{P_A} would

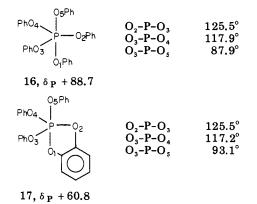

not take into account the chemical shift difference that would be caused by the different trans ligands, H and PPh₃, and would result in a Δ_R value of +38.8. A better comparison can be made to 102 which has a P(OPh)₃ trans to H and cis to PPh₃ with δ_P of +88.3. This comparison results in a more accurate Δ_R value of +44.2. Suffice it to say that whenever Δ_R is reported, the molecule used for analogy should be clearly delineated.

The theoretical aspects of $\Delta_{\rm R}$ are not clear. ³¹P chemical shifts are usually related to the C-P-C bond angle.¹³ As the groups on phosphorus increase in steric size, the C-P-C angle opens and the phosphorus chemical shift moves to lower field. As we shall see later.⁴⁷ the only study that has compared analogus (Ph₂P(CH₂)_nPPh₂)PdCl₂ (n = 1-3) complexes in terms of $\Delta_{\rm R}$ and C-P-C angle find no correlation. From bond angle consideration, the ring strain expected and observed for a phosphorus contained in a 5-membered ring is small, but an unusually large deshielding is noted irrespective of the metal or other substituents in the ring.


Although the theoretical aspects of the Δ_R are not clear, the knowledge of its contribution to the δP value is invaluable when one makes structural assignments in phosphine transition metal complexes.

1.3. Anomalous ³¹P Chemical Shifts In Cyclic Organophosphorus Compounds

The first place to look in trying to understand the $\Delta_{\rm R}$ contribution is in the ³¹P chemical shifts of cyclic organophosphorus complexes. The data that can be presented are inconclusive and in some ways contradictory. Very little $\Delta_{\rm R}$ is observed in the series 8, 9, or 10, 11, 12, although 8 and 10 are incorporated in 5membered rings.¹⁹



In contrast, deshielding due to phosphorus incorporation into 5-membered ring systems is observed when one compares 1-methylphosphole ($\delta_P - 8.7$) to ethyldivinylphosphine ($\delta_P - 20.8$).²⁰ Later²¹ comparisons of 13-15 revealed that both the phospholene and the

phosphole analogues possess a considerably more deshielded phosphorus than does the saturated phosphine. No conclusions were drawn as to the reasons for these shifts; however, delocalization via $p\pi-p\pi$ conjugation, bond angles, and conformational and steric differences were thought to play roles in the determination of $\delta_{\rm P}$. Over a broader series of phosphole complexes a "ring contribution" to the chemical shift of +12 ppm is observed vs. acyclic analogues.²¹

Ramirez et al.^{22,23} studied the ³¹P spectra and determined the crystal structures for the pentaoxyphosphoranes 16 and 17. We can see that while the

bond angles are very similar, the chemical shift of the phosphorus in 17 is shielded by 27.9 ppm in this 5-coordinate phosphorus(V) compound.

It is thus clear that while anomalous chemical shift behavior has been observed in organophosphorus compounds, the trends are often in opposite directions and not well understood. Clearly the Δ_R effect in organophosphine-transition-metal complexes is not simply a carryover from the cyclic organophosphorus complexes.

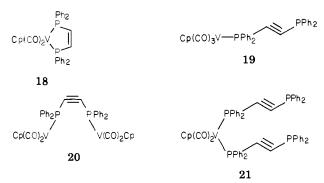
1.4. Scope, Definition of Terms, and List of Structural Abbreviations

The main purpose of this review is to point out the relationship of $\Delta_{\rm R}$ to the various aspects of ³¹P NMR such as $\delta_{\rm P}$, $J_{\rm P-P}$, and $J_{\rm M-P}$ and to probe the influence

CHART II. Abbreviations Used

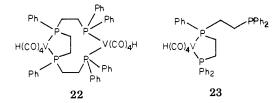
- observed chemical shift of the phosphorus atom δp under study, in ppm relative to H₃PO₄ with deshielded values being given a + sign.
- $\delta_{\mathbf{F}}$ chemical shift of a free (noncoordinated) phosphine ligand.
- coordination chemical shift; the change between Δ $\delta_{\mathbf{F}}$ and the $\delta_{\mathbf{P}}$ observed upon coordination of the phosphorus ligand to a metal ($\Delta = \delta_P - \delta_F$).
- coordination shift of a chelated phosphine complex $\Delta_{\mathbf{R}}$ minus the coordination shift of an equivalent phosphorus in a nonchelated analogue.

Me Et <i>n</i> · P <i>i</i> · P <i>n</i> · E <i>t</i> · B	r r Bu	methyl ethyl <i>n</i> ·propyl isopropyl <i>n</i> -butyl <i>tert</i> ·butyl	Ph Cy CHT COD COT NBD	phenyl cyclohexyl cycloheptatriene cyclooctadiene cyclooctatetraene norbornadiene
d: dppm dppe dppp dppb	Ph₂I Ph₂I Ph₂F	phines PCH ₂ PPh ₂ P(CH ₂) ₂ PPh ₂ P(CH ₂) ₃ PPh ₂ P(CH ₂) ₄ PPh ₂	mbp dbp tbp map	alkenylphosphines $Ph_2P(CH_2)_2CH=CH_2$ $PhP[(CH_2)_2CH=CH_2]_2$ $P(CH_2CH_2CH=CH_2)_3$ $Ph_2P(OCH_2CH=CH_2)$
		polyphosp	hines	
et	р	PhP(CH ₂	CH ₂ PP	$h_{2})_{2}$
tr	ipod	MeC(CH	$_{2}PP\bar{h}_{2}$)	
tt	р	(Ph ₂ PCH		
ep	otp	Ph ₂ PCH ₂	CH ₂ P(1	Ph)CH ₂ CH ₂ CH ₂ PPh ₂
Pl		P(CH ₂ CH		
Μ	e∙etp	MeP(CH	$_{2}CH_{2}PM$	∕Ie ₂) ₂

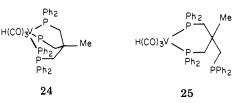

of factors such as metal radius, heteroatoms, and backbone unsaturation on the sign and size of $\Delta_{\rm R}$. In addition it is hoped that sections such as those on phosphide complexes will spur research in this area so that a more basic understanding of the $\Delta_{\mathbf{R}}$ phenomenon will be possible.

This review covers all pertinent literature through 1979. The nomenclature within this review corresponds to that used by the authors of the various papers. Chemical shifts are given relative to 85% H₃PO₄. Since most of the literature citations occurred prior to the standardization of the $\delta_{\rm P}$ sign convention, corrections have been made so that all values deshielded relative to H_3PO_4 are positive. The terms and structural abbreviations given in Chart II are used throughout this review.

2. Diphosphines


2.1. Group 5B: Vanadium

The reactions of $CpV(CO)_4$ with $cis-Ph_2PCH=$ CHPPh₂, trans-Ph₂PCH=CHPPh₂, and Ph₂PC= $CPPh_2$ have been studied and complexes have been identified where the potentially bidentate ligands act in a bidentate, monodentate, and bridging fashion.²⁴ When compared to $CpV(CO)_3PPh_2Et$, the δ_P value of +112 for CpV(CO)₂(dppe) reveals a $\Delta_{\rm R}$ of +22 indicative of chelation. The rest of the structural assignments, based on $\Delta_{\mathbf{R}}$ arguments, are much more tenuous. $CpV(CO)_3(cis-Ph_2PCH=CHPPh_2)$, which would be a 7-coordinate structure where the potentially bidentate phosphine coordinates in a monodentate fashion, reveals a δ_P resonance at -25 vs. a free ligand value of -23.1. This is undoubtedly the $\delta_{\rm P}$ of the uncoordinated end inadvertently misassigned. Assignment of CpV- $(CO)_2(cis-Ph_2PCH=CHPPh_2)$ with a δ_P resonance at +120 to structure 18 with a chelated diphosphine is consistent with the dppe value, while a structure as-


signed [CpV(CO)₂]₂(trans-Ph₂PCH==CHPPh₂)₂ with a $\delta_{\rm P}$ shift of +120 is most likely a structure such as 18. Identical IR and C, H analysis is further substantiation of this new assignment. The reaction products isolated from reaction with $Ph_2PC = CPPh_2$ are thought to be **19–21.** Assignment of structure 19 based on $\delta_{\rm P}$ values of -35 and +69 ($\delta_{\rm F}$ -32.6) is consistent with free and coordinated phosphine. Assignment of structure 20 based on a δ_P resonance at +73 is reasonable; however, the δ_P resonance for "21" is reported at +91. This chemical shift movement 20 ppm to lower field is not consistent with the proposed assignment. Assignment of a chelated structure which would have $\Delta_{\rm R}$ of ~ 20 is also not possible since Ph₂PC==CPPh₂ is a rigid ligand which is incapable of chelation.

Also examined was a series of complexes of the type $HV(CO)_{3}L$ (L = ttp, tripod, PP₃).²⁵ Again, some confusion exists over structural assignments based on what we now know about $\delta_{\mathbf{P}}$ and $\Delta_{\mathbf{R}}$ considerations. A complex formulated $[H(CO)_4V]_2L$ with a δ_P resonance at +68 (-73 °C) is assigned structure 22 although coor-

dinated ligand [(Ph₂CH₂CH₂P(Ph)CH₂)₂] should show two distinct $\delta_{\rm P}$ resonances due to P(Ph) and P(Ph)₂. Exchange processes must be occurring among the phosphorus atoms in this molecule.

The δ_P resonances at +87, +76, and -15.6 support the structural assignment of 23. The δ_P resonances at -27and +27 assigned to structure 24 are inconsistent with a 7-coordinate structure but rather consistent with one in which P is uncoordinated, such as 25.

2.2. Group 6B: Cr, Mo, W

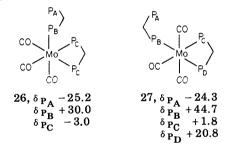
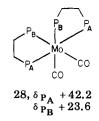

The data obtained by Grim et al.¹⁷ for the chromium, molybdenum, and tungsten complexes of dppm, dppe, and dppp offer direct comparisons between phosphorus incorporated in 4-, 5-, and 6-membered rings (Table I). The data will be discussed later in terms of the effect of metal radius and chelate size on $\Delta_{\mathbf{R}}$. However, without the knowledge of $\Delta_{\mathbf{R}}$, one studying W(CO)₄-

TABLE I. ³¹P Parameters for M(CO)₄L Complexes¹⁷

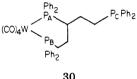
	М	L	δ _P , ppm	∆, ppm	Δ _R , ppm	chelate ring size
		dppm	-23.6			
(Cr		+25.4	+49.0	-12	4
N	/lo		0.0	+23.6	-19.3	4
V	V		-23.7	0	-25.4	4
		dppe	-12.5			
(Cr	••	+79.4	+91.9	+31.0	5
N	Ao		+54.7	+67.2	+24.3	5 5
I I	N		+40.1	+52.6	+27.3	5
		dppp	-17.3			
(Cr	•••	+41.4	+ 58.7	-2	6
N	Ao		+21.0	+38.3	-4.6	6
7	N		0.0	+17.3	-8.0	6


(dppm) would assume the observed δ_P resonance represented free ligand and be hard pressed to explain why no Δ is observed. We now know that coordination deshields the δ_P resonance, and the Δ_R value for the 4 membered ring has a fortuitous shielding effect of the same magnitude. A series of unsymmetrical bidentate phosphines was also studied and the ³¹P NMR spectrum used to determine monodentate coordination, bridging and/or chelation.²⁶ It can be seen in Table II that the chelated ligands reveal typical deshielding of 25–32 ppm vs. the monodentate and bridging structures.

The fac and mer isomers of $Mo(CO)_3(dppm)$ have been studied.²⁷ The fac isomer 26 shows three types of phosphorus in a 1:1:2 ratio.

The chemical shift of P_C reveals a Δ_R contribution of -33 by internal comparison to the chemical shift of P_B . The Δ_R values of P_C and P_D in the *mer* complex, 27, are calculated to be -24 and -28 by comparison to P_B (27) and P_B (26), respectively. Thus the δ_P resonance in chelated dppm is shielded ~30 ppm vs. monodentate dppm in these complexes. Complexes of the type Mo-(CHT)(CO)_xL (x = 1, 2; L = dppm, dppe) have also been studied.²⁸ For L = dppm and dppe, Δ_R values of -26.7 and +32.6 can be calculated. The effect of chelate ring size on the δ_P resonance of M(CO)₂Cl(C₃H₅)L (M = Mo, W; L = dppm, dppe) reveal a 50-ppm difference between the δ_P values of phosphorus in the 4- and 5membered rings.²⁹

The ³¹P NMR spectrum of complex 28¹⁶ can be compared to that of $Mo_2(CO)_6(dmpe)_3$ which has δ_P resonances at -2.5 and +24.4 for bridging and chelating



phosphorus atoms, respectively, resulting in a $\Delta_{\rm R}$ contribution of +26.1 to the value of $\delta_{\rm Pg}$. King et al.³⁰ recognized the additive nature of $\Delta_{\rm R}$ in complexes of type **29** (M = Cr, Mo, W) where etp functions as a

tridentate ligand. Thus the δ_{P_A} value where the phosphorus atoms are in a 5-membered ring is +78, whereas the δ_{P_B} value where the phosphorus is in *two* 5-membered rings is +110.2, or 30 ppm further deshielded.

Reaction of $W(CO)_4(Ph_2PCH=CH_2)_2$ with Ph_2PH under free-radical conditions gives $30.^{31}$ The resonance

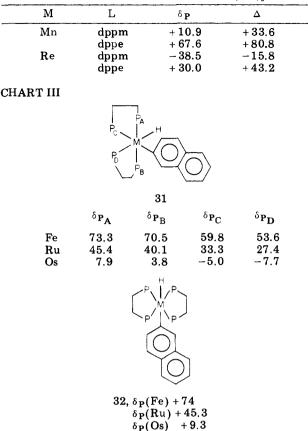
at -20 ppm is assigned to P_C since this is close to the free ligand value of PPh Pr(17.6) and the reconcises

free ligand value of PPh₂Pr (-17.6) and the resonances at +4.0 ppm is assigned to P_B because of its resemblance to the δ_P value for W(CO)₄(dppp).¹⁷

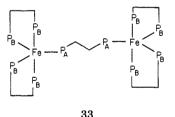
2.3. Group 7B: Mn, Re

The series $M(CO)_3BrL$ (Table III) reveals a $\delta_P(dppm) - \delta_P(dppe)$ of 77 for Mn and 68 for Re.³² Although no analogues are available for calculation of Δ_R values, these data reveal the relative shielding and deshielding caused by the 4- and 5-membered rings. The same trends are observed in the cationic analogues M-(CO)_3L(MeCN)⁺ (M = Mn, Re; L = dppm, dppe).³³ When comparing CpMn(CO)L (L = dppm³³, dppe,³³ dppp³⁴), one can observe the Δ_R effect in their δ_P resonances at +58.4, +122.0, and +82.0 for the 4-, 5-, and 6-membered rings, respectively. Again no analogue such as CpMnCO(PPh₂Et)₂ is available for comparison.

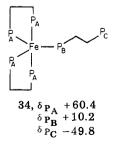
2.4. Group VIII


2.4a. Fe, Ru, Os

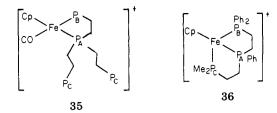
Consider the series $FeCp(CO)_xL^+$ (x = 1, 2; L = dppm, dppe).²⁸ Comparing δ_P values of these complexes reveals a Δ_R of -69 for the chelated dppm complex and +32.3 for the dppe complex.


TABLE II. ³¹P Shift Parameters of Group 6B Complexes of Ph₂PCH₂CH₂PMe₂²⁶

complex	δP(Ph) ₂	δ P(Me) ₂	$\Delta_{P(Ph)_2}$	$\Delta_{P(Me)_2}$	$\Delta_{R(P(Ph)_2)}$	$\Delta_{R(P(Me)_2)}$
L	-13.0	-31.4				
Cr(CO) ₄ L	+ 80.0	+65.0	+93.0	+96.4		
Mo(CO)₄L	+ 55.7	+ 39.0	+68.7	+70.4	+25.0	+27.7
W(CO)₄L	+41.0	+22.6	+54.0	+54.0	+29.1	+32.0
[Mo(CO) ₅] ₂ L	+30.7	+11.3	+43.7	+42.7		
$[W(CO)_{5}]_{2}L$	+11.9	-9.4	+24.9	+22.0		


TABLE III. ³¹P Shift Parameters for MnBr(CO)₃L³²

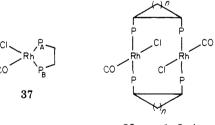
Tolman et al.³⁵ studied a series of complexes of the type (2-naphthyl)HM(dmpe)₂ (M = Fe, Ru, Os) which occur as cis (31) and trans (32) isomers as shown in Chart III. A shielding effect is observed as one descends the subgroup (see section 6.1). The complex $Fe_2(dmpe)_5$, 33, is another one of the existing examples



where both chelating and bridging ligand appear in the same complex; however, $\Delta_{\rm R}$ cannot be calculated since the AB₄ ³¹P spectrum indicates axial-equatorial exchange must be occurring. Fe(dmpe)₃ (34) is another

example where a difference can be seen between the chemical shifts of chelated and nonchelated bidentate phosphines. A Δ_R value cannot be calculated since, once again, exchange is occurring.

In complex 35, the δ_{P_A} resonance appears at +96.5, the δ_{P_B} resonance at +93.6, and the δ_{P_C} resonances at



-12.5 and -13.3. Thus the bidentate nature of the potentially tetradentate ligand is substantiated.³⁰ In complex 36 the unsymmetrical etp ligand achieves tridentate coordination as revealed by a δ_{P_A} value of +123.1. Comparison of the δ_{P_A} value of 35 with the δ_{P_A} value of 36 reveals the δ_{P_A} resonance of 36 is 27 ppm further deshielded due, as shown later (section 2.4b), to its incorporation into two 5-membered rings.

2.4b. Co, Rh, Ir

Caulton et al.³⁶ studied a series of 4- and 5-coordinate rhodium and iridium complexes. Intramolecular rearrangement barriers were shown to decrease with decreasing ring size in the order dppp > dppe > dppm. This was assumed due to the fact that the smaller "bite" angle decreases the energy separation between the more stable trigonal bipyramid and less stable square-base pyramid structures. It should be noted that the δ_P resonance of Rh(dppe)₂⁺ is at lower field than the δ_P resonance of $Ir(dppe)_2^+$. In the series $Ir(L)_2CO^+$ (L = dppp, dppe, dppm) both the axial and equatorial phosphorus atoms of the trigonal-bipyramidal dppe complex are ~ 45 ppm further downfield than the corresponding phosphorus atoms of the dppp complex. The dppm complex reveals a δ_P resonance at -38 (-92 °C), indicating exchange must be occurring at this temperature. The authors noted "any attempt at extracting trends is doomed. . . since dppe moves downfield while dppp and dppm move upfield with respect to free ligand". These values in retrospect are normal when considering the $\Delta_{\rm R}$ effect.

From the reaction of $Rh_2Cl_2(COD)_2$ with dppm, dppe, dppp, and dppb,³⁷ it was learned that while dppe produces the monomeric complex 37, the rest produce binuclear bridged complexes such as 38.

38, n = 1, 3, 4

The same trend is observed in the Ir complexes³⁸ which are assigned the structures $[IrCO(dppe)_2]^+$ $[IrCl_2(CO)_2]^-$, $[IrClCO(dppp)]_2$, and $[IrClCO(dppb)]_3$. The dppe chelates while dppp and dppb bridge in dimeric and trimeric complexes.

