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/. Introduction 

This review is concerned with the analysis of the 
dependence on temperature and pressure of both 
equilibrium and rate constants in solution. Although 
the subject matter is not new,1"5 it seems timely to draw 
together various strands in these discussions. A glance 
at the literature reveals that opinions are strongly held, 
numerous reasons being advanced why a particular 
method of data analysis merits general acceptance. For 
our part, the seeds of this review were planted during 
the summer of 1979 when two of the authors (M.J.B. 

' Department of Chemistry, University of Calgary, Calgary, Alberta, 
Canada. 
* Department of Chemistry, Memorial University, St. John's, New­
foundland, Canada. 

and J.M.W.S.) were on study leave at the University 
of Calgary. During that summer, considerable argu­
ment revolved around methods of analysis of the kinetic 
data obtained over the years by the research group 
working under the direction of one of us (R.E.R.).6'7 In 
particular we were concerned with the analysis of the 
dependence of rate constants on temperature. The 
background to the debate puts the problem in per­
spective. 

In the late 1940s, C. K. Ingold commented to R.E.R. 
that a detailed understanding of the role of solvents in 
chemical reaction was being impeded by a lack of good 
kinetic data. The challenge was taken up by R.E.R. 
who over many years assembled a set of precise kinetic 
data for the solvolysis in water of relatively simple or­
ganic halides and related derivatives.7 The solvent, 
water, was chosen because there was and is a consid­
erable amount of physicochemical information con­
cerning aqueous solutions.8,9 In addition, the progress 
of chemical reaction for these solvolytic reactions can 
be precisely followed by measuring the electrical con­
ductivity of the solution, a property which is extremely 
sensitive to the concentration of ions in solution. The 
rate constant, k, for these reactions can be determined 
with a reproducibility of better than ±1% over a range 
of temperatures, T, extending to ~50 K. However it 
was at this stage that new problems emerged. 

A plot of In k against T~l is, for many reactions in 
solution, linear, the slope yielding the (Arrhenius) ac­
tivation energy, £A. However for these solvolytic re­
actions in water, this plot is clearly nonlinear.7,10,11 

These observations confirmed the generality of the re­
sults reported in the 1930s by Moelwyn-Hughes12 for 
the solvolysis of methyl halides in water. Numerous 
reasons13 can be advanced for the nonlinearity of plots 
of In k against 71"1, but these experimental observations 
raise the problem of the analysis of such behavior. In 
this context, one useful analytical technique has been 
to use transition-state theory14 and thereby to establish 
a link between kinetic and thermodynamic parameters. 

If the validity of transition-state theory14 is accept­
ed,15 the rate constant for chemical reaction, k, can be 
transformed into a pseudoequilibrium quantity, K*, 
describing the equilibrium between initial and transi­
tion states. Consequently the dependence of rate con­
stants on temperature can be analyzed in terms similar 
to those used in the analysis of the dependence of 
equilibrium constants, K, on temperature. The litera-
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ture dealing with the latter topic is more extensive.2,3 

In addition it is well established3 that In K often shows 
a nonlinear dependence on T~l. Consequently many 
methods have been proposed2'3 which attempt to relate 
In K and T*"1. One of the first equations was proposed 
around the turn of the century by Valentiner.16 

The Valentiner equation16 (see section VA2) expresses 
the dependence of In K on T using three linear terms 
characterized by three parameters a; where i = 1, 2, and 
3. The equation has been used more recently by other 
workers, notably by Everett and Wynne-Jones.1718 The 
analogue of the Valentiner equation where k replaces 
K has been used7 to express the dependence of In k on 
T. The kinetic data can be fitted to the resulting 
equation by using conventional linear least-squares 
techniques (see section IVA). Up until the 1960s, this 
fitting procedure was not a simple task with a typical 
electromechanical calculator, especially where 20 or 
more rate constants were available. Fortunately these 
arithmetical chores have disappeared with the advent 
of the digital computer. In addition it is now a rela­
tively straightforward task to probe different methods 
of data analysis by use of appropriate computer pro­
grams. Consequently some of the less obvious impli­
cations of a given method of data analysis can be 
probed. This aspect of the problem prompted the 
writing of this review. Rather than confine our atten­
tion to kinetic data we have broadened the discussion 
to include a consideration of equilibrium data, together 
with the dependence of both equilibrium and rate 
constants on pressure. Indeed, in order to develop 
several key arguments, it is convenient to start out with 
some well-trodden concepts in thermodynamics. We 
ask the reader to bear with us. 

II. Thermodynamic Background 

The first and second laws of thermodynamics com­
bine19 to show that a closed system in equilibrium with 
the surroundings and at fixed temperature and fixed 
pressure is at a minimum in the Gibbs function G. We 
assume that for a closed system at a given overall com­
position the minimum is unique.20'21 If the system is 
held at constant composition (f = fixed, where f is the 
extent of chemical reaction19), the Gibbs-Helmholtz 
equation relates the dependence of G on temperature 
to the enthalpy, H. The differential of G with respect 
to pressure at fixed T and f is related to the volume V 
of the system.19 These two statements together with 
the definition19 of the affinity A for chemical change 
[=-(dGI80TJ>] constitute the foundations on which this 
review is based. The state functions, G, H, and V refer 
to the macroscopic properties of the system. However 
chemists stray from the certainty of these thermody­
namic statements, extending their arguments from the 
macroscopic to the molecular level. Thus chemical 
analysis of an equilibrium state may point to the ex­
istence of various chemical species in chemical equi­
librium. The number of chemical species and the 
number of chemical equilibria are obtained from this 
additional experimental evidence. These comments are 
self-evident, but they draw attention to the operational 
definition of a system's characteristics. 

If, for example, the experimental data can be un­
derstood in terms of one chemical equilibrium, the 

derived parameters (e.g., the enthalpy change, AHe) 
refer to that defined equilibrium. Another set of ex­
perimental data for the same system may be understood 
in terms of two chemical equilibria. Consequently a 
different set of parameters will be obtained from 
analysis of the experimental data (e.g., two enthalpy 
terms, AH1

9 and AH2
9) • Hence there exists a close 

relationship between the chemical model (one or two 
equilibria) adopted for a given system and the param­
eters calculated on the basis of that model. It may also 
be that both descriptions of the system are equally 
valid, neither being right or wrong. Indeed different 
experimental techniques may prompt different models 
for the same system. For example, the electrical con­
ductivity of a salt solution may be accounted for in 
terms of one equilibrium between free ions and contact 
ion pairs, but the spectroscopic properties may be ac­
counted for in terms of equilibria involving solvent-
separated ion pairs.22 Both models serve their purpose; 
we are unaware of a set of equations which allows the 
electrical conductivity to be calculated from the spec­
troscopic data. 

The importance of chemical information is also ap­
parent in the treatment of kinetic data. In thermody­
namic terms, chemical reaction is one method whereby 
a closed system (at fixed temperature and pressure) in 
a nonequilibrium state moves towards a minimum in 
G, the spontaneous chemical change being driven by the 
affinity for change, A. Eventually the system reaches 
equilibrium, where A is 0. However, chemists en­
deavour to describe this approach to chemical equilib­
rium in terms of molecular processes within the system. 
Additional experimental evidence is used to identify the 
number of chemical processes and the number of 
chemical species so involved. If the experimental in­
formation can be accounted for in terms of one chemical 
reaction, then a set of activation parameters (e.g., en­
thalpy of activation, AH*) can be calculated. If another 
description of the approach to chemical equilibrium 
identifies two chemical reactions (e.g., a consecutive 
reaction), another set of parameters will be obtained. 
Again these comments are self-evident. Nevertheless 
we point them out in order to stress the importance of 
linking three key aspects, (i) experimental information, 
(ii) a chemical description of the system, and (iii) the 
method of calculation of the required parameters. 
There remains a fourth stage, comparison. 

In certain circumstances, the sign and magnitude of 
a calculated quantity (e.g., an enthalpy) based on a 
certain chemical description of a system may appear 
unreasonable when compared with other properties of 
the system or with values calculated for similar chemical 
changes. A subjective element is now introduced into 
the discussion because the numerical analysis does not 
necessarily discriminate between the reasonableness of 
different chemical models for the same system. This 
is the area where debate is most intense. 

A. Chemical Equilibria 

In this section, we adopt a particular chemical de­
scription of a closed system at fixed T and p, in equi­
librium with the surroundings. It is assumed that i 
solute species are involved in a single chemical equi­
librium. The transformation from the macroscopic 
state function G to the properties of each chemical 
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TABLE I. Chemical Equilibria: One-Equilibrium Process 

M 
AG**= •Lvjnf=-RT\nK (1) 

> = i 

van't Hoff eq: (a In KIbT)1, = AH^IRT2 (2) 
dnAH*ldTn)p = AnCp*,n= (1), 2, 3, . . . (3) 

(d In K /dp)? = -AV^/RT (4) 
(bnAV*ldp)T = An0*;n = (1), 2, 3 (5) 

(dAS*ldT)p = ACp^IT (6) 

species19 is made through the chemical potential Hj. If 
Vj is the stoichiometry such that Vj is positive for 
products and negative for reactants, the thermodynamic 
condition for equilibrium is that YJj^\vjHj is 0. If mj is 
the molality of the solute j and jj is the molal activity 
coefficient (jj —- 1.0 as mj -*• 0.0), the equilibrium 
condition can be expressea in terms of the chemical 
potentials of each solute j in their standard state in 
solution where m. = 1.0 and 7. = 1.0, i.e., u;

e. The latter 
quantities togetner with v-, define AGe and the equi­
librium constant K (eq 1, Table I). Thus characteri-
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zation of the total system by a description in terms of 
a single equilibrium leads to the definition of the 
equilibrium constant K. 

The differentials of In K with respect to temperature 
(at fixed pressure) and with respect to pressure (at fixed 
temperature) are related to the standard enthalpy, A//e, 
and standard volume, AV®, quantities (eq 2 and 4, 
Table I). Here is our first encounter with a problem 
which dominates this review. Thus the van't Hoff 
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equation relates the dependence of In K on temperature 
at temperature T to AH® at that temperature. Further 
AHe can and probably does depend on temperature 
(and pressure). However thermodynamics does not 
define what form this dependence takes. Nevertheless 
thermodynamics can describe this dependence in terms 
of a heat capacity term, ACp

e (eq 3, Table I). The latter 
is the differential of AHe with respect to temperature 
at temperature T, yielding ACp

e at that temperature. 
Now differentiation is usually less hazardous than in­
tegration because the latter needs additional informa­
tion if we require the definite integral. Thus it is not 
possible to construct a plot showing the dependence of 
AHe on temperature given the value of ACp

e. Even if 
AH9 is known at some temperature 0, there remains 
the possibility that ACp

e is also dependent on tem­
perature (eq 3 where n = 2, 3 ..., Table I). In fact the 
variation of ACp

e with temperature is probably more 
correctly handled by using statistical thermodynamics 
because classical thermodynamics provides no formal 
treatment of this dependence. Indeed a plausible aim 
of the work discussed here is to calculate the thermo­
dynamic parameters for a given system by using sta­
tistical thermodynamics and to compare the values so 
obtained with the values of, for example, ArY9, ACp

e, 
and AS9 calculated from the experimental dependence 
of K on T. 

Another important feature of this work is the com­
parison between thermodynamic parameters calculated 
from the dependence of K on temperature and those 
determined calorimetrically. However we do not con­
sider this topic in this review in any great detail. 

The foregoing comments are readily extended to a 
consideration of AV8 (eq 4, Table I). The dependence 
of AVe on pressure at pressure p is described by the 
compressibility A/?9 (n = 1 in eq 5, Table I) at that 
pressure p. Consequently a continuous series of dif­
ferential functions can be defined with reference to the 
dependence of AV9 on pressure. The pressure- and 
temperature-dependent parameters are linked through 
a series of cross relations which come under the general 
heading Maxwell equations.23 

The discussion given above can be extended to other 
equilibrium transformations. The solubility of a gas in 
a solvent24 can be characterized by a AG9 quantity 
which is related to the Henry's law coefficient L de­
scribing the equilibrium between the species in the gas 
phase at pressure p and in solution with molality m;. 
Similar treatments can be applied to the solubility of 
a solid in solution and the distribution of a solute be­
tween two solvents. Perhaps the simplest chemical 
equilibrium describes that between two conformers in 
solution. In all cases, there exists a family of thermo­
dynamic parameters AX8 (X = G, H, S, Cp, V...), each 
defined in a similar fashion to that set out in Table I. 

B. Chemical Kinetics 

A rate constant k, a phenomenological property of a 
system, describes the time dependence of the chemical 
composition of a system resulting from chemical reac­
tion. If the overall system is not too far from chemical 
equilibrium,25 the rate of change of composition at a 
given time is related by a simple differential equation 
to the rate constant and the chemical composition of 

Blandamer et al. 

TABLE II. Chemical Kinetics 

Arrhenius Treatment 
model: (a In k/bT)p = EAIRT2 (1) 
assume: (3 EA/dT)p = 0 (2) 
equation: In k = In k[T= ~] - EA/RT (3) 

Transition-State Theory 
(HnIkZT]IdT)P = AH^fRT1 (4) 
(3 lnk/Bp)T = -AV*/RT (5) 

the system at that time. The rate constant often pro­
vides no detailed information concerning the actual 
chemical processes involved. In many cases, the rate 
constant characterizes a change in a macroscopic 
property of the system, e.g., electrical conductivity.7 

Usually one chooses to monitor some property which 
shows significant changes for unit stoichiometric 
change. In any event, a chemical description of the 
kinetic processes is developed to account for the ob­
served macroscopic change. We develop this point by 
reference to the changes in electrical conductivity ob­
served when, for example, ter£-butyl chloride solvolyzes 
in water.7 

As it stands, the rate constant derived from an in­
crease in electrical conductivity characterizes a "black 
box" releasing ions into the system. In a chemical 
context, the simplest description identifies one key 
process, reactants -»• products. The next stage is to 
develop an analytical description to account for the 
observation that the rate constant depends on tem­
perature, i.e., k = f(T). The fact that it does so depend 
can be understood in terms of a Boltzmann distribution 
of molecular energies. However neither this distribution 
nor classical thermodynamics yields a quantitative re­
lationship between rate constant and temperature. 
Arrhenius suggested a differential equation for the 
dependence of In k on temperature, leading to the 
definition of an activation energy for reaction, EA ( eq 
1, Table II). However progress is again impeded be­
cause the differential equation cannot be integrated 
unless some new assumption is invoked. One approach 
is to assume that EA is independent of temperature and, 
hence, that In k is a linear function of T~l (eq 2, Table 
II). This model for the dependence of k on temperature 
can now be tested against experimental data. 

