Structure-Activity Relationships of Dihydrofolate Reductase Inhibitors

JEFFREY M. BLANEY,[†] CORWIN HANSCH,*[‡] CARLO SILIPO,[§] and ANTONIO VITTORIA

Department of Pharmaceutical Chemistry, School of Pharmacy, University of California at San Francisco, San Francisco, California 94143, Department of Chemistry, Pomona College, Claremont, California 91711, and Institute of Pharmaceutical and Toxicological Chemistry, Faculty of Pharmacy, University of Naples, Naples, Italy 80138

Received July 18, 1983 (Revised Manuscript Received January 3, 1984)

Contents

I.	Introduction	333
II.	Biochemistry	335
III.	Determination of Inhibition Constants	337
IV.	Qualitative Structure-Activity Relationships of DHFR Inhibitors	337
	a. General Observations	337
	b. Quinazolines	340
	c. Triazines	340
	d. Pyrimidines	341
	e. Fluorescent Folate Analogues	342
۷.	Quantitative Structure-Activity Relationships (QSAR)	342
	a. Introduction	342
	b. Triazine Inhibitors of DHFR	343
	c. Quinazoline Inhibitors of DHFR	347
	d. Pyrimidine Inhibitors of DHFR	349
VI.	Minimal Topological Difference (MTD) Analysis	351
VII.	Distance Geometry in QSAR	352
VIII.	Molecular Shape Analysis	355
IX.	Structure of Dihydrofolate Reductase	357
Х.	Molecular Graphics	359
XI.	From Enzyme Inhibition Studies to Drugs	366
XII.	Glossary	370
XIII.	Appendix	370
	a. Types of DHFR Studied	371
	b. Inhibition by 2-Aminopteridines	371
	c. Inhibition by Substituted Quinazolines	377
	d. Inhibition by	381
	4,6-Diamino-1,2-dihydro-2,2-dimethyl-1- (X-phenyl)- <i>s</i> -triazines	
	 e. Inhibition by 1-R₁-2,2-R₂R₂'-4,6-Diamino-1,2-dihydro- s-triazines 	388
	f. Inhibition by Substituted Pyrimidines	390
XIV.	References	401

I. Introduction

Dihydrofolate reductase [5,6,7,8-tetrahydrofolate: NADP⁺ oxidoreductase (EC 1.5.1.3)] is an enzyme of central importance in biochemistry and medicinal chemistry. It is with the latter area that this review is principally concerned. The function of this enzyme is to reduce dihydrofolic acid (I) to tetrahydrofolic acid (II).

In the view of I the molecule has been divided into the four regions which have been varied in structure in many attempts to develop better inhibitors of dihydrofolate reductase (DHFR) for chemotherapeutic purposes. As of the present over 1700 inhibitors of this reaction have been studied on DHFR from many sources (see Appendix) and many others have been

tested as antitumor agents or on cell cultures of microorganisms.

Two compounds in particular have provided much of the stimulation for this research. Methotrexate (III), synthesized in 1949 by Seegar et al.,¹ is still one of the most widely used antitumor drugs² and is still the most effective antifolate antitumor drug after more than 30 years of clinical use.³ Trimethoprim (IV), which developed out of the work of Hitchings and Roth⁴ and their colleagues, created a storm of publications on the search for better antimicrobial agents. Roth has re-

cently carefully reviewed the history of the development of trimethoprim as well as current ideas on the struc-

[†]University of California at San Francisco.

[‡]Pomona College.

[§]University of Naples.

Jeffrey Blaney was born in 1956 in Los Angeles, CA. He received his B.A. in Chemistry/Zoology in 1978 from Pomona College, Claremont, CA, and his Ph.D. in Pharmaceutical Chemistry in 1982 from the University of California at San Francisco. He is currently a research chemist in the computer-assisted drug design group in the Biomedical Products Department at E. I. du Pont de Nemours & Co., Inc. His research interests include structure-activity relationships, drug design, ligand-macromolecule interactions, and the development and application of molecular modeling methods using high-performance computer graphics systems.

Corwin Hansch in 1944 received his Ph.D. from New York University in the field of synthetic organic chemistry, studying under Professor H. G. Lindwall. After a brief postdoctoral period with Professor H. R. Snyder at the University of Illinois, he joined the du Pont Co. and worked first on the Manhattan project at the University of Chicago and Richland, WA, and then at the experimental station in Wilmington, DE. In 1946 he joined the Chemistry Department at Pomona College, where he has remained except for two sabbatical leaves, one in Professor Prelog's laboratory in Zurich and the other in Professor Huisgen's laboratory in Munich. His main interests in research have been the high-temperature dehydrocyclization reaction and the correlation of chemical structure with biological activity.

ture-activity relationship of antifolates vs. microorganisms.⁵

Trimethoprim is used in combination with the sulfa drug sulfamethoxazole.⁶ The discovery of the synergistic effect of the sulfas was made by Daniel and Norris in 1947,⁷ who recognized that the effect was due to the pteridyl moiety of I in inhibitors competing at one step in the biosynthesis of tetrahydrofolic acid and that the sulfa drugs were competing against *p*-aminobenzoic acid moiety of I at another step. However, the driving force

Carlo Silipo received his doctoral degree in Chemistry from the University of Naples. After a postdoctoral study at the Institute of Pharmaceutical and Toxicological Chemistry of Naples, in 1969, he joined the faculty of Pharmacy in Naples as assistant professor in Analytical and Pharmaceutical Chemistry. During 1973–1974 he was a NATO fellow at the Chemistry Department of Pomona College, where he was awarded the title of Visiting Research Professor in Chemistry. Since then he spent as Visiting Scientist several summers at Pomona College working with Corwin Hansch on joint research programs. In 1980 he obtained the full professorship in Pharmaceutical and Toxicological Chemistry at the University of Naples.

Antonio Vittoria received his doctoral degree in Chemistry from the University of Naples. After a postdoctoral study at the Institute of Pharmaceutical and Toxicological Chemistry of Naples, he worked with Mobil Chimica Italiana as an analytical chemist. He was a NATO fellow at the Chemistry Department of Iowa State University, and in 1969 he joined the faculty of Pharmacy in Naples as assistant professor. As a Visiting Scientist at the Chemistry Department of Pomona College, he worked with Corwin Hansch. In 1980 he obtained the full professorship in Pharmaceutical and Toxicological Chemistry at the University of Naples.

which has created so much excitement about the folates in the antibacterial field was the discovery by Burchall and Hitchings⁸ of the great specificity of TMP for bacterial DHFR compared to mammalian DHFR. Trimethoprim in combination with a sulfa drug remains, since its introduction in 1968, by far the most important antibacterial antifolate, although recently tetroxoprim (V) has become a competitor.

The antifolates are also important in the treatment of malaria, although little work has yet been published on DHFR isolated from parasites. Roth and Cheng recently reviewed the antimalarial work as well as the anticancer studies.⁹

Although methotrexate and trimethoprim remain supreme in their respective areas of chemotherapy, there is still an enormous effort to find better antifolates. Many variations of III, IV, VI, and VII have been tested as inhibitors of DHFR in cells and animals.

Even in a review primarily directed toward the inhibitors of DHFR it is impossible to cover all that has been written. We have attempted to list all examples of inhibitors and the type of DHFR they were tested on in the Appendix. Blakley¹¹ wrote an excellent review of the early work on all aspects of DHFR, and since then a variety of short reviews emphasizing certain aspects of the enzyme were published.^{3,5,10–20} Several collections of symposia papers also contain much material of interest on DHFR.⁶

Dihydrofolate reductase's potential for medicine or in the control of plants and insects lies in the great variability of the enzyme from different sources. For example, TMP is 100 000 times more inhibitory of DHFR from *Escherichia coli* than it is of human DHFR. Hitchings^{22,23} was one of the first to clearly grasp the potential of selective inhibition of DHFR for medicinal chemistry. The unusual variability in DHFR from various sources became more evident as many studies of small molecule inhibitors showed large variation in potency with reductase from different sources.^{8,10,11,21,24-35}

II. Blochemistry

Dihydrofolate reductase catalyzes the reduction of dihydrofolate (FH_2) to tetrahydrofolate (FH_4) , using NADPH as a cofactor. The tetrahydrofolate is then converted to one-carbon adducts VIII-XIII.

These adducts are utilized in a number of one-carbon transfers in the biosynthesis of thymidylate, purines, serine, and methionine.^{11,36} Some aspects of the mechanism of these processes have been discussed by Benkovics.³⁷ The reaction of most interest in chemotherapy is the synthesis of thymidylate from deoxyuridine monophosphate (dUMP), and this process is vitally dependent on a supply of 5,10-methylene-FH₄ (X). Blocking the formation of tetrahydrofolate (FH_4) by the inhibition of DHFR or inhibition of thymidylate synthetase can shut off the supply of dTMP necessary for DNA synthesis. In the cell this leads to what is called thymineless death. The inhibition of dTMP synthesis by blocking both DHFR and thymidylate synthetase has attracted the attention of many medicinal chemists.³⁸ An interesting aspect of this problem is that some inhibitors which block DHFR also inhibit

thymidylate synthetase,³⁹ and this may be an important point for cancer chemotherapy.

Figure 1 from Roth et al.³ summarizes the biochemical pathways involving DHFR. Crucial enzymes are numbered as follows: (1) dihydrofolate reductase (EC 1.5.1.3), (2) thymidylate synthetase (EC 2.1.1.4.5), (3) methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5), (4) phosphoribosyl glucinamide formyltransferase (EC 2.1.2.2), (5) phosphoglutamate methyltransferase (EC 2.1.2.3), (6) tetrahydropteroylglutamate methyltransferase (EC 2.1.1.13). The compounds represented in the boxes are as follows: $5>NCH_2NH10 =$ N^5, N^{10} -methylene-FH₄ (XI), 5>N-CH₃ = $\tilde{N^5}$ -methyl- FH_4 (XIII), $5 > N^+ = CH - N = N^5, N^{10}$ -methylenyl- FH_4 (XII), 5>N—CHO = N^5 -formyl-FH₄ (VIII), 5>N– $CH = NH = N^5$ -formimino- FH_4 (X), hCys = homocysteine, FGAR = formylglycinamide ribonucleotide, GAR = glycinamide ribonucleotide, AICAR = aminoimidazolecarboxamide ribonucleotide, FAICAR = 5formamidoimidazole-4-carboxamide ribonucleotide, dUMP = deoxyuridylate, AMP = adenosine monophosphate (adenylic acid), GMP = guaninemonophosphate (guanylic acid), dTMP = thymidylate, FU

= 5-fluorouracil, FUDR = 5-fluorodeoxyuridine, FdUMP = 5-fluorodeoxyuridylate.

Tetrahydrofolate reaches the cell by active transport⁴⁰⁻⁴⁴ of especially its 5-methyl and 5-formyl derivatives in mammalian cells. Many bacterial cells synthesize their own FH_4 . In Figure 1 it can be seen that a major role of DHFR is to reduce FH₂ which is produced in the thymidylate conversion of dUMP to dTMP. This is a consequence of the fact that dTMP synthesis (Figure 1, path 2) depletes the FH_4 pool more rapidly than path 6 can resupply it.

Since the production of dTMP from dUMP is the only known source of thymidylate for DNA synthesis blocking, this source stops DNA replication in all forms of life. Hence, DHFR inhibitors offer the potential for control of any undesirable form of life.

The exact mechanism of reduction of dihydrofolic acid by DHFR is still not completely understood despite a large effort by many investigators over many years. It is complicated by the fact that both substrates (folic acid or dihydrofolic acid) and cofactor NADPH must be bound to the enzyme for the transfer of hydride from NADPH to the 5,6-double bond of the folate. It now appears that random binding is involved. That is, either the NADPH or the folate may bind first. The same mechanism probably occurs with inhibitors although there is evidence that the binding of NADPH enhances binding of other ligands. Recently Stone and Morrison⁴⁵ have examined nine possible mechanisms for the reduction process and concluded that it is a rapid equilibrium random mechanism with a single dead-end enzyme-THF-DHF complex or possibly an additional enzyme-NADPH-THF complex. The reduction product FH_4 is so strongly bound that it can act as an inhibitor and when present in significant amounts regulate the reduction rate. Another complicating factor is that FH_4 appears to bind at the NADPH binding site. High concentrations of NADPH prevent this complex from forming. Dihydrofolate also appears to be capable of binding to the site of the pyridine nucleotides.

The rapid advances in the study of DHFR in recent years have been made possible by the isolation of highly purified material via affinity chromatography. The purification of DHFR from chicken liver by Kaufman and Pierce⁴⁶ and of the T_4 phage specified enzyme in

FABLE I.	Sequence	Al	ignment	of	Seven	Dihyd	rofo	late
Reductases	according	to	Structur	al	Equiva	lence		

Fe	numbering	1	10	20	30		40
50	.iumoer mg	-		. 1	г ÷	T 7	
		·	•	• •			
s.	faecium []	MFIS	WAQDKNGL	IGKDGLLPW-	RLPNDMRFFR	EHTM	-DKIL
π.	casei	TAFI	WAONRDGL	IGKDGHLPW-	HLPDDLHYFR	AOTV	-GKIM
F	coli M8147	8 MIST	LAALAVDRV	TOMENAMPU	NI PADI AVEK	RNTI	-XKPV
÷.	<u>corr</u> (10141			TOTA DIVIDIT O	I and the line is the		1
			·]	-			
Chi	icken liver	VRSLNS.	LVAVUQNMG	TGKDGNLPWI	PPLRNEYKYFQ	RATSISHVEG	KQNAV
Boy	vine liver	VRPLNC	IVAV SQNMG	IGKNGDLPWI	PPLRNEFQYFQ	RMTTVSSVEC	KQNLV
Μοι	se L-1210:	VRPLNC	IVAVSQNMG	IGKNGDLPW	PPLRNEFKYFQ	RMTTTSSVEC	KQNLV
Por	rcine liver	VRPLNC	LVAVSONMO	IGKNGDLPWI	PPLRNEYKYFO	RMITT SSVEC	KONLV
					• •		· ·
<i>c</i> 1	numburing	1	10	20	30	40	50
C1	numbering	1	10	20	50	¥0	00
					•0		
		41	510	60	79	80	
		:	: III	:	:	IV :	
		VMGRKT	/EGMGKL	SLPYRHIIVI	LTTOKDFKVEK	NAEVLHSIDE	LLAYA
		VVGRRT	YESFPKR	PLPERTNVVI	LTHQEDYQAQG	-AVVVHDVAA	VFAYA
		IMGRHTM	ESIGR	PLPGRKNTTI	LSSOP-GTDDR	-VTWVKSVDE	ATAAC
		38-1 -	sc-I	1-20		lant !	
		THORNER		DIVDDTNT		AUNICKCIDE	
		INGARIA	VI SIPERNA	PLKDRINIVI	LSKELKEAPKG	AHILSKSLDL	ALALL
		IMGREIN	VESIPERNR	PLKDRINIVI	LSRELKEPPKG	AHFLAKSLDI	ALELI
		IMGRKT	FSIPEKNR	PLKDRINIVI	LSRELKEPPRG	AHFLAKSLDI	ALRLI
		IMGREAT	∛FSIPEKNR	PLKDRINIV	SRELKEPPQG	AHFLAKSLDD	ALKLI
		;	:	;	1	:	:
		51	60	70	80	90	300
					-		
			90	100	110	120	
			∀ :	:	VI :	:	
		KDIPE-	DIYVS	GGSRIFOAL	LPETKIIWR	TLIDAEFEGU	TFIGE
		KOHLDO	ELVIA	GGAOTETAE	DDVDTLLV	TRLAGSFEGD	TKMTP
		CNUP	FIM!T	CCCBUYFOFI	PKAOKI VI	THIDAEVECT	TUPPD
		G.(VI ===	zi i or		LFICAQALIL	THIDAEVEGO	THE D
			5 - 3E-	1		·	
		DSPELKS	SKVDMVWIV	GGTAVYKAAN	4EKPINHRLFV	TRILHEFESD	TFFPE
		QDPELT:	NKADAAMIA	GGSSVYKEA	MNKPGHVRLFV	TRIMQEFEAD	SFFPE
		EOPELAS	SKVDMVWIV	GGSSVYEQAN	INEPGHLRLFV	TRIMQEFESD	TFFPE
		EOPELKI	OKVDMVWIV	GGSSVYKEAN	4NKPGHIRLFV	TRIMKEFESI	TFFPE
				•			:
	,	01	110	: 20	130	140	1.50
	1	.01	110	10	1.00	140	1.00
		130		120	150	160	
		:	VI	I : VI	III :	:	
		IDFTSFI	ELVEEHEGI	VNQENQY-	 PHRFQKWQKM 	SKVV	
		LNWDDF	CKVSS	RTVEDTN-	PALTHTYEVW	QKKA	
		YEPDDWI	ESVES	EFHNADAC	ONSHSYCFKIL	ERR	
			1	1	1	1	
			1		\—-3 H —-	4	
		IDYDKF	KLLTEYPGV	PADIQEEDG.	IQYKFEVY	QKSVLAQ	
		IDTEKY	KLLPEYPGV	PLDVOEEKG-	IKYKFEVY	EKNN	
		IDLEKY	CLUPEYPG S	LSEVOEEDC.	IKYKFFVY	EKKD	
		TDIEVV	ZII SECSON	DSDNOFFYC-		FKNN	
		TULEKI	XLLSEUSGV	FORATERO	INIKFEVI	6,6213	
				:			
]	151	160	170	180		

E. coli by Erickson and Mathews⁴⁷ marked the beginning of a new sophistication in DHFR research. The problems involved in obtaining a pure substrate-free enzyme have been discussed by Kaufman and Kemerer.48

The properties of the various DHFR which have been purified have been reviewed and compared by Freisheim and Matthews.¹⁶ Table I contains the sequences for those forms of DHFR which have been completed.^{16,49}

Data for Streptococcus faecium come from Gleisner et al.⁵⁰ Lactobacillus casei results are from Bitar et al.⁵¹ *E. coli* from Bennett et al., 5^2 chicken liver from Kumar et al.,⁵³ bovine liver from Lai et al.,⁵⁴ L1210 leukemia from Stone et al.,⁵⁵ and porcine liver from Smith et al.⁵⁶

Since the different forms of DHFR contain different numbers of amino acid residues, it is not a straightforward task to line them up according to corresponding residues. Matthew's group employed computer graphics for ease of comparison. Models for DHFR from E. coli, L. casei, and chicken liver DHFR were constructed from X-ray crystallographic coordinates. The three models were displayed simultaneously and corresponding portions of α helices and β sheets were superimposed so as to minimize differences in α -carbon positions.⁴⁹ Hence, Table I aligns residues according to their known locations in the three reference structures. Of course for structures as different as bacterial and vertebrate DHFR a completely satisfactory correspondence of residues cannot be achieved. The normal bacterial and vertebrate DHFR contain 159–189 amino acid residues with molecular weights in the range of 18000-22000.

Dihydrofolate Reductase Inhibitors

Protozoal DHFR are distinctly different and have high molecular weights $(>100\,000)$.⁵⁷⁻⁵⁹ Ferone and Roland⁶⁰ have made the fascinating discovery that DHFR from the protozoal flagellate *Crithidia faciculata* occurs in a bifunctional form which contains thymidylate synthetase activity! They suggest that association of DHFR and thymidylate synthetase may be a general attribute of Protozoa.

Although some attempts have been made to study insect⁶¹⁻⁶³ and plant⁶⁴⁻⁶⁶ DHFR, the amino acid sequences for plant, insect, and protozoal DHFR have not yet been established.

All of the DHFR in Table I as well as other vertebrate and microbial forms are strongly inhibited by methotrexate. However, a completely different bacterial plasmid form of DHFR has been isolated from TMPresistant bacteria. Two types have been discovered. Type I reductase is inhibited by concentrations of TMP that are several thousand times greater than those required to inhibit the chromosomal enzyme.⁶⁷ This form appears to be a dimer with a subunit molecular weight of about 18 000.⁶⁸ Surprisingly, both types of plasmid enzyme bind FH₂ and NADPH about as tightly as the chromosomal enzyme.⁶⁹ The type II plasmid reductase is quite different, with a molecular weight of around 34 000 and a subunit size of about 8500.^{68,70,71}

The structural properties of bacterial and vertebrate reductase in particular differ greatly, which provides a firm basis for antibacterial chemotherapy. Bacterial enzyme does not reduce folic acid to tetrahydrofolic acid while animal DHFR does. Dihydrofolate reductases from animals can be activated by mercury salts, have two activity maxima in their pH profile, and exhibit higher activity under acid conditions. Animal DHFR is relatively homologous (>70%), while identities between animal and bacterial sequences are on the order of 25%.

III. Determination of Inhibition Constants

In attempting to simplify the presentation of test results in the appendix, we have listed a single figure which is either $\log 1/C$ or $\log 1/K_{i\,app}$. Of course these parameters are only very roughly comparable and, in fact, even the $\log 1/K_{i\,app}$ values are not easily compared since the quality of the DHFR used varies so much from laboratory to laboratory. It is only in recent years with the use of affinity chromatography that high-quality enzyme is more generally being studied. Many of the pitfalls involved in getting meaningful K_i values have been discussed over the years.⁷²⁻⁷⁶ The problems with stoichiometric inhibitors have been recognized since the classic studies of Werkheiser et al.^{77,78} More recently, Morrison and his colleagues^{76,79} and Cha⁷⁵ have pointed out the problems of the slow-binding inhibitors. Morrison makes the following classification of types of *reversible* inhibitors. These classifications are based

class of inhibitor	relationship between E _t and I _t	rate of equilibrium establish- ment between E, I, and EI	
1. classical 2. tight-binding 3. slow-binding 4. slow, tight-binding	$I_{t} >> E_{t}$ $I_{t} \simeq E_{t}$ $I_{t} >> E_{t}$ $I_{t} >> E_{t}$ $I_{t} \simeq E_{t}$	fast fast slow slow	

on the equilibrium of the reaction:

$$E \xrightarrow[k_1, I_t]{k_2} EI$$

where E_t is the total enzyme concentration and I_t is the reduction in the inhibitor concentration that occurs on the formation of EI, the enzyme-inhibitor complex. In the classical case (1) studies are made under steadystate conditions where the concentration of enzyme is very much less than that of the inhibitor. It is generally assumed that this is the case with the weak to moderately active reversible DHFR inhibitors. Werkheiser showed that methotrexate inhibits DHFR at concentrations comparable to that of the enzyme. concentrations comparable to that of the enzyme. For such tight-binding inhibitors allowance must be made for the reduction in the inhibitor concentration that occurs on formation of the complex. For many K_i values of highly active compounds in the Appendix, this has not been considered in estimating the K_i . Morrison points out that as the strength of interaction between an enzyme and a tight-binding inhibitor increases a point is reached when equilibrium cannot be rapidly established. This slow establishment of full inhibition has long been known; however, it is now clear⁷⁶ that slow establishment of equilibrium can occur either with or without tight binding. This appears to be a general problem occurring with many enzymes in addition to DHFR.⁷⁹ In studying the slow-binding inhibitors, continuous monitoring of the reaction is necessary if coupling enzymes are used and it is important to use a range of enzyme concentrations to follow the reaction over extended time periods.

For careful SAR work it is recommended that one establish 95% confidence limits on $K_{i app}$.⁸⁰

More recently, a number of investigators have turned to radiochemical methods of assay.⁸¹⁻⁸⁷ Of course, these methods yield binding constants which may or may not be similar to K_1 values.

IV. Qualitative Structure–Activity Relationships of DHFR Inhibitors

a. General Observations

The discovery of the bacterial inhibitory properties of certain pteridines was made in the 1940s by Daniel et al.^{7,88} Since this inhibition could be reversed by folates, the inhibitors were presumed to be antimetabolites of folic acid. The tremendous amount of work since then has shown that all parts of the folic acid molecule can be utilized as models for the design of DHFR inhibitors. The greatest effort has been made studying variations of 2,4-diaminodiazines, hundreds of examples of which are given in the Appendix. Alterations have been made in the four segments of folic acid as shown in I.

The only change needed to convert folic acid to a strong inhibitor is the replacement of the 4-keto group by $4\text{-}NH_2$. The role of the $4\text{-}NH_2$ group has been much discussed. B. R. Baker^{10,89} was the first to present evidence for the increased basicity of N1 being crucial. This thinking was supported by the quantum chemical calculations of Perault and Pullman⁹⁰ and Neely.⁹¹ Zakrzewski has argued for the importance of hydrogen bonding.^{10,92} There is now evidence from X-ray crys-

tallography that the 4-NH₂ in *L. casei* DHFR is hydrogen bonded to the carbonyl oxygens of Leu-4 and Ala-97.⁹³ There is also good NMR evidence that methotrexate is protonated in the bound state and that this probably accounts for the difference in binding between folic acid and MTX.⁹⁴ Matthews and his associates have concluded from their crystallography work that the COO⁻ group of Asp-29 forms a salt bridge to N1 and the 2-NH₂ group of MTX. Thus, it appears that both Baker and Zakrzewski were correct. Gready¹² has reviewed many of the details of the various arguments for the importance of protonation at N1 in the binding of 2,4-diaminopyrimidines to DHFR.

Knowing the great importance of protonation for binding of 2,4-diaminopyrimidines, it is easily understood that replacement of either amino group by the less electron releasing groups -SH, -OH, or H results in much weaker inhibitors.

In an early study of a portion of the folic acid molecule Baker found that one could drop the pteridyl ring and still produce compounds with weak inhibitory activity. For example benzoyl glutamate has a pI_{50} of 1.92 with pigeon liver DHFR.^{10,95} For example benzoyl glutamate has a pI_{50} of 1.92 with pigeon liver DHFR.^{10,95} Adding the hydrophobic fragment n-C₈H₁₇ to the 4position of the benzene ring increases pI_{50} to 3.77. Even the simple benzoic acid C₈H₁₇C₆H₄COOH had pI_{50} of 2.25.

Poe⁹⁶ has found that simple sulfa drugs act as weak inhibitors (log 1/C = 3-4), probably acting at the same site as the benzoic acids. He also noted that pyrimethamine and 4,4'-diaminophenyl sulfone bind simultaneously to DHFR. More recently, Birdsall et al.⁹⁷ have shown that 2,4-diaminopyrimidine and analogues of *p*-aminobenzoyl L-glutamate bind in a cooperative fashion to *L. casei* DHFR. It is especially interesting that NADPH increases the affinity of both molecules since NADPH is known to increase the binding of inhibitors to DHFR.^{98,99}

Much attention has been devoted to studies of the modification of the bridge (C9-N10) structure between the pteridyl and phenyl moieties. These two atoms have been replaced by (see Appendix Table II for details) S, CH₂, CH₂CH₂, CH₂S, CH₂O, CH=CH, NHC- H_2 , $CH_2N(CH_3)$, $CH_2N(C_2H_5)$, $CH_2N(CHO)$, CH_2N - $(C_4H_9), CH_2N(C_6H_5), CH_2N(SO_2C_6H_4-4'-CH_3), CH_2N (C_3H_7)$, $CH_2N(CH_2C_6H_5)$, CH_2CH_2NH , CH_2CH_2O , CH₂CH₂S, CH₂NHCH₂, CH₂NHNH, and CH=NNH. While these compounds retain various degrees of inhibitory activity, little can be said with confidence in a general way since in some instances changes have been made simultaneously on the pteridyl ring and the bridge moiety. Also, the various derivatives have been tested under different conditions with use of DHFR from different sources. Nair et al.¹⁰⁰ conclude that the structural changes in the bridge region of analogues of aminopterin (120, Appendix Table II), in which the bridge length is not altered, do not significantly affect DHFR inhibition but do cause changes in transport (i.e., 10-deaza, 10-oxa, 10-thio). The elongation of the bridge region of these analogues results in decreased enzyme inhibition and transport and hence lower antitumor activity.¹⁰⁰ The most studied bridge is that of methotrexate $[CH_2N(CH_3)]$.

Replacing N by C in the 3-deazo compound does not

greatly lower activity (compare 12 and 15, Appendix Table II). Even replacing N1 by carbon produces a compound which is still a strong inhibitor (87, 163, Appendix Table II). See also Elliot et al. for discussion.¹⁰¹ The N5 and N8 nitrogen atoms are not at all essential for inhibitory activity since the quinazolines of Table III (Appendix), in which both nitrogens are replaced by carbon, are often extremely potent inhibitors.

It is of interest that complete hydrogenation of the one pteridine ring (5,6,7,8-tetrahydro) lowers activity significantly compared to the dihydro or completely unsaturated compounds (compare 152 with 161, 153 with 162, 178 with 179, Appendix Table II). The lower activity of the saturated compound is most probably due to the greatly increased hydrophilicity of the saturated amine (which would be protonated in the usual buffer) compared to that of the unsaturated compound.

Another such case may be compounds 231 and 232 where the N8–O bond makes for much greater hydrophilic character.

Ever since Baker's intense effort to find what he termed active-site-directed irreversible inhibitors there have been attempts to find such inhibitors of DHFR.^{10,102,103} In a recent discussion of the problem, Rosowsky et al.¹⁰⁴ cite extensive evidence that very small amounts (<5%) of intracellular DHFR not blocked by inhibitors can generate enough thymidylate for adequate cell growth. Also, they cite evidence for the presence of small amounts of DHFR with low MTX affinity present in cells. These two factors are serious problems for those concerned with cancer chemotherapy. Therefore, it would be highly desirable to find antifolates which bind to DHFR more strongly than does methotrexate.

Baker's attack on this problem is instructive to those interested in enzyme inhibition. His general approach was to first modify substrates to obtain potent reversible inhibitors. The next step was to attach very large substituents to the positions available on the parent inhibitor molecule (e.g., $(CH_2)_n OC_6 H_4 X$). From the I_{50} values of such derivatives one could draw qualitative conclusions about the bulk tolerance of the region around the active site. By comparing π constants of the substituents with I_{50} values Baker could also assess the surrounding areas for hydrophobic space. In the final phase of the work Baker attached functions (SO_2F) . COCH₂Br, etc.) capable of reacting with nucleophilic groups of the enzyme in such a way that they would not fall into hydrophobic space. He reasoned that there would be few reactive groups in hydrophobic space for covalent binding by nucleophilic substitution. Baker reasoned that if one were to search for differences between enzyme from host and enzyme from pathogenic cell, there would be a higher probability of finding such differences outside of the crucial amino acid residues of the active site. Compounds XIV and XV illustrate how binding in different regions of the enzyme can lead to either reversible or nonreversible inhibitors.¹⁰ Compounds of type XIV proved to be reversible inhibitors while those of type XIII were in some instances irreversible. Baker's modus operandi was to introduce a large hydrophobic group to fit into known hydrophobic space ((CH_2)₄ C_6H_5 in XV) and then attach a long "arm" carrying a group which could react with

nucleophiles. He visualized such groups projecting beyond the active site and turning back to react with surface polar groups.

Baker studied the SO₂F substituent in scores of inhibitors.¹⁰ Among these sulfonyl fluorides some turned out to be very effective irreversible agents, while others reacted reversibly with DHFR. One of the difficulties with such an approach to drug design is that the drug must not interact significantly with nucleophilic groups in any of the other macromolecules (or small molecules) it encounters during the random walk in the animal to the enzyme. An attractive feature of the SO₂F function in this respect is its relative inertness. For example, it does not react with so basic a molecule as pyridine or hot ethanol or hot acid solution. It does, however, react with OH groups in cellulose when bound via attachment to an absorbable dye molecule. Fölsch and Bertino¹⁰⁵ discovered that the SO₂F group is rapidly hydrolyzed by mouse serum in vitro but not by several other sera including rat and human. Baker¹⁰⁶ then showed that the hydrolase chymotrypsin would hydrolyze the sulfonyl fluoride function and, moreover, that when triazine VI with a 4-CH₂CH₂CONHC₆H₃-3'-Me-4'-SO₂F group labeled with C_{14} was fed to rats, only one product, the sulfonic acid, could be isolated in the urine or feces. Since 80% of the fed material could be accounted for in this form, degradation was rather complete.¹⁰⁷ It was also shown that enzymes in rat liver rapidly hydrolyzed the SO₂F function.¹⁰⁷ Nevertheless, the sulforyl fluoride XVI designed by Baker has shown promise as

XVI

an antitumor agent in clinical trials and is particularly interesting because of its activity against solid tumors. While experience with fluorosulfonyl compounds suggests that this substance must be rapidly hydrolyzed in vivo, the resulting sulfonic acid, which has a calculated octanol/water log P value of -1.6, would still be 10 times more lipophilic than methotrexate, whose log P is -2.6. Hence, it might enter cells well enough by passive diffusion to be effective.

Recently it has been established that XVI does react irreversibly with the OH of a tyrosine residue in chicken liver DHFR.¹⁰³

There has been a large amount of experimentation with alteration of the glutamate side chain, especially with MTX. Substitution of the glutamyl group by amino acids,¹⁰⁸⁻¹¹¹ peptides,¹¹² esters,^{113,114} or amides¹¹⁵ did not improve in vivo activity. Examples listed in the Appendix (Table II) which were tested on isolated enzyme have not yielded conclusive results except that transport into cells may be affected.^{111,112,115} Polyglutamate derivatives of MTX have been found in various MTX-treated tissues and have been shown to be inhibitors of DHFR^{116,117} after being first isolated by Baugh et al.¹¹⁸

Even more gross modifications of the glutamate portion of the MTX side chain have been accomplished by the attachment of MTX to polypeptides and proteins¹¹⁹⁻¹²¹ such as serum albumin,¹²²⁻¹²⁴ immunoglobulins,¹¹⁴ polylysine,¹²⁵ and starch.^{120,126} The peptides and protein derivatives appear to be taken up by resistant cells and then hydrolyzed to release MTX inside the cell.^{120,121}

The most interesting result of the modification of the benzene ring of the aminobenzoic acid moiety from the viewpoint of chemotherapy is the 3.5-dichloro analogue which has received considerable in vivo and clinical study. It appears to be less toxic to humans than MTX but is metabolized more rapidly. Roth and Cheng⁹ review studies of this more lipophilic MTX analogue in the context of other lipophilic antifols which have become more interesting because of their ability to penetrate lipophilic sanctuaries, such as the CNS, in cancer thermotherapy. Greco and Hakala¹²⁷ have shown for several antifols of varying degrees of hvdrophobicity that the extent of their uptake and growth inhibitory potency of tumor cells, as well as their affinity to DHFR, are correlated with the octanol/water partition coefficients; the more lipophilic, the more potent.127

In the important 2,4-diaminopyrimidine, substitution of the amino groups with methyl results in great decrease in inhibitor power.¹²⁸

An interesting set of cycloalka[g] pteridines (XVII) has been prepared and tested against DHFR from four sources: rat liver, L1210, L. casei, and T. cruzi.³⁴ Two

objectives were involved in this approach; an increase in hydrophobicity while at the same time blocking the 7-position which metabolizes¹²⁹⁻¹³¹ to 7-OH in MTX. The 7-OH MTX is much less potent as a DHFR inhibitor than methotrexate.¹³² Other analogues of MTX have also been shown to undergo oxidation by liver aldehyde oxidase.¹³² As one might expect from their greater lipophilic character, the halogenated derivatives of MTX are more susceptible to oxidation than MTX.¹³³⁻¹³⁵

By studying different types of pyrimidine rings it became clear to Baker that there must be more than one mode for the binding of the heterocyclic moiety. For example, a comparison of the μ MI₅₀ values obtained from pigeon liver DHFR for the following three series is instructive.¹⁰

The ethyl group in the A series actually makes for a slightly poorer inhibitor compared to the parent com-

pound, while in the B series activity is increased about 9-fold. Activity in the two series seems to converge with the hexyl derivatives but changes significantly with the octyl derivatives. For series A the octyl derivative has essentially the same activity as the hexyl, but for series B octyl is considerably less active. In series C the octyl analogue is more active. It is difficult to imagine that in each case R is binding in the same position in enzymic space.¹⁰

In exploring the nature of hydrophobic space Baker made an interesting comparison between a series of benzoyl glutamates XVIII and the pyrimidine XIX. There is little difference in activity when R of XVIII is NH₂ or H; however, when R is increased to octyl, pI_{50} = 3.77, almost the same as XIX (pI_{50} = 4.00).

From these and other examples Baker concluded that the hydrophobic region in DHFR commenced just after the N10 atom in folic acid or MTX.

An approach to the inhibition of DHFR which has been neglected is the design of compounds to compete with NADPH. It has been found by Bertino et al.¹³⁶ that NADP is a competitive inhibitor of ascites DHFR with a log $1/K_i$ of 5.31.

b. Quinazolines

The discovery^{137,138} of significant antileukemia activity in the 2,4-diaminoquinazolines prompted a study of their inhibitory action on DHFR. Out of this work has evolved a drug which is halfway between a quinazoline and a pteridine. This compound BW 301U (XX) shows considerable promise as an antitumor agent.¹³⁹ One

of the fascinating aspects of XX is that compared to

other potent antifolates it is a weak inhibitor of histamine N-methyltransferase. Duch et al.¹³⁹ concluded from the pattern of clinical side effects of antifolates used in cancer chemotherapy and Cohn's discovery that a number of antimalarials including antifolates were effective inhibitors of the enzyme that it might be possible to make less toxic antifols by studying their activity against histamine N-methyltransferase.¹⁴⁰ Besides having low affinity for the methyltransferase, BW 301U is as potent an inhibitor of DHFR from leukemia cells as MTX.

The quinazolines as a class are much more lipophilic than MTX and its ionizable congeners, and BW 301U is another example of the recent interest in lipophilic compounds for cancer chemotherapy, especially of solid tumors and brain tumors. It has been noted that the early standard of using L1210 leukemia as a test system for new drugs tended to select a preponderance of unusually hydrophilic compounds as judged by their octanol/water log P values.¹⁴¹ Now that there is less preoccupation with leukemia and more interest in using solid tumors for screening, lipophilic agents are attracting more attention.¹⁴²

The quinazolines which have been assaved against DHFR from various sources are listed in the Appendix (Table III). As with the pteridines, it is readily apparent that removal or replacement of the 2-NH₂ by OH or SH greatly lowers activity. Replacement of the 4-NH₂ by OH results in only a 3-10-fold decrease in activity against rat liver DHFR, while in the case of the pteridines or pyrimidines such a change reduces activity by 2 or 3 orders of magnitude. It is also clear that while small hydrophobic substituents like halogen or methyl increase activity when placed in the 5-position, large groups in this position reduce activity. Contrary to the pteridine system, the 5,6,7,8-tetrahydroquinazolines do not show reduced activity when compared to their unsaturated analogues. This tends to support our above observation that reduction of the pteridine ring lowers activity because of the great concomitant increase in hydrophilicity.

The placement of small substituents in the 7-position in general does not enhance activity but seems to have a slightly deleterious effect.^{143,144} The 8-position remains to be explored.

c. Triazines

The discovery by Modest and colleagues¹⁴⁵ in 1952 that the 4,6-diamino-2,2-dialkyl-1,2-dihydro-s-triazines interfere with folic acid metabolism triggered an enormous amount of research on the antifolate activity of this class of compounds, in particular by B. R. Baker and his students.¹⁰ Although these substances are not very active against bacteria or bacterial DHFR, they have shown definite promise in cancer chemotherapy. Two of the most promising antitumor agents to come out of Baker's extensive studies are XVI and XXI. The

activity of the triazines against various DHFR are summarized in Tables IV and V of the Appendix.

Baker used qualitative thinking to reach the conclusion that the active site and part of the region nearby is clearly hydrophobic. For example, he compared I_{50} values for variations of XXII. Both the *n*-butyl and

phenyl groups as R were found to make much better inhibitors than methyl or ethyl. The presence of the hydrophobic region was confirmed by showing that when polar groups were placed so as to fall in hydrophobic space, the affinity of the inhibitor was greatly reduced.

Baker's group also reached the conclusion that with phenyltriazines VI there is steric hinderance of rigid or bulky groups attached to the 3- or 4-position of the N-phenyl ring.

For example, the 4-C₆H₅-VI is 1500 times less active against pigeon liver DHFR than 4-H-VI, but the 4-CH₂C₆H₅-VI is much more active than the parent compound. It was also clear to them that 4-CN-VI and 4-COOC₂H₅-VI had unusually low activity, but it was not entirely clear whether this was to be attributed to steric or electronic properties of substituents or a combination of both. The steric effect seemed to be more important because of the low activity of 4-N(CH₃)₂-VI despite that $+\pi$ and $-\sigma$ values of the N(CH₃)₂ group. Unfortunately, Baker did not attempt to use regression analysis to sort out these problems, but later work using this technique showed Baker to be, in general, correct.¹⁴⁶

Another important structural feature of VI which was explored by Baker was substitution in the 2-position of the N-phenyl group. All of the substituents studied in this position (F, Cl, Br, I, OCH₃) yielded analogues much less active than the parent compound. Even the 2-F analogue is about 100 times less active than the parent compound with L-1210 DHFR.¹⁴⁶ Only recently has it been found that the 2-SH analogue is 10 times more active than the parent molecule with both bovine liver and murine L5178Y DHFR.¹⁴⁷

The most potent type of triazine analogue prepared by Baker's group was XXIII.¹⁴⁶ These substances did not turn out to be useful in chemotherapy possibly because of the easy nucleophilic displacement of the sulfonate groups.