In 39^{39} comparison of the phosphorus (P_A) involved in the 5-membered chelate ring can be made internally

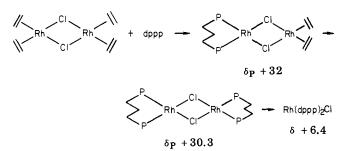
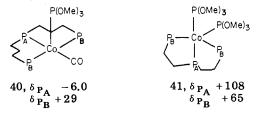
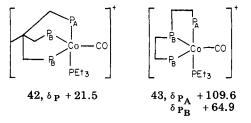



Figure 1. $\delta_{^{51}P}$ data for the intermediates in the reaction of $Rh_2Cl_2(C_2H_4)_4$ with dppp.⁴⁰

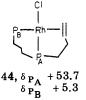
to the trans-PPhMe₂ ligand, resulting in a Δ_R of +46.3. Once again, a trans-PEtMe₂ ligand would produce a more accurate Δ_R value.


Baird et al.⁴⁰ have examined the species present during the reduction of olefins by Rh(I) complexes. The assignments of δ_P resonances were made based on two criteria: "...(a) for a given tertiary phosphine in a series of rhodium complexes, ³¹P resonances shift to lower field and values of $J_{\rm Rh-P}$ increase as the trans influence of the ligands trans to the phosphine decrease and (b) that ring strain contributions to the ³¹P chemical shifts of chelating diphosphines vary in a characteristic, albiet as yet not understood, manner as the ring size varies". The addition of dppp to $[RhCl(C_2H_4)_2]_2$ results in the observation of the intermediates in Figure 1. The δ_P value of +30.3 for P trans to Cl as in a 6-membered ring (very little $\Delta_{\rm R}$ contribution) can be compared to the P trans to Cl in Rh(CO)Cl(dppe).³⁷ dppp was chosen as a ligand in order to avoid $\Delta_{\mathbf{R}}$ contributions in any of the intermediates and allow correlations with data for

monodentate phosphine systems to be made. Meek et al.⁴¹ have studied a series of tri- and tetradentate phosphorus complexes of Co. Crystal structure determinations⁴² have shown that a change in the tridentate ligands from a six-membered chelate ttp (40)

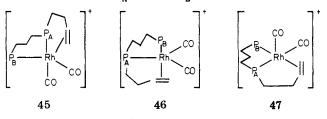
to a five-membered chelate, etp (41), results in a change from a square-base-pyramid to trigonal-bipyramid structure.

In such complexes Δ_R again has an additive effect, and thus the resonance due to the P_A phosphorus is always found downfield for the 5-membered rings and further upfield for the 4- and 6-membered rings. Comparison of 42 with 43 reveals that all phosphorus

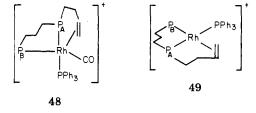


atoms in complex 42 exchange whereas those in 43 are not fluxional.

Again examination of 43 reveals that the ³¹P resonance of δ_{P_A} , which is involved in two five-membered

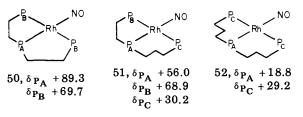

rings, is further downfield than $\delta_{P_{B}}$.

The potentially tridentate ligand $Ph_2P(CH_2)_3P$ -(Ph)(CH₂)₂CH=CH₂ (ppol) reacts with [RhClCOD]₂ to give RhClppol (44). The structure was confirmed by



a crystal structure determination.^{43a} This structure is very interesting since P_B is incorporated into a 6-membered ring whereas P_A is in both a 5- and 6-membered ring. The position of the δ_{P_A} resonance appears to result from the average Δ_R of a 5- and 6-membered ring when compared to the δ_{P_A} value of 51. However, once again, trans effects here are not equal and better comparisons can be made when examining 50–52.

Reaction of 44 with CO results in a formulation which fits 45, 46, or 47 (δ_{P_A} +37.3; δ_{P_B} -1.7).



Reaction of 44 with PPh₃ and CO results in 48. Since

the outer lines of the AB spectrum are too weak to be observed, only a δ_{P_A} value can be obtained. Reaction of 44 with PPh₃ results in 49 with δ_P resonances at +29.1 and +7.3 due to P_A and P_B , respectively. These chemical shift differences are due both to Δ_R differences between a 5- and 6-membered ring and a difference in trans ligand.

An exciting series of tridentate phosphine complexes is prepared by reaction of etp, eptp, or ttp with Rh- $(PPh_3)_3NO$,⁴⁴ resulting in 50–52, respectively. This

series allows correlation of $\Delta_{\rm R}$ for phosphorus incorporated in both 5- and 6-membered rings. The $\delta_{\rm P_B}$ value of +69.7 for complex 50 is the expected value for phosphorus in a 5-membered chelate ring and is observed 40 ppm downfield from the $\delta_{\rm P_C}$ resonance for complex 51 which is in a 6-membered ring. When $\delta_{\rm P_A}$ values are compared between 50 and 52, a 70.3-ppm shift to lower field is observed between those phos-

TABLE IV. Relationship between Size of Ring and Size of \triangle_R As Observed in RhNO(L)⁴⁴

ring size	Δ_{R}^{a}	no. of observations
5	+24.8	8
6	-10.7	7
7	0	1
two 5	+52.4	3
two 6	-5.8	2

^a By comparison to $Rh(PPh_3)_3NO$, \triangle 57.4.

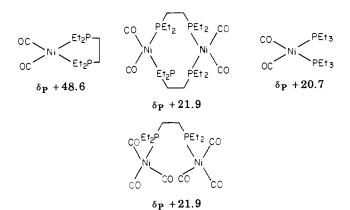


Figure 2. ³¹P data for Merriwether's Ni carbonyl-phosphine complexes.¹⁴

phorus nuclei involved in two 5- vs. two 6-membered rings. If the δ_{P_A} resonance of 51 had an equal contribution from the 5- and 6-membered rings, it should appear midway between the P_A resonance of 50 and 52 at +59 ppm. Its appearance at +56 ppm is proof that an additive effect does indeed occur. Comparisons of all the compounds examined with RhNO(PPh₃)₃ are summarized in Table IV. Note that the additive effect for 6-membered rings, derived from comparison of P_B to P_C in 52, appears to give one-half the expected Δ_R value, not two times the value.

2.4c. Ni, Pd, Pt

By far the largest amount of work has been done in this subgroup. As previously mentioned, the first observation of an anomalous effect in the ³¹P of chelating diphosphines was by Merriwether, in 1961, while examining a series of nickel carbonyl-phosphine complexes.¹⁴ He measured what we now refer to as Δ , the difference in the chemical shift (δ_P) between free ligand and coordinated ligand in the series shown in Figure 2. He noted that the phosphines incorporated in the 5-membered chelate ring were found much further downfield and attributed this to the presence of phosphorus in a "planar 5-membered ring in which the C-P-C and Ni-P-C bond angles are distorted from the approximately tetrahedral angles in the unchelated complexes". He then postulated that "... it might be possible to use this unusually large resonance shift as a diagnostic test for the presence of phosphorus in a 4or 5-membered ring". We now know that 4-membered rings induce a shielding effect. From this early data a normal $\Delta_{\rm R}$ of +28 for the phosphorus in the 5-membered ring can be calculated.

The ³¹P spectra of a series of Pt complexes of the type PtMe₂L have been recorded.⁴⁵ Table V reveals that standard $\Delta_{\rm R}$ values can be calculated from these data. The authors noted that deviations in Δ in the chelating

L	δ _P	δ _F	Δ	$\Delta_{\mathbf{R}}$	size of chelate ring
dppm ⁴⁵	-40.4	- 22,7	-17.7	- 52.2	4
dppe⁴⁵	+45.4	-13.2	+ 58.6	+24.1	5
dppp⁴⁵	+3.2	-17.3	+20.5	-14.0	6
dppb ⁴⁷	+18.8	-15.0	+33.8	-0.7	7
cis-PtMe ₂ · (PPh ₂ Me) ₂	+ 6.4	-28.1	+34.5		

TABLE VI. ³¹P Data for MCl₂L Complexes³⁸

L	М	δp	δ _F	Δ	$\Delta_{\mathbf{R}}$
dppe	Pd	+68.3	- 13.2	+ 81.5	+ 38.8
$cis [P(Ph_2Et)_3]_2$		+30.2	-12.5	+42.7	
dppp		+12.9	-17.3	+30.2	-14.8
$cis - [P(Ph_2Pr)_3]_2$		+27.4	-17.6	+45.0	
dppb		+32.8	-15.0	+47,8	+ 3.8
$cis - [P(Ph_2Bu)_3]_2$		+26.6	-17.1	+43.7	
dppm	Pt	-64.3	-22.7	-41.6	-68.5
$cis - [P(Ph_2Me)_3]_2$		-1.2	-28.1	+ 26.9	
dppe		+45.3	-13.2	+58.5	+36.2
cis - $[P(Ph_2Et)_3]_2$		+9.8	-12.5	+22.3	
dppp		-5.6	-17.3	+11.7	-12.8
$cis - [P(Ph_2Pr)_3]_2$		+6.9	-17.6	+24.5	

TABLE VII. Important Bond Angles (Degrees) Obtained from the Crystallographic Data for the Series $PdCl_2L^{47}$

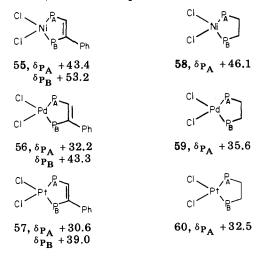
L	Р-М-Р	M-P-C(1)	P-C(1)-C(2)
dppm	73	94.7	93.0
dppe	85	108.5	107.9/108.2
dppp	90	115.9	112.9/118.1

series are presumably associated with the reduction of the P-Pt-P and P-C-P angles, but that "... it is remarkable that the sign of the strain effect should be opposite for dppe and dppm".

In the series MCl_2L^{38} similar results are observed (Table VI). Note that there is little difference in the Δ_R values for the corresponding Pt and Pd complexes.

Comparison of Ni($Me_2PCH_2CH_2PMe_2$)₂⁴⁶ to Ni-(PMe)₄ results in a Δ_R of +26.4.

The δ_P values for the chelating phosphinite complexes 53 and 54 can be compared to the theoretical values¹⁸


53, $\delta_{P_A} = 79.8$	54.δp11.7

calculated for *cis*-PdCl₂L₂ and result in Δ_R values of +52.1 and -12.3 for the 5- and 6-membered rings, respectively.

Vrieze et al.⁴⁷ have studied the ³¹P, ¹³C, and ¹⁹⁵Pt NMR spectra of the series $Pt(Me)_2[Ph_2P(CH_2)_nPPh_2]$ (n = 1-4) in an attempt to correlate the NMR data of various nuclei with angle strain data determined by X-ray diffraction for an analogous Pd series. These data are the same as those in Table V with the addition of data for the analogous dppb complex which results in a Δ_R of -0.7 for the 7-membered ring. Bond angles derived from crystallographic data are shown in Table VII for the analogous PdCl₂L series (L = dppm, dppe, dppp). Comparison of these data reveals that in the 6-membered ring of PdCl₂(dppp), the angles are larger than normal but no irregularities were found for the ³¹P and ¹³C NMR. On the other hand, the angles around phosphorus and carbon for PdX₂dppe are without strain and yet show remarkable downfield shifts for the Pd³⁸ and Pt⁴⁷ complexes. The conclusion is that angle deformations are probably not responsible for the anomalous ³¹P shift for 5-membered ring complexes.

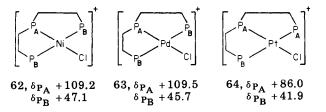
Another study⁴⁸ is concerned with PtEt₂L (L = dppe, dppp, dppb). The data are similar to that obtained for the PtMe₂L complexes^{45,47} with $\Delta_{\rm R}$ values of -24.8, +12.6, and -1.4 for phosphorus in the 4-, 5-, and 6membered rings, respectively. Once again $\Delta_{\rm R}$ has been obtained by comparison to *cis*-Pt(Et)₂(PPh₂Me)₂.

A series of phosphinoalkyne complexes cis- MCl_2 -($Ph_2PC \equiv CR$)₂ (M = Pd, Pt) undergo facile 1:1 reactions with secondary phosphines to give cis- MCl_2 -($Ph_2CH = CR'PR_2$).⁴⁹ Some very interesting δ_P and J_{P-P} (to be discussed later) data can be extracted. In the series 55-60, one can see δ_P values decrease within the

group (~10 ppm decrease from Ni to Pd and only 2-3 ppm decrease from Pd to Pt). Also note that PPh₂ in the saturated and unsaturated rings have nearly identical δ_P values. This suggests that Δ_R is unaffected by any of the steric and electronic differences involved in the formation of saturated rings as opposed to unsaturated rings and is in contrast to the findings for the organic molecules 13-15 discussed previously. Once again we observe that a phosphorus incorporated in an organic ring system and a phosphorus incorporated in an organometallic chelate system are not the same.

Shaw et al.⁵⁰ have studied the chemistry of a comprehensive series of large chelate ring metal complexes. One of these series is represented by $PtCl_2L$ [L = $(t-Bu)_2P(CH_2)_nP(t-Bu)_2$, n = 9-12], where the δ_P values of +28.2 to +31.8 are very close to the δ_P value of +34.3 for *trans*-PtCl_2P(*n*-Pr)_2(*t*-Bu).¹⁸ These δ_P values point out that no metalation has occurred on the large ring backbone.

In a similar manner, two Pd complexes of the ligand $(t-Bu)_2PCH_2CH_2CH(Me)CH_2CH_2P(t-Bu)_2$ were isolated,⁵¹ namely trans-Pd₂Cl₄(L)₂ (δ_P +39.0) and PtClL (δ_P +73.0). The latter downfield δ_P resonance is consistent with structure 61 where the phosphorus atoms are in-



corporated in 5-membered rings due to metalation of the tertiary carbon atom.

TABLE VIII. ³¹P Data for PtMe₂L (65)⁴³

L	δ _P A	δ _P B	^δ PC	
ttp	- 3.7	+ 3.5	- 18.9	
etp	+49.4	+48.5	-15.2	
PP,	+31.5	+32.4	- 35.0	
eptp	+ 44.0	+47.4	-18.9	
tripod	+4.5		-28.8	
ppol	-2.6	+ 3.4		

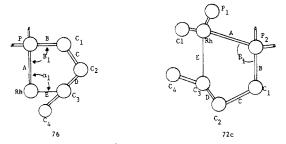
The series $MCl(etp)^+$ (M = Ni, Pd, Pt) has been examined.³⁰ In this series, 62–64, we see no change in the

 δ_{P_A} value for 62 and 63 whereas a decrease of 20 ppm is noted for 64. A steady, smaller decrease in δ_P value is noted for P_B as one descends the series.

The series $Pt(Me)_2L$ was further extended to potential tridentate ligands which adopt structures similar to 65.^{43b} By the ³¹P data in Table VIII we can distin-

guish which P is bound in eptp and ppol. In the former we certainly have a 5-membered ring and in the latter we have a 6-membered ring and thus a free olefin.

3. Alkenylphosphine Complexes


The majority of the ³¹P data in this category exists in the areas of butenylphosphines, vinylphosphines, and styrylphosphines. Although reaction of the vinylphosphines results in complexes which are orthometalated, in this review they will be considered under this heading.

3.1. Butenylphosphines

Reaction of $M_0(CO)_6$ with $PhP(CH_2CH_2CH=CH_2)_2$ (dbp) produces 66 in which the potentially tridentate

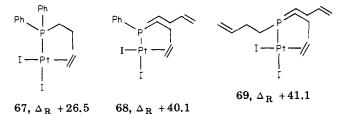

ligand achieves a bidentate coordination.⁷ When this is compared to *cis*-Mo(CO)₄[PPh(*n*-Bu)₂]₂, one obtains a $\Delta_{\rm R}$ of +28.6, indicating the presence of a 5-membered ring. Since common π bonding descriptions would describe this chelation as a "5¹/₂"-membered ring, this indicates that $\Delta_{\rm R}$ for π -bonded phosphine-olefin ligands will appear as though they are rounded off to the smaller ring size. This observation is pertinent to both the butenyl and styryl cases.

Figure 3. Bond lengths (Å) and angles (deg) for $72c^{52a}$ and 76^{52b} . **76:** A, 2.16; B, 1.82; C, 1.53; D, 1.50; E, 2.25; β_1 , 108.2; α_1 , 83.3. **72c:** A, 2.37; E, 2.35; β_1 , 106.3.

This is easily understood by examining the pertinent crystal structure parameters from butenylphosphine complexes such as 72c and 76 (Figure 3). If one examines bond lengths A and E and envisions C_3 being substituted by PR_2 , then one sees that the conformation achieved by the butenylphosphines is in essence the same as that that would be achieved by a diphosphine ligand dppe.

A series of Pd(II) and Pt(II) complexes of the type $MX_{2}L$ (L = mbp, dbp, tbp) was prepared.⁸ These complexes adopt a square-planar geometry in which only one of the olefins is bound to the metal in the solid state. ¹H NMR reveals exchange of the olefins on the NMR time scale. The $\Delta_{\rm R}$ values of the platinum complexes reveal ~14 ppm greater deshielding for the potential tri- and tetradentate ligands. Since the ¹H NMR reveals average H-H and Pt-H coupling, one could naively expect the same $\Delta_{\rm R}$ for 67–69. The reason the $\Delta_{\rm R}$ values for 68 and 69 are equal and 14 ppm larger

than Δ_R for 67 is at present unanswered. The same Δ_R difference (15 ppm) is observed for the Pd analogues of 67 and 68.⁸

The structures of the Rh and Ir complexes RhCl- $(mbp)_2$, RhCl(map)₂, IrCl(mbp)₂, and $Rh_2Cl_2(mbp)_2$ have been examined by infrared and ³¹P spectroscopy⁹ and the data used to assess the dynamic behavior of olefin bonding and the exchange of phosphine and olefin. Figure 4 reveals the possible structures for such complexes and Figure 5 their ³¹P spectra. At 32 °C the ³¹P spectrum of RhCl(mbp)₂ exhibits a broad resonance at +50 ppm, indicating that the isomers of $RhCl(mbp)_2$ that are present are exchanging both olefin and phosphorus (since Rh-P coupling is lost). At -75 °C (Figure 5a), the spectrum consists of two ABX patterns centered at +74.9 and +26.4 ppm, the outer lines of which are lost in the noise level. In addition there is a continuing broad multiplet at +50 ppm. The former resonances can be attributed to an isomer of 72. Although four isomers are possible, isomer C was the one observed in a crystal structure determination.⁵² The resonance centered at +26.4 ppm is assigned to an axial phosphorus and the resonance at +74.9 ppm to an equatorial phosphorus. The broad multiplet at +50 ppm may be

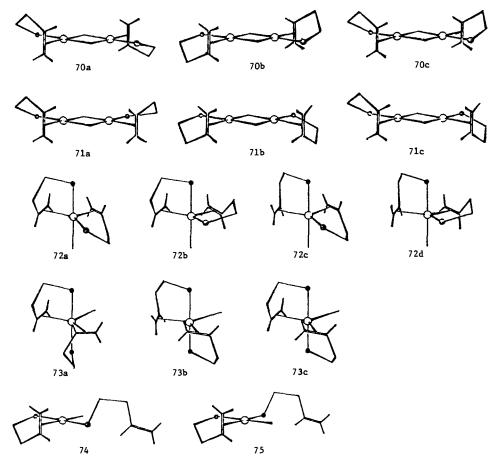


Figure 4. Possible structures of phosphine-olefin complexes.⁹ Phenyls have been omitted for clarity. \bullet = phosphorus, \circ = Rh or Ir.