For the solvolysis of many organic halides in water,7 

In k is not a linear function of T'1. We are now faced 
with a dilemma because the model building exercise has 
clearly broken down. At least two options present 
themselves. First, we can accept the description for the 
chemical reaction (i.e., a single process) but reject the 
model which sets EA as independent of temperature. 
Second, we can argue that the description of the chem­
ical reaction is incorrect, suggesting instead that there 
are at least two key processes with discrete rate con­
stants which depend on temperature in a manner de­
scribed by eq 3 (Table II). In the latter case it would 
be argued that each activation energy is different, thus 
leading to curvature in the plot of In kobsd against T~l. 
Thermodynamics establishes no criteria in helping to 
decide which option is correct. Indeed if we select the 
first option, new problems emerge because we have no 
a priori indication of how EA depends on temperature. 
We consider below some of the consequences of 
choosing either option. 

The rate constant for a chemical reaction k can be 
related14 to the pseudoequilibrium constant K* through 
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Planck's and Boltzmann's constants. The dependence 
of In {k/T) on temperature at fixed pressure and of In 
k on pressure at fixed temperature is related to the 
enthalpy of activation AH* and volume of activation 
AV*, respectively (Table II). In exactly analogous 
fashion to the problems associated with analysis of 
equilibrium properties, AH* is the enthalpy of activa­
tion at temperature T, although the theory does not 
define how it depends on temperature. A description 
of its dependence on temperature is possible through 
the heat capacity of activation ACp* and its dependence 
on temperature (cf. Table I). The theory leads to a 
series of differential functions but does not indicate how 
these functions can be used to obtain the definite in­
tegral form. Consequently we are faced with the 
problem of formulating different descriptions of the 
temperature and pressure dependence of the rate con­
stant. Different descriptions of how k depends on T 
and p lead to different numerical values for the acti­
vation parameters. We can expect numerous problems 
associated with the interpretation and significance of 
these derived parameters. 

So far we have identified two important stages in the 
overall analytical problem. First it is important to set 
down a chemical description of the system under in­
vestigation. Second we need to devise some quantita­
tive description of the dependence of equilibrium (or 
rate) constant on temperature (or pressure). In the 
following section, we consider in more detail the first 
stage. 

/ / / . Comparison of Models for the System 

In the absence of thermodynamic criteria, it is often 
possible to adopt different chemical descriptions to 
account for the macroscopic properties of a given sys­
tem. There are no limits to the chemical complexity 
of these descriptions other than those set by our im­
agination. However it is interesting to explore how the 
parameters for different models are related. In this 
section we consider examples from equilibrium and 
kinetic properties. 

A. Chemical Equilibria 

As the first example, we consider a solute (e.g., a weak 
monobasic carboxylic acid) in solution and assume that 
the experimental data describe the proportion of total 
solute in one particular form (e.g., ions). The closed 
system is held at fixed temperature and pressure. In 
model I (Table III), the solute exists in one of two 
states, A and D, such that the equilibrium is charac­
terized by a series of thermodynamic parameters, AXe, 
where X = G1H, Cp, V... (Table I). In model II (Table 
III) for the same system, the solute exists in three states, 
B, C, and D, involving two equilibrium constants, K1 
and K2 (Table III). Thus each equilibrium is charac­
terized by a set of parameters, AX1

9 and AX2
9. We 

now suppose that the experimental data characterized 
the equilibrium state by measuring the proportion of 
solute in the form D. It follows that K in model I can 
be related to K1 and K2 in model II by eq 1 of Table 
III. Differentiation (Table I) yields equations relating 
AXe with AX1

9 and AX2
9 (Table III). Inspection of 

TABLE III. Comparison of Models for 
Chemical Equilibria 

Model I K 

Model II 
K1 K2 

Comparison 
K=KJ(I + K1-

1) (1) 
AH* = AHf + (AHfI [1 + K1]) (2) 

&CP* (AHf)2K. 
A C p

e = ACP
 e + *J l ' (3) P Pl (1 + JST1) (1 + K1)

2RT2 

AV*= AVf+ AVfI(I + K1) (4) 

APf (AVf)2K 
A(3* = APf+ • + — — (5) 

(1 + K1) RT(I + K1)
2 

the equations reveals some interesting details. If, for 
example, K1 > 1.0, then as K1 increases so AH9 —*• AH2

8. 
JfK1« 1.0, AH9 «. AH1

9 + AH2
9. It may also arise that 

at a particular temperature AH9, calculated by using 
model I, passes through a maximum at some tempera­
ture. Then at that temperature, the following condition 
holds: 

AH2
9U + K1) = -AH2

9 (1) 

Further since K1 > 0, then AH1
6 and AH2

9 must have 
opposite signs at the extremum. Indeed eq 1 is the 
condition for the plot of In K against T, using model 
I, to show an extremum. In this context we recall that 
plots of In K against T for several monocarboxylic acids 
in water show maxima.3 If we use model I to account 
for this trend, ACp

e (and possibly higher temperature 
derivatives) is nonzero. If we use model II, the expla­
nation of the extremum is quite different. Indeed Eigen 
suggests26 that the association of H3O

+ and carboxylate 
anion to form the undissociated acid, RCOOH, is cor­
rectly represented as a two-stage process where the 
intermediate is formed in an encounter. Turning to the 
heat capacity terms, ACp

e calculated by using model 
I is not simply the sum of AC„9

1 and ACP
9
2 calculated 

by using model II, eq 3 of Table III. Similar comments 
apply to A2Cp

e, A3CP
9.... There is a further interesting 

feature. Suppose that as a derivative of model II (Table 
III) both ACp

9
1 and AC„9

2 are set equal to 0. It turns 
out that ACp9 calculated by using model I is not 0. The 
value calculated for ACp9, called ACp

9 (diff), is given 
by eq 2. Because K1 is always a positive quantity, 

ACp
9(diff) = -(AH^)2K1/[(I + K1)

2RF] (2) 

ACp9 (diff) is always negative and depends on temper­
ature by virtue of the term T2 and the dependence of 
K1 on temperature. Further differentiation of eq 2 with 
respect to temperature reveals that if ACp

e
1 is 0 then 

ACp
9(diff) has an extreme value at temperature T(ex) 

given by eq 3, 

T(ex) = (AH1
9/2i?)([l - K1]Z[I + K1]

2) (3) 

where 

ACp
9(diff; T = T(ex)) = -4AK1(I - K1)

2 (4) 

Since by definition T is a positive quantity, if AH1
9 > 
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TABLE IV. Solubility of a Volatile Solute in a Liquid 

Model I 
Y(gas;j3y) ** Y(solution; my)\ K 

AGe(gas -* solution) = -RT In(Kl= -RT In (myp**lpy) ( i ) 
Model II 

Y(gas;py) «* Y(solution; TtIy)^K1 

2Y(solution; my) ^ Q(solution; mq); K7 

A G ^ g a s -» monomer in solution) = -RT In K1 = 
-RT\n(myp*lpy) (2) 

AG2
e(monomer -+ dimer; solution) = -RT In K7 = 

~RTln(mq/my
2) (3) 

Comparison 
m (total Y in solution) = my + 2mQ (4) 

K(obsd)= ml (p I p^) (5) 
tf(obsd)= K1 + IK1K7Tn (6) 

AH*(obsd) = AH1* + [2K1K7(TtIAH* + RT2AmIAT)I 
(K1 + 2K1K1In)] (7) 

0 then K1 < 1.0, and if K1 > 1.0 AH1
6 < 0. 

Examination of volume parameters reveals similar 
constraints and relationships. Thus if K1 » 1, AV6 

calculated by using model I equals AV2
8 calculated by 

using model II; if K1 « 1, AV8 = AV1
8 + AV2

6. Sim­
ilarly we can define a quantity A/38(diff), eq 5. The 

A/38(diff) = (AV1
8J2If1Z(AT[I + K1]) (5) 

possibility that the same set of data can be described 
by using either model I or II raises new considerations. 
We outline just two aspects which warrant attention. 

Analysis of substituent effects on equilibrium con­
stants is conveniently handled27,28 by using the 5R op­
erator, e.g., 6RAG8. From eq 1 of Table III the sub­
stituent effect in terms of model I can be related to the 
substituent effects on the separate equilibria in model 
II (eq 6). The presence of the term In (1 + K1J means 

5RAGe = SRAG1
8 + 6RAG2

e + RT 5R In (1 + X1) (6) 

that the substituent effect on AG® (model I) is not 
simply the sum of the substituent effects on the two 
equilibria in model II. 

The second area of note follows from eq 6 where the 
substituent effects in two different classes of chemical 
equilibria are related as in the Hammett equation.27-28 

Thus, through the two series "R" and "Q", a linear re­
lationship between SRAG6 and SQAG8 in terms of model 
1 requires that a linear relationship exists between 
SRAG1

8 and SQAG2
8, between 5RAG2

e and SQAG2
8, and 

between 5R In (1 -I- K1) and SQ In (1 + K1) in terms of 
model II. This analysis prompts a number of questions 
concerning equations relating the enthalpy and entropy 
terms in extensions of these treatments.29,30 

The foregoing analysis with reference to chemical 
equilibria can be extended to other equilibrium situa­
tions. In Table IV we consider a situation where the 
solubility data for a volatile solute in a liquid are under 
examination. In model I (Table IV) the solute exists 
in one state in each phase. In model II, the solute in 
solution exists as monomer and dimer in equilibrium. 
However the composition of the solution is experi­
mentally determined in terms of the total molality of 
the solute such that the data are summarized in terms 
of K(obsd) which is related to the total molality and the 
partial pressure of the volatile solute in the gas phase. 
Application of eq 2 in Table I yields an enthalpy term, 
Aif8(obsd), eq 7 of Table IV. The observed AiJ8 is, 
therefore, a function of AZf1

8 and OfK1, K2, AiJ2
8, and 

m. The corresponding expression for ACp
e(obsd) is 

TABLEV. Chemical Kinetics: Comparison of Models 
for Chemical Reaction 

Model I 

Model II 

Model III 

Model IV 

Comparison 
Models I and II 

B 

a = kJk,; AAX 

A —* products 

^=* C —> products 
K 

AX* - AX* 

products 

products 

products 

products 

AH 
ACp* 

k=kj(l + a) 
--AH1* + [al(l + OL)]AAH* 
ACp * + [al(l + Q) ]AACp*-

[(AAH*)2\l[RT2(l + a)1]] 
AV* = AV1* + A A V * / ( 1 + a ) 

A(3* = A<?,* + [ a / ( l + a)]AA(3* + 
[ ( A A V + ) M ( I + Ct)1RT] 

Models I and III 
k = fej + fe, 

AH+ = (Jj1AH1* + feaAH,*)/(fe, + k2 

ACP* l(k,ACPt + k,ACp*)l(k1 + k7)] + 
[M 5 (AH 1 * - AH*YI(k[~ k7)RT2] 

AV* = (k1AV1* + k7AV*)l(k1 + k7 

(1) 
(2) 

(3) 
(4) 

(5) 

(6) 
(7) 

(8) 
(9) 

clearly complex; ACp
8(obsd) will be nonzero even if 

ACp8J is 0. 
The foregoing analysis can be extended to a number 

of phenomena. The analysis in Table IV is with minor 
modification applicable to the solubility of a pure liquid 
Y in a solvent, e.g., benzene in water. Indeed for these 
systems, this type of analysis can be used to account 
for the disagreement between van't Hoff enthalpies of 
solution and the values obtained from calorimetric 
data31 although in the particular case, benzene in water, 
disagreement may have arisen from incomplete disso­
lution in the solubility studies.32 Indeed it has been 
often implied that van't Hoff quantities (i.e., thermo­
dynamic quantities derived from dependence of K on 
T) are suspect, but as the analysis in Table IV shows, 
the problem lies not with the equation itself but with 
the description of the system and the experimental 
techniques used to probe the properties of the system.33 

A similar state of affairs exists in the context of the 
kinetics of chemical reactions. 

B. Chemical Kinetics 

We examine some of the problems which arise in this 
subject by reference to various models for a chemical 
reaction which is experimentally characterized by a 
first-order rate constant. We consider a solvolytic re­
action where the progress of reaction has been followed 
by monitoring the change in concentration of products 
(e.g., ions) with time6,7 (Table V). 

In model I of Table V, the reaction is an elementary 
single-stage process characterized by the rate constant 
k and a series of activation parameters, AX*, where X 
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= G, H, S, Cp, V ... . In model II the reaction is a 
two-stage process where the first stage is reversible and 
the overall reaction proceeds through a common in­
termediate. Consequently, each stage in the process is 
characterized by a rate constant kt and a set of activa­
tion parameters AXf where i = 1, 2, and 3. The 
quantity a describes the kinetic fate of the intermediate. 
This nomenclature was suggested by Albery and Rob­
inson34 in their discussion of the kinetics of solvolysis 
of tert-butyl chloride. Model III of Table V represents 
the kinetic process as two parallel reactions having 
characteristic rate constants while model IV is a com­
posite of models II and III. This model (IV) is based 
upon the mechanism proposed by Winstein and co­
workers35 for solvolytic reactions.36 We now ask what 
happens to the values for the activation parameters 
calculated on the assumption that model I is operative 
when in fact the reaction actually proceeds via one of 
the other mechanisms. 

With reference to models I and II (Table V) the 
measured rate constant k is a function of Je1 and a (eq 
1). Differentiation with respect to temperature leads 
to an expression relating AH* (model I) with AZf1* and 
AAH* (model II) (eq 2 of Table V). If at temperature 
T a » 1, then AH* = AH1* + AAH*; if a « 1, AH* = 
AH1*. Further differentiation with respect to temper­
ature shows that ACp* is not simply the sum of ACp*1 
and AACp*. Indeed if the latter two quantities are 0, 
ACp* is not necessarily 0, leading to the definition of 
a quantity ACp*(app) (eq 7). It follows that ACp*(app) 

ACp*(app) = - (AAH + )V(A^[I + a]2) (7) 

is always negative,36 irrespective of the sign of AAH*. 
In addition ACp*(app) exhibits a complex dependence 
on temperature because a is temperature dependent. 
At the temperature where a = 1, ACp*(app) = 
-(AAH*)2/4RT2 although further differentiation of eq 
7 with respect to temperature shows that the extreme 
value of ACp*(app) occurs at a different temperature 
from that at which a = 1. A similar complex pattern 
emerges from analysis of the dependence of rate con­
stants on pressure. Thus it follows from eq 5 of Table 
V that even if AiS1* and AA/S* are 0, A/8* is not neces­
sarily 0. In this case we can define a quantity A0*(app) 
(eq 8). Thus, A/3*(app) is a positive quantity, inde-

A0*(app) = Oc(AAV*)2 /(RT[I + a]2) (8) 

pendent of the sign of AAV*. Moreover A/3*(app) is 
dependent on pressure because a is also dependent on 
pressure. The equations given in Table V are also 
relevant to analysis of solvent effects on rate constants 
and derived activation parameters. The solvent effect 
on k is, according to model II, equal to the combined 
effects of solvent on kx and a. Similarly the solvent 
effect on AH* expressed in terms of the medium 
operator28 5m, is related in model II to the effect of 
solvent on AH1*, AAH*, and a in eq 9. A similar ex-

6mAH* = S1nAH1* + -J-S1 nAAH* + - ^ ^ m a 
1 + a (1 + a)

2 

(9) 

pression relates 5mACp* to S1nACJ1, 5mAACp*, and 8ma. 
Comparison of models I and in (Table V) shows that 

even if ACP*X and ACP*2 are both 0, ACP* (i.e., ACp* 

(app)) is nonzero and always positive (eq 10). Differ-

ACp*(app) = M2(AH1* - AHS)2Z(RT2Ik1 + k2]) 
(10) 

entiation with respect to temperature reveals that 
ACp*(app) has a positive extreme value when the tem­
perature equals (Zz2AH1* + k1AH*)/2R. 

