Application of Functionalized Polymers in Organic Synthesis

AHMED AKELAH

Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt

DAVID C. SHERRINGTON*

Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland

Received October 1, 1980 (Revised Manuscript Received May 4, 1981)

Contents

Ι.	Introduction	557
	A. Structure and Properties of Functionalized	558
	Polymers	
	B. Advantages and Disadvantages in Using	559
	Functionalized Polymer	
II.	Polymeric Reagents	560
	A. Polymeric Phosphine Reagents	560
	B. Polymeric Sulfonium Salts	560
	C. Polymeric Halogenating Reagents	561
	D. Polymeric Condensing Reagents	561
	E. Polymeric Redox Reagents	561
	F. Polymeric Protecting Groups	561
	G. Polymeric Acylation and Alkylation	561
	Reagents	
	H. Polymer-Bound Nucleophiles	567
	I. Miscellaneous	567
III.	Polymeric Catalysts	567
	A. Ion-Exchange Resin Catalysts	573
	B. Polymeric Lewis Acid and Superacid	573
	Catalysts	
	C. Polymeric Dyes and Photosensitizer	576
	Catalysts	
	D. Polymeric Hydrolyzing Systems	576
	E. Polymeric Phase-Transfer Catalysts	576
IV.	Separations on Polymeric Carriers	576
	A. Metal Ion Separations	576
	B. Resolution of Racemic Mixtures	577
V.	Organic Synthesis on Polymeric Carriers	577
	A. Asymmetric Synthesis	577
	B. Cyclization Reactions	577
	C. Detection of Reactive Intermediates	581
VI.	References	581

I. Introduction

Until the mid-1960s synthetic polymers were of considerable technological interest largely as materials rather than as organic molecules in their own right. The synthesis of new polymers and the detailed investigation of the mechanisms of existing polymerizations had in the main been directed toward the production of improved materials. At the same time techniques for the characterization of macromolecules had been translated into commercially available instrumentation, leading to a rapid expansion in the material science study of polymers and the search for a molecular understanding of polymer physics which has probably reached a plateau only in the last 2 or 3 years. Since the mid-1960s, synthetic macromolecules have also been increasingly

Ahmed Akelah was born in 1946 and raised in El-Salhia, Egypt. His undergraduate training was at Cairo University (B.Sc. (Honours), 1969) and his M.Sc. was received from Tanta University in 1973. During 1973–1978 he continued his studies at Bonn University where he received his *Dr. rer. nat.* degree with Professor G. Wulff. He joined Tanta University Chemistry staff in 1978. He is now a Visiting Scientist at the Department of Pure and Applied Chemistry, Strathclyde University, Glasgow. His main research interests are polymer science and related organic syntheses.

D. C. Sherrington was born in 1945 and received his B.Sc. (Honours) in 1966 and worked as a Research Assistant with Professors C. E. H. Bawn and A. Ledwith in Liverpool on the physical organic chemistry of ionic polymerizations. He was appointed Lecturer at the University of Strathclyde in 1971, where he continued his work on ionic polymerizations while also developing a research program on polymer-supported reactions, which has become his main interest. He received a Senior Ciba-Geigy Research Fellowship in 1981 and is currently working with Professors E. Chiellini and F. Ciardelli at the Istituto di Chimica Organica Industriale, University of Pisa, on optically active catalysts.

recognized as organic species, capable of behaving as organic reactants and susceptible, under appropriate conditions, to all the chemical transformations of smaller organic species. Ion-exchange resins had previously been widely examined as acid and base catalysts,¹ though no technological application appears to have developed at that time. The rediscovery of polymers as organic molecules and their use in organic synthesis was made by Merrifield in 1963² when he introduced his "solid-phase technique" for the synthesis of peptides, in which an insoluble cross-linked macromolecule was used as a protecting group, simultaneously providing a facile method for isolating and purifying the product of each condensation step. Since that announcement functionalized polymers have found widespread application in organic synthesis and related fields. They have been employed as stoichiometric reagents, as catalysts, as protecting groups, as substrate carriers, in analytical chemistry, in ion exchange, in the detection of reaction intermediates, in chromatography, in biologically and pharmacologically active systems, in the immobilization of enzymes and cells, in the application of dyes and colorants, and in the field of agricultural chemicals.

The present review will restrict its coverage to those applications specifically in organic synthesis.

The use of inorganic supports in which reactive groups are introduced by covalent bond formation or by sorption phenomena is specifically excluded, and readers are directed to alternative reviews.^{3,4}

Our aim has been to distill the literature into four fractions and to present each as an extensive table listing the functionalized polymer involved, along with its relevant application as a reagent, catalyst, etc. In the text we have taken selective examples in order to develop the principle associated with a particular section, and thereafter the remaining members of a section follow that same principle. The reader may therefore search for a particular supported species and ascertain the reactions in which it has been employed, or alternatively pick out a particular reaction type and deduce which supported species have proved useful. We have attempted to be as comprehensive as possible, covering the literature to early 1980, but do not claim to be exhaustive. We hope that this method of presentation will prove a novel and valuable addition to the review articles which precede it.5-26

A. Structure and Properties of Functionalized Polymers

A functionalized polymer in the present context is a synthetic macromolecule to which are chemically bound functional groups which can be utilized as reagents, catalysts, protecting groups, etc.

The macromolecule can be a linear species capable of forming a molecular solution in a suitable solvent. or alternatively a cross-linked species, or so-called resin, which though readily being solvated by a suitable solvent remains macroscopically insoluble. Of the two approaches the use of resins has been more widespread because of the practical advantages accruing from their insolubility (see next section). Active functional groups may be incorporated into polymer chains (i) by direct polymerization and copolymerization of monomers containing the desired functional groups, (ii) by chemical modification of a preformed polymer, and (iii) by a combination of (i) and (ii). A difficulty with the first method is that considerable manipulation of the copolymerization procedure may be necessary to ensure a good yield of the required copolymer and, in the case of resins, to ensure also a satisfactory physical form. In the second method commercially available resins of high quality are normally employed and the desired functional groups introduced by using standard organic synthetic procedures. While this generally ensures a

product with a good physical form, the derivatization reactions required must be as free of side reactions as possible. Even so the polymers prepared in this way rarely have every repeat unit functionalized, and the distribution of groups may not be uniform. Indeed different methods of preparation may give rise to different functional group distributions, and this still remains an area requiring more detailed investigations and the development of more suitable analytical procedures. Standard elemental analysis with supporting infrared absorption spectra generally provides satisfactory evidence for chemical modification and allows calculation of the degree of substitution or functionalization of a polymeric species, quoted in milliequivalents per gram of polymer. In some circumstances other analytical procedures,²⁷ including detailed structural analysis by nuclear magnetic resonance spectroscopy,²⁸ can be applied, depending on the nature of the polymer and the chemical transformations involved.

The ease of chemical modification of a resin, and indeed the level of success in its subsequent application as a reagent or a catalyst, can depend substantially on the physical properties of the resin itself. Functionalized polymeric supports must possess a structure which permits adequate diffusion of reagents into the reactive sites, a phenomenon which depends on the extent of swelling or solvation, the effective pore size and pore volume, and the chemical and mechanical stability of the resins under the conditions of a particular chemical reaction or reaction sequence. These in turn depend on the degree of cross-linking of the resin and the conditions employed during preparation of the resin. Three main types of resin can be identified: (a) microporous or gel-type resins; (b) macroporous resins, and (c) macroreticular resins. These have been described in detail elsewhere,²⁹ but the essential differences can be summarized as follows.

Microporous species are prepared from a vinyl monomer and a difunctional vinyl comonomer in the absence of any additional solvating media. In the dry state they are microporous, with polymer chains being separated by typical solid-state intermolecular distances. On contact with a good solvent a soft gel network is formed with the generation of considerable porosity depending on the degree of cross-linking. Where the latter is $\leq 1\%$ (i.e., % of difunctional comonomer used in polymerization), swollen resins generally have low mechanical stability and readily fragment even under carefully handling. In contrast, commercially available microporous resins with >8%cross-linking are mechanically very stable, but unfortunately give rise to acute diffusional limitations resulting in slow and incomplete reactions. In practice, resins of $\sim 2\%$ cross-link ratio provide a satisfactory compromise generally allowing adequate penetration by most reagents and vet retaining sufficient mechanical stability to provide ease of handling. Copolymer beads made by suspension polymerization of 98% styrene and 2% divinvlbenzene isomers (in practice $\sim 4\%$ commercial divinylbenzene²⁹) have found very wide application as a result of these factors.

Very similar properties can arise with macroporous resins. These are prepared as before but with the inclusion of an inert solvent. Where the solvent solvates both monomer and polymer a fully expanded network is formed with a considerable degree of porosity.³⁰ Removal of the solvent causes a reversible collapse of the matrix, and in the dry state such materials are similar to microporous resins. In order to achieve mechanical stability in the solvent swollen state it is usual to employ larger quantities of difunctional comonomer in the preparation, up to ~20%. Materials of this type are not readily available from commercial sources.

Where the solvent employed during polymerization is a good solvent for the monomers but a precipitant for the polymer, the term macroreticular is generally employed to describe the product.³¹ The latter is a highly porous rigid material which retains its overall shape and volume when the precipitant is removed. Again it is normal to use a larger quantity of difunctional comonomer, and in the case of some chromatographic applications styrene resins with >50% divinylbenzene content are employed.³² This enables such products to be subjected to high pressures, ~ 1000 psi, in high-performance liquid chromatography conditions. The structure of these resins is quite different from the previous two. They have a large and permanent pore volume, and reaction sites may be regarded as being located on a permanent interior surface of the resin. Such materials are available from a number of commercial sources. Macroporous species have also been prepared in the presence of large inert molecules which subsequently can be washed away to create permanent voids.³³ The authors are not aware of any commercial source for these products.

The choice of using a microporous or macroreticular resin in preparing a functionalized polymer can be a difficult one and depends very much on the application in question. In a swelling solvent microporous species can often be loaded or functionalized to higher levels than macroreticular ones. However, the latter are generally much less sensitive to the choice of solvent,^{34,35} which is not always a readily variable parameter in some chemical reactions. Swollen microporous resins are less sensitive to sudden shock but cannot be subjected to steady and high pressures. Conversely rigid macroreticular species are brittle and fracture under sudden stress, but can withstand considerable steady pressures.

The role of a solvent in the application of a functionalized resin is complex. Ideally it should interact with the polymer matrix to optimize the diffusional mobility of reagent molecules. It should have the correct solvating characteristics to aid any chemical transformations being carried out. It should not limit the reaction conditions which are to be applied (e.g., the temperature), and in the case of bound photosensitizers, for example, it should encourage translucence and not opacity. Naturally it is difficult to satisfy all of these criteria simultaneously, and the selection of a solvent is often a compromise. There have been a number of attempts to quantify the interaction of solvents with a polymer support matrix, and the nitroxide spin-labeling experiments have achieved this with respect to the local motions of the polymer backbone and the associated side-chain substituents.36,37

B. Advantages and Disadvantages in Using Functionalized Polymers

Probably the most important advantage in using a functionalized polymer as a reagent or catalyst is the simplification of product work-up, separation, and isolation. In the case of cross-linked polymer resins, simple filtration procedures can be used for isolation and washing, and the need for complex chromatographic techniques can be eliminated. With linear polymers. techniques such as precipitation, sedimentation, and ultrafiltration can be employed, although these are by no means as convenient and readily available in all laboratories. Resins, in addition, provide the possibility of automation in the case of repetitive stepwise syntheses and the facility of carrying out reactions in flow reactors on a commercial scale. Supported reagents may also be used more conveniently in excess to drive reactions to completion, without incurring a penalty in the work-up procedure. Scarce and/or expensive materials can be efficiently retained when attached to a polymer and, if appropriate chemistry is available, they can in principle be recycled many times. The reactivity of an unstable reagent or catalyst may be attenuated when supported on a resin, and the corrosive action of, for example, protonic acids can also be minimized by this effective encapsulation. Finally, toxic and malodorous materials can be rendered environmentally more acceptable.

In addition to these factors, a number of potentially important reactivity changes may be induced by the use of a functionalized polymer.²⁵ When the latter is cross-linked, restricted interaction of functional groups may be achieved. A high degree of cross-linking, a low level of functionalization, low reaction temperatures, and the development of electronic charges near the polymer backbone tend to encourage this situation, which may be regarding as mimicing the solution condition of "infinite dilution". In these circumstances intermolecular reaction of bound molecules is prevented, and such attached residues can be made either to react intramolecularly or to react selectively with an added soluble reagent. Polymer supported metal complexes with vacant coordination sites can be regarded as fulfilling this description, with the resin inhibiting the normal solution oligomerization processes of such species. Under certain circumstances it is also possible to achieve the complementary state of "high concentration" by heavily loading a flexible polymer matrix with one particular moiety in an attempt to force its reaction with a second polymer-bound species.¹⁵

Balancing the above advantages there are also a number of important disadvantges. Probably the most important of these is the likely additional time and cost in synthesizing a supported reagent or catalyst. This may well be offset by the potential advantages, and certainly in the case of regenerable and recyclable species this objection essentially disappears. The occurrence of slow reactions and poor yields, however, can seldom be accommodated, and these can be a problem. Appropriate choice of support and reaction conditions can overcome this, but most of us in the field have been defeated from time to time. With those applications involving the assembly or modification of a polymerbound substrate, the final cleavage step releasing the product into solution can be incomplete, or the vigorous conditions employed in cleavage may result in degradation of the polymer. The overall chemical and mechanical stability of the support can often be limiting. and in the case of strongly acidic and basic ion-exchange resins limited temperature stability has hindered their widespread commercial application. The ultimate capacity of a functionalized polymer is also restricted, and may be important in preparative organic chemistry involving stoichiometric quantities of supported reagents. One of the major differences between inorganic supports and polymers is the even lower loading capabilities of the former which, while being suitable for the attachment of catalysts and in polypeptide and oligonucleotide synthesis, is totally unsuitable for high-capacity demands.⁴ Difficulty in the characterization of reactions on polymers can also arise. These are maximized in the case of resins, where those techniques relying on the formation of a true homogeneous solution, at best, may be rendered inadequate or insensitive and, at worst, can be completely useless. Finally in the use of functionalized polymers there always exists the additional chemical option of a side reaction with the polymer itself. A number of classic cross-linking side reactions have been identified,^{38,39} but many other low yields may well be associated with intrapolymeric reactions, which have never been recognized, let alone characterized.

Despite these potential drawbacks, a large number of systems have been developed, and considerable scope now exists for their exploitation in routine synthetic chemistry. The area need no longer be regarded as a specialized one, and the tables in sections II-V should aid potential users in seeking out appropriate systems for their own needs.

II. Polymeric Reagents

A polymeric reagent is a reactive organic group bound to a macromolecular support and used in stoichiometric quantities to achieve the chemical modification of an added substrate (reaction 1). Such groups may be

polymeric reagent

$$(P)$$
 + product (1)

polymeric byproduct

attached to polymeric carriers by physical adsorption or by chemical bonding. Physically adsorbed species are generally unsatisfactory since in use the components tend to dissociate, and they are therefore unsuitable for column or cyclical application.

Those chemical reagents covalently attached to polymeric carriers and successfully used in organic synthesis are listed in Table I. Note that after reaction the byproducts remain attached to the insoluble polymer and can be removed by simple filtration. Some of these can be regenerated for repeated use.

A. Polymeric Phosphine Reagents

In spite of the widespread application of the Wittig reaction to olefin synthesis, a principle disadvantage of this reaction is the difficulty of separating the main product from the byproduct, triphenylphosphine oxide. In addition, the phosphine itself is a costly reagent. However, by use of the insoluble polymeric phosphine reagent 1 (reaction 2), the byproduct remains attached to the polymer after the reaction and is readily separated from the desired product. Moreover, the polymeric phosphine oxide byproduct, 2, can be readily

recycled and reused in further Wittig reactions.⁴⁰⁻⁴²

0

$$\begin{array}{c} (PS) \\ PS \\ 2 \end{array} \begin{array}{c} P(Ph)_2 \end{array} \begin{array}{c} (PS) \\ PS \\ P(Ph)_2 \end{array} \begin{array}{c} (PS) \\ P(Ph)_2 \end{array} \begin{array}{c} (PS) \\ P(Ph)_2 \end{array}$$

The presence of lithium ions in conventional Wittig reactions, arising during generation of the ylide, lead to the formation of trans olefins due to the preferred complexation of the threo form of the betaine. Polymeric phosphonium reagents can give high yields of cis olefins since inorganic lithium salts may be filtered off before the addition of the carbonyl compound.⁴⁰

In addition to their use in Wittig reactions, polymeric phosphine have been used as their dihalides, 3, X = Cl, Br, and with carbon tetrachloride, $3, X = CCl_4$, as mild and efficient reagents for the cleavage of ethers⁴¹ and for the conversion of carboxylic acids, alcohols, and primary amides into the corresponding acid chlorides, alkyl halides, and nitriles, respectively. The recovered polymeric phosphine oxide is readily converted to the polymeric phosphine dihalide for reuse⁴³ (reaction 3).

Recently, we have used the polymeric phosphine dibromide for the preparation of some compounds which are sensitive to water, column chromatography, and the elevated temperatures required in distillation. These include imidoyl bromide, carbodiimides, and ketenimines.⁴⁴ (Polystyryl)diphenyl(methoxymethyl)phosphonium chloride (4) has also been prepared and used for the synthesis of vinyl ethers and sulfides derivatives from carbonyl compounds⁴⁵ (reaction 4).

B. Polymeric Sulfonium Salts

Thiols and thioethers are very useful synthetic reagents because of their low cost and high reactivity, which often allows the use of mild reaction conditions. Unfortunately the noxious odor of sulfide or thiol derivatives and the difficulty of removing sulfide byproduct from reaction mixtures detract from their usefulness. A polymeric sulfide reagent may be used to overcome these disadvantages, and in addition in some applications it can be reused after washing since the original reagent is automatically re-formed.⁴⁶ Insoluble polymeric thiol-disulfide systems have been successfully used in a number of oxidation-reduction processes^{47,48} (reaction 5).

$$R-S-S-R + 2H^{+} + 2e \rightleftharpoons 2R-SH$$
(5)

If the reactive sites on the polymer maintain separation during reaction, polymeric sulfonium salts may be used for selective monooxidation of diol compounds.⁴⁶ In addition, other polymeric reagents have been used in the epoxidation of aldehydes^{49,50} and homologation of alkyl iodides and diiodides,⁵¹ as shown in Table I, section 2.