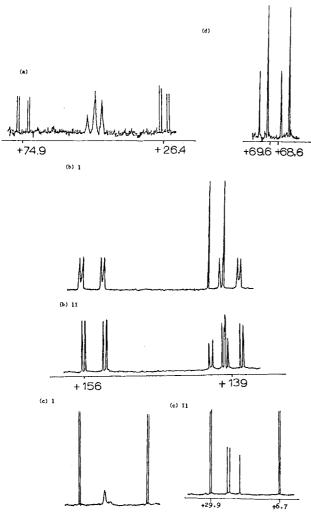
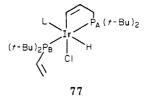
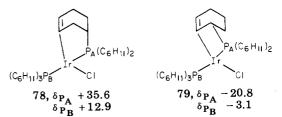


Figure 5. ³¹P spectra of (a) RhCl(mbp)₂ at -75 °C, (b) RhCl-(map)₂ at (I) 32 °C, (II) -75 °C, (c) IrCl(mbp)₂ at (I) 32 °C, (II) -75 °C, (d) Rh₂Cl₂(mbp)₂ at 32 °C.


due to isomers of 73 still undergoing exchange at -75 °C. At 32 °C the ³¹P spectrum of IrCl(mbp)₂ (Figure 5c) is consistent with the presence of an isomer of 72with resonances centered at $\delta_{P(axial)}$ -6.6 and $\delta_{P(equatorial)}$ +29.5 with a $cis^{-2}J_{P_a-P_a}$ of 11 Hz. The exchange processes causing the broad resonance centered at +22.2ppm are frozen out at -75 °C, revealing resonances at +19.3, +23.9, and +22.0 ppm. The former is consistent with either isomer 73a or 73b where the phosphorus nuclei are equivalent. The resonances at +23.9 and +22.0 ppm are consistent with 72c where the phosphorus nuclei are nonequivalent, resulting in an AB spectrum. The presence of isomers 74 and 75 was eliminated on the basis of $\Delta_{\rm R}$ arguments, since the $\delta_{\rm P}$ resonance of a chelated ligand should appear at ~ 25 ppm to lower field than that of an unchelated ligand. The ${}^{31}P$ spectrum of a solution of RhCl(map)₂ (Figure 5b) at 32 °C revealed an isomer of 72 whose structure was assigned in a similar manner. The ³¹P spectrum of $Rh_2Cl_2(mbp)_2$ (Figure 5d) indicates the presence of two isomers. This can be explained in terms of the cis and trans isomers 70 and 71. While one cannot say whether one or two isomers of 70 and 71 are being observed, it is clear that such structures are present from the $\Delta_{\rm R}$ of +30.4 ppm when compared to Rh₂Cl₂[P(tol)₃]₄ which indicates chelating ligands are present. In a similar fashion, 76 shows a $\delta_{\rm P}$ of +134, and this large coordination chemical shift is due to tetradentate co-

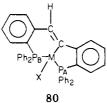
ordination resulting in three times the "expected" $\Delta_{\rm R}$ of 21–30.9

3.2. Allylphosphines

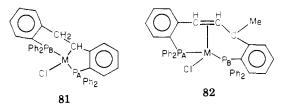

Vrieze et al.⁵³ studied the reaction of $P(t-Bu)_2$ allyl with $[(COT)IrCl]_2$ in α -picoline (L) which resulted in 77. The ³¹P spectra revealed an AB pattern with large

P-P coupling indicating the presence of two nonequivalent trans phosphorus atoms. At that time assignments were not made; however, we now know that the low-field resonance is due to P_A and the high-field resonance to P_B . This results in a Δ_R of +40.9 ppm.

Reaction of $Ir(acac)(C_2H_4)$ with $P(t-Bu)_2$ allyl in α picoline (L) resulted in $(acac)[(t-Bu)_2PCH_2CH=CH]$ -Ir(H)(L). Although the stereochemistry is unknown,¹⁰ the δ_P value of +63.9 indicates metalation of the allyl group in a structure probably similar to 77.


In a similar fashion, reaction of $P(C_6H_{11})_3$ with [(C-OT)IrCl]₂ yields 78 and 79 in which one cyclohexyl

group has been dehydrogenated to a cyclohexene group with the double bond occupying the fourth coordination site.⁵⁴ These complexes contain $5^{1}/_{2}$ - and $4^{1}/_{2}$ -membered rings, respectively, and the assignments are consistent with $\Delta_{\rm R}$ values of +22.7 and -17.7 ppm, respectively.


3.3. Styrylphosphines

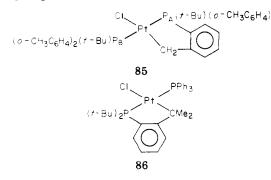
The stilbene ligand o-Ph₂PC₆H₄CH=CHC₆H₄PPh₂ can lose a vinyl proton to give σ -vinyl chelates of type 80.⁵⁵ P_A is incorporated in a 5-membered ring while P_B is in a 6-membered ring.



The bibenzyl analogue also forms chelating σ -benzyl complexes of the type 81. Again both 5- and 6-membered rings are present. Structure 82 also reveals a

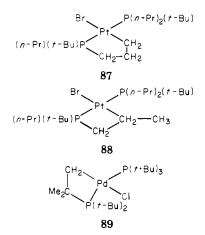
complex containing $5^1/_2$ - and $6^1/_2$ -membered rings,⁵⁶ and the resonances to lower field can be assigned to P_A.

Reaction of 82 with HCl results in the isolation of 83 and 84. Assignment of the resonances can be made as

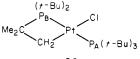


usual. The phosphorus atoms incorporated in the 5and 7-membered rings in 84 should have δ_P at a lower field than that found for the phosphorus atoms in the 6-membered rings in 83. The resonance at +45.9 is assigned to P_A and that at +31.4 to P_B .

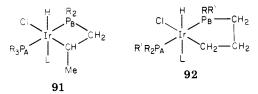
4. Orthometalated Complexes


As indicated earlier, $\Delta_{\rm R}$ contributes to the elucidation of the structures of orthometalated complexes by allowing the accurate prediction of ring size from ligands that could potentially metalate in more than one position. The ³¹P NMR spectra are usually much easier to interpret than the ¹H and ¹³C spectra. The following examples will expand upon these points.

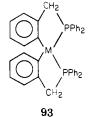
One such example is in 85 where metalation of the tolyl group, as shown, results in a 5-membered ring


whereas metalation of the *tert*-butyl group would result in a 4-membered ring.⁵⁷ A $\delta_{P_{B}}$ resonance at +31.1 and a $\delta_{P_{A}}$ resonance at +52.0 result in a Δ_{R} value of +20.9, and this is consistent with a 5-membered ring. A similar situation exists in compound 86,⁵⁷ where Δ_{R} is +31.8 and the assignment of the structure containing a 5membered ring is again confirmed. A more complex situation exists in identifying the presence of isomer 87 or 88. δ_{P} resonances are observed at +67.4 and +25.9 ppm. Although the original assignment was made as structure 88,⁵⁸ reassignment based on Δ_{R} of +41.5 was later made.¹⁸ Metalation of Me₂P(naphthyl) in the 4 position of the naphthyl group gives a 5-membered ring with a resultant Δ_{R} of +30.8.⁵⁹

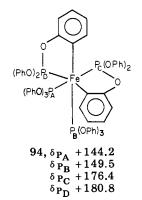
The Pd(II) hydride PdHCl[P $(t-Bu)_3$]₂ undergoes intramolecular metalation to produce 89.⁶⁰ The product

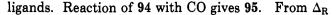

was identified by the loss of the hydride resonance and loss of Pd-H at 2190–2201 cm⁻¹. Comparison of the $\delta_{\rm P}$ resonance of the unmetalated (+61.8 ppm) and metalated (-11.8 ppm) phosphine reveals a $\Delta_{\rm R}$ of -73.6, and this is consistent with the formation of a 4-membered ring.

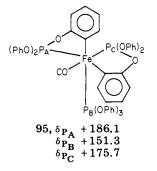
In a similar fashion a Δ_R of -79.6 can be calculated for **90**.⁶¹


90

Reaction of $[CODIrCl]_2$ with $P(i-Pr)_3$ or $P(t-Bu)_2(i-Pr)$ in picoline (L) results in the isolation of 91 and 92, respectively.

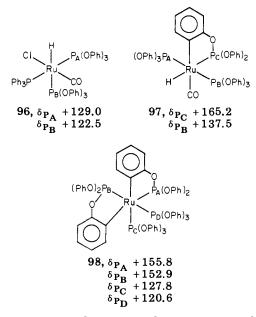

The assignments are consistent with $\Delta_{\rm R}$ values of -41.5 ppm for the 4-membered ring in 91 and +36.6 ppm for the 5-membered ring in 92.⁶² In these cases $\Delta_{\rm R}$ is a very important analytical tool in determining whether the methylene or methyl has been abstracted. ¹H NMR is complicated by the presence of resonances due to unmetalated ligand and these are less easily interpreted.

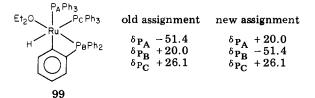

Issleib⁶³ prepared complexes of type **93**. Comparison



of δ_P values to $(PPh_2bz)_2MCl_2$ gave the expected Δ_R values of +20.6 (Pd) and +32.9 ppm (Pt) for the phosphorus atoms incorporated in 5-membered rings.

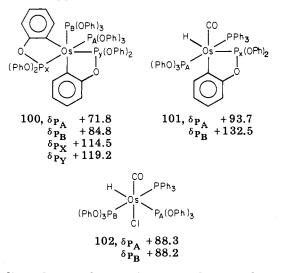
Tolman⁵ found that reaction of $Fe(COD)_2$ with P-(OPh)₃ resulted in 94. The structural assignment was made based on the fact that metalated P(OPh)₃ lies ~30 ppm at lower fields than unmetalated ligands. By examination of the phosphorus chemical shifts, 94 obviously contains two metalated and two unmetalated



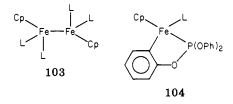


and the splitting pattern one would again surmise the presence of two metalated and one unmetalated ligands.

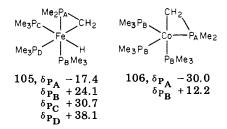
In a similar fashion structures can be assigned to 97 and 98^{64a} by comparison to 96.



The fact that orthometalated phosphines and phosphines trans to hydride ligands resonate at lower frequencies than other phosphines allowed the unequivocal assignment of the stereochemistry to $99 (P = PPh_3)$.⁶⁵


However, we now know that P_B is incorporated into a 4-membered ring and should be assigned to the reso-

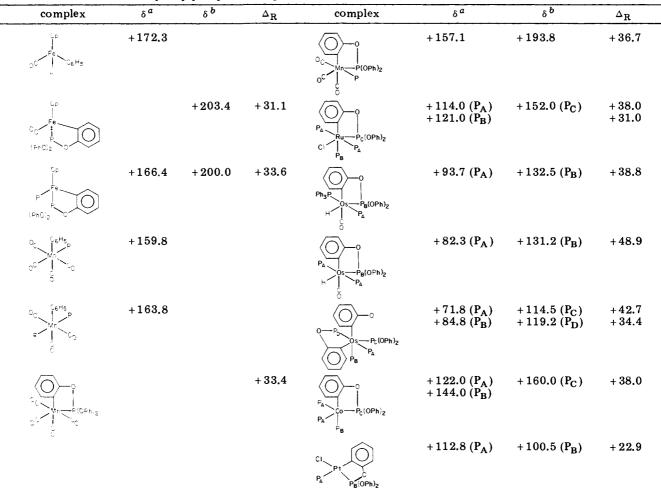
nance at -51 ppm. In the series 100-102,66 metalation


is indicated in 100 by Δ_R of +42.7 and in 101 (by comparison to P_A in 102) by a Δ_R of +44.2. Again, the observed splitting pattern and knowledge of Δ_R allow assignment of the stereochemistry of this molecule. In a series of papers Stewart et al.⁶⁷⁻⁶⁹ examined the

In a series of papers Stewart et al.^{67–69} examined the use of ³¹P to determine structures of triaryl phosphite complexes. Although CpFe(CO)₂R + P(OPh)₃ in the early literature was said to give 103, the authors used $\Delta_{\rm R}$ arguments to show that the structure was more likely 104.

In a series of 5- and 6-coordinate $P(OPh)_3$ complexes of Fe, Mn, Ru, Os, Co, Pt, and Pd the authors point out Δ_R values ranging from +23 to +42 ppm (see Table IX for complexes and Δ_R values). A generalization made by these authors is that ³¹P of unmetalated $P(OPh)_3$ lies in the range +71 to +94 ppm and is dependent on the trans ligand, whereas δ_P for metalated $P(OPh)_3$ lies in the region +114 to +133.

Complex 105 has been studied by two groups,^{70,71} and their data are very similar for the δ_P of P_A involved in the 3-membered ring. Note that P_A is *shielded* vs. δ_P

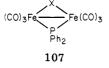


for PMe₃ ligand. In a similar fashion, δ_{P_A} of 106 is shielded vs. δ_{P_B} .⁷¹

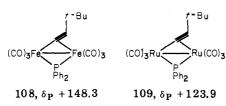
5. Phosphides

One of the newer areas in which ³¹P data are being accumulated is that of phosphide complexes. It appears that these complexes also show $\Delta_{\rm R}$ effects which can be helpful in structural assignments, although not enough

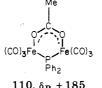
TABLE IX. ³¹P Data for Triphenylphosphite Complexes⁶⁸



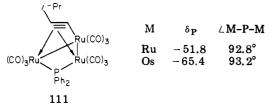
^a Unmetallated ligand, $P = P(OPh)_3$. ^b Metallated ligand.


TABLE X.	Comparison of Fe-F	'e Bond Length and	l Fe-P-Fe Angle with δ	p for a Variety	of Iron Carbonyl Complexes

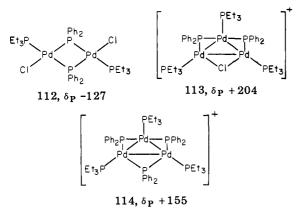
complex	Fe-Fe bond length, Å	Fe-P-Fe angle, deg	^δ P(C ₆ H ₅) ₂
$\operatorname{Fe}_{2}(\operatorname{CO})_{6}[\operatorname{Cl}][P(C_{6}H_{5})_{2}]$	2.5607 (5)	69.8 (0)	142.7
$Fe_{2}(CO)_{6}[CHC\{N(C_{2}H_{5})_{2}\}\{C_{6}H_{5}\}][P(C_{6}H_{5})_{2}]$	2.548(1)	70.1 (0)	153.9
$\operatorname{Fe}_{2}(\operatorname{CO})_{6}[\operatorname{CHC}\{\operatorname{NHC}_{6}\operatorname{H}_{11}\cdot \mathbf{c}\}\{\operatorname{C}_{6}\operatorname{H}_{5}\}][\operatorname{P}(\operatorname{C}_{6}\operatorname{H}_{5})_{2}]$	2.576(1)	70.5 (0)	154.0
$Fe_{2}(CO)_{6}[C\{P(OC_{2}H_{5})_{3}\}C\{C_{6}H_{5}\}][P(C_{6}H_{5})_{2}]$	2.671(2)	74.0(0)	194.5
$\operatorname{Fe}_{2}(\operatorname{CO}_{6}[\operatorname{CC} \{\operatorname{Ph}(c \cdot C_{6}H_{11})_{2}\} \{C_{6}H_{5}\}][\operatorname{P}(C_{6}H_{5})_{2}]$	2.550 (2)	70.7 (1)	123.0
$Fe_{2}(CO)_{\epsilon}[C_{2}C_{\epsilon}H_{5}][P(C_{\epsilon}H_{5})_{2}]$	2.597 (2)	71.64 (7)	148.4
$\operatorname{Fe}_{2}(\operatorname{CO})_{6}[C\{\operatorname{NHC}_{6}\operatorname{H}_{1}, c]CH\{C_{6}\operatorname{H}_{5}\}][P(C_{6}\operatorname{H}_{5})_{2}]$	2.628(1)	72.5 (0)	183.5
$\operatorname{Fe}_{2}(\operatorname{CO})_{6}[C\{CH_{3})CH_{2}CH_{2}N(CH_{3})\}C\{C_{6}H_{5}\}][P(C_{6}H_{5})_{2}]$	2.644 (2)	73.4 (0)	190.3
$Fe_2Ag(CO)_6[CHC{NHCH_3}{C_6H_5}][P(C_6H_5)_2]^+ClO_4^-$	2.682(1)	74.1(0)	173.4
$\operatorname{Fe}_{2}(\operatorname{CO})_{6}[C[\operatorname{CNC}(\operatorname{CH}_{3})_{3}]C[C_{6}H_{5}]][P(C_{6}H_{5})_{2}]$	2.671(2)	74.1 (0)	194.2
$\operatorname{Fe}_{2}(\operatorname{CO})_{6}[\operatorname{CCHC} \{C_{6}H_{5}\}N\{C_{6}H_{5}\}HO][P(C_{6}H_{5})_{2}]$	2.60	71	179.0
$\operatorname{Fe}_{2}(\operatorname{CO})_{6}[\operatorname{CH}_{2}\operatorname{C}\{\operatorname{C}_{6}\operatorname{H}_{5}\}\operatorname{NCH}_{3}][\operatorname{P}(\operatorname{C}_{6}\operatorname{H}_{5})_{2}]$	2.707(1)	75.6(0)	198.5
$\operatorname{Fe}_{2}(\operatorname{CO})_{6}[P(C_{6}H_{5})_{2}C_{8}F_{8}][P(C_{6}H_{5})_{2}]$	2.791 (6)	~79	129.9
$\operatorname{Fe}_{2}(\operatorname{CO})_{4}[\operatorname{CNC}(\operatorname{CH}_{3})_{3}]_{2}[\operatorname{C}_{2}\operatorname{C}(\operatorname{CH}_{3})_{3}][\operatorname{P}(\operatorname{C}_{6}\operatorname{H}_{5})_{2}]$	2.5946 (7)	71.5(0)	145.3
$Fe_2(CO)_6[C_2C(CH_3)_3][P(C_6H_5)_2]$	2.5959(6)	71.7(0)	148.3
$\operatorname{Fe}_{2}(\operatorname{CO})_{6}[P(C_{6}H_{5})_{2}]_{2}$	2.623 (3)	72.0(1)	142.8
$\operatorname{Fe}_{2}(\operatorname{CO})_{5}[\operatorname{P}(\operatorname{C}_{6}\operatorname{H}_{5})_{3}][\operatorname{C}_{2}\operatorname{C}_{6}\operatorname{H}_{5}][\operatorname{P}(\operatorname{C}_{6}\operatorname{H}_{5})_{2}]$	2.648 (1)	73.1 (0)	153.0


data have been accumulated to allow unequivocal structural assignments to be made solely on this basis. Compounds of structure 107 were prepared and their ³¹P spectra examined^{72,73} (Table X).

The values in Table X indicate that the phosphorus nuclei incorporated in the 3-membered rings are shifted far downfield with an apparent relation between the opening of the Fe–P–Fe angle and a deshielding of the phosphorus. This effect is also observed in structures 108 and 109 where crystal structures have shown the presence of Fe–Fe and the Ru–Ru bonds, respectively, and the phosphorus resonances lie at very low field.⁷³ Structure 110⁷⁴ also reveals a very low field δ_P resonance

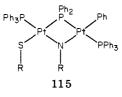


which can be explained on the basis of the Fe-Fe-P 3-membered ring.