Another class of triazines which has received considerable study is XXIV. The results with these antifolates are summarized in Appendix Table V. The most suitable variation of XXIV appears to be derivatives where $R_1 = R_2 = CH_3$. The analogues where R_1

= R_2 = H have not been reported. A particularly interesting compound is 22 in Table V, where R_2 = H, R_3 = $CH_2C_6H_5$, and $R_1 = C_6H_4$ -3'-Cl, which is about equal in activity against bacterial and vertebrate DHFR.

d. Pyrimidines

Table VI of the Appendix contains pyrimidines. mostly 2,4-diamino, which have been tested against various forms of dihydrofolate reductase. This is the largest class of antifolates studied, probably because the 5-benzyl-2,4-diaminopyrimidines are the most potent inhibitors of bacterial DHFR. The historical aspects as well as current work on this class of compounds has been very well reviewed by Barbara Roth and her associates.^{3,5,9} Among this class of compounds trimethoprim is still, although it has been in the public domain since 1959,¹⁴⁸ by far the most widely used antibacterial antifolate.⁵ One must remember that although Table VI contains 665 pyrimidines tested on DHFR this is a fraction of the number which have been synthesized and tested against bacteria. The only direct commercial competitor of TMP is tetroxoprim (V).^{149,150} Hitchings⁷¹⁵¹ discovery of the important antifolate antimalarial pyrimethamine XXV provided strong impetus to the search for antifolate drugs. Elslager and others have extended the search for antimalarials by studying antifolates.152

Roth notes⁵ that although there is great difficulty making comparisons among the various antifolates, the 3',4',5'-trisubstituted benzylpyrimidines appear to be the most potent antibacterial agents. Moreover, as with other antibacterials¹⁵³ the more lipophilic congeners are more active against Gram-positive cells. Roth points out that^{154,155} among the 3',4',5'-trisub-

Roth points out that^{154,155} among the 3',4',5'-trisubstituted benzylpyrimidines, those derivatives which contain a 4'-substituent forced out of plane by adjacent 3,5-substituents are the most selective antibacterial agents. According to Roth the most selective antibacterial antifolate is the 3',5'-(OCH₃)₂-4'-C(CH₃)=CH₂ benzylpyrimidine developed by Kompis et al.¹⁵⁶ This substance contains two out of plane groups in the 4'position. Roth has also suggested that one function of the 4'-substituent may be to force the two *m*-methoxy groups to be oriented away from it and hence favor interactions of the meta substituents with the enzyme. The 3',5'-dialkyl derivatives have less selectivity for bacterial DHFR than does TMP. Roth notes⁵ that this implies that the ether oxygens play a special role in binding the drugs to DHFR. A molecular graphics analysis of this problem offers a suggestion for the greater activity of the ethers against *E. coli* DHFR compared to be *L. casei* enzyme.³¹ Placing substituents in the 2'-position of the benzylpyrimidines also decreases inhibitor potency.⁵ An attempt¹⁵⁷ to replace the benzene ring in TMP analogues with pyridine was not successful, as one might have expected from Baker's extensive studies establishing the large hydrophobic binding area in DHFR. Log *P* for pyridine = 0.65, while for benzene log P = 2.13.

The many examples of bridges between the diaminopyrimidine ring and the phenyl group in Table VI indicate that the CH_2 group is best. Stogryn¹⁵⁸ found that a variety of hydrophilic bridges yielded TMP analogues of low activity against bacteria. Replacing the CH_2 with S also gave analogues with low antibacterial activity, which is somewhat surprising since sulfur is not hydrophilic, although oxidation could make it so.

e. Fluorescent Folate Analogues

A number of DHFR inhibitors carrying fluorescent labels have been synthesized.^{159,160} In one instance fluoresceine was attached to MTX to obtain very tight-binding DHFR inhibitors which could be used to label DHFR. Variations of XXVI which are strongly fluorescent are also potent inhibitors. These com-

pounds are almost as potent inhibitors of *L. casei*, chicken liver, and human DHFR as MTX, which makes them excellent means for labeling and identifying DHFR.¹⁶⁰ This is rather surprising since XXVI does not contain the usual 2,4-diaminopyrimidine constellation which seems so crucial for DHFR inhibitors. The basic dimethylamino group may react with Asp-26 carboxylate, which seems to be essential for binding. The authors note that the free "alpha" carboxyl of XXVI is vital to activity and no doubt the large hydrophobic naphthalene plays a very important binding role.

Very recently Rosowsky et al. have prepared a very effective complex derivative of methotrexate for fluorescent studies with DHFR.^{160a}

V. Quantitative Structure–Activity Relationships (QSAR)

a. Introduction

While a great effort has been put into the study of the relationship of the chemical structure of inhibitors to their potency toward various DHFR, we are a long way from a clear understanding of the complex set of forces which promote or hinder the binding of ligands by DHFR. Much of the early work was done with very crude enzyme preparations, small numbers of inhibitors, and without knowledge of the structure of the enzyme. Now that the X-ray crystallographic structures of

DHFR from three sources have been determined, and with enzymes from other sources under study, we shall soon have opportunities to see how the various forms of DHFR and inhibitors unite. Of course, even this detailed kind of information is still insufficient to explain the complete mechanism of the enzyme in its reaction with substrates and inhibitors. Matthews and his colleagues in La Jolla have reached the stage where they can determine the difference map between enzyme-cofactor and enzyme-cofactor-inhibitor in a few days in the case of chicken DHFR. Success in this endeavor depends on getting good crystals of DHFR into which inhibitors can be diffused. We believe that the combination of X-ray crystallography, QSAR, and computerized graphics will eventually have a large impact on drug development, starting with dihydrofolate reductase.

Before we discuss the details of QSAR for the various types of antifolates, some general comments about the limitations of this approach should be considered. For a clear general discussion of its use in drug design, the reader is referred to Martin's book,¹⁶¹ and for a discussion of the basics of computerized regression analysis, Daniel and Wood's book is excellent.¹⁶² Most of the work in QSAR has been done by using regression analysis to separate and delineate the electronic, steric hydrophobic, etc. effects of substituents on inhibitor potency. The basis for the study of SAR of electronic effects of substituents was conceived by Hammett about 1935; hence, a large amount of experience has accumulated about the use of Hammett–Taft σ constants. Much less experience has been obtained with the more complex hydrophobic and steric effects, and the latter are particularly difficult to parameterize since in the case of enzymes we have little notion of how rigid and unbending a particular portion of the enzyme with which the inhibitor comes into contact may be. As we shall see below, we are beginning to discover that there seems to be considerable "give" on the part of the enzyme, at least in certain situations. The basic difficulty is that, except in the case of L. casei and E. coli DHFR where high resolution X-ray crystallography studies have been made, we do not know the exact dimensions of the active site where the inhibitors are binding.

There are three types of steric parameters which have found general use in QSAR. The pioneering work of Taft resulted in the formulation of E_s which was derived from the acid hydrolysis of esters of substituted acetic acids^{163,164} (XCH₂COOR). The log of the relative rates of hydrolysis of the X derivative compared to that of the parent H compound (assuming the electronic effect of X to be insignificant) is a measure of the steric effect of X on the hydrolysis. Charton has developed a modified form of E_s (ν) which is based on van der Waals radii of substituents.^{165,166} The molar refractivity (MR) has been used as a rough measure of the bulk of substituents,¹⁶⁷ and Verloop has devised a set of steric constants based on effective calculated volumes.^{168,169}

The hydrophobic parameter π is an operationally defined measure of the hydrophobic effect of a substituents: $\pi_X = \log P_X - \log P_H$, where P_X is the octanol/water partition coefficient of a derivative and P_H that of a parent compound (i.e., $\pi_{CH_3} = \log P_{C_6H_6CH_3} - \log P_{C_6H_6}$). Substituents with positive π values are hydrophobic, and those with negative values are hydrophilic. The assumption is made that when binding is positively correlated with π , the substituent is interacting with hydrophobic space on or within the enzyme. This is a reasonable assumption when the traditional small substituents of physical organic chemistry such as halogen, small alkyl groups, NH₂, CN, and the like are under consideration. It is easy to imagine a small region of a macromolecule as being essentially homogeneous. Baker, however, started a trend by making what he called nonclassical antimetabolites. The distinction was that in classical antimetabolites a small structural change was involved, whereas in the nonclassical inhibitors huge changes were made so that much of the substituent would fall outside of the active site. For example, a substituent such as $OCH_2C_6H_4$ -4'-SO₃C₆H₄-2'-Cl, which is, in fact, larger than the parent triazine VI to which Baker attached it and many others as large or larger, contains large hydrophobic and hydrophilic subsections within itself. Moreover, it seems unlikely that such a large substituent could bind in a homogeneous portion of the enzyme. One must be cautious in interpreting the results of correlation equations containing such mammoth groups. There is virtually no experience in pure physical organic chemistry with such substituents in homogeneous solution to base behavioral expectations on.

The most serious problem in using regression analysis is the collinearity problem.¹⁶⁷ Unless considerable care is taken and some discipline maintained during an analogue synthesis program, vectors such as π and MR may turn out to be so collinear that it is impossible to tell whether one or both are involved in the SAR.

Another formidable problem when considered in a general fashion is that of establishing via regression techniques what part of a large substituent fails to contact the enzyme. For example, if one is testing the size of a hydrophobic pocket by increasing the size of substituents binding in this region, the best approach for dealing with the problem is Kubinyi's bilinear model:¹⁷⁰ log $1/K_i = a\pi - b \log (\beta \cdot 10^{\pi} + 1) + c$. The disposable parameters a, b, c, and β are evaluated by an iterative procedure, since for this nonlinear equation one cannot employ the usual least-squares method. When hydrophobic binding is occurring, one finds a linear increase $(a\pi)$ in potency until a breaking point (π_0) is reached where the second term in the above expression takes over and one finds a new linear relationship with slope of a - b. If a - b is essentially zero, the assumption is that at point π_0 one has reached the edge of the hydrophobic pocket and larger hydrophobic groups must at least in part extend beyond the enzyme into aqueous space. This idea is not hard to apply to a set of homologues of the type $(CH_2)_n CH_3$ or O- $(CH_2)_n CH_3$. However, when one mixes in with such a series compact hydrophobic groups such as *tert*-butyl or adamantyl where the geometry is quite different, the above treatment is too simple. Since the hydrophobicity of an apolar group is proportional to its surface area or volume,¹⁷¹ the adamantyl group could make much more effective use of a hydrophobic cavity than, say, an extended linear hexyl group. Hence, building the mathematical models of QSAR is not a kind of plug-in problem where the numbers are fed into the computer and one accepts the answer without much thought. The model must be built systematically out of more and more complex changes in the parent compound.

In constructing a model with more complex derivatives, such as Baker's nonclassical inhibitors, structural features may be introduced which cannot yet be parameterized with generalized constants such as σ , π , etc. Indicator variables can play an important role in the construction of models of such substances.^{162,172,173} These variables take the value of 0 or 1 for some specific structural feature which does not fit the correlation equation. For example, if a data set contained variations of VI in which there was a bridge of two atoms from N-phenyl to a second phenyl group which conferred extra activity to such inhibitors beyond that accounted for by the known continuous variables $(\pi, \sigma,$ etc.), a 1 could be assigned to all congeners containing this feature and 0 to those which do not have it. The above model would be modified to the form:

$$\log 1/K_1 = a'\pi - b' \log (\beta \cdot 10^{\pi} + 1) + c'I + d$$

where I is the indicator variable. This implies that we have two sets of congeners, one with and one without the bridge, both behaving in the same way hydrophobically. The question arises why not simply use two correlation equations. To a certain extent it is a matter of bookkeeping. A correlation equation is an extremely compact summary of structure-activity and it is simpler to have one equation rather than several. This becomes more important when dealing with very large data sets based on several hundred congeners where 5-10 indicator variables may be involved.^{172,174,175} Before. in effect, merging two data sets via an indicator variable, one should derive the two equations and show that they are parallel except for the intercepts. Sometimes, however, one has only a few examples in one series-not enough to derive a valid correlation equation. If these points are included in the single equation, one can keep track of them and their effect on the structure-activity relationship. One must be cautious in interpreting the quality of the correlation obtained when two or more such sets are merged. If the two sets are rather far apart in data space described by π , σ , etc., then one "builds" in" a large amount of variance which may yield a much higher correlation coefficient (r).¹⁷⁶ The new equation could be a poorer correlation despite the better r. The best check is to compare the standard deviations from the two equations.

b. Triazine Inhibitors of DHFR

The first preliminary DHFR QSAR were formulated with use of results from Baker's group on the inhibition of pigeon liver and $E. \ coli$ reductase by pyrimidines and triazines.¹⁷⁷⁻¹⁷⁹ The first serious QSAR for antifolates was made with a set of about 250 triazines of type VI tested against DHFR from L1210 leukemia cells and Walker 256 rat tumor by Baker's group. From this data the model of eq 1 was derived.¹⁴⁶ In this expression triazine VI inhibitors of DHFR

$$\log 1/C = 0.68\pi_3 - 0.12(\pi_3)^2 + 0.23MR_4 - 0.024(MR_4)^2 + 0.24I_1 - 2.53I_2 - 1.99I_3 + 0.88I_4 + 0.69I_5 + 0.70I_6 + 6.49 (1)$$

$$n = 244, r = 0.923, s = 0.377, \text{ ideal } \pi_3 = 2.9 (2.6-3.3), \text{ ideal } MR_4 = 4.7 (4.2-5.6)$$

C is the molar concentration of triazine producing 50% inhibition, n represents the number of data points used to derive eq 1, r is the correlation coefficient, s is the standard deviation from the regression, and ideal π_3 and MR₄ are the optimum physical chemical characteristics for substituents in the 3- and 4-positions of VI. The MR values used in deriving eq 1 have been scaled by 0.1 to make them more nearly equiscalar with π . The π_3 term represents the hydrophobic effect of 3-substituted VI and the MR₄ term represents the role of molar refractivity of 4-substituents on inhibitor potency. Both of these terms have exponential counterparts which show that beyond the ideal values, activity falls off with increasing value of π_3 or MR₄. The indicator variable I_1 assumes the value of 1 for log 1/C values obtained with use of enzyme from Walker tumor and the value of 0 for L-1210 enzyme. The positive coefficient with this term, although small, brings out the fact that L-1210 DHFR was more difficult for the triazines to inhibit. These results do suggest that there is a small structural difference in the DHFR from the two different types of tumor cells. It is of interest in this context that Walker tumor responds more readily to chemotherapy than L-1210 leukemia does.

Indicator variable I_2 takes the value of 1 for all congeners having a substituent in the 2-position of VI. Such derivatives are much less active (about 300 times) than expected. Attempts to correlate the effects of 2-substituents with constants such as $E_{\rm s}$, σ , π , etc. were unsuccessful.¹⁴⁶ All 2-substituents, including the small F group, greatly depressed potency. A further investigation of 2-X-VI also found that all substituents, with one important exception, greatly decrease inhibitory power against DHFR from bovine liver and murine L5178Y tumor cells.¹⁴⁷ The one exception was 2-SH, which was found to be 10 times more potent than the parent structure against both types of DHFR. The fact that the large 2-I group is about 1000 times less active than the parent compound and 2-Cl is about 30 times less suggests that a steric effect is involved. The fact that the small F is more than 10 times less active than the parent molecule would indicate that an electronic effect is also probably involved. Why the large SH group is more active is not clear.

The indicator variable I_3 which is given the value of 1 for rigid branched groups (C₆H₅, CONH, CH—CHC-ONH, >CHC₆H₅) in either position 3 or 4 brings out detrimental effects of such structures. The coefficient of -1.99 shows that on the *average* these structures are 100 times less active than expected. More recently, it has been found that COOR, CHOHC₆H₅, and C(CH₃)₃ are usually less active than expected.^{27,180–185}

Variable I_4 takes the value 1 for those congeners having substituents: $4\text{-OCH}_2\text{C}_6\text{H}_4\text{-4'-SO}_2\text{OC}_6\text{H}_4\text{X}$. Its value of 0.88 shows the unusual contribution to activity made by the SO₂O moiety. It is possible that alkylation of the enzyme could occur via this function. On the other hand, there may be a specific noncovalent reaction of the SO₃ group with the enzyme.

I-5 is given the value of 1 for flexible bridges of the type CH₂, CH₂CH₂, (CH₂)₄, (CH₂)₆, and (CH₂)₄O between the N-phenyl moiety and a second phenyl ring. This flexibility considerably improves activity as shown by the positive coefficient of 0.69.

Amide bridges of the type $CH_2NHCONHC_6H_4X$,

 $CH_2CH_2CON(R)C_6H_4X$, and $CH_2CH_2CH_2CON(R)C_6H_4X$ (R = H or Me) are correlated by I_6 . This is a rather arbitrary parameterization since amides of the type $O(CH_2)_nCONHC_6H_4X$, $O(CH_2)_nNHCONHC_6H_4X$, $CH_2CONHC_6H_4X$, and $CH_2CH(R)CONHC_6H_4X$ are excluded from this class. These bridges increase activity on the average by a factor of 5.

It was recognized at the time of the derivation of eq 1 that high collinearity between the π_3 and MR₃ and the π_4 and MR₄ vectors precluded firm statements that enzymatic space binding 3-substituents is hydrophobic and that 4-space is not hydrophobic. Subsequent work has established that there is a rather large hydrophobic region into which both 3- and 4-substituents of limited size can bind and that π correlates the effects of substituents on inhibitor potency.^{180–185}

Equation 1 has a number of shortcomings. Most serious is the fact that the DHFR employed by Baker was extremely crude, although Baker looked on this as an advantage in drug design. His reasoning was that in vivo DHFR would be surrounded by many other types of macromolecules and hence crude enzymes simulated this condition.

Equation 1 has predictive value showing, for example, what optimum π is and which structural features are in general helpful or bad. Terms which do not appear in the equation are of interest. For example, all attempts to find a role for σ were unsuccessful, so that we know electronic effects of substituents are not of prime importance. Without regression analysis Baker was never sure of this point.

In addition to predictive values, equations such as eq 1 can be used to characterize enzymic space provided that they are constructed from data obtained from a well-selected set of substituents. Equation 1 structures a huge amount of information so that one can see at a glance the probable activity of a potential new derivative. This bookkeeping function of correlation equations for large data sets of hundreds of congeners is extremely important. Compounds that do not fit the relationship well immediately become the focus of interest and the study of these leads to deeper understanding. Equation 1 can be compared with eq 2 and 3 for the inhibition of highly purified human DHFR by triazines VI.¹⁸⁵ The simpler nature of eq 2 and 3 4-X-VI QSAR from human DHFR

$$\log 1/K_{i\,\text{app}} = 0.78\pi'_4 - 0.78\log(\beta \cdot 10^{\pi'_4} + 1) + 1.26I - 0.88\nu + 5.83$$
(2)

$$n = 35, r = 0.953, s = 0.361, \pi_0 = 3.43$$

3-X-VI QSAR from human DHFR

$$\log 1/K_{i\,\text{app}} = 1.07\pi'_3 - 1.10\,\log\,(\beta \cdot 10^{\pi'_3} + 1) + 0.50I + 0.82\sigma + 6.07 (3)$$

$$n = 60, r = 0.890, s = 0.308, \pi_0 = 1.84$$

compared to eq 1 is due to the simpler type of substituent employed in developing the human QSAR. The goodness of fit with the human data is better than that for the tumor DHFR (compare values of s). Apparent K_i values were used instead of I_{50} values and highly purified (affinity chromatography) enzyme [human lymphoblastoid (WIL2)] was used instead of crude material. Considerable effort was made to get reliable K_1 values.⁸⁰ In eq 1 it seemed acceptable to include all data points in a single QSAR including 3,4-di-X-VI. In the case of human DHFR it was quickly apparent that QSAR for 3- and 4-substituents differed greatly. Equation 2 contains a term in ν which is Charton's¹⁶⁶ steric parameter. It has been shown to be rather closely related to Taft's E_s ; however, there are more values available of the ν constants than of $E_{\rm s}$. Surprisingly, the QSAR for 3-X-VI contains a term in σ and no counterpart could be found for eq 2. It is likely that the higher quality of the data used to derive eq 2 and 3 allows for higher resolution and hence the discovery of more subtle structure-activity features.

Hydrophobic space for 4-X is larger than for 3-X (compare values of π_0) and the indicator variable I in eq 2 is larger than in eq 3. This variable takes the value $\frac{1}{2}$ of 1 for substituents of the type $CH_2SC_6H_4Y$ or $ZCH_2C_6H_4Y$ (where Z = O or S). The value of π_Y for these congeners is set to zero. That is, $\pi_{ZCH_2C_6H_4Y} =$ $\pi_{ZCH_2C_6H_5}$, since Y, regardless of its character, has a negligible effect on log $1/K_i$. Equations 2 and 3 are based on the bilinear model for hydrophobic effects.¹⁷⁰ For eq 2 the right-hand side of the bilinear curve has a slope of zero (0.78 - 0.78 = 0); the same is essentially true for eq 3 (1.07 - 1.10 = -0.03). Initially, inhibitor potency increases with increasing values of π until the point of π_0 , where substituents having larger π values show a constant effect. It is assumed that part of these larger hydrophobic groups simply project beyond the enzyme into aqueous space and hence have no effect on potency of the inhibitor. The π_0 for the two equations are different, showing that larger 4-substituents are able to make better hydrophobic contact than 3substituents.

The negative term in ν of eq 2 indicates a bad contact between 4-substituents and a portion of the enzyme and the positive term in I brings out the fact that groups of the type $CH_2ZC_6H_4Y$ are on the average more than 10 times as potent as their π values alone would lead one to expect. This moiety corresponds to the CH_2N - HC_6H_4CO unit in folic acid and the similar group in MTX. The geometry of $4-CH_2ZC_6H_4Y$ substituents is apparently not so favorable for interaction so that the coefficient with the I term in eq 3 is considerably smaller than in eq 2.

The presence of the σ term in eq 3 but not in eq 2 is puzzling, and in fact one might be tempted to ignore it since it is not highly important, except for the fact that it is also found with DHFR from other sources (see below). To our knowledge, the finding of an electronic substituent effect from a meta position but not from the para position is unprecedented in the studies of physical organic chemistry. In some way it must be a consequence of the inhomogeneity of the macromolecular system. If because of the steric effect of 4-X-VI brought out by -0.88ν in eq 2 by 4-substituents the XC_6H_4 moiety is moved slightly, it is conceivable that a dipolar interaction between ligand and enzyme would not play as important a role with 4-X-VI as with 3-X-VI. The σ term could also be the result of a high electron density on the substituent, which in the case of 3-substituents promotes a reaction of 3-substituents with an enzymic feature not available to 4-substituents. In any event, the effect seems real and must eventually be accounted for.

In the case of the human DHFR the bilinear model gives a better correlation than the parabolic model (π $(+\pi^2)$ used in eq 1. The complexity of the substituents upon which eq 1 is based is so great that the reasons for the advantage of the parabolic model compared to the bilinear model are obscured. Actually, using the bilinear terms in eq 1 gives almost as good a correlation. However, the π_0 for 3-substituents is considerably larger for eq 1 than for eq 3. Even if relatively simple 3-X-VI are extracted from the set of 244 congeners used to derive eq 1 and these are treated separately, one finds about the same π_0 value. Thus, it would seem that the test system used by Baker is the only way to account for the larger π_0 . Enough data has now collected (see below) to establish that 4-substituents also bind in hydrophobic space and that the MR₄ terms of eq 1 should be replaced with π_4 terms.

The QSAR for triazines acting on human DHFR can be compared with a rather extensive study made using highly purified chicken liver DHFR.¹⁸⁴ Equations 4 4-X-VI QSAR from chicken DHFR

$$\log 1/K_{i \text{ app}} = 0.73\pi'_4 - 1.40 \log (\beta \cdot 10^{\pi'_4} + 1) - 0.29\nu + 6.49 (4)$$

$$n = 32, r = 0.949, s = 0.280, \log \beta = -2.40, \pi_0 = 2.44$$

3-X-VI QSAR from chicken DHFR

 $\log 1/K_{i\,\rm app} = \\ 1.01\pi'_3 - 1.16\,\log\,(\beta\cdot 10^{\pi'_3} + 1) + 0.86\sigma + 0.633~(5)$

 $n = 59, r = 0.906, s = 0.286, \log \beta = -1.12, \pi_0 = 1.80$

3- and 4-X-VI QSAR from chicken liver DHFR

 $\log 1/K_{i\,\text{app}} = 0.85 \sum \pi' - 1.04 \, \log \, (\beta \cdot 10^{\sum \pi'} + 1) + 0.57\sigma + 6.36 \ (6)$

$$n = 101, r = 0.910, s = 0.294, \pi_0 = 2.03, \log \beta = -1.38$$

and 5 are comparable to eq 2 and 3, but the behavior of the 3- and 4-substituted congeners is so similar for the chicken enzyme that the two equations can be merged to yield eq 6, which is almost as good a correlation (compare values of s) as the two separate equations. The steric effect brought out by -0.29ν in eq 4 is so weak that it is completely obscured in eq 6. Equation 6 also correlates ten 3,4-disubstituted analogues including Baker's antifols XIV and XIX, which are all reasonably well fit.

The presence of the σ term and the less important term in ν is comparable to eq 2 and 3. The lack of significance of the indicator variable I in eq 4-6 indicates a major structural difference in the two enzymes. The I term is even more important in the QSAR for bacterial DHFR and it is of some importance in the murine QSAR. It will be most interesting to see just which structural feature chicken DHFR has which differentiates it from all other DHFR in this manner. As in eq 4 and 5, π' means that $\pi_{\rm Y}$ for ZCH₂C₆H₄Y or $CH_2ZC_6H_4Y$ is set to zero. However, in addition π' for OR groups was also set to zero. Variation in log $1/K_i$ for both 3-OR and 4-OR, where R is limited to simple alkyl groups, is so small that these groups do not appear to contact the enzyme, or if they do, some sort of steric inhibition must compensate for the hydrophobic interaction. Actually, the alkoxy groups are not well accommodated by eq 4 and 5.

The hydrophobic space available for substituents with the chicken DHFR resembles that for 3-X-VI analogues in the human DHFR (compare values of π_0).

Equations 1–6 can also be compared with the less extensive QSAR obtained with DHFR from two other vertebrate sources: bovine liver and murine leukemia $L5178YR-C_3$:¹⁸⁰

3-X-VI QSAR from bovine DHFR¹⁸⁰

$$\log 1/K_{i\,\text{app}} = 1.10\pi'_3 - 1.23\,\log\,(\beta \cdot 10^{\pi'_3} + 1) + 0.61\sigma + 7.08\ (7)$$

 $n = 38, r = 0.914, s = 0.277, \pi'_0 = 1.72$

3-X-VI QSAR from murine tumor DHFR¹⁸⁰

$$\log 1/K_{i\,app} = 1.19\pi'_{3} - 1.38 \, \log \, (\beta \cdot 10^{\pi'_{3}} + 1) + 0.50I + 0.90\sigma + 6.20 \ (8)$$

$$n = 38, r = 0.935, s = 0.289, \pi'_0 = 1.56$$

The intercepts of eq 2 and 3 are rather close to eq 8 but are considerably different from eq 7 for the bovine reductase. The bovine reductase is about 10 times more sensitive on the average than the human or mouse enzyme.

Human, chicken, bovine, and murine QSAR all contain a term in σ for 3-X-VI congeners, and although this is not a variable of major importance, it is clearly significant in each case.

The π_0 values for human, chicken, bovine, and mouse DHFR QSAR are in rather close agreement for 3-X-VI. The 4-X-VI congeners have not yet been tested with the bovine and murine enzymes. The initial dependence of log $1/K_1$ on π is also similar; consequently, the hydrophobic regions of the active sites must be roughly the same.

Like the human equation, a term in I is also found for the murine equation, and in fact eq 8 is remarkably similar to eq 3.

A QSAR for a small set of 3-X-VI has been derived for rat liver DHFR, but the data are not extensive enough to allow for comparisons with the other vertebrate QSAR.¹⁸⁰ In equation 9 only two groups of the

3-X-VI QSAR from rat liver DHFR

$$\log 1/K_{i\,\text{app}} = 1.12\pi_3 - 1.34\,\log\,(\beta \cdot 10^{\pi_3} + 1) + 6.80\,(9)$$

$$n = 18, r = 0.977, s = 0.171, \pi_0 = 1.68$$

type $OCH_2C_6H_4Y$ were evaluated so that normal π values were used for these compounds. Equation 9 is quite similar, as far as it goes, to eq 8.

The results with the vertebrate DHFR can be compared with QSAR from bacterial enzyme.¹⁸³

3-X-VI QSAR from L. casei DHFR

 $\log 1/K_{iapp} =$

$$\begin{array}{l} 0.83\pi'_{3} - 0.91 \, \log \, (\beta \cdot 10^{\pi'_{3}} + 1) \, + \, 0.71I + \, 4.60 \ (10) \\ n = 38, \ r = 0.961, \ s = 0.244, \\ \log \, \beta = -1.68, \ \pi = 2.69 \end{array}$$

4-X-VI QSAR from L. casei DHFR

$$\log 1/K_{i\,\text{app}} = 0.44\pi'_4 - 0.65 \,\log \,(\beta \cdot 10^{\pi'_4} + 1) - 0.90\nu + 0.69I + 4.67$$
(11)

$$n = 32, r = 0.941, s = 0.348, \log \beta = -4.22, \pi_0 = 4.53$$

The QSAR for 3-X-triazines acting on *L. casei* DHFR differs from the corresponding equations with vertebrate DHFR in two ways. The much smaller intercept with eq 10 shows the triazines to be, in general, much less active against the bacterial reductase. Equation 10 lacks a term in σ which most of the vertebrate equations contain. The equation for 4-X-triazines has two important differences from that for 3-X-triazines. The slope with π'_4 is only about half that of eq 10 and π_0 is much greater, bringing out the point that a larger hydrophobic surface is available with *L. casei* enzyme for four substituents. Equation 11 does contain the term in ν as do most of the vertebrate equations for 4-X-VI congeners.

Both equations contain the indicator variable I for the special effect of the $ZCH_2C_6H_4Y$ moieties as do the vertebrate equations, except for chicken and bovine DHFR.

Since dihydrofolate reductase like most other enzymes is sensitive to changes in pH, it is of interest to note that in the case of DHFR from bovine liver the same structure-activity relationship is found at pH 6.25 and 7.20 in reacting with 2-X-VI. This suggests that major changes in the structure of the DHFR with pH do not occur.¹⁴⁷

Examples of results from correlation equations are shown in Table II, where observed and calculated values for $\log 1/K_{iapp}$ are present for the inhibition of human and *L. casei* DHFR by triazines. One of the more interesting aspects of π constants is that they provide a reasonable model for evaluating the binding of a variety of quite different substituents with the hydrophobic regions of macromolecules. The model in effect says that partitioning of the substituent from the aqueous phase onto the enzyme will parallel the way it partitions from water into octanol. Although macromolecules do not have the same homogeneity that octanol does, the model still works rather well. If one compares observed and calculated values for the first 16 examples in Table II, which contain relatively small substituents and which have a very wide variety of polar bonds, one finds reasonable agreement with a few notable exceptions. Particularly poor correlations with the human enzyme are 6 (4-COOCH₃), 7 (4-COOC₂H₅), and 16 (4-C \equiv N). The less-than-expected activity of the two esters is probably due to steric effects (see section on graphics). The 4-CN is much less active than expected in both the human and bacterial examples. The correlation equation alerts us to some kind of specific interaction of the CN group with the enzyme not shown by the other small polar groups, although the basis for this interaction is not yet clear. Follow up on this lead by other means is called for. What is surprising is that substituents such as 2 and 39 (SO₂NH₂), 4 and 40 (CON-H₂), 5 and 41 (COCH₃), 9 (4-NH₂), 10 (4-NHCOCH₃), and 43 (3-OH), which all have unusual possibilities for hydrogen bonding with the protein, are about as well fit as the apolar groups such as CH₃, halogens, and CF₃. This suggests that the polar interactions of these substituents with the enzyme are similar to those in octanol.

The large, complex group 17 is poorly correlated and so is the rigid 23 (4-C \equiv CC₆H₅). Also, very poorly correlated is the charged substituent 51. All in all, however, the results are better than one might expect for such a simple model and the correlation equations are of great help in organizing a very complex data set. Inhibition studies with polar and nonpolar substituents established the hydrophobic character of the binding site long before it was confirmed by X-ray crystallographic studies to indeed be hydrophobic.

The quantity $\log 1/(K_i \text{ human DHFR}) - \log 1/(K_i L. casei DHFR)$ enables one to see the selectivity of the inhibitors for the two enzymes. There is only one example, 8 4-OH-VI, which is more potent against the bacterial enzyme than the mammalian enzyme. All other inhibitors are more potent against the eucaryotic DHFR than the bacterial DHFR. The most selective substituents are 11 (4-CF₃), 22 (4-C(CH₃)₃), and 48 (3-I), which are about 100 times more active against the human DHFR.

c. Quinazoline Inhibitors of DHFR

A class of potent inhibitors which resembles folic acid is the 2,4-diaminoquinazolines (VII) for which QSAR have been derived.

QSAR of VII from rat liver DHFR¹⁸⁶ log 1/C = 0.81MR₆ - 0.064(MR₆)² + $0.77^{\pi_5} - 0.73I_1$ - $2.15I_2 - 0.54I_3 - 1.40I_4 + 0.78I_6 - 0.20$ MR₆ $I_1 + 4.92$ (12) n = 101, r = 0.961, s = 0.441, ideal MR₆ = 6.4

The π_5 and MR₅ terms refer to substituents in positions 5 and 6 of VII. The indicator variable I_1 is assigned the value of 1 when the 2-NH₂ group of VII is replaced by SH or OH. These congeners are on the average 65 times less active than those containing a 2-NH₂, other factors being equal. I_2 is given the value of 1 when 2-NH₂ is replaced by H. These congeners are about 100 times less active than the corresponding 2-NH₂ analogues. The variable I_3 assumes the value of 1 for congeners having an OH or SH group in place of 4-NH₂, which lowers activity by about 30-fold. Thus, the $2-NH_2$ is seen to be a little more important than the $4-NH_2$. This is to be expected since there is considerable evidence that the carboxyl of a Glu or Asp residue interacts strongly with the N1 and 2-NH₂ groups of inhibitors of this type. In fact, one might expect an even greater effect on removal of the 2-NH₂ group. I_4 is given the value for 1 of the following bridges from the 5-position to any aryl group: S, SO, SO₂, CH₂S, CH=CH. Its negative value shows that such an arrangement of atoms greatly depresses activity (by an average factor of 250). I_6 is assigned a value of 1 for 6-SO₂Ar. This is the only indicator variable which makes a positive contribution to inhibitory potency.

The cross product term of MR_6I with its negative coefficient shows that the combination of 2-SH or 2-OH with a large 6-substituent produces less effective inhibitors. Since 2-SH and 2-OH are poor substituents compared to 2-NH₂, one assumes that 2-OH holds inhibitors to the enzyme less firmly. This appears to prevent 6-substituents from making their maximum contribution.

The quinazolines have also been studied by Hynes and Freisheim using DHFR from S. faecium. This work is summarized in the QSAR of eq 13. Equation QSAR of quinazolines VII from S. faecium DHFR¹⁸⁷

$$\log 1/C =$$
1.13 π_5 - 1.10MR₅ - 2.39I₁ - 4.09I₂ -2.37I₃ + 8.26
(13)

 $n = 67, r = 0.926, s = 0.672$

13 is quite different from eq 12 and a much less satisfactory QSAR. The standard deviation of eq 13 is much higher than that of eq 12 and the meaning of the π_5 and MR₅ terms is ambiguous. Since there is high collinearity ($r^2 = 0.86$) between them and their coefficients are almost identical, they tend to cancel each other. The result can be interpreted by postulating a region for hydrophobic binding which is small or sterically hindered. Thus, while large groups give better hydrophobic interaction, this is offset by their bulk.

In the QSAR of eq 12, the apparently limited space in the region occupied by 5-substituents is taken care of by the negative coefficient with I_4 .

The indicator variables which account for most of the reduction in variance in $\log 1/C$ have the same meaning as in eq 12; however, they bring out the fact that replacement of NH₂ on the pyrimidine ring by H, OH, or SH depresses inhibitor potency much more with the bacterial reductase. The intercept in eq 13 is the estimate for the activity of the parent congener, which actually was not tested. The value of 8.26 is not much different from the value of log 1/C for the most active congener (9.15); hence, little has been gained in the extensive modification studies.

An important aspect of eq 13 is that it does not contain any term for 6-substituents despite the fact that many of the derivatives contain them. Structural variation in these substituents is large, but few small, easily parameterizable substituents were studied. The most active congeners are those containing a single large group in position 6; however, the nature of these groups is so complex that no reasonable parameterization could be devised.

From molecular graphics studies (see section X) it is clear that the region into which 6-substituents on quinazolines contact the enzyme is rather open and the 5-position is rather limited. A better selection of small 6-substituents in the data used to formulate eq 13 would have given a better based QSAR. Although data from a few such substituents were used to derive eq 12, the collinearity between π_5 and MR₅ was high ($r^2 = 0.86$). While eq 12 and 13 suggest MR₆ is a better parameter than π_6 , we now know from both QSAR and X-ray crystallography studies that this region is largely hydrophobic. This illustrates the great importance of careful substituent selection in SAR studies.