C. Polymeric Halogenating Reagents

Interesting but different polymeric halogenating reagents (Table I, section 3) have been successfully used for the specific addition of halogen to olefins and for allylic halogenation. The success of these functionalized insoluble polymers is attributed to a combination of several advantages, including changes in the specificity and reactivity of the functional group, the ease of removal of excess reagent and product separation, and the facile ability to regenerate the reagents. For example, halogenation of alkyl aromatic compounds with Nchlorosuccinimide in the absence of solvents and freeradical initiators leads to the formation of a mixture consisting of side-chain- and aryl-chlorinated compounds. However, with poly(N-chloromaleimide) under the same conditions, arvlchloro-substituted derivatives are the only product obtained.⁵²

D. Polymeric Condensing Reagents

Insoluble polymer-bound carbodiimide derivatives (5) have been prepared and used as condensing agents in the synthesis of peptides.^{53,54} Some others were used in the conversion of carboxylic acids to their anhydrides⁵⁵ and in the Moffatt oxidation, particularly in the oxidation of highly sensitive alcohols.⁵⁶ Polymeric carbodiimides have the advantage that the byproduct, urea 6, remains attached to the polymer and can be readily converted back into the polymeric carbodiimide 5^{55} (reaction 6).

$$\begin{array}{c} PS \longrightarrow NH \longrightarrow CO \longrightarrow NH \longrightarrow R \xrightarrow{\text{TsCl. E1}_{3N}} PS \longrightarrow N \longrightarrow C \longrightarrow N \longrightarrow R \\ 6 & 5 \\ 6 & 5 \end{array}$$
(6)

Another polymeric condensing reagent incorporates sulfonyl chloride groups and has been used in oligonucleotide synthesis.⁵⁷ The use of a supported reagent has some advantages over the nonsupported system, such as the elimination of emulsion problems and a reduction in the contamination of nucleotide product.

E. Polymeric Redox Reagents

Although many useful procedures for oxidation processes have been reported, the main disadvantage of these is the relative difficulty in the preparation of the reagents and in the working-up of the reaction mixture. Polymeric redox systems were one of the earliest examples of polymeric reagents and alleviate these difficulties. The most important classes of polymeric redox systems are the hydroquinone-quinone, thiol-disulfide, pyridine-dihydropyridine, polymeric dyes, and polymeric metal complex systems.^{47,48}

Aliphatic peroxy acids explode very readily on impact, and analogous polymeric reagents based on polyacrylic acids behave similarly.⁵⁸⁻⁶⁰ Aromatic peroxy acids in contrast are more stable, and the polymersupported analogues of these have proved very useful indeed.^{34,61,62}

Chromic acid is a powerful oxidizing agent, and a supported analogue has been used for the oxidation of alcohols to carbonyl compounds in high yields.^{63,64}

Insoluble polymeric organotin dihydride⁶⁵ was prepared and used as a selective reducing agent for carbonyl compounds and alkyl halides. This polymeric reagent combines the advantages of both the monomeric dihydride reagent, i.e., its high reactivity, and the monohydride reagent, i.e., its high stability.

F. Polymeric Protecting Groups

There is no group capable of reacting selectively with only one functionality of a completely symmetrical bifunctional compound. However, functionalized insoluble polymers have been used with some success in this role. The selectivity of functional polymer resins for monoblocking utilizes the approximation to "infinite dilution" which can be achieved with a polymer bound group. In this type of reaction a large excess of a symmetrical bifunctional substrate is employed to ensure that only one of the functional groups reacts with the polymer-bound protecting group. Symmetrical diols^{35,66–70} and dialdehydes^{71–73} have been monoblocked in this way, allowing further reaction at the free alcohol or aldehyde end. For example, Leznoff and his coworkers^{71,72} have used a polymer containing a diol functional group, 7, as a monoblocking agent for symmetrical dialdehydes (reaction 7). Other functionalized

polymeric reagents used as selective monoblocking groups are listed in Table I, section 6.

G. Polymeric Acylation and Alkylation Reagents

Several functional polymers have been reported in the literature for use in the acylation and alkylation of

Akelah and Sherrington

TABLEI	Polymeric	Regentsa
IADUCL	runenc	ncarcino

functional polymer	application as reagent	ref
_	1. Polymeric Phosphine Reagents	
PS-P(Ph)2	Wittig teaction. $-C = 0 + -CH - x - C = C - C$	40,45,80-84
25-1CH2),PIPh222X2		
a, $n = 0$; $X_2 = CCl_4$	conversion of alcohols to chlorides	42, 43, 85-87
	conversion of acids to acid chlorides	43,85
	conversion of secondary amides to imidoyl chlorides	88
	conversion of acids and amines to amides	85
	conversion of primary amides and aldoximes to nitriles	88 90
	conversion of amides to nitriles	43
b. $n = 0$; X = Br	conversion of ureas to carbodimides, amides to imidovl	44
-,	bromides and ketenimines	
c, $n = 0; X = -s$	peptide synthesis	91
d, $n = 1$; X = Cl	conversion of acids to acid chlorides	43,92
$PS \rightarrow P(Ph)_2]_2 RhCI(CO)$	conversion of alkyl lithium and acid chlorides to ketones	93
~	2. Polymeric Sulfonium Salts	
>S)—(CH2),S ⁺ MeR X		
a, $n = 0$; R = Me; X = MeSO ₄	epoxidation of aldehydes	49
b, $n = 0$; R = Cl; X = Cl	oxidation and selective monooxidation of alcohols	46, 51
c, n = 0; R = Me, Et; X = FSO,	epoxidation of aldehydes	94
d, $n = 1$; R = Me; X = 1 e, $n = 1$; R = alk; X = HCO ₃	epoxidation of aldehydes peptide synthesis	49,50 95
РЗ <u></u> SСн₂ ^т _L₁ ⁺	homologation of alkyl iodides and diiodides	51
-	3. Polymeric Halogenating Reagents	
P _ I NX		
a, $X = Br$	allylic and aromatic bromination	96-98
b, $X = Cl$	aromatic chlorination	52
≥S)—I ×2		
a, X = F	addition of F_2 to olefins to give $-CF_2C$ -	99
b, $X = Cl$	addition of Cl_2 to olefins	100,101
Р-()N-H Br3-	bromination of olefins and ketones	102
	addition of Br_2 to olefins	103-105
	· · · · · · · · · · · · · · · · · · ·	
PS)—CH ₂ N [*] Me ₃ Br ₃ *	α bromination of carbonyl compounds, addition of Br ₂ to	106, 107
and -BrCl ₂ -	aikenes and aikynes chlorobromination of alkenes and alkynes	107
PS-C(Ph)=NBr	allylic bromination	108
	conversion of acids to acid chlorides	109
	chlorination of aromatic compounds	110
C I	4. Polymeric Condensing Reagents	
$-[(CH_2)_6N=C=N-]_n-$	peptide synthesis	53
PS) CH ₂ N=C=NR		
a, $\mathbf{R} = i \cdot \mathbf{Pr}$	conversion of acids to anhydrides	55
b, $\mathbf{R} = \mathbf{E}t$	peptide synthesis	56

conversion of acids to mixed anhydrides, esters, and amides 111

oligonucleotide synthesis

54

(P) C=CNE12 E1 S02C1 E1

functional polymer	application as reagent	ref
	peptide synthesis	57,112
TOL]		
COOL,	Koenigs-Knorr glycoside synthesis	113
)снсоода	BB. ; come of	
	5. Polymeric Redox Reagents	
)CH ₂ N ⁺ Me ₃ BH4 [−]	reduction of carbonyl compounds to alcohols	114, 115
)CH2SBH3	reduction of ketones	116
 Me		
){Вн3	reduction of carbonyl compounds	117
)	reduction of carbonyl compounds, selective monoreduction of dials, reduction of alkyl halides to alkanes	65
CMe2OAIH4	reduction of ketones	118
- H	reduction of ketones	118
он	reduction of quinones to quinols	119
он он	reduction of quinone to quinols	120
	reduction of quinone to quinois	120
<u>70000</u>		
SO3H		
)-CO(CH2)4-	reduction of disulfide bridges in peptide, proteins, oxidized	121
sh sh	form of glutathione, and cystine	
	desulfurization of polysulfide compounds	122
n = 2, 3		
	reduction of carbonyl compounds	123
	reduction of this in a henzoquinone and mathulane blue	105 194
	reduction of thionine, benzoquinone, and methylene blue	105, 124
CONH2		
)	reducing reagent	101
$X = \Gamma, SO_4^*$		
ме +.	redox reagent	104, 105, 125
) _ () в, ⁻		
	nodow noorgant	196
CH ₂ SH	TOUGA TEAGENTE	140
	oxidation of alcohols	127
	oxidation of alkyl halides to carbonyl compounds	128
)	oxidation of alcohols and alkyl halides to carbonyl compounds	128, 129
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	oxidation of alcohols	98
сн-со-		
)CH2N ⁺ Me3 IO4 [−]	oxidation of phenols and sulfides	130
0(CH2)4CON(CH2)6N-]-	oxidation of alcohols and thioethers	131-134

Т —

functional polymer	application as reagent	ref
-[(CH ₂ ) _m CON] _n	oxidation of alcohols and diamines	135
$\ddot{c}$		
	oxidation of alcohols	130
$PS \rightarrow (CH_2)_{a} \rightarrow NNR$		100
a, $n = 0$ ; R = Me, Ph b, $n = 1$ ; R = Ac		
СІ 0     Д СБ—СН2—N—С—Ме	oxidation of alcohols	130
Р5)—сооон	epoxidation of olefins oxidation of thioethers	34,61 136,137
Р—сооон	epoxidation	58-60, 138
Р-Озн	hydroxylation of olefins, conversion of acids to peroxy acids	62
(PS)	lpha,eta dehydrogenation of carbonyl compounds	139, 140
PS→St → Ph	oxidation of $\beta$ -methylnaphthalene to $\beta$ -naphthaldehyde	139,140
$P_{S} \rightarrow I(OAc)_{2}$	oxidation of amines	100
)	dehydrogenation, oxidation of amines, cysteine, NADPH,	141
-CH2 CH2-	oxidation of cycloheptatriene to tropylium cation, Strecker reaction	142
- [N==:CI- X = CL OPh. NHPh	peroxidation of alkylaromatic hydrocarbons	143, 144
Р—соо—сн ₂ сн ₂	dehydrogenation of methyl mandelate	145
	oxidation of thiols to sulfides	146
$X = NH_2, Z = NH$ X = COOH, Z = CO		
	oxidation of amines to ketones	147
	oxidation of alcohols, hydrazo compounds, sulfides to carbonyl, azo compounds, and sulfoxides, respectively	110
Br ₂	oxidation of thiols to sulphides	148
	redox reagent	104
$\overset{\sim}{\bigcirc} -\infty - \overset{\sim}{\bigcirc} \overset{\sim}{\bigcirc}$	redox reagent	104

TABLE I (Continued)

functional polymer	application as reagent	ref
	redox reagent	149, 150
	redox reagent	151
-	6. Polymeric Protecting Groups	
Ph C Ph Ph	oligonucleotides synthesis glycosides synthesis monoprotection of symmetrical diols monoprotection of triols and tetraols	152 153,154 35,69,70,154-157 35
	monoprotection of diphenols and diols	68, 155, 34
(PS)—CH2COCI	monoprotection of symmetrical diols	66, 67
(PS)—сно	glycoside synthesis	158-161
(DH) ₂	glycoside synthesis synthesis of carbohydrate derivatives partial acylation of acyclic polyols	162 163,164 165,166
PS-CH2CI	monoprotection of dithiols	167
— сн ₂ осн ₂ сн—он     сн ₂ —он	monoprotection of symmetrical aromatic dials	71, 72, 168
PS-CH20CH2-C-CH20H RCH20H	monoprotection of symmetrical aromatic dials	73
R = H, Me		
$(c) = (CH_2)_n OH$ n = 1 n = 2	monoprotection of diacid chlorides alkylation of acids	169,170 80
	synthesis of benzodiazepinone	171
PS SO2CH2CH2OH	monoprotection of diacid dichlorides	172
(PS)— c = N ⁺ =N ⁻   Ph	transformation of penicillin to cephalosporin	173
PS-coci	peptide and oligonucleotide synthesis	174, 175
(PS)-CH200001	peptide and oligonucleotide synthesis	176
PS-CH20C00-0-N02	monoprotection of symmetrical diamines	177, 178
PS-CH20-CH20H	oligonucleotide synthesis	179
О́ме (PS)—СH ₂ —N—СОNH—NH ₂ Ме	oligonucleotide synthesis	180
	peptide synthesis	181
PS-CH2NHCO-CH2ZR	peptide synthesis	182, 183
$Z = O, NH$ $P - z - co - CH_2NHR$	peptide synthesis	184, 185
$\mathbf{Z} = \mathbf{O}, \mathbf{N}\mathbf{H}$		
	7. Polymeric Acylation and Alkylation Reagents	
(PS)-COOCOR	conversion of amines to amides and alcohols to esters	74, 187
(PS)-CH20C00COR		188-190

## Akelah and Sherrington

TABLE I (Continued)

functional polymer	application as reagent	ref
	peptide synthesis	191
	7-aminocephalosporanic acids	192
NO ₂		
	peptide synthesis	193-195
ö		
(PS) CH2N+Me3 025- N=N	peptide synthesis	196
T COR		
	pentide synthesis	197 198
(PS) Z - COR		10.,100
NC ₂		
$Z = CH_{2} - CH_{2}OCO -$		
2,          2	went' le southesis	100 005
	peptide synthesis	199-205
~cH—co-	nentido aunthoria	107
(PS)-CH2CH-CO NOCOR	peptide synthesis	197
сн ₂ со		
	peptide synthesis	206
<u> </u>		
Me		
PS-CH2-N	peptide synthesis	207,208
	accuration of aminor to amidor and clashels to actor	74
(PS) COCH2CH2COOCOR	conversion of amines to amides and alcohols to esters	14
	peptide synthesis	209-211
Z = 0, NH		
P-COOCH2CHIOH)CH2OZR	peptide synthesis	212
Z = CO, NH		
-[CO(CH2)4CON(CH2)6N]=	nentide synthesis	913
	pep nue synnesis	210
Re-conhoh	peptide synthesis	203.204
	aviation of alcohole and phenole	186
(PS)—S020C0CH3	acylation of alcohols and phenois	100
- (RCON-)		214
COR'		015
(PS)—0(COCH2N→ ₂ -H		210
cor o		01.0
(PS)-CH2NHCO(CH2)2-	acylation of amines	216
SR SR		
$\mathbf{K} = \mathbf{U}\mathbf{U}\mathbf{U}_{6}\mathbf{H}_{4}\mathbf{N}\mathbf{U}_{2}\mathbf{p}$		
	8. Polymer-Bound Nucleophiles	
PS-CH2N ⁺ Me3 ×		
$X = F^{-}$	conversion of sulfonyl chlorides and tosylate chlorides or	217.218
	bromides to fluorides	
$\mathbf{V} = \mathbf{C}^{\dagger} \mathbf{P} \mathbf{v}^{\dagger}$	C-/O-alkylation, sulfenylation, Michael addition	219 218
	conversion of alkyl halides to nitriles	220, 221
$X = SCN^{-1}$	conversion of alkyl halides to thiocyanates or isothiocyanate	221, 222
$\begin{array}{l} \mathbf{X} = \mathbf{O}\mathbf{C}\mathbf{N}^{-} \\ \mathbf{X} = \mathbf{N}\mathbf{O}^{-} \end{array}$	conversion of alkyl halides to ureas and urethanes	222 223-225
X = -OCOR	conversion of alkyl halides to esters	226
X = OH	condensation reactions	227

X = -OCOR X = OH

**TABLE I** (Continued)

functional polymer	application as reagent	ref
X = ⁻ OAr	conversion of alkyl halides to ethers and synthesis of glycosides	225, 228-230
$X = O_{A}SPh$	synthesis of alkyl sulfones	78
$X = HFe(CO_{A})^{-}$	conversion of alkyl halides to aldehydes	231
$X = H_3 PO_2^-, S_2O_3^-, SO_3^-, SO_3^-, SO_4^-$	oxidation of alcohols to carbonyl compounds	232-233
$X = HCrO_3$	oxidation of alcohols and alkyl halides to carbonyl compounds	128,129
$X = IO_{4}$	oxidation of phenols and sulphides	130
$\mathbf{X} = \mathbf{C} \mathbf{H} \mathbf{Y} - \mathbf{P} (\mathbf{O} \mathbf{R})_2,$	conversion of carbonyl compounds and dioxolanes to olefins	234
$Y = CN^{-}$ , -COOMe		
PS-S+R FS03	epoxidation of carbonyl compounds	94
R = Me, Et		
	9. Miscellaneous	
(PS)S02N3	diazo transfer to $\beta$ -dicarbonyl compounds	235
PS-CH2NMe2	acid acceptor	236
	acid acceptor	237
	polymeric Girard reagent	238
РS № Н — С — NH — С ₆ Н ₁₃ О ₅   _S	peptide degradation	239-242

a (P) = polymer; (PS) = polystyrene

different substrates (Table I, section 7). For example, the insoluble polymer containing the anhydride functional group 8 was used for the conversion of an amine or alcohol to amide or  $ester^{74,75}$  (reaction 8).

$$\begin{array}{c} (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\$$

The insolubility of a resin-bound reagent in all common solvents can have the effect of isolating the reactive groups on the polymer from each other. Patchornik and his co-workers^{76,77} have used this property in the crossed alkylation of ester derivatives. The reactive carbanion derivative of a bound ester is first generated and selfcondensation with unreacted ester inhibited by the rigid matrix. The production of these stable monoanions then allows reaction with acyl or alkyl halides to give selectively monoacylated or monoalkylated products (reaction 9).