110, op + 100

For the $\Delta_{\rm R}$ effect to be valid for phosphides, one would expect phosphides bridging metals which are not involved in metal-metal bonds to be found upfield. Such is the case in structure 111⁷³ where the phosphorus atoms are involved in 4-membered rings.



Recently^{75,76} the phosphide palladium complexes 112-114 were prepared and their ³¹P spectra examined.

We again may compare phosphides definitely in 3membered (113, 114) and 4-membered (112) rings. A chemical shift difference of ~ 300 ppm is observed between these examples, with the 3-membered ring being downfield. The authors note that such large chemical shift differences may some day allow determination of the presences of M-M bonds, and we fully concur!

Reaction of $(PPh_3)_2Pt(C_2H_4)$ with 5,6-dimethyl-2,1,3-benzothiadiazole is said to give 115.⁷⁷ The ³¹P

reveals a $\delta_{P(Ph_2)}$ value of -68.6 for the 4-membered ring. Although there are no 3- or 5-membered analogues for comparison, note the relative shielded value is consistent with the 4-membered ring.

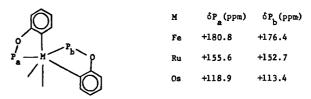
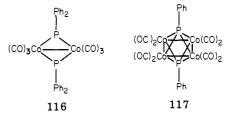
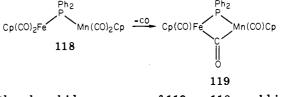



Figure 6. Relationship between position in the periodic table and δ_P shifts for an orthometalated Fe series.⁵


TABLE XI. Relationship between Metal Position in the Periodic Group and δ_P for $M(CO)_4L^{26}$

М	L	δ P(PPh ₂)
Cr	Ph,PCH,CH,PPhMe	+ 80
Мо	2 - 2 - 2	+ 55.7
W		+41.0
Cr	Ph, PCH, PPh Me	+125.8
Mo	• •	+ 1.7
W		-23.4
Cr	$Ph_2P(CH_2)_3PPhMe$	+ 40.7
Mo		+ 20.1
W		-0.4

A δ_P value of +62.3 for 116 can also be compared to a δ_P of +134 for 117 which can be envisioned as being involved in four 3-membered rings.⁷⁸

Crystallographic and ³¹P data on a model series such as 118 and 119⁷⁹ would be useful since a downfield shift

of the phosphide resonance of 119 vs. 118 would indicate the presence of an M-M bond.

6. Effects

6.1. Of Position in the Periodic Group

It has been noted that for the same coordination number, molecular geometry, oxidation state, and phosphine, one generally observes a high-field shift of the ³¹P resonance as one descends in a given group.¹³ The same can be said for complexes which reveal a $\Delta_{\rm R}$ contribution. In the orthometalated series shown in Figure 6, we clearly see a decrease in $\delta_{\rm P}$ as one descends the Fe group.⁵ As was previously mentioned (section 2.4a), this was also observed in **31**.

Variation in δ_P also follows this trend for the Ni series 55–60 as previously described.⁴⁹ In Table XI we again see δ_P and therefore Δ_R decreasing as we descend the Cr group. Finally, in the Mn series shown in Table III, we again see a decrease in δ_P as we descend from Mn to Re.³³

6.2. Of Heteroatoms

Since 1974 much work has been carried out in the area of incorporation of heteroatoms other than P and

TABLE XII. ³¹P Data for $[Ph_2P(x)CH_2PPh_2]M(CO)_4^{81}$

x	M	δ _{P(x)}	δթ
~			
Se		+ 30.7	-27.2
	Cr	+ 39.4	+ 69.1
	Mo	+38.3	+41.8
	W	+41.8	+27.5
S		+40.1	-28.0
	\mathbf{Cr}	+57.5	+ 63.9
	Mo	+55.5	+ 37.9
	W	+59.6	+25.2

TABLE XIII. Δ_R Values Obtained from 5 Membered Chelate Rings Containing Heteroatoms⁸²

	(CO)4M X'-CH2	
М	$\mathbf{X}\text{-}\mathbf{M}^{\prime}\text{-}\mathbf{C}\mathbf{H}_{2}\text{-}\mathbf{X}^{\prime}$	$\Delta_{\mathbf{R}}$
Cr Mo W Cr Mo W	N-Ge-C-P As-Si-C-P	+13.0 +10.0 +19.0 +25.1 +18.2 +17.4
Cr Mo W	P-Ge-C-N	+19.8 +18.1 +30.1

TABLE XIV. Effect of R Group Cone Angle on the Coordination Chemical Shift (Δ) in $M(CO)_4Ph_2PCH_2PR_2^{83}$

	cone		Δ	
R	angle, deg	Cr	Mo	W
Me ₂	101	+57.5	+27.3	-1.4
Ph, Me	110	+52.9	+26.1	-0.5
$\frac{Ph_2}{Ph, i} \cdot Pr$ $i \cdot Pr_2$	119	+49.0	+ 23.6	0.0
	124	+48.3	+ 25.9	+ 2.0
	129	+48.1	+ 28.0	+ 5.4

C in the chelate structures. As mentioned previously, $\Delta_{\rm R}$ is now entrenched in the chemistry of orthometalated phosphite complexes⁶⁷⁻⁶⁹ and chelating phosphite complexes.¹⁷ In the series M(CO)₄L (M = Cr, Mo, W; L = Ph₂P_A(S)CH₂P_BMe₂)⁸⁰ where S is incorporated into the 5-membered rings, a normal $\Delta_{\rm R}$ is observed for P_A in the same ring. In the interesting series shown in Table XII, one observes the incorporation of S and Se into 5-membered chelates.⁸¹ Note that $\Delta_{\rm R}$ is observed for the non-S-bonded P but not so easily in the P(S) phosphorus. This is due to the chemical shift initially reflecting phosphorus(V) and not phosphorus(III).

In the very unusual series shown in Table XIII, we see $\Delta_{\rm R}$ values of between 10 and 30 for the 5-membered chelates.⁸²

6.3. Of R Group of Phosphorus

In the series shown in Table XIV, the effect of the R group in $Ph_2PCH_2PR_2$ on δ_P was examined in relation to the cone angle extended by the PR_2 ligand.⁸³ It can be seen that R induces very little change in the δ_P values. It is curious that as we increase the size of the R group, the Cr values decrease, the W values increase, and the Mo values go through a minimum.

6.4. Of Backbone Unsaturation

As discussed previously, Carty et al.⁴⁹ have shown that in the case of complexes of the type 120, δ_P values

Garrou

$n_2 P(CH_2)_n PI$	$(CO)_4$			
М	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3	
	114	28	0	
Cr	24	12	41	
Мо	15	5	28	
W	21	4	22	

TABLE XVI. Average Observed ${}^{B}J_{P-P}$ and ${}^{M}J_{P-P}$ for $[Ph_2P(CH_2)_nPRR^1]M(CO)_4^{84}$

М	n	^{3,В} Ј _{Р-Р} , Нz	^{2,M} J _{P-P} , Hz	J _{P-P} . (theor), ^a Hz	J _{P-P} - (obsd), Hz
Cr	1	12	41	53 or 29	23
	2	30	41	71 or 11	12
Mo	1	12	28	40 or 16	15
	2	30	28	58 or 2	5
W	1	12	22	34 or 10	21
	2	30	22	52 or 8	4
	_				

 $^{a} |J_{\mathbf{P}-\mathbf{P}}| = |\mathbf{B}J_{\mathbf{P}-\mathbf{P}} \pm \mathbf{M}J_{\mathbf{P}-\mathbf{P}}|,$

vary only slightly from the corresponding values for a saturated backbone.

7. Ring Contributions Observed

7.1. In P–P Coupling

When the phosphorus atoms are chemically nonequivalent, phosphine ligands containing two or more phosphorus atoms give rise to ³¹P spectra in which the magnitude of J_{P-P} will strongly affect the spectral appearance. A good discussion of the parameters important in determining the magnitude and sign of this coupling has been presented.¹³ For our discussion here, let us note that the ³¹P spectra of monodentate ligands reveal an algebraic increase in J_{P-P} of a transition metal bound phosphine as one descends a group. There are currently two schools of thought about the nature of P-P coupling in chelating phosphines.

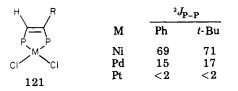
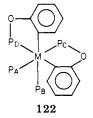

Grim et al.⁸⁴ have suggested that the P-P coupling within a chelate ring can be divided into through-thebackbone and through-the-metal contributions $J_{P-P} = {}^{B}J_{P-P} + {}^{M}J_{P-P}$ where ${}^{B}J_{P-P}$ of the coordinated ligands is assumed equal to ${}^{B}J_{P-P}$ in the free ligand. In a 5membered ring these contributions are nearly equal but of opposite sign, which leads to a small J_{P-P} . In a 6membered ring ${}^{B}J_{P-P}$ is negligible, and thus the observed J_{P-P} is attributed solely to coupling through the metal. They note that the theory hinges on the Karplus-type angular dependence of the coupling constants in the flexible ring systems being minimal. By the Karplus theory, it is apparent that ring strain would have an effect on these values and, therefore, fourmembered rings with greater strain would show the greatest deviation in this theory. When the same arguments are used, 5- and 6-membered rings for which crystal structures show very small angular strain values should fit this theory nicely. The results of a series of 29 complexes of the type $M(CO)_4(Ph_2P(CH_2)_nPRR')^{84}$ are given in Tables XV and XVI.

TABLE XVII. J_{P-P} Coupling for 122^5

AB 87 53 AC 325 34 AD 74 52 BC 68 44			-	
AC 325 34 AD 74 52 BC 68 44	J _{P-P} , Hz	Fe	Ru	Os
AD 74 52 BC 68 44	AB	87	53	38
BC 68 44	AC	325	34	25
	AD	74	52	35
BD 75 685	BC	68	44	28
DD 10 000	BD	75	685	651
CD 112 54	CD	112	54	41

From Table XVI we observe that the best fits are achieved when a positive and negative component are used and that, in general, the fits for the 5-membered rings are better than the fits for the 4-membered rings, as one would expect.

In a series of phosphoalkene complexes of the type 121,⁴⁹ ${}^{2}J_{P-P}$ shows no marked variation with R from Ph



to *tert*-butyl. This is in sharp contrast to a value of 109 Hz for the free ligand. Carty et al. therefore favor an interpretation where it is unnecessary to invoke major contributions from backbone coupling to J_{P-P} (observed), but rather suggest that ${}^{M}J_{P-P}$ is responsible for the observed decrease in the series Ni > Pd > Pt. They explain that since couplings are highly dependent on dihedral angles, distortions of the ligand skeleton on complexation greatly reduce the effectiveness of transmission through the olefinic linkage. Since the ${}^{3}J_{P-P}$ values also closely resemble those for Cl_2M -(Ph₂PCH₂CH₂PPh₂), they feel that the results further indicate that neither unsaturation in the backbone nor a change in the substituents on the backbone has much effect on J_{P-P} and, thus, the major source of P-P transmission must be ${}^{M}J_{P-P}$.

In a Rh series of polyphosphine complexes,⁴⁴ the phosphorus-phosphorus coupling values reveal a relationship between chelate size in 6-membered rings where ${}^{2}J_{P-P} \sim 45-52$ Hz and 5-membered rings where $^2J_{\rm P-P}\sim$ 12–22 Hz. Again, arguments about "throughthe-metal" and "through-the-backbone" coupling are made. In the series of Pt-polyphosphine complexes studied by Meek,⁴³ one observes that when a ligand forms a 6-membered ring, the P-P coupling increases relative to the value of the free ligand (for Cyttp, 19.0 vs. 0.0 Hz), whereas for the phosphorus atoms involved in a 5-membered ring, P-P coupling decreases upon coordination (for etp, 0.8 vs. 29.0 Hz). Coupling between the dangling phosphorus atom and the coordinated central phosphorus atom of a polydentate ligand must be transmitted via the carbon backbone since both atoms are not contained in a chelate ring. For ttp which contains a trimethylene backbone, ${}^{3}J_{P-P} \sim 0$ in the free ligand and the PtMe₂L complex.⁴³ However, in etp which has an ethylene backbone, one observes an increase of 29 to 37.5 Hz in going from the free ligand to the complex. This P–P coupling increase is attributed to an increased partial positive charge on the central P atom.⁴³ The Ni, Pd, and Pt complexes of Me₂P-(CH₂)₂P(Me)(CH₂)₂PMe₂ reveal $|J_{P-P}|$ of 50, 9, and <2 Hz, respectively.³⁰ Whereas the PtEtCl complexes of dppe, dppp, and dppb have J_{P-P} of <2, 20.6, and 13.2 Hz,⁴⁸ their PtMe₂L analogues reveal corresponding values of 34, 0, and 0 Hz.⁴⁷

In the HM(naphthyl)(dmpe)₂ series, the Fe, Ru, and Os complexes revealed J_{P-P} of 105, 281, and 265 Hz, respectively,³⁵ while in H₂M(dmpe)₂, going from M = Fe to M = Ru decreases J_{P-P} from 26.5 to 21 Hz.³⁶

No fewer than six J_{P-P} couplings could be obtained from structure 122.⁵ The data shown in Table XVII

do not reveal a clear trend. Whether J_{P-P} increases or decreases when going down a group depends on many factors, some of which are undoubtedly oxidation state of the metal, stereochemistry, nature of trans ligands, and coordination number. One must also remember that in most instances only $|J_{P-P}|$ is evaluated, and an algebraic sign has not been determined.

7.2. In M–P Coupling

We earlier noted that there was no obvious relationship between chelation and phosphorus-metal coupling.¹⁸ Since then further data have been compiled. In Table XVIII we see several series of W, Pt, and Rh complexes and the variation of J_{M-P} with the size of the chelate ring. Although the changes are sometimes small, it is clear that J_{M-P} increases in the order dppe > dppp > dppm for these bidentate phosphorus. The one example of a 7-membered ring reveals a J_{M-P} larger than that of dppe; other examples are needed to verify this trend. The comparison of these J_{M-P} values to unchelated ligands is more tenuous. In W(CO)₄L- $(Ph_2Pbut)_2^{17}$ the J_{M-P} value is identical with that of dppe; the same is found for $PtCl_2L$,^{45,48} while the J_{Pt-P} value for $PtEt_2(PPh_2Me)_2$ is closer to that of dppb than that of dppe. It should be noted that the larger trans effect of Me and Et relative to chloride is reflected in the smaller J_{Pt-P} observed in the PtMe₂L and PtEt₂L compounds.

TABLE XVIII. Relationship of J_{M-P} to Chelation by Diphosphines

L	W(CO) ₄ L ^{17,a}	$\frac{\text{WCl}(\text{CO})_2}{(\text{C}_3\text{H}_5)(\text{L})^{29,a}}$	$PtCl_2L^{45(48),a}$	$PtMe_{2}L^{45,a}$	$PtEt_2L^{48,a}$	[NBDRhL] ^{+ a}	ring size
dppm	202	168	3078	1434			4
dppe	231	184	3618 (3609)	1794	1602	157	5
dppp	222		3420 (3408)	1776	1592	148	6
dppb					1677	152	7
(PPh ₂ Me) ₂			3616 (3620)		1667		
$(PPh_2Bu)_2$	230						

TABLE XIX. Relationship of J_{M-P} to Chelation by Polyphosphine Ligands^{43,44}

	$ \begin{array}{c} $						
	Rh-P ₁ , Hz	Rh-P2, Hz	Rh-P ₃ , Hz	size of ring	Pt-P ₁ , Hz	$Pt-P_2$, Hz	size of ring
etp	154	167		5,5	1798	1900	5
ttp	154		164	6, 6	1807	1850	6
eptp	156	166	169	5,6	1824	1841	5

TABLE XX. J_{M-P} for a Series of Orthometalated Pt Complexes^{58,61}

ligand	¹ J _{Pt-P} (unmeta- lated), Hz	$^{1}J_{Pt-P}$ (meta- lated), Hz	size of ring
$\overline{P(OPh)_{3}^{b}}$	3229	6371	5
$P(O-o \cdot tolyl)_{3}^{b}$	3201	6409	5
$PPh(t \cdot Bu), a'$	2912	2222	4
$P(t \cdot Bu)(n \cdot Pr)_{2}^{a}$	3086	2984^{c}	5
$P(t \cdot Bu)_3^a$	2680	2360	4

^a Phosphorus cis. ^b Phosphorus trans. ^c The $n \cdot Pr$ chain is metalated.

Table XIX reveals data for polydentate phosphines in a Rh⁴⁴ and a Pt⁴³ series. The same trends are *not* observed here. Values for the 5- and 6-membered ring systems etp, ttp, and eptp reveal little change in the $J_{\rm Rh-P}$ values. In the Pt series $J_{\rm Pt-P_2(etp)}^{44}$ is larger than $J_{\rm Pt-P_2(tp)}$, but the reverse is true for $J_{\rm Pt-P_1}$. One author⁴⁴ notes that in such complexes of polydentate phosphines $J_{\rm Rh-P}$ appears dependent on the number of chelate rings present, not on the size of the rings. $J_{\rm M-P}$ values for complexes containing nonchelated cis phosphines fall in the range 170–178 Hz while complexes containing one ring or two produce $J_{\rm Rh-P}$ values of 160–171 and 148–156 Hz, respectively, regardless of the size of the rings.

Table XX shows data for several orthometalated Pt complexes. Note that the J_{Pt-P} in a metalated ring is smaller than the unmetalated value irrespective of the size of the ring when the phosphorus atoms are trans. When the phosphorus are cis, the J_{Pt-P} values are higher due to trans effect differences in the cis complexes.

8. Comparison of ³¹P NMR to NMR of Other Nuclei

8.1. ¹³C

Stewart et al.⁶⁷ found that while the ¹³C chemical shifts of the aromatic carbons in the unmetalated rings of 123 were not appreciably different from the corre-

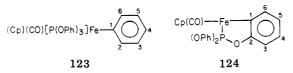


TABLE XXI. ¹³C Resonances for 123 and 124⁶⁸

sponding signals in free P(OPh)₃, the ¹³C shifts of the carbon atoms in the orthometalated ring of 125 varied over 50 ppm, as shown in Table XXI. Although the spectra are complex, one can analyze them. When comparing 123 and 124, note that the orthometalated phenyl signals are either shielded or deshielded depending on ring position. When one looks specifically at the C₁ and C₂ carbons of 124 which are incorporated in the 5-membered ring, the former is shielded 8.4 ppm while the latter is deshielded 15.2 ppm. If the resonances have been assigned correctly, no deshielding $\Delta_{\rm R}$ phenomenon is observed for these carbons incorporated into a 5-membered ring.

Hietkamp and Vrieze⁴⁷ have examined the ¹³C spectra of a series of Me₂PtL complexes as shown in Table XXII. The aromatic parts of the ¹³C spectra are all very similar. However, the chemical shifts of the bridging carbon atoms are shielded for the 4-membered ring and deshielded for the 5-membered ring, resembling the $\Delta_{\rm R}$ trend in the ³¹P shifts for the same compounds. The absolute values of these shifts are small and therefore could be attributed to other causes. More ¹³C data are needed before anyone can clarify whether there is a $\Delta_{\rm R}$ effect in the ¹³C spectra of molecules such as these.

8.2. ¹⁹⁵Pt

Vrieze⁴⁷ in the aforementioned series also examined the ¹⁹⁵Pt spectra of the PtMe₂L complexes. The ¹⁹⁵Pt NMR shifts shown in Table XXII are all very similar except for PtMe₂(dppm), for which a large deviation was found. This large shift difference for the 4-membered ring is purported to be due to ring strain.

8.3. ⁵¹V

The ⁵¹V spectra of *cis*-CpV(CO)₂dppe (-1110 ppm), Cp(CO)₃(Ph₂PC=CPPh₂)V (-1139 ppm), and [CpV-(CO)₂]₂(Ph₂PC=CPPh₂) (-1143 ppm) have been reported,²⁴ and one can see very little difference is observed between these chelating, nonchelating, and bridging ligands.