The type of analysis outlined in Table V can be re­
peated for the remaining kinetic models. Underlying 
the material presented in the foregoing is the aim of 
accounting for the trends in measured equilibrium and 
kinetic parameters. It is to the problems of handling 
the experimental data which we now direct our atten­
tion. 

C. Estimated and True Values—Practical 
Considerations 

It is assumed that in a closed system at fixed tem­
perature and pressure, there exists a single-stage 
chemical equilibrium, e.g., model I in Table III. 
Thermodynamic arguments (Table I) lead to the con­
clusion that there exists a single true value for the 
equilibrium constant. We represent this true value by 
K*. In real life, analysis of experimental data leads to 
an estimate K of this true value. Similarly the mea­
sured values of temperature T and pressure p are es­
timates of the true values T* and p*. However it is 
usual practice to assume that the measured values of 
T and p are the true values and thus free from error. 
Consequently experimental data comprise estimated 
values of the dependent variable K* as a function of the 
independent variables T and p. It is conventionally 
assumed that with improvement in experimental tech­
nique so the estimate K will approach K* and that the 
error 8 will fall (eq 11). As a result of a series of ex-

K = K* + 8 (11) 

periments at different temperatures T1 where i = 1, 2, 
3 ... n, but at fixed pressure p, there will be n equations 
of the form 

K(Titp) = K*(Ti>P) + S(TuP) (12) 

It is further assumed that there are no systematic errors 
in the estimates K(Titp) and that the errors 8(Titp) are 
not correlated. In other words, the sign and magnitude 
of 8(Ti,p) are not, for example, related to 5(T2,p). 
However practical considerations limit the number of 
equations n of the form given in eq 12. Simple limi­
tations of time and patience mean that the values of T1 
will be at intervals of, e.g., 5 K rather than 0.1 K. In 
addition the range of T1 values is limited by the prop­
erties of the system. Thus for dilute aqueous solutions 
at ambient pressure, this range is 273 < T1 < 373 K. In 
this sense, the physical properties of the solvent define 
a "window" across which we can, but outside of which 
we cannot, measure the properties of the system. 
Consequently the range of values for K(Titp) for a given 
system is limited by this window. 

In the context of chemical kinetics for a reaction in­
volving a single-stage process (e.g., model I of Table V) 
we assume that there exists a true value k* for the rate 
constant at fixed T and p. The experimental data yield 
an estimate k of the true value, and hence we can write 
analogues of eq 11 and 12. In similar fashion, the 
properties of the system define the limits of the window. 
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Practically, the window is often fairly small because at 
low temperatures the rate of reaction may be very slow 
and too time consuming to measure. Alternately at high 
temperatures, the reaction may be too fast to follow by 
using currently available techniques. This means, for 
example, that in kinetic data measurements for the 
solvolysis of organic halides in water6,7 the temperature 
range rarely exceeds 50 K. Similar comments apply to 
the measurement of the dependence of rate constants 
and equilibrium constants on pressure, although here 
the window is determined by the extent of technical 
expertise in handling high pressures. However there 
is another important consideration. 

In both equilibrium and kinetic studies, neither the 
equilibrium nor the rate constant is directly determined. 
Thus for the kinetics of solvolytic reactions,6,7 the 
measured property is the electrical conductivity at time 
t. Each individual measurement of conductance is 
subject to experimental error. The dependence of 
conductance on time is fitted by using a least-squares 
technique (see section IVA) to a first-order rate equa­
tion such that the calculated rate constant is the out­
come of many experimental observations.6,7 Similarly 
the acid dissociation constant for a weak carboxylic acid 
is obtained, for example, by analyzing the dependence 
of the emf of an electrolytic cell on composition.3 Each 
measurement of the emf is subject to experimental 
error. In the following sections we do not consider the 
consequences of these errors but assume that the data 
at hand comprise values (i.e., estimates) of K (or k) as 
a function of temperature and pressure. 

IV. Analytical Descriptions of the Dependence 
on Temperature 

Let us assume we have a set of n values of K1 at 
temperatures T1-, these values being estimates of the 
true values K*. We also assume that there exists a set 
of true thermodynamic values AXe (X - G, H, S, Cp, 
V...). The aim is to examine the dependence of Kt on 
T1 in order to obtain estimates AXe of the true values 
AXe. There is another assumption implicit in this 
argument. Thus it is assumed that there exists a 
quantitative relationship between K1 and T1. However 
thermodynamics does not define this quantitative re­
lationship. Consequently we formulate an equation for 
the dependence of K1* on T1 and test its adequacy by 
examining the dependence of X1 on T1. Initially there 
is no thermodynamic restriction on how we choose to 
relate K* and T1. It may, for example, be that we 
express this dependence with a trigonometric equation, 
along the lines indicated by Hine37 for the dependence 
of heat capacity terms on temperature (eq 13). 

K* = ax sin (a2T,) (13) 

Equation 13 introduces two new parameters, ax and a2, 
which are assumed to be independent of temperature. 
Estimates dx and a2 of O1 and a2 are required which 
satisfy the measured values, K1. The criteria on which 
these estimates are based are discussed below. For the 
moment, however, it could be argued that eq 13 looks 
wrong. This intuitive feeling is generated by the 
equations set out in Table I which describe derivatives 
of In K rather than K. 

If the thermodynamic hint is accepted, it seems ad­
visable to express the dependence of K* on T1 as shown 

in eq 14. Moreover chemists have taken advantage of 

In K* = f(T,) (14) 

the extensive literature describing the linear least-
squares method38,39 of obtaining estimates of fitting 
parameters. In order to use this method, it is necessary 
that the equation expressing the dependence of In K* 
on T should be linear in the unknown parameters. A 
simple two-term equation for the dependence of In K* 
[or In k*] on T which satisfies this requirement is shown 
in Table VI. Thus the differential of In K* with respect 
to O1 at fixed T, and a2 is not dependent on either Ct1 
or a2. Further the second differentials [e.g., <92 In 
K*/dai2] are O. A similar test of eq 13 shows that this 
description of the dependence of K* on T does not meet 
the requirement, and so the conventional least-squares 
method cannot be used to obtain estimates of O1 and 
a2 in eq 13. 

Granted that we can use the least-squares method to 
fit the dependence of In K* on T to eq 1 of Table VI, 
the analysis is set a number of tasks. First from the 
estimates K1 at T1 we require estimates ax and d2 of O1 
and a2. Second we need to test the adequacy of the 
equation in fitting the observed dependence. If the 
description of the dependence proves inadequate, other 
equations are tested which attempt to describe the 
observations. In this sense the testing of equations is 
a continuation of the experiment.38 We anticipate 
considerable debate concerning the acceptability of the 
various equations. In principle we seek a description 
of the dependence of K on T which satisfies as many 
objective criteria as possible. Then it can be concluded 
that we have the link which thermodynamics does not 
provide. If, for example, the first equation in Table VI 
is the final choice of the description, then from the 
estimate S1, the enthalpy parameter is calculated. If, 
however, we had used eq 13, then from the associated 
estimates of Ot1 and a2, the estimate of AH9 is obtained, 
i.e., O2RT2 cot (d2T). It is possible that the most sat­
isfactory equation for one set of data is not necessarily 
that for another. 

Analogous arguments accompany the analysis of the 
dependence of K on p, k on T, and k on p. Thus in 
Table VI, a two-term equation is shown which relates 
In k and T"1. Here again this dependence is not a re­
quirement of transition-state theory. It is attractive 
because the equation has the correct form for analysis 
using a linear least-squares method. Clearly, the latter 
has had a profound influence in this subject. Conse­
quently we examine some important aspects of this 
analytical technique.36,37 

A. Linear Least-Squares Analysis 

The input to the analysis is a set of values for a de­
pendent variable y; (e.g., In K1) and independent vari­
ables X1 (e.g., Ti). It is assumed that the unknown lin­
early dependent variables fij (e.g., O1 and a2 in Table VI) 
are given by eq 15. Here y is a column vector of the 

y = X/3 + e (15) 

dependent variables, X is a matrix comprising functions 
of the independent variable, /3 is a column vector of the 
unknown parameters, and e is a column vector of the 
unknown errors associated with the measured depend­
ent variables. 
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For example, suppose we have n values of K1 at tem­
peratures Ti and the first equation given in Table VI 
is to be examined; then X is a 2 X n matrix. The linear 
least-squares method leads to estimates /8 which min­
imizes the sum of squares of differences between y and 
y (e.g., between measured value In K1 and the estimated 
value, In Kt over all n values). The key stage is given 
in eq 16 where X7 denotes the transpose of X. Thus 

j& = (X7X)-1XTy (16) 

from the estimates 0, we can calculate the estimated 
values y, eq 17 (e.g., values of In K{ from O1 and d2 in 
Table VI). The values of /8 are the most precise un-

y = x-0 (17) 

biased estimates of /8. Consequently, if the whole ex­
periment were repeated q times (i.e., q sets of n values 
for Ki and T,), the individual q estimates of each fy 
parameter would be distributed about the true value 
of j8; with minimum variance, e.g., eq 18 for fy. Re-

sj2 = E OS1O") - Pi)Z(Q - D (18) 

turning to the single set of n values for x; and y;, the 
least-squares estimate /8 can be used to estimate the 
variance associated with the errors, a2. If for example 
the values of m linear coefficients are estimated, a2 is 
given by eq 19. The quantity n - m is called the 

a2 = (y - X0)T(y - X/8)/(n - m) (19) 

number of degrees of freedom. If we repeat the whole 
experiment q times, analysis will provide q values for 
a2. Each estimate a2 is an unbiased estimate of the 
variance s2, and the q values of a2 will be distributed 
about s2. 

For a single set of data, the estimate a2 provides a 
guide to the quality of the data and the success of the 
equation in accounting for the dependence of K on T. 
The square root a of a2 is the standard deviation on the 
fitted quantity, e.g., 3-(In K). In this context it is often 
helpful to plot values of A, -(Sj- yd against the in­
dependent variable x,- [e.g., (In K, - In K1-) against Tj]. 
A satisfactory description of the dependence of yt on 
X1 results in a scatter of A values greater than and less 
than 0. A systematic trend in A may indicate that the 
equation under test is unsatisfactory and a new de­
scription of the dependence is called for. In addition 
S-(In K) should be compared with the estimated accu­
racy of the experimental values, based on a realistic 
assessment and experience. 

If the selected dependence generates a scatter plot 
for A, further details concerning the estimates fy are 
provided by the symmetric variance-covariance matrix, 
eq 20. If the analysis is designed to yield m linear 

6 = ff2(XX)-x (20) 

coefficients, 6 is an m X m matrix. The diagonal ele­
ments 6kk (where k = 1, 2, ... m) are estimates of the 
variance of fy- The smaller the value of 6kk (it is always 
positive), then the closer fy is to the true value for fy. 
The square root of 6kk is the standard error associated 
with J3k. Two factors38 contribute to the magnitude of 
6kk: (1) the precision of the input data and (2) the 
structure of the system. Under the latter heading we 
identify the structure of the data and the structure of 

the equation describing the dependence of y,- on X1. We 
have commented above on the limitations set by the 
practical problems, the window, and these impinge on 
the structure of the data. The structure of the equation 
refers to the defined relationship between dependent 
and independent variables (cf. Table VI). This aspect 
will attract our attention in subsequent sections because 
part of the task is to identify for each set of data the 
most satisfactory description of the dependence of K1 
(or ki) on T. In this context it is informative to examine 
the normalized variance-covariance matrix c (eq 21): 

Cij = 0ijZ(Wjj)y2 (2D 

If, for example, the analysis results in m values of fy, 
then c is an m X m matrix when the diagonal elements 
are unity. The off-diagonal elements are between -1 
and +1. The magnitude of cy measures the extent of 
the dependence of fy on fy. If Cy is approximately ±1, 
the interdependence is marked but decreases as |c£;| 
tends to 0, although ci;- is rarely 0. The values of c# are 
not estimates38 and hence provide a sound basis for 
comments on the structure of the data and the equation 
used to describe the dependence of y{ on X1-. 

The least-squares analysis yields, for a given set of 
data and a given equation, an estimate fy and the 
standard error, (fy,-)1/2. It is possible to estimate with 
a specified degree of confidence that the true value of 
fy lies within a band centered on fy. Thus we can 
calculate the limits within which we are p% confident 
(p = 90, 95, 99; usually 95) that the true value exists. 
If p = 95, there is a 5% chance that the true value exists 
outside these limits. A Student t factor39 is obtained 
from published tables for a required confidence limit 
and the number of degrees of freedom. The band 
within which the true value exists is given by fy ± t 
(djj)1/2. If the values so calculated include 0, then the 
term in fy is unimportant at the p level of confidence 
in describing, for example, the dependence of In K on 
temperature. A further statistical test is discussed in 
a later section. However there are various aspects of 
the least-squares analysis which are noteworthy. 

Suppose a dependent variable q is related to two 
independent variables w and v by eq 22. We assume 

q = fyw + fyv (22) 

that eq 22 is essentially the true model for the system. 
When experimental values of q are usedz the least-
squares analysis yields the estimates fy and /S2. It is also 
possible to rewrite eq 22 in two algebraically equivalent 
forms: 

q/w = fy + fy(v/w) (23) 

q/v = fy(w/v) + fy (24) 

The data can be fitted to eq 23 and 24 to obtain two 
more sets of estimates, fy and fy- Comparison reveals 
that the three sets of estimates are rarely identical. 
This is a consequence of the experimental error in the 
dependent variable q and of the fact that the mini­
mizations have considered three different quantities, 
q, q/w, and q/v. 

There is a related problem which is relevant to several 
equations discussed in subsequent sections. Suppose 
that we identify a set of independent variables, V0 and 
W0, as reference values where the dependent variable 
is q0. Equation 22 can be written as follows: 
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(q - q0) = P1(W - W0) + P2(v - V0) (25) 

The latter equation describes the variation of q about 
q° in terms of (w - W0) and (v - V0). Equation 25 can 
be written in the following algebraically equivalent 
form: 

q = q0 + P1(W - W0) + P2(V - V0) (26) 

If q is the dependent variable subject to experimental 
error and if q0 is the true value at V0 and W0, being free 
from experimental error, eq 25 can be used to estimate 
Pi and P2. If, however, ^0 is an experimental value 
subject to random error, then it is only statistically 
meaningful to use eq 26. In this case the dependence 
of q on (w - W0) andju - V0) is analyzed to obtain the 
estimates q0, Pu snad P2. The estimate q0 can, if the data 
are available, be compared with the experimental value 
for q0. Indeed this approach is used in subsequent 
sections where we examine the dependence of In K on 
T about a reference temperature 6 and hence calculate 
the estimate In K when T = 8. 