## H. Polymer-Bound Nucleophiles

Anion-exchange resins in which the bound negative ion is exchanged for a reactive nucleophile prior to use in a reaction have also been employed as polymeric reagents. There exists a close relationship between these systems and polymer-supported onium salts as phase-transfer catalysts, where the anion exchange may be regarded as taking place in situ during reaction (see section IIIE). Where the ion exchange is carried out as a separate process the reagent can be isolated and dried before use under essentially anhydrous conditions. Most applications have employed halide ions as the nucleophile (Table I, section 8), but recently a bound benzenesulfinate anion, 9, has been used in the synthesis of sulfones⁷⁸ (reaction 10).

$$(PS) - CH_2N^{\dagger}Me_3 = O_2SPh + RX -$$
9
$$RSO_3Ph + (PS) - CH_3N^{\dagger}Me_3X^{-} (10)$$

#### I. Miscellaneous

Several reagents do not fall conveniently into any of the previous categories, and these are listed in Table I, section 9. Polymer-bound tosyl azide⁷⁹ (10) is an important example. This has a useful activity but has greater stability than its monomeric analogue. It can be handled with safety and provides improved yields in diazo transfer reactions to several  $\beta$ -dicarbonyl compounds (reaction 11).

$$\begin{array}{c} (11) \\ (11) \\ (10) \\ (11) \\ (11) \\ (11) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ ($$

## III. Polymeric Catalysts

A polymeric catalyst or polymer-supported catalyst is a conventional catalytic species attached to a macromolecular backbone. As with reagents, the polymer species may be a linear or a cross-linked entity, and again the latter have proved particularly useful. Polymeric catalysts are generally used in catalytic quantities relative to reaction substrates, and can often be reused many times. The attachment of a catalyst to a support may improve its stability and selectivity.²⁴ On the other hand, increased experimental convenience arising with

functional polymer	application as catalyst	ref
	1. Ion-Exchange Resin Catalysts	
€ \$C 2H	hydrolysis of esters enamines amides, peptides, proteins glycosylamines carbohydrates esterification of $\alpha$ -amino acids, fatty acids, olefins, glucose acetal and ketal formation cyclization condensation dehydration alkylation rearrangement decarboxylation amide formation hydration	266-269 270 271-281 282, 283 284-286 287-291 292-295 296-299 299-301 302-307 308-310 311-313 314 315 284, 311, 316, 317
(=)		
$X = SO_3Ag$ $X = Me(CH_2)_{15}N^*Me_3$ $X = (PhCH_2)_3N^*Me$ X = OH X = COOH	hydrolysis of esters hydrolysis of esters hydrolysis of esters hydrolysis of dextrin hydrolysis of amylose and sucrose	318 319-321 319-321 322 323
<b>Р</b> — соон	hydrolysis esterification	324 325
(P5)— ○H ₂ N [™] R ₂ ○H [■]	hydrolysis of esters and peptide blocking	326-332
	group dehydrohalogenation condensation hydration cyclization esterification	326, 333 300, 334-339 328, 329, 340, 341 341 226, 339
	acylation	342
2. Poly.	meric Lewis Acid and Superacid Catalysts	
(P) · A:CI3	acetal formation	248
(PS)	alkylation of olefins	343, 344
PS SO3H · A'CI3	isomerization and cracking	250, 345
Nation-H $CF_3$ $-(CF_2CF_2)_m(OCF_2CF)_n$ - $O(CF_2)_2SO_3H$	transalkylation dehydration of alcohols rearrangement alkylation hydration of alkynes esterification nitration Friedel-Craft acylation	252 253 346 347 348 349 350 351
3. Poly	meric Dyes and Photosensitizer Catalysts	0.5.5
$(PS) - CH_2OCO - O - O - O - O - O - O - O - O - O $	photosensitized oxidation photosensitized oxidation	255
00 Pr 2000	cycloaddition and dimerization of olefins	352, 353
	photosensitizer	354

TABLE II (Continued)

functional polymer	application as catalyst	ref
но	UV absorbers	355
РЭ-0		
$\langle \bigcirc \rangle$		356
®-{○}-®		
NHSO3Na	soluble dye	357
$\dot{\mathbf{R}} = \mathbf{H}; \mathbf{R}' = \mathbf{M}\mathbf{e}$		
$\mathbf{R} = \mathbf{Me}; \mathbf{R}' = \mathbf{H}$	achubla dua	257
	soluble dye	00 <i>1</i>
R = H; R' = Me; E'' = H R = Me; R' = Me; R'' = COOEt		
R = Me; R' = H; R'' = COOMe		
	soluble dye	357
Me		
COOE!		
	4. Polymeric Hydrolyzing Systems	
		959 969
a, X = H (nomopolymer)	dodecanoyloxybenzoate, p-nitrophenyl	358-368
b, X = COOH	acetate, and other ionic esters hydrolysis of $m$ -MeOOCC ₆ H ₄ N ⁺ Me, I ⁻	369-372
$\begin{array}{c} c, X = SO, \\ d, X = SH \\ c, X = OH \end{array}$	hydrolysis of <i>p</i> -nitrophenyl acetate	370 373 260 270 274
$f, X = p-HOC_{4}H_{4}-$	hydrolysis of phenyl ester derivatives	369, 370, 374 374 275
h, $X = -CON(Me)OH$ h, $X = -CON(Ph)OH$	nydrolysis of phenyl ester derivatives	376, 377
i, $x = -N_{\bullet} + N_{\bullet} + N_{\bullet$	hydrolysis of phenyl esters	378
		379
и н	hudualuria of phonyal actour	280
⊙— c H2 -	nydrolysis of phenyl esters	380
— со — сн — сн₂ —		381, 382
$\dot{\mathbf{x}}$ X = NH., COOH		
····· ₂ ,		
X = H	hydrolysis of <i>p</i> -acetoxybenzoate	383

## Akelah and Sherrington

TABLEIL	(Continued)
TUDUUT I	Continueu

functional polymer	application as catalyst	ref
X = COOH	hydrolysis of m-Me(CH₂)nCOOC₅H₄N⁺Me₃ I ⁻	384
	hydrolysis of phenyl esters	385
$ \underbrace{\mathbb{C}}_{(CH_2)_2 \mathbb{N} \mathbb{H} CH_2} \underbrace{\mathbb{C}}_{N} \underbrace{\mathbb{C}}_{I_2 \mathbb{N} \mathbb{H} C_{12} \mathbb{H}_{25}} \underbrace{\mathbb{C}}_{N} \underbrace{\mathbb{N}}_{N} $	hydrolysis of <i>p</i> -nitrophenyl acetate hydrolysis of 4-nitrocatechol sulfate	386,387 388-396
	hydrolysis of 3-nitro-4- dodecanoyloxybenzoate esters	397-400
	solvolysis of <i>p</i> -acetoxybenzoate	383
a, $X = H$	hydrolysis of phenyl esters	367
$\mathbf{b}, \mathbf{x} = -\mathbf{N}$	hydrolysis of 3-nitro-4-acetoxybenzoate	401
c, x=-N,Me 1-	hydrolysis of 3-nitro-4-acetoxybenzoate	402
d, $X = CONH_2 + CON(Ph)OH$	hydrolysis of <i>p</i> -nitrophenyl acetate	376, 377
$\mathbf{e}, \mathbf{x} = - \mathbf{N}_{\mathbf{H}_{e}} + \mathbf{N}_{\mathbf{H}_{e}} + \mathbf{C} \mathbf{H}_{2} \mathbf{C} \mathbf{O} \mathbf{N} \mathbf{C} \mathbf{H}_{2} \mathbf{P}_{h}$		403
a, $X = H$	hydrolysis of phenyl esters	404
<b>b</b> , x={\	hydrolysis of phenyl esters	405-410
$\mathbf{c}, \mathbf{x} = - \left( \begin{array}{c} \mathbf{b} \mathbf{x}^{\dagger} - \mathbf{c} \mathbf{h}_{2}\mathbf{c} - \mathbf{p} \mathbf{h} \\ \mathbf{b} \mathbf{r}^{-} \\ \mathbf{b} \\ \mathbf{N} - \mathbf{o} \mathbf{h} \end{array} \right)$	hydrolysis of <i>p</i> -nitrophenyl acetate	411
$\mathbf{d}_{\mathbf{x}} \times = - \sqrt{\mathbf{D}} \mathbf{v}^{\mathbf{x}} - \mathbf{C} \mathbf{H}_{2} \mathbf{C} \mathbf{O} - \mathbf{N} - \mathbf{C} \mathbf{H}_{2} \mathbf{P} \mathbf{h}$		403
	hydrolysis of phenyl acetate	412
$ \begin{array}{c} & & \\ & & \\ & \\ & \\ \mathbf{R} = \operatorname{Me}(\operatorname{CH}_2)_{11}, \operatorname{Et} \end{array} $	decarboxylation of $coc^{-}M^{+}$	413, 414
		375, 415
<b>κ = Me, Ph</b> γ⁻	decarboxylation of $\int_{\ell}^{coo+}$	416
CH2CO-N-CH2Ph (CH2I21Me	O2N CC'N	
P	hydrolysis of Schiff bases	417
$(CH_2)_2 N^{\downarrow} Me_2 R$ $(CH_2)_2 NMe_2$	hydrolysis of <i>p</i> -nitrophenyl acetate	418
$R = C_6, C_8, C_{12}, C_{18}$		

functional polymer	application as catalyst	ref
-[(CH ₂ ) ₂ N] ₆ -		
" R		
$\mathbf{R} = \mathbf{H}$	cleavage of <i>p</i> -nitrophenyl phosphate	419-421
$\mathbf{R} = \mathbf{PhCH}_2$	hydrolysis of p-nitrophenyl esters and cleavage of disulfide linkage of Ellman's	425, 426
$R = C_{12}H_{25}, C_{16}H_{33}$	reagent	427
		428-433
$X = Cl, CN, SO_3^{2-}$		
	decarboxylation of	434
	oxidation of NADPH to NADP ⁺ and thiophenol	435-437
$R = H. CH_N^+Me_R$		
P-N.+N-C12H25	proton abstraction from benzoin to give benzil	438
	hydrolysis of phenyl esters	439
- [SO ₂ CH ₂ , , , , , , , , , , , , , , , , , , ,	hydrolysis of dinitrophenyl phosphate dianion	440
R = R' = Me, Et $R = Me, R' = PhCH_2, p \cdot O_2NC_6H_4CH_2$		
5. Poly	meric Phase-Transfer Catalysts	
(PS)-(CH _{2)n} N [*] R ₂ R' X ⁻	5.1. Ammonium Saits	
a, $n = 0$ ; R = R' = Me; X = Cl, Br, F, I b, $n = 0$ ; R = R' = Me; X = HCrO ₄ c, $n = 0$ ; R = R' = Me; X = OCN	$\begin{array}{l} \mathbf{R}\mathbf{Y} + \mathbf{Z}^{-} \rightarrow \mathbf{R}\mathbf{Z} \\ \mathbf{Z}^{-} = \mathbf{C}\mathbf{l}, \ \mathbf{B}\mathbf{r}, \ \mathbf{F}, \ \mathbf{I} \end{array}$	218, 441 442, 443 222
d, $n = 0$ ; $R = R' = Me$ ; $X = OH$ e, $n = 1$ , $R = R' = Me$ ; Et, <i>n</i> -Bu, <i>n</i> -Oct; $X = Cl$	$Z^- = CN, I, R - CHCN$	444 222, 232, 259, 260,
f, $n = 1$ ; R = Me; R' = $n$ -Bu; $n$ -Oct, n-C ₁₂ H ₂₅ , $n$ -C ₁₄ H ₂₉ , PhCH ₂ , CH ₂ CH ₂ OH, CHMeCHPhOH; X = Cl, Br	Z ⁻ = CN, asymmetric Darzens reaction	445-450, 455, 457 232, 259, 454, 448-452
g, $n = 1$ ; R = R' = Me; X = SCN h, $n = 1$ ; R = R' = Me; X = BH ₄ ⁻		222 453
i, $n = 2,3$ ; R = R' = $n$ -Bu; X = Br	$Z^{-} = I$ , PhS, Br, Cl, N ₃ , ArO, AcO	454, 455
$P_{3} = Z = N^{*}R_{3} X^{-}$	$Z^{-} = CN, I$	261, 447, 456
$\mathbf{R} = \mathbf{Me}; \mathbf{Z} = -\mathbf{CH}_2\mathbf{OCO}(\mathbf{CH}_2)_n -; n = 5, 11$ $\mathbf{R} = \mathbf{Me}, n \cdot \mathbf{Bu}; \mathbf{Z} = -\mathbf{CH}_2\mathbf{NHCO}(\mathbf{CH}_2)_{10} -$		
(Si) Z - N ⁺ R ₃ X [−]		457
a, $Z = -(CH_2)_3$ -; $R = H$ , Me, Et, <i>n</i> -Bu, <i>n</i> -Oct, <i>n</i> -C ₁₆ H ₃₃ b, $Z = -(CH_2)_6$ -; $R = n$ -Bu c, $Z = -C_1H_2CH_2$ -; $R = n$ -Bu		
$\mathbb{P}_{\mathbf{N}}^{N} = \mathbb{R} \times^{N}$		
a, $R = H$ ; $X = ClCrO_3$ b, $R = H$ , <i>n</i> -Bu, $CH_2CHMeEt$ ; $X = Br$ , $Cl$		458 459

functional polymer	application as catalyst	ref
	5.2. Phosphonium Salts	
PS) Z-P ⁺ ( <i>n</i> -Bu) ₃ X ⁻		
a, $Z = -(CH_2)_n$ ; $n = 1, 2, 3, 6$ b, $Z = -(CH_2)_m [NHCO(CH_2)_x]_n$ ; $x = 10;$ m = 1, n = 1, 2, 3	$R-Y + Z^- \rightarrow R-Z$ $Z^- = Cl, I, CN, AcO, ArO, ArS,$ $ArCHCOMe, N_3, SCN, S^{2-}$	260, 262, 445-447, 449 454, 455, 460-462
i) Z - P ⁺ (η - Bu) ₃ X -		
a, $Z = -(CH_2)_3$ -	$Z^- = I$ , PhS, Cl, PhO	447, 461-463
m = 2, n = 1 m = 10; n = 1, 2 c, Z = -C ₆ H ₄ CH ₂ -	$Z^{-} = I, BH_{4}, PhO$ $Z^{-} = PhO$ $Z^{-} = PhO$	461 461, 463 457
5.3.	. Crown Ethers and Cryptands	
	$Z^{-} = CN$	260
		464
		262
n = 0-2		(12)
		200
		465
	$Z^- = I, CN$	466
	5.4. Cosolvents	
S)— CH20(CH2CH2O)R	$Z^- = ArO, Cl, CN, AcO$	
a, $R = Me$ ; $n = 1, 2, 3, 13, 16$ b, $R = H$ ; $n = 1, 4, 13$ c, $R = Ph$		264, 445, 446, 467-46 446, 467 265
	$Z^- = AcO$	
a, R = Et; $n = 4$ b, R = $\overbrace{N}^{N}$ ; $n = 2, 3$		470 470, 471
	$Z^- = AcO$	470, 471
S −−− CH2NP[NMe2]2	$Z^- = ArO, Cl, CN, AcO$	
a, $\mathbf{R} = \mathbf{H}$ b, $\mathbf{R} = \mathbf{M}\mathbf{e}$		472-474 263, 445, 446, 473

ТΔ	BLE	ΤT	(Continued)
10	ששע	11	(Commuted)

functional polymer	application as catalyst	ref
	5.5. Other Catalysts	
(PS)— соо ⁺ Na ⁺ / PS)— соон	$Z^{-} = Cl, CN, AcO$	446
	$Z^- = Cl, CN, AcO$	446
(PS) S ⁺ Me ₂ FSO ₃ ⁻	epoxidation of ketones	94
$R[OCH_2CH_2]_nOR$		475-479
RO(CH2CH2O) - TI OCH2CH2OR		480
CCCH2CH21gOR		481
$Y = CH_2(OCH_2CH_2)_nOR$		
poly(vinyl alcohol) poly(vinylpyrrolidone) poly(vinylformal) poly(vinylmethyl ether) poly(methyl vinyl ketone) poly(methyl vinyl ketone) poly( <i>N</i> , <i>N</i> -dimethylacrylamide) poly( <i>N</i> , <i>N</i> -dimethylacrylamide) poly(methoxymethyloxirane) poly(methoxymethyloxirane) poly(epichlorohydrin) poly(oxyethylene) poly(oxyethylene) poly(styrene- <i>b</i> -oxyethylene) Span 80 Tween 20	$Z^{-} = PhO$	482 482 482 482 482 482 482 482 482 482

^a (P) = polymer; (PS) = polystyrene; (Si) = silica.

a polymeric catalyst may be offset by a significant reduction in reactivity associated, for example, with diffusional limitations imposed by resin supports.

A wide variety of catalysts have been supported in this way, ranging from strong acids and bases (ion-exchange resins), transition-metal complexes, and photosensitizers right through to the highly specific enzymic catalysts. A detailed coverage of the latter, however, lies outside the scope of this review. A systematic listing of polymer-supported transition-metal complex catalysts has also been excluded because this area has been recently reviewed very comprehensively, a similar format to the present review being used. Readers are directed to ref 243 and in particular to the table therein.

### A. Ion-Exchange Resin Catalysts

The acid and base forms of ion-exchange resins probably represent the earliest examples of synthetic polymeric catalysts,^{1,244} and the use of these materials in this way has been reviewed previously.^{245,246} The commercial availability of a series of resins ranging from strongly acid systems based on sulfonated polystyrene (11) to strongly basic ones involving the hydroxyl salts of bound ammonium ions (12) has allowed the study



of a great variety of reactions. Virtually all organic syntheses involving catalysis by homogeneous acid or base have also been carried out by use of appropriate polymeric catalysts, and there are now signs of these species being exploited commercially. Table II, section 1, lists the applications.

# B. Polymeric Lewis Acid and Superacid Catalysts

The impregnation of a polystyrene resin with aluminum chloride by use of a suitable carrier solvent produces, on removal of the solvent, a tightly bound complex of insoluble polymer and anhydrous Lewis acid. Furthermore, this can be used very successfully as a mild catalyst for a number of organic preparations.^{247,248} The impregnated Lewis acid is readily made available by swelling the resin with an appropriate solvent, while in the dry state the acid is protected from hydrolysis. The polymer appears to attenuate the activity of the catalyst to some extent, and in some reactions undesirable complex condensation side products are virtually eliminated.