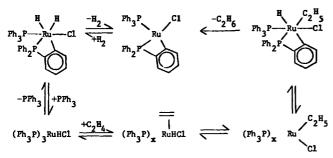
	δ^{13} C unmetalated			δ ¹³ C phenyl (123) or metalated (124)			4)	
	C ₁ ^a	C2,6	C _{3,5}	C ₄	C1	C2,6	C _{3,5}	C ₄
P(OPh) ₃ 123	+151.5 +151.7	+120.6 +121.7	+129.5 +129.4	+124.1 +124.6	+150.0	+146.5	+126.4	+121.7
123	+151.7 +151.4	+121.7 +120.7	+129.4 +129.3	+124.0 +125.3	+130.0 +141.6	$+161.7 (C_2)$	$+110.9(C_3)$	+121.7 +123.9
121	101.1	1120.1	112010	12010		$+144.2 (C_6)$	+122.1 (C ₃)	+

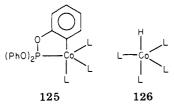
^a Numbered as shown in 123 and 124.

TABLE XXII. ¹³C and ¹⁹⁵Pt Chemical Shifts for Chelating Phosphines and Their Me₂PtL Complexes⁴⁷

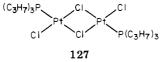
-	-		-		
 ligand	metal	δ^{13} CH ₂ (1) ^a	$\Delta_{\mathrm{CH}_2(1)}$	δ ¹⁹⁵ Pt ^b	
dppm		+ 28.0			
	Pt	+19.7	-8.3	-703.9	
dppe	_	+23.7			
	Pt	+29.7	+6.0	+9.2	
dppp	D.	+29.6		4.7	
	Pt	+27.4	-2.2	-4.7	
dppb	Pt	+27.7 +28.6	+0.9	+58.6	
	ГU	T 40.0	+ 0.9	+ 00.0	

^a Bridging CH₂ groups adjacent to phosphorus. ^b With respect to δ_{Pt} for $cis \cdot (bz)_2 PtMe_2 = 0$.




Figure 7. Proposed mechanism for ethylene hydrogeneration by $(Ph_3P)_3RuHCl.^{87}$

9. Relationships


9.1. To Catalytic Reactions

A knowledge of $\Delta_{\rm R}$ will better allow interpretation of the ³¹P spectra of intermediates in catalytic reactions which involve polyphosphines or orthometalation. ³¹P NMR has been and should continue to be used in the analysis of such intermediates. In this section we will point out a few examples where such chelation has been identified in catalytic processes.

The greater activity of 125 vs. 126 in olefin hydrogenation has been attributed to the increased lability of L in the former $[L = P(OPh)_3]$.⁸⁵

We have discussed earlier how many arylphosphine and aryl phosphite complexes undergo orthometalation. Such complexes are prone to undergo H–D exchange. Many of the complexes that catalyze such exchanges also are active for olefin hydrogenation.⁸⁶ It seems likely that the ligand hydrogens are somehow involved in the hydrogenation process. For example, the catalytic cycle shown in Figure 7 was proposed to explain the observed mechanism. The H is thought to be obtained by cyclometalation of a phenyl group with H₂ being necessary only to regenerate the (Ph₃P)₃RuHCl catalyst.⁸⁷ Again, in compound 127 deuteration occurs in the Me group

which corresponds to the presence of 5-membered ring intermediates.⁸⁶ In another study the deuteration of

 $Ph_2P(OPh)$ by RhHCl(PPh₃)₃ was shown to go 50 times as fast for the phenoxy group as for the phenyl group, consistent with 5-membered rings in the intermediates.⁸⁶

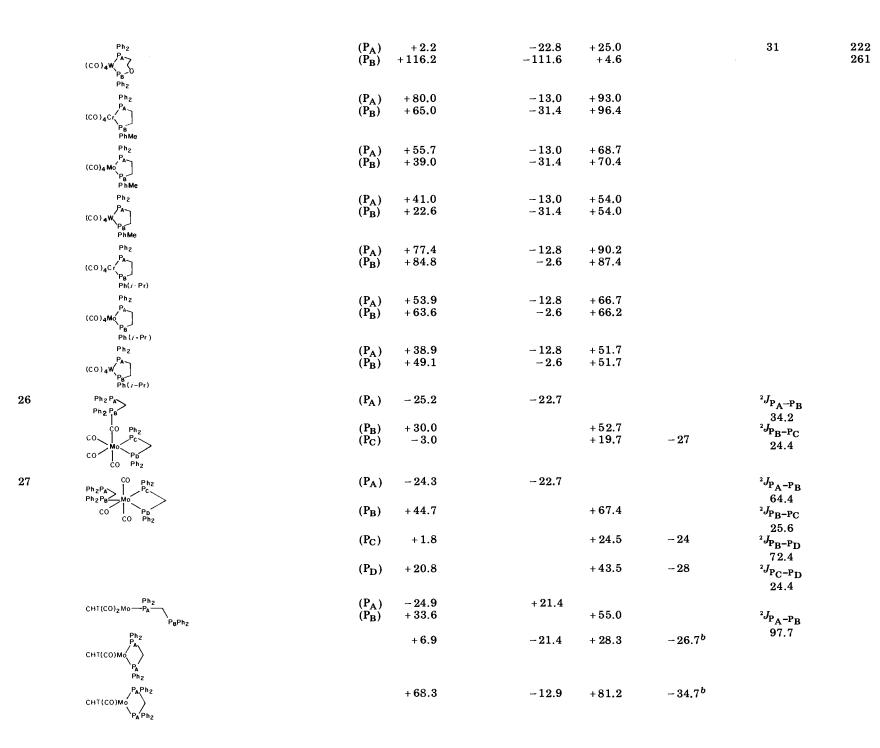
Mason and Meek⁸⁸ have pointed out that polydentate ligands can provide (i) more control on the coordination number, stoichiometry, and stereochemistry of the complex, (ii) an increased basicity at the metal, and (iii) more detailed structural and bonding information in the form of M-P and P-P coupling. An example was given of RhCl(ttp) where the 90° P-Rh-P bond angle allows maximum overlap of the phosphorus and rhodium orbitals and contributes to its dissociative stability and basicity. Compared to RhCl(PPh₃)₃, chemical studies reveal that the Rh atom in RhCl(ttp) is quite nucleophilic and readily functions as a Lewis base, in which it mimicks IrCl(PPh₃)₃ more closely than RhCl(PPh₃)₃.

Baird⁴⁰ has used chelating phosphines to examine the species present in solution in the olefin hydrogenation catalyst [NBDRh(diphosphine)]⁺. Knowing that a $\Delta_{\rm R}$ contribution would cause upfield and downfield shifts with dppm and dppe, respectively, they chose to examine the ³¹P spectra of a dppp system to minimize $\Delta_{\rm R}$ contributions and more closely resemble the $\delta_{\rm P}$ values that would be obtained for monodentate tertiary phosphines. This study, as we pointed out earlier, provided insight into the intermediates present in such hydrogenation reactions. The observation of four or more species in solution revealed that kinetic data based on "catalyst concentration" in such systems should be avoided.

9.2. To Polymer-Anchored Reagents

There has been much recent interest in polymer-anchored catalytic reagents, many of which are anchored through phosphorus. In several instances compounds have been prepared which appear to be "chelated" (cis disubstituted). In such systems, one cannot envision 5-membered rings. Highly cross-linked resins could, however, conceivably mimic the rigid stereochemistry of a chelating diphosphine. Such systems could be studied by solid-state NMR.⁸⁹ As such data become more prevalent and the solid-state ³¹P NMR of such complexes becomes commonplace, we will look with interest to see whether effects are noted as the degree of substitution of phosphorus on the polymer is varied and such "chelated" molecules are prepared and examined.

10. Conclusions


It appears that a ring contribution " Δ_R " to the coordination chemical shift of phosphorus chelate complexes exists for a wide variety of transition-metalphosphine complexes. Although the theoretical aspects of the ring contribution remain elusive, the awareness of its existence has proven useful in making structural assignments and should prove to continue to do so in the future. As exceptions to the Δ_R rule are uncovered, it is likely that the theoretical reasons for Δ_R will become more clear-cut.

11. Appendix

³¹P NMR data for diphosphine-, alkenylphosphine-, and orthometalated phosphine-transition-metal com-

ref	compd	complex	δ₽	δ _F	Δ	$\Delta_{\mathbf{R}}$	$J_{\mathbf{P}-\mathbf{P}}$, Hz	$J_{\rm M-P}$, Hz
24		2.1 vanadium						
	18	Cp(CO) ₂ V(p) Ph ₂ Ph ₂	+120	-23.1	+ 143.1			$\delta^{5} V \approx -1143$
	19	PBPh2 Cp(CO) ₃ VpA	$(P_A) + 69 (P_B) - 35$	-32.6	+101.6			-1334
	20	$\begin{array}{c} Ph_2 \\ P \\ P \\ C\rho(CO)_2 \vee \\ V \\ CO)_2 C\rho \end{array}$	+ 7.3	- 32.6	+ 105.6			-1281
25	22	H(CO)₄V(etp)	+ 68 ^a				,	-1685
	23	$H(CO)_{4} \bigvee_{P_{A}}^{P_{B}} P_{C}^{Ph_{2}}$	$\begin{array}{rrr} (P_{A}) & +87 \\ (P_{B}) & +76 \\ (P_{C}) & -15.6 \end{array}$					
	25	$H(CO)_{3} \bigvee_{P_{A}}^{P_{h_{2}}} - P_{B}P_{h_{2}}$	$(P_A) + 27 (P_B) - 27$					
17	Table I	2.2 Cr, Mo, W Cr(CO)₄(dppm) Mo(CO)₄(dppm) W(CO)₄(dppm) Cr(CO)₄(dppe) Mo(CO)₄(dppe) W(CO)₄(dppe) Cr(CO)₄(dppp) Mo(CO)₄(dppp) W(CO)₄(dppp)	$+ 25.4 \\ 0 \\ - 23.6 \\ + 79.4 \\ + 54.7 \\ + 40.1 \\ + 41.4 \\ + 21.0 \\ 0 \\ 0$	$\begin{array}{r} -23.6\\ -23.6\\ -23.6\\ -12.5\\ -12.5\\ -12.5\\ -17.3\\ -17.3\\ -17.3\\ -17.3\end{array}$	+ 49.0 + 23.6 0 + 91.9 + 67.2 + 52.6 + 58.7 + 38.3 + 17.3	-12.0 -19.3 -25.4 +31.0 +24.3 +27.3 -2.0 -4.6 -8.0	202 231 222	
		$(CO)_{4}CK \begin{pmatrix} Ph_{2} \\ PA^{-} \\ PA^{-} \\ Ph_{2} \end{pmatrix}$	$(P_A) + 86.0$ $(P_B) + 196.7$	-14.1 -118.2	+ 100 + 78.5		31	
		$(CO)_{4}M_{0} \xrightarrow{P_{A}}_{P_{B}}$	$\begin{array}{rr} (P_{A}) & + \ 63.4 \\ (P_{B}) & + \ 174.4 \end{array}$	-14.1 -118.2	+77.5 +56.2		18.5	
17		(CO) 4W Ph2 Ph2 Ph2 Ph2	$\begin{array}{ll} (P_{A}) & + 49.5 \\ (P_{B}) & + 154.9 \end{array}$	$-14.1 \\ -118.2$	+ 63.6 + 36.7		11	234 260
		$(CO)_{4} Cr \begin{pmatrix} P_{A} \\ P_{B} \\ P_{B} \end{pmatrix}$	$\begin{array}{ll} (P_{A}) & + 40.8 \\ (P_{B}) & + 161.4 \end{array}$	-22.8 -111.6	+63.6 +49.8		46.5	
		$(CO)_{4} MO \overset{PA}{P_{B}} O \\ Ph_{2} \\$	$(P_A) + 22.0 (P_B) + 141.6$	-22.8 -111.6	+44.8 +30.0		35	

TABLE XXIII. ³¹ P NMR Data for Diphosphine, Alkenylphosphine and Orthometallated Phosphine Transition-Metal Complexes	TABLE XXIII.	³ ¹ P NMR Data for Diphosphine,	Alkenylphosphine and Orthometa	allated Phosphine Transition-Metal Complexes
--	--------------	---	--------------------------------	--

³¹P NMR of Phosphorus Chelate Complexes

Chemical Reviews, 1981, Vol. 81, No. 3 249

TABLE	XXIII	(Continued)

ef (compd	complex	δ _P	δ _F	Δ	$\Delta_{\mathbf{R}}$	$ J_{\mathbf{P}-\mathbf{P}} , \mathrm{Hz}$	J_{M-P} , Hz
		$\begin{array}{c} co \\ co$	- 2.3	-22.7	+ 20.4			
		$\begin{array}{c} CO \\ CO \\ CO \\ CI \\ CI \\ CI \\ CI \\ CI \\$	+ 49.7	-13.2	+ 52.9			
		$\begin{array}{c} CO \\ CO \\ CO \\ CO \\ P \\ $	- 19.5	-22.7	+ 3.2			168
			+ 35.1	-13.2	+48.3			184
2	8	$ \begin{array}{ccc} c_1 & Ph_2 \\ Me_2 & P_B \\ P_B & Mo \\ P_A & CO \\ Me_2 & CO \end{array} $	$\begin{array}{ll} (P_{A}) & + 42.2 \\ (P_{B}) & + 23.6 \end{array}$	- 13.2	+ 55.4 + 36.8	21 .1 ^{<i>c</i>}		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} (P_{A}) & + 24.4 \\ (P_{B}) & - 2.5 \end{array}$	-13.2	+ 37.6 + 10.7			
T	`able II	$(CO)_{4}Cr \begin{pmatrix} P_{A} \\ P_{B} \\ P_{B} \\ Me_{2} \end{pmatrix}$	$\begin{array}{ll} (P_A) & +81.2 \\ (P_B) & +55.0 \end{array}$	-13.5 -48.4	+94.7 +103.4		15	
			$\begin{array}{ll} (P_A) & + 57.1 \\ (P_B) & + 26.3 \end{array}$		+ 70.6 + 74.7		7	
		$(CO)_4 \bigvee_{P_B}^{P_A}$ Me2	$\begin{array}{cc} (P_A) & +42.2 \\ (P_B) & +7.9 \end{array}$	+ 55.7 + 56.3			<2	
		Cr(CO) ₃ (etp)	(PPh) + 110.2	-16.5	+ 126.7			12
29	9	Mo(CO) ₃ (etp)	$(PPh_2) + 77.9$ (PPh) + 82.4 $(PPh_2) + 55.3$	-12.9	+ 90.8 + 98.9 + 68.2			~6
		W(CO) ₃ (etp)	$(PPh_2) + 50.3$ (PPh) + 71.8 (PPh_2) + 40.3		+ 88.3 + 53.2			~6
		$(CO)_{4}W$	$(P_A) + 17.7$				² J _{РА} -РВ 21.5	$J_{\mathrm{W-P}_{1}}$ 221.1
30	0	P _B -/ Ph ₂	(P _B) + 4.0				^{21.5} ⁴ J _{PB} -PC 3.6	J_{W-P_2} 226.5
			$(P_{\rm C}) - 20.0$				3.0	220.0

250 Chemical Reviews, 1981, Vol. 81, No. 3

Garrou

		2.3 Mn, Re						
32	Table III	Mn(CO) ₃ Br(dppm)		+ 10.9	-22.7	+ 33.6		
		Mn(CO) ₃ Br(dppe)		+ 67.6	-13.2	+80.8		
		$Re(CO)_{3}Br(dppm)$		-38.5		-15.8		
		$Re(CO)_{3}Br(dppe)$		+ 30.0		+43.2		
		Mn(CO) ₃ (dppm)(MeCN) ⁺		+13.7		+36.4		
		Mn(CO) ₃ (dppe)(MeCN) ⁺		+73.5		+86.7		
		Re(CO) ₃ (dppm)(MeCN) ⁺		-35.0		-12.0		
		Re(CO) ₃ (dppe)(MeCN) ⁺		+ 38.0		+51.0		
33		$(MeCpMn(CO)_2)_2(dppm)$		+91.0		+113.7		
		MeCpMn(CO)(dppm)		+58.4		+81.1		
		$[MeCpMn(CO)_2]_2(dppe)$		+91.0		+104.2		
		(MeCp)Mn(CO) ₂ (dppe)		+122.0		+135.2		
34		CpMn(CO)(dppe)		+117.3	-13.2	+130.5		
		CpMn(CO)(dppp)		+82.0	-17.3	+99.3		
		$CpMn(CO)(PPh_3)_2$		+92.0	-5.5	+97.5		
		2.4a Fe, Ru, Os						
28		Г рь л*	δn	+ 33 6	-21.7	+82.0		90.0
		$\begin{bmatrix} \mathbf{C}\mathbf{p}(\mathbf{CO})_2 \mathbf{F}\mathbf{e} - \mathbf{P}_{\mathbf{A}} \end{bmatrix}^{\dagger}$	^δ Ρ _Α ^δ Ρ _Β	+ 33.6 -24.9	21.1	. 02.0		00.0
		P _B Ph ₂	чrв	2110				
		+	δp	-8.9	-12.9		-69.2	
		CD(CO)Fe	٥p	0.5	12.0		05.2	
		PAPhz						
		Г рь.,] ⁺	δթ	+ 92.3	-12.9		+ 32.3	
			٥P	1,0210	12.0		, 32.0	

35

31

 $\begin{bmatrix} P_{P_{a}} \\ P_{P_{a}} \\ P_{P_{a}} \end{bmatrix}^{+}$ $\begin{bmatrix} C_{P}(CO)F_{B_{a}} \\ P_{P_{a}} \\ P_{P_{a}} \end{bmatrix}^{+}$ $Me_{2}P_{C} \\ Me_{2} \\ P_{B_{a}} \\ Me_{2} \\ Me_{2} \end{bmatrix}$