There is one further technique in the least-squares 
analysis which has attracted attention.2 Suppose, for 
example, that we are testing a description of the de­
pendence of some quantity P on temperature T which 
expresses P as a polynomial in T, i.e., P = LJ=Ia1T1'"

1. 
If we set n = 2, then the least-squares analysis leads to 
the estimates O1 and d2. If the analysis is repeated with 
n = 3, then we obtain O1, d2, and a3. It happens, how­
ever, that the values of ax and d2 also change. A tech­
nique which avoids this transposes the polynomial in 
Ti to a polynomial in another set of independent var­
iables such that each successive coefficient is inde­
pendent of the preceding coefficients. This is the me­
thod of orthogonal polynomials. However there is a 
limitation in that the independent variables (e.g., T) 
must be equally spaced over the experimental range. 
We consider an application of this analysis below. 

B. Nonlinear Least-Squares Analysis 

In an examination of the dependence of an equilib­
rium constant on temperature, a particular description 
of this dependence might prompt the examination of 
an equation which does not satisfy the criteria for a 
linear least-squares analysis. However this is not a 
sound basis for rejecting this and related nonlinear 
equations. Clearly some alternate method is required 
in order to fit the data to the new equation. We may 
decide to retain the same overall criterion for fitting the 
data, namely that Y,\=i Ly,-(obsd) - y,(calcd)]2 is a min­
imum. A method is required for hunting among all 
possible values of, say, p for those values which corre­
spond to this minimum. This is a specialized and 
growing branch of statistics usually linked to comput­
er-based calculations under the general heading opti­
mization techniques.40 

Suppose that we wish to examine eq 2 of Table VI 
as a possible description of the dependence of K on 
temperature. Although (dK/da2)Ta is independent of 
both O1 and a2, a similar differential with respect to O1 
is dependent on O1. Thus the linear least-squares me­
thod is inappropriate. Nevertheless, given a value of 
K at temperature T, values of O1 and a2 are sought 
which minimize e (=ln K - exp^T) - d2T). The two 
unknowns O1 and a2 are the system parameters and can 
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be expressed as the column vector a, such that t can be 
expressed as follows: 

e = f(a) (27) 

The quantity f(a) is the objective function, and if we 
guess the values of the components of the vector (e.g., 
O1 and a2 in eq 2 of Table VI) e can be calculated. The 
initial guess a0 is likely to be a poor estimate of amin 
which minimizes e. Optimization techniques provide 
a number of iterative routines (algorithms) such that 
at each iteration values for Ao are calculated which 
move a toward amin where e = emin. 

In general terms there may be m system parameters 
rather than just two, and without the aid of a computer 
the calculation would be a formidable task. Thus at the 
outset we do not know whether, for example, O1 should 
be increased or decreased (the direction of change) or 
by how much. There is another important problem 
which is encountered by even computer-based calcula­
tions. We have implied that the vector a ^ which yields 
emin is the global minimum. However through the whole 
domain of a, there may exist numerous local minima 
in «. Consequently the value of amin obtained from a 
given calculation is the local minimum evolved from the 
seed value a0. It is generally assumed that there is a 
unique local minimum, but it is good practice to repeat 
the calculation with a new seed value to confirm that 
amin is unique over a reasonably large range of a. 

An obvious practical requirement is that the calcu­
lation locates amin in a reasonably small number of it­
erations and steps between a0 and amin. Indeed there 
are numerous optimization routines currently available, 
but the majority have a common approach to the 
problem as we now indicate. 

The convergence process and hence the calculation 
of Aa uses the gradients of the objective function with 
reference to the system parameters. The Jacobian 
gradient vector g is the first derivative, and the Hessian 
matrix H is the second derivative. When these deriv­
atives are used, Aa can be calculated by using the 
Newton-Raphson (or Newton) method to yield the 
second-order solution, Aa = -(H)_1g. The calculation 
requires the inverse of the Hessian matrix. However 
this often leads to problems because away from O1Din, H 
is not always positive and finite. In such cases, various 
techniques, i.e., quasi-Newton or modified Newton, are 
used to overcome these problems.40 

The foregoing summary of optimization techniques 
concerned the fitting of a single value of, for example, 
K at temperature T to the nonlinear equation. However 
the techniques are readily extended to consider n values 
of Ki and T1 such that the routine yields a set of pa­
rameters which minimize the sum of squares of the 
residuals, e.g., £f=1 [v(obsd) -y(calcd)]2. More detailed 
aspects of these calculations are described elsewhere38 

and in the manuals for computer-based libraries of 
programs. A satisfactory routine is one which indicates 
the degree of confidence that amin is a realistic mini­
mum. However one should not rule out the possibility 
that for a given equation and set of data, no minimum 
exists. 

A rather different technique for solving nonlinear 
differential equations is to transpose the equations in 
such a way that a linear least-squares technique can be 
used. As above, the procedure is to start from a guessed 
value of the vector a, i.e., SL0, and calculate by using the 

linear least-squares technique the values of Aa that 
move toward a vector a where the residual sum of 
squares is either a minimum or of comparable magni­
tude to that estimated from the experimental precision. 
The details of this method of analysis are described by 
Wentworth.41 Moore42,43 uses a similar technique to 
calculate rate constants from kinetic data. The general 
features of the technique can be illustrated as follows. 

Suppose we have a dependent variable P which is 
related to the independent variable T by a nonlinear 
equation in three parameters O1, O2, and a3. Thus at 
fixed T, P is a function of O1, O2, and a3: 

PT = PT (a^a^a^) (28) 

Then 
AP7.= 

(f) Aa1 + ( ^ ) Ao2 + ( ^ ) Ao3 

(29) 

Given initial estimates of O1, a2, and O3 we can calculate 
(eq 28) a value of P at each measured value of T and 
hence, with the measured value, the value of AP. In 
addition at each value of T, we can calculate the three 
differentials in eq 29. Thus for n data points there are 
n equations in the three unknowns, Aa1, Aa2, and Aa3. 
The corresponding estimates may be calculated by 
using the linear least-squares technique and the original 
estimates of the parameters corrected and used as input 
to a new calculation. The iteration continues until AP 
is, as described above, satisfactorily small. The as­
sumption is made that the iterative calculation con­
verges on a global minimum. Wentworth41 comments 
on procedures to be used if the analysis is failing to 
converge. 

V. Descriptions of the Dependence on 
Temperature of Equilibrium and Rate Constants 

We start out with the assumption that the chemical 
composition of a closed system at fixed temperature and 
pressure can be characterized by the true equilibrium 
constant K*. The aim is to describe how K* depends 
on temperature given that we have measured values K 
at a series of temperatures T. The first task is to for­
mulate an equation to describe the observed depen­
dence. Three approaches to the problem have been 
suggested. In the first method, an equation is proposed 
which relates K and T so that differentiation with re­
spect to temperature leads to an equation for AHe 

(Table I). A further differentiation yields an equation 
for ACp

e. Unfortunately differentiation results in a loss 
of precision such that, for example, ACp

e is less pre­
cisely established than AHS. Similarly the standard 
error in both AC® and AHe is a function of the 
standard error in K. King claims2 that even for the 
most precise data it is not possible to attach significance 
to changes of less than approximately 80 J mol"1 in AJTT9 

and 8 J mol"1 K"1 in ACp
e. The majority of equations 

in this first class are formulated such that the linear 
least-squares analysis can be used. In addition, there 
is a strong prejudice in favor of equations expressing 
In K as a function of T which can be readily differen­
tiated to yield the thermodynamic parameters (cf. Table 
II). Thus in principle we might choose to express K in 
terms of a simple three-term polynomial in T: eq 3 in 
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Table VI. While the equation for K is readily differ­
entiated to yield the equation for AHe (e.g., d In K = 
if-1 dif), the resulting expression for ACp

e is unat­
tractive. Further, calculation of the standard error on 
AHe and ACp

e from the standard errors on alt a2, and 
a3 is not straightforward because AHe is not a linear 
function of these parameters. 

There is an even stronger prejudice for equations for 
In K which contain a term linear in T~l. It is often 
implied that in a well-behaved system In K is a linear 
function of !T"1 and that additional terms dependent on 
T account for deviations from this linearity. Although 
we have argued against this view, it is often the case 
that in a preliminary perusal of the data In if is plotted 
against T"1. 

The second approach to the problem of relating K 
and T is to formulate an equation expressing the de­
pendence on temperature of the enthalpy term, AHe. 
The resulting equation is integrated to obtain an 
equation for the dependence of In K on T. The simplest 
example is to treat AHe as independent of temperature 
so that integration (Table I) yields an equation which 
relates In K and T1: eq 1 of Table VI. 

The third approach is to express the dependence of 
ACp

e on T in a convenient form where one integration 
yields an equation for AH& and another integration 
yields an equation for In if, Table I. In some instances, 
all three approaches may lead to an equation for In K 
having the same form, but the starting hypotheses are 
quite different. 

An important point concerns the technique of fitting 
In if to an equation in temperature rather than K itself. 
Suppose that the true value for if is 1.0 X 10~5 and that 
the estimated value is 1.01 X 10"5, a difference of 1%. 
In terms of logarithmic functions, the true value of In 
K is -11.51293 and the estimated value is -11.50298, a 
difference of 0.086%. Clearly the latter figure looks 
more attractive, although one should not generalize 
because In x is not a linear function of x. Nevertheless, 
we should be wary of presenting the goodness of fit in 
a way which yields an overoptimistic picture. A further 
advantage of the linear least-squares analysis based on 
the dependence of In K on T is that the errors on the 
derived thermodynamic parameters are linear functions 
of the calculated coefficients. Thus the estimated error 
on AHe in eq 1 of Table VI is related to standard error 
on O1. 

When the analysis is completed, it is often possible 
to compare, for example, van't Hoff based enthalpy 
parameters and those obtained from calorimetric data. 
In such comparisons the definition of the standard 
states for solutes in solution is important. Thus if the 
standard state for the solute is defined as the hypo­
thetical solution where m2 and y2 are both unity, the 
derived equilibrium constant refers therefore to the 
molality scale, i.e., K(m). 

AG6(m) = -RT In K(m) (30) 
However it may be that the concentration scale has 
been adopted where the standard state for the solute 
is the hypothetical solution where C2 = 1.0 and y2 = 1.0, 
to yield the equilibrium constant if (c). Similarly on the 
mole fraction scale, the standard state for the solute is 
the hypothetical solution where X2 = 1.0 and the asym­
metric activity coefficient f2 = 1.0, to yield the equi­
librium constant K(x). 

It is a matter, at least initially, of convenience which 
scale is chosen in a particular study because these 
methods reflect different ways of expressing the same 
chemical potential of a solute in a given solution. 
However various arguments have been advanced over 
the merits of each scale. For example, Gurney44 appears 
to favor the mole fraction scale. Quantities on this scale 
are called44 unitary; quantities on other scales contain 
an additional cratic contribution. Ben-Naim has 
presented46 arguments in favor of parameters calculated 
on the concentration scale. The molality scale is often 
preferred to the concentration scale because the mo­
lality of a solute in solution is independent of temper­
ature and pressure. In contrast, kinetic parameters are 
generally expressed in terms of the concentration scale 
such that second-order rate constants are given in, for 
example, dm3 mol-1 s'1 rather than kg mol-1 s"1. This 
plethora of units46 often presents problems,47 but con­
version from one scale to the next is relatively 
straightforward.48 

A. Analysis Using Linear Least-Squares 
Techniques 

In this section we confine attention to those equations 
which have attracted attention in the chemical litera­
ture. Where appropriate we examine application of the 
equation to experimental data and comment on the 
estimates of derived parameters. However because our 
interest also concerns the adequacy of the model, values 
of the correlation functions (eq 21), standard deviations 
on the fitted quantity, and errors on the derived pa­
rameters are examined. 

1. Two-Term Equation: Linear Dependence of In K 
on T~1 

This treatment has been commented on in previous 
paragraphs (eq 1 of Table VI). The equation requires 
that Aife is independent of temperature, ACp

e being 
0. .Consequently AS® is independent of temperature (eq 
6 of Table I), and so AGe is a simple linear function of 
temperature. In the formally empirical equation (eq 
1 of Table VI), a2 is the value of In if when T~l is 0, Le., 
when T = °°. When T is 0, In if is indeterminate, but 
when T = 1 K, In K = O1 + a2. Thus the two temper­
ature values T=I and T = °° constitute the boundary 
values of the empirical equation for In if and exist some 
way removed from the window over which the values 
of if are measured. 

For many systems, e.g., acetic acid,49 formic acid,50 

and propionic acid51 in water, simple inspection of the 
data rules out analysis of the data in terms of eq 1, 
Table VI. However for other systems it is often con­
ventional to examine the observed dependence using 
this empirical equation. To illustrate the point we 
consider the data for cyanoacetic acid52 in water. The 
outcome of the analysis is summarized in Table VII for 
a set of data at 5 K intervals over the range 278.15 < 
T < 318.15 K where K (in dm3 mol"1) for the acid dis­
sociation constant decreases with increase in tempera­
ture. The standard deviation, S-(In K), is larger than 
that anticipated from the accuracy claimed by the in­
vestigators.52 The difference A between observed and 
calculated values of In if shows a smooth dependence 
on temperature, Figure 1, rather than a scatter of 
points. Thus it might be concluded that the equation 
used to fit the dependence is inadequate and that the 
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TABLE VII. Cyanoacetic Acid" in Water" 

analysis6 e/K S(In K) 

AH* 
(298.15 
K)/kJ 
mo I"1 

ACp* 
(298.15 

K)/J 
mol"1 K-' comments 

eq 1 
(Table VI) 

eq 4 

eq 5 

eq 6 

eq 14 

eq 1 
(Table XII) 

eq 3 
(Table XII) 

298.15 

298.15 

298.15 

1.84 x 
io-2 

1.84 x 
10"' 

1.57 x 
10"' 

6.08 x 
10"4 

1.7 x 
io-" 

6.079 x 
IO"4 

6.07 x 
IQ-" 

426.9 
(42.2) 

-4 .867 x 10"3 

(0.407 x 10"3) 
-5 .432 X 103 

(73.0) 

-7 .137 
(0.142) 

-4 .252 
(0.121) 

124.8 
(1.6) 

-19 .71 
(0.25) 

- 3 .55 
(0.35) 

-3 .60 
(0.30) 

-3 .696 
(0.002) 

-3 .728 

-3 .693 
(0.011) 

-3 .693 
(0.012) 

- 2 4 . 1 
(2.0) 

-163.9 
(2.0) 

-150 .6 

-163.9 
(2.0) 

-163 .9 
(2.0) 

C12 = -0 .9991 

C 1 2 =-0.043 

C n = -0 .999 ; 
C13= 0.998; 
C23 = -1 .000 

C12= 0.0865; 
C13 = -0 .7501 ; 
C = 0.153 

0 0 2 

0 01 

1 o 

• 0 0 1 

• 0 0 2 

- 0 0 3 

-

~ 

O 

3 

O 

O C 

O 

T/K 

a Number of data points = 9; range, 278.15 < T < 318.15. b Standard errors given in parentheses; equations refer to 
Table VI. 