Chen et al.¹⁸⁸ have formulated a QSAR for quinazolines XXVII inhibiting DHFR from human acute lym-

TABLE II. Comparison of the Inhibition by Triazines VI of Human DHFR with L. casei DHFR

				$\log 1/K_{\rm f}$	app	
		human	DHFR ^a	L. casei	DHFR ^b	1
n 0	v	abad	oalad	ohed	anlad	numan –
<u> </u>	A	UDSQ	calcu	Ubsu	calcu	L. casei, obsu
1.		5.78	5.79	4.70	4.59	1.08
2.	$4-SU_2NH_2$	3.81	3.54	2.97	2.99	0.84
3. A	$4-5U_2 \cup H_3$	4.08	3.09	2.71	3.07	1.37
4.		3.04 1.50	4.03	3.10	3.37	0.40
5. 6	4-COOCH	3.85	4.10	3.39	3.31	0.56
7.	4-COOC_H	3.46	4.79	3.41	3.54	0.05
8.	4-OH	4.57	5.02	4.91	4.09	-0.34
9.	$4-NH_2$	4.65	4.56	3.94	3.82	0.71
10.	4-NHCOCH ₃	4.23	4.27	3 .9 0	3.43	0.33
11.	4-CF ₃	5.58	5.50	3.68	4.24	1.90
12.	4-F	6.15	5.65	4.65	4.49	1.50
13.	4-Cl	6.20	5.74	4.76	4.49	1.44
14.	4-Br	0.70 5.51	5.72 5.70	4.07	4.40	1.19
10.	4-1 4-CN	3.69	5.70	4.40	4.40	1.08
10.	4-OCH-CON(CH-CH-)-O	5.66	4 20	4 27	3.50	1 39
18.	4-O(CH ₂) ₂ OC ₂ H ₄ -4'-NH ₂	6.00	5.54	5.12	4.32	0.88
19.	4-CH ₂	5.97	5.69	4.17	4.45	1.80
20.	$4 - (CH_2)_3 CH_3$	6.27	5.93	5.05	4.99	1.22
21.	$4-(CH_2)_8CH_3$	6.52	5.94	5.79	5.71	0.73
22.	4-C(CH ₃) ₃	5.66	5.43	3.56	4.42	2.10
23.	$4-C \equiv CC_6H_5$	5.42	5.92	3.86	5.30	1.56
24.	4-OCH ₃	5.31	5.46	4 .10	4.34	1.21
25.	$4-O(CH_2)_2CH_3$	5.57	5.85	F 0F	5 00	0.08
26.	$4 - O(CH_2)_5 CH_3$	0.03	6.00 5.07	0.20 5.57	0.20 5.66	0.28
27.	$4-O(CH_2)_{10}CH_3$	5.85	597	5.58	5.66	0.11
20.	4-OCH-C-H-	6.93	7 18	5 19	5.51	1 74
30.	4-OCH ₂ C ₆ H ₂ -3'.4'-Cl	6.46	7.18	5.66	5.51	0.80
31.	4-OCH ₂ C ₆ H ₄ -4'-SO ₂ NH ₂	7.21	7.18	5.35	5.51	1.86
32.	4-OCH ₂ C ₆ H ₄ -4'-CONH ₂	7.23	7.18	5.63	5.51	1.60
33.	4-OCH ₂ C ₆ H ₄ -4'-CH ₂ OH	7.12	7.18			
34.	$4-CH_2SC_6H_5$	7.33	7.07	5.61	5.63	1.72
35.	$4-CH_2SC_6H_4-2'-CH_3$	7.18	7.07			
36.	$4-CH_2SC_6H_4-3'-CH_3$	7.22	7.07	5.55	5.63	1.67
37.	$4-SCH_2C_6H_5$	7.01	6.78	5.64	5.34	1.37
38.	$4-5UH_2U_6H_4-4'-UI$	6.97	0.78	0 03	3 00	1 69
39. 40	3-CONH.	4.00	4.49	2.30	5.05	1.02
40.	3-COCH	5.46	5.76	4.24	4.14	1.22
42.	3-COOC ₉ H ₅	4.95	6.62			
43.	3-OH	5.53	5.42	3.85	4.04	1.68
44.	3-CF ₃	6.67	6.84	4.77	5.27	
45.	3-F	6.61	6.35	4.88	4.70	1.73
46.	3-Cl	7.03	6.72			
4 7.	3-Br	7.21	6.80	510	E 40	1.00
48.	3-1 2 NO	6.00	0.84 6.20	0.10 4 74	0.43 4 96	1.99
49. 50	3-NO2 3-CN	630	5.88	5.31	4.30	0.99
51	3-CH _a N ⁺ (CH _a) _a	3.55	1.79	0.01	1.12	0.00
52.	3-CH ₂	6.74	6.29	4.96	5.03	1.78
53.	3-CH ₂ CH ₃	6.93	6.47	5.40	5.36	1.53
54.	$3-(CH_2)_5CH_3$	7.02	6.54	5.99	5.85	1.03
55.	$3-(CH_2)_8CH_3$	6.66	6.48	6.27	5.73	0.39
56.	$3-(CH_2)_{11}CH_3$	6.52	6.43	5.67	5.60	0.85
57.	$3-C(CH_3)_3$	6.39	6.54			
58. 59	3-CH(OH)C ₆ H ₅	0.00 5.78	6.30	4 52	4 57	1 26
59. 60	3-0CH ₃ CH	5.66	6.32	5.19	4.89	0.47
61.	3-O(CH ₂),CH ₂	5.68	6.61	5.58	5.38	0.10
62.	3-O(CH ₂) ₃ CH ₃	6.08	6.69			
63.	$3-O(CH_2)_4CH_3$	6.09	6.71			
64.	3-O(CH ₂) ₅ CH ₃	6.12	6.70	5.69	5.86	0.43
65.	3-O(CH ₂) ₈ CH ₃	6.78	6.65	5.64	5.77	1.14
66. 67	$3-U(CH_2)_{10}CH_3$	6.61 6.60	6.61 6.61	5 20	5 61	1 20
67. 68	$3 - O(CH_2)_{11} CH_3$	0.09 6.54	6.58	0.09	0.04	1.00
69	3-O(CH_), CH.	6.34	6.56			
70.	$3-O(CH_2)_2OC_4H_5$	6.82	6.70			
71.	3-O(CH ₂) ₂ OC ₆ H ₄ -3'-CF ₃	6.92	6.70	5.87	5.82	1.05
72.	$3-O(CH_2)_4OC_6H_5$	6.94	6.70			
73.	$3-O(CH_2)_4OC_6H_4-3'-CF_3$	6.90	6.67	F 00	F 50	1.04
74	$3-OCH_2C_6H_5$	6.72	7.19	5.68	5.70	1.04

TABLE II (Continued)

				$\log 1/K$	iapp	
		human	DHFR⁴	L. casei	DHFR ^b	human –
no.	x	obsd	calcd	obsd	calcd	L. casei, obsd
75.	3-OCH ₂ C ₆ H ₃ -3',4'-Cl ₂	6.83	7.19	5.57	5.70	1.26
76.	3-OCH ₂ C ₆ H ₄ -4'-CONH ₂	6 .9 5	7.19	5 .9 0	5.70	1.05
77.	3-OCH ₂ -1-admantyl	6.11	6.67	5.29	5.82	0.82
78.	$3-CH_2O-c-C_6H_{11}$	6.64	6.65	5.69	5.60	0.95
79.	3-CH ₂ NHC ₆ H ₃ -3',5'-(CONH ₂) ₂	6.78	7.07	5.68	6.06	1.10
80.	3-CH ₂ NHC ₆ H ₄ -4'-SO ₂ NH ₂	7.20	7.07	5.95	6.06	1.25
81.	3-CH ₂ OC ₆ H ₅	7.23	7.16	6.57	6.41	0.66
82.	3-CH2OC6H4-3'-Cl	7.44	7.16			
83.	3-CH ₂ OC ₆ H ₄ -3'-CN	7.44	7.16	6.44	6.41	1.00
84.	3-CH ₂ OC ₆ H ₄ -3'-OCH ₃	7.33	7.16			
85.	3-CH ₂ OC _e H ₄ -3'-CH ₂ OH	7.04	7.16			
86.	3-CH ₂ OC ₆ H ₄ -3'-CH ₃	7.22	7.16			
87.	$3-CH_2OC_6H_4-3'-C_2H_5$	7.37	7.16	6.33	6.41	1.04
88.	$3-CH_2OC_6H_4-3'-CH(CH_3)_2$	7.15	7.16			
89.	$3-CH_{2}OC_{6}H_{4}-3'-C(CH_{3})_{3}$	7.47	7.16	6.45	6.41	1.02
90.	$3-CH_2OC_6H_4-3'-C_6H_5$	7.14	7.16	6.69	6.41	0.45
91.	3-CH ₂ OC ₆ H ₄ -3'-NHCOCH ₃	7.30	7.16	6.61	6.41	0.69
92.	3-CH ₂ OC ₆ H ₄ -3'-NHCSNH ₂	7.16	7.16			
93.	3-CH ₂ OC ₆ H ₄ -3'-NHCONH ₂	7.39	7.16			
94.	$3-CH_2OC_6H_4-4'-(CH_2)_4CH_3$	6.73	7.16	6.09	6.41	0.64
95.	3-CH ₂ O-2-naphthyl	7.12	7.16			
96.	3-CH ₂ O-1-naphthyl	6.89	7.16			
97.	$3-CH_2SC_6H_5$	6.93	7.17	6.55	6.56	0.38
98.	3-CH ₂ SC ₆ H ₅ -3'-CH ₃	7.12	7.17			
99.	3-CH ₂ SeČ ₆ H ₅	7.52	7.17	6.76	6.56	0.76
100.	3-SCH ₂ C ₆ H ₅	7.37	7.14	6.00	5.85	1.37
101.	$3-SCH_2C_6H_4-4'-Cl$	7.20	7.14			

phocytic leukemia and mouse L-1210R leukemia. I_1

XXVII

QSAR for XXVII inhibition of human leukemia DHFR

$$\log 1/I_{50} = -2.87I_1 + 0.29I_2 - 0.38MR_6 - 0.29\pi_R - 0.19MR_R + 10.12 (14)$$

 $n = 47, r = 0.956, s = 0.42$

QSAR for XXVII inhibition of mouse L-1210R DHFR

$$\log 1/I_{50} = 0.49I - 1.23I_3 - 0.30 \text{MR}_6 - 0.11\pi_{\text{R}} + 9.36$$
(15)

$$n = 24, r = 0.904, s = 0.235$$

in eq 14 takes the value of 1 for X = OH (no such data points were available for eq 15). As usual, its large negative value brings out the deleterious effect of replacing NH₂ with OH. This is the only variable of much significance in eq 14. The variable I_2 is assigned the value of 1 for $Y = CH_3$ or Cl, the only substituents studied in this position. It seems likely that this models a moderate hydrophobic effect of small substituents in position 5 as uncovered by eq 12 and 13. However, we know from these equations that this position is sterically hindered and that greater activity cannot be attained by the use of large hydrophobic groups.

Several bridges Z were studied $[CH_2NH, NHCH_2, CH_2N(CH_3), CH_2N(CHO), CH_2N(NO), OC_6H_4CH_2NH, CH_2N(COCH_3)]$ which are parameterized by MR₆. The authors interpret the negative coefficient of MR₆ to

mean that bulky groups on the bridge cause a steric effect at the important 10-position of the folic acid binding site.

Equation 15 is similar to eq 14 but does contain one new variable I_3 , which is set equal to 1 for $Z = -NHCH_2$. This structural feature seems to play a different role with murine enzyme not seen in the case of the human enzyme.

Chen et al.¹⁸⁸ also formulated QSAR for the inhibition of thymidylate synthetase from murine L-1210S cells and *L. casei* cells since the quinazolines inhibit both DHFR and thymidylate synthetase. As one would expect, the QSAR for thymidylate synthetase differs from that for DHFR. Drugs which inhibit both are especially interesting for medicinal chemistry.^{38,189}

d. Pyrimidine Inhibitors of DHFR

The class of inhibitors which has received the most extensive study as DHFR inhibitors is that of the pyrimidines. Much of this work has been stimulated by the great success of the clinically important antimicrobial agent trimethoprim (IV). For this reason the benzylpyrimidines (XXVIII) have been intensively studied.

QSAR for XXVIII from bovine DHFR³⁰

$$\log 1/K_{1\,\text{app}} = 0.48\pi_{3,5} - 1.25 \log \left(\beta \cdot 10^{\pi_{3,5}} + 1\right) + 0.13MR_4 + 0.24\sigma + 5.43 (16)$$

$$n = 42, r = 0.875, s = 0.227\pi_0 = 1.52, \log \beta = -1.98$$

QSAR for XXVIII from chicken DHFR³⁰

 $\log 1/K_{i \text{ app}} = 0.55\pi_{3,4,5} - 0.42 \log (\beta \cdot 10^{\pi_{3,4,5}} + 1) + 0.20 \text{MR}_4 + 0.32\sigma + 4.46 (17)$

$$n = 39, r = 0.900, s = 0.241, \log \beta = -0.22$$

QSAR for XXVIII from human DHFR²¹

$$\log 1/K_{i \text{ app}} = 0.59\pi_{3,5} - 0.63 \log (\beta \cdot 10^{\pi_{3,5}} + 1) + 0.19\pi_4 + 0.19\text{MR}_3 + 0.30\sigma + 4.03 (18)$$

$$n = 38, r = 0.879, s = 0.266, \pi_0 = 1.94, \log \beta = -0.82$$

Inhibition of the three types of vertebrate DHFR yield QSAR which have similarities as well as differences. In XXVIII X represents mono-, di-, and trisubstitution on the phenyl ring. As noted above with the triazine inhibitors, bovine enzyme is about 10 times more easily inhibited than the chicken or human reductase. In all three equations, there is a rather small but significant electronic effect brought out by the σ term. Electron-attracting substituents increase activity which is reminiscent of the triazine equations 3, 5, 7, and 8.

4-Substituents behave in a distinctly different way from 3- or 5-substituted analogues and require individual parameterization. Not much can be concluded about the 5-position since there are only four examples of 3,5-disubstitution and all of these are symmetrical (i.e., 3-X = 5-X).

The initial dependence of $\log 1/K_i$ on π is essentially the same in all three examples. The coefficient with π of about 0.5 is distinctly lower than for the triazine equations, suggesting different binding conditions. As with the triazines the chicken DHFR seems to differ from bovine and human. For the avian reductase π_0 cannot be established with the range of π constants possessed by the present set of inhibitors.

For eq 16, ideal $\pi_{3,5}$ is defined as 1.5, but for eq 17 π_0 could not be determined due to the lack of sufficiently lipophilic congeners. The rather large coefficient of 1.25 in eq 16 for the negative bilinear term seems high and it may be that a steric effect is also involved in determining the rather steep (-0.77) slope of the negative portion of the curve. The three equations are based on relatively few data points so that they serve more to make suggestions for future research than as definitive statements about the SAR.

The benzylpyrimidines (XXVIII) have also been tested on bacterial DHFR with results which are quite

QSAR for XXVIII from L. casei DHFR³¹

$$\log 1/K_i = 0.31\pi_{3,4} - 0.91 \log (\beta \cdot 10^{\pi_{3,4}} + 1) + 0.89 \text{MR}'_{3,4} - 0.22\sigma_{\text{R}}^- + 5.31$$
(19)

$$n = 42, r = 0.889, s = 0.214, \pi_0 = 1.05$$

QSAR for XXVIII from E. coli DHFR³¹

1

$$\log 1/K_{i} = 0.43\pi_{3,4,5} - 0.88 \log (\beta \cdot 10^{\pi_{3,4,5}} + 1) + 1.23MR'_{3,5} + 0.80MR'_{4} - 0.45\sigma_{R}^{-} + 5.81 (20)$$

$$n = 43, r = 0.923, s = 0.263, \pi_0 = 0.64$$

different from the vertebrate enzyme. In these equations the most significant variable is MR, while in eq 16-18 π is the most important variable. The prime symbol with MR indicates an arbitrary use of this parameter. After considerable analysis it was concluded that only a fraction of a substituent in the 3-, 4-, or 5-position was capable of producing an MR-related effect. The figure of 0.79 (the value of MR for OCH₃) appeared to be the breaking point. Thus, the maximum MR effect for all three positions should be 3×0.79 , regardless of how large the substituents in these positions are. The normal values for MR were used for substituents having values less than 0.79. MR has been scaled by 0.1 to make it more nearly equiscalar with π .

The intercepts of eq 16-20 can be used as a rough estimate of the intrinsic activity of the benzylpyrimidines, yielding the following order: *E. coli* > *L. casei* \simeq bovine > chicken > human. *E coli* is most easily inhibited and human DHFR is most resistant to the benzylpyrimidines. The pattern of individual inhibitors may be very different. Trimethoprim (IV) has the following log $1/K_{1 app}$: human, 3.77; chicken, 3.98; bovine, 5.51; *L. casei*, 6.88; *E. coli*, 8.87. The selectivity of TMP is outstanding, being 100 000 times more active against *E. coli* than against human DHFR.

The reason for the selectivity of the benzylpyrimidines, as Roth has emphasized, must be steric. The MR term is a measure of bulk and this is the most important term in the bacterial equations. The low π_0 of 0.25 for the *E. coli* equation denotes no increase in activity of the parent compound can be obtained by the use of hydrophobic substituents. In the eucaryotic QSAR, the most effective compounds are those with hydrophobic substituents (e.g., 3'-OCH₂C₆H₅). This lipophilic monosubstituted analogue is only 100 times more active against *E. coli* than against human enzyme. Roth^{5,9} has discussed the relationship between 3',4',5'-substitution and selectivity for the benzylpyrimidines.

Another class of pyrimidines for which a QSAR has been developed is that of XXIX. In eq 21 C is the

QSAR for XX IX from four types of mammalian DHFR¹⁹⁰

$$\log 1/C = 0.37I_1 - 1.01I_8 - 0.78I_9 + 0.42I_{13} - 0.22I_{15} + 0.51I_{20} + 0.67I_4 \cdot I_8 + 7.17$$
(21)

$$n = 105, r = 0.903, s = 0.229$$

molar concentration of inhibitor causing 50% inhibition. This is a Free–Wilson type analysis^{191,192} in which 28 different indicator variables were studied, seven of which turned out to be significant. Three of the 28 parameters were used to explore possible differences in enzyme from four different sources: L-1210/0, L-1210/FR8, L-1210/DF8, liver.

TABLE III.	Comparison	of Benzylp	yrimidines	XXVIII	Inhibition	of Human	and E .	coli DHFR ^{21,31}
------------	------------	------------	------------	--------	------------	----------	-----------	----------------------------

				log	I/K _{iapp}	
		human	DHFR	E. coli	DHFR	L. casei –
no.	x	obsd	calcd	obsd	calcd	human DHFR, obsd
1.	3,5-(CH ₂ OH) ₂	2.69	2.95	6.31	6.71	3.62
2.	$3,5-(OCH_3)_2, 4-O(CH_2)_2OCH_3$	3.25	3.98	8.35	8.38	5.10
3.	4-OCH ₂ CH ₂ OCH ₃	3.82	3.86	6.40	6.69	3.12
4.	3,4-(OH) ₂	3.48	3.47	6.46	5 .9 5	2.98
5.	3-OH	3.57	3.72	6.47	6.21	2.90
6.	$4 - N(CH_3)_2$	3.65	3.79	6.78	6.81	3.13
7.	4-OCH ₃	3.70	3.93	6.82	6.79	3.12
8.	4-NH ₂	3.71	3.58	6.30	6.01	2.59
9.	3-OCH ₂ CONH ₂	3.75	3.56	6.57	6.46	2.82
10.	3,4,5-(OCH ₃) ₃	3.77	4.04	8.87	8.47	5.10
11.	4-NO ₂	3.79	4.20	6.20	6.69	2.41
12.	3-CH ₂ OH	3.82	3.56	6.28	6.59	2.46
13.	3-OCH ₂ CH ₂ OCH ₃	3.93	4.18	6.53	7.01	2.60
14.	н	3. 94	4.01	6.18	6.19	2.24
15.	$3,4-(OCH_2CH_2OCH_3)_2$	4.03	4.03	7.22	7.43	3.19
16.	4-NHCOCH ₃	4.10	3.83	6.89	6.40	2.79
17.	3-CH ₃	4.13	4.32	6.70	6.81	2.57
18.	3,5-(OCH ₃),	4.15	4.26	8.38	8.07	4.23
19.	4-OCF	4.17	4.32	6.57	6.70	2.40
20.	3-OSO ₂ CH ₃	4.17	3.95	6.92	6.77	2.75
21.	4-CH ₃	4.18	4.07	6.48	6.60	2.30
22.	3-NO ₃ , 4-NHCOCH ₃	4.24	4.02	6.97	7.08	2.73
23.	4-Br -	4.25	4.25	6.82	6.74	2.57
24.	3-OCH ₃	4.26	4.17	6.93	7.11	2.67
25.	4-F	4.29	4.06	6.35	6.19	2.06
26.	4-O(CH ₂) ₂ CH ₂	4.30	4.21	6.89	6.55	2.59
27.	3-CF3	4.31	4.57	7.02	6.67	2.71
28.	4-Cl	4.34	4.22	6.45	6.60	2.11
29.	3-F	4.35	4.18	6.23	6.19	1.88
30.	3-C1	4.41	4.52	6.65	6.83	2.24
31.	4-O(CH _a) ₅ CH ₃	4.41	4.42			
32.	3-CH ₂ OCH ₂	4.52	3.80	6.59	6.83	2.07
33.	3-CH ₂ O(CH ₂) ₂ CH ₂	4.63	4.83	6.55	7.06	1.92
34.	3-I	4.65	4.76	7.23	6.99	2.58
35.	3.4-(OCH ₂) ₂	4.73	4.14	7.72	7.73	2.99
36.	3-Br	4.73	4.62	6.96	7.06	2.23
37.	3-O(CH _a) _a CH _a	4.99	4.88	6.82	6.87	1.83
38.	3-O(CH_), CH.	5.03	5.05	6.86	6.54	1.83
39.	3-OCH ₂ C ₂ H ₂	5.05	5.08	6.99	6.82	1.94
40.	3-CF ₃ , 4-OCH ₃	5.10	4.48	7.69	7.28	2.59
	u, u					

Only one indicator variable proved to be useful in differentiating the enzymes. I_{20} in eq 21 is assigned the value of 1 for $\log 1/C$ obtained with L-1210/0. All other enzymes were assigned the value of zero since they did not behave in a statistically different way. Although seven different bridges between the two phenyl rings were tested, only three indicator variables were necessary. $I_8 = 1$ for 4-NHCONH, $I_9 = 1$ for 4-NHCO, and $I_{13} = 1$ for 4-NHSO₂. The other bridges, 4-CH₂NHCONH, 4-CH₂CH₂NHCONH, 3-CH₂NHCONH, 4-CH₂NHCO, 4-CH₂CH₂NHCO, 3-CH₂NHCO, 4-CH₂NHSO₂, 4-CH₂CH₂NHSO, 3-CH₂NHSO₂, 4-CH₂CH₂, 3-CH₂CH₂, received no parameterization and hence within the precision of the analysis behave in the same way. Note that the three parameterized bridges all contain heteroatoms which interact strongly electronically with the π electrons of the phenyl rings. This interaction stiffens the bridges. Two of the parameterized bridges have negative coefficients with I, indicating their depressing effect on log 1/C. Only one bridge, 4-NHSO₂, has a small activityenhancing effect. The feature ω has only two forms: CH_2 or O. I_1 is given the value of 1 for $\omega = CH_2$. The positive coefficient with I_1 probably represents a hydrophobic interaction of the CH_2 . I_4 receives the value of 1 for $Y = 3-CH_3$. While there were seven different examples of Y, only one (3-CH₃) appeared to differ significantly in its effect on $\log 1/C$ and this occurred only when the bridge in the congener was 4-NHCONH. The positive coefficient with the cross product term $I_4 \cdot I_8$ shows the activity elevating effect of this combination.

The task of seeking out cooperative effects using cross product terms such as $I_4 \cdot I_8$ is almost endless since in a large data set the possibilities are enormous; nevertheless, this is an area which deserves more serious study in structure-activity analysis.

A comparison of benzylpyrimidines inhibiting DHFR from five sources (chicken, human, bovine, *E. coli*, and *L. casei*) as well as two types of cell cultures (L5178Y and L5178YR tumor cells) was made.²¹ Table III compares the inhibitory potency of benzylpyrimidines on human and *E. coli* DHFR. This class of inhibitors is much more selective against bacterial DHFR. As Roth has noted, it is the 3,4,5-trisubstituted benzylpyrimidines which are most selective. Compounds 2 and 10 are over 100 000 times less inhibitory of human DHFR. The least selective are those with lipophilic substituents in the 3-position only. Even these are about 100 times more active against the *E. coli* DHFR.

VI. Minimal Topological Difference (MTD) Analysis

The most difficult problem in SAR is that of defining

the geometry of the active site. Unfavorable steric interactions between ligand and receptor can have a huge effect on ligand affinity. Naturally such an important as well as difficult problem has elicited a variety of possible solutions. The classic approach to steric problems is that of Taft, which uses the substituent constant E_s . Even this elementary method has been of help in the study of macromolecular interactions with small ligands.¹⁶⁴

A more sophisticated approach is that of Verloop, Hoogenstraaten, and Tipker, who have defined five parameters to describe the size of an organic substituent.^{168,169} These parameters were shown, at times, to be better models of steric effects than Taft's $E_{\rm s}$, which was designed for small organic molecules reacting with each other in homogeneous solution.

A more general attack on the problem of ligand fit to active site has been undertaken by Simon and his colleagues. They have applied their technique to the DHFR problem.^{193,194} In this approach the minimal topological difference (MTD) for a molecule M is defined with respect to a standard (S) which is presumably close to an ideal fit for the receptor. There is no completely satisfactory way of deciding which is the best standard. One could choose the most potent inhibitor or one might start with the natural substrate when it is known. In an ongoing investigation it will often be necessary to redefine the standard reference compound as the investigation proceeds. The MTD is defined as the number of unsuperimposable atoms when M is superimposed atom for atom on S, hydrogen atoms being neglected. One first superimposes all NM_i molecules on S to obtain a "hypermolecule" H with an atomic network with M vertices j = 2, 3, ..., M. Each M_i molecule is thereby characterized by a vector with M_i increase is statistically $X_{i_2}, ..., X_{i_m}$, and the whole set of N molecules by an $N \times M$ matrix $|X_{i_j}|$ with $X_{i_j} = 1$ if vertex j is occupied in M_i and $X_{i_j} = 0$ if it is not. The minimal topological difference is given by the following equation:

$$MTD_i = s + \sum_{j=1}^{M} \epsilon_j X_{ij}$$
(22)

where s = the number of vertices occupied by the standard S when it is superimposed upon H. In this expression $\epsilon_j = -1$ for vertices occupied in the standard S and $\epsilon_j = +1$ for those unoccupied. Of course, not all vertices of H are necessarily relevant for steric fit. Those which project beyond the receptor site into the surrounding aqueous phase have ϵ_j set equal to zero. While the above definition is straightforward and succinct, in practice it is not always easy to carry out. The ϵ_j have to be adjusted as the analysis uncovers new features of the SAR.

The MTD_i are then employed in a regression equation with other suitable parameters

$$A_i^{\text{calcd}} = \alpha_0 + \alpha_i \sigma_{1i} + \dots \beta \text{MTD}_i$$
(23)

to correlate activity (A_i) with structural features by minimization of

$$Y = \sum_{i=1}^{N} (A_i^{exp} - A_i^{calcd})^2$$
(24)

To find S_{opt} one must also minimize Y with respect to

 ϵ_j . Simon et al. have devised algorithms for doing so.¹⁹³ Using K_1 values for the inhibition of sarcoma AT/300 DHFR obtained from the work of Zakrzewski et al., they derived the QSAR of eq 25 for pyrimidines XXX.

$$n = 15, r = 0.981, s = 0.287$$

In this study R was limited to hydrocarbon groups in which there was considerable structural variation. Unfortunately for the data available there is rather high collinearity between the π and MTD vectors. This may explain the small coefficient with π which is out of line with what one would expect for pyrimidines reacting with mammalian DHFR. In a second study¹⁹⁴ of 136 triazines VI (tested on DHFR from Walker tumor by Baker) used to derive eq 1, MTD offers some explanation for the variance in log 1/C accounted for by indicator variables and MR₄ in eq 1.

$$A = 0.89\pi_3 - 0.12(\pi_3)^2 - 0.32 \text{MTD} + 14.98 \quad (26)$$
$$n = 136, r = 0.860, s = 0.612$$

Although eq 26 has many less terms than eq 1, it has a much higher standard deviation.

VII. Distance Geometry in QSAR

Recently, Crippen has been applying the method known as distance geometry to the problem of assessing the fit of ligands to DHFR.¹⁹⁵⁻²⁰¹ This technique has also been valuable in working out the three-dimensional structure of macromolecules via high-resolution NMR.^{202,203} Crippen's approach is to find the "best" partitioning of the total free energy of binding (estimated from K_{i}) of critical points on the ligand interacting with critical points on the enzyme. First the number of such points must be deduced and then a kind of least-squares optimization yields a set of free energies of interaction between the corresponding sets of points. Crippen has outlined the following 10-step approach.¹⁹⁷ (1) The molecules (in the present case quinazolines used to derive eq 13) are constructed from crystallographic data. (2) For each molecule the matrix of upper and lower bounds on the distances between its atoms over all sterically allowed conformations is calculated. To include only acceptable conformations of low energy, no penetration beyond the van der Waals radii or radii of closest approach may be permitted. (3) To reduce use of computer time, some atoms of each molecule must be deleted. (4) A plausible binding mode for each molecule is chosen specifying the binding of atoms to each site point (see Table III). (5) From this the site point distance bounds are evaluated on the assumption that each intersite point distance should be in the range common to the corresponding interatomic distances in all molecules. In some cases no overlapping exists, for example, where the highest of the lower bounds (l) is slightly higher than the least of the upper

bounds distance (u). Under this condition, two site points can still bind the respective molecular points if one assumes that the site point distance is intermediate between the two limits and the site flexibility, $\delta \geq (l - \delta)$ u)/2. Binding points should be chosen so that the value of δ is minimal. (6) The intersite point distances are used to calculate the 3n coordinates, where n is the number of site points and there are n(n-1)/2 intersite distances. One of the possible sets of coordinates is selected. (7) Since we have no assurance that the site point distances in these derived coordinates will be at the mean of the two respective limits, a reevaluation of δ is necessary. (8) For molecules with ambiguities about which molecular point goes with which site point, the site point coordinates, δ , and the intramolecular distance bounds may be used to select which molecular points will yield the best fit to these site points. (9) After selecting the site point coordinates, it is necessary to check whether or not these are all geometrically acceptable with no forced contacts. (10) The interaction parameters are evaluated via quadratic programming to minimize the differences between calculated and observed binding energies under the constraint that the fixed modes are energetically more favorable than any other geometrically allowed binding mode.

In treating the quinazolines of Table IV by the above method, they were divided into three classes on the basis of qualitative considerations: "ordinary" quinazolines are loosely bound compounds not containing the 2,4-diamino groups, strongly bound quinazolines containing the 2,4-diamino grouping, and "odd" 2,4diaminoquinazolines which are loosely bound.

In the preliminary model 11 site points on the enzyme were considered essential, but in the final model just as good results were obtained using only nine points (Table VI). Ghose and Crippen concluded that the quinazolines bind in two different modes, which is not unreasonable in light of the present view of different modes of binding for folic acid and MTX (see section on graphics). The different modes result from the rotation of the quinazoline 180° along the axis connecting points 3 and 4 (Table V). This rotation places substituents at positions 4 and 5 in different space as well as moving N_1 . In their modeling it seemed to make no difference whether N1 or N3 was protonated; however, it was assumed that the protonated N cannot be attractive to S_1 , which is for binding of nonprotonated basic N. It was also assumed that N3 could not bind with site point 2 and that the "odd" quinazolines could achieve a reasonably good fit by having C7 at site point 3, N3 at site point 1, and 2-NH₂ at site point 4. This mode of binding avoids contact of the SO and SO_2 moieties which are present in the "odd" inhibitors with site point 8 or the contact of N1 with site point 1 but maintains the contact of site points 9 and 10 with the phenyl or naphthyl rings. This dual mode of binding requires only four different points for ring nitrogens.

The present distance geometry model was developed from a study of 13 of the 67 quinazolines. The inference which Crippen and Ghose draw from Table VI is that the strong binding of the quinazolines is the result of $4-NH_2$ binding at site 6 as well as the attraction of the two ring nitrogens with sites 1 and 2 and not just by attraction of a protonated ring nitrogen with site point 2. Site point 10 is concluded to be a strong binding point but not site 9. They suggest that this calls for substitution of electronegative atoms at the 4-position of phenyl rings attached to the 6-position of the quinazolines. Since point 9 seems so unimportant, they point out that aromatic substituents at positions 5 and 6 are probably not worthwhile. This does not seem to be a good generalization since the QSAR of eq 12 and 13 indicate that small 5-substituents make an important binding contribution and one of the most promising antitumor drugs, XVIII, has a 5-substituent. Ghose and Crippen also recommend the study of substituents in position 7 for which as yet no data are available. Position 8, which has also not been explored, seems unattractive in the light of their analysis.

In the end, Ghose and Crippen obtain a model having correlation coefficient of 0.955 and standard deviation of 0.69, which is about the same as eq 13 although they have included one more data point (25, Table IV) not included in eq 13. Their results are in agreement with the conclusion from eq 13 that a hydrophobic region is near position 5 of the quinazoline ring. As no parameter occurs in eq 13 for 6-substituents, it was concluded that this region is open to solvent. In the Ghose-Crippen model the region is postulated to contain a site point which interacts strongly with several groups. That this is a reasonable conclusion is evident from the fact that the most active congeners contain large groups in position 6. Both large polar and nonpolar groups yield highly active compounds, and for this reason attempts to parameterize the varied substituents with π or MR do not lead to a simple one-variable explanation. The net result was that no parameter was found for eq 13 for 6-substituents.

More recently¹⁹⁸ Ghose and Crippen have expanded the model to include both quinazolines and triazines (VI). They come to the interesting conclusion that the substituent in 3-X-triazines is involved in a dipolar interaction. The QSAR results of eq 3 and 5–8 all contain terms in σ , suggesting the importance of a polar reaction. The 3-CN group, which may be the best signal for this effect, is generally more active than expected in eq 3–8; however, it is well predicted in the distance geometry model.

Distance geometry provides a most interesting means for a spatial description of the active site in isolated enzymes and very likely will find an important place in the QSAR paradigm. It is not clear yet how it can be employed with in vivo studies where hydrophobic effects in the random walk process of drugs are so important.

As Crippen has noted, distance geometry is somewhat like the Free-Wilson approach^{191,192} to QSAR in that a rather large number of variables compared to data points may be required to define the structurally important features. One has to accept this fact about the complexity of life and judge the value of the distance geometry models on their ultimate value to understanding the SAR. A difficulty with both the Free-Wilson parameters and those from distance geometry is that each number contains the hydrophobic, electronic, steric, and dipolar factors all lumped together. This makes it difficult for one to predict just what kind of substituent should be placed at a given site in order to obtain maximum binding.

One must bear in mind that all QSAR models, in-

-

TABLE IV. Observed and Calculated Free Energies of Binding of Quinazolines to S. faecium DHFR¹⁹⁷

		-AG 4		$-\Delta G_{calcd}^{b}$	kcal/mo	1
no.	group	kcal/mol	Ī	II	, III	IV
1	2.H. 4.NH, 6.SO.(2.C.,H.)	5.8	6.5	67	67	69
2.	$2.4-(SH)_{2}, 6-S(2-C_{10}H_{7})$	6.0	6.3	7.0	7.0	6.9
3.	2-SH, 4-OH, $6-S(2-C_{10}H_7)$	6.2	6.3	7.2	7.1	6.9
4.	$2,4-(NH_2)_2, 5-SO_2(2-C_{10}H_7)$	6.5	8.0	7.7	10.9	7.4
5.	2-H, 4-NH ₂ , 6-S(2- $C_{10}H_7$)	6.5	6.8	6.7	6.3	6.8
6.	2-NH ₂ , 4-OH, 5-CH ₃ , 6-NHCH ₂ (C_6H_4 -4-CO ₂ H)	6.5	7.9	7.4	7.1	7.4
7.	2-OH, 4-SH, 6-S($2-C_{10}H_7$)	6.8	6.6	6.7	7.0	6.9
ð. 0	$2,4-(UH)_2, b-5(2-U_1_0_7)$	6.9 6.9	5.5 7 9	6.9 71	7.0	6.9 6.9
9. 10	$2 4 (NH_{2}) = 5 (2 - C_{10}H_{2})$	6.9	80	77	10.9	74
11.	2, 4-(1,1,2), 2, 3-(1,2,2), -(1,1,7) 2-NH ₀ , 4-OH, 5-CH ₀ , 6-NHCH ₀ (C ₀ H ₄ -4-CO ₀ Et)	7.1	7.9	7.4	7.1	7.4
12.	2-NH ₂ , 4-OH, 6-NHCH ₂ ($C_{6}H_{4}$ -4-CO ₂ H)	7.2	7.9	7.4	7.1	7.4
13.	2-H, $4-NH_2$, $6-SO(2-C_{10}H_7)$	7.2	6.8	7.0	6.8	6.9
14.	$2,4-(NH_2)_2, 5-SO(C_6H_3-3,4-Cl_2)$	7.3	8.2	8.2	11.2	7.6
15.	$2-NH_2$, $4-OH$, $5-S(2-C_{10}H_7)$	7.4	8.0	7.9	7.9	7.4
16.	2-SH, $4 - NH_2$, $6 - S(2 - C_{10}H_7)$	7.4	7.0	7.4	6.6	6.9
17.	2-NH ₂ , 4-OH, 6-CH ₂ NH $[C_6H_4$ -4-CONHCH $(CO_2Et)CH_2CH_2CO_2Et]$	7.9	8.9	9.2	9.3	9.0
18.	2-NH ₂ , 4-SH, 6-SU ₂ (2-U ₁₀ Π_7) 2 NH A OH \in SO(2-C H.)	8.0	0.9	0.0 0.1	9.1	9.2
20	$2-NH_2$, $4-OH_1$, $6-SO_2(C_2H_2-3, 4-Cl_2)$	82	91	9.1	9.2	94
21.	2-NH ₂ , 4 -OH, 6 -CH ₂ N(CH ₂)[C ₂ H ₄ - 4 -CONHCH(CO ₂ Et)CH ₂ CH ₂ CO ₂ Et]	8.3	8.9	9.2	9.3	9.0
22.	2-NH ₂ , 4-OH, 6-NHCH ₂ ($C_{6}H_{4}$ -4-CO ₂ Et)	8.6	7.9	7.4	7.1	7.4
23.	2-NH ₂ , 4-OH, 6-CH ₂ NH($C_{6}H_{4}$ -4-CO ₂ H)	8.8	8.9	9.2	9.3	9.0
24.	$2-NH_2, 4-OH, 6-CH_2NH[C_6H_4-4-CONHCH(CO_2H)CH_2CH_2CO_2H]$	8.9	8.9	9.2	9.3	9.0
25.	$2-NH_2$, $4-OH$, $5-SO_2(2-C_{10}H_7)$	9.0	9.0	9.0	9.6	8.5
26.	$2,4-(\mathrm{NH}_2)_2, 5-\mathrm{SO}_2(\mathrm{C}_6\mathrm{H}_3-3,4-\mathrm{Cl}_2)$	9.0	8.1	8.2	11.2	7.6
27.	2-NH ₂ , 4-OH, 6-S(C_6H_3 -3,4-Cl ₂)	9.1	9.4	9.3	9.0	9.3
28.	2-NH ₂ , 4-OH, 0-OI, 0-NHOH ₂ (O_6H_4 -4-OO ₂ Et) 2 NH A SH C S(2-C H)	9.3	9.3	9.4	9.4	0.0
29. 30	$2-10H_2, 4-5H, 6-5(2-0_{10}H_7)$ $2-NH_2, 4-0H, 6-SO_2(2-C_{10}H_7)$	9.6	89	8.0	91	9.2
31.	2-NH ₂ , 4-OH, 6-CH ₂ N(CH ₂)[C ₂ H ₂ -4-CONHCH(CO ₂ H)CH ₂ CH ₂ CO ₂ H]	9.7	8.9	9.2	9.3	9.0
32.	2-NH ₂ , 4-OH, 6-CH ₂ N(CHO)[C ₆ H ₄ -4-CONHCH(CO ₂ H)CH ₂ CH ₂ CO ₂ H]	9.9	8.9	9.2	9.3	9.0
33.	$2,4-(NH_2)_2, 5-S(C_6H_3-3,4-Cl_2)$	9.9	11.4	11.3	11.2	11.0
34.	$2-NH_2$, $4-OH$, $6-S(2-C_{10}H_7)$	10.2	9.2	8.8	8.8	9.0
35.	2-NH ₂ , 4-OH, 6-CH ₂ NH(C ₆ H ₄ -4-CO ₂ Et)	10.6	8.9	9.2	9.3	9.0
36.	$2,4-(NH_2)_2, 5-trans-CH=CH(2-C_{10}H_7)$	10.7	10.1	10.1	10.1	10.3
37.	$2,4 - (NH_2)_2, 5 - CH_2 S(C_6 H_4 - 4 - CI)$	10.9	11.7	11.0	11.2	11.1
30. 30	$2,4-(NH_2)_2, 5-S(2-C_{10}H_7)$ 2.4-(NH_), 6-NHCH_2(C_H4-CO_Ft)	11.0	11.2	19.5	127	11.9
40.	$2.4 - (NH_{a})_{a}, 5 - cis - CH = CH(2 - C_{10}H_{a})$	11.0	11.2	10.9	10.9	11.5
41.	$2.4 - (NH_2)_2$, $6 - CH_2 NH (C_6 H_4 - 4 - CO_2 - n - Bu)$	11.2	12.1	12.1	12.4	12.0
42.	$2,4-(NH_2)_2, 5-CH_2S(2-C_{10}H_7)$	11.3	11.5	11.1	10.9	10.9
43.	$2,4-(NH_2)_2, 6-CH_2NH(C_6H_4-4-CO_2Et)$	11.4	12.1	12.1	12.4	12.0
44.	$2,4-(NH_2)_2, 5-Cl, 6-CH_2NH(C_6H_4-4-CO_2-n-Bu)$	11.4	12.5	12.2	12.4	12.3
45.	$2,4-(\mathrm{NH}_2)_2, 6-\mathrm{CH}_2\mathrm{NH}[\mathrm{C}_6\mathrm{H}_4-4-\mathrm{CONHCH}(\mathrm{CO}_2\mathrm{Et})\mathrm{CH}_2\mathrm{CH}_2\mathrm{CO}_2\mathrm{Et}]$	11.5	12.1	12.1	12.4	12.0
46.	2,4- $(NH_2)_2$, 6- $CH_2NH[U_6H_4$ -4- $CONHCH(CU_2Et)CH_2CU_2Et]$	11.0	12.1	12.1	12.4	12.0
47.	$2,4-(NH_2)_2, 5-CH_3, 6-CH_2(NH(C_{6}H_4-4-CO_{2}H))$	11.8	12.4	12.4	12.4	10.9
40.	$2,4-(NH_{2})_{2}, 6-S(2-C_{10}H_{2})$	12.1	12.4	11.8	11.8	12.0
50.	$2.4 - (NH_{0})_{0}, 5 - CH_{0}, 6 - CH_{0}NH(C_{e}H_{4} - 4 - CO_{0} - n - Bu)$	12.1	12.4	12.4	12.4	12.6
51.	$2,4-(NH_2)_2, 5-Cl, 6-NHCH_2(C_8H_4-4-CO_2Et)$	12.2	11.5	12.6	12.7	12.2
52.	$2,4-(NH_2)_2$, $6-CH_2NH[C_6H_4-4-CONHCH(CO_2H)CH_2CO_2H]$	12.2	12.1	12.1	12.4	12.0
53.	$2,4-(NH_2)_2, 6-S(C_6H_3-3,4-Cl_2)$	12.2	12.6	12.2	12.1	12.3
54.	$2,4-(\mathrm{NH}_2)_2, 5-\mathrm{CH}_3, 6-\mathrm{CH}_2\mathrm{NH}[\mathrm{C}_6\mathrm{H}_4-4-\mathrm{CONHCH}(\mathrm{CO}_2\mathrm{Et})\mathrm{CH}_2\mathrm{CO}_2\mathrm{Et}]$	12.2	12.4	12.4	12.4	12.6
55.	$2,4-(NH_2)_2, 5-CI, 6-CH_2NH(C_6H_4-4-CO_2H)$	12.3	12.5	12.2	12.4	12.3
56.	$2,4 - (NH_2)_2, 5 - CH_3, 5 - CH_2 NH (C_6 H_4 - 4 - CO_2 EI)$	12.3	12.4	12.4	12.4	12.0
58 58	$2,4-(NH_2)_2, 6-SO_2(2-C_{10}H_7)$ 2.4-(NH_), 5-C1 6-CH_NH(C_H4-CONHCH(CO_Et)CH_CO_Et)	12.4 12.5	12.1	12.2	12.2	12.3
59.	$2.4-(NH_{0})_{0.5}$ 5-Cl. 6-CH ₀ NH[C _e H ₄ -4-CONHCH(CO ₂ H)CH ₂ CO ₂ H)	12.6	12.5	12.2	12.4	12.3
60.	$2,4-(NH_2)_2, 5-CH_3, 6-CH_2NH[C_6H_4-4-CONHCH(CO_2H)CH_2CO_2H]$	12.7	12.4	12.4	12.4	12.6
61.	$2,4-(NH_2)_2, 5-Cl, 6-CH_2NH(C_6H_4-4-CO_2Et)$	12.8	12.5	12.2	12.4	12.3
62.	$2,4-(NH_2)_2, 6-SO(2-C_{10}H_7)$	12.8	12.3	12.1	12.2	12.2
63.	$2,4-(NH_2)_2, 6-CH_2NH(C_6H_4-4-CO_2H)$	13.0	12.1	12.1	12.4	12.0
64. CE	2,4- $(NH_2)_2$, 5- CH_3 , 5- $NHUH_2(U_8H_4-4-CU_2Et)$ 2.4 (NH) 6 CH NHIC H 4 CONHCHICO H)CH CH CO H	13.1 19.1	11.4	12.8	12.7	12.0
60. 66	2, 4-(NH ₂) ₂ , 6 -CH ₂ N(CHO)(C ₄ H-4-CONTCH(CO ₂ H)CH ₂ CH ₂ CO ₂ H) 2 4-(NH ₂) ₂ , 6 -CH ₂ N(CHO)(C ₄ H-4-CONTCH(CO ₂ H)CH ₂ CH ₂ CO ₂ H)	13.3	12.1	12.1	12.4	12.0
67.	$2.4-(NH_{2})_{2}, 6-S(C_{e}H_{4}-3-CF_{3})$	13.4	13.4	13.4	15.2	13.4
68.	$2,4-(\mathbf{NH}_2)_2, 6-\mathbf{SO}_2(\mathbf{C}_6\mathbf{H}_3-3,4-\mathbf{C}\mathbf{l}_2)$	13.4	12.3	12.2	12.5	12.4

cluding distance geometry, will never reach perfection. Sooner or later large enough changes can be made in the structure of a parent compound so that the derivatives will not fit the best current QSAR. This does not mean the QSAR is an unimportant academic game. These objectively constructed mathematical models are our best means of developing a description of an incredibly complex active site in a macromolecule.