/ SPA	+ 73.7	${}^{2}J_{\mathbf{P_{A}-P_{B}}}$
$Fe \begin{cases} \delta P_{A} \\ \delta P_{B} \\ \\ \delta P_{C} \\ \delta P_{D} \end{cases}$	- 70 F	105
°P _B	+ 70.5	² J _{РА} -РС 27
Fe		$J_{P_A-P_D}^{2J}$
ân	+ 59.8	32
°PC		² J _{Р В} -РС 28
δ _{PD}	+ 53.6	${}^{2}J_{P_{B}-P_{D}}$
		18
		${}^{2}J_{PC}-P_{D}$ 14
$Ru \begin{cases} \delta P_{A} \\ \delta P_{B} \\ \\ \delta P_{C} \\ \delta P_{D} \end{cases}$	+ 45.5	$J_{P_A-P_B}$
δπ	+ 40 1	281 ² J _{PA} -PC
°гв		^{°P} A ^{-P} C 13
Ru		$J_{P_A-P_D}$
5-	± 33 3	25
° PC	+ 55.5	² <i>J</i> _{Рв} -Рс 13
δ _{PD}	+ 27.4	${}^{2}J_{P_{B}-P_{D}}$
		13
		² J _{РС} -Р _D 13
		19

ref	compd	complex	δ₽	δ _F	Δ	$\Delta_{\mathbf{R}}$	$ J_{P-P} , Hz$	J _{M-P} , Hz
			$\delta_{\mathbf{I'A}}$ + 7.9				${}^{2}J_{P_{A}-P_{B}}$ 265 ${}^{2}J_{P_{A}-P_{C}}$ 5	
			δ _{PB} + 3.8				265 ² Jp	i
							⁶ PA-PC 5	
			Os				² J _{PA} -PD	
			$\delta_{P_{C}} = -5.0$				${}^{2}J_{P_{A}-P_{D}}$ 15 ${}^{2}J_{P_{B}-P_{C}}$	
							10	
			$\left(\delta \mathbf{P_D} - 7.7 \right)$				${}^{2}J_{PB-PD}$ 10	
							$10^{2}J_{\rm PC-PD}$	
	32	Медн Мед	$Fe\delta_P$ + 74.2				10	
	02		$Ru\delta_{P} + 45.3$					
			$Os\delta P + 9.3$					
	33	Pa Pa Pa	$\begin{array}{cc} \delta_{\mathbf{P}} \mathbf{A}_{d}^{d} &+ 60.4 \\ \delta_{\mathbf{P}} \mathbf{B}^{d} &+ 7.2 \end{array}$					
			rB					
			$\mathbf{E}_{\mathbf{b}}^{\delta} \mathbf{P}_{\mathbf{b}}^{d} + 76.0$				06 5	
			$\operatorname{Fe}_{\delta_{\mathbf{P}_{\mathbf{A}}}^{\delta_{\mathbf{P}_{\mathbf{A}}}^{d}}}^{\delta_{\mathbf{P}_{\mathbf{A}}}^{d}} + 66.3$				26.5	
			$\mathrm{Ru}_{\delta P_{\mathbf{A}} d}^{\delta P_{\mathbf{A}} d} + 49.6 + 39.7$				21	
		\sim	$\delta_{P_B} + 39.7$					
	34		$\delta_{\mathbf{P}_{\mathbf{A}}}^{d}$ + 60.4				² <i>J</i> _{PA} -P _B 10	
		Fe-Pg	$\delta \mathbf{P_B}^d + 10.2$				${}^{3}J_{P_{B}-P_{C}}$ 20	
			$\delta \mathbf{P_C}^d = -49.8$				20	
	35	Гс. Мес. 3 ⁺		- 20, 1	+114.0			
		Co Mez Fe B		-20.1 - 48.9	+114.0 +106.7			
			^{o}PC 12.0, 10.0					
		Pc						
	36		t_ ±1931	17.0	+141.0		2 7	
	00		$\delta_{\mathbf{P}_{\mathbf{A}}}$ +123.1	-17.9	+141.U		² J _{PA} -P _B 39 ² J _{PA} -P _C 29	
		Ph2Pc PAPh	$\delta_{P_{B}} + 68.7$	-49.0	+117.7		² J _{PA} -PC	
		L L J					29	

Garrou

			δP_{C}	+104.3	-13.5	+117.8		${}^{2}J_{P_{B}-P_{C}}$ 44	
36		2.4b Co, Rh, Ir Rh(dppe)2 ⁺ Ir(dppe)2 ⁺ Ir(dppm)2CO ⁺		+ 56.8 + 50.2 - 38.9 ^a	$-13.2 \\ -13.2$	+ 70.0 + 63.4			
		Ir(dppe) ₂ CO ⁺	$\mathbf{P}_{\mathbf{a}}^{\ l}$	+28.7	-13.2	+41.9		${}^{2}J_{P_{a}-P_{e}}$ 19.1	
		Ir(dppp) ₂ CO ⁺	P _e P _a	+24.4 - 16.9	-17.3	+37.6 + 34.2		${}^{2}J_{P_{a}-P_{e}}$ 37.1	
			Pe	-27.9		+45.2		0	
37	37		(P _A)	+45.1 ^e				²J _{РА} -Рв 34.5	158.5
		CO PB- Ph2	(P _B)	$+ 66.7^{e}$				04.0	124.5
	38	$(CH_2)_{n}$ $(CH$	n = 1 $n = 2$ $n = 3$	$^{+96.8^e}_{+87.1^e}_{+89.1^e}$					125 121
38		IrCO(dppe) ₂ ⁺ IrCO ₂ Cl ₂ ⁻ [IrCOCl(dppp)] ₂ [IrCOCl(dppb)] ₃		+28.5 -4.6 +1.7	-13.2 -17.3 -15.0	+41.7 +12.7 +16.7			
39	39		(P _A)	+4.2	-47.6	+ 51.8	+46.3 (P _A)		
		Me ₂ Cl	(P _B)	-42.1	11.0	+ 5.5	1 10.0 (I _A)		
40		$ \bigvee_{V} Rh < CI > Rh < P_{P}^{Ph_{2}} $		+ 32	-17.0	+ 49.0			187
		$ \begin{array}{c} Ph_2 \\ P \\ P \\ Ph_2 \\ Ph_2 \end{array} \begin{array}{c} Cl \\ P \\ Ph_2 \\ Ph_2 \end{array} \begin{array}{c} Ph_2 \\ P \\ Ph_2 \\ Ph_2 \end{array} $		+ 30.3	-17.0	+47.3			184
40		Rh(dppp)2Cl (NBD)RhL+		$+6.4^{f}$	-17.0	+23.4			132
10			dppe dppp dppb (-)diop	+ 55.6 + 14.1 + 26.8 + 16.2	-12.3 -17.0 -15.0 -24.0	+ 67.9 + 31.1 + 41.8 + 40.2			157 148 152 153
41		$PhP_B(CH_2CH_2)P_APh_2)_2(etp)$			$(P_A) - 12.9 (P_B) - 16.5$			${}^{2}J_{P_{A}-P_{B}}$ 27	
			(P _A)	+ 78.6				² J _{РА} -РВ 48	
		$\begin{bmatrix} (CO)_2 C \phi & \phi \\ Ph_2 P_A & \phi \end{bmatrix}$	(P _B)	+122.4					

 TABLE XXIII (Continued)

ref com	od complex	δ _Ρ	δ _F	Δ 4	$\Delta_{\mathbf{R}}$ $ J_{\mathbf{P}-\mathbf{P}} , \mathrm{Hz}$ $J_{\mathrm{M}-\mathbf{P}}, \mathrm{Hz}$
1	$\begin{bmatrix} Ph_2 \\ Ph_2 \\ Ph_2 \\ Ph_2 \\ Ph_2 \\ Ph_3 \\ Ph_4 $	$(P_A) + 68.2$			² J _{PA} -P _B 38 ² J _{P(OMe)3} -P _A 88
		(P _B) +113.3			² J _{P(OMe)3} -Р _В 211
43	$\left[(CO)(PEt_3)CO \xrightarrow{P_A} P_BPh \\ Ph_2P_A \xrightarrow{P_BPh} \right]^*$	(P _A) +64.9			${}^{2}J_{\mathbf{P}_{\mathbf{A}}-\mathbf{P}_{\mathbf{B}}}$ 33 ${}^{2}J_{\mathbf{P}_{\mathbf{E}t_{3}}-\mathbf{P}_{\mathbf{A}}}$ 53
		(P _B) +109.6			${}^{55}_{^{2}J_{\text{PE}t_{3}}-\text{P}_{\text{B}}}$ 104
1 41	$\begin{bmatrix} Ph_2 \\ Ph_2 \\ Ph_3 \\ Ph_2 $	$(P_A) + 65.6$			${}^{2}J_{P_{A}-P_{B}}$ 41.0 ${}^{2}J_{P_{A}}-P(OMe)_{3}$
		(P _B) +108.0			93.5, 110.3 ${}^{2}J_{P_{B}}-P(OMe)_{3}$ 193.5, 105.5 ${}^{2}J_{P(OMe)_{3}}-P(OMe)_{3}$
	$PhP_B(CH_2CH_2CH_2P_APh_2)_2(ttp)$		$(P_A) -17.0 (P_B) -28.8$		136.5
	$\begin{bmatrix} Ph_2 \\ Ph_2 $	$(P_A) + 37.0$			² J _{PA} -PB 75
	$\begin{bmatrix} (CO)_2 CO & P_B P_h \\ P_h_2 P_A - L \end{bmatrix}$	(P _B) -7.3			10
40					${}^{2}J_{\mathbf{P_{A}}-\mathbf{P_{B}}}_{90}$
	$\begin{array}{c} P(OMe)_{3}(CO)Co & P_{B}Ph \\ Ph_{2}P_{A} & \end{array} \end{array}$	$(P_A) + 29.0$			² Ј _{РА} -Р(ОМе) ₃ 18
		$(P_{\rm B}) - 6.0$			² Ј _{РВ} -Р(ОМе) ₃ 49
42	(PEts)(CO)Co PB PB PB	(P) $+21.5^{a}$			
3a	$Ph_{2}P_{B}CH_{2}CH_{2}CH_{2}P_{A}PhCH_{2}CH_{2}CH=CH_{2}$ (ppol)		$(P_A) -27.1 (P_B) -18.2$		
44	CI I	(P _A) +53.7		+80.8	$^{2}J_{P_{A}-P_{B}}$ $J_{Rh-P_{A}}$ 53 156
	$\begin{array}{c} Ph_2 P \longrightarrow Rh \longrightarrow \ \\ B & \ \\ B & P_A \\ Ph_2 \\ Ph_2 \end{array}$	(P _B) + 5.3		+ 23.5	$\begin{array}{c} 53 \\ J_{\mathbf{Rh}-\mathbf{P_B}} \\ 153 \end{array}$

Garrou

	45-47	Ph ₂ / ^P B	(P _A)	+ 37.3		+64.4		² <i>J</i> _{PA} -P _B	J _{Rh-PA}
			(P _B)	-1.7		+16.5		47	88 J _{Rh-PB} 115
	48-49		(P _A)	+ 29.1		+ 56.2		² J _{РА} -РВ 49	$J_{\mathbf{Rh-P_A}}$ 122.5
		(CO)(PPh ₃)Rh PAPh	(P _B)	+7.3		+25.5		49	$\begin{array}{c} 122.5\\ J_{\rm Rh-P_B}\\ 146 \end{array}$
44	5 0	Ph2 PB NO	(P _A)	+89.3		+ 105.9		² <i>J</i> _{PA} -P _B	154
		Ph PA PBPh2	(P _B)	+ 69.7		+82.5		18	167
		$Ph_2P_BCH_2CH_2P_A(CH_2)_3P_CPh_2$ (eptp)			$\begin{array}{rrr} (P_A) & -22.4 \\ (P_B) & -13.2 \\ (P_C) & -18.0 \end{array}$				
	51	Ph ₂ P _b Rh	(P _A)	+ 56.0		+78.4		$J_{P_A-P_B}$	156
		Ph PcPh2	(P _B)	+ 68.9		+82.1		12 ² J _{PA} -PC 45	166
			(P _C)	+ 30.2		+48.3		45 ² J _{PB} -PC 0	169
	52	Ph ₂ PB NO	(P _A)	+18.8	$(P_A) - 28.8$	+47.6		${}^{2}J_{P_{A}-P_{B}}$ 48	154
			(P _B)	+ 29.2	(P _B) -17.0	+46.2		40	164
		$\begin{array}{c} Ph_{3}P \\ Ph_{3}P \end{array} Rh \\ \hline PPh_{3}P \end{array} Rh \\ \hline PPh_{3} \\ 2.4c \text{ Ni, Pd, Pt} \end{array}$		+ 48.8	- 5.8	+ 54.6			175
14	Fig. 2	$\frac{CO}{CO} Ni \xrightarrow{PEt_3}{PEt_3}$		+ 20.7					
		co relation relatio		+ 48.6					
		$ \begin{array}{c} OC \\ OC \\ OC \end{array} \xrightarrow{Et_2 P} PEt_2 \\ Ft_2 P \\ PEt_2 \\ CO \end{array} \xrightarrow{CO} CO \\ C$		+ 21.9					
		$\begin{array}{c} c_{0} \\ c_{0} \\$		+ 21.9					
45	Table V	<i>cis</i> -PtMe ₂ (PMePh ₂) ₂ PtMe ₂ (dppm)		+6.4 -40.4	-28.1 - 22.7	$^{+34.5}_{-17.7}$	-52.2		$\begin{array}{c} 1851 \\ 1434 \end{array}$
-		PtMe₂(dppe) PtMe₂(dppp)		$^{+45.4}_{+3.2}$	$-13.2 \\ -17.3$	+ 58.6 + 20.5	+24.1 - 14.0		$1794 \\ 1790$
47		PtMe2(dppb)		+ 18.8	-15.0	+ 33.8	-0.7		

 TABLE XXIII (Continued)

ref	compd	complex	δ	P	δ	F	Δ	$\Delta_{\mathbf{R}}$	$ J_{P-P} , Hz$	$J_{\rm M-P}$, Hz
38	Table VI	$cis PdCl_2[P(Ph_2Et)_3]_2$	· · · · · · · · · · · · · · · · · · ·	+ 30.2		-12.5	+ 42.7			
		PdCl ₂ (dppe)		+68.3		-13.2	+81.5	+38.8		
		$cis PdCl_2[P(Ph_2Pr)_3]_2$		+27.4		-17.6	+ 45.0			
		PdCl ₂ (dppp)		+12.9		-17.3	+ 30.2	-14.8		
		<i>cis</i> ·PdCl ₂ [P(Ph ₂ but) ₃] ₂ PdCl ₂ (dppb)		+26.6 +32.8		$-17.1 \\ -15.0$	+43.7 +47.8	+ 3.8		
		$cis \cdot PtCl_2[P(Ph_2Me)_3]_2$		+32.0 -1.2		-28.1	+26.9	+ 0.0		
		$PtCl_2(dppm)$		-64.3		-22.7	-41.6	-68.5		
		$cis PtCl_{2}[P(Ph_{2}Et)_{3}]_{2}$		+ 9.8		-12.5	+ 22.3	0010		
		PtCl ₂ (dppe)		+45.3		-13.2	+58.5	+36.2		
		cis-PtCl ₂ [P(Ph ₂ Pr) ₃] ₂		+ 6.9		-17.6	+24.5			
		PtCl ₂ dppp		-5.6		-17.3	+11.7	-12.8		
46		$Ni(PMe_3)_4$		+22.2		-63.3	+ 41.1	<u> </u>		
10		$Ni(Me_2PCH_2CH_2PMe_2)_2$		+18.1		-49.4	+ 67.5	-26.4		
18	53	cis-PdCl ₂ (Ph ₂ P _A CH ₂ OPPh ₂) ₂ PdCl (Ph P CH OP Ph)	$(\mathbf{P}_{\mathbf{A}})$	+ 27.0		-14.1	+41.8 +93.9	+52.1		
	55	$PdCl_2(Ph_2P_ACH_2OP_BPh_2)$ cis-PdCl_2(Ph_2P_ACH_2CH_2OP_BPh_2)_2	$(\mathbf{P}_{\mathbf{A}})$	+ 79.8		-14.1 -22.8		+ 52.1		
	54	$PdCl_2(Ph_2P_ACH_2CH_2OPBH_2)_2$	(P _A) (P _A)	+24.0 + 11.7		-22.8	+46.8 +34.5	-12.3		
	04		(IA)	T 11.1		-26.3	+04.0	-12.0		
49		$Ph_2P_ACH = C(CF_3)P_BPh_2$			$(\mathbf{P}_{\mathbf{B}})$	-18.0			131	
		$Ph_2P_ACH = C(Ph)P_BPh_2$			(P _A)	-28.1			146	
		$r_2 r_A C r_A C r_B r_2$			(P _B)	-7.0			140	
		$Ph_2P_ACH = C(t-Bu)P_BPh_2$			(P_A) (P_B)	$-32.2 \\ -14.8$			37	
					$(\mathbf{P}_{\mathbf{B}})$ $(\mathbf{P}_{\mathbf{A}})$	-27.8				
		$Ph_2P_ACH = C(Ph)P_BEtPh$			$(\mathbf{P}_{\mathbf{B}})$	-21.0				
						-23.0				
		$Ph_2P_ACH=C(CF_3)P_B(C_2H_4CN)_2$			(P _B)	- 32.9				
	55	$Cl_2Ni(Ph_2P_ACH=C(Ph)P_BPh_2)$	$(\mathbf{P}_{\mathbf{A}})$	+ 46.0		+74.1	+43.4		69	
	00	$O_1^{2} O_1^{2} O_1^$	(P _B)	+ 69.3		+76.3	+58.2		05	
		$Cl_2Ni(Ph_2P_ACH=C(t_Bu)P_BPh_2)$	$(\mathbf{P}_{\mathbf{A}})$	+43.8			+76.0	+ 44.0	71	
			$(\mathbf{P}_{\mathbf{B}})$	+72.1			+86.9	+ 60.6		
		$Cl_2Ni(Ph_2P_ACH=C(CF_3)P_BPh_2)$	$(\mathbf{P}_{\mathbf{A}})$	+ 48.0			+73.8 +95.7	+43.9 +65.8	66	
			(P _B) (P _A)	+ 69.9 + 56.6			+ 95.7 + 82.9	+ 36.5		
		$Cl_2Pd(Ph_2P_ACH=C(CF_3)P_BPh_2)$	$(\mathbf{P}_{\mathbf{B}})$	+ 73.6			+ 91.6	+30.3 +47.8	21	
	FC	CI DJ(DL D CILL C(DL)D DL)	$(\mathbf{P}_{\mathbf{A}})$	+51.1			+79.2	+32.2	1 5	
	56	$Cl_2Pd(Ph_2P_ACH=C(Ph)P_BPh_2)$	$(\mathbf{P}_{\mathbf{B}})$	+75.6			+82.6	+42.3	15	
		$Cl_2Pd(Ph_2P_ACH=C(Ph)P_BPhEt)$	$(\mathbf{P}_{\mathbf{A}})$	+51.4			+79.2	+32.3	17	
		Olar d(I mar A Oli O(I m) BI mD()	(P _B)	+80.4			+102.2	+ 57.4	1,	
		$Cl_2Pd(Ph_2P_ACH=C(CF_3)P_B(C_2H_4CN)_2)$	$(\mathbf{P}_{\mathbf{A}})$	+54.6			+77.6	+ 32.3	20	
			$(\mathbf{P}_{\mathbf{B}})$	+77.1 + 31.8			$^{+110.0}_{+58.1}$	+ 61.5 + 30.7		
		$Cl_{2}Pt(Ph_{2}P_{A}CH=C(CF_{3})P_{B}Ph_{2})$	(P _A) (P _B)	+31.0 +48.3			+66.3	+30.7 +41.6	<2	
	57		$(\mathbf{P}_{\mathbf{A}})$	+ 30.5			+ 58.6	+ 30.6	40	3552
	57	$Cl_2Pt(Ph_2P_ACH=C(Ph)P_BPh_2)$	$(\mathbf{P}_{\mathbf{B}})$	+ 53.1			+60.1	+ 39.0	<2	3640
		$Cl_2Pt(Ph_2P_ACH=C(t\cdot Bu)P_BPh_2)$	$(\mathbf{P}_{\mathbf{A}})$	+25.9			+58.1	+28.8	<2	3425
		0.2- (2- AOII - O((- Dw)- B- 1.2)	(P _B)	+53.2			+ 68.0	+44.2	\ 4	3613
50		(<i>†</i> -Bu) ₂ P	M = Pt, n = 9	+ 31.0						2454
		$CI \longrightarrow M \longrightarrow CI(CH_2)_a$	10	+31.8						2476
			12	+28.2						2444
		(#-Bu)2P	M = Pd, n = 10	+43.3						