TABLE VIII. ferf-Butyldimethyhulfonium Ion in Water" 

analysis: eq 1 of Table VI 
O1 = -1 .626 X 10"; SE on C1 = 5.8 

a2= 38.31, SE on a2= 0.02 

C12 = -0 .9992 

Atf *(318.159 K) = 137.84 ± 0.05a U mol"1 

Atf*(363.157 K)= 138.21 ± 0.05" kJmol- ' 

a(lnfc) = 2.357 X 10"3 

a Standard errors. 

application of eq 4 (Table VI), 6 is defined at the outset, 
and the least-squares analysis yields estimates S1 and 
d2. Here the latter quantity equals the value of In K 
at 8, and if the value of K has been measured at 6, then 
the calculated and observed values can be compared. 
Equation 4 of Table VI is equivalent to eq 1 of Table 
VI when 6 = ». If the analysis is repeated with 0 = 1, 
values of the independent variable T"1 - 0"1 are negative 
and C12 becomes positive, i.e., —1-1.0. However when 
8 = 298.15, values of T"1 - 8~l are less than and greater 
than 0 for the cyanoacetic acid data. The value of C12 
now drops to -0.043 (Table VII). In other words it is 
not now possible to fix, for example, a2 and at the same 
time fit the data with a proportionately different value 
of O1. It is noteworthy that the standard deviation, the 
estimates S1 and d2, and their standard errors are not 
altered by switching from eq 1 to eq 4 of Table VI. 

A similar trend is observed in correlation functions 
when the kinetic data for the solvolysis of tert-h\ity\-
dimethylsulfonium ion54 in water are analyzed by using 
eq 1 of Table VI (Table VIII). The dependence of the 
residuals on temperature, Figure 2, shows that the fit 
is poor, as is also confirmed by the standard deviation, 
J(In k). 

A consequence of the restrictions placed by the win­
dow is that the numerical range of T is relatively small. 
It is therefore interesting to note that, for example, in 
the case of cyanoacetic acid, a plot over the measured 
range of T"1 against T is reasonably linear. A least-
squares fit of the trend yields the following equation 
and associated standard errors. 
r-x = -[(1.129 ± 0.016) X 10"5]T + 

[(6.726 ± 0.048) X 10'3] (31) 

T/K 
Figure 1. Dependence on temperature of the difference, A, 
between observed and calculated values of In K for cyanoacetic 
acid in water62 following analysis using (a) eq 1 and (b) eq 6 of 
Table VI. 

derived thermodynamic parameters are unsatisfactory. 
The high value for the magnitude of the correlation 

coefficient C12 between the estimates O1 and d2 indicates 
the following features of the fit. If the analysis were 
repeated but with, for example, a value of O1 fixed at 
some value away from O1 obtained above, then the best 
fitted line would require a value of d2 proportionately 
lower, c12 being negative. The goodness of fit would be 
less satisfactory, but the data could be fitted in this way. 
The magnitude of C12 can be lowered by adopting a 
slightly different approach. We noted above that when 
T = 1, eq 1 of Table VI requires that In K equals O1 + 
a2. It is possible to rewrite this equation, using the 
technique first suggested by Harned and Embree,53 to 
express the dependence of In K on temperature about 
a reference temperature 8 (eq 4 of Table VI). In the 



Equilibrium and Rate Constants Chemical Reviews, 1982, Vol. 82, No. 3 273 

T/K 

Figure 2. Dependence on temperature of the difference, A, 
between observed and calculated values of In k for solvolysis in 
water of tert-butyldimethylsulfonium ion64 as calculated by using 
eq 1 of Table VI. 

This observation prompts the testing of the following 
model for the dependence of In K on temperature. 

2. Two-Term Equation: Linear Dependence of In K 
on T 

Perhaps the simplest equation, prompted by eq 31, 
expresses In K as a linear function of T (eq 5 of Table 
VT). It is now interesting to observe that differentiation 
of this equation yields an expression for AHe where 
AH® is dependent on temperature. Formally the new 
equation yields an expression for ACp

e. Analysis of the 
dependence on temperature of the acid dissociation 
constant for cyanoacetic acid52 leads to the parameters 
given in Table VII. Equation 5 (Table VI) fits the data 
slightly better than eq 1 of Table VI, but the overall 
goodness of fit remains poor. However it seems, at first 
sight, odd that the amount of information obtained 
from the same set of data depends on whether In K is 
expressed as a function of either T or T"1. The problem 
is resolved if one plots the dependence of AH8 on tem­
perature together with the standard errors and on the 
same plot includes the values of AHe and the standard 
errors from eq 1 of Table VI (Figure 3). It follows from 
eq 5 (Table VI) that the error on the estimate for AHe 

increases with increase in T2 whereas from eq 1 (Table 
VI) this error is independent of T. Further the values 
encompassed between the standard errors from eq 1 
also encompass most of the range covered by AHe 

calculated from eq 5. The overlap is complete if the plot 
is redrawn with confidence factors calculated from the 
Student t values at the 95% confidence level. Thus the 
two analytical equations are not in conflict in the extent 
to which they provide information about the system. 
However eq 5 (Table VI) is unsatisfactory because it 
starts out with the requirement that AH6, ACp

e, and 
A2Cp

e have the same sign. This condition is, however, 
not demanded by thermodynamics. Clearly, in order 
to avoid this requirement of the analysis, information 
concerning heat capacity terms requires another term 
in the equation for In K. This observation prompts 
therefore the development of equations which contain 
three terms, two of which are dependent on tempera­
ture. 

3. Three-Term Equations for Dependence of In K 
on T 

Many equations used to analyze the dependence of 
In K on temperature take as their basis eq 1 of Table 
VI but include an additional term dependent on tem-

—i 

, S . 

20 30 

(T-273-15K1/K 

Figure 3. Enthalpy terms and standard errors for cyanoacetic 
acid62 in water calculated following analysis of data using (a) eq 
1 and (b) eq 5 of Table VI. 

perature. The implied aim is, as noted above, to ac­
count for deviations from the anticipated linear de­
pendence of In K on T~l. The new class of equations 
can be written in the following general form: 

In K = C1 + Lf(T) (32) 

Some general features can now be identified bearing in 
mind the form of the van't Hoff equation, Table I. If 
i{T) contains a term linear in T~l, the equation for AHe 

contains a term independent of temperature. If f(T) 
contains a term linear in In T, the equation for AH6 

contains a term linear in T. If i{T) contains a power 
series in T, then with each additional term (eq 33), an 
equation is obtained for a further differential of ACp

e 

with respect to temperature. 
1=9 

f(T) = E a{P (33) 
;=i 

If i(T) contains a power series in T~l (eq 34), ex­
pressions for all differentials of ACp8 with respect to 
temperature are recovered. Here again we encounter 

f (D = 2 O1-T* 
i=i 

(34) 

the conclusion that the amount of information extracted 
from the same set of data depends on the form of the 
equation used to express the dependence of In K on 
temperature. Thus to obtain equations for all tem­
perature differentials of ACp

e it is apparently only 
necessary to add one term proportional to T~2 in eq 1 
of Table VI. This highlights the necessity of examining 
with utmost rigor the statistical significance of the de­
rived parameters and their associated errors. 

(a) Valentiner Equation. One of the first methods 
for analyzing the dependence of In K on T was proposed 
by Valentiner16 who suggested that f(T) in eq 32 should 
include two terms, one proportional to T"1 and another 
proportional to In T (eq 6 of Table VI). In contrast to 
the equations given above, the Valentiner equation can 
accommodate situations where the plot of In K against 
T passes through a maximum or minimum. At this 
temperature AHe is 0. The equation leads to indeter­
minate values of K when T is either zero or infinity. At 
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TABLE IX. Acetic Acid in Water; Analysis Using Equations in Table VI 

analysis 0/K InK 
AH* (298.15 K)/ 

kJinol"1 
ACp* (298.15 K)/ 

J mol-' K-' 
T(In K = 
max)/K 

10 sKm a x / 
kg mol"1 

eq 6° 
eq 7 b 

eq 8 
eq 12 

= -0.9997 

298.15 

C23 = -1.000 

1.14 x 10"3 

1.16 x IO"3 

2.45 x IO"3 

1.18 x IO"3 

C13= 0.9996.
 6 C 1 

-436.5(5.1) -155.1(1.5) 
-391.5(5.8) -153.0(1.6) 
-250(1.95 x IO3) 
-411(31) -155.7(2.3) 

, = -0.9996; c,3 = -0.9996; C13= 0.9985. 

295.3 
298.58 
296.38 

1.756 
1.756 
1.754 

T = 1 K, In K equals ax + a2 and AH® equals R{a3 - O1). 
The major requirement of the Valentiner equation is 
that ACp6 is independent of temperature, being equal 
to O3R. Using these derived thermodynamic parameters 
at T = 1, it is possible to replace the three a parameters 
to obtain the following equivalent form. 

InK = [ 
ACp

e AHe(T =1) 

R R 

D] 
A C / AHe(T = 1) 

R R } 
H In [K(T = 

+ (ACp
e/R) In T (35) 

In fitting the data to the Valentiner equation, King2 

first estimates a3 by using pairs of values (e.g., K1ZT1 
and K2/ T2) in conjunction with eq 36 which is an 
equation for a straight line, slope O3. This procedure 

[• T1 In K1 - T2 In K2 I T T1 In T1 - T2 In T2 "I 

L T1-T2 J - 0 3 L T1-T2 J 
+ a2 (36) 

is a convenient method for assessing whether a given 
set of data is consistent with a nonzero ACp

e. 
The results of fitting the dependence on temperature 

of KA for cyanoacetic acid in water52 to the Valentiner 
equation are summarized in Table VII. The standard 
variation CT(1II K) is significantly less than that obtained 
using eq 1 of Table VI and is in line with the probable 
errors estimated on the measured dissociation con­
stants.52 The differences A (In K(obsd) - In K(calcd)) 
show a scatter when plotted against temperature (Fig­
ure 4). The calculated value of AHe at 298 K is nega­
tive, becoming more negative with increase in temper­
ature. A similar good fit is obtained for the data de­
scribing the acid dissociation constants for acetic acid 
in water49 (Table DC), the derived parameters predicting 
that K is a maximum at 295.33 K. The value of ACp

e 

is slightly lower than that obtained from calorimetric 
experiments.18'55,56 

As commented in the introduction, the Valentiner 
equation has been extensively used by Robertson to 
analyze kinetic data for solvolytic reactions in water.7 

The results of the analysis for 2 sets of data are sum­
marized in Table X and Figure 4, Le., solvolysis in water 
of tert-butyl chloride57 and ethyl bromide.58 The data 
are satisfactorily fitted by using this approach although 
there is some indication that the residuals A for ethyl 
bromide (Figure 4) follow a pattern rather than gen­
erating a scatter when plotted against temperature. It 
would appear that there is some feature of the data 
which is not accounted for by the Valentiner equation. 
The original point of interest7 in these data was the 
much smaller value for ACp* shown by tert-butyl 
chloride than by ethyl bromide. If the reaction is in-

T/K 

T/K 
Figure 4. Dependence on temperature of the difference, A, 
between observed and calculated values of In k following analysis 
using eq 6 of Table VI for solvolysis in water of (a) tert-butyl 
chloride"7 and (b) ethyl bromide. 

deed a simple one-stage reaction (i.e., model I of Table 
V), then it was suggested that a significant amount of 
solvent reorganization accompanied the activation 
process for tert-butyl chloride.7'57 We do not pursue the 
discussion of these points. 

Despite the apparent success in fitting a wide range 
of both equilibrium and kinetic data with the Valen­
tiner equation, there are several worrying features. For 
both equilibrium and kinetic data, the correlation 
coefficients are very close to unity. Indeed, examination 
of the data for numerous carboxylic acids,59 the self-
dissociation constants of water60 and deuterium oxide,61 

and the kinetic data for many solvolytic reactions62 

reveals this to be a common feature of the Valentiner 
equation. There is another feature. A plot of a3 against 
CZ1 (Figure 5) for ten carboxylic acids in water shows that 
these quantities are not only related for one acid but, 
within a group of related acids, a close link appears to 
exist. A similar pattern is generated66 by the parame­
ters obtained when kinetic data for solvolytic reactions 
are fitted to the Valentiner equation. Indeed for the 
equilibrium data at the 95% level of confidence, the line 
passes through the origin with slope equal to (30 ± 7) 
X IO"3. Two characteristics of the analysis indicate that 
this unexpected correlation is an artifact of the Valen­
tiner equation. The correlation coefficient C13 is close 
to unity because over a restricted range of temperature 
In T is close to a linear function of T"1. For the range 
278 < T < 318 K quoted in the data for cyanoacetic 
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Figure 5. Dependence of G3 on di following analysis using the 
Valentiner equation (eq 6 of Table VI) of the acid dissociation 
constants in water for (1) diisopropylcyanoacetic acid,63 (2) io-
doacetic acid,84 (3) acetic-d3 acid, (4) fluoroacetic acid,64 (5) 
chloroacetic acid,64 (6) formic acid,50 (7) cyanoacetic acid,62 (8) 
bromoacetic acid,64 (9) acetic acid,49 and (10) propionic acid.51 

acid, a least-squares fit of In T against T yields the 
following parameters: 

In T = [(3.38 ± 0.02) X 10"3]T + 4.696 ± 0.007 (37) 

In other words the terms in 71"1 and In T in eq 6 of 
Table VI can be replaced67 by a single term in either 
71"1 or In T with only a modest change in the goodness 
of fit. Thus the quantities Ct1 and a3 cannot be inde­
pendently estimated. This observation is borne out by 
eq 35. Inspection reveals that each parameter, O1, a2, 
and a3, contains a contribution from ACp

e and two 
contain the enthalpy quantity AIP[T = 1). It follows 
through a series of related compounds the dependence 
of O1 on a3 can be represented by eq 38. Moreover, 

SRO1 = 5Ra3 - R-1 8nAHe (T = 1) (38) 

c5RAHe (T = 1) is O for monocarboxylic acids in water 
although the significance of this plot is not clear. 
Nevertheless these additional features of the Valentiner 
equation throw some doubt on the advisability of its use 
to analyze kinetic and thermodynamic data. 

(b) Robinson Equation. This equation46'68 is similar 
to the Valentiner equation except that f(T) in eq 32 
contains a term proportional to T rather than In T 
(Table VI). For equilibrium parameters, AHe is a 
function of T2 the equation for AH9 containing no term 
linear in T. The heat capacity quantity ACp

e is a linear 
function of T, being zero when T = O. The Robinson 
equation can accommodate situations where In K shows 
an extremum when plotted against temperature, the 
condition being that O1 and a3 have the same sign. At 
T = 1, In if is equal to O1 + a2 + a3. Substitution for 
the three a coefficients by the thermodynamic param­
eters yields the analogue of eq 35. 