 S_{11}

 X_6 X6

X₆ X₆ X₆ X₆ X₆

TABLE V. Correlation of Molecular Site Point Binding with DHFR Site Points^{a,b,d}

	11	ne dih	iydro	tolate	bind	ing sit	te geo	metr	7. ^a				^2	1	8					
no.	\mathbf{S}_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S ₉	S_{10}	S ₁₁	no.	S_1	$\overline{S_2}$	S_3	S_4	S_6	S_8	\mathbf{S}_{9}	S ₁₀
1	N ₁		C ₆		X ₄				C'_2	X'_4	X ₆	36	N ₃	N ₁	C ₆	X_2	\mathbf{X}_{4}	X_5		
2	N,		C ₆	\mathbf{X}_{2}	X₄				C'_2	X'	· ·	37	N ₃	N	C ₆	$\overline{X_2}$	X_4	\mathbf{X}_{5}	C'2	X'_4
3	N,		C ₆	$\bar{X_2}$	X₄				C_{2}^{\prime}	X'4		38	N ₃	N	C ₆	\mathbf{X}_{2}^{-}	X₄	\mathbf{X}_{5}	C'_{2}	C'_7
4	N ₃		C_7	$\bar{X_2}$	•				C_{6}^{\prime}	$\mathbf{X'}_{\mathbf{A}}$		39	N ₃	N ₁	C_6	\mathbf{X}_{2}	\mathbf{X}_{4}	-	C_{6}^{\prime}	X'4
5	Ňı		C ₆	-	X_4				C'_2	X'	X_6	40	N ₃	N_1	C ₆	\mathbf{X}_{2}	X4	X_5	C'_2	X'4
6	N ₁		C ₆	\mathbf{X}_2	X_4		X_5		C_{2}^{\prime}	X'4		41	N_3	N	C ₆	\mathbf{X}_{2}	X_4		C'_2	X'_4
7	N_1		C ₆	\mathbf{X}_{2}	X_4				C'_2	X'_4	X_6	42	N_3	N ₁	C_6	\mathbf{X}_{2}	X_4	X_5	C'_1	X'_4
8	N_1		C ₆	\mathbf{X}_{2}	X_4				C'_2	X'_4	X_6	43	N_3	N	C ₆	\mathbf{X}_2	X_4		C'6	X'_4
9	N_1		C_6	\mathbf{X}_{2}	X_4				C'_2	X'_4	X_6	44	N_3	N_1	C_6	\mathbf{X}_2	X_4	X_5	C′2	X'_4
10	N_3		C_7	$\mathbf{X_2}$					C'_{6}	X'_4		45	N_3	N ₁	C ₆	\mathbf{X}_2	X_4		C′ ₆	X'_4
11	N ₁		C_6	X_2	X_4		X_5		C'_2	X'_4		46	N_3	N ₁	C_6	\mathbf{X}_2	X_4		C'6	X'_4
12	N		C_6	X_2	X_4				C'_2	X'_4		47	N_3	N_1	C ₆	\mathbf{X}_2	X_4	X_5	C'_{6}	X'_4
13	N_1		C_6		X_4				C'_2	X'_4	\mathbf{X}_{6}	48	N_3	N_1	C_6	\mathbf{X}_2	X_4	X_5	C′2	X'_4
14	N_3		C_7	\mathbf{X}_2					C′2	X′4		49	N_3	N_1	C ₆	\mathbf{X}_2	X_4		C'_2	X'_4
15	Ni		C_6	$\mathbf{X_2}$	X_4		X_5		C'_2	X'_4		50	N_3	N_1	C ₆	\mathbf{X}_{2}	\mathbf{X}_4	X_5	C'_2	X'_4
16	N_1		C_6	$\mathbf{X_2}$	X_4				C′2	X'_4		51	N_3	N_1	C_6	\mathbf{X}_2	X_4	X_5	C'_{6}	X′4
17	N_1		C_6	\mathbf{X}_2	X_4				C′ ₆	X'_4	\mathbf{X}_{6}	52	N_3	N_1	C_6	\mathbf{X}_2	X_4		C'_{6}	X'_4
18	N_1		C_6	\mathbf{X}_{2}	X_4				C'_2	X'_4	\mathbf{X}_{6}	53	N_3	N_1	C_6	\mathbf{X}_2	X_4		C'_2	X'_4
19	N_1		C_6	\mathbf{X}_2	X_4				C'_2	X′4	X_6	54	N_3	N_1	C_6	\mathbf{X}_{2}	X_4	X_5	C'6	X′4
20	N_1		C_6	\mathbf{X}_2	X_4				C'_2	X'_4	X_6	55	N_3	N_1	C ₆	\mathbf{X}_{2}	X_4	\mathbf{X}_{5}	C'6	X'_4
21	N_1		C_6	\mathbf{X}_2	X_4				C′ ₆	X'_4	\mathbf{X}_{6}	56	N_3	N_1	C_6	\mathbf{X}_2	X_4	\mathbf{X}_{5}	C'6	X'_4
22	N_1		C_6	\mathbf{X}_2	X_4				C'_2	X'_4		57	N_3	N_1	C ₆	\mathbf{X}_{2}	\mathbf{X}_{4}		C'_2	X'_4
23	N_1		C_6	$\mathbf{X_2}$	X_4				C'_{6}	X'_4	\mathbf{X}_{6}	58	N_3	N_1	C_6	\mathbf{X}_{2}	\mathbf{X}_{4}	\mathbf{X}_{5}	C'6	X'_4
24	N_1		C ₆	$\mathbf{X_2}$	\mathbf{X}_{4}				C'_{6}	X'_4	\mathbf{X}_{6}	59	N_3	N_1	C ₆	\mathbf{X}_{2}	\mathbf{X}_{4}	\mathbf{X}_{5}	C'6	X'4
25	N ₁		C_6	\mathbf{X}_2	X_4		\mathbf{X}_{5}		C'2	X'4		60	N ₃	N ₁	C ₆	\mathbf{X}_{2}	\mathbf{X}_{4}	\mathbf{X}_{5}	C'6	X'4
26	N_3		C_7	\mathbf{X}_{2}					C'_2	X'4		61	N_3	N_1	C ₆	\mathbf{X}_{2}	X_4	X_5	C'6	X'4
27	N_1		C ₆	\mathbf{X}_{2}	X_4				C' ₆	X'4	X_6	62	N ₃	N ₁	C ₆	X_2	X_4		C'2	X'4
28	N ₁		C ₆	X_2	X_4		X_5		C'_2	X'4		63	N ₃	N ₁	C ₆	X_2	X_4		C'6	X'4
29	N_1		C_6	X_2	X_4				C'_2	X'4	X ₆	64	N ₃	N ₁	C ₆	X_2	X_4	\mathbf{X}_{5}	C'6	_X'4
30	N_1		C ₆	\mathbf{X}_{2}	X_4				C'_2	X'4	X ₆	65	N ₃	N ₁	C ₆	X_2	X_4		C'6	X'4
31	N_1		C ₆	X_2	X_4				C'6	X'4	X ₆	66	N ₃	N ₁	C ₆	X_2	X_4		C'6	_X'4
32	N_1		C ₆	X_2	X_4	37		37	C'6	X'4	\mathbf{X}_{6}	670	N ₃	N	C ₆	\mathbf{X}_{2}	X_4		C'_2	X'3
33	N ₃	N_1	C ₆	X_2	37	\mathbf{X}_4		X_5	C'6	X'4	37	68	N_3	N_1	C ₆	\mathbf{X}_2	\mathbf{X}_4		C'_2	X'_4
34	N_1		C ₆	X_2	X ₄				C'_2	X'4	X ₆									
35	N_1		C_6	\mathbf{X}_2	X_4				C'_{6}	X'_4	\mathbf{X}_{6}									

^a Table from ref 197. ${}^{b}X_{i}$ and X'_{i} are the atoms directly attached to the respective carbon atoms. ${}^{c}X'_{3}$ for this compound is one fluorine atom. ^d The site points are shown with a strongly bound 2,4-diaminoquinazoline attached. The solid and dotted circles represent above and below the plane, respectively, and their size represents the relative distance from the plane. An "ordinary" quinazoline would bind flipped 180° about the horizontal axis running from S_3 to S_4 .

TABLE VI.	Interaction Energy	(kcal/mol) of S.	faecium DHFR wi	ith Quinazoline Site Points
-----------	--------------------	------------------	-----------------	-----------------------------

	ligand		site points										
no.	type	1	2	3	4	6	7	8	10	11			
1.	C (sp ³)						-0.001	-0.550		-1.598			
2.	0				-0.112								
3.	N				-2.285	-2.208				-1.487			
4.	S or SH				-1.790		-0.042	-0.430		-1.685			
5.	Cl						1.366	-0.292	-1.454				
6.	F								-2.585				
7.	$C (sp^2)$			-1.689				-1.182	-1.240				
8.	N (double bond)	-2.138											
9.	N (protonated)		-0.806										
10.	S (in SO)									-1.802			
11.	$S (in SO_2)$						-1.134			-1.803			
12.	C (in COOH)								-1.311				

VIII. Molecular Shape Analysis

Another line of attack on the QSAR of DHFR has been initiated by Hopfinger and his colleagues²⁰⁴⁻²⁰⁸ using molecular shape analysis (MSA).²⁰⁶ In this approach the congeners in a data set are first examined by using molecular mechanics to determine the most stable conformers. After this point the approach is somewhat similar to that of Simon et al. in that a reference compound must be selected against which the shape of all other congeners can be compared. The total common overlap volume of the reference molecule and each of the congeners in the data set is defined as V_0 , which is calculated by a rather complex process.²⁰⁴ The

parameter S_0 ($S_0 = V_0^{2/3}$) is employed in the correlation analysis. The meaning of S_0 in QSAR is rather obscure. In attacking the SAR of triazines VI of eq 1, Hopfinger states, "The optimum values of S_0 and, correspondingly, V_0 have no physical meaning. The S_0 represent the relative numerical scales which reflect the need to have an analogue adopt the $\theta = 310^\circ$ conformer state such that the 3 and/or 4 substituents possess size and/or conformational freedom so that specific spaces are occupied." From the molecular mechanics calculations Hopfinger surmised that the most favorable angle θ between the phenyl ring of VI and the triazine is 310° . In a study of 256 congeners VI upon which eq 1 is based he selected 27 as representatives of 7 distinct classes. Correlation analysis yielded eq 27. In this expression

Inhibition of murine tumor DHFR by VI²⁰⁶

$$\Delta \log 1/C = -0.996[S_0] + 0.0145[S_0]^2 + 0.481\Delta\Sigma\pi + 0.296[\Delta D_4] + 0.528[\Delta D_4]^2 + 16.66 \quad (27)$$

$$n = 27, r = 0.940, s = 0.49$$

the parameter D was designed to take care of two points which were so badly fit by eq 1 that they were not used in its formulation. The two points, 4-CN and $4-C_6H_5$, are used in deriving eq 27. D_4 is a measure of linear extension of the 4-substituent beyond that of 4-Cl. The steric effect of 4-substituents has also been parameterized via Charton's ν constants (eq 2, 4). Although eq 27 is an interesting start, it does contain a rather large number of variables for 27 data points and it seems unlikely that eq 27 will correlate all the other 229 molecules in the set. Note that while the correlation coefficient of eq 27 is high, its standard deviation is considerably higher than that of eq 1. Equation 1 uses 10 variables to correlate 244 data points (24/variable) while eq 27 uses 5 terms for 27 points (5/variable). Most of the congeners containing large substituents (a large percentage of the data) were not included in the development of eq 27.

The standard reference molecule for the calculation of V_0 was 3,4-Cl₂-VI.

Hopfinger has applied the MSA method to other smaller sets of triazine VI data using results from bovine and rat liver DHFR.²⁰⁷

3-X-VI inhibition of bovine DHFR

$$\log 1/I_{50} = 0.610\Sigma\pi - 0.108\Sigma\pi^2 - 0.246D_3 + 6.38$$
(28)

$$n = 31, r = 0.926, s = 0.25$$

3-X-VI inhibition of rat DHFR

$$\log 1/I_{50} = 0.707\Sigma\pi - 0.133\Sigma\pi^2 - 0.336D_3 + 6.06$$
(29)

$$n = 20, r = 0.927, s = 0.27$$

In these data sets only 3-substituted VI were tested. The reference molecule for the calculation of S_0 was $3-C(CH_3)_3$; however, S_0 did not turn out to be of consequence in the correlation equations. This may be due to high collinearity between S_0 and π . The variable D_3 is used to account for a steric effect of 3-substituents which is especially pronounced for branches on the

carbon atom attached to the phenyl moiety.¹⁴⁶ Hopfinger's equations can be compared with eq 7 and 9 formulated by the Pomona group, although the use of π in eq 7 and 28 is different. In eq 28 π for the total substituent has been employed. Also, subsequent to the development of eq 28, 10 more triazine data points were available for deriving eq 7. Three of these were omitted in the derivation of eq 7: $3-COOC_2H_5$, $3-CH(OH)C_6H_5$, 3-CN. Equation 28 is a slightly better correlation than eq 7 and in addition includes the three congeners badly fit by eq 7. The 3-CN congener is not well predicted by the Hopfinger equation, being more active than expected, but both of the other two bad fits are well correlated as is $3-C(CH_3)_3$, which is also not well predicted by eq 7. Thus, Hopfinger's D_3 steric parameter seems to be a useful contribution to understanding the QSAR of DHFR. Equation 7 does not contain a term in σ , which has been found to be important in other QSAR for 3-X-VI. If a term in σ is added to eq 28, a slight although significant improvement $(F_{1,26} = 4.12)$ in correlation is obtained.

In a more recent application of MSA, Hopfinger and his colleagues have treated quinazoline data collected by Hynes and his group on the inhibition or rat liver DHFR.²⁰⁴ Their QSAR of eq 30 can be compared with eq 12. In calculating S_0 , new refinements were employed. For this data set the reference compound used

3-X-VII inhibition of rat liver DHFR

$$\log 1/I_{50} = 0.349S_0 - 0.0021[S_0]^2 + 0.487\sum_{t=0.0}^{t} \pi_{5,6} - 0.0897\Delta\theta - 6.950$$
(30)

$$n = 35, r = 0.965, s = 0.360$$

to calculate S_0 was the most active congener of the set (6-SO₂-2'-C₁₀H₇). The parameter $\pi_{5,6}$ is the sum of π for substituents in position 5 and 6 and $\Delta\theta$ accounts for the intramolecular steric effect of 5-substituents on the 4-NH₂ group. It was concluded that the most active congeners result when this group is either parallel or perpendicular to the aromatic ring system. From the calculated normalized optimum S_0 , it was estimated that the active site requires the ideal inhibitor to occupy 710 Å³.

The complete set of quinazolines comprises 104 congeners, three of which were dropped in the derivation of eq 12. Hopfinger et al. limited their study to 35, all of which contain the 2,4-diamino substituents. Unfortunately, eq 30 cannot be compared to eq 12 since the two are based on such different sets of congeners.

One of the difficulties with MSA analysis which has handicapped Hopfinger's analyses is that of cost in time and money of making the calculations. This has prevented him from studying all of the quinazolines used to derive eq 12.

Hopfinger has used 23 of the 42 compounds on which eq 16 is based to derive the QSAR of eq 31 for the inhibition of bovine DHFR by benzylpyrimidines XXVIII.²⁰⁵ Although eq 31 is a much sharper corre-

$$\log 1/C = -21.31V_0 + 2.39V_0^2 + 0.44\pi_{3,4} + 52.23$$
(31)

$$n = 23, r = 0.931, s = 0.137$$

lation than eq 16, it is based on a considerably smaller

set so that the two equations cannot be meaningfully compared. The *cis*-4-NHCOCH₃ congener was used as the standard in calculating V_0 , and Hopfinger concludes that "the less a compound looks like the X = cis-4-NHCOCH₃ structure, with regard to shape, the more active it will be as a DHFR inhibitor." Obviously this definition cannot be carried very far.

In a reevaluation of eq 31 Hopfinger²⁰⁸ has combined molecular shape analysis with molecular potential energy fields to formulate eq 32 for the benzylpyrimidines inhibiting bovine DHFR. The common overlap volume

$$\log 1/C = -2.34[F] + 0.29[F]^2 + 0.37\Sigma\pi_{3,4} + 9.39$$
(32)

$$n = 22, r = 0.961, s = 0.105$$

 V_0 of eq 31 has been replaced by F in eq 32 to yield a sharper correlation. The parameter F is a simplified potential energy descriptor calculated via molecular mechanics.

IX. Structure of Dihydrofolate Reductase

The ultimate means for defining the structure of an enzyme is X-ray crystallography. Only recently have structures been elucidated by such means; however, much information about DHFR has been obtained by the sophisticated use of NMR.²⁰⁹⁻²¹⁶ NMR does offer certain advantages not provided by X-ray crystallography. NMR methods recently showed that *L. casei* DHFR exists in three interconverting conformational states which are pH dependent.²¹⁶ We shall need all techniques and a great deal of hard thinking to finally understand how DHFR functions in vivo. NMR and X-ray crystallography are of less help for in vivo work than QSAR.¹⁸³

The use of circular dichroism²¹⁷⁻²²² proved to be particularly useful in bringing out the difference in DHFR from different sources,¹² although it is difficult to interpret the differences in CD in structural terms. Saperstein et al. studied *E. coli* DHFR using visible and Raman spectroscopy.²²³

UV spectra were used to determine the ionization state of various parts of inhibitors which were UV active.¹² The chemical modification of certain amino acid residues has also afforded interesting clues.^{12,16}

X-ray crystallographic studies were carried out on DHFR from three sources: *E. coli*, ^{224,227–229} *L. casei*, ^{225,226} and chicken liver.⁴⁹ Recently, refined structures (1.7 Å) have been reported for the two bacterial enzymes.^{93,230} Our discussion of the structure of DHFR will be largely based on the work of Matthews, Kraut, and their co-workers.^{16,93,230}

The backbone of the *E. coli* binary complex shown in Figure 2 contains as the central element an eightstranded β sheet (comprising 35% of the enzyme) starting at the amino end (N) and finishing with an antiparallel section at the carboxy terminus (C). The strands are labeled from left to right as βG , βH , βF , βA , βE , βB , βC , and βD with an α -helical section labeled αF , αE , αB , and αC . The structures of DHFR from *L. casei* and *E. coli* cells appear quite similar despite the fact that the X-ray crystallographic structure for *E. coli* was obtained by using the binary complex with MTX while the *L. casei* structure is based on X-ray diffraction

studies of the ternary complex. These bacterial enzymes differ by only three in the number of amino acid residues, but there is less than 30% homology between the two sequences.

Figure 3 compares ternary complexes in stereo, composed from the coordinates of *L. casei* DHFR-NADPH-MTX and chicken DHFR-NADPH-4-OCH₃-VI. In this composite structure the light backbone represents the bacterial enzyme and the dark portions the additional residues present in the avian enzyme. The domains labeled by Roman numerals in Table I are also coded in Figure 2 and correspond to the chicken DHFR.

Bolin et al.⁹³ calculated that, when 142 out of the 159 α -carbon coordinates in E. coli DHFR are fit via least squares to the corresponding α -carbon coordinates for the L. casei enzyme, the root mean square deviation is only 1.1 Å. The major difference in the active sites is the replacement of Leu-19 and Phe-49 in L. casei DHFR by the corresponding Met-20 and Ile-50 in E. coli, which results in a smaller and more constrained active site in L. casei. The side chain of Met-20 in the E. coli DHFR-MTX binary complex points away from the active site but in the ternary L. casei DHFR-NADPH-MTX complex the corresponding Leu-19 side chain projects into the active site. Although it is not strictly proper to compare these two complexes (a binary vs. a ternary), specific differences appear to hold in solution when one compares K_1 values for the benzylpyrimidines acting on the two DHFR.³¹ A comparative model of the two superimposed active sites (section X) helps to visualize these differences.³¹ The greatest differences between the two bacterial DHFR reside in the loops connecting the α and β secondary structures. Some of the hairpin turns present in L. casei have different geometry or are missing in E. $coli.^{93}$ Since six of the nine insertions and deletions accounting for differences between bacterial and chicken DHFR coincide with reverse turns in the L. casei structure, Bolin et al. conclude that formation of hairpin turns may provide a means for single residue insertions and

Figure 3.

deletions as suggested by Richardson et al.²³¹ for β bulges and turns are points where further insertions can be accommodated.

The chicken DHFR is readily obtained in highly purified form as the apoenzyme or the holoenzyme so that X-ray structures have been determined for both forms. In fact, X-ray crystallography has been done on a variety of inhibitors bound to the DHFR (triazines, pyrimidines, quinazolines, and pterins).¹⁶

The four α helices and seven of the eight parallel β strands (the eighth is an antiparallel strand) which occur in the bacterial DHFR are present in the chicken liver enzyme, but corresponding elements in the secondary structure may differ by as much as 1–3 Å in the region of the active site.¹⁶ It is these differences which must be primarily responsible for the differences which QSAR of eq 4 and 6 compared to eq 10 and 11. Over 70% of the extra residues which occur in the chicken DHFR, not counting six residues which only lengthen the chain at the amino and carboxyl ends, occur in three loops rather far from the active site (Figure 3). The avian DHFR contains 189 residues compared to 161 and 159 for *L. casei* and *E. coli*, respectively.

The great similarity of the avian active site and the bacterial active site can be better appreciated from the superpositioning of the two active sites, each holding a TMP molecule (see graphics section). Despite the similarity in the two active sites, the benzyl moiety of TMP in one active site is 90° out of plane with that in the other active site.²¹

One of the most significant differences between chicken and bacterial DHFR is the presence of an extra proline residue in the vertebrate enzyme which is found⁴⁹ in a loop (I in Figure 3) connecting βA to αB (Table I) at a point immediately following Trp-24. (Note in this figure the upper set of sequence numbers is associated with the bacteria residues while the lower set codes the vertebrate enzymes.) This segment (Pro-23-Trp-24-Pro-25-Pro-26) forms an almost ideal polyproline 3-fold helix,⁴⁹ and this feature is present in all known structures for vertebrate DHFR (Table I) but is not present in the bacterial reductases.

A set of seven amino acids (Thr-40-Ser-41-Ser-42-Val-43-Glu-44-Gly-45-Lys-46) II in Figure 3 occurs in chicken DHFR at the end of αB . Most of this segment makes nonbonded contact with segment V which connects αE to βE .

Section III contains two extra residues compared to

Blaney et al.

L. casei DHFR and three relative to E. coli in the loop connecting α C to β C. Since the loop containing the extra residues in the chicken DHFR (Glu-62-Lys-63-Asn-64) interacts with the NADPH or the inhibitor or both, this could directly affect inhibitor selectivity for the two types of enzymes.

There are small differences in segment IV, but in segment V a large set of residues (101–106) in the avian enzyme expand the loop connecting αE to βE and permit it to fold onto the loop connecting αB to βB .⁴⁹ The strand of βE commences two residues earlier in the chicken DHFR with Met-111-Val-112.

Segment VI constitutes a minor difference of two residues (Glu-126 and Lys-127).

The signal difference between chicken and bacterial enzymes occurs in segment VII. Here the bacterial enzymes have a long strand βG which makes antiparallel interchain hydrogen bonds with strand βH . Volz et al.⁴⁹ have discovered that the third residue from the lower end of βG (Val-139 in *L. casei* and Val-136 in *E. coli* DHFR) does not hydrogen bond to βH and they classify this a β bulge according to Richardson et al.²³¹ The chicken DHFR contains a segment of six residues (III) at the analogous position in the middle of βG where such a bulge might be expected. Only six of the 11 residues are involved in the classical antiparallel β interchain hydrogen bonding. Volz et al.⁴⁹ point out that this appears to be the first example of a " β blow out" among proteins whose structures are known.

Near the middle of the loop in segment VII a reverse turn (stabilized by a hydrogen bond between the carbonyl of Tyr-162 and the amido nitrogen of Val-165) directs the loop back down toward the β sheet plane. Surprisingly, the virtual elimination of one of the three largest β strands in the avian enzyme does not greatly change other features of the reductase. Volz et al. postulate that because of the high degree of homology it is likely that all vertebrate DHFR contain such a β blowout.

Finally, it is seen from Table I that segment VIII of the chicken enzyme is missing three residues present in $E. \ coli$ and two present in $L. \ casei$ DHFR.

It must be remembered when considering the above discussion that because loop regions vary in conformation from one type of DHFR to another there are serious problems in making comparisons. Just how residues in these loops should be aligned for comparison is not entirely clear.

X. Molecular Graphics

The recent developments in three-dimensional color computer graphics make the interpretation of the results from X-ray crystallography of macromolecules much easier, especially for those who have not had extensive crystallographic experience with the molecules under consideration. It seems only a matter of time before most laboratories will in one way or another have access to such systems and that the time consuming construction of complex wire models will be a thing of the past. So much can be done with the computer models that is impossible with wires—for example, the excellent visual comparison one can make by superimposing the frames of two proteins or parts thereof. A most important breakthrough in computer models is that of placing a van der Waals surface over the active site or other regions of interest.²³²

The molecular models in this article were constructed and displayed at the Computer Graphics Laboratory of Professor Robert Langridge at the University of California, San Francisco on an Evans and Sutherland color picture system 2 run by a VAX 11/750 computer using the programs CHEM²³³ and MIDAS.²³⁴ A few reports have now been published illustrating the value of color stereographics in enlarging our understanding of how ligands interact with macromolecules.^{21,31,232,235-241} These molecular models are not intended to provide the definitive structure for the enzyme-ligand complex; rather, the goal is to develop reasonable structural models consistent with experimental results which can be studied to develop new experiments.

The graphics section in this review is intended to give the reader some useful stereoviews in which color coding of the surfaces helps one to understand the type of surface interaction between ligand and macromolecule. Unfortunately, they cannot convey the enormous power of computer graphics seen on the picture tube.

Our models have been constructed from the X-ray crystallographic coordinates of DHFR from three sources. The coordinates were kindly supplied to us by D. A. Matthews. For the construction of the chicken liver DHFR active site the following residues were used: Ser-6 to Val-10, Ile-16 to Gly-17, Lys-18 to Ser-39, Asn-48 to Trp-57, Ser-59 to Pro-66, Leu-57 to Asn-72, Trp-113 to Tyr-121, Thr-136, Ile-138, Asp-145, Thr-146.

For the *L. casei* DHFR active site model we used the following: Leu-4 to Ala-6, Gly-17 to Leu-19, Trp-21 to Arg-31, Val-41 to Ala-57, Ala-97, HOH-201 and for *E. coli* the following were used: Ile-5 to Ala-7, Ile-14 to Gly-15, Met-16 to Met-20, Trp-22 to Pro-25, Asp-27 to Ala-29, Trp-30 to Lys-32, His-45 to Thr-46, Ser-49 to Ile-50, Arg-52, Leu-54, Pro-55, Arg-57, Ile-94 to Gly-97, Tyr-100, Thr-113.

View I (Figure 4) shows the ternary complex of L. casei DHFR-NADPH-MTX with water molecules (represented by red O) whose positions have been established by X-ray diffraction studies. (Many of the external waters have high-temperature factors, indicating high mobility or a similar uncertainty in position.⁹³) The backbone of the enzyme is colored blue except for the amino acid residues around the active site, which are yellow. Near the center on the left in green is the structure of MTX and just to the left of the green spike representing the 10-CH₃ of MTX is the nicotinamide ring which is involved in the transfer of hydride to dihydrofolic acid in its reduction by DHFR. The unit cell of L. casei DHFR contains about 1200 water molecules; positions of 264 have been established and are shown in view I.

Out of 178 water molecules bound directly (not through a second water) to L. casei, 65 are hydrogen bonded simultaneously to two or more functional groups in the protein and hence may play some role in the overall protein structure. The E. coli crystal contains about 800 of which 428 have specified positions.93 The enzyme is in effect in aqueous solution in the crystal. Bolin et al.⁹³ note that every fixed water molecule is hydrogen bonded to the protein or to a water molecule which is protein bound. There appear to be no visible clathrate-like water cages around nonpolar groups. Apparently these so-called "flickering clusters" of hydrophobically held water are too unstable to be "seen" by X-ray diffraction studies. The structure of the bound water molecules is quite different in the two similar bacterial enzymes. This feature may be of significance in the binding of inhibitors to DHFR from different sources.

View II is a close-up of view I in which a blue surface has been placed over the active site of the enzyme. This idea for defining the molecular surface of a protein comes from Richards^{242a} and was incorporated into a computer program by Connolly.^{242b} Instead of calculating van der Waals spheres and solving the hidden surface problem, the program calculates the surface corresponding to the solvent accessible surface. This is done by a probe sphere (representing an idealized water molecule) of 1.4-Å radius traversing the surface of the molecule; a dot is placed at each point of contact of the sphere with the molecular surface or at the inward-facing surface of the sphere when it is simultaneously in contact with more than one atom (reentrant surface). In the resulting model the interstices too small to accommodate the probe are eliminated and the clefts between the atoms are smoothed over.

In view II, red van der Waals surfaces have also been placed on the idealized water molecules, which gives one a better appreciation of their effective size. The "wire" model of MTX is shown in yellow and in the background can be seen in faint yellow the nicotinyl moiety of the NADPH. Water molecules are associated with the two COO⁻, the carbonyl group of the aminobenzoyl moiety, and the N9 region. Water molecules are also on the surface of the cavity.

The complete backbone of *L. casei* DHFR in blue is displayed in view III, MTX is green, and NADPH is yellow. From the red surface one can see that a relatively large portion of the enzyme is devoted to the active site. This would be even larger if the surface occupied by the NADPH were also included. DHFR is an efficiently constructed molecule with relatively few amino acid residues which are not directly involved in the active site for one or the other of the two ligands.

View IV shows the details of MTX (green) binding to *L. casei* DHFR according to Bolin et al.⁹³ The nicotinyl portion of the NADPH (red) is hydrogen bonded to the carbonyl and amino group of Ala-6. The carboxylate oxygens of Asp-26 are shown hydrogen bonding to the N1 and 2-NH₂ moieties of MTX. The 4-NH₂ is hydrogen bonded to the carbonyl oxygen of Leu-4. It also makes a second hydrogen bond to Ala-97 (not shown in view IV). The second H of 2-NH₂ is hydrogen bonded to Thr-116. Since this threonine is conserved in all DHFR, it seems likely that this is an invariant binding feature of the 2,4-diaminopyrimidine type structure.

Vertebrate DHFR contains Glu-30 in a position equivalent to Asp-26 in L. casei.

In the *L. casei* DHFR-MTX complex, N5 of MTX makes no hydrogen bonds while N8 is bonded to fixed water molecule (Wat-253), which in turn is hydrogen bonded to oxygen of Asp-26, to Wat-217, and to N ϵ 1 of Trp-21. The nonpolar interactions of the pteridine ring in the ternary complex with *L. casei* DHFR occur mainly through the side chains of Leu-4, Ala-6, Leu-19, Leu-27, Phe-30, and Ala-97. The backbone of Trp-5 and Ala-6 are also in contact with the pteridine ring.

The *p*-aminobenzoyl portion of MTX is hydrophobically bound by the helix αB on one side and by the loop connecting αC to βC on the other side. The side chains of Leu-27 and Phe-30 are important features of this hydrophobic pocket.

The glutamate portion of MTX makes a strong contact between its α -carboxylate and guanidinium group of Arg-57 in both *L. casei* and *E. coli* DHFR. Bolin et al.⁹³ note that the guanidinium group is located in a narrow hydrophobic pocket formed by side chains of nearby residues and is rather rigidly held by hydrogen bonding to HO of Thr-34 and the carbonyl oxygen of Pro-55. The γ -carboxylate does not appear to interact strongly with the bacterial DHFR.

Another view of MTX (red) and folic acid (yellow) binding to L. casei DHFR is presented in view V. This model was constructed from the refined coordinates of the ternary complex. In constructing the model the pteridine ring of the folic acid was superimposed on the coordinates of the pteridine of MTX and then rotated 180° about the C_6 - C_9 bond. So doing brings the two amino benzoylglutamyl units into similar positions of enzymic space. As mentioned above, there is considerable indirect evidence that folic acid does not bind like MTX. Bolin et al.⁹³ postulate that the pteridine ring can rotate so that N3 is placed in the position of N1 in view IV, which is within hydrogen-bonding distance of an Asp-26 oxygen. This would allow the 4-oxo group of folic acid to hydrogen bond with a nearby water molecule (wat-253), which is in turn hydrogen bonded to Trp-21. This arrangement places N8 of the substrate so that its H can bond to Leu-4 or Ala-97. They point out that in this binding model there is a net loss of one protein-ligand hydrogen bond in the substrate complex compared to the MTX complex. (Because of the replacement of the doubly hydrogen bonded $4-NH_2$ by 4-oxo, there is still some doubt as to whether or not the Asp-26 carboxylate is protonated or not.)

The association constant between L. casei DHFR and dihydrofolate is 2×10^{-6} M⁻¹ and that for MTX is 2×10^{-10} M⁻¹. Bolin et al. concluded that this difference is accounted for by the additional hydrogen bond to 4-NH₂ and the protonated N1 of MTX reacting with Asp-26. It is clear from the computer graphics analysis that there is room enough in the active site for these two types of binding.

Filman et al.²³⁰ have considered the implications of their above-discussed model of substrate binding for the catalytic step with DHFR. They assume that the geometry of the enzyme is essentially the same when folates bind as when MTX binds. Although it has generally been assumed that a prelude to hydride transfer from the NADPH would be protonation at N5 or N8. they observe that their results show that N5 is not close to any hydrogen-bonding group. However, N8 (view V) is in roughly the same site as 4-NH₂ of MTX and hence might interact with carbonyl oxygens of Leu-4 or Ala-97. This model would help to explain folate reduction but not dihydrofolate reduction. Filman et al.²³⁰ are unable at present to offer a mechanism for carbonium ion development at C6 and point out that, unlike MTX, current evidence^{243,244} indicates that bound folates are not protonated. Of course, since current thinking is that protonation occurs during the transition state, one would not necessarily expect to see the makings for it in the crystallography of inhibitors bound in the crystal.

Filman et al. visualize that protonation in the transition state might occur by relay of a proton from the aqueous phase along a conserved hydrogen-bonded chain of two water molecules. Wat-253 hydrogen bonds simultaneously to N8 of MTX to O δ 2 of Asp-26 and to N ϵ 1 of Trp-21. With the folates 4-oxo takes the place of N8 and Wat-253 hydrogen bonds to a second water molecule (Wat-217), which also contacts the surrounding solvent.

The binding of the NADPH cofactor occurs in extended form as shown in view VI (Figure 5). The cofactor is red, the *L. casei* backbone is yellow with a blue surface, and in the lower right-hand corner MTX in faint red is adjacent to the nicotinyl moiety. An amino acid side chain with its attendant surface crosses about the middle of the NADPH and appears to help hold it in place.

The nicotinamide ring is fixed between the carboxyl ends of strands βA and βE , being essentially coplanar with the strands, which causes them to separate to accommodate the nucleotide base.¹⁶ A cluster of hydrophobic side chains excludes solvent from the B side of the nicotinamide ring and the A side of the ring is in contact with the folate binding cavity. Filman et al. point out that this geometry is consistent with the finding of other studies^{219,243–248} that hydride transfer is A side specific. The A side of the pyridine ring is in contact with the side chains of Leu-19, Trp-21, and Ser-48 and the pyrazine portion of the pteridine ring of the bound folate. The B side of the nicotinyl ring is in hydrophobic contact with Ile-13, Phe-103, and the cis peptide connecting Gly-98 and Gly-99.

The adenine binds in a hydrophobic pocket in contact with five amino acid residues (Leu-62, His-64, Thr-63, Gln-101, Ile-102) of which only one (Leu-62) is conserved in DHFRs of known structure. No direct hydrogen bonding appears to occur between protein and the nitrogen atoms of adenine; however, in two instances (N7 and N1) water molecules bridge from adenine to the reductase.¹⁶

One of the most interesting discoveries of the La Jolla group²³⁰ is that the nicotinamide interacts via ring hydrogens 2, 4, and 6 with three roughly coplanar oxygen atoms (0:13, 0:97, $O\gamma$:145), which places the functional part of the NADPH in a very polar environment. They postulate that these oxygens may play an important role in the delocalization of a positive charge in the cofactor transition-state XXXII.

Figure 4. Stereoviews I-V.

Figure 5. Stereoviews VI-X.