When a Lewis acid is introduced into a resin which is already functionalized with strong protonic acid groups, then new acidic functions are generated^{249,250} with an acidity approaching that of the so-called superacids.²⁵¹ Such resins are capable of protonating paraffins, but where polystyrene is the base polymer, the catalysts are somewhat unstable and are degraded during use. Where, however, a perfluorinated copolymer containing perfluoroalkanesulfonic acid groups is used, much higher stability results, and once again these materials show considerable commercial potential.^{252,253} The various systems which have been de-

_¦

R = H, OH

# TABLE III. Separations on Polymeric Carriers^a

functional polymer	application	ref
	1. Metal Ion Separations	
	extraction of Ni, Cu, Co separation of Cu, Zn, Al	485, 505 487, 506
		507, 508
		507, 508
	complexing of alkali metal ions	509-511
		509-511
		509-511
Сн₂ѕн	selective ion exchanger	505
PS) · β - diphenylglyoxime	selective for Pd	486
PS) · ethylene diglycor dibutyl ether	selective for Au	512
	selective for Hg	513, 514
$\mathbb{P}_{\mathbf{S}}^{P} \mathbb{C}_{H_{2}} \mathbb{H}_{N}^{R} = \mathbb{H}; \mathbf{R}' = \mathbb{C}_{H_{2}} \mathbb{H}_{N}^{N}$	selective separation of Cu, Ag, Ni	484
b, $\mathbf{R} = \mathbf{R}' = \bigcup_{CH_2}$		
СЭ-сн ₂ м Соон	separation of transition-metal ions	515
(PS)—COO—(CH ₂ ) ₆ —OCO—CH ₂ SH	separation of Ag, Hg, Au, Bi, Cu	516
$(PS) - (CH_2)_2 - CON(a - B_2)_2$	separation of U. Th. Zr. An. Pd	517
	selective for Cu	487, 518
	selective for Cu	488
~	2. Resolution of Racemic Mixtures	
	ligand exchanger for resolution of racemic mixtures	493, 494, 519

TABLE III (Continued)		
functional polymer	application	ref
	ligand exchanger for resolution of racemic amino acids	520
$X = -CH_2 -, -SO_2 -$	ligand exchanger for resolution of amino acids	495
$ \overset{(\text{PS})}{\underset{R}{\longrightarrow}} \overset{(\text{CH}_2}{\underset{R}{\longrightarrow}} \overset{(\text{N}_2}{\underset{M_e}{\longrightarrow}} \overset{(\text{CH}_2}{\underset{M_e}{\longrightarrow}} $	resolution of mandelic acid and mandelamide	492, 521
Р-со - № - сти - №	resolution of mandelic acid and mandelamide	
a, $R = H$ ; $R' = Me$ ; $R'' = Ph$ , $c-C_6H_{11}$ ,		491
p-IC ₆ H ₄ , 1-naphthyl b, R = H; R' = COOEt; R'' = Me, Ph, c-C ₆ H ₁₁ CH ₂ , PhCH ₂ , p-HOC ₆ H ₄ CH ₂ , p-MeOCOC ₆ H ₄ CH ₂ c, R = H; R' = COOBu-t; R'' = PhCH ₂ d R = Me [*] R' = Me R'' = CHPhOH		522 522 492
(SI)—CH ₂ CHMeCONHCHCONHCMe3		523-525
P         сооснра         сние         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н         н          н	resolution of mandelic acid and mandelamide	492
R = H; Me, PhCH ₂ , PhCO, MeCO		
$ \begin{array}{l} P^{\text{S}} \longrightarrow CH_2 \longrightarrow N^{+}R_2^{\text{C}} \text{HMePh } CI^{-} \\ R = H, Me \end{array} $	resolution of mandelic acid separation of sugar anomers	526 527
		496
	resolution of glyceric acid	497-499
	resolution of mannopyranoside derivatives	500, 501
Он	resolution of amino acid esters and anilides	502, 503
	3. Other Separations	
PS-NH ₂ metal camplex	removal of oxygen from water	528, 529
Р-ОН	removal of oxygen from solutions selective adsorption of mercaptans and cystine	530 531
CH2	trapping aldehyde side products in photochemical reactions	532

TABLE III (Continued)

a (P) = polymer; (PS) = polystyrene.

functional polymer	application	ref
	selective separation of tryptophan and tryptophan- containing peptides	533
€S−B<0H	separation of glycolipids from natural lipids and phospholipids separation of diol mixtures	534 535

veloped and their relevant applications are shown in Table II, section 2.

## C. Polymeric Dyes and Photosensitizer Catalysts

Several workers^{47,48} have examined the possibility of attaching dyes to polymeric supports and using these as indicators in redox reactions or as donor-acceptor substrates in biochemical reactions, since the redox reaction is accompanied by a distinct color change. Because of the variety of properties required in various biological and technological applications, tailor-made polymeric dyes have also been prepared. For example, a water-insoluble chromophore was attached to an amine homopolymer via a portion of the amine groups. The remainder were then converted into solubilizing groups such as sulfonates,²⁵⁴ making the whole polymeric dye water soluble.

Polymer-bound Rose Bengal²⁵⁵ has been synthesized and used to sensitize the generation of singlet molecular oxygen for photooxidations of olefins. The singlet oxygen exhibits three modes of reactions with olefins, 1,4-cycloaddition with conjugated dienes to yield cyclic peroxides, an ene-type reaction to form allylic hydroperoxides, and 1,2-cycloaddition to give 1,2-dioxetanes which cleave thermally to carbonyl-containing products. The advantages of using an insoluble photosensitizer lie in the fact that the dye can be readily separated from the product and reused. Supported systems such as these must be translucent. Some examples of polymeric photosensitizers applied as heterogeneous catalysts are shown in Table II, section 3.

## D. Polymeric Hydrolyzing Systems

Polymers with an essential functional structure of enzymes have been prepared and used to promote enzyme-type reactions.^{48,256,257} Because the imidazole moiety of histidine is present in the active sites of several hydrolyzing enzymes, many synthetic polymers containing imidazole and benzimidazole groups have been prepared and used to catalyze the hydrolysis of esters and amides. The polymeric catalysis is attributed to specific adsorption of the substrate and cooperative interaction of imidazole and other groups of the active center. After hydrolysis, the product is eliminated from the polymer active center which is then available for further catalysis. The functionalized polymers which have been used as hydrolyzing systems are listed in Table II, section 4.

## E. Polymeric Phase-Transfer Catalysts

Phase-transfer catalysis²⁵⁸ is a relatively new phenomenon in which liquid-liquid or solid-liquid phase separated reactions are accelerated by the addition of organophilic onium salts or uncharged species such as crown ethers and cryptands. The catalysts aid the transfer of anions across the phase boundary either by complexing with the attendant metal cation or replacing it in an ion-pair equilibrium. When the same species are supported on a polymer resin, their catalytic action is essentially maintained while problems such as emulsification are eliminated. Costly catalysts such as optically active onium salts, crown ethers, and cryptands are also effectively retained in this manner and can readily be reused. The toxicological problems associated with crown ethers are also overcome. A significant number of quaternary ammonium salts bound to resins have been used in this context,²⁵⁹ and these are listed in Table II, section 5.1. Far fewer phosphonium salts have been examined,²⁶⁰ despite their generally higher catalytic activity, and those which have been used appear in section 5.2. Finally, the supported crown ethers and cryptands²⁶⁰ exploited as phasetransfer catalysts are listed in section 5.3. With all of these species there is evidence for an increase in activity when the catalyst is separated from the polymer backbone by a spacer arm.^{261,262} However, the detailed mechanism(s) by which these systems operate is still the subject of much research, and no real consensus has yet emerged.

Problems associated with phase separation of an inorganic reagent and an organic substrate can also be overcome by the use of an appropriate solvent or cosolvent, such as the dipolar aprotic species, dimethyl sulfoxide, hexamethylphosphoramide etc. These have the disadvantage of being costly and difficult to dry and purify and of traces remaining teraciously with reaction products. Perhaps somewhat remarkably, when these species are supported on a resin,²⁶³ they continue to function as solvents or cosolvents and the above difficulties are overcome. Polymer-supported linear oligoethylene oxides have also been used in this context^{264,265} (Table II, section 5.4), as well as a number of other linear polymers (section 5.5).

## **IV. Separations on Polymeric Carriers**

Polymeric materials have been used widely as chromatographic column substrates and have proved useful in both gas-phase and liquid-phase separations. A full description of these areas lies outside the scope of this review, but the use of polymeric carriers in metal ion separations and racemate resolutions has involved polymer species with a close structural relationship to many of those systems already described, and hence these are now included.

## A. Metal Ion Separations

Metal ion separations are important in a number of analytical techniques,⁴⁸³⁻⁴⁸⁶ in metallurgical extrac-

tion,^{487,488} and in water treatment processes. Simple ion-exchange resins can of course be employed for these purposes, but in general they have poor selectivity. A number of systems with considerably enhanced selectivity have therefore been developed over recent years. These generally have employed neutral ligands, the complexity of which has increased with time. Though at the present moment liquid-liquid ion exchange is used widely in metallurgical extractions, polymer-supported systems will have a significant role to play in the future. Table III, section 1, lists some of the selective separations that have been achieved.

## **B.** Resolution of Racemic Mixtures

In addition to the traditional methods of resolution of racemic mixtures,^{489,490} considerable progress has been reported on resolution by chromatographic methods using chiral stationary phases. In principle, enantiomers should move at different rates down a column by forming diastereomeric adsorbates, and indeed column chromatography with synthetic optically active polymer substrates are reported to achieve enhanced resolutions. Blaschke,^{491,492} for example, has used N-[(S)-1-phenylethyl]acrylamides and other optically active polymers as adsorbents for the resolution of racemic mandelic acid and mandelamide. Other resolutions of interest are those which are carried out on columns of asymmetric complex-forming stationary phases by means of ligand-exchange chromatography.⁴⁹³⁻⁴⁹⁵ Chiral crown ethers attached to polymeric supports have also been used to separate mixtures of enantiomers of primary amine salts.⁴⁹⁶

Recently, enzyme-like synthetic polymers containing chiral cavities have been prepared and used for resolution of racemic mixtures.⁴⁹⁷⁻⁵⁰⁴ The principle is to prepare a synthetic polymer with functional groups in an exact chiral relationship (13) by polymerizing vinyl monomers (A and B) attached to an optically active template molecule (T) (reaction 12). Subsequent removal of T leaves behind a chiral cavity, 13.



The polymer is prepared under conditions that lead to a rigid matrix to avoid the loss of the stereochemistry of the cavity. The functional groups in the cavity must undergo a readily reversible binding and cleavage reaction with the template, analogous to the active site in natural enzymes. Cavities prepared in this way preferentially interact with the enantiomer which has been used as template. Several enzyme-like polymers of this type have been used for resolution of enantiomers and are listed in Table III, section 2.

## V. Organic Synthesis on Polymeric Carrlers

There are a number of areas where polymer molecules have been employed as a convenient support upon which to carry out a synthesis. Completion of the latter is followed by cleavage of the product from the support. One example of this has already been described in section IIF. In principle, the synthesis can be a very complex one involving many steps, and quite clearly a resin support offers a convenient method of isolating and purifying the product at all stages of the synthesis. Merrifield's "solid-phase method" for producing polypeptides² initiated this technique, which has been subsequently applied to both oligosaccharide536 and oligonucleotide synthesis.⁵³⁷ These are very specialized areas of application of polymer supports, the details of which again lie outside the scope of this review, and interested readers are directed to a number of more specialized reports.536-540

The same carrier principle has also been used in a number of asymmetric syntheses, in some cyclization and related reactions, and also in the detection of reaction intermediates.

## A. Asymmetric Syntheses

In this technique an optically active compound or functional group is attached to a macromolecular support and then either a synthesis is carried out on the support or the optically active polymer is used as an asymmetric reagent or catalyst. Most applications have used the latter approach, but in principle, in order to achieve significant induction, at some stage in the reaction the substrate must become intimately associated with, or specifically bound to, the optically active center. At this point the polymer acts effectively as an asymmetric carrier species.

One example where the synthesis occurs unambiguously on the support is in the preparation of atrolactic acid⁵⁴¹ using 1,2-O-cyclohexylidene- $\alpha$ -D-xylofuranose bound to a polymeric tritylchloride polymer (14) (reaction 13). A polymer-supported optically active pri-



mary alkoxy amine has been used in a similar role in the synthesis of chiral 2-alkylcyclohexanones.⁵⁴²

There are many more examples of polymer-supported optically active metal complexes and chiral bases being employed in asymmetric induction, and also more recently chiral phase-transfer catalysts. Table IV, section 1, lists these and the corresponding reactions in which they have been used.

#### **B.** Cyclization Reactions

In conventional cyclization reactions a high dilution technique is used in order to promote intramolecular reaction. When a rigid polymer support is used, the

TABLE IV. Organic Syntheses on Polymeric Carriers

functional polymer	application	ref
	1. Asymmetric Syntheses	
(PS) - C - C + 2 O O O O O O O O O O O O O O O O O O	asymmetric synthesis of α-hydroxy acids by reaction with RMgX, RR'C(OH)COOH	541
R = Me, Ph		
PS- CH2OCH2CHMeNH2	asymmetric synthesis of 2-alkylcyclohexanones	542
	asymmetric hydrogenation of olefins and hydrosilylation of	550-555
	ketones asymmetric hydroformylation of olefins	556
(P)→c∞cH₂→√N   R	asymmetric reduction of $-c = c = 0$ with MeOH to $-c_H - c_{OOMe}$	557,558
$R = Me, PhCH_2$	asymmetric acetylation of <i>dl</i> -1-phenylethanol	558, 559
— соос нръснмелме R	asymmetric reduction of ketene with MeOH asymmetric acylation of <i>dl</i> -1-phenylethanol	557 558,559
CH ₂ N ⁺ (Me ₂ )CHMeC(OH)Ph Br ⁻	asymmetric Darzen reaction	452
	asymmetric reduction of ketene with MeOH asymmetric acylation of <i>dl</i> -1-phenylethanol asymmetric Michael reaction	557,559 558 560
R = H, MeO	asymmetric Michael reaction	560
-[CHCH2N], R		
a, R = i - Bu; R' = H	asymmetric addition of HCN to PhCHO	561
b, R = Me; R' = H	asymmetric addition of laurylmercaptan to $-c = c = c = 0$ asymmetric hydrogenation of methyl isobutyl ketone and mesityl oxide to 2-methyl-2-pentanol	562 563
-[CH2CHN}; <del>,</del> 	asymmetric synthesis of esters	564
$\mathbf{R} = i$ -Pr; $\mathbf{R}' = \mathbf{H}$ , Me $\mathbf{R} = \mathbf{H}$ ; $\mathbf{R}' = \mathbf{M}\mathbf{e}$		
[CH ₂ CHNH],   CH ₂ CHMe2 <b>B</b> H3	asymmetric reduction of PhCOMe	565
-[-N-1/2-]	asymmetric reduction of ketone	565
PS-CH2CH-PS   NH2-BH3 - [NHCHCO]-	asymmetric reduction of ketone	565
-   *" R		
$R = -(CH_2)_4 NH_2$	asymmetric hydrolysis of phenylalanine ester asymmetric oxidation of 3,4-dihydroxyphenylalanine to quinone derivative	566 567,568
$R = CH_2CH_2COOH$	asymmetric hydrogenation of methyl acetoacetate and	569
$R = CH_2COOH$	$\alpha$ -acetomidocinnamic acid asymmetric reduction of $\alpha$ -methyl- and $\alpha$ -acetylaminocinnamic acid	569

as trap

functional polymer	application	ref
	asymmetric conversion of $\frac{H}{CIOC} = C + H$ to $H_{HOOC} + H_{HOOC}$	570
$cell \cdot CH_2 OP(Ph_2)RhCl(PPh_3)_2$	asymmetric hydrogenation of α-phthalimidoacrylic acid derivative to alanine 2. Cyclizations	571
(PS)		
a, $n = 1$	Dieckmann cyclization of $Br(CH_2)_{s}Br$ to $\swarrow$ -coord	572
b, $n = 8$ ; R = Me ₃ C	synthesis of со — (СН ₂ ), — СН ₂       СН ₂ (С <b>Н</b> ₂ ), — СН — соон	546
c, <i>n</i> = 14	Dieckmann cyclization of $cH_2$ $c=0$	572
d, n = 5; R = Et, t-Bu, Et ₃ C	Dieckmann cyclization of	546
PS-CH20C0	Dieckmann cyclization	545, 54
R = H, Et		
Р-Он	synthesis of cyclic peptide	191
(PS)-сн2-SОн	synthesis of cyclic peptide	193-195
P5 CH2 Z CO(CH2), CN		
a, $Z = S; n = 8$	synthesis of $co - (CH_2)_7 - CH - CN$ $\downarrow \qquad \downarrow \qquad$	546
b, <b>Z</b> = 0	synthesis of $c = O_{(CH_2)_{n-1}} CH - CN$	572
PS-CH20C0(CH2)2C00-CH	он I Ц	
0=c ² / ³ / ² /2	synthesis of $Ph_3C \longrightarrow 0 \longrightarrow 0$ CCH ₂ $h_0 \longrightarrow 0$ CCPh ₃	544
РЅ— ѕо₃н	cyclization of aliphatic aldehydes	573
PS-coci	synthesis of unsymmetrical tetraarylporphyrins	574
PS-CH20CO(CH2),-P*Ph3 X-	synthesis of $0 = C_{(CH_2)_{d-1}} C = PPh_3$	572
(PS)-CH2OCH2-CN Me 0 (CH2)/2CN	synthesis of $M_{\text{HOCH}_2}^{\text{Me}} \xrightarrow{0}_{(CH_2)_{n-1}}^{(CH_2)_{n-1}-C} \xrightarrow{0}_{(CH_2)_{n-1}-C}^{CN}$	572
	3. Detection of Reactive Intermediates	
(PS)- 502 NH - ON Fe(C0)C4H4	detection of cyclobutadiene	548
as precursor		
$\sim$ $\checkmark$		

functional polymer	application	ref
(PS)- CH2-OCOR NO2	detection of intermediates in nucleophilic and elimination reactions	575
as precursor		
$P_{S}$ $CH_{2NH_{2}}$ as trap		
(PS)- CH2-(NHR)2 NO2	detection of metaphosphates RNHP=NR O	576,577
as precursor; $\mathbf{R} = \mathbf{c} \cdot \mathbf{C}_{\mathbf{b}} \mathbf{H}_{11}$		
$\sim CH_2OCO - CH_2NH_2$ as trap		
$ e^{\text{as precursor}} $	detection of monomeric metaphosphate $[PO_3^-]$	577,578
$\mathfrak{PS}$ $\mathfrak{CH}_2 CCOCH_2 NH_2$ as trap		
es—coo-FoPh	detection of [Ph-O-P=O]	576
Success the as tran		
$(P) - CH_2OCOCH_2NH_2 as precursor$ $(P) - CH_2 - CH_2 - P - CH_1 - CH_2 - P - CH_2 $	detection of monomeric metaphosphate [PO ₃ ⁻ ]	579
PS—CH2OCOCH2NH2 as trap		
PS-COOCH2CH2-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	detection of benzyne	54 <b>9</b>
as precursor		
Ph Ph as trap		
(FS)— Rose Bengal sensitizer	trapping of ¹ O ₂	580
PS - CH2 OCO(CH2) 3 CH = CMe 2		
PS-CH2-0R NO2	detection of oxocarbonium ion as intermediate in Fries rearrangement	581
	detection of oxocarbonium ion	581
R = COMe, COPh, $p - O_2NC_bH_4CO-,$ $p - ClC_cH_4CO-$		

^a (P)=polymer; (PS) = polystyrene; cell = cellulose.

concentration of molecules to be cyclized on the polymer can be made higher than normally used in solution. This has reduced the synthetic problems encountered in the preparation of macrocyclic compounds such as cyclic peptides^{191,193,543} and threaded macrocycles.⁵⁴⁴ Dieckmann⁵⁴⁵ and other cyclizations^{546,547} have also been improved by this approach.