InK = 

AHe(T = 1) 

[ + 

D + 

R 

AHe(T = 1) 
R 

AC„e(T = 1) 

~2R 

AC/(T = 1) 

R 

U + InX(T = 

T 

(39) 

We note how, for example, AHe(T = 1) appears in two 
of the terms. Moreover, we have shown that over a 
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restricted temperature range, T"1 is close to a linear 
function of T. It is anticipated, therefore, that the 
correlation coefficients will be close to unity. Indeed 
this is the case, as shown, for example, in the analysis 
of the data for acetic acid (Table IX). The equation 
fits the data with a standard deviation similar to that 
for the Valentiner equation, as are the derived quan­
tities, e.g., the temperature at which In K is a maximum. 
The overall prediction of the Robinson equation is that 
AGe is a quadratic function of temperature. However, 
the requirement that ACL® is a linear function of tem­
perature is restrictive. The error on the estimate of 
ACp

e increases with increase in temperature. The 
equation for the error in AHB includes a term linear in 
T2. 

(c) Ives and Pryor Equation. This equation was 
originally proposed64 in order to overcome the restric­
tions imposed by the Valentiner equation. In particular 
it was argued that ACp

e is likely to be dependent on 
temperature. The outcome is an equation which ex­
presses AC® as the sum of two terms, one dependent 
on T and the other dependent on T2 (Table IV). The 
equation is essentially the first three terms of a poly­
nomial in T and is the first example here of an equation 
for the dependence of In K on temperature having no 
term in T~l (eq 40; cf. eq 32). The data describing the 

In K = L C1T""1 (40) 

dependence of dissociation constants for acetic acid can 
be fitted to this equation, the derived parameters being 
summarized in Table IX. The standard deviation &(ln 
K) is slightly larger than in the case of the Valentiner 
equation, and a plot of the residuals against tempera­
ture shows some evidence of a sinusoidal dependence. 
The correlation coefficients are again close to ±1. Part 
of this behavior can be attributed to the fact that over 
the range 273 < T < 333 K1 T2 is close to a linear 
function of T, the equation being 

T2 = (606.3; SE = 5.O)T- (9.155 X 104; SE = 
1.52 X 103) (41) 

Consequently the closeness of the correlation coeffi­
cients to ±1 is an unhappy feature, again a consequence 
of the form of the equation. We also note that AH® and 
the estimated error on AiJ8 are dependent on T2. 
Hence at 273.15 K, AH® is 2.817 kJ mol"1 with standard 
error 1.57 kJ mol"1, and at 333.15 K, AH® is -6.63 kJ 
mol-1 with standard error 2.58 kJ mol-1. Similarly the 
standard error in ACp

e is proportional to T. At 298.15 
K, AH® is -250 J mol-1 with standard error 1.95 kJ mol-1 

and hence is statistically indistinguishable from 0. 
Although formally the equation for In K results in an 
estimate of A3C ® (i.e., -9.75 X 10"3 [SE = 2.19 X 10"4] 
J mol"1 K"3), this is at the expense of being able to 
estimate AH® within reasonable limits. 

In a later publication, Feates and Ives52 comment that 
the dependence of ACP® on temperature required by eq 
8 of Table VI is too restrictive, and they set down a 
number of equations which express the dependence of 
In K on T. Some of these equations contain a product 
term in T In T. One of the examples listed by Feates 
and Ives52 is the following three-term equation. 

In K = O1 + a2T + a3T In T (42) 

However application of the van't Hoff equation (Table 
I) shows that here also AH® is proportional to T2, which 
means that the errors on the estimate of AH9 must also 
increase in T2. An equation for In K which avoids these 
problems was proposed by Wold69 although the par­
ticular application was to kinetic data and incorporated 
a fitting procedure using spline functions. This tech­
nique fits the dependence of In k on T piecewise to the 
eq 9 of Table VI, the pieces being joined at knot points 
where the first and second derivatives are continuous. 
In addition to the parameters in the equation for In k, 
the number of knots is also a variable. 

4. Four-Term Equations for Dependence of In K on T 

The equations in this section were proposed on the 
grounds that the dependence of In K on temperature 
could not be accounted for by expressions which contain 
one term in T"1 and one other term in temperature. In 
principle, the floodgates are now open, and all manner 
of combinations of temperature terms can be employed. 
The Harned equation49,70 can be considered as an ex­
tension of the Valentiner equation with the addition of 
a term linear in temperature (eq 43). In view of the 

In K = O1T"1 + a2 + a3 In T + a4T (43) 

observation above that both T"1 and In T are close to 
linear functions of T, this equation does not seem sat­
isfactory. Indeed efforts to fit the dependence of In K 
on T for acetic acid in water were unsuccessful because 
one of the three terms in temperature is redundant once 
the other two were calculated. Under these conditions, 
the coefficients Gt1, a3, and a4 are said to be aliased. 

A similar difficulty was experienced with the Jenkins 
equation71 which expresses In K as a function of T in 
an equation which contains the first three terms of a 
series in In T (eq 44). 

InK = O1 + O2T-1 + O3T"1 In T + O4T"1 (In T)2 (44) 

5. Linear Equations Using a Reference Temperature B 
for Dependence of In K on T 

These equations describe the dependence of In K on 
temperature about a reference temperature 0, such that 
in the limit T -»• 0, so In K -*• In K(O). A number of 
equations have been proposed which use this general 
procedure. 

(a) Harned and Embree Equation. This equation53 

represents the first application of this technique. Or­
iginally the equation was developed in order to account 
for the observation that In K showed a maximum at a 
certain temperature in the case of various carboxylic 
acids in water. As proposed, the temperature 0 is the 
temperature at which In K is a maximum such that 
AH®(0) is 0 (Table VI). As written, a linear least-
squares analysis cannot be used to obtain estimates of 
In K{6), O1, and 8. Therefore it is necessary to estimate 
6 from a plot of In K against T and hence use the 
analysis to obtain estimates of In Kifi) and O1. This is 
rather unsatisfactory. The importance72 of the Harned 
and Embree equation arises from the concept of de­
fining a reference temperature. Thus, it is possible to 
select any convenient temperature as the reference and 
to fit the data to the proposed equation using the linear 
least-squares technique. Thus, Feates and Ives in an 
extension of the equations described in the previous 
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section used 298.16 K as their reference temperature. 
It is therefore possible to rewrite the equations de­

scribed above in terms of the reference temperature 8. 
Thus the Valentiner equation can be rewritten as fol­
lows: 

In K = In K(S) + O1CT1 - 0"1) + a2 In (T/9) (45) 

In the following section we examine several methods of 
analyzing experimental data which have used the con­
cept of the reference temperature in the development 
of treatments which are not simple derivatives of pre­
vious equations. 

(b) Wold Equation. In the Wold equation,69 the 
third term in eq 45 is replaced by a term proportional 
to the square of (T"1 - r 1 ) (Table VI). An example of 
the application of this equation is summarized in Table 
X for tert-b\ity\ chloride in water. The standard de­
viation is comparable to that obtained by using the 
Valentiner equation, but the correlation coefficients 
between the estimates have fallen appreciably. The 
reference temperature B corresponds to a data point so 
that comparison between observed and calculated 
values at B is possible; e.g., if 8 = 283.173, &(calcd, B) = 
3.565 X 10"3 s"1 and fc(obsd, 8) = 3.569 X 10"3 s"1, rep­
resenting a difference of 0.11%. 

(c) Polynomial Equation. Several of the equations 
discussed above contain terms in T which correspond 
to the first few terms in a polynomial. Recognition of 
this feature prompts the idea that the goodness of fit 
might be improved if the series were extended to in­
clude higher terms in the polynomial. The problem of 
deciding where the polynomial should be terminated 
is resolved by testing the statistical significance of each 
new term. If these ideas are coupled with the concept 
of fitting the data about a reference temperature, the 
following polynomial is proposed. 

In K = E O1(T - ey-1 (46) 
i'=i 

If the polynomial is truncated when n = 4, the equa­
tions given in Table VI are obtained. 

The data68 for the solvolysis of ethyl bromide in water 
have been fitted to eq 12 of Table VI. The improve­
ment in the goodness of fit as measured by the differ­
ence A (In fc(obsd) - In fe(calcd) is shown in Figure 6 as 
the number of terms in the polynomial is increased. A 
scatter of values does not emerge until five terms are 
used. The cut-off point in the polynomial can be judged 
by using either the Student t test or an F test of the 
variance. If, for example, six terms are used in the 
polynomial with reference to the 33 data points for ethyl 
bromide, the mean of the square of the residuals on 27 
degrees of freedom is 1.190 X 10"6. The sum of squares 
accounted for by introducing the sixth term is 2.28 X 
10"6, and so the variance ratio equals 1.19. However 
since ^(1,27,0.05) equals 4.2, we conclude that there is 
less than a 5% chance that inclusion of the sixth term 
is significant. A similar test shows that the variance 
ratio for inclusion of the fifth term is 5.3 and there is 
less than a 5% chance that the fifth term is insignifi­
cant. The derived parameters are summarized in Table 
IX. In contrast to the Valentiner equation, the poly­
nomial equation indicates that ACp* is dependent on 
temperature, becoming less negative with increase in 
temperature (Figure 7). The parameters also indicate 
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Figure 6. Dependence on temperature of the difference, A, 
between observed and calculated values for In k for the solvolysis 
of ethyl bromide in water68 as calculated by using eq 12 of Table 
VI with (a) two terms, (b) three terms, and (c) five terms in the 
polynomial equation. 

TABLE XI. Correlation Matrix for Analysis of 
Dependence of Rate Constant on Temperature for Ethyl 
Bromide in Water0 

Correlations of Estimates 
1 1.0000 
2 -0.4066 1.0000 
3 -0.8199 0.4866 1.0000 
4 0.4226 -0.9187 -0.5380 1.0000 
5 0.7153 -0.5192 -0.9670 0.6109 1.0000 

1 2 3 4 5 
a Data analyzed by using five terms in the polynomial 

equation (eq 7, Table X). 

that ACp* passes through an extremum around 298 K. 
The c matrix for this analysis is shown in Table XI. 
With 5 coefficients, the result is a 5 X 5 matrix of 
coefficients. The coefficients cM and C35 are close to ±1. 
This can be understood by examining plots of (T - 0) 
against (T - B)3 and of (T - B)2 against (T - BY; the 
curves show a rough proportionality between these 
quantities. The same pattern is not formed by plots 
of, for example, (T - B) against (T - B)2. 

The outcome of the analysis for the kinetics of sol­
volysis in water of tert-butyl chloride57 is summarized 
in Table X. The dependence of ACP* on temperature 
is shown in Figure 7b where ACP* becomes more neg-
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Figure 7. Dependence of the heat capacity of activation on 
temperature calculated from the kinetic data by using eq 12 of 
Table VI for (a) ethyl bromide68 and (b) tert-buty\ chloride.67 

ative with increasing temperature. Application of the 
polynomial equation to the acid dissociation constant 
for acetic acid leads to the parameters summarized in 
Table IX. The calculated dependence of ACp

e on tem­
perature is shown in Figure 8. In the last two examples 
the correlation matrices have characteristics similar to 
those shown in Table XII. The corresponding plots of 
the residuals are similar to those shown in Figure 6. 

The resulting dependence of ACp
e on temperature for 

acetic acid in water is in qualitative agreement with the 
trend calculated from calorimetric data.73 However the 
latter predict a more dramatic dependence with a 
minimum around 293 K where ACp

e is approximately 
-172 J mol"1 K"1. 

A comparison of the standard deviations between 
different methods of fitting the same data (cf. Tables 
IX and X) shows that the polynomial equations provide 
a reasonable fit to both equilibrium and rate data. The 
amount of information extracted from the data in­
creases as the number of terms increases. A five-term 
polynomial allows an estimate to be made of the fourth 

160 
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Figure 8. Dependence on temperature of the heat capacity 
quantity AC„e for acetic acid in water49 as calculated by using 
eq 12 of Table VI. 

derivative of ACp
e with respect to temperature. If two 

terms are used in the polynomial, only AHe can be 
estimated. Nonetheless in all cases the error on the 
estimate of AHe is proportional to T2. 

(d) Orthogonal Polynomials. We illustrate the 
application of this method of analysis to the data for 
cyanoacetic acid52'74 in water where the data comprise 
values of the dissociation constants at nine tempera­
tures at 5 K intervals over the range 278.15-318.15 K. 

The orthogonal polynomial expresses the dependence 
of In K on a new set of variables, 7; (Table VI), which 
are functions of a quantity 4>; <j> is defined as (T -
T7n) /5.0 where Tm is the mean temperature and the 
denominator is the temperature interval for this data 
set.52 In this example, it is statistically justified to 
include the cubic term in the polynomial. A conse­
quence of the orthogonal polynomials is that the 
standard errors on the estimates of a parameters are 
independent. However the enthalpy and heat capacity 
quantities (Table VI) depend on more than one a 
quantity, and hence their standard errors are dependent 
on the standard errors in each a term (Table VII). 

6. Equations Using a Reference Temperature 6 for 
the Dependence on Temperature of Enthalpy 
Parameters 

Rather than starting out with an equation for the 
dependence of In K on temperature, we noted above 
that it is possible to formulate an expression for the 
dependence of, say, AHe on temperature. Integration 
of this equation yields (Table I) an expression for the 
dependence of In K on temperature. A definite integral 
is obtained if the limits, AH6 at T and AHe(6) at 0, are 
used. Moreover if the equation expresses AHe as a 
linear function of the fitting parameters, the final 
equation for In K will be amenable to analysis by using 
the linear least-squares technique. Here we consider 
three models of varying complexity which start out with 
an expression for the dependence of AH6 on T. 

(a) Scott Equation. The simplest model75 expresses 
AHe as a linear function of T - 6 such that ACp

e is 
independent of temperature (Table XII). Integration 
leads to an equation for In K where the unknown pa­
rameters are In K(S), AIP(S)/R, and ACp

e/R. A similar 
treatment based on a linear dependence of AH* on T 
- B leads to an equation for the dependence of In k on 
temperature. The results of applying this method of 
analysis are summarized in Table VII for cyanoacetic 
acid in water52 and Table X for the solvolysis of iso-
propyl benzenesulfonate.76 In the case of cyanoacetic 
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acid the fit is as good as that obtained by the Valentiner 
equation, but the correlation coefficient between the 
estimates of the second and third terms, c23, is much 
lower, 0.153. Indeed we have commented that the 
Valentiner equation uses as one boundary value the 
temperature T = I . If the Scott equation is rewritten 
in terms of the reference temperature 8 = 1, eq 35 is 
recovered. Similarly if ACp

e is set equal to 0 and 8 = 
1, we recover eq 1 of Table VI. If 8 corresponds to the 
temperature at which In K is a maximum, the Scott 
equation simplifies to the following. 

lntf = lnKJ0) + ^ [ | ; - l + l n ( | j ] (47) 

A link between eq 47 and eq 10 of Table VI can be 
established if ACp

e is set equal77 to -40 cal mol"1 K"1. 
Therefore eq 47 can be rewritten as follows. 