A problem of interest is that with the exception of 2-SH all other 2-X-triazines are much less effective inhibitors of vertebrate DHFR than the parent compound (X = H).^{146,147} The 2-SH, however, is 10 times more active than the parent. In the model of view VII the 2-I-triazine is shown in green as is the nicotinyl moiety of the NADPH. Coordinates for the 2-I-triazine were derived from crystallographic coordinates of the 4-OCH₃ analogue. The enzyme active site is that of chicken DHFR. In this model the 2-I collides with the amide group of the nicotinamide and thus it seems that in the binding competition 2-X-triazines meet with considerable resistance from the NADPH. The 2-I analogue is about 1000 times less active against bovine and murine DHFR, while the SH group of similar size is 10 times more active than the parent. It is hard to find a radically different way for the 2-SH-triazine to bind, so, in fact, it may be able to prevent the NADPH from binding and in this way be both a competitor of NADPH as well as folate. Actually, it might be possible by placing lipophilic substituents in other positions on the phenyl ring of the triazine to increase the holding power of 2-X-triazines so that they are not displaced by the binding of NADPH. This type of NADPH inhibition would be unlikely to interfere with other enzymes employing this cofactor.

View VII shows rather well the large amount of hydrophobic surface (red) in the active site as well as its complex geometry.

The surprising movement of Tyr-31 in chicken DHFR which occurs on binding of trimethoprim (green) is illustrated in view VIII. Hydrophobic surfaces are color coded red and polar surfaces are blue. This model also contains for comparison the 3-I-triazine. The position of both ligands has been established by X-ray diffraction studies (Matthews and Volz, unpublished results) of the ternary complexes. Just behind the red phenyl ring of the triazine the nicotinamide moiety of NADPH is displayed in faint yellow. To appreciate how Tyr-31 has moved upon interaction with TMP, compare view VIII with view VII. In view VII the large yellow Tyr-31 is in the foreground on the lower left while in view VIII it has been raised by almost 180° and the phenyl twisted from its normal position (as found in the native enzyme and with bovine triazine inhibitors). This movement removes one hydrophobic wall of the active site in the chicken DHFR. Exactly what causes this movement is not known, but it would seem to require little energy. Matthews et al.¹⁶ have discovered through their X-ray diffraction studies that while TMP

causes great change in Tyr-31, a close analogue (XXXI)

with greater potential for steric effects binds without causing the large movement of Tyr-31. TMP and XXX are two of the strongest known inhibitors of bacterial DHFR, yet their inhibition constants (log $1/K_i$) of chicken DHFR are weak, being 3.98 and 4.05, respectively (Selassie and Hansch, unpublished results). There is no significant difference in the inhibition of the chicken DHFR by these two substances.

View IX illustrates how Baker's antifol (XVI) can undergo irreversible binding via nucleophilic reaction with the OH of Tyr-31 in chicken DHFR as proposed by Kumar et al.¹⁰³ Freisheim and his colleagues have shown that such a reaction does occur and they have proposed that the antifol first binds reversibly and a covalent bond is formed by OH displacement of F from SO_2F . In view IX the dotted yellow line shows the postulated path of attack of the OH on the back side of S holding the F leaving group. In this model the oxygens of the sulfonyl group are placed near the polar (blue) surface of Asn-64. This contact may assist in positioning the antifol for the nucleophilic substitution reaction. The X-ray crystallographic study of XVI bound to DHFR has not yet been carried out so that view IX has been constructed on the basis of the crystallographic coordinates for 4-OCH₃-VI, deleting the 4-OCH₃ group and adding the $-(CH_2)_4$ bridge so as to position the SO_2F in the proper position for OH attack.

View X is a model representing the binding of inhibitor XXXIII (green) (n = 4) binding to E. coli DHFR as pictured by the groups from the Wellcome Laboratories.²²⁹ In a beautiful example of drug design,

XXXIII

the Wellcome group modified trimethoprim by making a series of side chains in the meta position which was varied by using different values of n. Derivatives in which n = 3, 4, 5, and 6 were extremely potent inhibitors of E. coli DHFR, in fact, more than 30 times as potent as TMP. Such an increase in potency was expected by the Wellcome group since from a study of the crystallographic analyses they assumed that the COO⁻ of the side chain would be able to interact with Arg-57 as it is shown in view X for the case where n = 4.

The results of Freisheim's group showing the specific reaction of Baker's antifol with Tyr-31 and those of the Wellcome group are very exciting from the point of view of drug design. We have indeed reached the point where highly potent enzyme inhibitors can be designed by using molecular graphics based on coordinates obtained from X-ray crystallographic studies.

While the Wellcome compounds are probably the most potent inhibitors of bacterial DHFR yet made, they are not surprisingly, effective in vivo. No doubt the highly polar carboxylate anion makes these substances too hydrophilic for proper distribution in animals. This should be correctable by converting XXXIII to more lipophilic compounds by the introduction of more lipophilic groups in positions 4 and 5. QSAR results show these positions to be rather free of steric effects.

Figure 6. Stereoviews XI-XIV.

A similar achievement has been accomplished by Poe et al., who designed $5-(4-OCH_3-3-OCH_2CH_2NHSO_2C_6H_4-4'-NH_2-benzyl)-2,4-diamino-pyrimidine to inhibit$ *E. coli*DHFR.²²⁹ Details have not yet been published.

The quinazolines as well as the triazines are two important classes of inhibitors for cancer chemotherapy. Their comparative binding modes are modeled in view XI (Figure 6). The triazines (red) contains a 3- $CH_2OC_6H_5$ group attached to the 5-phenyl ring and the quinazoline (green) has four substituents attached for reference. The model has been constructed from the X-ray crystallographic coordinates obtained from the ternary complex of chicken DHFR-NADPH-3 $CH_2OC_6H_4$ -3'-NHCOCH₃-triazine (unpublished results of Volz and Matthews). The 3'-NHCOCH₃ group is not included in view XI; however, it is apparent that groups in the 3- and 4-positions of the outer phenyl ring would not contact the enzymes effectively. It is for this reason that in the formulation of the QSAR of eq 2–8, 10, and 11, Y of $CH_2ZC_6H_4$ -Y turns out to be best parameterized by 0.

Since the coordinates for the binding of the quinazolines are not available, the model has been constructed by placing the 2,4-diaminopyrimidine moiety of the quinazoline on the binding points occupied by the corresponding nitrogen atoms of the triazine.

The binding geometry of the quinazolines and tri-

Dihydrofolate Reductase Inhibitors

azines is quite different. It is clear that there is a large cavity in which 6-substituents on quinazoline can project. For rigid 5-substituents space is limited because of the nearby hydrophobic wall (red). The QSAR of eq 12 and 13 are in accord with these facts. For small 5-substituents, π is the parameter of importance and large 6-substituents yield the most active compounds with vertebrate DHFR. So far 7-X-quinazolines have not been studied, but space around the 7-position is limited so that this does not appear to be a promising site for substitution. On the other hand, there is a large hydrophobic cavity just off position 8 which appears opportune for substituent interaction.

A quite promising antitumor drug is BW-301U (XX), developed at the Wellcome laboratories.^{139,140} Besides being a potent DHFR inhibitor, it has the interesting characteristic of being a poor inhibitor of histamine *N*-methyltransferase. A number of potent antifolates are strong inhibitors of this enzyme¹³⁹ and it would appear that some of the toxic side reactions of the antifolates are due to the inhibition of the histamine *N*-methyltransferase.

In the model of view XII, BW-301U (green) is shown binding to the avian DHFR. It is interesting to see that the 5-OCH₃ group can be placed near to a hydrophobic wall, hence it seems that if this somewhat polar group could be replaced with a more lipophilic group such as $5-CH_2CH_3$, a tighter binding drug might ensue. Of course, making this change would produce an overall more lipophilic drug and how overall lipophilicity would affect antitumor activity is an unknown quantity.

The 2-OCH₃ group is also near to a hydrophobic surface so that replacing both methoxy groups with ethyl would also be interesting; however, this would make a large change in log P, which for in vivo activity would have to be offset by an additional group(s) with π near -2.

In view XIII the active site of the binary E. coli DHFR-TMP complex (red) is superimposed on the ternary L. casei DHFR-TMP-NADPH complex (blue). The NADPH is color coded yellow. In the center of the picture one can recognize the two color coded trimethoxybenzyl moieties of the TMP by their three OCH₃ groups projecting toward the viewer. Phe-30 and -31 provide a hydrophobic "floor" and Leu-27 and -28 a hydrophobic "wall" for the active site. The major difference in the two active sites is that of Leu-19 in L. casei, which corresponds to Met-20 in L. casei and Phe-49 in L. casei, which corresponds to Ile-50 in E. coli. The Leu-19 projects into the active site in the L. casei enzyme, producing a smaller cavity than that of E. coli. The side chain of Met-20 in the E. coli complex points away from the active site. Whether this is a consequence of the lack of NADPH in the binary E. coli complex or whether it is an intrinsic feature of the structure is not known; however, model building suggests that such a conformational change is not necessary for E. coli DHFR to accommodate NADPH. Despite the projection of Leu-19 into the L. casei active site, TMP appears to fit very much the same way in each active site.

The presence of Leu-19 does, however, account for difference in the QSAR of eq 19 and $20.^{31}$

Such a superpositioning of enzymic structures represents an enormous advantage of model building with the computer which is difficult to achieve with models built of wire or plastic.

A similar superimposition of the active sites of the ternary chicken liver DHFR-TMP-NADPH complex (red) and the binary *E. coli* DHFR-TMP complex (blue) is displayed in view XIV. Selected residues are labeled for the avian enzyme only. The strikingly different binding modes are apparent from the two trimethoxybenzyl moieties near the center of the picture. Directly behind Leu-22 one can see in red the nicotinamidoribose of NADPH bound to the chicken enzyme. Matthews et al.^{49,225} have suggested that a conformational change in this region of the enzyme induced by NADPH binding may be responsible for enhanced inhibitor binding in the presence of bound NADPH. A direct comparison of the ternary complexes of both enzymes is not possible at present.

The significant differences between $E. \ coli$ and the avian DHFR active sites which may account for the inhibitor selectivity are the substitutions of Leu-28, Lys-32, and Gly-51 in E. coli enzyme by Tyr-31, Gln-35, and Pro-61, respectively, in the chicken enzyme and the insertion between Gly-51 and Arg-52 in the $E. \ coli$ DHFR of Glu-62, Lys-63, and Asn-64 in the chicken The side chains of Glu-62 and Lys-63 in DHFR. chicken DHFR (not shown in view XIV) are oriented away from the active site, while the side chain of Asn-64 is in the active site near the position occupied by the side chain of Arg-52 in E. coli DHFR. The side chain of the corresponding Arg-65 in chicken DHFR points away from the active site and is not apparent in view XIV. The overall effect of these differences is that a more nonpolar environment is present around the benzyl side chain of XXVIII in chicken DHFR (and presumably in other vertebrate DHFR) than in E. coli DHFR. In particular, the replacement of the bacterial Leu-28 by the much larger Tyr-31 in the chicken enzyme results in a narrower, more restricted active site for the avian enzyme.²⁴⁹ This difference in the more hydrophobic character of the vertebrate DHFR compared to bacterial DHFR, which in part accounts for the selective reaction of the benzylpyrimidines with these enzymes, was first apparent from QSAR studies.²⁸ For example, trimethoprim is 2300 times less inhibitory of bovine DHFR,28 77000 times less active against chicken DHFR,³⁰ and 126000 times (Table III) less potent an inhibitor of human DHFR than of the E. coli reductase. The parent benzylpyrimidine (XXVIII, X = H) shows the same trend: 3.2 times less potent with bovine, 30 times less potent against chicken, and 160 times less effective against human than against E. coli. Hence, there is an intrinsically different mode of interaction of benzylpyrimidines with vertebrate DHFR compared to E. coli DHFR.

The hydrophobic terms in the bacterial DHFR QSAR (eq 19 and 20) are not very significant, and most of the variance is accounted for by MR. The reverse holds for vertebrate QSAR (eq 16–18), where π is the significant parameter. The 4-position of the benzyl moiety of the pyrimidines points away from the active site toward solution so that there is little opportunity for contact of 4-X with the enzyme beyond that of 4-OCH₃. Both the QSAR and the graphics are in accord on this point. The bacterial QSAR contain the modified MR' term which is truncated at 0.79, indicating that that part of the 3- and 5-substituent beyond the MR of 0.79 does not contact the enzyme. For the 3-position (upper substituent on the blue trimethoprim in view XIV) modeling of groups longer than OCH_3 (MR = 0.79) shows that these groups will extend beyond the surface of the enzyme into the solvent. Modeling substituents in the 5-position (lowest substituent) indicates that there is only a limited amount of hydrophobic active site surface available for contact.²⁴⁹ Beyond the first two atoms of the 5-substituent there is only very hydrophilic enzyme surface available for contact (Lys-32, Arg-52, Arg-57) so that larger, more hydrophobic 5substituents have only a negligible effect on activity. This appears to be the case for substituents such as $3-OSO_2CH_3$ and $3-CH_2OCH_3$ as well as larger substituents which are well fit by QSAR on the basis of MR' = 0.79 with π_0 = 0.25.

Unlike the bacterial DHFR where large hydrophobic substituents on the benzyl moiety of XXVIII promote little additional activity and do not appear to contact the enzyme effectively, similar substituents do provide additional activity with vertebrate enzymes (eq 16–18). Models of the molecular surfaces of DHFR active sites with bound trimethoprim show that binding by chicken DHFR results in more complete desolvation of the benzyl substituents X by the hydrophobic enzyme surface.²⁴⁹ Because of the different binding mode of the benzyl group (see view XIV), the 3- and 5-substituents are much less exposed to solvent. Tyr-31 in particular constitutes an excellent hydrophobic wall.

The conclusion from the above analysis is that steric effects (MR related) of substituents on trimethoprim must account for a rather large part of the more than 100 000-fold difference in inhibitory power of TMP against $E. \ coli$ compared to human DHFR. It is hard to see how such steric effects could operate other than by producing a conformation change in the bacterial reductase.

Matthews et al. have recently addressed this problem.²⁵⁰ They point out that TMP binds about 1 Å deeper into the active site of chicken DHFR compared to the E. coli enzyme. This results in the avian complex having one less hydrogen bond at the 4-NH₂ group of the TMP and decreases solvent access to the salt bridge between the carboxylate of Glu-30 (Asp-27 in E. coli) and N1 and 2-NH₂ of the TMP. They also point out that there is a major conformational change in TMP binding to avian enzyme in that Tyr-31 makes an average change of position of 5.4 Å. They also note that Baccannari et al.²⁵¹ have shown that the inhibitor dissociation constants for ternary complexes of E. coli and mouse lymphoma DHFR with TMP and NADPH differ by 4 orders of magnitude and that the affinity of TMP for E. coli reductase is strongly dependent on the presence of bound cofactor. This is not true of the mouse DHFR. Hence, cooperativity also appears to play a role in selectivity.

In light of the above thinking about conformational effects brought about by steric effects of substituents being important in the selectivity of TMP analogues for bacterial enzyme, a recent study by Hyde and Roth is most interesting.²⁵² In comparing the action of benzylpyrimidines on rat liver DHFR with that on *E. coli* enzyme, they confirm that hydrophobic effects are important for the rat enzyme but not for the bacterial

enzyme for which MR related effects are more important. They then formulate eq 33. This equation is

$$\log 1/C = 0.83\lambda + 1.15I - 3.10 \tag{33}$$

$$n = 22, r = 0.966$$

based on 10 3-X-XXVIII and 12 $3,4-(\text{OCH}_3)_2$ -5-X-XXVIII. The indicator variable *I* takes the value of 1 for the trisubstituted set and the value of 0 for the simple 3-substituted analogues. The introduction of the $3,4-(\text{OCH}_3)_2$ units increases activity, on the average, by a factor of 10. The parameter λ is based on the sterimol constants of Verloop et al.^{168,169} For simple 3-substitution λ corresponds to Verloop's B_1 parameter, which would model the minimum in plane steric effect of 3-X. This is a more directionally oriented parameter and for the data of Hyde and Roth yields better results than MR. Hyde and Roth truncate λ for alkoxy substituents larger than OH similar to MR' and correct B_1 when substituents ortho to it are present.

Beddell has discussed the results of X-ray crystallography in his laboratory as well as that of Matthews and Kraut's group²⁵³ and reached conclusions similar to those discussed above.

In conclusion, evidence from a variety of sources makes it appear that effects of substituents probably promote a conformational change which accounts for most of the selectivity of TMP for bacterial DHFR.

XI. From Enzyme Inhibition Studies to Drugs

While it has been abundantly demonstrated that in a short time extremely potent inhibitors of almost any enzyme can be developed, there have been few examples showing that this experience can be used in a straightforward manner to design effective drugs. There are two major problems to consider in this approach to drug discovery. (1) Is there the possibility of finding a significant difference between the enzyme of the host and the enzyme of the parasitic cells? (2) Will a structure-activity relationship developed on purified enzyme bear any relationship to the SAR in the living animal?

The facts of the great success of both methotrexate and trimethoprim are more than enough evidence to supply the courage for the present attempts to design drugs starting with studies on the isolated enzyme; however, what concrete guidance can we get from medicinal chemistry about systematic means for bridging the gap between the biochemistry laboratory and the clinic? The answer is not much, because medicinal chemists have not studied the problem in enough depth in a systematic fashion. It would seem that dihydrofolate reductase will be the first thoroughly worked out system. One reason for this is that the enzyme is not unusually difficult to work with and X-ray crystallographic structures are now in hand with more soon to come.

Two attempts have been made to compare the QSAR of DHFR inhibitors obtained from work with isolated enzyme with the effect of the same inhibitors on cell cultures. In making such comparisons one must assume that inhibition of cell growth is the result of the inhibition of the enzyme in situ. If the inhibitors are active at very low concentrations, $<10^{-5}$ M, in the cell

culture and the QSAR shows definite resemblance to that of the isolated enzyme, then one can have some confidence in comparing the two cases. Equations 34 and 35 correlate the inhibition of murine leukemia (L5178YS) cells sensitive to and resistant to (L5178YR) to methotrexate by triazines VI. In these equations

QSAR of L5178YS cells with triazines 3-X-VI²⁵⁴

 $\log 1/C = 1.32\pi - 1.70 \log (\beta \cdot 10^{\pi} + 1) + 0.44I + 8.10 (34)$

 $n = 37, r = 0.929, s = 0.274, \pi_0 = 0.76$

QSAR of L5178YR cells with triazines 3-X-VI²⁵⁵

 $\log 1/C =$

 $0.57\pi - 0.15$ MR $- 0.35 \log (\beta \cdot 10^{\pi} + 1) + 5.12$ (35)

 $n = 42, r = 0.932, s = 0.288, \pi_0 \simeq 6$

C is the molar concentration of triazine required to inhibit the growth of the tumor cells by 50%. Equation 34 can be compared with eq 8. Note first that the hydrophobic effect as parameterized by π differs in that for eq 34 π for all of X has been used. So doing gives a better correlation and it is assumed that movement of the triazines through lipophilic membranes requires this change. Equation 34 has essentially the same term in I as eq 8, but the addition of a σ term to eq 34 did not improve the correlation significantly. The role of σ is quite small in eq 8 so that this probably is not of great importance. The π_0 of eq 34 is definitely lower than for eq 8, but the reasons for this are not clear. There is a large difference in the intercepts, indicating that it is much easier (about a factor of 100) to inhibit cell growth by 50% than to inhibit isolated DHFR by 50%. This finding was surprising since one would assume that in cell culture a certain amount of inhibitor would be lost through binding to macromolecules other than DHFR. The DHFR used to develop eq 8 was obtained from the resistant cells used to obtain eq 35. In this respect comparison of the two sets of results is not strictly proper. However, in the main eq 8 and 34 are not greatly different. Comparison of the outliers gives us some specific insights. The $3-CH(OH)C_{e}H_{5}$ congener is invariably badly fit by QSAR from all forms of DHFR so far studied and it is badly fit by eq 34. The 3-CN congener on the other hand is often much more active on isolated DHFR than the QSAR predict. This congener is well fit by eq 34. The lack of importance of σ and the different behavior of the 3-CN analogues suggest that there are small conformational changes in the DHFR in situ. Further work with a larger set of probes is necessary to develop these leads.

Equation 35 for resistant tumor cells is radically different from both eq 8 and 34. The coefficient with π is about half that of eq 8 and 34 and the coefficient with the bilinear term is so small that the slope of the right-hand side of the bilinear curve (0.57 - 0.35 = 0.22) is positive. Even more lipophilic substituents would have to be tested in order to set a firm value for π_0 . From an inspection of the data π_0 would appear to be around 6. This represents a 100 000-fold change in the limiting effect of π . There is no term in *I* or σ in eq 35, but there is a small negative term in MR not present in eq 8 or 34. The MR term indicates a slight resistance to bulk tolerance by the enzyme of large X groups.

The effect of marker substituents in resistant cell culture is similar to that in the sensitive cell culture. The 3-CH(OH)C₆H₅ is badly fit as with isolated DHFR; however, 3-CN normally poorly fit is well fit by both eq 34 and 35.

Again, the lack of a σ term and the "normal" activity of the CN group give signals that the DHFR in vivo is not exactly the same DHFR "purified" and in buffer solution. It is not unexpected that the σ effect and the behavior of the 3-CN analogue go together. If, as postulated in section V, the σ term accounts for a special dipolar interaction of substituent with enzyme, then the 3-CN might well be the epitome type of substituent capable of acting in such a process.

Log 1/C for methotrexate for 50% inhibition of sensitive L5178Y cells is 8.89, but for resistant cells it is only 2.90. Thus, it takes 1 000 000 times the concentration of MTX to inhibit the resistant cells compared to the sensitive cells.

A similar effect to that of the triazines has been found for the inhibition of the two types of cells by benzylpyrimidines. The major difference between eq 36 and

QSAR for inhibition of sensitive L5178YS cells by benzylpyrimidines²⁵⁶ XXVIII

 $\log 1/C = 0.38\pi - 0.79 \log (\beta \cdot 10^{\pi} + 1) + 0.08 MR_3 + 0.18\sigma + 5.23 (36)$

 $n = 42, r = 0.837, s = 0.215, \pi_0 = 1.38$

QSAR for inhibition of resistant L5178YR cells by benzylpyrimidines²⁵⁶ XXVIII

$$\log 1/C = 0.49\pi + 3.76 \tag{37}$$

n = 42, r = 0.916, s = 0.288

37 is in the role of hydrophobicity. Equation 36 has a low π_0 of 1.38 while π_0 cannot be cleanly established for eq 37, but it would appear to be about 6. The difference in the role of hydrophobicity for eq 36 and 37 is very similar to that of eq 34 and 35. The π_0 for the sensitive cells is about the same as for the isolated DHFR while there is no clear upper limit to the increase in activity with increase in π for the resistant cells.

Clearly there is an important message here for those engaged in cancer chemotherapy using antifolates. Combination chemotherapy using methotrexate and a hydrophobic triazine should prevent the rise in tumor cells resistant to methotrexate and should thus improve the clinical effectiveness of MTX.

In selecting a suitable lipophilic triazine, one must be guided by our knowledge of the passive movement of organic compounds in whole animals. The ideal log P_0 for the passive movement of neutral organic compounds in whole animals insofar as we understand it is about 2. The parent structure VI has a log P at pH 7 of -3. Therefore, the $\sum \pi$ to be added to VI needs to be about 5. Baker's antifol II (XVI) has a π of 5.13, which would seem to make it an excellent candidate for combination chemotherapy except for the fact that hydrolysis of the SO₂F moiety would lower log P by about 4. There is evidence that the SO₂F moiety undergoes rapid hydrolysis in animals.¹⁰⁵⁻¹⁰⁷

Browman and Lazarus²⁵⁷ in fact carried out a combination test using methotrexate and 2,4-diamino-5-(3,4-dichlorophenyl)-6-methylpyrimidine (DDMP), which has a log P of 2.56 at pH 7.2.²⁵⁸ Greco and Hapala²⁵⁸ showed that lipophilic antifols, including DDMP, were taken up by tumors thousands of times faster than MTX. However, Browman and Lazarus did not find the combination of MTX and DDMP to be better than MTX. In fact, the DDMP treatment alone gave mice a longer survival time than MTX + DDMP. Resistance developed quicker for DDMP than for MTX. Surprisingly, MTX and DDMP did not show direct cross resistance.

In fact, the choice of DDMP to use in combination with MTX may not have been the best since the data in section V clearly show that triazines are as a class much more potent than pyrimidines against vertebrate DHFR. This is also apparent from a comparison of eq 34 and 35 with 36 and 37. The intercepts of these equations bring out the much greater potency of the triazines for both resistant and sensitive tumor cells. Other evidence is accumulating which shows that the lipophilic character of antifolates is important in their selective uptake by tumor²⁵⁹ cells of various kinds.^{25,127,142,259} Sirotnak et al. have found that murine tumors sensitive to MTX are relatively insensitive to lipophilic agents.^{259a}

The triazines when tested against L. casei cell cultures sensitive and resistant to MTX show behavior similar to tumor cells. In the case of eq 38, π' gives

QSAR for inhibition of sensitive L. casei cells by $3-X-VI^{183}$

 $\log 1/C = 0.80\pi' - 1.06 \log (\beta \cdot 10^{\pi'} + 1) - 0.94 MR_{Y} + 0.80I + 4.37 (38)$

$$n = 34, r = 0.929, s = 0.371, \pi_0 = 2.94$$

QSAR for inhibition of MTX-resistant L. casei cells by $3-X-VI^{183}$

 $\log 1/C = 0.45\pi + 1.05I - 0.48MR_{\rm Y} + 3.37 \tag{39}$

n = 38, r = 0.964, s = 0.264

slightly better results even though whole cells are involved. This π' term signifies that $\pi_{\rm Y}$ of ZCH₂C₆H₄Y is set equal to zero. As for the QSAR with purified DHFR and VI, one assumes that Y does not make hydrophobic contact with the DHFR. Equation 38 is rather similar in most respects to eq 10 for isolated L. casei DHFR. Even the intercepts of the two equations are close in value. There is one salient difference and that is the term in MRy with its negative coefficient in eq 38. This term applies only to Y groups on $ZCH_2C_6H_4Y$, and since MR is a rough measure of bulk, the negative coefficient implies that a steric effect is present in the DHFR in situ, which is missing in DHFR in buffer. This term is also present in eq 39 for resistant bacterial cells. The enzyme in the living cell definitely has a different behavior from the enzyme in buffer. This might be the result of two different conformations of the enzyme or it may be that a nearby macromolecule to which the DHFR might be in contact causes the steric effect by weakly blocking the open region into

which Y normally projects. To our knowledge this is the first instance in which specific difference between isolated enzyme and enzyme in situ has been characterized.

The fact that π' holds in eq 38 for action taking place in cells reveals that the lipophilic compartments and membranes of the bacterial cells have little influence on the penetration of this set of triazines in *L. casei* cells.

Equation 39 is similar to eq 37 and eq 35. Although eq 35 does contain a bilinear term, this term is not of much significance since it is so small that the right-hand portion of the bilinear model is positive. For all three equations with resistant cells, π_0 is very high, probably near 6, and all three equations have essentially the same coefficient with the π term. Thus, both tumor cells and *L. casei* cells appear to use the same mechanism for protecting themselves from MTX.

Studies of 3-X-triazine inhibiting $E.\ coli$ cells in culture (sensitive and resistant to MTX) do not yield results comparable to those obtained with $L.\ casei$. Preliminary QSAR are almost identical except for modest differences in the intercepts.²⁶⁰ Since it is known that $L.\ casei$ cells have an active transport system for folates and $E.\ coli$ do not, this suggests that the major factor responsible for the difference in response of resistant and sensitive tumor cells and $L.\ casei$ cells to hydrophilic triazines and pyrimidines may be the transport system. If this system were inactive in the resistant cells, then very hydrophilic compounds such as MTX would have difficulty penetrating the cells while the hydrophobic triazines and benzylpyrimidines would not.

Reasoning further along this line, if the transport system employs a macromolecular receptor to capture a folate analogue and then transport it across the lipophilic membrane, this receptor must look like dihydrofolate reductase or else one would not see such close similarity between equations 8 and 34 and 10 and 38.

The several possible mechanisms for resistance to MTX have been reviewed by Harper and Kellems.²⁶¹ Methotrexate is normally actively transported into mammalian cells, but it is not usually transported actively by bacterial cells (L. casei is an exception). The transport problem for normal and resistant cells for folates and methotrexate has been extensively studied and reviewed by Huennekens,²⁶² Sirotnak,²⁶³ and their colleagues. Sirotnak et al.²⁶⁴ analyzed the potential of the transport system for the design of antitumor drugs. They point out²⁶⁴ that structural variation in the transport systems of different cells may be greater than structural differences in the DHFR so that focusing on variations in the transport system may offer a better route for more selective drugs. For example, modifications at the N10 and *p*-carboxyl group of methotrexate have little effect on binding to DHFR but affect transport in L1210 leukemia cells. The presence of methyl or ethyl group at N10 increases $K_{\rm m}$ for influx by 3- to 4-fold with no effect on eflux.²⁶⁵ The difference between $K_{\rm m}$ for influx between tumor cells and intestinal epithelial cells for influx of aminopterin is 6-fold, for methotrexate it is 25-fold, for N^{10} -ethylaminopterin it is 40-fold. Sirotnak and Donsbach found²⁶⁶ that the $K_{\rm m}$ for MTX influx differed by as much as 4-fold among
Kamen et al. pointed out that commercial radiolabeled MTX often contains impurities which have compromised some transport studies.^{266a}

A second kind of resistance mechanism, which has been known for some time, is that of increased production of dihydrofolate reductase which occurs through mutation of some cells by antifolates.^{267,268} Comparison of DHFR from normal and resistant cells reveals no detectable differences, so that it is assumed the DHFR produced by gene amplication in resistant cells is very similar if not identical with normal cells.^{269,270} It has been shown that in murine tumor cells (L5178YR) resistant to MTX that a 300-fold increase in DHFR production occurs. This amounts to DHFR constituting 10% of the total soluble cell protein.²⁷¹ It was observed that the transport of MTX was unchanged in the resistant cells when compared to the parent line. This observation is at odds with the above discussion on the difference in response between L. casei and E. coli cells sensitive and resistant to MTX.

The high rate of production of DHFR in MTX resistant cells is the result of increased levels of DHFR messenger RNA;²⁷² in ract, seven such RNA have been identified.²⁷³ The increase in RNA is brought about by gene amplification.²⁷⁴ Recently, Schimke's laboratory has determined that the 558 bases of the dhfr gene are spread over almost 30 kb of DNA.²⁷⁵

A surprising discovery of MTX-resistant cells is that the amplified genes may be in an unstable as well as stable state. When MTX is removed from the culture, MTX resistance may be slowly lost.^{266,267,276} Both the unstable and the stable resistant cell lines can be derived from the same MTX-sensitive parental cells.²⁷⁷

Although the overproduction of DHFR by resistant cells no doubt plays an important role in the resistance of these cells to antifolates, it certainly cannot be the most important factor. L5178Y tumor cells resistant to MTX require 1000000 times the concentration of MTX for 50% inhibition. The corresponding figure for L. casei cells is $10^{8!183}$

A third mechanism for cell resistance to MTX is that of altered DHFR with lower affinity for the inhibitor.^{250,278-283} Baccanari et al.²⁵¹ have shown that two DHFR isozymes from a resistant strain of E. coli (RT 5000) differ by only one change in residue 28 from arginine to leucine. However, this small change produces isozymes which differ greatly in their binding and kinetic properties. The TMP dissociation constant is 50-fold greater for one form.

Haber et al.²⁸² in a study of seven different inhibitors to two forms of DHFR from 3T6 mouse embryo fiberblasts found that there was a large difference in sensitivity of the two enzymes. The most interesting inhibitor JB-11 was 3000 times more active on one form

more effective against one form of the DHFR. Haber et al. concluded that the dramatic change in ID_{50} for the altered enzyme between two folate analogues which bind tightly to normal dihydrofolate reductase and which differ only in the portions equivalent to the paminobenzoyl moiety of methotrexate suggests that this part of the molecule may be in close contact with the altered enzyme.

It has long been thought that cells could become drug resistant through changes in their membranes. Recently, Burns et al.²⁸⁴ showed that the lipid composition of L1210 murine leukemia cells was dependent upon the fat fed to the host animal. They also showed that MTX penetrated cells with different lipid composition at different rates.

The results of eq 34 and 39 can be interpreted to suggest that a lipophilic barrier has been erected by the resistant cells to prevent the entry of hydrophilic drugs such as MTX or hydrophilic triazines. This barrier could be nothing other than the normal lipid membrane of the cell if an active transport system for MTX, triazines and other such antifolates were turned off in resistant cells. The definitive work on the possible active transport of these compounds needs to be done.

Other than the above equations comparing resistant and sensitive cells, little QSAR work has been done with living systems. A notable exception is the studies of Wooldridge and his colleagues.^{285,286}

Equations 40 and 41 correlate minimum inhibitory concentrations (C) for triazines acting on bacterial cells.

3- and 4-X-VI QSAR from S. aureus cell culture²⁸⁶

 $\log 1/C = 0.60\pi - 1.89 \log (\beta \cdot 10^{\pi} + 1) + 2.84$ (40)

 $n = 66, r = 0.963, s = 0.344, \pi_0 = 5.86$

3-X-VI QSAR from E. coli cell culture²⁷

 $\log 1/C = 0.51\pi - 1.09 \log (\beta \cdot 10^{\pi} + 1) + 2.57$ (41)

 $n = 22, r = 0.960, s = 0.307, \pi_0 = 5.07$

While these QSAR are similar to eq 38 in the coefficients with the π terms, the additional terms in MR_V and I of eq 38 are not necessary in eq 40 and 41 because substituents of the type $CH_2ZC_6H_4Y$ were not included in the congener set used to develop those QSAR.

An especially interesting difference between eq 38 and 40 and 41 is the much higher π_0 one obtains for the latter two organisms. This difference could be associated with the fact that of the three bacteria only L. casei has an active transport system. The lower value of π_0 for the L. casei QSAR could be set by the size of the binding site in the transport macromolecule.

Smith et al.²⁸⁷ have provided some insight in the mechanism of pyrimidine antifolate inhibition of microorganisms. They have used discriminant analysis to classify the ability of folic or folinic acid to reverse the inhibitory effect of 175 pyrimidines acting on S. faecium, L. casei, and P. cerevisiae cells.

Another example of a QSAR from a living system in which DHFR inhibitors have been studied is that of quinazolines in inhibiting P. berghi in mice formulated from the many studies by Elslager and his colleagues.²⁸⁸

Inhibition of *P. berghei* in mice by VII

 $\log 1/C = 0.88\Sigma\pi - 0.16(\Sigma\pi)^2 - 0.68I_6 + 0.37I_8 + 1.53I_9 + 1.18I_{10} + 3.27$ (42)

 $n = 60, r = 0.906, s = 0.427, \pi_0 = 2.82$

The two most important indicator variables are I_9 and I_{10} , which take the value of 1 for substituents of the type 6-XNCH₂Ar (I_9) and 6-CH₂NHAr (I_{10}). Although there was large variation in X, this did not affect activity greatly. These indicator variables are, of course, reminiscent of the *I* terms in eq 2, 3, 8, 10, and 11. Thus, it seems that special potency is conferred by structures of the type CH₂ZC₆H₄ or ZCH₂C₆H₄. I_8 assumes the value of 1 for 5-CH₃ and 5-Cl. Its positive coefficient, along with our knowledge of the active site of DHFR, suggests an especially effective hydrophobic interaction by these groups which have very similar π values (0.56 and 0.71).

There are four examples where alkyl groups have been placed on the two 2,4-diamino groups for which I-6 is given the value of 1. The negative coefficient with this term brings out the deleterious effect of such substitution.

Using the value of log P = 1.00 for the parent 2,4diaminoquinazoline, we calculate a log P_0 of 3.83 for the antimalarial antifolates acting in mice.

The above studies of enzyme inhibitors acting on purified enzymes and on whole cells clearly show that there is a good deal to be learned about the design of drugs from basic research. Needless to say, this type of study is the prelude to studying the same inhibitors in whole animals. Once we understand the SAR at the level of the receptor, in the cell and in the whole animal, we should be able to go about the fine tuning of antifolates to increase their specificity and potency.

Acknowledgments. This research was supported by NIH Grant GM 30362 (C.H.), CNR, MPI, and Regione Campania (C.S. and A.V.). J.M.B. was supported in part by the American Foundation for Pharmaceutical Education. We are much indebted to Professor D. A. Matthews of the University of California in San Diego for the X-ray crystallographic coordinates used to build the graphics models of the DHFR. The computer graphics work was done in Professor Robert Langridge's laboratory at the University of California in San Francisco supported by Grant R.R. 1081 (R.L.).

XII. Glossary

CHEM	Computer program for molecular modeling
DHFR	Dihydrofolate reductase
DDMP	2,4-diamino-5-(3',4'-dichlorophenyl)-6-
	methylpyrimidine
dTMP	Deoxythymidine monophosphate
dUMP	Deoxyuridine monophosphate
$E_{\rm s}$	Taft steric parameter
$\check{E_{\mathrm{t}}}$	Total enzyme concentration
FH ₂	Dihydrofolic acid
FH₄	Tetrahydrofolic acid
I_{i}	Indicator variables

 I_t Amount of E consumed in formation of EI complex

K _{i app}	Apparent inhibition constant
L_{-1210}	Mouse leukemia
L5178Y	Mouse leukemia
MIDAS	Computer program for molecular modeling
MR	Molar refractivity
MSA	Molecular shape analysis
MTD	Minimal topological difference
MTX	Methotrexate
NADPH	Nicotinamide adenine dinucleotide phos-
	phate
P	Octanol/water partition coefficient
QSAR	Quantitative structure-activity relationship
π	Hydrophobic substituent constant
π_0	Optimum hydrophobic substituent constant
SAR	Structure-activity relationship
σ	Hammett electronic substituent constant
\mathbf{TMP}	Trimethoprim
ν	Charton steric parameter

XIII. Appendix

A large number of variations of the 2,4-diaminopyrimidine theme has been synthesized and tested on dihydrofolate reductase from a variety of sources. Table VII lists 81 different sources of DHFR. Tables VIII-XII contain 1709 inhibitors which have been tested against DHFR from the various sources. The inhibitors have been arranged in the tables more or less according to their relationship to folic acid, that is, Table VIII contains the most closely related derivatives containing the pteridine ring with modifications on it as well as on the C9-N10 bridge and the glutamate portion of folic acid. Table IX contains derivatives of quinazoline, while Table X and XI refer to triazines. The largest group of inhibitors is the derivatives of pyrimidine contained in Table XII.

In each table the compounds have been arranged according to increasing substituent complexity. In the case of multiple substitution, arrangement has been in order of increasing substituent complexity in one position, keeping the other positions constant where possible.

Following the formula, data are given in the following sequence, "activity (DHFR source) reference". Activity has been given only when it was reported as I_{50} or K_i and is expressed as log 1/C or log $1/K_1$ (M⁻¹). No distinction has been made in the tables between the two parameters. In instances where activity was not reported so that it could be expressed in these terms, only source and reference are listed.

The reader must bear in mind that the 1/C and $1/K_i$ values have been determined with different degrees of care on enzymes of varying quality under different experimental conditions. In general, the figures are suitable for semiquantitative comparisons only. One can obtain a rough idea of the variation of potency with structure or source.

When a structure contains an amino acid residue, it has usually been abbreviated as follows: Glu = glutamic acid, Glu(R₂) = NHCH(COOR)CH₂CH₂COOR, Asp = aspartic acid, Gly = glycine, Ala = alanine, β -Ala = β -alanine, Phe = phenylalanine, Leu = leucine, Abu = aminobutyric acid, Val = valine, Sarc = sarcosine.