Cyclic peptides have been prepared by the stepwise synthesis of the linear peptide on a polymeric carrier followed by intramolecular cyclization. The selective Dieckmann cyclization of mixed esters using conventional techniques has not been reported. However, application of a polymeric support does improve the situation. With such a solid-phase technique, one product remains attached to the polymer whereas the other one is obtained in solution, solving the problem encountered with separation of products in a high-dilution technique (reaction 14).



Insoluble polymer supports have also been used in the synthesis of catenanes and other threaded compounds. Undesirable nonthreaded byproducts are simply washed from the threaded macrocycle itself attached to the polymer.⁵⁴⁴ Subsequent cleavage yields the pure threaded compound (reaction 15).



In addition to these intramolecular reactions, intermolecular cyclization of polymer-attached chains have also been reported⁵⁴⁶ (reaction 16).



## C. Detection of Reactive Intermediates

Among the various advantages associated with functionalized insoluble polymers, the possibility of maintaining mutual separation of reactive functional groups bound to the same polymer support is particularly attractive, and exploitation of this has been described earlier. Derivatized polymeric beads are generally functionalized throughout their interiors, and only a negligible fraction of reactive sites are at the surface of the bead. Hence, two highly reactive compounds may become inert toward each other when attached to two polymers, as was demonstrated in the case of polymeric trityllithium (15) and a polymeric active ester (16). Upon addition of an enolizable ketone, however, reaction proceeded as in eq 17, because the

$$-CH_{2}COR + P - OCOR' - R'COCH_{2}COR (17b)$$

15

free carbanion was able to migrate from one resin to the other.548

This clear demonstration of the existence of a reactive intermediate has become known as the three-phase test, and other examples are listed in Table IV, section 3. In principle, the technique involves the generation of a reaction intermediate from an insoluble polymeric precursor and its trapping by a second solid-phase reagent. The isolation and detection of an adduct provide positive evidence for the liberated free reactive intermediate.

While benzyne has been isolated as a stable entity in rigid matrices at very low temperature, its lifetime in solution and in the gas phase is limited by dimerization to form biphenylene. However, by generation of ben-



zyne on a functionalized polymer,⁵⁴⁹ the ubiquitous dimerization reaction of this reactive molecule is suppressed and its lifetime extended. This allows other products to be made more readily (reaction 18).

#### VI. References

- M. J. Astle in "Ion Exchangers in Organic and Biochemistry", C. Calman and T. R. E. Kressman, Eds., Interscience, New
- York, 1957, Chapter 36, p 658.
  R. B. Merrifield, J. Am. Chem. Soc., 85, 2149 (1963); Science (Washington, D.C.), 150, 178 (1965); Adv. Enzymol., 32, 221 (1969).
- (3) A. McKillop and D. W. Young, Synthesis, 401, 481 (1979).
- A. McKillop and D. W. Young, Synthesis, 401, 481 (1979).
   A. Akelah, Brit. Polym. J., in press.
   G. R. Stark, Ed., "Biochemical Aspects of Reactions on Solid Supports", Academic Press, New York, 1971.
   L. P. Ellinger, Chem. Soc. Annu. Rep., B70, 322 (1973).
   C. U. Pittman and G. O. Evans, CHEMTECH, 560 (1973).
   A. Ledwith and D. C. Sherrington in "Molecular Behaviour"

- and the Development of Polymeric Materials", A. Ledwith and A. M. North, Eds., Chapman and Hall, London, 1974, Chapter 9, p 303.
- (9) C. C. Leznoff, Chem. Soc. Rev., 3, 65 (1974). (10) C. G. Overberger and K. N. Sannes, Angew. Chem., Int. Ed. *Engl.*, 13, 99 (1974). (11) E. C. Blossey and D. C. Neckers, "Solid Phase Synthesis",
- Halstead Press, New York, 1975.
- D. C. Neckers, J. Chem. Educ., 52, 695 (1975). A. Patchornik and M. A. Kraus, in "Encyclopedia of Polymer (13) Science and Technology", Suppl. Vol. 1, H. F. Mark, N. G. Gaylord, and N. M. Bikales, Eds., Interscience, New York, 1976, p 468.
- (14) A. Patchornik and M. Kraus, Pure Appl. Chem., 43, 503 (1975); 46, 183 (1976).
- J. I. Crowley and H. Rapoport, Acc. Chem. Res., 9, 135 (1976). (15)
- G. A. Crosby, Aldrichim. Acta, 9, 15 (1976). N. K. Mathur and R. E. Williams, J. Macromol. Sci., Rev. (16)
- (17)Macromol. Chem., C15, 117 (1976). (18)
- (19) (20)
- (21)
- M. Heitz, Adv. Polym. Sci., 23, 1 (1970).
  P. Hodge, Chem. Br., 14, 237 (1978).
  D. C. Neckers, CHEMTECH, 108 (1978).
  C. C. Leznoff, Acc. Chem. Res., 11, 327 (1978).
  G. Manecke and W. Storck, Angew. Chem., Int. Ed. Engl., 17, 077 (1978). (22)657 (1978).
- (23) (24)
- A. Patchornik and M. Kraus, CHEMTECH, 118 (1979).
  P. Hodge and D. C. Sherrington, Eds., "Polymer-Supported Reactions in Organic Synthesis", Wiley, London, 1980.
  N. K. Mathur, C. K. Narang, and R. E. Williams, Eds., "Polymers as Aids in Organic Chemistry", Academic Press, New York, 1990. (25)
- New York, 1980. A. Akelah, Synthesis, 413 (1981). See ref 25, pp 54-58. J. M. Brown in "Enzymic and Non-Enzymic Catalysis", P. (26)
- (28)Harwood, Chichester, UK, 1980, p 120.
- (29) See ref 25, pp 13-20.

- (30) E.g., J. R. Millar, D. G. Smith, W. E. Marr, and T. R. E. Kressman, J. Chem. Soc., 218 (1963)
- (31) E.g., K. A. Kun and R. Kunin, J. Polym. Sci., Part A-1, 7, 2689 (1968).
- (32)J. C. Moore, J. Polym. Sci., Part A, 2, 835 (1964).
- (33)See ref 13, p 701.
- (34) J. M. J. Frechet and K. E. Haque, Macromolecules, 8, 130
- J. M. J. Frechet and L. J. Nuyens, Can. J. Chem., 54, 926 (35)(1976).
- (36) S. L. Regen, Macromolecules, 8, 689 (1975).
   (37) S. L. Regen, J. Am. Chem. Soc., 96, 5275 (1974); 97, 3108 197!
- (38) K. W. Pepper, H. M. Paisley, and M. A. Young, J. Chem. Soc., 4097 (1953)
- (39) G. D. Jones in "Styrene", R. H. Boundy and R. F. Bayer, Eds., Reinhold, New York, 1952, Chapter 14, p 674.
  (40) W. Heitz and R. Michels, *Liebigs Ann. Chem.*, 227 (1973).
  (41) R. Michels and W. Heitz, *Makromol. Chem.*, 176, 245 (1975).
  (42) S. L. Barger and D. B. Loca, Chem. 40, 1669 (1975).

- (42) S. L. Regen and D. P. Lee, J. Org. Chem., 40, 1669 (1975).
   (43) H. M. Relles and R. W. Schluenz, J. Am. Chem. Soc., 96, 6469 (1974).
- (44) A. Akelah and M. El-Borai, Polymer, 21, 255 (1980).
- (45) A. Akelah and M. Er-Doral, Polymer, 21, 255 (1960).
  (45) A. Akelah, unpublished results.
  (46) G. A. Crosby, N. M. Weinshenker, and H. S. Uk, J. Am. Chem. Soc., 97, 2232 (1975).
  (47) H. G. Cassidy and K. A. Kuhn, "Oxidation-Reduction Polymers", Wiley-Interscience, New York, 1965.
  (48) A. S. Lindsey, Rev. Macromol. Chem., 4, 1 (1970).
  (49) S. Tanimeta L. Hosilarus and P. Oda Kogue Kagabu Zap.
- (49) S. Tonimoto, J. Horikawa, and R. Oda, Kogyo Kagaku Zasshi, 70, 1269 (1967) [Chem. Abstr., 68, 69406h (1968)]; Yuki Gosei Kagaku Shi, 27, 989 (1969) [Chem. Abstr., 72, 32306g (1970)]
- (50) S. Tanimoto, T. Miyake, and M. Okano, Synth. Commun., 4, 193 (1974).
- G. A. Crosby and M. Kato, J. Am. Chem. Soc., 99, 278 (1977).
- C. Yaroslavsky and E. Katchalski, Tetrahedron Lett., 5173 (52)(1972).
- (53) Y. Wolman, S. Kivity, and M. Frankel, J. Chem. Soc., Chem. Commun., 629 (1967)
- (54) M. Rubinstein and A. Patchornik, Tetrahedron Lett., 2881 (1972).
- (55) N. M. Weinshenker and C. M. Shen, Tetrahedron Lett., 3281, 3285 (1972).
- (56) H. Ito, N. Takamatsu, and I. Ichikizaki, Chem. Lett., 577 (1975).

- (1975).
  (57) J. Brown and R. E. Williams, Can. J. Chem., 49, 3765 (1971).
  (58) T. Tagaki, J. Polym. Sci., Part B, 5, 1031 (1967).
  (59) T. Tagaki, J. Polym. Sci., Polym. Lett. Ed., 12, 681 (1974).
  (60) T. Tagaki, J. Appl. Polym. Sci., 19, 1649 (1975).
  (61) C. R. Harrison and P. Hodge, J. Chem. Soc., Perkin Trans. 1, 605 (1976); J. Chem. Soc., Chem. Commun., 1009 (1974).
  (62) F. Helfseich and D. B. Luton, J. Appl. Polym. Sci.
- (62) F. Helfferich and D. B. Luten, J. Appl. Polym. Sci., 8, 2899
- (1964) (63) G. Cainelli, G. Cardillo, M. Orena, and S. Sandri, J. Am. Chem. Soc., 98, 6737 (1976).
- (64) G. Cardillo, M. Orena, and S. Sandri, Tetrahedron Lett., 3985 (1976)
- (65) N. M. Weinshenker, G. M. Crosby, and J. Y. Wong, J. Org. Chem., 40, 1966 (1975).
  (66) C. C. Leznoff and J. Y. Wong, Can. J. Chem., 50, 2892 (1972).
  (67) J. Y. Wong and C. C. Leznoff, Can. J. Chem., 51, 2452 (1973).
  (68) C. C. Leznoff and D. U. Dixit, Can. J. Chem., 55, 3351 (1977).
  (69) T. W. Bridsend, C. Leznoff, Car. J. Chem., 55, 3351 (1977).

- (69)
- T. M. Fyles and C. C. Leznoff, *Can. J. Chem.*, **54**, 935 (1976). C. C. Leznoff, T. M. Fyles, and J. Weatherston, *Can. J.* (70)
- Chem., **55**, 1143 (1977
- (71) C. C. Leznoff and J. Y. Wong, Can. J. Chem., 51, 3756 (1973).
   (72) J. Y. Wong, C. Manning, and C. C. Leznoff, Angew. Chem., Int. Ed. Engl., 13, 666 (1973).
- (73)C. C. Leznoff and S. Greenberg, Can. J. Chem., 54, 3824 (1976)
- (74) M. B. Shambhu and G. A. Digenis, Tetrahedron Lett., 1627 (1973)
- (75) R. L. Letsinger, M. J. Kornet, V. Mahadevan, and D. M. Jerina, J. Am. Chem. Soc., 86, 5163 (1964).
- (76) M. A. Kraus and A. Patchornik, Isr. J. Chem., 9, 269 (1971); J. Am. Chem. Soc., 93, 7325 (1971). (77) F. Camps, J. Castells, M. Ferrando, and J. Font, Tetrahedron
- Lett., 1713 (1971). (78) F. Manescalchi, M. Orena, and D. Savoia, Synthesis, 445
- (79) W. R. Roush, D. Feitler, and J. Rebek, Tetrahedron Lett., 1391 (1974).
- (80) F. Camps, J. Castells, J. Font, and F. Vela, Tetrahedron Lett., 1715 (1971).
  (81) W. Heitz and R. Michels, Angew. Chem., Int. Ed. Engl., 11,
- 298 (1972
- (82)S. V. McKinley and J. W. Rakshys, J. Chem. Soc., Chem. Commun., 134 (1972).

(83) F. Camps, J. Castells, and F. Vela, Ann. Quim., 70, 374 (1974)

Akelah and Sherrington

- J. Castells, J. Font, and A. Virgili, J. Chem. Soc., Perkin (84) Trns. 1, 1 (1979).
- (85) P. Hodge and C. Richardson, J. Chem. Soc., Chem. Commun., 622 (1975).
  (86) D. C. Sherrington, D. C. Graig, J. Dagleish, G. Domin, J. Taylor, and G. V. Meehan, Eur. Polym. J., 13, 73 (1977).
  (87) C. R. Harrison and P. Hodge, J. Chem. Soc., Chem. Commentant (1070)
- mun., 813 (1978) (88) C. R. Harrison, P. Hodge, and W. J. Rogers, Synthesis, 41
- (1977)
- (89) R. Appel, W. Struver, and L. Willms, Tetrahedron Lett., 905 (1976).

- (90) R. Appel and L. Willms, J. Chem. Res. (S), 84 (1977).
  (91) K. Horiki, Tetrahedron Lett., 4103 (1976).
  (92) R. Michels and W. Heitz, Makromol. Chem., 176, 245 (1975).
  (93) C. U. Pittman and R. M. Hanes, J. Org. Chem., 42, 1194 (1977)
- (94) M. J. Farrall, T. Durst, and J. M. J. Frechet, Tetrahedron Lett., 203 (1979). L. C. Dorman and J. Love, J. Org. Chem., 34, 158 (1969).
- (95)C. Yaroslavsky, A. Patchornik, and E. Katchalski, Tetrahe-(96) dron Lett., 3629 (1970)
- C. Yaroslavsky, A. Patchornik, and E. Katchalski, Isr. J. Chem., 8, 37 (1970). (97)
- (98) Y. Yanagisawa, M. Akiyama, and M. Okawara, Kogyo Kaga-ku Zasshi, 72, 1399 (1969) [Chem. Abstr., 71, 113410t (1969)].
   (99) M. Zupan and A. Pollak, J. Chem. Soc., Chem. Commun., 715
- (1975)
- (100) M. L. Hallensleben, Angew. Makromol. Chem., 27, 223 (1972)
- (101) M. Okawara, Y. Oiji, and E. Imoto, Kogyo Kagaku Zasshi, 65, 1658 (1962) [Chem. Abstr., 58, 8051d (1963)].
- (102) J. M. J. Frechet, J. M. Farrall, and L. J. Nuyens, J. Macromol. Sci. Chem., A-11, 507 (1977)
- (103) J. Z. Zabicky-Zissman, I. Oren, and E. Katchalski, U.S. Patent 3700610 (1972)
- (104) M. Okawara, Y. Oiji, and E. Imoto, Kogyo Kagaku Zasshi, 65, 1658 (1962) [Chem. Abstr., 58, 8051g (1963)].
  (105) W. G. Lloyd and T. E. Durocher, J. Appl. Polym. Sci., 7, 2025
- (1963).
- S. Cacchi and L. Caglioti, Synthesis, 64 (1979) (106)
- (107)A. Bongini, G. Cainelli, M. Contento, and F. Manescalchi, Synthesis, 143 (1980).
- Manecke and M. Stark, Makromol. Chem., 176, 285 (108)Ğ (1975)
- (109) M. L. Hallensleben, Angew. Makrmol. Chem., 31, 143 (1973). (110) G. Manecke and P. Reuter, J. Polym. Sci., Polym. Symp., 62,
- 227 (1978). (111) J. A. Moore and J. J. Kennedy, J. Chem. Soc., Chem. Com-
- mun., 1079 (1978). (112) R. E. Williams, J. Brown, and D. R. Lauren, Polym. Prepr.,
- (112) R. E. Williams, S. Diowill, and D. R. Badtoll, 2019, 1997.
   *Am. Chem. Soc., Div. Polym. Chem.*, 13, (2), 823 (1972).
   (113) J. Nishino, S. Kondo, T. Yura, K. Tamaki, and Y. Sakaguchi, *Kobunshi Ronbunshu*, 31, 244 (1974).
   (114) H. W. Gibson and F. C. Bailey, J. Chem. Soc., Chem. Commun. 215 (1977).
- mun., 815 (1977
- (115) B. Sansoni and O. Sigmund, Naturwiss., 48, 593 (1961).
- (116) G. A. Crosby, U.S. Patent 3928293 (1975) [Chem. Abstr., 84, 106499u (1976)].
- (117) M. L. Hallensleben, J. Polym. Sci., Polym. Symp., 47, 1 (1974)
- See ref 24, p 121. (118)
- (119) D. S. Kemp and J. Reczek, Tetrahedron Lett., 1031 (1977).
  (120) G. Manecke, G. Kossmehl, G. Hartwich, and R. Gawlik, Angew. Makromol. Chem., 2, 86 (1968).
  (121) M. Gorecki and A. Patchornik, Biochim. Biophys. Acta, 303, 0107071.
- (12) D. J. Harpp, J. Adams, J. G. Gleason, D. Mullins, and K. Steliou, *Tetrahedron Lett.*, 3989 (1978).
  (123) M. L. Hallens, J. Polym. Sci., Part C, 41, 1 (1974).
  (124) A. S. Lindsey, S. E. Hunt, and N. G. Savill, Polymer, 7, 479 (1966).