3		$trans-PtCl_2[P(n-Pr)_2(t-Bu)]_2$		+ 34.3			
1	61	(f•Bu)2		+ 73.0			3223
D			(P _A (P _B) +48.6	+ 97.0 + 71.9	76	
			(P _B) +58.4	+71.9		
		Ph2 Me2	(P _A	+58.8 + 64.5	+107.2	10	
			(P _A (P _B	+ 64.5	+ 78.0	10	
_		Ph ₂			. 50.0		
0			(P _A (P _B	+30.8 + 42.2	+ 7 9.2 + 55.7	<2	
		CI P _B Ph ₂					
	62		(P _A (P _B	+109.2 + 47.1	+125.7 +70.0	50	
		$\left \left(\begin{array}{c} P_{A} \\ P_{B} \end{array} \right) N_{i} \left(\begin{array}{c} P_{B} Ph_{2} \\ C_{I} \end{array} \right) \right $	ν- Β				
	63		(P _A (P _E	+109.5 + 45.7	+ 126.0 + 68.6	10	
		Pd PBPh2		- /			
		Ps CI Ph2					
			(P _A (P _B	+ 86.0 + 41.9	+102.5 +54.8	<2	
		P _A P _B Ph ₂	(r _B	() +41.9	T 04.0		
		P _B Pt Cl					
Bb			(P _A) -3.7	+24.5	J_{P_A} - P_{P}	$J_{\rm Pt-P_A}$
		Me Pt PB				J _{PA} -P _B 18.0	1807
		Ph'A	(P _E	a) +3.5	+ 21.6	$J_{P_A-P_C}$	J_{Pt-P_B} 1850
		P _c Ph ₂	(P _C	;) -18.9		0	1850
		Ph ₂ Me P _B	(P _A		+66.0	J _{PA-PB}	$J_{\text{Pt-P}_{A}}$
		Me PhPB PcPh2	(P _B	a) + 48.5	+61.3	0.8 ^J P _A -P _C	1838 Ј _{Рt-Рв}
						37.5	1853
			(P _C			_	_
		Me Ph2 Me P+ PB	(P _A) +31.5	+ 49.0	^J РА-РВ 0	J _{Pt-PA} 1773
		Me Ph2Pc / PcPh2	(P _E	a) + 32.4	+ 45.4	⁰ Ј _{РА} -РС 32.8	J_{Pt-P_B}
			(P _C			32.8	1853
			(r _C	;; = <u>3</u> 5.0			

18 51

30

30

43b

TABLE	XXIII	(Continued)

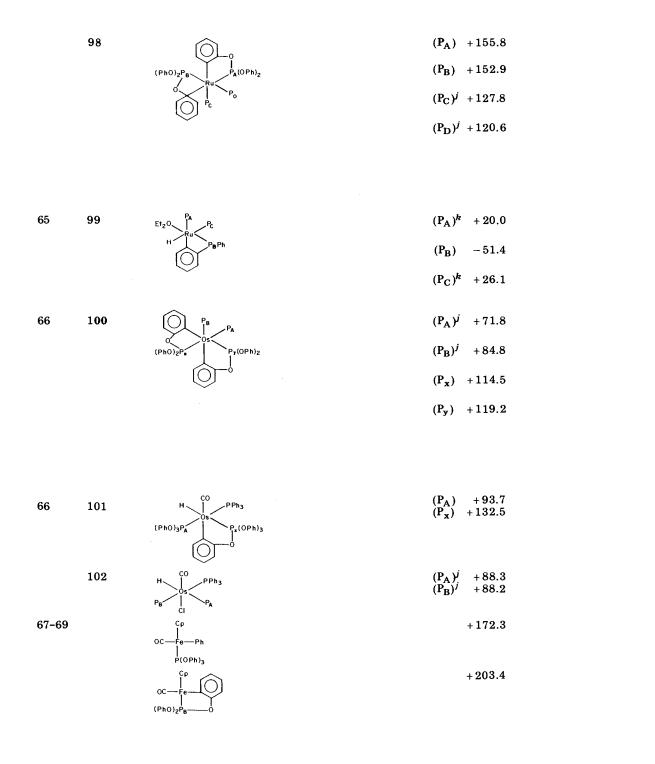
ref	compd	complex	ė	δP	δ _F	Δ	$\Delta_{\mathbf{R}}$	$ J_{\mathbf{P}-\mathbf{P}} , \mathrm{Hz}$	J_{M-P} , Hz
		Me Ph2 Pt Pg	(P _A)	+ 44.0		+66.6		J _{РА} -Р _В 3.7	J _{Pt-PA} 1824
		$Me \sim Ph^{P_A} \sim P_C^{Ph_2}$	(P _B)	+ 47.4		+ 60.0		$J_{P_A-P_C}$	J_{Pt-P_B} 1841
			(P _C)	-18.9					
		$ \underbrace{\overset{Me}{\underset{Me}{\overset{Pt}{\underset{P_{A}}{\overset{Ph_{2}}{\overset{P_{A}}}{\overset{P_{A}}{\overset{P_{A}}{\overset{P_{A}}{\overset{P_{A}}{\overset{P_{A}}{\overset{P_{A}}{\overset{P_{A}}{\overset{P_{A}}{\overset{P_{A}}{\overset{P_{A}}{\overset{P_{A}}{\overset{P_{A}}{\overset{P}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	(P _A)	+4.5		+ 30.1		J _{PA-PC} 2.4	1816
		Ph ₂	(P _C)	-28.8					
		Ph ₂	(P _A)	-2.6		+24.5		J _{PA} -P _B	J_{Pt-PA}
			(*A)	2.0		. 21.0		$^{P_{A}-P_{B}}$ 18.0	1789
		Me PhPa>	(P _B)	+ 3.4		+ 21.6			$J_{\text{Pt-PB}}$ 1827
	66	Ph P		+42.5		+67.9			
					-26.2		+ 28.6 (avg)		
		$cis \cdot Mo(CO)_{4}[PPh(n \cdot Bu)_{2}]_{2}$		+14.5		+40.7			
	67	Ph Ph		+34.1	-16.5	+ 50.6	+ 26.6		3071
	68	Ph P		+ 37.8	-25.4	+63.2	+40.1		3032
	69			+42.1	-30.2	+72.3	+41.1		2934
		$cis-Cl_2Pt[PPh_2(n-Bu)]_2$		+7		+24.1			
		cis-PtI ₂ [P(n -Bu) ₃] ₂ cis-PtI ₂ [PPh(n -Bu) ₂] ₂		$^{-1.1}_{-2.3}$	$-32.3 \\ -25.4$	+31.2 + 23.1			
		$Ph \qquad Ph$		+ 57.1	- 16.5	+ 73.6	+ 29.4		
		cis-PdBr ₂ [PPh ₂ (n -Bu)] ₂		+27.7		+44.2			
		Ph P		+65.4	-25.4	+90.8	+44.8		
		ci—Pa— 							

		cis-PdCl ₂ [PPh(n -Bu) ₂] ₂		+ 20.6		+ 46.0			
		<i>P P P P P P P P P P</i>		+76.3	- 30.2	+106.5			
		CIPd							
		l Cl	(P.).	-		. 01.4			T
	72		(P _E)	+74.9		+ 91.4			$J_{\mathbf{Rh-P_E}}$ 145
		H-Rh PFPh2	(P _A)	+26.4	-16.5	+42.9		+ 26.8	$J_{\rm Rh-P_A}$
				N 90 F		16.0			111
			(P _E) (P _A)	+29.5 +6.6	-16.5	+ 46.0 + 23.1		+ 11.0	
	73	сі .0. Рh2	(P _A)	+19.3	-16.5	+ 35.8			
	10	Ch Ch	(- K)						
	72	Ph2	(P _E)	+156.2		+43.2			$J_{\mathbf{Rh-P_E}}$
	12				+113.0			+ 21.0	146
			(P _A)	+139.8	+ 115.0	+ 26.8		1 21.0	$J_{\mathbf{Rh}-\mathbf{P}_{\mathbf{A}}}$ 116
	70-71			+68.6					188
					-16.5				
		or Ph2P, CL, P-		+ 69.6					189
		″							
	76			+134					
3	77	$L = P_{A}(t \cdot but)_{2}$	(P _A) (P _B)	+57.7 +16.8			+40.9 +40.9	365	
		allyl(r·Bu)2PB							
0		Me 1 H		+ 63.9					
		$\begin{array}{c} & & \\ C = 0 & \\ C =$							
		C-0 \ L Me							
4	78		(P _A) (P _B)	+ 35.6 + 12.9			+ 22.7	356	
		$P_{\mathbf{A}}(C_{\mathbf{G}^{H}_{II}})_{2}$	(r _B)	T 14.7					
		(C ₆ H _{II}) ₃ P _B CI							

TABLE XXII	(Continued)

ref	compd	complex		^б Р	δ _F	Δ	$\Delta_{\mathbf{R}}$	J_{P-P} , Hz	$J_{\rm M-P}$, Hz
	79		(P _A) (P _B)	-20.8 -3.1			-17.7	427	
5	80	$(C_6H_{H})_3P_{B} \xrightarrow{C_1}$	M Ni (P _A) (P _B) Pd (P _A) (P _B) P+ (P)	+ 41.4 + 26.3 + 44.9 + 23.4 + 43.7	-13.7			326 435 425	
	81	$O_{Ph_2P_B} - M_{P_APh_2} O_{Ph_2P_B} O_{P_APh_2} O_$	$(P_B) Pt (P_A) (P_B) Ni (P_A) (P_B) Pd (P_A) (P_B) Pt (P_A) Pt (P_A) (P_B) Pt (P_A) (P_B) (P$	+ 28.9 + 43.5 + 14.5 + 37.3 + 13.9	+15.8			410 421	
5	82	CI	$\begin{array}{c} \operatorname{Pt} (\operatorname{P}_{A}) \\ (\operatorname{P}_{B}) \end{array}$ $\operatorname{Rh} (\operatorname{P}_{A}) \\ (\operatorname{P}_{B}) \\ \operatorname{Ir} (\operatorname{P}_{A}) \\ (\operatorname{P}_{B}) \end{array}$	+43.4 +19.0 +39.1, +40.0 +17.3, +15.5 +34.3, +35.2 +9.5, +6.2				425 400 392	129 127
\$	83	$ \begin{array}{c} $		+ 18.2 + 8.0				444	93 94
	84	$Me \qquad \qquad$		+ 45.9 + 34.1				26	147 145
,	85	$\frac{P_{h_2}}{P_{h_2}} = \frac{C_1}{C_{H_2}}$	$(\mathbf{P_A})^g$ $(\mathbf{P_B})$	+ 52.0 + 31.1	- 37.99	+ 89.99 + 69.09	+ 20.9	409	3262 2755
	86	$(f - Bu)_2 P_A$ CMe_2	(P _A)	+71.3				391.4	
3		$\langle \bigcup \rangle$ trans-PtCl ₂ [PPh(t·Bu) ₂] ₂		+41.2					
	87	$\frac{Br}{RR'P_{B}} \xrightarrow{P_{2}RR'}{CH_{2}}$	$(\mathbf{P_A})^h$ $(\mathbf{P_B})$	+ 25.9 + 67.4	-8.74	+ 34.6 + 76.1	+41.5	396.5	2984 3086
0	89	$Me_2C \xrightarrow{CH_2} Pd \xrightarrow{P_B(\ell + Bu)_3}$	$\begin{array}{c} \operatorname{Cl}\left(\mathbf{P}_{\mathbf{A}}\right) \\ \left(\mathbf{P}_{\mathbf{B}}\right) \end{array}$	11.8 +61.8	-60.9		$(P_A) - 73.6$		

Garrou


			$CF_{3}COO(P_{A})$ (P_B)	13.8 +67.8			$(P_A) - 81.6$		
61	90	$Me_{2}C \xrightarrow{P_{B}} Pt \xrightarrow{P_{A}(t \cdot Bu)_{3}}$	(P _A) (P _B)	+ 66.8 - 12.8	- 60.9	$^{+127.7}_{+48.1}$	- 79.7	383	2680 2360
60	89	$Me_{2}C \xrightarrow{\begin{pmatrix} (f+Bu)_{2} \\ P_{B} \\ CH_{2} \end{pmatrix}} Pd \xrightarrow{CI}_{P_{A}(f-Bu)_{3}}$	(P _A) (P _B)	+61.8 11.8	-60.9	$^{+122.7}_{+49.1}$	-73.6		
	89	$Me_{2}C \xrightarrow{CH_{2}} Pd \xrightarrow{P_{A}(f-Bu)_{3}} $ $(f-Bu)_{2} \xrightarrow{(f-Bu)_{2}} Pd \xrightarrow{CI} $ $Me_{2}C \xrightarrow{P_{B}} Pd \xrightarrow{CI} $	$\begin{array}{c} L \\ Et_{3}P_{A} \left(P_{A} \right) \\ \left(P_{B} \right) \\ P_{A}Ph_{3} \left(P_{A} \right) \\ \left(P_{B} \right) \\ Cy_{3}P_{A} \left(P_{A} \right) \\ \left(P_{B} \right) \\ Ph_{3}As \\ Py \end{array}$	+14.1 -14.1 +19.6 -19.2 +14.5 -25.3 -16.2 +13.1	-60.9	+ 46.8 + 41.7 + 35.6 + 44.7 + 47.8		441 422 409	
62	91	$(j-Pr)_{3}P_{A} \begin{bmatrix} H & (j+Pr)_{2} \\ P_{B} \\ CH \\ CH \\ He \end{bmatrix}$	L Py (P _A) (P _B) CO (P _A) (P _B) P(OPh) ₃ (P _A) (P _B)	+10.5 -31.2 +18.3 -30.2 +6.3, +8.6 -41.1, -42.8			-41.6 -48.4 -47.5, -51.4	369.3 308.3 315.0, 315.7	
62	92	$\mathbf{R}^{CI} \mathbf{P}_{A} \mathbf{P}_{A} \mathbf{P}_{A} \mathbf{P}_{B} \mathbf{P}_{C} \mathbf{P}_{B} \mathbf{P}_{C} P$	$\begin{matrix} \mathbf{L} & & \\ & \mathbf{Py} & (\mathbf{P}_{\mathbf{A}})^{h} & \\ & & (\mathbf{P}_{\mathbf{B}}) & \\ & \mathbf{CO} & (\mathbf{P}_{\mathbf{A}}) & \\ & & (\mathbf{P}_{\mathbf{B}}) \end{matrix}$	+ 76.2 + 39.6 + 67.8 + 24.9			+ 36.6 + 42.9	360 301	
	93	Ph ₂ Ph ₂	Pd $R = Ph$ $t-Bu$ Me Pt $R = Ph$	+ 40.9 + 77.3 + 17.3 + 42.8			+ 20.8 + 20.3 + 32.9		1856
		cis - $(BzR_2P)_2MCl_2$	t-Bu Me Pt $R = Ph$ Me Pd $R = Ph$	+ 79.8 + 17.3 + 9.9 - 8.4 + 20.0			+ 25.7		1679 1791 3782 3600
5	94	$(PhO)_2 P_D \qquad \qquad$		-2.7 +144.2 +149.5 +176.4 +180.8				${}^{3}J_{P_{A}-P_{B}}$ 87 ${}^{2}J_{P_{A}-P_{C}}$ 325 ${}^{2}J_{P_{A}-P_{D}}$ 74 ${}^{2}J_{P_{B}-P_{C}}$ 68	

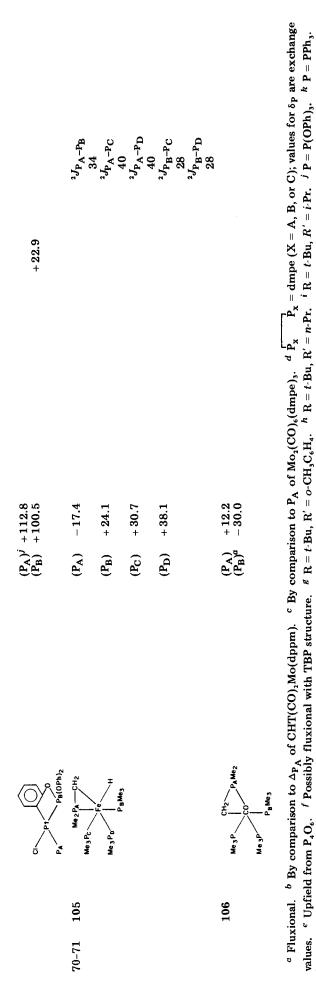
³¹P NMR of Phosphorus Chelate Complexes

Chemical Reviews, 1981, Vol. 81, No. 3 261

ref	compd	complex	δ _Ρ	δ _F	Δ	$\Delta_{\mathbf{R}}$	$ J_{P-P} , Hz$	<i>J</i> _{М-Р} , Нz
							² J _{PB} -PD	
							75 ²/л р	
							${}^{2}J_{PC-PD}$ 112 ${}^{2}J_{PA-PB}$ 53.7 ${}^{2}J_{PA-PC}$ 34.5 ${}^{2}L_{PA}$	
			$(P_{\rm A}) + 120.6$				${}^{2}J_{\mathbf{P_{A}}-\mathbf{P_{B}}}$	
			(\mathbf{D}) $>$ 197.8				53.7	
			$(P_B) + 127.8$				^J P _A -P _C	
			$\operatorname{Ru}\left(\left(\mathbf{P_{C}}\right) + 152.7\right) \right)$				$^{2}J_{PA-PD}$	
							32	
			$(P_D) + 155.6$				${}^{2}J_{P_{A}-P_{D}}$ 32 ${}^{2}J_{P_{B}-P_{C}}$ 44.1	
			(44.1 ² L	
							${}^{2}J_{P_{B}-P_{D}}$ 68.5	
							$^{2}J_{PC}-P_{D}$	
							54.3	
			$(P_{A}) + 74.9$				² J _{РА} -РВ 38.3	
							38.3	
			$(P_B) + 85.9$				² <i>J</i> _{PA} -PC	
			Os $\langle (P_C) + 113.4 \rangle$				${}^{3}P_{A}-P_{C}$ 25 ${}^{2}J_{P_{A}}-P_{D}$ 35.3 ${}^{2}J_{P_{D}}-P_{D}$	
							35.3	
			(P _D) +118.9				² J _{PB} -PC 27.9	
			(27.9	
							² J _{РВ} -РD 65.1	
							$^{2}J_{PC-PD}$	
							² J _{PC} -PD 41.2	
	95	$\widehat{\bigcirc}$	$(P_A) + 186.1$				${}^{2}J_{P_{A}-P_{B}}$ 68 ${}^{2}J_{P_{A}-P_{C}}$	
							. 68	
		$(PhO)_2 \dot{P}_A $	$(P_B)^j$ +151.3				² <i>J</i> _{PA} -PC	
		OC PB	(P_{C}) +175.7				110 ² J _{PB} -PC	
							85	
1	96		$(P_A)^j$ +129.0				${}^{2}J_{\mathbf{P_{A}}-\mathbf{P_{B}}}$	
							36.8	
		Ph ₃ P ⁻ CO P _B	$(P_B)^j$ +122.5					
	97	\bigcirc	$(P_A)^j$ +141.5				$^{2}J_{P}$	
							${}^{2}J_{P_{A}-P_{B}}$	
		P_A $P_C(OPh)_2$	$(P_B)^{j}$ +137.5				$J_{P_A-P_C}$	
		H PB	$(P_{C}) + 165.2$				${}^{2}J_{P_{A}-P_{C}}$ 26 ${}^{2}J_{P_{B}-P_{C}}$ 32	
		co	(1C) + 100.2				"PB-PC	

Garrou

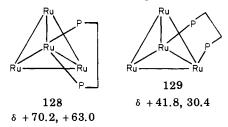
 ${}^{2}J_{PA}-P_{B}$ 53 ${}^{2}J_{PA}-P_{C}$ 35 ${}^{2}J_{PA}-P_{D}$ 52 ${}^{2}J_{PB}-P_{C}$ 44 $J_{P_B-P_D}$ 685 J_{PC-PD} 54 ${}^{2}J_{P_{A}-P_{B}}$ 23.7 ${}^{2}J_{P_{A}-P_{C}}$ 17.7 ²J_{PB}-PC 17.7 ${}^{2}J_{P_{A}}-P_{B}$ 41.2 ${}^{2}J_{P_{A}}-P_{x}$ 651.5 ${}^{2}J_{P_{A}}-P_{y}$ 35.3 ${}^{2}J_{P_{B}}-P_{x}$ 27.9 ²*J*_{PB}-P_y ²⁵ ²J_{P_x-P_y} 38.3 17.9