In (K/KJ = 8.74^ | - 1 + In (j J ] (48) 

If eq 48 and eq 10 of Table VI are equivalent, the two 
temperature functions should be linearly related. In­
deed over the range 273.15 < T < 373.15 this turns out 
to be the case, the ratio of the term in eq 48 to (T - 0)2 

being, for acetic acid, 5.76 X 10~5. 
(b) Three-Term Polynomial Equation. The 

equation discussed above prompts the extension of the 
polynomial for AHe to three terms78 on the basis of a 
Taylor expansion about the temperature 0 (Table XII). 
We recall that proof of the Taylor expansion starts with 
a polynomial for the function, f(x). Differentiation with 
respect to temperature leads to an equation showing a 
linear dependence of ACp

e on T and integration leads 
to the required linear equation for In K, in terms of the 
four parameters, In K(O), AHe(8)/R, ACp

e{6)/R, and 
A2Cp

e/R. Although the equation can be used to fit the 
data for both acetic (cf. Table IX) and cyanoacetic acid 
(cf. Table VII), the standard deviation on the estimate 
for (A2Cp

6/R) is such that incorporation of this term 
is not significant at the 95% level of confidence. 

Equation 2 for In K given in Table XII resembles that 
given by Eyring and co-workers.78 Another derivation 
is to start with a four-term polynomial {n = 4 in eq 46) 
in T - 8. The equation for AHe{8) [cf. eq 12 of Table 
VI] can be used to obtain an expression for a2. Com­
bination with the equation for ACp

e(0) leads to an ex­
pression for as in terms of AHe(8) and ACp

e(8). Dif­
ferentiation of the equation for ACp

e yields an expres­
sion for A2Cp

e(0). Because it is assumed that A2Cp
e is 

independent of temperature, all terms in this equation 
containing T - 8 are 0 so that a4 can be related to 
AH®(0), ACp

e(0), and A2Cp
e. The final equation is given 

as eq 13 in Table VI. 
The difference in sign on the enthalpy parameters in 

the third and fourth terms between eq 13 (Table VI) 
and that given by Eyring78 is a consequence of the 
binomial expansion used by Eyring for T"1. If 0 cor­
responds to the temperature where In K is a minimum 
and if A2Cp

e is 0 we recover the Harned and Embree 
equation53 (eq 10 of Table VI). If in eq 2 of Table XII 
we set A2Cp

e(0) equal to 0, we recover eq 1 of Table XII 
for the dependence of In K on temperature. It is also 
noteworthy that in eq 13 of Table VI there is no term 
in In T. This feature does not bear out the claim that 
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Figure 9. Dependence on temperature of the difference, A, 
between calculated and observed values of In K for the self-dis­
sociation constant of water60 following analysis using eq 3 of Table 
XII. 

TABLE XIII. Self-Dissociation Constant for Water45 

analysis: eq 3 of Table XII 
B = 298.15 K; 6 In K= 1.069 X 10"3 

AH*(d ) = 56.196 kJ mol-»;SE = 29 J mol"1 

ACp
e(e ) = - 216.8 J mol-1 K"'; SE = 1.8 J mol"1 K-

A2Cp
e= 1.54 J mol-' K"J;SE= 0.27 J mol"' K"2 

equations which omit such a term are purely empirical, 
a comment we take to imply a criticism. 

(c) Clarke and Glew Equation. The treatment 
outlined above prompts the development of an equation 
which extends the Taylor expansion for the dependence 
of AHe on temperature about AHe(6) at 0. This 
treatment forms the basis of the Clarke-Glew equa­
tion79 for the dependence of In K on temperature. The 
equation (3 of Table XII) for AH0 is differentiated with 
respect to temperature, yielding a series for the heat 
capacity, ACp

e in terms of ACp
e(0); integration yields 

the equation for In K. As in the case of the polynomial 
equation for In K (eq 46) it is necessary to test the 
significance of adding each new term in the expression. 
The Taylor expansion requires79 that we cannot set one 
of the terms (e.g., the second) to zero and use higher 
terms (e.g., the third) in the analysis. This means that 
if, for example, ACp

e(0) or ACp
e(0) is O, the analysis will 

not lead to satisfactory values for A2Cp
e(0) or A2Cp*(0). 

Two examples of the application of Clarke-Glew 
equation to equilibrium data show that the analysis 
yields a satisfactory fit of the data. The derived pa­
rameters are summarized in Table VII for cyanoacetic 
in water.52 In the case of the self-dissociation constant 
for water,60 a four-term equation is statistically signif­
icant (Table XIII and Figure 9). The small but sig­
nificant disagreement between values of AHe (298.15 
K) for the self-dissociation obtained by emf. and cal-
orimetric methods has prompted comment and con­
siderable efforts to resolve the disagreement.60 The 
calorimetric value, 55.815 J mol-1, is slightly lower.80-82 

The current best value60 for the pKw of water at 298.15 
K is 14.004. The value of ACp

e at 298.15 (Table XIII) 
is in good agreement with the value, -215 ± 4 J mol-1 

K-1, obtained from measurement of heat capacities of 
solutions using a flow microcalorimeter.83 

The Clarke-Glew equation can also be used to ana­
lyze kinetic data. Thus for the solvolysis in water of 
ethyl bromide,58 it is significant to calculate the de­
pendence of ACL* on temperature in terms of its first 
derivative (Table X). It is interesting to observe that 
the equation predicts that ACP* becomes less negative 

with increase in temperature (cf. Figure 7a). However 
for the solvolysis in water of iert-butyl chloride57 and 
isopropyl benzenesulfonate,76 only the estimate for ACP* 
is statistically significant. 

In their application of the analysis, Clarke and Glew79 

were particularly concerned with the numerical preci­
sion in the calculation because T - 0 is smaller than 0. 
The equations were recast by defining a new variable, 
x [(T - B)16]. This procedure is probably not so im­
portant if the calculations are carried out on a main 
frame computer employing a large number of bits per 
word. However this procedure should be followed if the 
calculations are performed using a small desk-top cal­
culator. 

If only four terms are used in the Clarke-Glew ex­
pression, we recover eq 2 in Table XII, and if only three 
terms are used, we recover84 eq 1 in Table XII. The 
Clarke-Glew equation has attracted considerable at­
tention. Bolton85 strongly recommends this analytical 
procedure on the grounds that it is simple to use, 
nonempirical, and exact. The latter two descriptive 
terms seem rather sweeping. Clarke and Glew79 claim 
that the analysis provides a unique, thermodynamically 
meaningful, and completely general representation of 
the data. For our part, we would claim the use of the 
word "unique" in this context is slightly overoptimistic. 
We do not agree with the statement by Wold86 that the 
Clarke-Glew analysis uses an orthogonalization proce­
dure. One important feature of the Clarke-Glew and 
related polynomial equation is that each thermody­
namic parameter at temperature 0 is related to one 
parameter obtained from the least-squares analysis. A 
further consequence is that if 0 is near the middle of 
the experimental range, the standard errors on these 
quantities are less than those based on, say, the Va-
lentiner equation where the effective reference is at T 
= 1. As 0 moves away from the mean temperature, the 
standard errors increase. The correlation coefficients 
between estimates show a marked and complex de­
pendence on 0. 

Comparison between thermodynamic parameters 
derived from the above analytical techniques and those 
from calorimetric data raises a number of issues. In 
particular there is the question as to the precision 
necessary in the experimental determination of equi­
librium constants which will lead to reliable estimates 
of the dependence of ACp

e on temperature. Timini87 

used the Clarke-Glew equation to show that reliable 
values of this dependence require data covering a tem­
perature range not less than 60 K and preferably 100 
K with measurements at intervals of 5 K. The com­
parisons87 drawn between values of ACp

e calculated 
from equilibrium constants and from calorimetric data88 

point to a pessimistic conclusion and, at the same time, 
present a challenge to the experimentalist. Ramette89 

introduces a cautionary note in warning about attempts 
to derive more information about ACp

e terms from the 
dependence of equilibrium constants on temperature 
than the data can possibly contain. 

7. Linear Equations Describing the Dependence on 
Temperature of Heat Capacity Quantities 

These equations start out with a description of the 
dependence of, say, ACp

e on temperature. Integration 
in conjunction with a defined AH6(6) at reference tem-
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TABLE XIV. Equations Describing the Dependence on Temperature of Heat Capacity Parameters 

equation AH* IaK 

ACp^=O1 + a2T+ atT-
1. Lewis and Randall 

AH* = AH*(8) + O1(T- 6)+ , , AH*(B)Vl 1~| O1H 
(aJ2)(T- 6)' - 0i(T-> - e-') In X= In *(fl) + — — _ ) - - _ J + - ^ 1 + JF 

T Ve 

ACp*= a, + O2T+ O3T
2 

2. Clever 

AHe= Ai/e(fl) + O1(T-S) + 
(o2 /2)(T2-02) + (o3 /3)(T3-e3) 

perature 0 leads to an equation for the dependence of 
Aff9 on temperature. A second integration leads to an 
equation for the dependence of In K on temperature. 

(a) Lewis and Randall Equation. This equation90 

describes the dependence of ACp
e on T (Table XIV) 

interms of a three-term expression. The resulting 
equation for In K contains five parameters: In K(O), 
AHe(8), O1, (Z2, and a3. The first three terms are iden­
tical with those found in the Clarke-Glew equation79 

(Table XII). 
(b) Clever Equation. This equation91 expresses the 

dependence of ACp
e on T in terms of the first three 

terms of a polynomial in T (Table XIV). The resulting 
equation for In K contains five unknowns: In K(O), 
AH8W, O1, Ct2, and as. 

B. Analysis Using Nonlinear Least-Squares 
Techniques 

In this section we turn our attention to those equa­
tions which describe the dependence of equilibrium or 
rate constant on temperature but which cannot be an­
alyzed by using conventional linear least-squares tech­
niques. The equations under this general heading differ 
in an important fashion from those described in the 
previous section. There we endeavored to fit the data 
to an equation, the criterion being in many instances 
simply the goodness of fit. In this section the equations 
have often been derived bearing in mind some partic­
ular explanation for the dependence of K (or k) on 
temperature. However, this means that the equations 
in this section are not necessarily related to each other 
in the manner shown by those discussed in section A. 
One exception is described in Table VI (eq 15) which 
expresses In k as a linear function of T"3 where as is a 
variable depending on solute and solvent but not on 
temperature. Kinetic data can be fitted to this equation 
by using a linear least-squares analysis for estimates O1 

and Si2
 a* a preselected value for a3. The analysis is 

repeated for various values of a3 to obtain the set a1( 

a2, and a3 which minimizes the variance. This is most 
readily achieved by using a loop instruction within a 
computer program. 

/. Gurney Equation 

This equation44 was developed in order to account for 
the dependence on temperature of In K for carboxylic 
acids in water. In particular, Gurney attempted to 
account for the observation that In K often shows a 
maximum value at some temperature within the win­
dow. Indeed we noted that the Harned and Embree 
equation could not be analyzed with linear least-squares 

R \J TJ R LT 

h. fr-2e + .a ̂ i[JL+ JL_±\ 
2R\_ TJ R [2T1 2e2 Te] 

AH^(S )|~1 I l fe , /T\" 
lnX=ln^)+_T-|_---J + a i [ - - l + ln(-) 

a. r e'i a, r sen 
— T - 2 9 + — + — T 3 - 3 0 2 + 
2R L TJ QR L TJ 

TABLE XV. Gurney Equation 

InK =—{a + exp(T/9)] (1) 

In K = O1T-' + (a JT) exp(T/e ) (2) 
A i ^ = R f - O 1 - a , exp(T/e) + (a2T/0)exp(T/e)] (3) 

ACp* = (a2TR/92) exp(T/e) (4) 

methods for both O1 and 8, where 8 is the temperature 
at which In K is a maximum. The Gurney equation 
(Table XV) has the same property although here the 
temperature 6 has a different meaning. Gurney argued4 

that if the acid dissociation constant is determined 
solely by the electrical interaction between solute and 
solvent, the acid dissociation constant would show a 
maximum at d. Contributions from the nonelectrical 
forces shift the maximum, although these forces are not 
dependent on 6 but are dependent on T. Indeed Gur­
ney argued that 6 can be calculated from the dielectric 
properties of the solvent, being equal to 219 K for water. 
Gurney44 expressed the dependence of In K on tem­
perature using eq 1 of Table XV. We have rewritten 
it in the form shown in eq 2 (Table XV), and hence the 
temperature Tm at which In K is a maximum is given 
by the following. 

Tm = 0[1 + ai/(a2 exp [Tm/6])] (49) 

Equation 2 (Table XV) is readily differentiated to yield 
the required matrices for a nonlinear least-squares 
analysis (section IVB). 

In the case of acetic acid in water,49 the Gurney 
equation fits the data reasonably satisfactorily,92 the 
residual sum of squares being 3.19 X 10"5. A plot of the 
residuals against temperature produces a reasonable 
scatter of points greater than and less than O. The 
calculated value for 8,184 K, is some way removed from 
that suggested by Gurney. The significance of this 
finding and the 8 values for other acids will be discussed 
elsewhere92 except to note that for eq 1 in Table XV, 
c = 4.066 X 102 and a = 3.0008 for acetic acid. A plot 
of aJT~x and a2T~l exp (T/8) against temperature 
(Figure 10) shows how the first term shifts the maxi­
mum in In K from 8 to around 298 K. 

2. Equilibrium Constants—Model II 

The Gurney equation4 provides an example of an 
equation based on a particular explanation for the form 
adopted by the dependence of K on T. However in 
terms of the underlying chemical explanation of the 
observed dependence the approach is based on model 
I (Table III) for the chemical equilibrium, as indeed are 
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Figure 10. Dependence on temperature of O1T"1 (curve 1), a2T'1 

exp(T70) (curve 2), and their sum (curve T) for acetic acid in 
water* following analysis using eq 2 of Table XV. 