- (1966). (125)
- (126)
- (1950).
  C. E. Adams and C. N. Kimberlin, U.S. Patent 2899396
  (1959) [Chem. Abstr., 54, 1770 (1960)].
  T. L. Cairns, H. W. Gray, A. K. Scheider, and R. S. Schreiber, J. Am. Chem. Soc., 71, 655 (1949).
  J. M. J. Frechet, J. Warock, and M. J. Farrall, J. Org. Chem., 42 (2012) (1970). (127)
- 43, 2618 (1978). G. Gardillo, M. Orena, and S. Sandri, *Tetrahedron Lett.*, (128)
- 3985 (1976). (129)
- G. Gainelli, G. Cardilo, M. Orena, and S. Sandri, J. Am. Chem. Soc., 98, 6737 (1976). See ref 24, p 88. (130)
- (130) See rel 24, p 85.
  (131) H. Schuttenberg, G. Klump, U. Kaczmar, S. R. Turner, and R. C. Schulz, J. Macromol. Sci., Chem., 7, 1085 (1973).
  (132) B. C. Kaczmar, Angew. Chem., Int. Ed. Engl., 12, 430 (1973).
  (133) Y. Sato, N. Kunieda, and M. Kinoshita, Chem. Lett., 1023
- (1972).

- (134) H. Schuttenberg and R. C. Schulz, Angew. Makromol. Chem., 18, 175 (1971).
- (135) H. Schuttenberg, G. Klump, U. Kaczmar, S. R. Turner, and R. C. Schulz, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem., 13, 866 (1972)
- (136) C. R. Harrison and P. Hodge, J. Chem. Soc., Perkin Trans. , 2252 (1976)
- (137) J. A. Greig, R. D. Hancock, and D. C. Sherrington, Eur. Po-lym. J., 16, 293 (1980).
- T. Tagaki, J. Polym. Sci., Part B, 5, 1031 (1967 (138)
- R. Michels, M. Kato, and W. Heitz, Makromol. Chem., 177, (139)1 (1976
- (140) M. Kato, R. Michels, and W. Heitz, J. Polym. Sci., Polym. Lett. Ed., 14, 413 (1976).
- (141) G. Manecke, C. Bahr, and C. Reich, Angew. Chem., 71, 646
- (142) G. Manecke, G. Kossmehl, R. Gawlik, and G. Hartwich, Angew. Makromol. Chem., 6, 89 (1969)
- A. F. Lunin, M. M. Sakharov, L. M. Shostakova, and L. S. Glebov, Chem. Abstr., 81, 169295h (1974). (143)
- (144) M. M. Sakharov, L. M. Shestakova, and A. F. Lunin, Kinet. Katal., 14, 808 (1973).
   (145) K. Kondo, T. Fujita, and K. Takemoto, Makromol. Chem.,
- 174, 7 (1973).
- (146) L. D. Rollamann, J. Am. Chem. Soc., 97, 2132 (1975).
  (147) W. H. Daly and D. C. Kaufman, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem., 14, 1181 (1973).
  (148) L. W. Christensen and D. J. Heacock, Synthesis, 50 (1978).
  (149) W. M. Christensen and D. S. Heacock, Synthesis, 50 (1978).
- (149) H. Kamogawa, Seni Kogyo Shikensho Iho, 68, 61 (1964).
  (150) H. Kamogawa, J. M. Larkin, K. Toei, and H. G. Cassidy, J.
- N. Ushakov, O. M. Klimova, O. S. Karchmarchik, and E. M. Smul'skaya, *Dokl. Akad. Nauk SSSR*, 143, 231 (1962). (151)
- (152) L. P. Melby and D. R. Strobach, J. Am. Chem. Soc., 89, 450
- (1967). (153)J. M. J. Frechet and K. E. Haque, Tetrahedron Lett., 3055
- 1975) . M. J. Frechet, Polym. Prepr., Am. Chem. Soc., Div. Polym. (154)
- Chem., 16, 255 (1975). T. M. Fyles, C. C. Leznoff, and J. Weatherston, Can. J. (155)
- Chem., 56, 1031 (1978). (156)T. M. Fyles, C. C. Leznoff, and J. Weatherston, Can. J.
- Chem., 55, 4135 (1977). C. C. Leznoff and T. M. Fyles, J. Chem. Soc., Chem. Com-(157)mun., 251 (1976).
- J. T. Ayres and C. K. Mann, Polym. Lett., 3, 505 (1965). (158)
- (159) J. M. J. Frechet and C. Schuerch, J. Am. Chem. Soc., 93, 492 (1971).
- (160) S. Hanessian, T. Ogawa, Y. Guindon, J. L. Kamennof, and R. Roy, Carbohydr. Res., 38, C-15 (1974).
  (161) J. M. J. Frechet and G. Pelle, J. Chem. Soc., Chem. Com-
- (101) *mun.*, 225 (1975).
   (162) M. J. Farrall and J. M. J. Frechet, J. Org. Chem., 41, 3877
- (1976).
- (163) E. Seymour and J. M. J. Frechet, Tetrahedron Lett., 1149 (1976).
- J. M. J. Frechet, L. J. Nuyens, and E. Seymour, J. Am. Chem. Soc., 101, 432 (1979). J. M. J. Frechet, Polym. Prepr., Am. Chem. Soc., Div. Polym. (164)
- (165)Chem., 17, 515 (1976). J. M. J. Frechet and E. Seymour, Isr. J. Chem., 17, 253
- (166)(1978)
- (167) M. J. Farrall and J. M. Frechet, J. Am. Chem. Soc., 100, 7998 (1978).
- (168) C. C. Leznoff and W. Sywanyk, J. Org. Chem., 42, 3203 (1977).
- (169) C. C. Leznoff and J. M. Goldwasser, Tetrahedron Lett., 1875 (1977).
- (170)J. M. Goldwasser and C. C. Leznoff, Can. J. Chem., 56, 1562 (1978).
- (171) F. Camps, J. Castells, and J. Pi, An. Quim., 70, 848 (1974). (172) Reference 24, p 312
- (173) P. H. Chapman and D. Walker, J. Chem. Soc., Chem. Commun., 690 (1975).
- (174) R. L. Letsinger and V. Mahadevan, J. Am. Chem. Soc., 87, 3526 (1965).
- (175) R. L. Letsinger and V. Mahadevan, J. Am. Chem. Soc., 88, 5319 (1966). (176) R. L. Letsinger and M. J. Kornet, J. Am. Chem. Soc., 85,
- 3045 (1963).
- (177) D. M. Dixit and C. C. Leznoff, J. Chem. Soc., Chem. Commun., 798 (1977). D. M. Dixit and C. C. Leznoff, Isr. J. Chem., 17, 248 (1978). (178)
- (179)U. Zehavi and A. Patchornik, J. Am. Chem. Soc., 95, 5673
- (197)
- (180) M. Rubinstein, B. Amit, and A. Patchornik, Tetrahedron Lett., 1445 (1975).
  (181) D. H. Rich and S. K. Gurwara, J. Chem. Soc., Chem. Com-
- mun., 610 (1973).

- Chemical Reviews, 1981, Vol. 81, No. 6 583
- (182) D. H. Rich and S. K. Gurawara, J. Am. Chem. Soc., 97, 1575 (1975)
- (183)D. H. Rich and S. K. Gurwara, Tetrahedron Lett., 301 (1975). (184) F. S. Tjoeng, E. K. Tong, and R. S. Hodges, J. Org. Chem., **43, 4**190 (1978)
- (185) F. S. Tjoeng, W. Staines, S. S. Pierre, and R. S. Hodges, Biochim. Biophys. Acta, 490, 489 (1977).
- (186) T. L. Aug and J. Harwood, J. Macromol. Sci., Chem., 7, 1079 1973)
- (187) R. L. Letsinger, M. J. Kornet, V. Mahadevan, and D. M. Jerina, J. Am. Chem. Soc., 86, 5163 (1964).
- G. E. Martin, M. B. Shambhu, S. R. Shakhshir, and G. A. (188)Digenis, J. Org. Chem., 43, 4571 (1978). (189) M. B. Shambhu and G. A. Digenis, J. Chem. Soc., Chem.
- Commun., 619 (1974)
- (190) G. E. Martin, M. B. Shambhu, and G. A. Digenis, J. Pharm. Sci., 67, 110 (1978).
- (191) M. Fridkin, A. Patchornik, and E. Katchalski, J. Am. Chem. Soc., 88, 3164 (1966); 87, 4646 (1965); 90, 2953 (1968); Isr. J. Chem., 3, 698 (1965)
- (192) A. Patchornik, M. Fridkin, and E. Katchalski, German Patent 1913486 [Chem. Abstr., 72, 66932y (1970)].
  (193) G. R. Marshall and I. E. Liener, J. Org. Chem., 35, 867 (1970).
  (194) T. Wieland and C. Birr, Angew. Chem., Int. Ed. Engl., 5, 310
- 1966
- (195) E. Flauigan and G. R. Marshall, Tetrahedron Lett., 2403 (1970)
- (196) T. Wieland and C. Birr, *Chimia*, 21, 581 (1967).
  (197) R. Kalir, M. Fridkin, and A. Patchornik, *Eur. J. Biochem.*, 42, 151 (1974). (198) G. T. Pause and D. A. Laufer, Tetrahedron Lett., 4181
- (1970)
- S. V. Rogozhin, Y. A. Davidovich, S. M. Andreav, and A. A. (199)Yurtanow, Dokl. Akad. Nauk SSSR, Ser. Khim, 212, 108 (1973)
- (200) M. Fridkin, A. Patchornik, and E. Katchalski, Biochemistry, 11, 466 (1972).
- (201) S. M. Andreav, V. A. Tsiryapkin, N. A. Samoilova, N. V. Mironova, Y. A. Davidovich, and S. V. Rogozhin, Synthesis, 303 (1977)
- (202) D. A. Laufer, T. M. Chapman, D. F. Marlbotough, V. M. Vaidya, and E. R. Blout, J. Am. Chem. Soc., 90, 2696 (1968).
   (203) M. Okawara, M. Akiyama, and N. Norita, J. Polym. Sci., Part 7, 2020.
- 7, 1299 (1969).
- (204) M. Akiyama, Y. Yanagisawa, and M. Okawara, J. Polym. Sci., Part A-1, 7, 1905 (1969).
- (205) M. Akiyama, K. Shimizu, and M. Narita, Tetrahedron Lett., 1015 (1976).
- (206) G. Manecke and E. Haake, Naturwiss., 55, 343 (1968).
   (207) R. Kalir, A. Warshawsky, M. Fridkin, and A. Patchornik, Eur. J. Biochem., 59, 55 (1975).
- (208) G. Hensel, G. Bovermann, and W. Gohring, Angew. Chem., 89, 681 (1977)
- (209) D. H. Rich and S. K. Gurwara, J. Am. Chem. Soc., 97, 1575 1975
- (210) D. H. Rich and S. K. Gurwara, Tetrahedron Lett., 301 (1975).
   (211) A. V. Schally, Biochem. Biophys. Res. Commun., 43, 393
- (1971).
- (212) F. Svec, J. Hradil, J. Coupek, and J. Kalal, Angew. Makromol. Chem., 48, 135 (1975).
  (213) R. C. Schulz and H. Schuttenberg, Angew. Chem., 88, 848
- (1976). (214) E. Atherton, D. L. J. Clive, and R. C. Sheppard, J. Am. Chem. Soc., 97, 6584 (1975).
   (215) H. C. Beyermann, E. W. B. DeLeer, and W. van Vossen, J.
- Chem. Soc., Chem. Commun., 929 (1972). (216) Y. Nambu, T. Endo, and M. Okawara, J. Polym. Sci., Polym.
- Chem. Ed., 18, 2793 (1980). (217) C. L. Borders, D. L. MacDonell, and J. L. Chambers, J. Org. *Chem.*, **37**, 3549 (1972). (218) G. Cainelli, F. Manescalchi, and M. Panunzio, *Synthesis*, 472
- (1976)
- (219) J. M. Miller, K. H. So, and H. Clark, J. Chem. Soc., Chem.
- (213) J. M. Miller, K. H. 35, and H. Clark, J. Chem. Soc., Chem. Commu., 466 (1978).
   (220) M. Gordon, M. L. DePamphilis, and C. E. Grifin, J. Org. Chem., 28, 698 (1963).
   (221) Reference 24, p 92.
   (222) C. Cainelli and F. Manascalchi, Synthesis, 141 (1970).

- (221) Reference 24, p. 52.
   (222) G. Cainelli and F. Manescalchi, Synthesis, 141 (1979).
   (223) R. Yamada, T. Noguchi, Y. Urata, and K. Okabe, Mem. Def. Acad. Math. Phys. Chem. Eng. Yokosuka, 667 (1969) [Chem. Abstr., 73, 13813z (1970)]; 13 (1973) [Chem. Abstr., 81, 3281a 1974)].
- (224)Reference 24, p 95.
- (225)
- (226)(927)
- G. Gelbard and S. Colonna, Synthesis, 113 (1977).
  G. Cainelli and F. Manescalchi, Synthesis, 723 (1975).
  K. Shimo and S. Wakamatsu, J. Org. Chem., 28, 504 (1963).
  E. J. Rowe, K. L. Kaufmann, and C. Piantadosi, J. Org. Chem., 23, 1622 (1958).
  M. Colling and P. J. Laure, J. Chem. Soc. Barkin Trans. J. (228)
- M. Collins and R. J. Laws, J. Chem. Soc., Perkin Trans. 1, 2013 (1973). (229)

- (230) T. Iversen and R. Johansson, Synthesis, 823 (1979).
   (231) G. Cainelli, F. Manescalchi, and A. U. Ronchi, J. Org. Chem., 43, 1598 (1978)
- (232)
- G. Manecke, C. Bahr, and C. Reich, Angew. Chem., 71, 160 (233)(1959)
- (234)G. Cainelli, M. Contento, F. Manescalchi, and R. Regnoli, J. Chem. Soc., Perkins Trans. 1, 2516 (1980)
- (235) W. R. Roush, D. Feitler, and J. Rebek, Tetrahedron Lett., 1391 (1974).
- (236) L. Carpino, J. R. Williams, and A. Lopusinski, J. Chem. Soc., Chem. Commun., 450 (1978).
- M. L. Hallensleben and H. Wurm, Angew. Chem., Int. Ed. (237)Engl., 15, 163 (1976).
- G. Greber and S. Merchant, Int. Symp. Macromol. Chem., Budapest, 5, 131 (1969). (238)
- Bacapest, 5, 131 (1969).
  (239) L. M. Dowling and G. R. Stark, Biochemistry, 8, 4728 (1969).
  (240) P. Frankhauser, P. Fries, P. Stahala, and M. Brenner, Helv. Chim. Acta, 57, 271 (1974).
  (241) R. A. Laursen, J. Am. Chem. Soc., 88, 5344 (1966).
  (242) A. Schellenberger, H. Jeschkeit, R. Henkel, and H. Lehmann, Z. Chem., 7, 191 (1967).
  (243) Y. Chauvin, D. Commercial and T. F. Stahala, and S. Stata, S.

- (243) Y. Chauvin, D. Commereuc, and F. Dawans, Prog. Polym. Sci., 5, 95 (1977).
   (244) F. Helfferich, "Ion-Exchange", McGraw-Hill, New York,
- 1962
- (245) N. G. Polyanskii, Russ. Chem. Rev., 31, 496 (1962); 39, 244 (1970).
- (1370).
  (246) M. Sugihara, Sci. Ind., 37, 334 (1963).
  (247) E. C. Blossey, L. M. Turner, and D. C. Neckers, Tetrahedron Lett., 1823 (1973); J. Org. Chem., 40, 959 (1975).
  (248) D. C. Neckers, D. A. Kooistra, and G. W. Green, J. Am.
- V. L. Magnotta, B. C. Gates, and G. C. A. Schuit, J. Chem.
- (249)
- (250)
- V. L. Magnotta, B. C. Gates, and G. A. Schutt, J. Chem. Soc., Chem. Commun., 342 (1976).
  V. L. Magnotta and B. C. Gates, J. Polym. Sci., Polym. Chem. Ed., 15, 1341 (1977); J. Catal., 46, 266 (1977).
  G. A. Olah, A. M. White, and D. M. O'Brien, Carbonium Ions, 4, 1702 (1973).
  G. A. Olah, J. Kaspi, and J. Bubala, J. Org. Chem., 42, 4187 (1977) (251)
- (252)(1977).
- (253)
- G. A. Olah and M. Meider, Synthesis, 358 (1978). D. J. Dawson, K. M. Otteson, P. C. Wang, and R. E. Wingard, Macromolecules, 11, 320 (1978). (254)
- (255) E. C. Blossey, D. C. Neckers, A. L. Thayer, and A. P. Schaap, J. Am. Chem. Soc., 95, 5820 (1975).
   (256) C. G. Overberger and J. C. Salamone, Acc. Chem. Res., 2, 217
- (1969)
- (257)T. Kunitake and Y. Okahata, Adv. Polym. Sci., 20, 159 (1976)
- E. V. Dehmlow, CHEMTECH, 20 (1975); Angew. Chem., 86, 187 (1974); 89, 521 (1977). (258)
- (259) S. L. Regen, J. Am. Chem. Soc., 97, 5956 (1975).
  (260) M. Cinquini, S. Colonna, H. Molinari, F. Montanari, and P. Tundo, J. Chem. Soc., Chem. Commun., 394 (1976).
  (261) J. M. Brown and J. A. Jenkins, J. Chem. Soc., Chem. Com-
- (201) J. M. Dromin (1976).
   (262) H. Molinari, F. Montanari, and P. Tundo, J. Chem. Soc., Chem. Commun., 639 (1977). M. Tomoi, T. Takubo, M. Ikeda, and H. Kakiuchi, Chem.
- (263)
- Lett., 473 (1976). S. L. Regen and L. Dulak, J. Am. Chem. Soc., 99, 623 (1977). W. M. MacKenzie and D. C. Sherrington, J. Chem. Soc., Chem. Commun., 541 (1978). (264)(265)
- C. W. Davies and G. G. Thomas, J. Chem. Soc., 1607 (1952). I. Sakurada, Y. Sakaguchi, T. Ono, and T. Ueda, Makromol. (266)(267)
- Chem., 91, 243 (1966 S. Yashikawa and O. K. Kim, Bull. Chem. Soc. Jpn., 39, 1729 (268)
- (1966).(269)S. Yoshikawa and O. K. Kim, Bull. Chem. Soc. Jpn., 39, 1515 (1966)
- (270) R. H. Hasek, P. G. Gott, R. H. Meen, and J. C. Martin, J. Org. Chem., 28, 2496 (1963).
   (271) R. F. Collins, Chem. Ind., 736 (1957).
- (272)
- S. Yamashita, Biochim. Biophys. Acta, 229, 301 (1971).
   J. M. Bora, A. K. Saund, I. K. Sharma, and N. K. Mathur, Indian J. Chem., 14B, 722 (1976). (273)
- (274)W. Kern, H. Herold, and B. Scherlag, Makromol. Chem., 17, 231 (1956).
- (275) L. Lawrence and W. J. Moore, J. Am. Chem. Soc., 73, 3973 (1951)
- (276) G. E. Underwood and F. E. Deathrage, Science (Washington, D.C.), 115, 95 (1952).
   (277) J. C. Paulson and F. E. Deathrage, J. Biol. Chem., 205, 909
- J. C. Paulson, F. E. Deathrage, and E. F. Almy, J. Am. Chem. (278)Soc., 75, 2039 (1953). J. R. Whitaker and F. E. Deathrage, J. Am. Chem. Soc., 77,
- (279)3360, 5298 (1955). (280) R. Kunin, "Ion-Exchange Resins", Wiley, New York, 1958.