Although we have attempted to include references to all inhibitors which have been tested against the enzyme

TABLE VII. List of DHFR Sources^c and Corresponding Symbols Used in Tables VIII-XII

A	human liver	AP	Plasmodium berghei
В	human erythrocytes	AQ	Plasmodium falciparum (Uganda, Palo Alto, and
C	human placental		Vietnam–Oak knoll strains)
D	human leukemia cells (AML, ALL, etc.)	AR	Nippostro ng ylus brasiliensis
È	human carcinoma KB/MTX cells	\mathbf{AS}	eime r ia tenella
F	WI-L2 human lymphoplast	AT	Crithidia fasciculata
G	Aotus trivirgatus (owl monkey) red cells	AU	S. mansoni
H	bovine liver	AV	Saccharomyces cerevisiae
I	porcine liver	AX	Clostridium perfrigens
J	rabbit liver	AW	Clostridium septicum
K	guinea pig (liver, small intestine, etc.)	AY	C. tetanomorphum
L	Chinese hamster ovary cells	ΑZ	Staphylococcus aureus
Μ	rat liver	BB	Staphylococcus pyogenes
Ν	Walker 256	BC	Streptococcus faecium
0	sarcoma (Yoshida rat, S-180, etc.)	BD	Streptococcus faecalis
Р	Erlich ascites carcinoma cells	BE	Diplococcus pneumoniae (wild type, A and B mutants,
Q	mouse liver		recombinant, etc.)
Ŕ	mouse intestine	BF	Neisseria sicca
s	mouse spleen	BG	Proteus vulgaris
Т	mouse ascites	BH	Proteus mirabilis
U	L 1210 (murine lymphoma, mouse leukemia, etc.)	BI	Citrobacter sp. R plasmids
v	L 5178 Y mouse lymphoma	BJ	Escherichia coli
Х	murine tumor	BK	E. coli R plasmids
W	mouse embryo fibroblasts (cells resistant to	\mathbf{BL}	Klebsiella pneumoniae
	different MTX concentrations)	BM	Pseudomonas aeruginosa
Y	mouse neuroblastoma (sensitive and resitant cells)	BN	Lactobacillus casei
Z	mouse erythrocytes	BO	Plasmodium acnes
AA	chicken liver	BP	M. species 607 (drug-response profile similar
AB	pigeon liver		to that of M. leprae)
AC	turtle liver	BQ	Bacteriodes sp.
AD	frog liver	BR	Bacillus fragilis
AE	carp liver	BS	Caulobacter sp.
AF	tapeworm	вт	Nocardia restricta
AG	wheat grain	\mathbf{BU}	Nocardia brasiliensis
AH	soybean seedlings	\mathbf{BV}	D. immitis
AI	Trypanosoma brucei (culture and rat bloodstream forms)	ВX	L. carinii
AJ	Trypanosoma congolense (culture and rate bloodstream forms)	BW	D. witei
AK	Trypanosoma cruzi (culture and rat bloodstream forms)	ΒY	O. vulvulus
AL	Trypanosoma equiperdum (culture and rat bloodstream forms)	ΒZ	C. oncopelti
AM	Trypanosoma lewisi (culture and rat bloodstream forms)	\mathbf{CC}	Galleria mellonella
AN	Trypanosoma rhodesiense (culture and rat bloodstream forms)	CD	T_2 phage
AO	Trypanosoma vivax (culture and rat bloodstream forms)	\mathbf{CE}	T_4 phage

^a Only the main source is generally reported without specification of bacterial strains, cells resistant to different MTX concentrations, etc. Details can be easily obtained from ref in Tables VII-XII.

TABLE VIII. Inhibition by 2-Aminopteridines

no.	R ₄	R ₈	activity (enzyme) ref
1	Н	NH ₂	5.8 (AA) 4
2	н	C_6H_5 ; (8-oxadihydroptd)	(AB) 224
3	NH_2	H	6.3 (AA) 4; 5.2 (BC) 264; 3.6 (M) 104
			3.9 (Q) 89
4	NH_2	6-H; 7-CH ₃	5.9 (BC) 231
5	NH_2	6-H, 7-CH ₂ OH	5.0 (BC) 34
6	NH_2	6-H; 7-NH ₂	7.0 (M) 68
7	NH_2	6-H; (5-deaza)	3.7 (M) 82; 3.8 (BJ) 82
8	NH_2	6-H; (5-deaza); 5-CH ₃	4.7 (M) 82; 5.6 (BJ) 82; 5.5 (BM) 82
9	NH_2	6-H; (5-deaza); 5-O- C_6H_2 -2'-CH(CH ₃) ₂ -4'-Cl-5'-CH ₃	6.3 (BC) 128
10	NH_2	OH	4.0 (AA) 66
11	NH_2	$6-NH_2$; $7-C_6H_5$	4.5 (K) 45
12	NH_2	CH_3	3.7 (AB) 20; 5.7 (AA) 4; 5.3 (BP) 165
			6.4 (BC) 231; 4.4 (AL) 104; 3.6 (AA) 104
			4.1 (M) 104
13	NH_2	$6-CH_3; 7-CH_3$	6.2 (BC) 231; 5.1 (B) 104; 4.1 (AA) 104
			5.7 (M) 68; 3.8 (M) 104; 3.9 (BR) 220
			6.8 (BQ) 220; 4.5 (AX) 220
14	NH_2	$6-CH_3; 7-NH_2$	5.8 (M) 68
15	NH_2	CH ₃ ; (3-deaza)	4.0 (AB) 129; 6.2 (BC) 231
16	NH_2	CH ₈ ; (1-deaza)	2.0 (AB) 129; (BC) 231
17	NH_2	UH_3 ; (8-deaza)	5.8 (BP) 216
18	\mathbf{NH}_2	6-UH ₃ ; 7-UH ₃ (8-oxadihydroptd)	(AB) 224

TABLE VIII (Continued)

no.	R₄	Re	activity (enzyme) ref
10	NIT	0110	
19	NH_2	CHO	5.1 (AA) 4
20	NH_2	$6 - C_2 H_5; 7 - C_2 H_5$	8.3 (BC) 231
21	NH	6-C.H.: (5-deaza): 5-n-C.H.	6.6 (M) 82: 8.3 (BP) 216
22	NH.	6-C-H-: (5-deeze): 7-C-H-	5.6 (M) 82 6.9 (BJ) 82
22	1411 <u>2</u>		$C C (\mathbf{R}) 02, 0.0 (\mathbf{D}) 02$
23	INH_2	$0 - C_3 \Pi_7 - i; i - C_3 \Pi_7 - i$	0.0 (BQ) 220; 7.8 (BQ) 220
24	NH_2	C_3H_7 ; (5-deaza)	6.0 (BM) 82
25	NH	6-C.H.: (5-deaza): 5-CH.	7.1 (M) 82: 7.8 (BJ) 82: 7.5 (BM) 82
20	NU	6 C H : (5 deere); 7 C H	6 A (M) 89: 7.7 (BI) 89: 6.8 (BM) 89
20		$0^{-}O_{3}\Pi_{7}^{-}, (0^{-}Ueaza), 7^{-}O_{4}\Pi_{9}$	0.4 (101) 02, 1.1 (100) 02, 0.0 (1010) 02
27	NH_2	$n-C_4H_9$	9.0 (BP) 165
28	NH_2	$CH_2CH(CH_3)_2$	9.0 (BP) 215; 6.5 (BM) 82
29	NH	n-C.H.: (5-deaza)	6.3 (M) 144: 6.3 (M) 82: 7.5 (BJ) 63
	2		73 (BJ) 34:63 (BJ) 32:63 (BJ) 88
			(D0) 01, 000 (D0) 02, 0.0 (D0) 000 (D0) (D0)
			0.3 (DJ) 110; 0.3 (DJ) 09; 7.7 (DC) 120
			7.8 (AP) 144; 7.8 (AP) 115; 7.8 (AP) 88
			6.2 (AN) 144; 6.2 (AN) 115; 6.2 (AN) 90
			4.0 (AU) 144: 6.9 (CD) 63: 6.8 (AB) 63
			6.3 (M) $32.6.3$ (BU) $144.4.0$ (BV) 144
			(101) (101) (102) (102) (144) (102) (144) $(144$
			5.5 (BX) 144; 5.1 (BW) 144; 5.7 (BY) 144
			6.1 (BM) 82; 7.1 (BG) 34; 6.3 (BG) 32
			7.7 (AZ) 34: 7.4 (AZ) 32: 6.0 (J) 32
			6.3 (AI) 00: 6.3 (AP) 115: 6.4 (AI) 00
			0.0 (AI) 00, 0.0 (AI) 110, 0.4 (AD) 00
			6.4 (AN) 67; 6.4 (AU) 90; 6.0 (AT) 115
			6.2 (AJ) 90; 6.1 (AM) 90; 6.5 (AK) 90
			6.0 (A) 32; 7.4 (K) 32; 6.3 (M) 88
30	NH.	n-C.H. (5-deeze): 5-CH.	77 (BJ) 32:77 (BJ) 82:75 (BJ) 63
50	1112	11-04119, (0-deaza), 0-0113	(1.1 (D0) 02, 1.1 (D0) 02, 1.0 (D0) 00
			6.6 (A) 32; 8.4 (BJ) 34; 6.6 (IVI) 82
			8.9 (BC) 128; 7.1 (AZ) 32; 7.5 (AZ) 34
			6.6 (M) 32; 8.1 (K) 32; 8.0 (BG) 32
			7.0 (J) 32. 9.0 (BC) 34. 7.1 (AB) 63
			7.7 (D) (0) 02, 0.0 (D() 04, 1.1 (AD) 00
		A (- 1)	7.7 (BIVI) 62; 7.3 (GD) 63
31	NH_2	$n-C_4H_9$; (8-deaza)	7.1 (BP) 216
32	NH_{2}	$6 - i - C_8 H_9$; (5-deaza); 5-CH ₃	9.8 (BP) 216
33	NH.	sec-C.H.: (5-deaza): 5-CH.	9.0 (BJ) 34: 9.0 (BJ) 63: 8.7 (BJ) 82
88	11112	occ office, (o adma), o orig	80 (CD) 63: 7.6 (AB) 63: 8.1 (D) 266
			(CD) 03; 7.0 (AD) 03; 6.1 (D) 200
			7.5 (AZ) 34; 9.0 (BG) 34; 10.5 (BC) 128
			8.1 (BM) 82
34	NH.	6-(2'-furyl): 7-NH	6.6 (K) 45
95	NU	6 (2' thionvil), 7 NH	71 (K) 45
30		(3 - (110 - (11)), 7 - (11))	1.1 (R) 40
36	NH_2	$n - C_5 H_{11}$	8.9 (BP) 165
37	NH_2	$n-C_5H_{11}$; (5-deaza)	6.4 (BM) 82
38	NH	n-C-H11: (5-deaza): 5-CH	9.7 (BP) 216; 7.2 (M) 82; 8.4 (BJ) 82
00			79 (BM) 82
			$0.0 (DD) 10^{\circ}$
39	NH_2	$CH_2CH_2CH(CH_3)_2$	9.0 (BP) 165
40	NH_2	$CH_2CH_2CH(CH_3)_2$; (5-deaza); 5- CH_3	8.1 (BM) 82
41	NH	CH(CH _a)C _a H _a : (5-deaza): 5-CH _a	8.4 (BM) 82
49	NH.	n-C-H-+ (5-deaza)	8.1 (BC) 128: 6.4 (BM) 82
	NU	$G = C = \frac{1}{2} (5 - 4 \cos 2) + 5 C = \frac{1}{2}$	0.5 (PD) 216
43	INH ₂	$6-n-C_6 \Pi_{13}$; (5-deaza); 5-CH ₃	9.0 (DF) 210
44	NH_2	<i>n</i> -C ₆ H ₁₃ ; (5-deaza); 5-CH ₃	7.5 (M) 82; 8.0 (BJ) 82; 7.8 (BM) 82
45	NH_{2}	$6 - (3' - C_6 H_4 N); 7 - N H_2$	5.4 (K) 45
46	NH.	S-CH	(M BN II) 183
40	NUL		(10, 100, 0) 100 (0, 100, 0) 100, $0, 0$ 100, $0, 0$ 100
47	NH_2	$6-C_6H_5; 7-NH_2$	8.0 (M) 136; 8.0 (Q) 136; 7.7 (C) 136
			6.6 (K) 45; 8.0 (U) 44; 4.6 (BR) 220
			7.9 (P) 29; 5.6 (AL) 104; 5.3 (BQ) 220
			4.5 (AX) 220: 4.7 (AW) 220: 5.8 (AA) 104
			58 (M) 104 62 (BO) 220 54 (BV) 220
			E C (II) = 0.2 (DC) = 220, 0.4 (D1) = 220
		• · · · · ·	7.6 (U) 86; 7.1 (BC) 231; 8.0 (M) 68
48	NH_2	C_6H_5 ; (5-deaza)	5.1 (BM) 82
49	NH_{2}	$6-(1',2',5',6'-\text{tetrahydrophenyl}); 7-NH_2$	6.0 (M) 68
50	NH.	6-C.H2'-Br. 7-NH.	60 (AL) 104: 56 (AA) 104: 60 (M) 104
51	NILI	$C C H A D_{2} 7 NH$	(112) 104, 0.0 (111) 104, 0.0 (11) 104
51		$0 - C_6 \pi_4 - 4 - Dr; 7 - N \pi_2$	4.1 (AL) 104; 5.5 (AA) 104; 4.1 (101) 104
52	NH_2	$6-C_6H_4-2'-Cl; 7-NH_2$	6.2 (K) 45; 5.4 (AL) 104; 5.6 (AA) 104
			5.8 (M) 104
53	NH.	6-C ₂ H ₄ -3'-Cl: 7-NH ₂	5.9 (AL) 104; 6.0 (AA) 104; 6.6 (M) 104
54	NH.	6-C-H-4'-CI: 7-NH	38 (AL) 104.40 (AA) 104.47 (M) 104
5	NU	$c \cap U = 0/E \cdot 7 \text{ NU}$	$5.2 (\Lambda I) 104, 5.4 (\Lambda \Lambda) 104, 5.7 (\Lambda I) 104$
55		$0 - C_6 n_4 - 2 - F; 7 - N n_2$	(AL) 104; 0.4 (AA) 104; 0.7 (W) 104
56	IN H ₂	$0 - C_6 H_4 - 4' - F; ' - NH_2$	4.0 (AL) 104; 4.3 (AA) 104; 4.8 (M) 104
57	NH_2	$6-C_{6}H_{4}-2'-I; 7-NH_{2}$	5.7 (AL) 104; 6.5 (AA) 104; 5.9 (M) 104
58	NH_2	$6-C_{6}H_{4}-4'-I; 7-NH_{2}$	3.9 (AL) 104; 4.0 (AA) 104; 4.3 (M) 104
59	NHĨ	6-C.H2'.6'-Cl. 7-NH.	5.7 (AL) 104: 5.5 (AA) 104 6.2 (M) 104
60 60	NH	6-C-H9' 4'-C1 + 7-NH	$A = (\Delta T_{1}) + 104, = 0.0 (\Delta \Delta) + 104, = 0.2 (MA) + 104$
00	NILT	$C \cap H \cap A \cap C$	7.0 (111) 107, 0.2 (111) 107, 0.1 (171) 107 0.0 (AT) 104. 4 7 (AA) 104. 7 7 (NA) 104
01		$0 - 0_6 \Pi_3 - 3', 4 - 0_{12}; - 1 N \Pi_2$	3.3 (AL) 104; 4.7 (AA) 104; 3.7 (W1) 104
62	\mathbf{NH}_2	$b - U_6 H_4 - 4' - NH_2; 7 - NH_2$	4.9 (K) 45
63	NH_2	$6-C_{6}H_{5}; 7-C_{6}H_{5}$	6.4 (AL) 104; 5.0 (AA) 104; 5.4 (M) 104
64	NH	6-CeHs; 7-CeHs: (8-oxadihydroptd)	(AB) 224
65	NH	6-n-C-H1: (5-deaza): 5-CH	7.5 (M) 82: 8.1 (BJ) 82: 7.7 (BM) 82
60	NH.	CH C H	9.0 (BP) 165
00	INFI2		5.U (DF) 100 FF ()() CO
67	\mathbf{NH}_2	0-UH2U6H5; 7-NH2	7.7 (M) 68

	(001111111004)		
n o.	R4	R _e	activity (enzyme) ref
	NIT		(M. DN II) 100
68	NH ₂	SCH ₂ C ₆ H ₅	(M, BN, U) 183
69	NH_2	$SC_6H_4-4'-CH_3$	(M, BN, U) 183
70	\mathbf{NH}_2	$CH_{2}C_{6}H_{3}-3',4'-Cl_{2}$	8.7 (BP) 165
71	NH_2	6-CH ₂ C ₆ H ₅ ; (5-deaza)	6.5 (CD) 63; 8.0 (BJ) 63; 6.3 (AB) 63
			6.6 (M) 82; 6.4 (BJ) 82; 6.3 (BM) 82
			7.7 (BC) 128: (BN) 232
72	NH.	6-CH-C-H-: (5-deaza): 5-CH-	80 (BJ) 103 ; 74 (M) 103 ; 85 (BC) 128
		o orizograf, (o utumu), o orig	8.6 (BM) 82
73	NH	GCHCH. (5 deere): 5 n CH	7.0 (M) 90. 50 (DI) 90
74	NII2	C C H C H O H O C h (5 doors) 5 C H C	7.2 (MI) 02; 0.9 (DJ) 02
74		$0-0H_2O_6H_4-2-0I; (0-0eaza); 0-0H_3$	7.0 (D) 200
70		$6-OH_2O_6H_4-3'-OI;$ (5-deaza); 5-OH ₃	9.6 (BP) 216
76	NH ₂	$6-CH_2C_6H_4-4'-Cl;$ (5-deaza); 5-CH ₃	9.7 (BP) 216
TT	NH_2	$6 - C_6 H_4 - 2' - C H_3; 7 - N H_2$	6.7 (K) 45; 5.4 (AL) 104; 5.5 (AA) 104
			5.9 (M) 104
78	NH_2	$6-C_{6}H_{4}-3'-CH_{3}; 7-NH_{2}$	5.1 (AL) 104; 5.5 (AA) 104; 5.7 (M) 104
79	NH_2	$6-C_6H_4-4'-CH_3; 7-NH_2$	4.8 (M) 104; 4.0 (AL) 104; 3.9 (AA) 104
80	NH_2	$6-CH_2C_8H_4-4'-OCH_3;$ (5-deaza); 5-CH ₃	7.3 (D) 266
81	NH_{2}	CH ₀ NHNHC ₀ H ₄ -4′-CO ₀ H	3.9 (Q) 89
82	NH	$CH = NNHC_{0}H_{-4'}-CO_{0}H$	3.9 (Q) 89
83	NH.	CH.CH.C.H.	54 (AB) 20
84	NH	CH CH C H · 7 NH	7.0 (M) c9
95	NIL	OU OU O U (F - 1)	(1,0) (IVI) 00
00		$C \Pi_2 C \Pi_2 C_6 \Pi_5$; (3-deaza)	6.4 (BJ) 82; 5.8 (BM) 82
00		$6 - C_6 H_3 - 4', 5' - (CH_3)_2; 7 - NH_2$	4.0 (AL) 104; 4.5 (AA) 104; 4.1 (M) 104
87	NH_2	$CH_2NHC_6H_4-4'-CO_2H$; (1-deaza)	6.2 (BC) 231; 4.9 (AB) 129
88	NH_2	$CH_2NHC_6H_4-4'-CO_2H$; (3-deaza)	5.4 (AB) 129
89	NH_2	$CH_2N(CH_3)C_6H_5$	5.4 (AB) 129
9 0	NH_2	$CH_2N(CH_3)C_6H_5$; (1-deaza)	4.2 (AB) 129
91	NH_2	$CH_2N(CH_3)C_8H_5$; (3-deaza)	4.2 (AB) 129
92	NH_{2}	C_0H_{10} ; (5-deaza)	5.2 (BM) 82
9 3	NH	CHoN(CHo)CoH-4'-COoH	6.5 (BN) 172: 5.5 (AA) 172: 6.1 (AB) 129
94	NH.	$CH_{2}N(CH_{4})C_{2}H_{-4'}CO_{2}H_{-8}N \rightarrow 0$	$(BN \Delta \Delta)$ 179
95	NH.	$CH_{SC} H_{-4'-CO} CH$	(DN, AR) 172 5.5 (DN) 100
06		$C \mathbf{u}_{2} O \mathcal{U}_{11} + \mathcal{U}_{2} O \mathcal{U}_{13}$	() (DN I) 100
90		$SO_{g}\Pi_{4}-2 - O\Pi(O\Pi_{3})_{2}$	(M, BN, U) 183
97		$5U_6\Pi_4$ -4 $-U_3\Pi_7$	(M, BN, U) 183
98	NH ₂	$6-CH_2C_6H_3-2', 5'-(OCH_3)_2; (5-deaza); 5-CH_3$	8.3 (D) 241
99	NH_2	$CH_2C_6H_2-3',4',5'-(OCH_3)_3$	8.3 (BP) 165
100	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO_2CH_3$	7.5 (BC) 231
101	NH_2	$CH_2SC_6H_4$ -4'- $CO_2C_2H_5$	5.5 (BN) 190
102	NH_2	$CH_2NHC_6H_4$ -4'- $CO_2C_2H_5$; (8-deaza)	9.1 (BP) 216
103	NH_2	CH ₂ NHC ₆ H ₄ -4'-CO-Gly	6.6 (M) 262
104	NH ₂	6-C,H ₃ -2',3'-(CH=CHCH=CH); 7-NH ₃	5.9 (AL) 104: 5.1 (AA) 104: 6.0 (M) 104
105	NH.	CH ₂ CH ₂ C ₂ H ₂ -3'.4'.5'-(OCH ₂)	7.7 (BP) 165
106	NH.	$CH_0N(CH_0)C_0H_0-4'-CO-Glv$	7.0 (M) 261
107	NH.	$6 H' 7 CH_N(CH_N)C_H - 4' - CO_G N$	5 8 (M) 261
108	NH.	$CH_N(CH_C)CH_M/COCCH$	6.0 (DN) 170.5 0 (AA) 170
100	NU	CH N(CH) C H A CO C H (9 doors) 9 this	(\mathbf{M}) 0.2 (BN) 172; 0.2 (AA) 172
110		$CH_2N(CH_3)C_6H_4^{-4} - CO_2C_2H_5; (6-ueaza); 6-uno$	
110		$CH_2N(CH_3)C_6H_4 + CO_2C_2H_5; 8-N \rightarrow O$	(BN, AA) 172
111	NH ₂	$CH_2N(CH_3)C_6H_4-4'-CO-(D,L)-Ala$	7.9 (M) 261
112	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-\beta-Ala$	7.5 (M) 261
113	NH_2	$CH_2N(CH_8)C_6H_4-4'-CO-Sarc$	6.3 (M) 261
114	NH_2	CH ₂ NHC ₆ H ₄ -4'-CONH(CH ₂) ₈ CO ₂ H	6.4 (AB) 226
115	NH_{2}	CH ₂ N(CH ₂)(CH ₂) ₄ -CO-Glu	4.7 (AB) 226
116	NH	CH ₀ NH-5'-C ₄ H ₀ N-2'-CO-Glu	7.5 (AB) 226
117	NH.	CH_NHC_H_4'-SO_Ghu	60 (AB) 226
118	NH.	$6 - C_2 H = 2^{\prime} - C_2 H + 7 - N H_2$	6.0 (AL) 104: 4.0 (AA) 104: 4.8 (M) 104
110	NU	$6 - C \mathbf{H} - A' - C \mathbf{H} + 7 - \mathbf{N} \mathbf{H}$	9.7 (AL) 104, 41 (AA) 104, 9.6 (M) 104
190	NH	CU NUC U A CO Chy	3.7 (AL) 104; 4.1 (AA) 104; 3.0 (101) 104
120	nn_2	$CH_2NHC_6H_4-4-CO-GIU$	9.0 (BR) 220; 8.5 (BQ) 220; 8.3 (AX) 220
			9.0 (AW) 220; 8.3 (AY) 220; 8.0 (BO) 220
			8.3 (M) 262; 7.4 (BC) 231; 7.6 (AB) 226
			9.7 (BP) 165; 11.5 (U) 233; 11.3 (M) 136
			11.2 (Q) 136; 11.1 (C) 136; 10.0 (BE) 147
			9.0 (BJ) 212; 9.1 (AB) 20; 9.0 (AB) 22
			6.2 (AH) 195; 7.6 (BN) 265; (CC) 117
			(BK, BI) 198; (M) 1; (AG) 85; (BE) 177
121	NH,	CH2NHC6H4-4'-CO-Glu: (7-aza)	4.6 (AB) 179
122	NH	CH.NHC.H4'-CO-Glu: 2-N(CH.)	5.6 (P) 16
123	NH.	CHoNHCeHe-4'-CHo-Glu	6.3 (BN) 265: 7.6 (II) 265
124	NH	CH_NHC_H_4'-CHCO-Asp	6.7 (M) 262; 6.0 (AB) 226
125	NH.	$CH_0N(CH_0)C_0H_0-4'-CO_0Aan$	(Q II) 33
126	NH.	$CH_N(CH_1)C_1H_4/NHCO_Am$	(e , 0) 00 7 9 (B N) 997
197	NH ²	$6_{\rm H}$, 7_CH_N(CH_)CH_A/CO_App	(M) 961
199	NH.	$CH.N(CH_{1})CH_{-4}/CO_{-}(D_{1})Ahm$	(171) 201 9 1 (M) 901
100		$C\mathbf{U} \mathbf{N}(C\mathbf{U}) \subset \mathbf{U}_{\mathcal{A}} \subset \mathbf{O}_{\mathcal{A}} \wedge \mathbf{h}_{\mathcal{A}}$	0.1 (101) 201 0.2 (101) 201
120		$OH_{2} H (OH_{3}) O_{6} H_{4}^{-4} = OU^{-} \gamma - A D U$	0.0 (IVI) 201 7.4 (M) 140
100		$OII_2II \Pi O_6 \Pi_4 - 4 - OO - OL O; - O \Pi_8$	(.4 (1)) 140
101		$OH_{1} H H O_{0} H H O_{0} OH_{1}$	0.1 (Q) 89
132	INH ₂	$On = NNHU_{6}H_{4} - 4' - OO - Glu$	4.3 (Q) 89
133	INH_2	$\cup \mathbf{n}_2 \cup - \cup_6 \mathbf{n}_4 - 4' - \cup \cup - \operatorname{Glu}$	8.3 (BN) 192; 6.3 (AB) 226; 6.6 (U) 233

TABLE VIII (Continued)

no.	R4	R ₈	activity (enzyme) ref
134	NH ₂	CH ₂ S-C _e H ₄ -4'-CO-Glu	7.8 (BN) 190; 8.3 (BN) 180
135	NH_2	NHCH2C6H4-4'-CO-Glu	7.8 (BN) 173
136	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Glu;$ (MTX)	9.2 (AU) 144; 8.8 (BU); 9.2 (AP) 144
	-		9.0 (AN) 144; 8.9 (BV) 144; 9.0 (BX) 144
			7.5 (BW) 144; 7.5 (BY) 144; 9.1 (D) 144
			8.8 (AR) 115; 9.0 (BJ) 115; 9.0 (AN) 115
			8.1 (AT) 115; 10.1 (AP) 115; 8.6 (AA) 213
			9.5 (V) 213; 9.2 (O) 213; 10.2 (U) 213
			11.1 (F) 213; 8.6 (BE) 213; 9.4 (BJ) 213
			(M) 213; 9.0 (AZ) 32; 8.3 (BG) 32
			7.0 (A) 32; 8.0 (K) 32; 7.0 (M) 32
			7.2 (J) 32; 8.2 (BJ) 32; 9.1 (AI) 90
			9.0 (AN) 90; 9.7 (AL) 90; 9.1 (AO) 90
			9.1 (AJ) 90; 8.7 (AM) 90; 8.8 (AK) 90
			9.1 (AP) 88; 8.7 (M) 88; 9.7 (D) 88
			9.0 (BJ) 88; 7.7 (AB) 112; 9.5 (BD) 112
			9.0 (U) 163; 9.3 (AK) 163; 8.8 (AS) 181 0.6 (AA) 191, 11.0 (W) 99, 0.6 (I) 199
			9.6 (AA) 161; 11.0 (M) 36; 9.6 (1) 182 9.1 (D) 966, 0.9 (D) 14, 11.9 (C) 196
			0.1 (D) 200; 9.2 (P) 14; 11.2 (C) 130 0.6 (DI) 919, 95 (DN) 997, 100 (DF) 147
			70 (AB) 100, 11 A (II) 227; 10.0 (BE) 147 70 (AB) 100, 11 A (II) 229, 6 C (AH) 105
			7.5 (AD) 125, 11.4 (U) 255, 0.6 (AH) 155 7.7 (II) 99, 7.6 (M) 140, 0.0 (II) 159
			85 (II) 167.75 (AA) 179.95 (BP) 165
			7.5 (Q) 89.8.8 (U) 175.8.5 (BN) 168
			7.6 (BC) 231: 9.0 (D) 214: 8.2 (BZ) 215
			8.2 (H) 126: 8.3 (M) 261: 7.6 (AB) 226
			8.2 (II) 252; 7.7 (BN) 252; 7.5 (BN) 222
			10.0 (O) 143: 8.0 (BJ) 218: 8.5 (BN) 205
			8.7 (AL) 67: (Y. BN) 164: (O. F) 196
			(BC) 111; (BN) 238; (M) 1
			(BE) 177; (BC) 250; (L) 239
			(BJ) 142; (BJ) 151; (CE) 137
			(W) 249; (B) 176; (BK, BI) 198
137	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-(D)-Glu$	7.7 (M) 264; 8.5 (U) 167; 8.5 (D) 167
138	NH_2	CH ₂ N(CH ₃)C ₆ H ₄ -4'-NH-CO-Glu	7.1 (BN) 227
139	NH_2	6-H; 7-CH ₂ N(CH ₃)C ₆ H ₄ -4'-CO-Glu	5.2 (M) 261
140	NH_2	6-H; 7-CH ₂ N(CH ₃)C ₆ H ₄ -4'-CO-(D)-Glu	6.4 (M) 261
141	NH_2	$CH_2N(CH_3)C_6H_4-4'-CONHCH(CONH_2)(CH_2)_2CO_2H$	5.8 (AB) 217
142	NH_2	$CH_2N(CH_3)C_6H_5-4'-CONHCH(CO_2H)(CH_2)_2CONH_2$	7.5 (AB) 217; 11.6 (U) 219
143	NH_2	$CH_2N(CH_3)C_6H_4-4'-CONHCH(CO_2H)(CH_2)_2CONHOH$	8.3 (U) 252; 7.5 (BN) 252
144	NH_2	$CH_2N(CH_3)C_6H_4-4'-CONHCH(CO_2H)(CH_2)_2CONHNH_2$	(U, BN) 256
145	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Glu(NHNH_2)_2$	7.7 (U) 252; 6.4 (BN) 252
146	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Glu; 7-OH$	5.4 (M) 140; 8.2 (U) 131
147	NH_2	$CH_2N(CH_3)C_8H_4-4'-CO-Glu; '7-CH_3$	7.6 (M) 140; 5.2 (U) 175; 5.0 (BN) 175
148	NH ₂	$CH_2N(CH_3)C_6H_2-2'-BF-0'-CI-4'-CU-GIU$	10.0 (U) 10 11 5 (M) 29. (U) 9
149	NH ₂	$CH_2N(CH_3)U_6H_2-3', 0'-Cl_2-4'-CO-Glu$	11.0 (M) 30; (U) 2 11.6 (C) 196, 11.7 (C) 196, 11.8 (M) 196
150	NH_2	$CH_2N(CH_3)C_6H_2-2, 0 - CI_2-4 - CO-GIU$	(U) 130; 11.7 (U) 130; 11.8 (W) 130 0.0 (U) 175; 9.5 (PN) 175
151	NL	CH N(CH)C H 9' 6'-Cl - 4' CO Chu 7-CH	5.5(0) 175, 50 (BN) 175
101	14112		
152	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Glu;$ (7,8-dihydro)	8.0 (BC) 231; 7.7 (BN) 205; 7.5 (U) 83
153	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Glu; 8-CH_3; (7,8-dihydro)$	6.8 (BN) 205
154	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Glu; 8-C_2H_5; (7,8-dlhydro)$	6.0 (BN) 205
155	NH ₂	$CH_2N(CH_3)U_6H_4$ -4'-CU-Glu; 8-n- U_4H_9 ; (7,8-dinydro)	6.4 (BN) 205
150		$On_2 (On_3) O_6 n_4 - 4 - OO - OIU; O- n - O_6 n_{13}; (1, 5 - 0 Inyaro) OH - N(OH -) O - H - A' - OO - OIU; O - OH OH (OH OH O$	6.1 (BN) 205
158	NH.	$CH_N(CH_CH_A'_CO_Gh) \approx 8 CH_CH_A' + (7 - CO_Gh) \approx 10^{-11}$	61 (BN) 205
150	NH ₂	$CH_2((CH_3)C_0H_4-4'-CO-Glu; 8-CH_2C_0H_5; (7,0-diniydro))$	5.4 (BN) 205
160	NH ₂	$CH_{a}N(CH_{a})C_{a}H_{a}-4'-CO-Ghu; 8-CH_{a}-1'-C_{10}H_{a}; (7.8-dihydro)$	5.3 (BN) 205
161	NH	$CH_0N(CH_0)C_0H_4-4'-CO-Glu; (5.6.7.8-tetrahydro)$	6.7 (BN) 205: 7.0 (U) 83
162	NH.	$CH_{\circ}N(CH_{\circ})C_{\circ}H_{4}-4'-CO-Glu;$ 8-CH _o : (5.6.7.8-tetrahvdro)	5.6 (BN) 205
163	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Glu;$ (1-deaza)	5.9 (BC) 231; 6.5 (U) 219; 5.3 (AB) 129
164	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Glu;$ (3-deaza)	7.2 (AB) 226; 7.5 (U) 233; 7.2 (AB) 129
165	NH_2	$CH_2N(CH_3)C_6H_4$ -4'-CO-Glu; (3-deaza; 3-Br)	5.6 (AB) 226
166	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Glu;$ (3-deaza; 3-NO ₂)	4.4 (AB) 226
167	NH ₂	$CH_2N(CH_3)C_6H_4$ -4'-CO-glu; (8-deaza); 8-thio	(M) 261
168	NH ₂	$UH_2N(UH_3)U_6H_4-4'-UU-(D,L)-Val$	7.9 (IVI) 261 6.9 (IVI) 261
169	NH2	CHN(CH3)CBH3-2-UCH3-4-CU-ASP	0.2 (IVI) 201 6.2 (IVI) 261
170		∪R2™(∪R3)∪6R3-∂ -U∪R3-4 -UU-ASP CH-NHC-H4/-CO-Glv-A on	6.0 (M) 261
171	NH	$CH_0NHC_0H_0-2'-0CH_0-4'-CO_0Ch_0$	6.9 (M) 261
173	NH-	$CH_{\circ}NHC_{\circ}H_{\circ}-3'-OCH_{\circ}-4'-CO-Ghu$	8.7 (M) 261
174	NH-	CH ₀ N(CH ₀)C ₂ H ₄ -4'-CONHCH(CH ₀ CO ₀ H)	8.0 (U) 167; 8.1 (D) 167
175	NH	CH ₂ N(CHO)Č ₆ H ₄ -4'-CO-Glu	5.7 (AH) 195; 7.7 (CE) 148: (BN) 206
176	NH,	CH2NHC6H4-4'-CH2-CO-Glu	7.1 (M) 262; 6.4 (AB) 226
177	NH_2	CH ₂ CH ₂ Č ₆ H ₄ -4'-CO-Glu	8.3 (BN) 168; 11.5 (U) 233
178	NH_2	CH ₂ CH ₂ C ₆ H ₄ -4'-CO-Glu; (7,8-dihydro)	8.3 (BN) 168
179	NH_2	$CH_2CH_2C_6H_4$ -4'-CO-Glu; (5,6,7,8-tetrahydro)	7.0 (BN) 168