TABLE XVI. Dependence on Temperature—Model II 

Equilibria 

Kinetics 

K-

K1 = a3 exp(aJT) 
K^ = O1 exp(aJT) 

Q1 exp(a, /r) 

1 + O3-' exp(-o4/T) 

a 
a, e; 

exp(a2/T) 
escuta. IT\ a, exp(aJT) 
exp(aJT) 

1 + a. exp(a,/T) 

(1) 
(2) 

(3) 

(4) 
(5) 

(6) 

the descriptions underlying the equations described in 
the previous section. If, for example, model II is taken 
as the description of the chemical equilibrium, the de­
pendence of the measured equilibrium constant on 
temperature is accounted for in terms of the depen­
dence of K1 and K2 on temperature. The horrendous 
possibility emerges that the dependence of both In K1 
and In K2 on temperature can be described by any one 
of the equations discussed in section A. However a 
compromise is now sought. Because we have adopted 
a more complicated description of the chemical equi­
librium (i.e., model II rather than model I in Table III), 
we choose to adopt a simple equation for the depen­
dence of In K1 and In K2 on T, i.e., eq 1 of Table VI. 
In section A we adopted a simple model for the equi­
librium and complicated equations for the temperature 
dependence. A derivative of model II assumes that 
ACp

e(l) and ACp
e(2) and higher derivatives are O. The 

final equation for the dependence of K on T (eq 3 of 
Table XVI) is differentiated to obtain the matrices for 
a nonlinear least-squares analysis. In practice we need 
to guess some initial values for these unknown param­
eters. Further it is advisable to incorporate into the 
equation appropriate powers of ten such that the de­
rived quantities are close to unity. However, in common 
with nonlinear least-squares analysis, some "a priori" 
restrictions can be placed on the derived parameters. 

^ 
\ 

<l -120 

T/K 

Figure 11. Dependence on temperature of ACp
e(diff) as defined 

in eq 2 for acetic acid in water.49 

In the present example, ax and a3 must be positive, 
negative equilibrium constants being disallowed. 

The data for acetic acid in water have been fitted92 

to eq 3 of Table XVI to yield ArY1
6 = -22.7 kJ mol"1 

and AiFf2
9 = 7.33 kJ mol"1. At 298.15 K, K1 = 1.940 and 

K2 = 2.660 X 1O-5 mol-1 kg. The calculated dependence 
on temperature ACp

e(diff) as defined in eq 2 is shown 
in Figure 11, the graph showing a minimum near 305 
K where ACJ=Wf) - -159 J mol"1 K"1. Thus in terms 
of model II (Table III) the maximum in In K arises from 
two contributing equilibria having different depen­
dences on temperature. 

3. Kinetic Data 

In this section we consider the description of the 
dependence of rate constant on temperature in terms 
of the separate dependences of Ze1 and a on temperature 
as described in model II of Table V. As a derivative of 
model II, we assume that ACp*x and AACp* are 0 on the 
grounds that the complexity in the chemical model is 
combined with a simple description of the dependence 
on temperature of both ^1 and a (cf. eq 1 of Table VI). 
If this is accepted, then the dependence of k on tem­
perature is described by eq 6 of Table XVI, which can 
be fitted to the data by using a nonlinear least-squares 
technique. 

This analysis has been applied92 to the data for the 
solvolysis of tert-butyl chloride in water.57 The resid­
uals A scatter about 0, the sum of squares of the re­
siduals on 20 data points being 1.984 X 10"9. The re­
sulting values at 298.15 K for AH1* and AArY* are 104.6 
and -49.636 kJ mol-1, respectively. Thus both ^1 and 
a increase with increase in temperature, a being unity 
at 316.7 K. The value of ACp*(app) predicted by this 
description of the kinetic process (eq 7) is negative, 
being a minimum near 320 K (Figure 12). Thus the 
explanation in terms of model II of the negative ACp* 
values obtained from model I (Table V) is in terms of 
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TABLE XVII. Dependence of Equilibrium and Rate 
Constants on Pressure 

analysis 

E 
K 

K 

E 

K 

K 

equation volume parameter 

Phenomenon: 1. Linear 
l n i f = a , + ajy AV* =-Ci1RT 
In k = a, + a2p AV*=-Ci1RT 

2. Laidler 
In k = In k(n) + a,(p - n) AV* =-O1RT 

3. Polynomial in Pressure 
InJT=O1 + a2p + a3p

2 + AV* =-RT(Ci1 + 
Q4P

3 2a3p+ Satp) 
In k = a, + a2p + a3p

2 + AV* = -RT(Q1 + 
o4p3 2a3p + 3a„p) 

4. Polynomial with Reference 
In k = In k(ir) + Q1(P - n) + 

a,(p- nY + at(j)- n)3 

a different description of the chemical process. Purely 
on the basis of the dependence of rate constant on 
temperature, it is not possible to state which description 
of the chemical process is correct. However model II 
might be deemed more satisfactory because if we use 
model I it is necessary to explain quite large values for 
-ACp*. This is not the place to become involved in 
these arguments. Nevertheless the point is made con­
cerning the element of choice in terms of the model for 
the chemical process, but the choice determines what 
parameters must be accounted for in each case. (We 
are currently exploring the application of the above 
analysis to the kinetic data for reactions in mixed sol­
vents.92) 

The problems of interpretation and analysis may of 
course diminish as data covering a wider temperature 
range become available, i.e., the window is expanded. 
A recent example is to be found in the examination of 
the kinetics of solvent exchange at metal cations. The 
notorious unreliability93,94 of NMR-derived data for 
certain metal ions, e.g., Ni2+, has led to the establishing 
of exchange rates over as wide a range of temperatures 
as possible in certain systems. Thus by combining re­
sults from NMR line-shape analysis with results from 
recently developed96 stopped-flow Fourier transform 
NMR experiments, it has proved possible to assemble 
rates of exchange of dimethyl sulfoxide at, e.g., Ga3+ 

over a temperature range of 112 K.96 These results 
indicate that the plot of In k against T"1 for this reaction 
is very close to linearity; the aforementioned doubts 
about the accuracy of the line-shape results preclude 
a meaningful analysis of this type of reaction by the 
methods described above for, e.g., solvolysis of tert-
butyl chloride. 

VI. Description of the Dependence on Pressure 
of Equilibrium and Rate Constants 

We now turn our attention to analysis of data where 
the variation of rate and equilibrium constants with 
pressure is under consideration.4,5 The problems en­
countered here are very similar to those discussed in 

TABLE XVIII. Dependence of Rate Constant on Pressure 

E 

T/K 
Figure 12. Dependence on temperature of ACp*(app) as defined 
by eq 7 for tert-butyl chloride in water.57 

section V. We have commented that thermodynamics 
does not define how In k or In K depends on pressure, 
but often the aim is to analyze this dependence to ex­
tract further information. The usual practice is to 
adopt a simple description for the chemical process (e.g., 
model I of Tables III and V) and hence estimate AV9 

or AV* and related pressure parameters. The depen­
dence of In k or In K on pressure is usually written in 
a manner amenable to an analysis using linear least-
square techniques. We consider various methods under 
this heading in the next section. A problem in this 
subject is the many units used to measure pressure. For 
our part we have used the SI unit, N m-2. An advantage 
is that the volume quantities are obtained directly from 
the analysis in m3, avoiding the necessity of working 
with complicated conversion factors. 

A. Analysis Using Linear Least-Squares 
Techniques 

1. Linear Dependence on Pressure 

The simplest equation takes note of the thermody­
namic hint (Table I) and expresses In k or In K as a 
linear function of pressure (Table XVII). As a result, 
AV* is, for example, independent of pressure, and O1 
(eq 3 of Table XVII) is the value of In k when p = O. 

The data5 describing the dependence of rate constant 
on pressure for the solvolysis of benzyl chloride in water 
at 333.65 K produce the parameters summarized in 
Table XVIII. The fit is adequate, indicating that AV* 

equation a In k AV*/cm3 mol -1 " 
1014Ag+Zm3 

mol-1 (Nm"2)-"1 
comments 

eq l b (Table XVII) 
eq 3C (Table XVII) 

0.926 x 10"3 

1.41 x 10~2 
-10.77 (0.12) 
-25 .04 (0.73) 

-0.8472 
3.14(0.42) 

a At 101325 N m-2. b ferf-Butyl chloride in water. c terf-Butyl chloride in water + fert-butyl alcohol (x2 0.1). 
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is essentially independent of pressure. (The data5 for 
the same system but in a mixture containing mole 
fraction x2 = 0.1 of tert-butyl alcohol are not satisfac­
torily accounted for, a plot of the residuals showing a 
smooth dependence on pressure.) The correlation 
function C12 is -0.8472 for the same reasons discussed 
in section VA. As before, this coefficient decreases if 
the dependence of In k on pressure is analyzed by using 
the Laidler97 equation (Table XVIII). This equation 
fits the dependence about a reference pressure ir. If this 
approach is adopted, then the correlation function 
drops to -0.144 for the same set of data. 

2. Polynomial Dependence on Pressure 

In this analysis, the dependence of In K or In k on 
pressure is expressed as function of a polynomial in p 
(Table XVII). For kinetic data,74 it is rarely significant 
to go beyond the quadratic form. An example is given 
in Table XVIII for the solvolysis of benzyl chloride in 
an aqueous mixture98 where it is statistically significant 
to consider the cubic term. In this case AV* is not 
adequately represented as a linear function of pressure. 
A plot of the residuals A show a scatter about 0 and no 
clear dependence on pressure. The calculation of a 
compressibility term has attracted considerable interest 
over many years because it has been used as an indi­
cator of mechanistic details, e.g., contrasting associative 
and dissociative reactions. However the use of the 
compressibility term in this context seems to have been 
discounted recently. 

The representation of the dependence using the 
equations set down in Table XVII raises two issues. In 
analogous fashion to the arguments given previously, 
it is dangerous to imply that given a "well-behaved" 
system then In k or In K will be linear functions of 
pressure. The latter is not a thermodynamic require­
ment. The second issue concerns the significance of the 
term O1 (Table XVII). As it stands, O1 is related to In 
k or In K when p = 0. This is not a real situation. In 
some cases it is implied that the intercept is the value 
of, say, In k at zero applied pressure. This is not correct. 
It may be advantageous in terms of avoiding these 
conceptual problems if the equation were recast to ex­
press the dependence of In k on pressure about some 
reference pressure ir as shown in eq 4 of Table XVII 
along the lines suggested by Burris and Laidler.97 

3. Benson-Berson Equation 

This treatment99 of the dependence of rate constant 
on temperature is rather more sophisticated than the 
analyses discussed above. Although restricted to non-
ionic reactions (e.g., Diels-Alder reactions), an attempt 
is made to describe quantitatively the compressibility 
characteristics of the system using the Tait equation 
(see ref 3). As a result if the reference pressure ir is 
101325 N m"2, a plot of (ir/p) In (k/k[ir]) against (p-
TT)0-523 is constructed to yield A V* Or) from the intercept 
and information concerning the partial molar volume 
of the initial state from the slope. 

B. Analysis Using Nonlinear Least-Squares 
Techniques 

As in the discussion of rate and equilibrium constants 
on temperature, the equations in this section have been 
developed bearing in mind particular models for the 
chemical process. Those equations outlined in the 

10"'p/N m-2 

Figure 13. Dependence on pressure of A#*(app) as defined bj 
eq 8 for the aquation of nitritopentaamminecobalt(III) in water" 
at 298 K. 

previous section take as the starting hypothesis model 
I (Table V) for the chemical reaction. If other models 
(e.g., model II, Table V) are used, the final equation for 
the dependence of rate constant on pressure cannot be 
analyzed with a linear least-squares analysis. By the 
same token, different models may be proposed for in­
dividual systems. Similarly the same set of kinetic data 
can be analyzed in different ways. We illustrate this 
point by reference to the data100 describing the depen­
dence on pressure of the first-order rate constant for 
the aquation of nitritopentaamminecobalt(III) in water 
at 298 K. The data were originally analyzed100 in terms 
of model I (Table V) and eq 3 of Table XVII (with 3 
terms). However it is also possible to reanalyze the 
data101 according to model II (Table V). It is assumed 
that both In k and In a are linear functions of pressure 
(eq 1, Table XVII). Hence the dependence of fc(obsd) 
on pressure about a mean reference pressure ir can be 
written 

1 + Ct2 exp(-a3ir) 
&(obsd) = k(ir) expl^ip - *)]— : r (50) 

1 + a2 exp(-a3p) 
Consequently when p = (In a2)/as, a is 1.0, O1 being 
related to AV1* and a3 to AV3* - AV2* (AAV*). The 
data were fitted to eq 48 by use of a nonlinear least-
squares technique. The fit was satisfactory, with a 
residual sum of squares equal to 9.30 X 10"12, yielding 
AV1* = 4.5 cm3 mol"1 and AAV* • -11.1 cm3 mol"1. 
Although with increase in pressure fc(obsd) increases, 
the calculated values of A1 and a decrease the latter, 
being equal to 1 when p = 4.397 X 108 N m"2, which is 
just above the experimental range. If it is assumed that 
A/3i* and AA,S* (Table V) are 0, the plot of A/3* (eq 5) 
is always positive and shows a maximum when p is 
approximately 4.353 X 108 N m-2 (Figure 13). A similar 
analysis102 of the kinetic data98 for solvolysis of benzyl 
chloride at 333 K in water containing 0.1 mole fraction 
£er£-butyl alcohol shows that in terms of the same ki­
netic model a = 1.0 at p = 1.736 X 108 N m-2, which is 
within the measured pressure range, A/3* being a max­
imum at 3.939 X 10-14 m3 mol"1 (N m-2)-1 when p = 
1.718 X 108 N m"2. 
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VII. Conclusions 

At the outset, we suggested that it seemed timely to 
review this subject. In part this feeling was generated 
by the development of more sophisticated measurement 
and control devices, of data-logging equipment, and of 
computer-based analytical routines. There seems a 
widespread increase in the precision of experimental 
results, although the dependence of K or k on pressure 
seems to lag in precision the dependence on tempera­
ture. These developments can be thwarted by poor 
analysis of the good data, leading to an unsatisfactory 
discussion of the factors influencing the chemical pro­
cesses under investigation. One conclusion which 
emerges from this review is that there is no universally 
correct method of analyzing equilibrium and kinetic 
data. Each method has its own limitations and con­
straints which may not be immediately apparent. Any 
conclusions reached about the chemistry depend on the 
model adopted and the method of analysis—"as you 
sow, so shall you reap". 

The problems which we have stressed can be illus­
trated as follows. Suppose that we are presented with 
a set of rate constants for a given reaction over a range 
of temperatures, the window. The first exercise un­
dertaken might be to assume a simple model for the 
reaction (model I, Table V) and a simple equation 
relating In k and T (e.g., eq 1 of Table VI). If this 
proves inadequate, two options are available. We can 
adopt the same model for the reaction and accept 
varying degrees of complexity in the dependence of AH* 
on temperature. Alternately we can adopt a more 
complicated model for the reaction (Table V) and a 
simple equation for the dependence of each contrib­
uting rate constant on temperature. Finally we might 
decide to adopt a complex model for the reaction and 
a more complicated model for the dependence of 
thermodynamic activation parameters on temperature. 
Running through this line of argument with respect to 
both equilibrium and kinetic data is an element of op­
timism. This arises because it is assumed at the outset 
that by measuring the dependence of, say, one de­
pendent variable K on one independent variable T it 
is possible to extract a range of parameters character­
izing changes in thermodynamic functions of state, e.g., 
AHe, ASe, ACp9 Almost certainly, therefore, 
thermodynamics and the relationships obtained there­
from provide the basis of the analysis. We have at­
tempted to show how from that point on all aspects of 
the analysis require critical evaluation. 
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