 W. Kern and B. Scherhag, Makromol. Chem., 20, 209 (1958).
 J. E. Hodge and C. E. Rist, J. Am. Chem. Soc., 74, 1498 (282)(1952)

Akelah and Sherrington

- (283) T. J. Painter and W. T. J. Morgan, Chem. Ind. (London), 437 (1961)
- (284) H. Denel, Mitt. Geb. Lebensmitt. Hyg., 46, 12 (1955)
- (285) J. S. Steinhardt and C. H. Fugitt, J. Res. Natl. Bur. Standards. 29
- (286) N. Hartler and K. Hyllengren, J. Polym. Sci., 55, 779 (1961). (287) P. J. Mill and R. Crimmin, Biochim. Biophys. Acta, 23, 432
- (1957)
- (288)J. C. Jain, I. K. Sharma, M. K. Sahni, K. C. Gupta, and N. K. Mathur, Indian J. Chem., 15B, 766 (1977). (289) G. F. Vesley and V. I. Stenberg, J. Org. Chem., 36, 2548
- (1971)
- (290) D. F. Mowery, J. Org. Chem., 26, 3484 (1961).

- (291) S. Sussman, Ind. Eng. Chem., 38, 1228 (1961).
   (292) J. G. Moffatt, J. Am. Chem., 38, 1228 (1946).
   (293) V. I. Stenberg, G. F. Vesley, and D. Kubik, J. Org. Chem., 36, 2550 (1971).
- (294)V. I. Stenberg, G. F. Vesley, and D. Kubik, J. Org. Chem., 39, 2815 (1974).
- (295) S. A. Patwardham and S. Dev, Synthesis, 348 (1974).
   (296) E. V. O. John and S. S. Israelstam, J. Org. Chem., 26, 240 (1961)
- (297)W. M. Harms and E. J. Eisenbraun, Org. Prep. Proc. Int., 3, 239 (1971).
- (298) L. T. Scott and J. O. Naples, Synthesis, 209 (1973). (299) H. Moriyama, Y. Sugihara, and K. Nakanishi, Tetrahedron Lett., 2851 (1968)
- (300) P. Mastagli, A. Floc'h, and G. Durr, C.R. Hebd. Seances Acad. Sci., 235, 1402 (1952).
  (301) W. H. Wasman, J. Chem. Soc., 3051 (1952).
  (302) V. J. Frilette, E. B. Mower, and M. K. Rubin, J. Catal., 3, 25
- (1964)
- (303) H. W. Heath and B. C. Gates, Am. Inst. Chem. Eng. J., 18, 321 (1972).
- (304) B. C. Gates and L. N. Johanson, J. Catal., 14, 69 (1969).
  (305) B. C. Gates and G. M. Schwab, J. Catal., 15, 430 (1969).
  (306) B. C. Gates, J. S. Wisnouskas, and H. W. Heath, J. Catal.,
- 24, 320 (1972)
- (307)H. Pines and J. Manassen, Adv. Catal., 16, 49 (1966)
- P. Price and S. S. Israelstam, J. Org. Chem., 29, 2800 (1964). (308)
- (309) B. Loev and J. T. Massengale, J. Org. Chem., 22, 988 (1957).

- (310) R. B. Wesley and B. C. Gates, J. Catal., 34, 288 (1974).
   (311) M. S. Newman, J. Am. Chem. Soc., 75, 4740 (1953).
   (312) C. L. Arcus, T. L. Howard, and D. S. South, Chem. Ind. (London), 1756 (1964).

- (London), 1756 (1964).
  (313) G. Bodamer and R. Kunin, Ind. Eng. Chem., 43, 1082 (1951).
  (314) M. J. Astele and J. A. Oscar, J. Org. Chem., 26, 1713 (1961).
  (315) M. Walter, H. Besendorf, and O. Schmider, Helv. Chim. Acta, 44, 1546 (1961).
  (316) W. Neier and J. Woellner, CHEMTECH, 95 (1973).
  (317) J. D. Billimoria and N. F. Maclagan, J. Chem. Soc., 3257
- (1954).
- (318)S. Affrossman and J. P. Murray, J. Chem. Soc. B, 1015 (1966)
- (319) V. C. Haskell and L. P. Hammett, J. Am. Chem. Soc., 71, 1284 (1949)
- (320) P. Riesz and L. P. Hammett, J. Am. Chem. Soc., 76, 992 (1954)
- (321) C. H. Chen and L. P. Hammett, J. Am. Chem. Soc., 80, 1329 (1958)
- K. Arai and N. Ise, Makromol. Chem., 176, 37 (1975) (322)
- (323) K. Arai, N. Hagiwara, and N. Ise, Nippon Kagaku Kaishi, 201 (1975) (324) H. Morawetz and J. A. Shafer, J. Phys. Chem., 67, 1293
- (1963).
- (325) F. Svec, M. Bares, J. Zajic, and J. Kalal, Chem. Ind. (London), 159 (1977).
- (326) E. M. Kosower and P. W. Patton, J. Org. Chem., 26, 1318 (1961)
- (327) A. J. Kirby and A. G. Varvoglis, J. Am. Chem. Soc., 39, 415 (1967)
- (328) J. M. Bobbitt and R. E. Doolittle, J. Org. Chem., 29, 2298 (1964)(329)

(337) N. B. Loretta, J. Org. Chem., 22, 346 (1957).

**4874 (1961)** 

- A. Galat, J. Am. Chem. Soc., 70, 3945 (1948). C. L. Arcus, C. G. Gonzales, and D. F. C. Linnecar, J. Chem. Soc., Chem. Commun., 1377 (1969). R. F. Prini and F. Baurantana (1969). (330)
- (331) R. F. Prini and E. Baumgartner, J. Am. Chem. Soc., 96, 4489 (1974)
- (332) R. F. Prini and D. Turyn, J. Chem. Soc., Faraday Trans. 2, 69, 1326 (1973). (333) R. L. Hinman and J. Lang, J. Org. Chem., 29, 1449 (1964).

(334) M. J. Astle and F. P. Abbott, J. Org. Chem., 21, 1228 (1956).
 (335) M. J. Astle and W. C. Gergel, J. Org. Chem., 21, 493 (1956).
 (336) R. W. Hein, M. J. Astle, and J. R. Shelton, J. Org. Chem., 26,

- (338) G. H. McCain, J. Org. Chem., 23, 632 (1958).
   (339) M. J. Astle and J. A. Zaslowsky, Ind. Eng. Chem., 44, 2871 1952
- (340) J. M. Bobbitt and D. A. Scola, J. Org. Chem., 25, 560 (1960).
   (341) B. G. Chatterjee, V. V. Rao, and B. N. G. Mazumder, J. Org. Chem., 30, 4101 (1965).
- (342)F. LeGoffic, S. Sicsic, and C. Vincent, Tetrahedron Lett.,

- (343) J. T. Kelly, U.S. Patent 2843642 (1958).
  (343) J. T. Kelly, U.S. Patent 2843642 (1958).
  (344) T. J. Huang and S. Yurchak, U.S. Patent 3855343 (1974).
  (345) V. L. Magnotta, B. C. Gates, and G. C. A. Schuit, J. Chem.
- (346)
- J. Magnova, D. C. Gates, and G. C. A. Schult, J. Chem.
   Soc., Chem. Commun., 342 (1976).
   J. Kaspi and G. A. Olah, J. Org. Chem., 43, 3142 (1978).
   J. Kaspi, D. D. Montgomery, and G. A. Olah, J. Org. Chem.,
   43, 3147 (1978). (347) G. A. Olah and D. Meidar, Synthesis, 671 (1978) (348)

- (349) G. A. Olah, T. Keumi, and D. Meidar, Synthesis, 929 (1978).
  (350) G. A. Olah and S. C. Narang, Synthesis, 690 (1978).
  (351) G. A. Olah, R. Malhotra, S. C. Narang, and J. A. Olah, Synthesis, 672 (1978)
- (352) E. C. Blossey and D. C. Neckers, Tetrahedron Lett., 323 (1974)
- (353) A. P. Schaap, A. L. Thayer, E. C. Blossey, and D. C. Neckers,
- J. Am. Chem. Soc., 97, 3241 (1974). (354) R. E. Moser and H. G. Cassidy, J. Polym. Sci., Part B, 2, 545 1964)
- (355) D. Bailey, D. Tirrell, C. Pinazzi, and O. Vogl, Macromole-cules, 11, 312 (1978).
  (356) I. Rosenthal and A. J. Archer, Isr. J. Chem., 12, 897 (1974).
  (357) D. J. Dawson, K. M. Otteson, P. C. Wang, and R. E. Wingard,
- Macromolecules, 11, 320 (1978). (358) C. G. Overberger, M. Morimoto, and I. Cho, Macromolecules,
- 2, 553 (1969); J. Am. Chem. Soc., 93, 3228 (1971). C. G. Overberger and M. Morimoto, J. Am. Chem. Soc., 93, (359) 3222 (1971)
- (360) C. G. Overberger, R. C. Glowaky, and P. H. Vandewyer, J. Am. Chem. Soc., 95, 6008 (1973).
- C. G. Overberger and K. N. Sannes, Angew. Chem., Int. Ed. (361) Engl., 13, 99 (1974).
- C. G. Overberger, T. S. Pierre, N. Vorchheimer, J. Lee, and S. Yaroslavsky, J. Am. Chem. Soc., 87, 296 (1965). T. C. Bruice and J. L. Herz, J. Am. Chem. Soc., 86, 4109 (362)
- (363) (1964)
- C. G. Overberger and C. M. Shen, Bioorg. Chem., 1, 1 (1971). C. G. Overberger and Y. Okamoto, Macromolecules, 5, 363 (364)(365)
- (1972)
- (366) C. G. Overberger, R. Corett, J. C. Salamone, and S. Yaros-
- lavsky, Macromolecules, 1, 331 (1968). C. G. Overberger, T. S. Pierre, C. Yaroslavsky, and S. Yar-oslavsky, J. Am. Chem. Soc., 88, 1184 (1966). (367)
- (368) R. L. Letsinger and I. S. Klaus, J. Am. Chem. Soc., 86, 3884 1964)
- (369) C. G. Overberger, R. Sitaramaiah, T. S. Pierre, and S. Yar-oslavsky, J. Am. Chem. Soc., 87, 3270 (1965).
   (370) C. G. Overberger and H. Maki, Macromolecules, 3, 214, 220
- (1970).
- T. Shimidzu, A. Furata, and Y. Nakomoto, Macromolecules, (371)
- (372) T. Kunitake and Y. Okahata, Bioorg. Chem., 4, 136 (1975).
   (373) C. G. Overberger, T. J. Pacansky, T. S. Pierre, and S. Yaroslavsky, J. Polym. Sci., Symp., 46, 209 (1974). (374)
- C. G. Overberger, J. C. Salamone, and S. Yaroslavsky, J. Am. Chem. Soc., 89, 6231 (1967).
- (375) T. Kunitake and Y. Okahata, J. Am. Chem. Soc., 98, 7793 (1976). (376) T. Kunitake, Y. Okahata, and R. Ando, Macromolecules, 7,
- 140 (1974) (377)
- T. Kunitake and Y. Okahata, Chem. Lett., 1057 (1974); Macromolecules, 9, 15 (1976). (378) C. G. Overberger and J. Pacansky, J. Polym. Sci., Symp., 45,
- 39 (1974).
- (379) G. Shimidzu, A. Furuta, T. Watanabe, and S. Kato, Macromol. Chem., 175, 119 (1974).
  (380) I. Photaki and M. S. Dailsiotou, J. Chem. Soc., Perkin Trans.
- , 589 (1976). (381) C. G. Overberger and K. W. Dixon, J. Polym. Sci., Polym.
- Chem. Ed., 15, 1863 (1977).
- Y. Okamoto, Nippon Kagaku Kaishi, 870 (1978). T. Kunitake and S. Shinkai, J. Am. Chem. Soc., 93, 4247,
- (383) 1256 (1971)
- (384) T. Kunitake and S. Shinkai, Makromol. Chem., 151, 127 1972).
- (192).
  Y. Imanishi, Y. Amimoto, T. Sugiwara, and T. Higashimura, Makromol. Chem., 177, 1401 (1976).
  I. M. Klotz, G. P. Roger, and I. S. Scarpa, Proc. Natl. Acad. Sci. U.S.A., 68, 263 (1971).
  T. W. Johnson and I. M. Klotz, Macromolecules, 6, 788 (385)
- (386) (387)
- . 1**97**3)
- H. C. Kiefer, W. I. Congdon, I. S. Scarpa, and I. M. Klotz, Proc. Natl. Acad. Sci. U.S.A., 69, 2155 (1972). (388)

- (389) T. Saegusa, H. Ikeda, and H. Fujii, Macromolecules, 5, 108 (1972).
- (390) W. J. Spetnagel and I. M. Klotz, J. Polym. Sci., Polym. Chem. Ed., 15, 621 (1977).
- (391) I. M. Klotz, G. P. Royer, and A. R. Sloniewsky, Biochemistry, 8, 4752 (1969). (392) T. W. Johnson and I. M. Klotz, Macromolecules, 6, 788
- (1973).
- (393) J. Suh and I. M. Klotz, Bioorg. Chem., 1, 165 (1977).
  (394) V. S. Pshezhetskii, A. P. Lukjanova, and V. A. Kabanov, Bioorg. Khim. (USSR), 1, 1458 (1975).
  (395) V. S. Pshezhetskii, A. P. Lukjanova, and V. A. Kabanov, Eur. Polym. J., 13, 423 (1977).
  (396) W. E. Mayars and G. P. Bayar, L. Am. Chem. Soc. 20, 0111
- (396) W. E. Meyers and G. P. Royer, J. Am. Chem. Soc., 99, 6141 (1977)
- (397) C. G. Overberger, T. S. Pierre, N. Vorchheimer, and S. Yaroslavsky, J. Am. Chem. Soc., 85, 3513 (1963). C. G. Overberger and C. J. Podsiodly, Bioorg. Chem., 3, 16
- (398)(1974).
- (399) C. G. Overberger, T. S. Pierre, and S. Yaroslavsky, J. Am. Chem. Soc., 87, 4310 (1965).
   (400) C. G. Overberger and J. C. Posdiodly, Bioorg. Chem., 3, 35
- (1974).
- (401) T. Kunitake, F. Shimada, and C. Aso, J. Am. Chem. Soc., 91, 2716 (1969).
- (402)
- S. Shinkai and T. Kunitake, Polym. J., 4, 253 (1973).
   Y. Okahata and T. Kunitake, J. Polym. Sci., Polym. Chem. (403)Ed., 15, 2571 (1977)
- (404) R. L. Letsinger and T. J. Savereide, J. Am. Chem. Soc., 84, 114, 3122 (1962).

- (405) Y. E. Kirsh, V. A. Kabanov, and V. A. Kargin, Polym. Sci. (USSR), 10, 407 (1968).
  (406) T. Okubo and N. Ise, J. Org. Chem., 38, 3120 (1973).
  (407) V. A. Kabanov, Y. E. Kirsh, I. M. Papisov, and V. P. Tor-chilin, Vysokomol. Soed. Ser, B14, 405 (1972) [Chem. Abstr., TO 100064 (1970)] '8, 102304j (1973)]
- (408) T. Kunitake, S. Shinkai, and S. Hirotsu, J. Polym. Sci., Polym. Lett. Ed., 13, 377 (1975).
- (409) Š. G. Starodubtzev, Y. E. Kirsh, and V. A. Kabanov, Eur. Polym. J., 10, 739 (1974)
- (410) Y. E. Kirsh and V. A. Kabanov, Dokl. Akad. Nauk USSR, 195, 109 (1970) [Chem. Abstr., 74, 54331e (1971)].
  (411) Y. E. Kirsh, A. A. Rahnanskaya, G. M. Lukovkin, and V. A.
- Kabanov, Eur. Polym. J., 10, 393 (1974).
   (412) Y. E. Kirsh, T. A. Lebedeva, and V. A. Kabanov, J. Polym. Sci., Polym. Lett. Ed., 13, 207 (1975).
- (413) T. Kunitake, S. Shinkai, and S. Hirotsu, J. Org. Chem., 42, 306 (1977).
- (414) T. Kunitake, S. Shinkai, and S. Hirotsu, Biopolymers, 15, 1143 (1976).
- (415) T. Kunitake, Y. Okahata, and R. Ando, Bull. Chem. Soc. Jpn., 47, 1509 (1974). (416) J. Suh, I. S. Scarpa, and I. M. Klotz, J. Am. Chem. Soc., 98,
- 7060 (1976)
- (417) J. Suh and I. M. Klotz, J. Polym. Sci., Polym. Chem. Ed., 16, 1943 (1978).
- (418) Y. Okahata and T. Kunitake, J. Polym. Sci., Polym. Chem. Ed., 16, 1865 (1978). (419) R. F. Prini and D. Turyn, J. Chem. Soc., Chem. Commun.,
- 1013 (1972)
- (420) T. Rudolfo, J. A. Hamilton, and E. H. Cordes, J. Org. Chem., 39, 2281 (1974). (421) D. Turyn, E. Baumgartner, and R. F. Prini, *Biophys. Chem.*,
- 269 (1974). (422) I. M. Klotz and V. H. Stryker, J. Am. Chem. Soc., 90, 2717
- (1968)
- (423) G. P. Royer and I. M. Klotz, J. Am. Chem. Soc., 91, 5885 (1969)
- (424)Y. Birk and I. M. Klotz, Bioorg. Chem., 1, 275 (1971).
- (425) V. S. Pshezhetskii, G. A. Murtazaeva, and V. A. Kabanov, Eur. Polym. J., 10, 571 (1974).
- (426) R. H. Weatherhead, K. A. Stacey, and A. Williams, J. Chem. Soc., Perkin Trans. 2, 800 (1978). (427)
- V. S. Pshezhetskii, A. P. Lukyanova, and V. A. Kabanov, J. Mol. Catal., 2, 49 (1977)
- (428)Y. Kurusu, K. Nakashima, and M. Okawara, Kogyo Kagaku Zasshi, 71, 934 (1968)
- S. Shinkai, K. Tamaki, and T. Kunitake, Bull. Chem. Soc. Jpn., 48, 1918 (1975). (429)
- (430) S. Shinkai, T. Tamaki, and T. Kunitake, J. Polym. Sci., Polym. Lett. Ed., 14, 1 (1976).
  (431) S. Shinkai, T. Tamaki, and T. Kunitake, Makromol. Chem., 178, 133 (1977).
- (432) S. Shinkai and T. Kunitake, Biopolymers, 15, 1129 (1976).
   (433) S. Shinkai and T. Kunitake, Makromol. Chem., 178, 145 (197')
- S. C. Shah and J. Smid, J. Am. Chem. Soc., 100, 1426 (1978). (434)
- J. Spetnagel and I. M. Klotz, Biopolymers, 17, 1657 W. (435)(1978).