TABLE	VIII	(Cont	inued)

n o.	R4	R ₆	activity (enzyme) ref
180	NH,	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CONHCH(CH ₃)(CH ₂) ₂ CH ₃	6.5 (BN) 172; 5.0 (AA) 172
181	NH_2	CH2N(CH3)C6H4-4'-CONHCH(CH2OH)(CH2)2CH2OH	6.0 (BN) 172; 4.7 (AA) 172
182	NH_2	$CH_2N(CH_3)C_6H_4-4'-CONHCH(CH_3)(CH_2)_2CH_3; 8-N \rightarrow O$	(BN, AA) 172
183	NH_2	$CH_2N(CH_8)C_6H_4-4'-CONHCH(CH_2OH)(CH_2)_2CH_2OH; 8-N \rightarrow O$	(BN, AA) 172
184	NH_2	$CH_2NHCH_2C_6H_4$ -4'-CO-Glu	7.0 (Q) 141
185	$\rm NH_2$	$CH_2CH_2OC_6H_4$ -4'-CO-Glu	6.7 (BN) 254
186	NH_2	$CH_2CH_2SC_8H_4-4'-CO-Glu$	6.4 (BN) 240
187		$OH_2N(OH_3)O_8H_3^{-2}$ -OOH_3^2-OO-GIU	7.8 (101) 219 6.9 (101) 910
190	NH	$CH_2N(CH_3)C_6H_3^{-3} - OCH_3^{-4} - OC-GIU$	8.6 (M) 261
190	NH ₂	$CH_2N(CH_3)C_6H_4^4 - CO-Lea$	8.3 (U) 167: 8.5 (D) 167
191	NH ₂	$CH_{0}N(CH_{0})C_{0}H_{2}-4'-CO-Glv-Asp$	7.3 (M) 261
192	NH ₂	$CH_2N(C_2H_5)C_6H_4-4'-CO-Glu$	8.3 (M) 267; 7.3 (AB) 226; 11.4 (U) 233
102	NU	CH N(CH)CH A' NCOCH((CH) CO Ma)NHCO	5 A (BN) 227
193	NH.	$CH_2N(C_2H_2)C_2H_2^2 + 10000H((OH_2)_200_2MC)(MOO)$	7 3 (AB) 226
195	NH ₂	$CH_{2}N(CH_{2})CH_{3}C_{4}H_{4}-4'-CO-Glu$	6.1 (AB) 226
196	NH,	CH ₂ NHC ₆ H ₄ -4'-(CH ₂) ₂ CO-Glu	6.3 (AB) 226; 6.7 (M) 262
197	NH_2	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CONHCH(CO ₂ H)(CH ₂) ₂ CONHCH ₃	7.5 (AB) 217; 11.6 (U) 219
198	NH_2	CH ₂ NHC ₆ H ₄ -4'-CONHCH(CO ₂ H)(CH ₂) ₄ CO ₂ H	7.9 (AB) 226; 8.6 (M) 262
199	NH_2	$CH_2N(C_3H_7)C_6H_4-4'-CO-Glu$	11.5 (U) 233
200	$\rm NH_2$	$CH_2N(CH_3)C_6H_4-4'-CONHCH(CO_2H)(CH_2)_4NH_2$	6.9 (BN) 264; 8.0 (U) 264; (F, AA) 268
201	NH_2	$CH_2N(CH_3)C_6H_4$ -4'-CU-Gly-Glu	6.9 (M) 261
202		$CH_2N(CH_3)C_6\Pi_4^{-4}$ -CONHCH(CO-GIY)(CH_2)2CO2H	6.7 (U) 219 11 5 (U) 219
203	NH_2	$CH_2N(CH_3)C_6H_4^{-4}$ -CONHCH(CO_2H)(CH_2) ₂ -CO-Oly CH-N(CH_3)C_6H_4^{-4}-CONHCH(CO_2H)(CH_3)-CON(CH_3)-	$7 \mathbf{A} (\mathbf{AB}) 217 \cdot 11 \mathbf{A} (\mathbf{II}) 219$
204	NH ₂	$CH_{2}N(CH_{3})C_{6}H_{4}-4'-CO-Glu (CH_{3})_{2}$	8.4 (II) 153: 6.4 (II) 163: 7.0 (AK) 163
206	NH ₂	$CH_{\circ}N(CH_{\circ})C_{\circ}H_{\circ}-4'-NHCO-Glu (CH_{\circ})_{\circ}$	6.5 (BN) 227
207	NH ₂	$CH_2N(SO_2C_8H_4-4'-CH_3)CH_2C_8H_4-4''-CO_2H$	(BN) 208
208	NH_2	$CH_2^{\circ}N(CH_3)C_6H_4-4'-CO-(D,L)-Ala-Glu$	7.6 (M) 261
209	NH_2	CH2N(CH3)C6H4-4'-CO-Sarc-Glu	6.6 (M) 261
210	NH_2	$CH_2N(C_4H_9)C_6H_4-4'-CO-Glu$	4.8 (AB) 226
211	NH_2	$CH_2N(CH_3)C_6H_4$ -4'-CONHCH(CO_2H)(CH_2) ₄ NHCOCH ₂ I	7.5 (BN) 264; 8.0 (U) 264
212	NH ₂	$UH_2S \cdot U_6H_4 \cdot 4' \cdot UU \cdot GIU \cdot (U_2H_5)_2$	7.8 (BN) 190
213		$CH_2NHC_6H_4$ -4-CONHCH(CO ₂ H)(CH ₂) ₂ -CO-Giu	11.4 (0) 219 8.9 (M) 961
214	NH ₂	$CH_2N(CH_3)C_6H_44$ -CO-Flie CH_N(CH_3)C_6H_44 -CO-Glu-(C_H_3)	6.2 (BN) 172: 5.3 (AA) 172: 6.9 (U) 163
210	11112	011211(0113)08114 4 000 010 (02116)2	6.9 (U) 153
216	NH_2	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CONHCOCH(CO ₂ C ₂ H ₅)(CH ₂) ₂ CO ₂ H	7.8 (J) 207
217	NH_2	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CONHCOCH(CO ₂ H)(CH ₂) ₂ CO ₂ C ₂ H ₅	7.8 (J) 207
218	NH_2	$CH_2N(CH_3)C_6H_4-4'-CONHCH(CO_2H)(CH_2)_2CO_2-t-C_4H_9$	(U, BN) 256
219	NH_2	$CH_2N(CH_3)C_6H_4-4'-CONHCH(CO_2H)(CH_2)_2CONH-n-C_4H_9$	(U, BN) 256
220	NH_2	$CH_2N(CH_3)C_6H_4-4'-CONHCH(CO_2-t-C_4H_9)(CH_2)_2CONHNH_2$	(U, BN) 256
221		$CH_2N(CH_3)C_8H_4-4$ -CONHCH $(CU_2-t-C_4H_9)(CH_2)_2CU_2H$	(U, BN) 206 A = 7 (BN) 179; $A = 1$ (AA) 179
222	NH	$CH_{2}N(CH_{2})C_{6}H_{4}^{-4} - CO-GIU - (C_{2}H_{5})_{2}; \delta - N \rightarrow O$	4.7 (DN) 172; 4.1 (AA) 172 7.9 (AB) 917; 6.7 (II) 919
223	NH.	$CH_2N(CH_3)C_8H_24'-CONHCH(CO_AB)(CH_2)_2CO_2H$ CH_N(CH_3)C_AH_24'-CONHCH(CO_AB)(CH_3)_2CO_Asp	7.9 (AB) 217; 11.5 (II) 219
225	NH ₂	$CH_0N(C_eH_e)C_eH_e-4'-CO-Glu$	7.2 (M) 262: 6.6 (AB) 226
226	NH ₂	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CONHCH(CO ₂ H)(CH ₂) ₂ CONH(CH ₂) ₄ CH ₃	7.5 (AB) 217; 11.4 (U) 219
227	NH_2	CH ₂ N(CH ₂)C ₈ H ₄ -4'-CONHCH(CO ₂ Me)(CH ₂) ₂ CO ₂ -t-C ₄ H ₂	(U, BN) 256
228	NH_2	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CONHCH(CO ₂ -t-C ₄ H ₉)(CH ₂) ₂ CO ₂ Me	(U, BN) 256
229	NH_2	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CONHCH(CO-Glu)(CH ₂) ₂ CO ₂ H	7.2 (AB) 217; 6.8 (U) 219
230	NH_2	$CH_2N(CH_3)C_6H_4-4'-CONHCH(CO_2H)(CH_2)_2-CO-Glu$	(U) 176; 7.9 (AB) 217; 11.4 (U) 219
231	NH_2	$CH_2N(CH_3)C_6H_4-4'-CONH-adamantyl$	6.7 (BN) 172; 6.7 (AA) 172
232		$CH_2N(CH_3)C_8H_4-4'-CONH-adamantyl; 8-N \rightarrow O$	4.5 (BN) 172; (AA) 172 7.4 (M) 961
233	NH ₂	$CH_2N(CH_3)C_8H_4-4 - CO-Leu-GluCH_N(CH_C_H_)C_H_4/(CO_C)_1$	7.4 (IVI) 201 5.8 (IVI) 269-5.5 (II) 233
235	NH.	$CH_2N(CH_2CH_1C_2H_2)C_2H_24'=CO-Ghu$	5 7 (II) 233
236	NH ₂	CH ₂ N(CH ₂)C ₂ H ₂ -4'-CONHCH(CO ₂ H)(CH ₂) ₂ CONHCH ₂ C ₂ H ₅	11.4 (U) 219: (U, BN) 256
237	NH ₂	$CH_2N(SO_2C_8H_4-4'-CH_3)CH_2C_8H_4-4''-CO-Glu$	5.2 (BN) 208
238	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Phe-Asp$	6.7 (M) 261
239	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Glu-(n-C_4H_9)_2$	6.9 (J) 207; 8.3 (U) 163
240	NH_2	$CH_2N(CH_3)C_6H_4-4'-CO-Phe-Glu$	7.2 (M) 261
241	NH_2	$CH_2N(CH_3)C_6H_4-4'-CONHCH(CO_2H)(CH_2)_4NH-Cbz$	7.3 (BN) 264; 8.0 (U) 264
242		$\bigcup_{n_2} \mathbb{N}(\mathbb{CH}_3) \bigcup_{\theta} \mathbb{H}_4^{+4'} - \mathbb{CU} - \mathbb{CH}(\mathbb{C}_5 \mathbb{H}_{11})_2$	8.2 (U) 153; 8.0 (AK) 163 (II DN) 956
243	NH	$CH_N(CH_2)C_8H_44^{-}CO_1CH_1CH_2CH_2CH_2CUNH-n-C_4H_9$	(U, DIN) 200 7 9 (II) 959: 6 6 (BN) 959
244	NH ₂	$CH_{0}N(CH_{0})C_{0}H_{4}-4'-CO-Glu-(n-C_{0}H_{0})_{0}$	8.0 (U) 153
246	NH ₂	$CH_2N(CH_3)C_8H_4-4'-CO-Glu-(NHC_8H_6)_9$	6.0 (BN) 252; 7.1 (U) 252
247	$\mathbf{NH}_{2}^{\mathbf{\tilde{2}}}$	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CONHCH(CO ₂ H)(CH ₂) ₄ NHSO ₂ -naphthyl-	(F, AA, BN) 268
	- 	5"-N(Me) ₂	
248	\overline{NH}_2	$CH_2N(CH_3)C_6H_4-4'-CO-Glu-(NHCH_2C_6H_4-4''-Cl)_2$	6.7 (U) 252; 5.6 (BN) 252
249		$UH_2N(UH_3)U_6H_4-4'-UU-Glu-(n-U_8H_{17})_2$	7.9 (U) 153; 7.7 (AK) 163
200 251	NH2	CH ₂ N(CH ₂)C ₆ H ₄ -4-CO-Glu-[N(CH ₃)CH ₂ C ₆ H ₅] ₂ CH ₂ N(CH ₂)C ₅ H ₄ -4'-CO-Glu-(NHCH(CH ₂)C ₁ H ₂] ₂	1.0 (U) 202; 0.4 (BN) 202 8.0 (II) 252: 6.5 (RN) 259
252	NH ²	$CH_0N(CH_0)C_8H_4-4'-CO-Glu-(NHCH_0C_8H_4-4''-OCH_0)_0$	6.9 (U) 252; 6.4 (BN) 252
253	\mathbf{NH}_{2}^{2}	$CH_2N(CH_3)C_6H_4-4'-CO-Glu-(NH-adamantyl)_2$	5.5 (U) 252; 5.2 (BN) 252
	-		

TA	BLE	VIII	(Conti	nued)
-				

no.	R_4	R_6	activity (enzyme) ref
254	NH	$CH N(CH) CH A'_{CO} G_{11} [N(CH CH)]$	63 (II) 252: 61 (BN) 252
201			0.0 (0) 202, 0.1 (DN) 202
255	NH_2	$0,7-(CH_2)_4$	3.7 (IVI) 204; 3.7 (U) 204; 4.2 (BIN) 204
			4.6 (AK) 204
256	NH.	67-(CH ₂),	4.5 (M) 204: 5.0 (II) 204: 4.7 (AK) 204
200	11112	0,1 (012)5	(DN) 004
			(D1N) 204
257	NH_2	$6,7-(CH_2)_6$	5.0 (M) 204; 5.2 (U) 204; 4.7 (AK) 204
	-		(BN) 204
959	NL	67 (CH)	6.9 (M) 204, 6.5 (U) 204, 4.4 (DN) 204
200		0,1-(0112)8	0.0 (11) 204, 0.0 (0) 204, 4.4 (D11) 204
			6.0 (AK) 204
259	NH_{2}	$6.7 - (CH_2)_9$	6.6 (M) 204; 6.4 (U) 204; 4.8 (BN) 204
	-		7.0 (AK) 204
960	NILI	67 (CH)	6.7 (M) 204, 6.7 (U) 204 A 6 (DN) 204
200	nn_2	$0, 1 - (0 - 12)_{10}$	0.7 (101) 204; 0.7 (0) 204 4.0 (D10) 204
			6.8 (AK) 204
261	NH_{2}	$6.7 - (CH_2)_{11}$	6.4 (M) 204; 6.5 (U) 204; 4.5 (BN) 204
	-		6.8 (AK) 204
060	NU	6.7 (CH) + 1/9 / honzo	(M BN AK II) 189
202		$0,7-(OH_2)_5, 1,2$ -benzo	(101, D11, AR, U) 100 5.5 (10) 004 4.0 (11) 004 4.5 (DN) 004
263	NH_2	$6,7-(CH_2)_{13}$	5.5 (M) 204; 4.8 (U) 204; 4.5 (BN) 204
			4.5 (AK) 204
264	NH.	5.6-CH_CH_CH_CH_: (5-deaza)	7.9 (BC) 128: 7.8 (M) 82: (BN) 174
265	NU	5 6 CH CH CH CH : (5 doore): 7 CH	(BN) 174
200		$5,5-CH_2CH_2CH_2CH_2, (5-ueaza), (-CH_3)$	(DN) 174 (DN) 174
266	NH_2	$5,6-CH_2CH_2CH_2CH_2; (5-deaza); 7-(C_2H_5)$	(BN) 174
267	NH_2	$5,6-CH_2CH_2CH_2CH_2$; (5-deaza); 7-C ₆ H ₅	5.0 (BN) 174
268	NH	5.6-CH ₀ CH ₀ CH ₀ CH ₀ : (5-deaza): 7-C ₀ H ₀ -4'-Cl	6.0 (BN) 174
200	NILI	5 C C U C U C U C U (5 doore), 7 C U C U	70 (BN) 974
209		$0,0^{-0}\Pi_{2} \cup \Pi_{2} \cup \Pi_{2}, (0^{-0}\Pi_{2} u), (0^{-0}\Pi_{2} \cup 0)$	7.0 (DI) 274
270	$N(CH_3)_2$	CH ₂ NHC ₆ H ₄ -4'-CO-Glu	5.2 (P) 16
271	$NHNH_2$	$CH_2N(CH_3)C_6H_4-4'-CO-Glu$	(AB) 188
272	он -	OH	-1.5 (AA) 4
079	011	CU	$0.8(\Lambda\Lambda)A(\mathbf{D})20$
213	UH OH		(AB) 004
274	OH	CH ₃ ; (8-oxadihydroptd)	(AB) 224
275	ОН	6-CH ₃ ; 7-CH ₃ (8-oxadihydroptd)	(AB) 224
276	OH	6-CH. 7-C.H. (8-oxadihydroptd)	(AB) 224
077	04		25 (AA) 5
211	0H		0.0 (AA) 0
278	OH	(CH ₂) ₄ CH ₃ ; (8-oxadihydroptd)	(AB) 224
279	ОН	$SC_{6}H_{5}$	(M , BN , U) 183
280	ОН	C.H. (8-oxadihydrontd)	(AB) 224
001	011	$6 C \mathbf{H} \cdot 7 C \mathbf{H} (8 \text{ or adibudrantd})$	(AB) 224
201		$0 - 0_{6} \Pi_{5}$, $7 - 0 \Pi_{3}$ ($0 - 0 \times 10^{-10} \text{ ptu}$)	(AD) 224 (AD) 224
282	он	$6-C_6H_5$; $7-C_6H_5$ (8-oxadihydroptd)	(AB) 224
283	он	SC_6H_4 -4'- CH_3	(M, BN, U) 183
284	OH	SCH C.H.	(M. BN. U) 183
005	OU OU	CUCU (Revedibudrantd)	(AB) 224
200	ОЛ	$Cn_2C_6n_5$; (o-oxauinyuroptu)	(AB) 224
286	он	$(CH_2)_2C_6H_5$	(AB) 20
287	OH	$CH_2NHC_6H_4-4'-CO_2H$	5.1 (AB) 36; 5.7 (C) 136; 5.1 (P) 29
			39 (AB) 134: 6.4 (M) 136: 6.4 (Q) 136
000	ΩЧ	CHSCH // COH	(BN) 184
200		(OII) O II (O undimuted)	(AD) 004
289	UH	$(CH_2)_2 C_6 H_5$; (8-oxadinydroptd)	(AD) 224
290	ОН	(CH ₂) ₃ C ₆ H ₅ ; (8-oxadihydroptd)	(AB) 224
291	OH	$CH_2CH_2C_6H_4-4'-CO_2H$	4.0 (AB) 134
292	он	CH=CHC ₀ H ₂ -4'-CO ₀ H	4.0 (AB) 134
202	011	(CH) CH (8 avadibudrantd)	$(\Delta \mathbf{R})$ 224
293	ОЛ	$(CH_2)_4 C_6 H_5;$ (0-0xauiliyutoptu)	(AD) 224
294	ОН	CH₂NHC ₆ H₄-4′-CO-Glu	7.6 (C) 136; 7.7 (Q) 136; 7.6 (M) 136
			7.6 (D) 136; 7.0 (P) 29; 4.7 (AB) 134
			5.7 (U) 219: 6.9 (BJ) 212: 4.4 (BE) 147
			5.5 (AB) 22; (BL BK) 108; (BN) 161
005	OH	OUNUOU 4 OO D Obu 7.9 J:L.J.	(DN) 000
295		$Gn_2NnG_{n_4}-4$ -GO-D-Glu; 7,3-dinyaro	
296	OH	$OH_2NHC_6H_4-4'-CO-Glu;$ (8-diaza)	5.9 (U) 219
297	ОН	CH ₂ NHC ₆ H ₄ -4'-CO-Glu; 5-CH ₃ (5,6,7,8-tetrahydro)	5.6 (U) 219; 5.0 (D) 267
298	ОН	CH_NHC_H_4'-Glu: 5-CHO (5.6.7.8-tetrahydro)	5.7 (U) 219: 3.9 (H) 150
200	0H	CH.NHC.H. 4/-CONHCH(CO.H)CH.CH(OH)CO.H (three)	(AG) 152 (M) 152
200			(AC) 100, (M) 100
300	UH	$Un_2 NnU_6 n_4 - 4' - UUNHUH (UU_2 H) UH_2 UH (UH) UU_2 H (erythro)$	(AG) 102; (IVI) 102
301	он	CH2NHC6H4-4'-CONHCH(CO2H)CH2CHFCO2H	(AG) 152; (M) 152
302	ОН	CH2NHC6H2-3',5'-Cl2-4'-CO-Glu	7.3 (P) 29
303	он	CH-SC-H-4'-CO-Glu	4.3 (BN) 190
204	он П	5 10-methynyltatrahydrontaroyl alutamata	4 6 (H) 150
004		5 10 methodes to the bridge of the set of th	40 (II) 100
305	UH	o,10-metnylenetetranydropteroyl glutamate	4.3 (n) 100
306	он	l-5,10-methylenetetrahydropteroyl D-glutamate	(BN) 206
307	ОН	d-5,10-methylenetetrahydropterovl D-glutamate	(BN) 206
308	ŌН	CH ₀ CH ₀ C ₀ H ₄ -4'-CO-Glu	5.2 (AB) 134
900	<u><u>o</u><u></u></u>		A = (AB) = 13A
309			4.1 (AD) 104 (DN) 005
310	он	$CH_2CH_2SC_6H_4-4'-CO-Glu$	(BIN) 225
311	он	$CH_2N(CH_3)C_6H_4-4'-CO-Glu$	7.9 (D) 267; (AB) 168
312	он	CH ₂ N(CH ₃)C ₆ H ₂ -3',5'-Cl ₂ -4'-CO-Glu; 7-OH	(U) 2
212	0H	CH_N(CHO)C_H_4'-CO-Gh	8.2 (AB) 36: 8.2 (P) 29: 7.1 (M) 162
010	011	011214(0110)06114-1-00-01u	0.0 (11) 967
A4 ·	017		J.O. (LJ) 207
314	UH	$UH_2N(UHU)U_6H_4-4'-UU-Glu;$ (5,6,7,8-tetrahydro)	4.0 (H) 150
315	он	$CH_2NHCH_2C_6H_4-4'-CO-Glu$	3.2 (Q) 141
316	он	CH2NHC6H4-4'-CH2-CO-Glu	(AB) 157
317	0H	CH_CH_NHC_H_2/ 6'-Cl-4'-CO-Glu	4.1 (II) 167
511		CityCityCiteChity-2,0 City + CO-City	(0) 101

TABLE VIII (Continued)

no.	R_4	R_6	activity (enzyme) ref
318	ОН	CH ₂ NHC ₆ H ₄ -4'-(CH ₂) ₂ -CO-Glu	(AB) 157
319	ОН	CH ₂ N(SO ₂ C ₆ H ₄ -4'-CH ₃)CH ₂ C ₆ H ₄ -4''-CO ₂ H	(BN) 208
320	ОН	CH ₂ N(SO ₂ C ₆ H ₄ -4'-CH ₃)CH ₂ C ₆ H ₄ -4"-CO ₂ CH ₃	(BN) 208
321	ОН	$CH_2SC_8H_4-4'-CO-Glu-(C_2H_5)_2$	(BN) 184
322	ОН	CH ₂ N(SO ₂ C ₆ H ₄ -4'-CH ₃)CH ₂ C ₆ H ₄ -4''-CO-Glu	(BN) 208
323	ОН	CH ₂ NHC ₆ H ₄ -4'-CO-(Glu) ₅	7.3 (D) 267
324	ОН	CH ₂ N(CHO)C ₆ H ₄ -4'-CO-(Glu) ₅	(U, BJ) 178
325	CH_3	NH ₂	3.7 (AA) 4
326	CH_3	$6 - C_{g}H_{5}$; 7-NH ₂	4.4 (K) 45
327	SH	$CH_2N(CH_2)C_6H_4-4'-CO_2H$	(AB) 188
328	SH	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CO ₂ CH ₃	(AB) 188
329	SH	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CO-Glu	(AB) 188
330	SCH ₃	$CH_2N(CH_3)C_6H_4-4'-CO_2CH_3$	(AB) 188
331	SCH ₃	CH ₂ N(CH ₂)C ₅ H ₄ -4'-CO-Glu	(AB) 188
332	SCH ₂ C ₆ H ₅	$CH_2N(CH_3)C_6H_4-4'-CO_2CH_3$	(AB) 188
333	SCH.C.H.	CH.N(CH.)C.H4'-CO.CH.: (7.8-dihvdro)	(AB) 188

TABLE IX. Inhibition by Substituted Quinazolines

	no.	R ₂	R ₄	R ₅	R ₆	activity (enzyme) ref
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Н	н	Н	н	2.2 (M) 156
3 H NH ₂ H S-2°, C ₁ H ₂ 47 000 171 4.1 (BC) 171 4 NH ₂ H S-2°, C ₁ H ₂ 48 001 171 5.6 (BC) 171 5 H NH ₂ H S0 2°, C ₁ H ₂ 55 001 171 5.5 (BC) 171 6 H NH ₂ S0 S0 S0 N0 160 7 H OH H H M0 160 171 56 (BC) 171 6 H NH ₂ S0 S0 S0 N0 160 171 180 S1 N0 160 171 180 171 180 171 180 171 180 171 180	2	н	\mathbf{NH}_{a}	н	н	3.1 (M) 156
4 H NH ₂ H SO 2* C ₁ H ₂ 4 3 (M) 171: 5.6 (BC) 171 5 H NH ₂ SO 2* C ₁ H ₂ M) 160 M) 160 7 H NH ₂ SO (M) 171: 5.6 (BC) 171 M) 160 8 H SH H M) 160 M) 160 9 NH ₂ H H M) 166 M) 166 10 NH ₂ H H M) 166 M) 166 11 NH ₂ H H H M) 166 12 NH ₂ NH ₄ H H G	3	н	NH	н	S-2'-CuaHr	4.7 (M) 171. 4.1 (BC) 171
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	н	NH	н	SO-2'-C. H.	4 8 (M) 171; 56 (BC) 171
6 H NH2 SC ₂ H ₂ 3'4'-Cl ₂ H 36 (M) 160 (M) 160 (M) 160 7 H OH H H 36 (M) 166 8 H SH H H (M) 166 9 NH2 NH2 H H (M) 166 10 NH2 NH2 H H (M) 166 11 NH2 NH2 H H (M) 166 12 NH4 H H (G, 6, 7, 5-tetrahydro) 5.7 (M) 166 13 NH2 NH3 H CH CH (G, 7, 7-tetrahydro) 5.7 (M) 166 14 NH3 H CH CH (G, 7, 7-tetrahydro) 5.7 (M) 166 15 NH3 NH3 H CH CH 5.0 (M) 166 16 NH4 NH4 H CH CH 5.0 (M) 166 19 NH3 NH4 H CH CH 5.0 (M) 170; 5.5 (U) 170 20 NH3 NH4 H Y/5-dimethylpyrazol-1'yl 5.2 (M) 170; 5.5 (U) 170 21 NH4 <td>5</td> <td>н</td> <td>NH</td> <td>н</td> <td>SO-2'-C-H-</td> <td>55 (M) 171; 35 (BC) 171</td>	5	н	NH	н	SO-2'-C-H-	55 (M) 171; 35 (BC) 171
7 H OH2 H Charles of the transformed strength of transformed strengt strength of transformed s	ő	н	NH.	SCaHar3' 4'-Cla	H	(M) 160
s H SH H H Observed s H SH H H (M) 156 9 NH2 NH2 H H (M) 156 10 NH2 NH2 H H (S, 7, 8-tetrahydro) 5.1 (M) 156 11 NH2 NH2 H Br 5.6 (M) 156 12 NH4 NH4 H Cl 5.4 (M) 156 13 NH2 NH4 H Cl 5.7 (M) 156 14 NH3 NH4 H Cl 5.7 (M) 156 15 NH3 NH4 H Cl 5.7 (M) 156 16 NH4 H CH 0.0 (J) 156 16 18 NH3 NH4 H Cl 5.0 (M) 156 16 19 NH3 NH4 H Cl 5.8 (M) 170; 5.5 (U) 170 170 21 NH4 H Prorl-1/yl 5.4 (M) 170; 5.5 (U) 170 170 22 NH3 NH4 H Prorl-1/yl 5.2 (M) 170; 5.3 (U) 170 170	7	н	OH ²	H	и И	36(M) 156
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	н	SH	н	и и	(M) 156
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ğ	NH.	NH.	н	и Ч	(\mathbf{M}) 150
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	NH.	NH.	и И	H (5678 totrobudro)	5.1 (M) 156
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	NH.	NH	и Ц		5.6 (M) 156
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	NH.	NH	и П		5.0 (NI) 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	NU		и Ц		3.4 (M) 150
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13			п u		4.0 (IVI) 100 5 7 (NI) 150
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14			п u	OII_{3}	0.7 (NI) 100 577 (NI) 150
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10			п	CH_3 (5,6,7,8-tetranydro)	5.7 (M) 156
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10			п		4.7 (M) 156
18 NH_2 NH_2 H $C_{2}H_5$ $5.0 (M) 166$ 19 NH_2 NH_2 H C_2H_5 $7.2 (BJ) 34; 7.8 (AZ) 34$ 20 NH_2 NH_2 H $pyrrol 1'.yl$ $5.4 (M) 170; 5.6 (U) 170$ 21 NH_2 NH_2 H $N'-(CH_2CH_2)_2CH_2$ $5.8 (M) 170; 5.6 (U) 170$ 22 NH_2 NH_2 H $N'-(CH_2CH_2)_4CH_2$ $5.8 (M) 170; 5.9 (U) 170$ 23 NH_2 NH_2 H $g'-dimethylpyrazol-1'-yl$ $5.2 (M) 170; 5.9 (U) 170$ 24 NH_2 NH_2 H $g'-dimethylpyrazol-1'-yl$ $5.3 (M) 170; 5.9 (U) 170$ 25 NH_2 NH_2 H $(5'-chlore-2'-thienyl)amino6.3 (M) 170; 6.0 (U) 17026NH_2NH_2H(5'-chlore-2'-thienyl)pyrol-1'-yl)5.5 (M) 170; 5.7 (U) 17028NH_2NH_2H2'-byridylmethylamino5.6 (M) 170; 5.3 (U) 17029NH_2NH_2H2'-byridylmethylamino5.6 (M) 170; 5.3 (U) 17031NH_2NH_2HSO_2CH_3'3'4'-Cl_28.0 (M) 171; 8.2 (BC) 17132NH_2NH_2HSO_2CH_3'3'4'-Cl_28.0 (M) 170; 8.3 (U) 17033NH_2NH_2HCH_2NHC_8H_4:3'-Br(M, BN, AK) 183; 8.7 (D) 22336NH_2NH_2HCH_2NHC_8H_3'3'-Cl_28.0 (U) 223; 8.2 (D) 22338NH_2NH_2HCH_2NHC_8H_3'3'-Cl_28.0 (U) 223; 8.4 (D) 22339<$	10			п	CH_2NH_2	5.0 (M) 156
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18			н	CHU	5.0 (M) 156
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	NH_2	NH_2	н	C_2H_5	7.2 (BJ) 34; 7.8 (AZ) 34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	NITT	NITT		1.1/ 1	7.6 (BG) 34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	NH ₂	NH ₂	H	pyrrol-1'-yl	5.4 (M) 170; 5.5 (U) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	NH_2	NH_2	H	$N-(CH_2CH_2)_2CH_2$	5.8 (M) 170; 5.6 (U) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	NH_2	NH_2	H	3',5'-dimethylpyrazol-1'-yl	5.2 (M) 170; 5.2 (U) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	NH_2	NH_2	H	furfurylamino	5.5 (M) 170; 5.9 (U) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24	NH_2	NH_2	н	2'-thienylamino	6.2 (M) 170; 5.3 (U) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	NH_2	NH_2	н	(5'-chloro-2'-thienyl)amino	6.3 (M) 170; 6.0 (U) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	NH_2	NH_2	н	$6-NHC_6H_5$; $7-CH_3$	6.4 (M) 170; 6.0 (U) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	NH_2	NH_2	н	2',5'-dimethylpyrrol-1'-yl	5.5 (M) 170; 5.7 (U) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	NH_2	NH_2	н	6,8-bis(2',5'-dimethylpyrrol-1'-yl)	5.0 (M) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						6.0 (U) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29	NH_2	NH_2	Н	2'-pyridylmethylamino	5.6 (M) 170; 5.3 (U) 170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	NH_2	NH_2	Н	4'-pyridylmethylamino	5.7 (M) 170; 6.2 (U) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31	NH_2	NH_2	Н	$SC_{6}H_{3}-3',4'-Cl_{2}$	8.0 (M) 171; 8.2 (BC) 171
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32	\mathbf{NH}_2	NH_2	Н	$SO_2C_6H_3-3',4'-Cl_2$	8.0 (M) 171; 9.2 (BC) 171
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33	\mathbf{NH}_2	NH_2	н	SC_6H_4 -3'-CF ₃	8.4 (AP) 258; 6.6 (M) 258
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	NH_2	NH_2	Н	(2',5'-dimethylpyrrol-1'-yl)methyl	6.6 (M) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						6.9 (U) 170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	NH_2	NH_2	Н	CH2NHC6H4-3′-Br	(M, BN, AK) 183; 8.7 (D) 223
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						8.6 (U) 223
37 NH_2 NH_2 H $CH_2NHC_6H_4$ -3'-Cl (M, BN, AK) $183;$ 8.0 (D) 223 38 NH_2 NH_2 H $CH_2NHC_6H_4$ -4'-Cl 8.3 (U) 223 39 NH_2 NH_2 H $CH_2NHC_6H_3$ -3',4'-Cl_2 8.0 (U) $223;$ 8.0 (U) $223;$ 40 NH_2 NH_2 H $CH_2N(NO)C_6H_3$ -3',4'-Cl_2 8.0 (U) $223;$ 8.0 (D) 223 41 NH_2 NH_2 H $N(NO)CH_2C_6H_3$ -3',4'-Cl_2 6.7 (AN) $144;$ 6.4 (AU) 144 42 NH_2 NH_2 H 2 -ethylpiperidino 7.4 (M) $170;$ 7.4 (U) $170;$	36	NH_2	NH_2	Н	$CH_2NHC_6H_4-2'-Cl$	(M , BN , AK , U) 183
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37	NH_2	NH_2	Н	$CH_2NHC_6H_4-3'-Cl$	(M, BN, AK) 183; 8.0 (D) 223
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						8.0 (U) 223
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	NH_2	NH_2	H	$CH_2NHC_6H_4-4'-Cl$	8.3 (U) 223; 8.2 (D) 223
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39	NH_2	NH_2	Н	$CH_2NHC_6H_3-3',4'-Cl_2$	8.0 (U) 223; 8.4 (D) 223
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	NH_2	NH_2	H	$CH_2N(NO)C_6H_3-3',4'-Cl_2$	8.0 (U) 223; 8.0 (D) 223
42 NH2 NH2 H 2-ethylpiperidino 6.7 (BV) 144; 7.0 (BX) 144 6.0 (BW) 144; 6.0 (BY) 144 6.2 (M) 144 6.2 (M) 144 7.4 (M) 170; 7.4 (U) 170	41	NH_2	NH_2	н	$N(NO)CH_2C_6H_3-3',4'-Cl_2$	6.7 (AN) 144; 6.4 (AU) 144
42 NH2 NH2 H 2-ethylpiperidino 6.0 (BW) 144; 6.0 (BY) 144 6.2 (M) 144 42 NH2 NH2 H 2-ethylpiperidino 7.4 (M) 170; 7.4 (U) 170						6.7 (BV) 144; 7.0 (BX) 144
42 NH ₂ NH ₂ H 2-ethylpiperidino 6.2 (M) 144 7.4 (M) 170; 7.4 (U) 170						6.0 (BW) 144; 6.0 (BY) 144
42 Mn_2 Mn_2 n 2-ethylpiperidino 7.4 (M) 170; 7.4 (U) 170	49	NU	NU	ч	0 sthele is said in a	6.2 (M) 144
	44	IN II 2	IN II 2	п	2-ethylpiperiaino	7.4 (N1) 170; 7.4 (U) 170

TABLE IX (Continued)

	-	maca)			
no.	R ₂	R ₄	R ₅		activity (enzyme) ref
43	NH.	NH.	<u></u> н	NHCH.C.H.	5.8 (M) 170: 6.0 (II) 170
40	11112	14112		1411011206115	(BN AK) 183
1 A	NH.	NH.	н	NHCH-C-H3'-Br	62 (M) 170 62 (H) 170
45	NH.	NH.	н	NHCH_C_H_A'-Br	5.7 (M) 170, 5.8 (U) 170
40	NH	NH	u u	NUCH C U A' Cl	5.7 (M) 170, 5.8 (U) 170
40	NU	NL	и и	NHCH C H $_{2}/_{4}$ Cl	6.1 (M) 170, 6.9 (U) 170
41	ΝΠ ₂	\mathbf{Nn}_2	п	$NHCH_{2}C_{6}H_{3}-3^{\circ},4^{\circ}-CI_{2}$	6.1 (M) 170; 6.3 (U) 170
					5.7 (AN) 144; 5.3 (AU) 144
					5.7 (BV) 144; 5.7 (BX) 144
					5.2 (BW) 144; 6.0 (BY) 144; (BN, AK) 183
48	NH_2	NH_2	н	$NHCH_2C_6H_4-4'-F$	6.0 (M) 170; 5.8 (U) 170
49	NH_2	NH_2	Н	$NHCH_2C_6H_4-2'-NH_2$	5.6 (M) 170; 6.0 (U) 170
50	\mathbf{NH}_{2}	NH_2	н	$NHCH_2C_6H_4-2'-NO_2$	6.5 (M) 170; 6.5 (U) 170
51	NH_2	NH_2	н	NHCH ₂ C ₆ H ₄ -2'-OH	5.7 (M) 170; 5.8 (U) 170
52	NH_2	\mathbf{NH}_2	н	NHCH ₂ C ₆ H ₄ -3'-OH	5.5 (M) 170; 5.5 (U) 170
53	NH_2	NH_2	н	NHCH ₂ C ₆ H ₄ -4′-OH	5.0 (M) 170; 5.0 (U) 170
54	NH_2	NH_2	н	NHCOC ₆ H ₄ -4'-Cl	(M) 186
55	NH_2	NH_2	н	NHCOC ₆ H ₃ -3',4'-Cl ₂	(M) 186
56	NH	NH_{2}	н	S-C ₆ H ₄ -3'-CF ₃	7.4 (M) 171; 9.1 (BC) 171
57	NH	NH	н	CH ₂ NHC ₂ H ₂ -3'-CF ₂ -4'-Cl	8.4 (D) 214
58	NH.	NH ₂	н	CH ₂ NHC ₂ H ₂ -4'-COOH	7.7 (M) 191: 8.8 (BC) 191
59	NH.	NH.	н	$CH_aN(CH_a)C_aH_a-3' 4'-Cl_a$	8.3 (D) 214
60	NU	NH	и Ц	CH NHCOC H 3' A'CI	7.0 (M) 186
61	NLI	NU	и Ц	$CH_{2}(HOOC_{6}H_{3}^{-3}, 4^{-}CH_{2})$	9.5 (D) 914
01			п	$On_2 N(On_3) O_6 n_4 - 4 - r$	(\mathbf{M}) 170, $A \in (\mathbf{H})$ 170
62	INH ₂	NH ₂	н	2'-isoindoiinyi	(\mathbf{M}) 170; 4. 5 (U) 170
63	NH ₂	NH ₂	н	$NHCH_2 UH_2 U_6 H_4 - 4' - UI$	6.7 (M) 170; 6.0 (U) 170
64	NH_2	NH_2	н	$\mathrm{NHCH}_{2}\mathrm{C}_{6}\mathrm{H}_{4}$ -2'-CH ₃	5.9 (M) 170; 5.8 (U) 170
65	NH_2	\mathbf{NH}_2	н	$\mathrm{NHCH}_{2}\mathrm{C}_{6}\mathrm{H}_{4}$ -3'- CH_{3}	5.6 (M) 170; 5.3 (U) 170
66	NH_2	NH_2	Н	NHCH ₂ C ₆ H ₄ -4'-CH ₃	5.3 (M) 170; 5.5 (U) 170
67	\mathbf{NH}_2	NH_2	Н	NHCH ₂ C ₆ H ₄ -4'-CH ₂ OH	5.0 (M) 170; 5.0 (U) 170
68	NH_2	NH_2	н	NHCH ₂ C ₆ H ₄ -4′-COOH	4.9 (M) 170; 5.3 (U) 170
69	NH_2	NH_2	н	NHCH(CH ₃)C ₆ H ₅	6.2 (M) 170; 6.2 (U) 170
70	NH_2	NH_2	н	NHCH(CH ₃)C ₆ H ₄ -4'-Cl	6.2 (M) 170; 6.0 (U) 170
71	NH_{2}	NH_2	н	$N(CH_3)CH_2C_6H_3-3',4'-Cl_2$	8.0 (M) 170; 7.8 (U) 170
72	NH	NH ₂	н	NHCOCH ₂ C ₆ H ₄ -4'-Cl	7.6 (M) 186
73	NH	NH.	н	NHCOCH ₂ C ₂ H ₂ -3',4'-Cl ₂	7.5 (M) 186
74	NH	NH ₀	н	N-phthalimide	(M. U) 170
75	NH.	NH.	н	1' 2' 3' 4'-tetrahydro-2'-isoquinolyl	6.5 (M) 170 6.5 (U) 170
76	NH.	NH.	й	$CH_N(CH_1)C_2H_2/2C_1A/2CH_2$	7.2 (D) 214
77	NU	NH	u II	$CH NHCOCH C H _ 2' A' C)$	5.8 (M) 186
70			п u	$CH_{2}(HCOCH_{2}C_{6}H_{3}^{-3}, 4 - Ch_{2})$	6.6 (M) 196
10			п	$CH_2NHCOC_6H_4-3-CF_3$	(101) 100 (201) (D) 000, 0.0 (DNI) 014
19			п	$OH_2 N(OOH_3) O_6 H_3^{-3}, 4 - OI_2$	(M II) 170
80			п	$N\Pi C\Pi_2 C_6 \Pi_4 - 4 - N(C\Pi_3)_2$	$(\mathbf{M}, \mathbf{U}) 1/0$
81	NH ₂	NH ₂	н	$NHCO(CH_2)_2C_6H_4-4^{-}CI$	7.3 (M) 186
82	NH_2	NH ₂	н	$NHCOCH_2C_6H_4-3^\circ-CF_3$	7.0 (M) 186
83	NH_2	NH_2	н	2'-phenyl-1'-pyrrolidinyl	8.0 (M) 170; 7.8 (U) 170
84	NH_2	\mathbf{NH}_{2}	н	2'-(p-chlorophenyl)-1'-pyrrolidinyl	7.8 (M) 170
					7.9 (U) 170
85	\mathbf{NH}_2	\mathbf{NH}_2	н	2'-(3",4"-dichlorophenyl)-1'-pyrrolidinyl	7.7 (M) 170
					8.1 (U) 170
86	NH_2	NH_2	н	CH ₂ NHC ₆ H ₄ -4'-COOC ₂ H ₅	8.2 (M) 191; 7.7 (BC) 191
87	NH_{2}	NH_2	н	$CH_{2}NHC_{6}H_{2}-3',4',5'-(OCH_{3})_{3}$	(M, BN, AK, U) 183; 8.2 (D) 214
88	NH	NH_{2}	н	NHCH ₂ C ₆ H ₄ -4'-COOC ₂ H ₅	5.6 (M) 170; 5.3 (U) 170
	-	•			7.3 (BC) 191
89	NH.	NH₀	н	S-2'-C ₁₀ H ₇	8.1 (M) 171; 8.1 (BC) 171
90	NH.	NH.	н	SO-2'-C10H7	8.1 (M) 171; 8.7 (BC) 171
91	NH	NH.	н	SO ₀ -2'-C ₁₀ H ₇	7.3 (M) 258: 8.4 (M) 171
51	14112	11112			84 (B) 171: 90 (AP) 258
Q 2	NH	NH.	н	N(CH.CH.).CH.C.H.	5.5 (M) 170; 5.5 (H) 170
02		NU	и Ц	2 methyl 2 nhenyl 1 nymelidinyl	5.7 (M) 170
90	14112	11112	11	2-methyl-o-phenyl-1-pyllohamyl	6.0 (II) 170
	NIT	NILI	ч		6.0(0)170 6.1(M)170.61(II)170
94 05			л U	$NHCH_{-1/-C} = 9/C$	70 (M) 170, 0.1 (U) 170 70 (M) 170, 70 (U) 170
90			п	$\begin{array}{c} NHCH_2^{-1} \cdot C_{10}H_6^{-2} \cdot C^{-1} \\ CH NH^{-1} CH_2^{-1} \cdot C_{10} H_6^{-2} \cdot C^{-1} \\ CH NH^{-1} CH_2^{-1} C^{-1} H_6^{-2} \cdot C^{-1} \\ CH H^{-1} H_6^{-1} H_$	7.0 (IV) $170, 7.0$ (C) 170
30 07		IN II 2 NILI	л u	CH2NAU6H4-4-CONAUH(CO2H)2	0.0 (U) 220, 7.1 (D) 220 9.0 (M) 160, 7.6 (DC) 171
91		IN H ₂	н т	$CH_{2}S^{-2} - C_{10}\Pi_{7}$	3.0 (101) 100; 7.0 (DC) 171 7.0 (NI) 196
99	IN H ₂	INH ₂	н	$\mathbf{CH}_{2}\mathbf{NHC}\mathbf{U} = \mathcal{U}_{10}\mathbf{H}_{7}$	7.0 (IVI) 100 7.6 (M) 101, 7.5 (D() 101
99	NH ₂	NH ₂	н	$OH_2NHO_6H_4-4'-OOUO_4H_9$	7.0 (M) 191; 7.5 (BC) 191
.00	NH_2	NH_2	н	OH ₂ NHO ₆ H ₄ -4'-CO-Asp	5.8 (M) 203; 8.2 (BC) 203
					10.9 (U) 219; 8.8 (U) 223
					8.9 (D) 223
.01	\mathbf{NH}_2	\mathbf{NH}_2	Н	CH ₂ NHC ₆ H ₃ -2'-Cl-4'-CO-Asp	9.1 (U) 223; 8.8 (D) 223
.02	NH_2	$\rm NH_2$	н	CH ₂ NHC ₆ H ₃ -2'-Cl-5'-CO-Asp	8.5 (U) 223; 8.5 (D) 223
	NH_2	NH_2	н	CH₂NHC ₆ H₃-4′-Cl-3′-CO-Asp	7.9 (U) 223; 8.4 (D) 223
.03	NITT	NH_{2}	н	NHCH ₂ C ₆ H ₄ -4'-CO-Asp	7.4 (U) 223
.03 .04	\mathbf{NH}_2	-			
.03 .04 .05	\mathbf{NH}_{2} \mathbf{NH}_{2}	NH_2	н	$NHCOCH_2-2'-C_{10}H_7$	8.3 (M) 186
103 104 105 106	$\frac{NH_2}{NH_2}$ NH_2	$\frac{NH_2}{NH_2}$	н Н	NHCOCH2-2′-C10H7 CH2NHC6H4-4′-CONHCH-	8.3 (M) 186 8.1 (U) 223