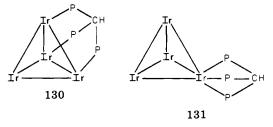

24.0

+ 31.1

Chemical Reviews, 1981, Vol. 81, No. 3 263

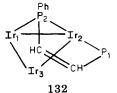
TABLE XXIII	(Continued)


complex	δρ	δF	Δ	Δ _R	$ J_{P-P} , Hz$	J_{M-P} , Hz
$P_{\Delta} - F_{e} - \bigcirc$	$(\mathbf{P}_{\mathbf{A}})^{j}$ +166.4 $(\mathbf{P}_{\mathbf{B}})$ +200.0			+ 33.6		
$\begin{array}{c c} & Ph & P(OPh)_3 \\ & CO & CO \end{array}$	+159.8					
	+ 193.2			+ 33.4		
c_{O} c_{O} c_{O} c_{O} c_{O} c_{O} C_{O} C_{O} $P_{B}(OPh)_{2}$	$(P_A)^j$ +157.1 (P_B) +193.8			+ 36.7		
$CO = P_{A}$	$(\mathbf{P_A})^{j}$ +114.0 $(\mathbf{P_B})^{j}$ +121.0 $(\mathbf{P_C})$ +152.0			+ 38.0		
$(Ph)_{3}P \xrightarrow{O}_{OS} P_{B}(OPh)_{2}$	$(\mathbf{P_A})^j$ +93.7 $(\mathbf{P_B})$ +132.5			+ 38.8		
$P_{A} = O_{A} = O_{A$	$\begin{array}{rrr} (P_A)^j & + 82.3 \\ (P_B) & + 131.2 \end{array}$			+ 48.9		
$H = \begin{bmatrix} P_{A} \\ P_{D} \end{bmatrix} = \begin{bmatrix} P_{A} \\ P_{D} \end{bmatrix} = \begin{bmatrix} P_{A} \\ P_{D} \end{bmatrix} = \begin{bmatrix} P_{A} \\ P_{B} \end{bmatrix} = \begin{bmatrix} P_{A} \\ P_{B} \end{bmatrix}$	$\begin{array}{rrr} (P_A)^j & +71.8 \\ (P_B)^j & +84.8 \\ (P_C) & +114.5 \\ (P_D) & +119.2 \end{array}$			+ 42.7 + 34.4		
P_{A} $P_{C}(OPh)_{2}$	$(P_A)^j + 122.0$ $(P_B)^j + 144.0$ $(P_C) + 160.0$			+ 38.0		
	$P_{A} - F_{B}$ $(Ph0)_{2}P_{B} = 0$ $C_{O} - F_{B}$ $C_{O} - F_{O}$ $F_{O} - F_{O} - F_{O} - F_{O}$ $F_{O} - F_{O} - F_{O} - F_{O}$ $F_{O} - F_{O} - F_{O} - F_{O} - F_{O}$ $F_{O} - F_{O} - F_{O} - F_{O} - F_{O} - F_{O}$ $F_{O} - F_{O} -$	$ \begin{array}{c} (P_{\text{PD}})_{2} P_{\text{B}}^{j} \longrightarrow 0 \\ C_{\text{CO}} & & +159.8 \\ \hline C_{\text{CO}} & & +193.2 \\ \hline C_{\text{CO}} & & & +193.2 \\ \hline C_{\text{CO}} & & & & \\ \hline C_{\text{Pa}} & & & \\ \hline C_{\text{CO}} & & & & \\ \hline C_{\text{Pa}} & & & \\ \hline C_{\text{Pb}} & & \\ \hline $	$(P_{0})_{p} = \int_{-\infty}^{p} (P_{0}P_{1})_{3} + 159.8$ $(O_{-})_{0} = \int_{0}^{p} (O_{0}P_{1})_{2} + 193.2$ $(O_{-})_{0} = \int_{0}^{p} (O_{0}P_{1})_{2} + 193.8$ $(O_{-})_{0} = \int_{0}^{p} (O_{0}P_{1})_{2} + 193.8$ $(O_{-})_{0} = \int_{0}^{p} (O_{0}P_{1})_{2} + 114.0 + 100 + $	$(PA)_{2}^{j} k_{B} \rightarrow 0$ $(PA)_{2}^{j} + 159.8$ $(PA)_{2}^{j} + 157.1$ $(PA)_{2}^{j} + 157.1$ $(PA)_{3}^{j} + 114.0$ $(PA)_{3}^{j} + 114.0$ $(PA)_{4}^{j} + 114$	$\begin{array}{c} (PR)_{p} = & + \\ c \to & + \\ c $	$\begin{array}{c} \mu_{0} \downarrow_{p} \downarrow_{q} = 0 \\ \downarrow_{0} \downarrow_{0} \downarrow_{0} \downarrow_{0} \downarrow_{0} \downarrow_{0} \downarrow_{0} \downarrow_{0} \downarrow_{0} \downarrow_{1} \downarrow_{$


plexes are given in Table XXIII.

Note Added in Proof

Shapley et al.⁹⁰ were able to use Δ_R arguments to determine the mode of bonding in diphosphine-substituted tetranuclear clusters. Specifically, when the $\delta_{\rm P}$ values of 128 and 129 are compared to the analogous



disubstituted PPh₂Me complex (δ 19.6), one obtains $\Delta_{\rm R}$ values of +35.4 and 28.2 for 128 and +7.0 and -4.4 for 129 due to five-membered rings in the former and sixmembered rings in the latter. In a similar fashion, recent reports of the reaction of $HC(PPh_2)_3$ with Ir_4 -(CO)₁₂ is reported to give 130.⁹¹ We feel its δ_P value

of -39.1 ppm indicates the presence of four-membered rings, and thus it is probably 131.

Gates and Davis⁹² have recently solved the crystal structure of Ir₃(CO)₇(PhPCH=CHPPh₂), 132, which

shows a phosphide bridge between Ir_1-Ir_2 and a "phosphorus vinyl" unit bound to Ir₂-Ir₃. Although they did not assign the ³¹P resonances at +99.4 and -22.9 ppm, it is clear from $\Delta_{\rm R}$ arguments that the former is due to the phosphide and the latter to the Ir₃-Ir₂-P₁CH=CH unit. Omae has written a review93 on intramolecular-coordination compounds containing phosphorus donor ligands which covers the literature through July 1979.

Acknowledgments. I acknowledge the support of Dow Chemical Co. and the specific efforts of C. M. Piggford, A. D. Strickler, and L. G. Duquette during the preparation of this manuscript. I also acknowledge the preprints and helpful comments of A. J. Carty, S. O. Grim, K. Vrieze, A. Pidcock, and R. L. Keiter.

11. References

a = axial; e = equatorial.

- B. E. Mann, C. Masters, and B. L. Shaw, J. Chem. Soc. A, 1104 (1971); B. E. Mann, C. Masters, and B. L. Shaw, J. Chem. Soc., Dalton Trans., 704 (1972).
 - J. Dehand and M. Pfeffer, Coord. Chem. Rev., 18, 327 (1976).
- M. I. Bruce, Angew. Chem., Int. Ed. Engl., 16, 73 (1977). D. J. Cole-Hamilton and G. Wilkinson, J. Chem. Soc., Dalton (3) (4) Trans., 797 (1977).

- (5) C. A. Tolman, A. D. English, S. Ittel, and J. P. Jesson, Inorg. Chem., 17, 2375 (1978). A. R. Garber, P. E. Garrou, G. E. Hartwell, M. J. Smas, J. R.
- (6)Wilkinson, and L. J. Todd, J. Organomet. Chem., 86, 219
- P. E. Garrou and G. E. Hartwell, J. Organomet. Chem., 55, 331 (7)(1972)
- (8) P. E. Garrou and G. E. Hartwell, J. Organomet. Chem., 71, 443 (1974)(9)P. E. Garrou, J. L. S. Curtis, and G. E. Hartwell, Inorg. Chem.,
- 15, 3094 (1976).

- (10) S. Hietkamp, J. D. Stufkens, and K. Vrieze, J. Organomet. Chem., 134, 95 (1977).
 (11) J. L. S. Curtis, Ph.D. Thesis, Indiana University, 1973.
 (12) P. S. Pregosin and L. M. Venanzi, Chem. Brit., 276 (1978).
 (13) P. E. Pregosin and R. W. Kunz, "³¹P and ¹³C NMR of Transitive Chem. Brit., Chem. Brit., 276 (1978). sition Metal Phosphine Complexes", Springer-Verlag, Berlin, 1979
- (14) L. S. Merriwether and J. R. Leto, J. Am. Chem. Soc., 83, 3182 (1961)
- J. A. Connor, J. J. Day, E. M. Jones, and G. K. McEwen, J. Chem. Soc., Dalton Trans., 347 (1973). J. A. Connor, G. K. McEwen, and C. J. Rix, J. Chem. Soc., (15)
- (16)
- (17)
- J. A. Connor, G. K. McEwen, and C. J. Rix, J. Chem. Soc., Datton Trans., 589 (1974). S. O. Grim, R. Barth, W. Briggs, C. A. Tolman, and J. P. Jesson, Inorg. Chem., 13, 1095 (1974). P. E. Garrou, Inorg. Chem., 14, 1435 (1975). M. M. Crutchfield, C. H. Dungan, and J. R. VanWazer, Top. Phosphorus Chem., 5, 1 (1967). (19) (20)
- L. D. Quin, G. J. Byson, and C. G. Moreland, J. Am. Chem. Soc., 91, 3308 (1969). L. D. Quin, S. C. Borleske, and J. F. Engle, J. Org. Chem., 38, 1858 (1973). (21)(22)
- F. Ramirez, M. Nagabhushaman, and C. P. Smith, Tetrahe-dron, 24, 1785 (1968).
- R. Sarma, F. Ramirez, B. McKeever, J. F. Mauccek, and S. Lee, J. Am. Chem. Soc., 98, 581 (1976). (23)
- H. C. Bechthold and D. Rehder, J. Organomet. Chem., 172, (24) 331 (1979).
- U. Puttfarcken and D. Rehder, J. Organomet. Chem., 185, 219 (25) (1980).
- S. O. Grim, J. DelGaudio, C. A. Tolman, and J. P. Jesson, Inorg. Nucl. Chem. Lett., 9, 1083 (1973). E. E. Isaacs and W. A. G. Graham, Inorg. Chem., 14, 2560 (26)
- (27)(1975)
- (28) E. E. Isaacs and W. A. G. Graham, J. Organomet. Chem., 120, 407 (1976).
- (29) B. J. Brisdon, J. Organomet. Chem., 125, 225 (1977).
 (30) R. B. King and J. C. Cloyd, Inorg. Chem., 14, 1550 (1975).
 (31) R. L. Keiter, Y. Y. Sun, J. W. Brodack, and L. W. Cary, J. Am.
- Chem. Soc., 101, 2638 (1979). (32) D. A. Edwards and J. Marshalsea, J. Organomet. Chem., 131,
- 73 (1977)
- D. A. Edwards, J. Organomet. Chem., 96, C50 (1975). A. G. Ginsburg, L. A. Fedorov, P. V. Petrovskii, E. I. Fedin, U. N. Setkina, and D. N. Hurspnoy, J. Organomet. Chem., 73, 77
- (1974).
- G. A. Tolman, S. D. Ittel, A. D. English, and J. P. Jesson, J. Am. Chem. Soc., 100, 4080 (1978).
 J. S. Miller and K. G. Caulton, J. Am. Chem. Soc., 97, 1068 (35)
- (36)(1975)
- A. R. Sanger, J. Chem. Soc., Dalton Trans., 120 (1977).
 A. R. Sanger, J. Chem. Soc., Dalton Trans., 1971 (1977).
 B. E. Mann, C. Masters, and B. L. Shaw, J. Chem. Soc., Dalton (38)
- (39)Trans., 48 (1972). D. A. Slack, I. Greveling, and M. C. Baird, Inorg. Chem., 18,
- (40) 3125 (1979).
- (41) D. L. Dubois and D. W. Meek, Inorg. Chem., 15, 3076 (1976).
 (42) R. Mason, D. W. Meek, and G. R. Scollary, Inorg. Chim. Acta,
- 16, 211 (1976).
- (a) K. D. Tau, D. W. Meek, T. Sorrell, and J. A. Ibers, *Inorg. Chem.*, 17, 3454 (1978);
 (b) K. D. Tau, R. Uriarte, T. J. Mazanec, and D. W. Meek, *J. Am. Chem. Soc.*, 101, 6614 (1979).
 T. J. Mazanec, K. D. Tau, and D. W. Meek, *Inorg. Chem.*, 19, 057 (1993). (43)
- <u>85 (1980).</u>
- T. G. Appleton, M. A. Bennett, and I. B. Tomkins, J. Chem. (45)
- Soc., Dalton Trans., 439 (1976).
 C. A. Tolman, J. Am. Chem. Soc., 92, 2956 (1970).
 S. Hietkamp, D. J. Stuffken, and K. Vrieze, J. Organomet. Chem., 169, 107 (1979). (47)
- (48) D. A. Slack and M. C. Baird, Inorg. Chim. Acta, 24, 277 (1977).

- (49) A. J. Carty, D. K. Johnson, and S. E. Jacobson, J. Am. Chem. Soc., 101, 5612 (1979).
 (50) A. Pryde, B. L. Shaw, and B. Weeks, J. Chem. Soc., Dalton

- (50) A. Pryde, B. L. Shaw, and B. Weeks, J. Chem. Soc., Dalton Trans., 322 (1976).
 (51) N. A. Al-Salem, W. S. McDonald, R. Markham, M. C. Norton, and B. L. Shaw, J. Chem. Soc., Dalton Trans., 59 (1980).
 (52) (a) R. R. Ryan, R. Schaefer, P. W. Clark, and G. E. Hartwell, Inorg. Chem., 14, 3039 (1975); (b) M. Orrico Visscher, J. C. Huffman, and W. E. Streib, *ibid.*, 13, 792 (1974).
 (53) S. Hietkamp, D. J. Stufkens, and K. Vrieze, J. Organomet. Chem., 122, 419 (1976).
 (54) S. Hietkamp, D. J. Stufkens, and K. Vrieze, J. Organomet. Chem., 152, 347 (1978).
 (55) M. A. Bennett and P. W. Clark, J. Organomet. Chem., 110, 367
- (55) M. A. Bennett and P. W. Clark, J. Organomet. Chem., 110, 367
- (1976).
- (56) M. A. Bennett, R. N. Johnson, and I. B. Tomkins, J. Organo-met. Chem., 133, 231 (1977).
 (57) A. J. Cheney and B. L. Shaw, J. Chem. Soc., Dalton Trans.,
- 754 (1972). A. J. Cheney, B. E. Mann, B. L. Shaw, and R. M. Slade, J. (58)
- Chem. Soc. A, 3833 (1971). J. M. Duff and B. L. Shaw, J. Chem. Soc., Dalton Trans., 2219 (59)
- (1972)(60) H. C. Clark, A. B. Goel, and S. Goel, Inorg. Chem., 18, 2806
- (1979). (61) R. G. Goel and R. G. Montemayor, Inorg. Chem., 16, 2184 (1977)
- S. Hietkamp, D. J. Stufkens, and K. Vrieze, J. Organomet. Chem., 139, 189 (1977). H. P. Abicht and K. Issleib, J. Organomet. Chem., 185, 265 (62)
- (63) (1980).
- (64) M. Preece, S. D. Robinson, and J. N. Wingfield, J. Chem. Soc., Dalton Trans., 613 (1976)
- D. J. Cole-Hamilton and G. Wilkinson, J. Chem. Soc., Dalton (65)
- (66) E. W. Ainscough, T. A. James, and S. D. Robinson, J. Chem. Soc., Dalton Trans., 2384 (1974).
- (67) R. P. Stewart, J. J. Benedict, L. Isbrandt, and R. S. Ampulski,
- Inorg. Chem., 14, 2933 (1975).
 (68) R. P. Stewart, L. Isbrandt, J. J. Benedict, and J. G. Palmer, J. Am. Chem. Soc., 98, 3215 (1976).
- (69) R. P. Stewart, L. R. Isbrandt, and J. J. Benedict, Inorg. Chem., (15, 2011 (1976).
 (70) J. W. Rathke and E. L. Muetterties, J. Am. Chem. Soc., 97,
- 3272 (1975).
- (71) H. H. Karsch, H. F. Klein, and H. Schmidbaur, Angew. Chem.,
- (71) H. H. Kalsch, H. F. Klein, and H. Schmiddaur, Angew. Chem., Int. Ed. Engl., 14, 637 (1975).
 (72) A. J. Carty, G. N. Mott, N. J. Taylor, and J. E. Yule, J. Am. Chem. Soc., 100, 3051 (1978).
 (73) A. J. Carty, Presented at the Biennial Inorganic Chemistry
- Symposium, American Chemical Society, University of Guelph (Ontario), April 1980.
- (74) G. N. Mott and A. J. Carty, Inorg. Chem., 18, 2926 (1979).
 (75) K. R. Dixon and A. D. Rattray, Inorg. Chem., 17, 1 (1978).
 (76) S. J. Cartwright, K. R. Dixon, and A. D. Rattray, Inorg. Chem., 19, 1120 (1980).
- (77) R. Meij, D. J. Stufkens, K. Vrieze, A. M. F. Bowers, and A. R. Overbeek, J. Organomet. Chem., 155, 123 (1978). (78) P. E. Garrou and C. W. Jung, unpublished results.
- (79) A. J. Carty, private communication.

- (80) S. O. Grim and J. D. Mitchell, Inorg. Chem., 16, 1770 (1977).
 (81) S. O. Grim and E. D. Walton, Inorg. Chem., 19, 1982 (1980).
 (82) V. J. Grove, J. Hendricck, and G. F. Scheuer, Z. Anorg. Allg. Chem., 443, 97 (1978).
- (83) S. O. Grim and J. D. Mitchell, *Inorg. Chem.*, 16, 1770 (1977).
 (84) S. O. Grim, R. C. Barth, J. D. Mitchell, and J. DelGaudio, (6) S. O. Hall, R. O. Balto, S. D. Matchell, and C. Inorg. Chem., 16, 1776 (1977).
 (85) L. W. Gosser, Inorg. Chem., 14, 1453 (1975).
 (86) G. W. Parshall, Acc. Chem. Res., 8, 113 (1975).
 (87) G. W. Parshall, Acc. Chem. Res., 3, 139 (1970).

- (88) R. Mason and D. W. Meek, Angew. Chem., Int. Ed. Engl., 18,
- 183 (1978)
- (89) A. J. Naaktgeboren, R. J. M. Nolte, and W. Drenth, J. Am, (89) A. J. Naakigeooren, R. J. M. Noite, and W. Drenth, J. Am., Chem. Soc., 102, 3350 (1980).
 (90) M. R. Churchill, K. A. Lashewycz, J. R. Shapley, and S. I. Richter, Inorg. Chem., 19, 1277 (1980).
 (91) A. A. Arduini, A. A. Bahsoun, J. A. Osborn, and C. Voelker, Angew. Chem., Int. Ed. Engl., 19, 1024 (1980).
 (92) J. Rafalko, P. M. Watson, D. H. Malueg, R. E. Davis, and B. C. Gates, submitted for publication.
 (93) Iwao Omae, Coord. Chem. Rev., 32, 235 (1980).