- (436) S. Shinkai, S. Yamada, and T. Kunitake, J. Polym. Sci., Po-lym. Lett. Ed., 16, 137 (1978).
- (437)S. Shinkai, S. Yamada, and T. Kunitake, Macromolecules, 11, 65 (1978)
- (438)
- S. Shinkai and T. Kunitake, Polym. J., 9, 423 (1977). C. G. Overberger and P. S. Yuen, J. Am. Chem. Soc., 92, 1667 (439)(1970)
- (440) T. Uola, S. Harada, and N. Ise, *Polym. J.*, 3, 476 (1972).
  (441) K. Horiki, *Synth. Commun.*, 8, 515 (1978).
  (442) G. Cardillo, M. Orena, and S. Sandri, *Tetrahedron Lett.*, 0007 (1977).
- 3985 (1976)
- G. Cainelli, G. Cardillo, M. Orena, and S. Sandri, J. Am. (443)Chem. Soc., 98, 6737 (1976) (444) H. B. Copelin, N. Falls, and G. B. Crane, U.S. Patent 2779781
- (1957
- (445) S. L. Regen and A. Nigam, J. Am. Chem. Soc., 100, 7773 (1978).
- (446) S. L. Regen, J. C. K. Heh, and J. McLick, J. Org. Chem., 44, 1961 (1979). (447) H. Molinari, F. Montanari, S. Quici, and P. Tundo, J. Am.
- Chem. Soc., 101, 3920 (1979).
- (448) H. K. Zadeh, H. J. M. Dou, and J. Metzger, J. Org. Chem., 43, 156 (1978).
- (449) S. L. Regen, J. Am. Chem. Soc., 98, 6270 (1976).
   (450) H. Noguchi, M. Sugawara, and Y. Uchida, Polymer, 21, 861 (1980).
- (451) H. Serita, N. Ohtani, T. Matsunage, and C. Kimura, Kobunshi Ronbunsu, 36, 527 (1979). (452) S. Colonna, R. Fornasier, and U. Pfeiffer, J. Chem. Soc.,
- Perkin Trans. 1, 8 (1978). (453) E. Santaniello, F. Ponti, and A. Manzocchi, Synthesis, 891
- (1978)
- (454) M. S. Chiles, D. D. Jackson, and P. C. Reeves, J. Org. Chem., 45, 2915 (1980). (455) M. S. Chiles and P. C. Reeves, Tetrahedron Lett., 3367
- (1979)
- (456) S. L. Regen, B. Czech, and A. Sigh, J. Am. Chem. Soc., 102, 6638 (1980)
- (457) F. Rolla, W. Roth, and L. Horner, Naturwiss., 64, 377 (1977).
  (458) E. J. Corey and J. W. Suggs, Tetrahedron Lett., 2647 (1975).
  (459) E. Chiellini, R. Solaro, and S. D'Antone, Makromol. Chem., 177, 2107 (1977).
- 178, 3165 (1977) (460) S. L. Regen and J. J. Besse, J. Am. Chem. Soc., 101, 4059
- (1979). (461) P. Tundo and P. Venturello, J. Am. Chem. Soc., 101, 6606
- (1979).

- (462) P. Tundo, Synthesis, 315 (1978).
  (463) P. Tundo, J. Chem. Soc., Chem. Commun., 641 (1977).
  (464) M. Tomoi, O. Abe, M. Ikeda, K. Kihara, and H. Kakiuchi, Tetrahedron Lett., 3031 (1978).
- (465) Merck Company, Kontakte (1), 30 (1977). (466) M. Tomoi, K. Kihara, and H. Kakiuchi, Tetrahedron Lett., 3485 (1979).
- S. L. Regen, J. J. Besse, and J. McLick, J. Am. Chem. Soc., (467) 101, 116 (1979).
- (468)
- S. L. Regen, J. Am. Chem. Soc., 99, 3838 (1977). W. M. MacKenzie and D. C. Sherrington, Polymer, 21, 791 (469) (1980).
- (470) K. Hiratani, P. Renter, and G. Manecke, Isr. J. Chem., 18, 208 (1979).
- (471) K. Hiratani, P. Reuter, and G. Manecke, J. Mol. Catal., 5, 241 (1979).
- (472) S. L. Regen, A. Nigam, and J. J. Besse, Tetrahedron Lett., 2757 (1978)
- (473) M. Tomoi, M. Ikeda, and H. Kakiuchi, Tetrahedron Lett., 57 (1978).
- (474) H. Kobler, K. H. Schuster, and G. Simchen, Liebigs Ann Chem., 1946 (1978)
- (475) H. Lehmkuhl, F. Rabet, and K. Hauschild, Synthesis, 184 (1977)(476)
- S. Yanagida, Y. Noji, and M. Okahara, Tetrahedron Lett., 2893 (1977).
- (477) D. G. Lee and V. S. Chang, J. Org. Chem., 43, 1532 (1977).
   (478) T. Kitazume and N. Ishikawa, Chem. Lett., 283 (1978).
- (479) A. Hirao, S. Nakahoma, M. Takahashi, and N. Yamazaki, Makromol. Chem., 179, 915 (1978).
  (480) R. Fornasier and F. Montanari, Tetrahedron Lett., 1381
- (1976)
- (481) M. Ohtomi, S. Yoneyama, K. Arai, and S. Akabori, Nippon Kagaku Kaishi, 1878 (1976).
  (482) J. Kelly, W. M. MacKenzie, and D. C. Sherrington, Polymer, 20, 1048 (1979).
- (483) T. Braun and A. B. Farag, Anal. Chim. Acta, 72, 133 (1974).
  (484) L. R. Melby, J. Am. Chem. Soc., 97, 4044 (1975).
  (485) L. D. Pennington and M. R. Williams, Ind. Eng. Chem., 51,
- 759 (1959).
- (486)
- A. Warshawsky, Talanta, 21, 624 (1974). F. Vernon, Hydrometallurgy, 4, 147 (1979).
- (488) R. R. Grinstead, J. Metals, 13 (1979).

- (489) R. M. Seker, Chem. Rev., 63, 297 (1963).
  (490) P. H. Boyle, Q. Rev. Chem. Soc., 25, 323 (1971).
  (491) G. Blaschke and F. Donow, Chem. Ber., 108, 1188, 2792
- (1975).

Akelah and Sherrington

- (492) G. Blaschke, Chem. Ber., 107, 237 (1974).
   (493) S. V. Rogozhin and V. A. Davankov, J. Chem. Soc., Chem.
- (495) S. V. Rogozini, and V. A. Davankov, J. Chem. 2001, Commun., 490 (1971).
  (494) V. A. Davankov, S. V. Rogozhin, A. V. Semechkin, and T. P. Sachkova, J. Chromatogr., 82, 359 (1973).
  (495) R. V. Snyder, R. J. Angelici, and R. B. Meck, J. Am. Chem.
- (496) G. Dotsevi, Y. Sogah, and D. J. Cram, J. Am. Chem. Soc., 97, 1259 (1975); 98, 3038 (1976).
   (497) C. Widfer A. Stehen and W. Zeheneki, Tetrahadaan Lett.
- (497) G. Wulff, A. Sarhan, and K. Zabrocki, Tetrahedron Lett., 4329 (1973)
- (498) G. Wulff, A. Sarhan, Angew. Chem., 84, 364 (1972).
   (499) G. Wulff, A. Sarhan, J. Gimpel, and E. Lohmer, Chem. Ber., 107, 3364 (1974).
- 107, 3364 (1974).
  (500) G. Wulff, R. Grobe-Einsler, W. Vesper, and A. Sarhan, Makromol. Chem., 178, 2817 (1977).
  (501) G. Wulff, W. Vesper, R. Grobe-Einsler, and A. Sarhan, Makromol. Chem., 178, 2799 (1977).
  (502) G. Wulff and A. Akelah, Makromol. Chem., 179, 2647 (1978).
  (503) G. Wulff and A. Akelah, German Patent 2835226 (1980) [Chem. Abstr., 93, 46175j (1980)].
  (504) G. Wulff and A. Akelah, unpublished results.
  (505) J. R. Parrish, Chem. Ind. (London), 137 (1956).
  (506) F. Vernon and K. M. Nyo, Separation Sci. Tech., 13, 263 (1978)

- (1978)
- (507) G. Manecke and R. Schlegel, Makromol. Chem., 177, 3191 (1976)
- (508) G. Manecke and R. Schlegel, Makromol. Chem., 179, 19 (1978).
- (509) S. Kopolow, T. E. H. Esch, and J. Smid, Macromolecules, 4, 359 (1971); 6, 133 (1973).
   (510) J. Smid, S. Shah, L. Wong, and J. Hurley, J. Am. Chem., 97,
- 5932 (1975).
- (511) L. Wong and J. Smid, J. Am. Chem. Soc., 99, 5637 (1977).
- (512) A. Warshawsky, *Talanta*, 21, 962 (1974).
   (513) G. A. Nussen, M. M. Jones, J. D. Jeringan, R. D. Harbison,
- (a) J. S. Macdonald, J. Inorg. Nucl. Chem., 39, 1889 (1977).
  (514) M. M. Jones, H. D. Coble, T. H. Pratt, and R. D. Harbison, J. Inorg. Nucl. Chem., 37, 2409 (1979).
  (515) R. Herring, "Chelatbildende Ionenaustauscher", Akademic Vielage Beilin 1057
- (516) E. M. Moyers and J. S. Fritz, Anal. Chem., 48, 1117 (1976).
  (517) G. M. Orf and J. S. Fritz, Anal. Chem., 50, 1328 (1978).
  (518) K. C. Jones and R. R. Grinstead, Chem. Ind. (London), 637

- (1977)
- (519) V. A. Davankov and Y. A. Zolotrarev, J. Chromatogr., 155, 295 (1978).
- (520) M. A. Petit and J. Jozefonvicz, J. Appl. Polym. Sci., 21, 2585 (1977)
- (521) T. S. Stevens and J. A. Lott, J. Chromatogr., 34, 480 (1968).
  (522) G. Blaschke and A. D. Schwanghart, Chem. Ber., 109, 1967
- (1976).
- (523) H. Franck, G. J. Nicholson, and E. Bayer, J. Chromatogr. Sci., 15, 174 (1977).
- (524) H. Franck, G. J. Nicholson, and E. Bayer, Angew. Chem., Int. Ed. Engl., 17, 363 (1978).
- (525) H. Franck, G. J. Nicholson, and E. Bayer, J. Chromatogr., 146, 197 (1978)
- (526) J. A. Lott and W. Rieman, J. Org. Chem., 31, 561 (1966).
   (527) O. Rammas and O. Samuelson, Acta Chem. Scand., B28, 955 (1974)
- (528) G. F. Mills and B. N. Dickinson, Ind. Eng. Chem., 41, 2842 (1949).
- (529) G. Manecke, Angew. Chem., 67, 613 (1955).
- (530) A. Yamamoto, Nippon Kagaku Kaishi, 29, 838 (1955).
   (531) J. de O. Meditsch, Rev. Quim. Ind., 26, 142 (1957).
- (532) M. Rubinstein, B. Amit, and A. Patchornik, Tetrahedron Lett., 1445 (1975).
- (533) M. Rubinstein, Y. Shechter, and A. Patchornik, Biochem. Biophys. Res. Commun., 70, 1257 (1976).
  (534) K. Krohn, K. Eberlein, and G. Gercken, J. Chromatogr., 153,
- 550 (1978).
- (535) E. Seymour and J. M. J. Frechet, Tetrahedron Lett., 3669 (1976).

(1976).
(539) G. Barany and R. B. Merrifield in "The Peptides", E. Gross and J. Meienhofer, Eds., Academic Press, New York, 1979.
(540) J. D. Young and J. M. Stewart, "Solid Phase Synthesis", Pierce Chemical Co., Rockford, IL, 1980.
(541) M. Kawana and S. Emoto, Tetrahedron Lett., 4855 (1972); Bull. Chem. Soc. Jpn., 47, 160 (1974).
(542) P. M. Worster, C. R. McArthur, and C. C. Leznoff, Angew. Chem. Int. Ed. Engl., 18, 221 (1979).

Chem., Int. Ed. Engl., 18, 221 (1979).

(536)Reference 24, p 407 (537) Reference 24, p 435.
 (538) B. W. Erickson and R. B. Merrifield, *Proteins 3rd Ed.*, 2, 255

1976).

- (543) M. Bodenszky and K. W. Funk, J. Org. Chem., 38, 1296
- (1973). I. T. Harrison and S. Harrison, J. Am. Chem. Soc., 89, 5723 (544) Ì.
- J. I. Crowley and H. Rapoport, J. Am. Chem. Soc., 92, 6363 (545) (1970).
- (546) J. I. Crowley, T. B. Harvey, and H. Rapoport, J. Macromol. Sci. Chem., 7, 1117 (1973).
- (547) A. Patchornik and M. A. Kraus, J. Am. Chem. Soc., 92, 7587 (1970).
- (548)J. Rebeck and F. Gavina, J. Am. Chem. Soc., 96, 7112 (1974); 97, 3453 (1975).
- (549) P. Jayalekshmy and S. Mazur, J. Am. Chem. Soc., 98, 6710 (1976).

- (1976).
  (550) W. Dumont, J. C. Poulin, T. P. Dang, and H. B. Kagan, J. Am. Chem. Soc., 95, 8295 (1973).
  (551) T. P. Dang and H. B. Kagan, French Patent 2199756.
  (552) J. C. Poulin, W. Dumont, and T. D. Dang, C.R. Hebd. Seances Acad. Sci., Ser. C, 277, 41 (1973).
  (553) N. Takaishi, H. Imai, C. A. Bertelo, and J. K. Stille, J. Am. Chem. Soc., 98, 5400 (1976).
  (554) N. Takaishi, H. Imai, C. A. Bertelo, and J. K. Stille, J. Am. Chem. Soc., 100, 264 (1978).
  (555) T. Masuda and J. K. Stille, J. Am. Chem. Soc., 100, 268
- (555) T. Masuda and J. K. Stille, J. Am. Chem. Soc., 100, 268 (1978).
- (556) E. Bayer and V. Schuring, CHEMTECH, 212 (1976). (557) T. Yamashita, H. Yasueda, and N. Nakamura, Chem. Lett.,
- (557) 1. Yamashita, H. Yasueda, and N. Nakamura, *Chem. Lett.*, 585 (1974).
  (558) T. Yamashita, H. Yasueda, N. Nakatani, and N. Nakamura, *Bull. Chem. Soc. Jpn.*, 51, 1183 (1978).
  (559) T. Yamashita, H. Yaseuda, N. Nakamura, K. Hermann, and H. Wynberg, *Bull. Chem. Soc. Jpn.*, 51, 1247 (1978).
  (560) K. Hermann and H. Wynberg, *Helv. Chim. Acta*, 60, 2208 (1977).
- (1977).
- (561) S. Tsuboyama, Bull. Chem. Soc. Jpn., 35, 1004 (1962).

- (562) S. Ohashi and S. Inoue, Makromol. Chem., 160, 69 (1972). (563) H. Hirai and T. Furuta, J. Polym. Sci., Polym. Lett. Ed., 9,
- Y. Kawakami, T. Sugiura, Y. Mizutani, and Y. Yamashita, J. Polym. Sci., Polym. Chem. Ed., 18, 3009 (1980).
  T. Yamashita, H. Mitsui, H. Watanabe, and N. Nakamura, (564)
- (565) Makromol. Chem., 181, 2563 (1980). T. Nozawa, Y. Akimoto, and M. Hatano, Makromol. Chem.,
- (566)
- (500) 1. Nozawa, 1. Akinoto, and M. Hatano, *Makromot. Chem.*, 158, 21 (1972).
   (567) M. Hatano, T. Nozawa, S. Ikeda, and T. Yamamoto, *Makromol. Chem.*, 141, 1, 11 (1971).
   (568) T. Nozawa and M. Hatano, *Makromol. Chem.*, 141, 21, 31
- (1971)
- (569) R. L. Beamer, R. H. Belding, and C. S. Fickling, J. Pharm. Sci., 58, 1142 (1969). (570) K. J. Shea and E. A. Thompson, J. Org. Chem., 43, 4253
- (1978)
- (571) H. Paracejus and M. Bursian, DDR Patent 92031 (1972) (572) A. Patchornik and M. A. Kraus, J. Am. Chem. Soc., 92, 7587 1**9**70)
- (573) M. Cossu and E. Uccioni, C.R. Hebd. Seances Acad. Sci., Ser.
- C, 277, 1145 (1973). (574) C. C. Leznoff and P. I. Svirskaya, Angew. Chem., Int. Ed.
- Engl., 17, 947 (1978). J. Rebeck, D. Brown, and S. Zimmermann, J. Am. Chem. (575)Soc., 97, 454 (1975).
- (576)(577)
- J. Rebeck and F. Gavina, J. Am. Chem. Soc., 97, 1591 (1975). J. Rebeck, F. Gavina, and C. Navarro, J. Am. Chem. Soc., 100, 8113 (1978).
- (578)
- (579)
- J. Rebeck and F. Gavina, J. Am. Chem. Soc., 97, 3221 (1975). J. Rebeck, Tetrahedron Lett., 3021 (1977). S. Wolf, C. S. Foote, and J. Rebeck, J. Am. Chem. Soc., 100, (580) 7770 (1978).
- (581) A. Warshawsky, R. Kalir, and A. Patchornik, J. Am. Chem. Soc., 100, 4544 (1978).