TABLE IX (Continued)

I ADDE IA	(Continue	u)			
no.	R ₂	R_	R ₅	R ₆	activity (enzyme) ref
107	NH ₂	NH ₂	Н	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CO-Asp	8.7 (U) 223; 8.7 (D) 223
	-	-			(BE) 177
108	NH_2	NH_2	н	CH₂NHC ₆ H-4′-CO-Glu	8.5 (M) 203; 8.8 (BC) 203
					9.2 (D) 223; 8.2 (M) 230
109	NH.	NH.	н	CH_NHC_H3'-CO-Glu	7.4 (D) 114
110	NH ₂	NH ₂	Ĥ	CH _o NHC _o H ₂ -4'-CO-(D)-Glu	10.5 (U) 219: 8.7 (D) 114
111	NH_2	NH_2	н	CH ₂ NHC ₆ H ₄ -4'-CO-(D)-Asp	10.4 (U) 219
112	NH_2	NH_2	н	$CH_2NHC_6H_4-4'-CONHCH(CO_2H)(CH_2)_2CONH_2$	10.0 (D) 223
110	NUT	NUT			9.6 (U) 223
113	NH ₂	NH ₂	л म	$OH_2 NHO_6 H_3 - 4' - OH - 3' - OH - Ghu$	7.5 (BC) 223; 6.7 (D) 223
114	1112	14112			6.8 (D) 223
115	NH_2	NH_2	н	CH ₂ N(CH ₃)C ₆ H ₄ -4'-CO-Glu	8.8 (U) 223; 8.4 (D) 223
					7.8 (AB) 112; 9.5 (BD) 112
110	NIT	NUT			(Y, BN) 164
116	\mathbf{NH}_2	NH_2	н	$CH_2N(CHO)C_6H_4-4'-CO-Glu$	9.0 (BC) 203; 8.8 (M) 203 8.2 (D) 223
117	NH	NH	н	CH_NHC_H4'-CO-Asp(C_H_)	7.8 (BC) 203: 7.5 (M) 203
118	NH_2	NH ₂	H	$N = CHC_6H_4$ -4'-CH=N-6"-quinazoline-2",4"-(NH ₂) ₂	4.3 (M) 170; 4.8 (U) 170
119	NH_2	NH_2	н	$CH_2NHC_6H_4-4'-CO-Glu(C_2H_5)_2$	7.7 (BC) 203; 7.3 (M) 203
120	NH_2	NH_2	н	$\mathrm{NHCH}_{2}\mathrm{C}_{6}\mathrm{H}_{4}$ -4'-CO-Glu $(\mathrm{C}_{2}\mathrm{H}_{5})_{2}$	7.5 (BC) 189; 7.5 (M) 189
					7.2 (D) 223
121	NH2	NH ₂	H	$OC_6H_4CH_2NHC_6H_4-4'-CO-Asp$	7.7 (U) 223; 7.8 (D) 223
122	NH ₂		л Н	$N \cong CH - C_{6}H_{4} - 4' - \Omega - (CH_{a})_{a} \cap C_{a}H_{a} =$	1.1 (U) 223; 1.8 (D) 223
120	11112		••	CH=N-6'''-quinazoline-2'''.4'''-	5.0 (M) 170; 4.9 (U) 170
				(NH ₂) ₂	
124	NH_2	NH_2	Cl	н	6.2 (M) 156
125	NH ₂	NH_2	Cl	Br	7.0 (M) 156
120	NH ₂			NH.	6.7 (M) 156 6.2 (M) 156
128	NH ₂	NH_i^2	Cl	NHCH ₂ C ₄ H ₅	7.4 (M) 170; 7.4 (U) 170
	-			2 0 0	(BN, AK) 183
129	NH_2	NH_2	Cl	$\rm NHCH_2C_6H_3-3',4'-Cl_2$	7.9 (M) 170; 8.2 (U) 170
130		\mathbf{NH}_{2}	CI	$CH_2NHC_6H_4$ -3'-Br	8.4 (D) 214
151	14112		CI	$CH_2 I V H C_6 H_3 - 5, 4 - CI_2$	(M, AK, BN) 214
132	NH ₂	NH	Cl	NHCOCH₀C₀H₄-3′-Br	8.1 (M) 186
133	NH_2	NH_2	Cl	NHCOCH ₂ C ₆ H ₄ -4'-Br	7.9 (M) 186
134	NH_2	$\rm NH_2$	Cl	NHCOCH ₂ C ₆ H ₄ -4'-Cl	7.9 (M) 186
135			CI	$\mathbf{NHCOCH}_{2}\mathbf{C}_{6}\mathbf{H}_{3}-3',4'-\mathbf{Cl}_{2}$	7.6 (M) 186
130			Cl	$CH_{2}NHC_{2}H_{2}-4'-COOH$	82 (M) 191 · 83 (BC) 191
138	NH_2^2	NH_2^2	Cl	NHCOCH(CH ₃)C ₆ H ₅	7.8 (M) 186
139	NH_2	NH_2	Cl	NHCOCH ₂ C ₆ H ₄ -3'-CF ₃	7.6 (M) 186
140	NH_2	$\rm NH_2$	Cl	$NHCO(CH_2)_2C_6H_4-4'-Cl$	7.4 (M) 186
141 142				$\mathbf{NHCH}_{2}\mathbf{C}_{6}\mathbf{H}_{4}-4'-\mathbf{COOC}_{2}\mathbf{H}_{5}$	7.9 (M) 191; 8.2 (BC) 191 7.9 (M) 101; 8.6 (BC) 101
143	NH ₂		Cl	$CH_2NHC_6H_4-4-COOC_2H_5$ $CH_3NHC_6H_4-4'-COOC_4H_5$	7.9 (M) 191; 8.8 (BC) 191 7.9 (M) 191• 7.7 (BC) 191
144	NH_2^2	\mathbf{NH}_{2}^{2}	Cl	$CH_2NHC_6H_4-4'-CO-Asp$	8.6 (BC) 203; 8.2(M) 203
		_			9.4 (D) 223; 9.2 (D) 114
					9.2(D) 144; 9.4 (AN) 144
					10.0 (AU) 144; 9.5 (BV) 144 9.0 (BV) 144; 9.4 (BW) 144
					9.4 (BY) 144; 9.2 (U) 223
145	NH_2	NH_2	Cl	NHCOCH ₂ -2'-C ₁₀ H ₇	8.3 (M) 186
146	NH_2	\mathbf{NH}_{2}	Cl	$NHCOCH_2O-2'-C_{10}H_7$	7.9 (M) 186
147	NH_2	\mathbf{NH}_{2}	CI	CH ₂ NHC ₆ H ₄ -4'-CO-Glu	8.2 (M) 230; 8.1 (M) 203
					9.2 (BC) 223; 9.0 (U) 223 9.1 (D) 223, 13.0 (U) 219
148	NH,	NH₀	Cl	CH ₀ NHC ₆ H ₄ -4'-CO-Asp(C ₀ H ₅) ₂	7.9 (BC) 203: 8.4 (M) 203
149	NH_2	NH_2	Ci	$CH_2NHC_8H_4-4'-CO-Glu(C_2H_5)_2$	8.8 (BC) 203; 7.9 (M) 203
150	$\rm NH_2$	NH_2	CH3	Н	6.1 (M) 156; 5.8 (BP) 216
151	NH_2	NH_2	CH_3	$6-H; 8-NHCH_2C_6H_5$	(M, U) 170
152	$\mathbf{N}\mathbf{n}_2$	NH_2	CH ₃	CH_3	8.4 (BJ) 34; 6.9 (AZ) 34 8.7 (BC) 34: 6.3 (BD) 216
153	NH_2	NH_{2}	CH,	n-C ₃ H ₇	8.7 (BP) 216
154	NH_2	$NH_2^{\tilde{2}}$	CH ₃	$n - C_4 H_9$	9.5 (BP) 216
155	NH_2	NH_2	CH ₃	$n-C_{b}H_{11}$	13.7 (BP) 216
155	NH2 NH	NH2 NH	CH3	<i>ι</i> -∪ _δ H ₁₁ n-C-H	(BP) 216 12.7 (BD) 216
158	NH ₂	NH ₂	CH.	CH ₀ NHC ₆ H ₄ -3'-Br	8.8 (U) 223: 8.8 (D) 223
	· Z	···2	3	······································	(M, N, AK) 183
159	NH_2	NH_2	CH3	CH ₂ NHC ₆ H ₃ -3',4'-Cl ₂	8.6 (D) 223; 8.5 (U) 214
160	NH2 NH		CH3	$CH_2N(NO)C_6H_3-3',4'-Cl_2$ NHCH C H. 2' 4' Cl	8.0 (D) 223 7.0 (M) 170- 7.9 (D) 170
101	14112	1112	Un ₃	111011206113-0,4-012	7.0 (191) 170 ; 7.2 (U) 170

TABLE IX (Continued)

no.	R ₂	R ₄	R ₅	R ₆	activity (enzyme) ref
					(AK, BN) 183
162	NH_2	NH_2	CH ₃	NHCOCH ₂ C ₆ H ₄ -3'-Br	7.5 (M) 186
163	NH_2	NH_2	CH ₃	NHCOCH ₂ C ₆ H ₄ -4'-Br	7.5 (M) 186
164	NH_2	NH_2	CH ₃	NHCOCH ₂ C ₆ H ₄ -4'-Cl	7.5 (M) 186
165	NH_2	\mathbf{NH}_2	CH ₃	NHCOCH ₂ C ₆ H ₃ -3',4'-Cl ₂	7.8 (M) 186
166	NH_2	NH_2	CH ₃	CH ₂ NHC ₆ H ₄ -4'-COOH	8.1 (M) 191; 8.0 (BC) 191
167	NH_2	\mathbf{NH}_2	CH ₃	NHCOCH ₂ C ₆ H ₄ -3'-CF ₃	7.2 (M) 186
168	NH_2	NH_2	CH ₃	$NHCO(CH_2)_2C_6H_4-4'-Cl$	7.5 (M) 186
169	NH_2	NH_2	CH ₃	$\mathbf{NHCH}_{2}\mathbf{C}_{6}\mathbf{H}_{4}-4'-\mathbf{COOC}_{2}\mathbf{H}_{5}$	8.3 (M) 191; 8.8 (BC) 191
170	NH_2	NH_2	CH ₃	$CH_2NHC_6H_4-4'-COOC_2H_5$	8.2 (M) 191; 8.3 (BC) 191
171	\mathbf{NH}_2	\mathbf{NH}_2	CH ₃	$CH_2NHC_6H_2$ -3',4',5 -(OCH_3) ₃	8.9 (D) 214; 8.9 (U) 214 8.1 (U) 100- (W) 040
					$(M \land V PN)$ 199
170	NU	NU	CH	CH NHC H -4/-COOC H.	$(\mathbf{M}, \mathbf{A}\mathbf{K}, \mathbf{D}\mathbf{N})$ 103 7.8 (M) 101, 9.1 (B C) 101
172	NH2	NH.	CH.	$CH_2NHC_3H_4-4'-CO-Asp$	9.4 (M) 203 86 (BC) 203
110	11112	14112	0113		8.9 (U) 223; 8.9 (D) 223
					(BE) 177; (Y, BN) 164; (BC) 111
174	NH	NH.	CH.	NHCOCH ₂ -2'-C ₁₀ H ₇	8.4 (M) 186
175	NH ₂	NH ₂	CH ₃	NHCOCH ₂ O-2'- $\tilde{C}_{10}H_7$	7.8 (M) 186
176	NH_2	NH_2	CH ₃	NHCOCH ₂ S-2'-C ₁₀ H ₇	8.3 (M) 186
177	NH_2	NH_2	CH ₃	NHCH ₂ C ₆ H ₄ -4′-CO-Glu	8.2 (M) 230; 8.1 (BC) 203
	-				9.1 (D) 223
178	NH_2	NH_2	CH ₃	CH2NHC6H4-4'-CO-Glu	8.2 (M) 230; 8.2 (M) 203
					12.4 (U) 219; 8.7 (BC) 203
					8.8 (D) 223
179	NH_2	NH_2	CH_3	CH ₂ NHC ₆ H ₃ -4'-Cl-3'-CO-Glu	8.7 (U) 223; 8.5 (D) 223
180	NH_2	NH_2	CH ₃	$CH_2NHC_6H_4-4'-CONHCH(CH_2CO_2H)_2$	9.2 (U) 223; 8.2 (D) 223
181	NH_2	NH_2	CH ₃	NHCUCH $[CH(CH_3)_2]S-2'-C_{10}H_7$	7.7 (M) 186
182	NH_2		CH ₃	$CH_2NHC_6H_4$ -4 -CO-Asp $(C_2H_5)_2$	7.8 (BC) 202 7.7 (M) 190, 9.6 (BC) 909
183	$\mathbf{N}\mathbf{n}_2$	$\mathbf{N}\mathbf{n}_2$	CH_3	$CH_2NHC_6H_4$ -4-CO-Glu $(C_2H_5)_2$	8.5 (D) 203
184	NH.	NH.	CH.	NHCH ₂ C ₂ H ₂ -4'-CO-Glu(C ₂ H ₂)	7.7 (M) 203 84 (BC) 203
185	NH ₂	NH ₂	S-CaHa-3'.4'-Cla	H	6.8 (M) 160: 6.5 (BC) 171
186	NH.	NH ₂	SOC.H3'.4'-Cl.	Н	4.3 (M) 160; 4.6 (BC) 171
187	NH ₂	NH_2	SO ₂ C ₆ H ₃ -3',4'-Cl ₂	н	4.2 (M) 160; 5.8 (BC) 171
188	NH_2	NH_2	CH ₂ SC ₆ H ₄ -4'-Cl	Н	7.7 (M) 160; 7.2 (BC) 171
189	NH_2	NH_2	S-2'-C ₁₀ H ₇	н	6.9 (M) 160; 7.2 (BC) 171
190	NH_2	NH_2	$SO-2'-C_{10}H_7$	Н	4.3 (M) 160; 4.4 (BC) 171
191	NH_2	NH_2	$SO_2-2'-C_{10}H_7$	Н	4.8 (M) 160; 3.0 (BC) 171
192	NH_2	\mathbf{NH}_2	$trans-CH=CH-2'-C_{10}H_7$	H	5.3 (M) 160; 7.1 (BC) 171
193	NH_2	NH_2	$cis-CH=CH-2'-C_{10}H_7$	H	6.5 (M) 160; 7.4 (BC) 171
194	NH_2	NH_2	$CH_2CH_2-2'-C_{10}H_7$		7.7 (M) 160; 8.0 (BC) 171
195	NH_2	\mathbf{NH}_2	5, 5-CH —CH	1111	5.0 (101) 210; 5.4 (DIN) 210 5.4 (11) 215; 5.8 (P7) 215
106	NH	NH.	56-CH=CH-	-N(CH _a)	5.8 (M) 215; 5.7 (BN) 215
190	1112	14112	0,0 011 011		5.5 (U) 215; 5.6 (BZ) 215
197	NH₀	NH₀	5,6-CH = CH	-CH==CH	7.0 (M) 130
198	NH,	NH_2	5,6-CH=CCl-	-CH=CH ₂	7.0 (M) 130
199	NH_2	NH_2	5,6-CH=CClC	H=CH (7,8-dihydro)	7.4 (M) 130
200	NH_2	\mathbf{NH}_2	5,6-CH CHN	$[CH_2-c-CH(CH_2)_4]$	7.2 (M) 215; 7.0 (BN) 215
					8.0 (U) 215; 7.7 (BZ) 215
201	NH_2	NH_2	5,6-CH=CHN	$(CH_2 - 2' - C_5 H_4 N)$	8.1 (M) 215; 7.8 (BN) 215
000	NU	NU	5 CU-CUN	(CH A/ CHN)	8.0 (M) 215; 8.0 (BZ) 215
202	IN II 2	INIT ₂	5,6-011-0111	(0112-4-0511414)	7 9 (II) 215, 8.6 (BZ) 215
203	NH.	NH.	56-CH=CHN	(CH-C-H-)	8.3 (M) 215; 8.5 (BN) 215
200	11112	14112	0,0 011 0111	(02083)	8.6 (U) 215; 8.5 (BZ) 215
204	NH ₂	NH_2	5,6-CH=CHN	$(CH_2C_6H_3-3',4'-Cl_2)$	8.5 (M) 215; 7.8 (BN) 215
-	-	-			8.4 (U) 215; 8.7 (BZ) 215
205	NH_2	NH_2	5,6-CH=CHN	$(CH_{2}C_{6}H_{4}-4'-CH_{3})$	9.0 (M) 215; 8.8 (BN) 215
					8.6 (U) 215; 9.1 (BZ) 215
206	NH_2	\mathbf{NH}_2	5,6-CH=CHN	$(CH_2C_6H_4-4'-CN)$	8.7 (M) 215; 8.2 (BN) 215
007			r c cu—cun		8.4 (U) 215; 9.1 (BZ) 215 9.2 (M) 915, 9.2 (DN) 915
207	NH_2	\mathbf{NH}_2	5, 5-CH =CHN	$[CH_2C_6H_2-3^{\circ},4^{\circ},5^{\circ}-(CCH_3)_3]$	8.5 (II) 215; 8.4 (BZ) 215
208	NH.	он	н	н	4.3 (M) 156
209	NH ²	ŎĤ	H	H (5,6,7,8-tetrahydro)	4.0 (M) 156
210	NH,	ОН	Н	6-H; 7CF ₃	4.3 (M) 156
211	NH_2	OH	Н	CH ₃	4.4 (M) 156
212	NH_2	OH	Н	CH ₃ (5,6,7,8-tetrahydro)	4.3 (M) 156
213	NH_2	OH	H	SC_6H_3 -3',4'- Cl_2	6.9 (M) 171; 5.9 (BC) 171
214	NH_2	OH	H	$SU_2C_6H_3$ -3',4'- Cl_2	7.1 (M) 171; 5.3 (BU) 171 (M II) 170; (DN AK) 199
215		0H 0H	л Ч	$\mathbf{NHCH}_{2}\mathbf{C}_{6}\mathbf{H}_{5}$	(M, U) 170, (BN, AA) 100 60 (M) 191.46 (BC) 191
217	NH2	OH	Ĥ	CH ₀ NHC ₆ H ₄ -4'-COOH	6.8 (M) 191; 5.7 (BC) 191
218	NH.	он	H	CH ₂ NHC ₆ H ₄ -4'-COOC ₂ H ₅	4.7 (D) 223
219	\mathbf{NH}_{2}^{2}	OH	Н	NHCH ₂ C ₆ H ₄ -4′-COOC ₂ H ₅	5.5 (D) 223

INDDE	IX (Continued	.)			
no.	R ₂	R ₄	R_5	R ₆	activity (enzyme) ref
220	NH.	08	н	S-2'-CH-	7 3 (M) 171 6 7 (BC) 171
001	NU	011	 u	SO 9/ C H	7.4 (M) 171, 5.9 (DC) 171
221			п 11	$30-2-0_{10}n_7$	7.4 (M) 171; 5.3 (BC) 171
222	NH_2	OH	п	$SO_2 - 2 - O_{10}H_7$	8.0 (M) 171; 6.3 (BC) 171
223	NH_2	ОН	н	CH ₂ NHC ₆ H ₄ -4'-CO-Asp	4.0 (BE) 177; 6.6 (AB) 112
					6.2 (BD) 112
224	NH_2	OH	н	NHCH ₂ C ₆ H ₄ -4'-CO-Glu	6.7 (M) 189; 4.7 (BC) 203
	-				5.8 (D) 223
225	NH.	OH	н	CH ₂ N(CH ₂)C ₂ H ₄ -4'-CO-Asp	6.1 (AB) 112: 8.8 (BD) 112
	2			2	(BE) 177
226	NH.	OH	н	CH_NHC_H_4/-CO-Gh	6.6 (M) 230 7.6 (M) 203
220	1112	011			6.6 (AB) 112: 6.6 (BD) 112
					5.9 (D C) 909. (11) 910
					(DE) 177
005		011	TT		(BE) 177
227	NH ₂	OH	H	$CH_2SC_6H_4-4$ -CO-Glu	4.9 (D) 223
228	NH_2	ОН	н	CH ₂ CH ₂ C ₆ H ₄ -4′-CO-Glu	6.3 (D) 223
229	NH_2	OH	Н	$CH_2N(CH_3)C_6H_4-4'-CO-Glu$	7.4 (M) 203; 6.4 (BC) 203
					6.8 (BD) 112; 6.7 (AB) 112
					6.2 (D) 223; (Y. BN) 164
230	NH.	он	н	CH ₀ N(CHO)C ₀ H ₂ -4'-CO-Glu	8.8 (M) 203: 9.0 (BC) 203
231	NH.	OH	н	CH-N(CH-C=CH)C-H-4'-CO-Gh	7 9 (II) 257
000	NU	011	и Ц		77(II) 957
232			11	$CH_2N(CH_2CH-CH_2)C_6H_4-4-CO-Glu$	7.7 (U) 257
233	NH_2	OH	н	$CH_2N(CH_2CH_2CH_3)C_6H_4-4'-CO-Glu$	7.7 (U) 257
234	NH_2	ОН	H	$\mathrm{NHCH}_{2}\mathrm{C}_{6}\mathrm{H}_{4}$ -4'-CO-Glu $(\mathrm{C}_{2}\mathrm{H}_{5})_{2}$	6.2 (M) 66; 4.6 (BC) 203
					5.7 (D) 223
235	NH_2	OH	н	$CH_2NHC_6H_4-4'-CO-Glu(C_2H_5)_2$	6.3 (M) 203; 5.1 (BC) 203
236	NH_{2}	OH	н	$CH_2SC_6H_4$ -4'-CO-Glu(C_2H_5) ₂	5.1 (D) 223
237	NH	OH	н	CH ₂ N(CH ₂)C ₂ H ₄ -4'-CO-Glu(C ₂ H ₂) ₂	6.0 (M) 203; 5.3 (BC) 203
238	NH.	OH	CI	Η	4.6 (M) 156
200	NH	04	CI	NHCH.C.H.M.COOC.H.	61 (M) 191 61 (BC) 191
200				CH NHC H 4 CO Ch	(M) 200
240				$Cn_2NnC_6n_4$ -4-CO-Giu	(101) 223
241	NH_2	OH	CH ₃	H	4.8 (M) 100
242	NH_2	OH	CH ₃	NHCH ₂ C ₆ H ₄ -4'-COOH	5.6 (M) 191; 4.1 (BC) 191
243	NH_2	ОН	CH ₃	$NHCH_2C_6H_4-4'-COOC_2H_5$	5.5 (M) 191; 5.5 (BC) 191
244	NH_2	ОН	CH_3	$\mathrm{NHCH}_{2}\mathrm{C}_{6}\mathrm{H}_{4}$ -4'-CO-Glu	6.4 (M) 189; 5.2 (BC) 203
					6.1 (D) 223
245	NH_2	OH	CH_3	CH ₂ NHC ₆ H ₄ -4'-CO-Glu	6.0 (M) 229
246	NH_{2}	он	CH ₃	NHCH ₂ C ₆ H ₄ -4'-CO-Glu(C ₂ H ₅) ₂	5.6 (M) 189; 3.9 (BC) 203
	-		•		5.1 (D) 223
247	NH	ОН	S-2'-C10H7	н	6.2 (M) 160: 4.7 (BC) 171
248	NH.	0H	SO2'-CH.	н	4.9 (M) 160: 5.9 (BC) 171
240	NH.	SH	н	H	44 (M) 156
250	NU	SU SU	и Ч	S-9/-CH	6.6 (M) 171:61 (BC) 171
200 051		SH SH	11 U	SO 9/ C U	7.6 (M) 171, 5.9 (DC) 171
201	N_{12}	SIL N(CH)	п ч	$SO_2 - 2 - O_{10} \Pi_7$	(M II) 170
202	$N(CH_3)_2$	$N(CH_3)_2$	п	$NHCH_2 \cup_6 H_3 - 3, 4 - Cl_2$	(\mathbf{N}, \mathbf{U}) 170
253	NHC ₄ H ₉	NHC ₄ H ₉	H	$NHCH_2C_6H_3-3', 4'-Cl_2$	(M, U) 170
254	$N(C_2H_5)_2$	$N(C_2H_5)_2$	H	$NHCH_2C_6H_3-3',4'-Cl_2$	(M, U) 170; (BN, AK) 183
255	$\rm NHC_6H_5$	NHC ₆ H₅	Н	$\mathbf{NHCH}_{2}\mathbf{C}_{6}\mathbf{H}_{3}$ -3',4'- \mathbf{Cl}_{2}	(M , U) 170
256	NHCOCH ₃	OH	H	Н	4.3 (M) 156
257	NHCOCH3	ОН	н	$SO_2-2'-C_{10}H_7$	6.1 (M) 171; 3.3 (BC) 171
258	OH	NH_2	Н	Н	4.0 (M) 156
259	OH	NH ₂	Н	$S-2'-C_{10}H_7$	5.8 (M) 171; 4.3 (BC) 171
260	OH	он	н	н	3.9 (M) 156
261	OH	OH	H	S-2'-CuoHa	5.1 (M) 171: 4.3 (BC) 171
262	OH	SH	 Н	S-2'-C. H.	5.2 (M) 171: 4.2 (BC) 171
262	SH	NH.	и Ч	Ч - С <u>1011</u> 7	3.7 (M) 156
203	011 QU	NU	u u	20/C U	5.5 (M) 171. $A = 7$ (DC) 171
204	on ou		п u	$5^{-2} - 0_{10} \pi_7$	$5.5 (101) 171; 4.7 (150) 171 \\ 5.0 (101) 171; 0.0 (100) 171$
260	51	OH	п	$5 - 2 - 0_{10} \pi_7$	5.0 (M) 171; 3.9 (BC) 171
266	SH	SH	H	S-2'-U ₁₀ H ₇	5.1 (M) 171; 3.7 (BC) 171
267	CH ₃	NH_2	н	NHCH ₂ C ₆ H ₅	(M , U) 170

TABLE X. Inhibition by 4,6-Diamino-1,2-dihydro-2,2-dimethyl-1-(X-phenyl)-s-triazines

TABLE X (Continued)

no.	X	activity (enzyme) ref
		7.3 (X) 235; 7.1 (M) 221; 3.7 (BN) 222
4	4-Br	7.0 (H) 251; 6.2 (M) 251
5	2-Cl	3.8 (AB) 9; 3.7 (BJ) 9; 4.6 (CD) 63
		4.1 (N) 74; 4.1 (M) 74; 4.9 (H) 247
C	a (1	4.7 (X) 247
б	3-01	8.1 (Q) 9; 6.2 (BJ) 9; 7.9 (AB) 24 7.7 (CD) 69: 7.8 (N) 74: 7.5 (M) 74
		8.0 (I) $74 \cdot 5.7$ (AI) $104 \cdot 7.3$ (AA) 104
		7.0 (M) 104; 7.9 (H) 235; 7.3 (X) 235
		6.8 (M) 221; 3.5 (BN) 222
7	4-Cl	6.2 (Q) 9; 6.4 (AB) 9; 6.4 (BJ) 9
		7.1 (CD) 63; 6.0 (AL) 104; 6.3 (AA) 104
0	0 F	5.9 (M) 104; 9.1 (AP) 116
8	2-F	4.7 (N) 75; 4.8 (M) 75; 4.9 (H) 247 4.4 (N) 947
9	3-F	7.6 (H) 235; 6.7 (X) 235; 6.4 (M) 221
		3.3 (BN) 222
10	4-F	7.2 (H) 251; 6.7 (M) 251
11	2-I	4.6 (N) 75; 4.6 (M) 75; 3.4 (H) 247
19	9 T	2.5 (X) 247
12	3-1	7.7 (H) 230; 7.2 (X) 230; 7.1 (N) 221 3.7 (H N) 299
13	4 -I	7.0 (H) 251: 6.5 (M) 252
14	2-NH ₂	4.1 (H) 247; 3.4 (X) 247
15	$4-NH_2$	5.7 (H) 251
16	3-NO ₂	7.1 (CD) 63; 5.5 (BJ) 63; 7.1 (AB) 26
		7.1 (N) 74; 6.7 (M) 74; 6.7 (U) 74
17	9 OH	7.3 (H) 235; 6.4 (X) 235; 3.6 (BN) 222 2.0 (H) 247; 2.0 (X) 247
18	2-0H 3-0H	5.9 (H) 247; 2.9 (X) 247 6 A (H) 235: 5 A (X) 235: 3 2 (B N) 222
19	4-OH	5.8 (H) 251
20	2-SH	7.2 (H) 247; 6.9 (X) 247
21	$3-SO_2F$	7.3 (N) 72; 6.8 (U) 72; 6.4 (H) 221
		3.2 (BN) 221
22	$3-SO_2NH_2$	5.4 (H) 235; 4.7 (X) 235; 4.4 (M) 221
23	4-SO-NH	5.0 (H) 251: 4.5 (M) 251
23	2.3-Cl ₂	6.5 (N) 75: 6.4 (M) 75
25	2,5-Cl ₂	3.4 (N) 75; 3.5 (M) 75
26	$2,4-Cl_2$	3.8 (N) 75; 3.8 (M) 75
27	$3,4-Cl_2$	7.3 (Q) 9; 7.8 (AB) 9; 6.8 (BJ) 9
		7.7 (CD) 63; 6.8 (BJ) 63; 8.5 (N) 74
		7.9 (U) 74; 5.5 (AL) 104; 7.6 (AA) 104 8.4 (M) 104
28	2.4.5-Cl.	4.4 (N) 75: 4.0 (M) 75
29	2-CH ₃	4.4 (N) 75; 4.0 (M) 75; 4.6 (H) 247
	-	4.4 (X) 247
30	$3-CH_3$	7.1 (AB) 53; 7.7 (H) 235; 6.8 (M) 221
91	4 CH	6.8 (X) 235; 3.1 (BN) 222 7.1 (H) 251, 6.4 (M) 251
32	4-011 ₃ 3-CH ₂ OH	6.1 (CD) 63; 5.4 (BJ) 63; 6.5 (AB) 63
33	2-CF ₂	3.1 (H) 247; 3.0 (X) 247
34	3-CF ₃	7.1 (AB) 26; 7.5 (CD) 63; 5.6 (BJ) 63
		7.8 (N) 74; 7.6 (M) 74; 7.4 (U) 74
		7.6 (H) 235; 7.1 (X) 235; 7.1 (M) 221
25	4-CF	3.3 (BN) 222 7.1 (H) 951 6.1 (M) 951
36	3-CN	7.5 (H) 235; 7.0 (X) 235; 6.7 (M) 221
		3.7 (BN) 222
37	4-CN	5.1 (AB) 26; 5.0 (CD) 63; 4.0 (BJ) 63
22		5.1 (N) 74; 4.8 (M) 74; 5.0 (U) 74
38	$4-CH_2NH_3^{+}$	5.0 (AB) 26; 5.1 (CD) 63; 3.9 (BJ) 63 2.7 (N) 75: 2.7 (M) 75: 2.6 (H) 247
39	2-00113	3.1 (X) 247
40	3-OCH ₃	6.3 (AB) 54; 6.6 (CD) 63; 5.4 (BJ) 63
	-	6.2 (N) 74; 6.1 (M) 74; 6.1 (U) 74
		6.9 (H) 235; 6.0 (X) 235; 6.3 (M) 221
<i>x</i> 1	4-0CH	3.1 (BIN) 222 6.2 (II) 79:6.9 (H) 251:6.3 (M) 251
42	2-SCH	3.5 (H) 247; 2.5 (X) 247
43	3-COOH	4.0 (AB) 26; 4.1 (CD) 63; 3.9 (BJ) 63
-		4.7 (N) 74; 4.7 (M) 74; 4.2 (U) 74
44	4-COOH	3.0 (AB) 26; 3.1 (CD) 63; 2.7 (BJ) 63
45	3-CONH.	2.7 (U) 74 5.7 (H) 935• 4.7 (X) 935• 9.5 (RN) 999
46	4-CONH	4.8 (H) 251
47	$4-SO_2CH_3$	5.7 (H) 251

TABLE X (Continued)

no.	X	activity (enzyme) ref
48	2-CoHr	40 (H) 247: 34 (X) 247
49	4-CoH	6.3 (II) 79
50	2-CH ₀ CN	4.0 (H) $247: 2.7$ (X) 247
51	4-CH ₂ CN	6.9 (II) 154
52	3-CH ₂ OCH	6.7 (AB) 54
53	3-COCH	6.2 (H) 235; 5.4 (X) 235; 5.4 (M) 221
		2.9 (BN) 222
54	4-COCH.	5.9 (H) 251
55	4-COOCH ₃	5.1 (H) 251: 4.3 (M) 251
56	$4-N(CH_3)_{2}$	6.0 (AB) 26
57	3-COCH ₂ Čl	5.8 (AB) 24; 5.9 (CD) 63; 5.4 (BJ) 63
	-	6.2 (N) 70; 5.9 (U) 70
58	4-COCH ₂ Cl	5.9 (AB) 63; 5.8 (CD) 63; 4.6 (BJ) 63
		6.4 (N) 70; 6.0 (U) 70
59	2,6-(CH ₃) ₂	4.5 (CD) 63; 4.0 (BJ) 63; 3.8 (AB) 63
		4.0 (N) 74; 3.8 (M) 74; 4.1 (U) 74
60	$3-OC_{3}H_{7}-n$	5.8 (AB) 53
61	$2-OCH(CH_3)_2$	3.2 (AB) 84
62	$3-COOC_2H_5$	5.7 (H) 235; 5.1 (X) 235; 5.7 (M) 221
		3.2 (BN) 221
63	$4-\text{COOC}_2\text{H}_5$	4.4 (AB) 26; 4.5 (CD) 63; 4.4 (BJ) 63
		4.6 (U) 74; 4.8 (H) 251; 4.4 (M) 251
64	$4-(CH_2)_2CONH_2$	6.5 (U) 79
65	$4-CH_2NHCOCH_3$	7.0 (AB) 26; 5.9 (CD) 63; 4.5 (BJ) 63
66	$3-CH_2NHCOCH_2Br$	6.4 (AB) 70; 6.7 (M) 70; 6.6 (U) 70
67	$3-C_4H_9-n$	7.5 (AB) 53
68	4-C ₄ H ₉ -n	6.3 (A) 32; 7.4 (K) 32; 6.8 (M) 32
		6.8 (J) 32; 4.0 (BJ) 32; 3.5 (AZ) 32
		4.5 (BG) 32; 5.1 (AI) 90; 5.4 (AN) 90
		4.7 (AL) 90; 5.5 (AO) 90; 5.5 (AK) 90
		5.4 (AJ) 90; 4.2 (AM) 90; 5.1 (AN) 115
		4.3 (AT) 115; 8.1 (AP) 115; 4.8 (AR) 115
		3.2 (BJ) 110; 4.7 (AL) 67; 8.1 (AP) 88
		0.2 (2) 00; 0.3 (11) 88; 4.7 (1) 880.0 (DI) 89; 7.0 (H) 90; 5.1 (DI) 90
		3.2 (BJ) 86; 7.2 (R) 26; 5.1 (BJ) 39 6.0 (I) 69: 7.9 (II) 74: 4.7 (AL) 104
		0.7 (1) 03; 7.3 (U) 74; 4.7 (AL) 104 6.5 (AA) 104 71 (M) 104 74 (H) 051
		$\begin{array}{c} \textbf{0.0} (\textbf{AA}) \ \textbf{104}; \ \textbf{7.1} \ (\textbf{W1}) \ \textbf{104}; \ \textbf{7.4} \ (\textbf{\Pi}) \ \textbf{201} \\ \textbf{7.1} \ (\textbf{M}) \ \textbf{951}; \ \textbf{6.9} \ (\textbf{A}) \ \textbf{146}; \ \textbf{9.9} \ (\textbf{A7}) \ \textbf{146} \end{array}$
		(11) (W) 201, 0.2 (A) 140, 0.3 (A2) 140 A () (BC) 146, (BK) 109, (BI) 109
69	2-C(CH_)	4.0 (DG) 140, (DR) 150, (DI) 150
70	2-0(0H ₃) ₃ 3-C(CH ₂) ₂	7.1 (H) 225.6 A (X) 225.6 α (M) 221
	0 0(0113)3	3.2 (BN) 222
71	4-C(CH ₀) ₂	69 (H) 251: 64 (M) 251
72	3-O(CH ₀) ₀ CH ₀	7.0 (H) 235; 6.3 (X) 235; 7.0 (M) 221
		4.2 (BN) 222
73	4-OCH ₂ CH(CH ₂)	5.4 (AB) 84
74	2.3-CH ₂ CH ₂ CH ₂ CH ₃	3.8 (AB) 84
75	2,3-CH—CHCH—CH	3.9 (AB) 84
76	3,4-CH—CHCH—CH	5.4 (AL) 104: 6.0 (AA) 104: 6.2 (M) 104
77	4-Cl; 2,3-CH=CHCH=CH	4.2 (AB) 84
78	3-(CH ₂) ₂ COCH ₂ Cl	7.1 (AB) 79; 7.1 (N) 70; 7.5 (U) 70
79	$4-(CH_2)_2COCH_2Cl$	7.6 (AB) 70; 7.9 (N) 70; 7.4 (U) 70
80	$4-CH_2CON(CH_3)_2$	6.6 (U) 154
81	3-OCH ₂ CON(CH ₃) ₂	5.4 (U) 154
82	$4-OCH_2CON(CH_3)_2$	6.3 (U) 154
83	$3-Cl; 4-OCH_2CON(CH_3)_2$	7.2 (U) 154
84	$4-(CH_2)_2CON(CH_3)_2$	7.0 (U) 154
85	6-CH ₃ ; 2,3-CH=CHCH=CH	2.9 (AB) 84
86	6-CH ₃ ; 2,3-CH ₂ CH ₂ CH ₂ CH ₂	3.3 (AB) 84
87	$3-(CH_2)_5CH_3$	7.4 (H) 235; 7.1 (X) 235; 5.0 (BN) 222
88	$3-C_6H_5$	5.9 (AB) 26; 6.0 (BJ) 39; 8.0 (CD) 63
		6.8 (N) 74; 6.7 (M) 74; 6.3 (U) 74
89	$4-C_6H_5$	3.8 (AB) 26; 5.5 (BC) 128; 5.2 (BJ) 39
		5.0 (CD) 63; 4.7 (N) 74; 4.7 (M) 74
22	4 0 0 T	4.3 (U) 74
90	$4 - UC_6H_5$	5.3 (AB) 84
91	$4 - 0C_6 H_4 - 4' - 5U_2 F'$	5.8 (U) 98 9.4 (AD) 94
92	$4 - 0 \cup \Pi_2 \cup \Pi_2 \mathbb{N}(\cup_2 \Pi_5)_2$	3.4 (AB) 84 C 9 (U) 951
07 07	4-00H200-0-IN(0H20H2)20 3-(CH-).COCH.Cl	0.0 (II) 401 7.6 (AB) 70, 7.1 (N) 70, 7.6 (II) 70
95	$4 - CH_2 (0) C_2 H_2 (0)$	1.0 (AD) 10; 1.1 (IN) 10; 1.0 (U) 10 6.8 (II) 154
96	4-CH_CO_c_N(CH_CH_)-O	7 1 (TI) 154
97	4-OCH_CON(C_H_)	6 7 (II) 154
98	3-CONH-3'-C-H/N	6.7 (U) 121
99	4-OCH ₂ CO-c-N(CH ₂)	6.7 (U) 154
100	3-OCH2CO-c-N(CH2CH2)2O	4.8 (U) 154
101	4-OCH2CO-c-N(CH2CH2)2O	7.3 (U) 154

TABLE X (Continued)

no.	X	activity (enzyme) ref
102	$3-Cl; 4-OCH_2CON(C_2H_5)_2$	7.6 (U) 154
103	$3-Cl_{1}^{2}$ 4-OCH ₂ CO-c-N(CH ₂) ₄	7.3 (U) 154
104	3-Cl; 4-OCH ₂ CO-c-N(CH ₂ CH ₂) ₂ O	7.8 (U) 154
105	$3-CH_2NHCON(C_2H_5)_2$	6.1 (U) 155
106	3-CH ₂ NHCO-c-N(CH ₂ CH ₂) ₂ O	6.4 (U) 155
107	$3-CH_2C_6H_5$	7.7 (AB) 24; 6.6 (BJ) 39; 8.0 (CD) 63
		6.8 (N) 74; 6.7 (M) 74; 6.3 (U) 74
108	$4-CH_2C_6H_5$	6.7 (BC) 128; 7.2 (AB) 39; 5.3 (BJ) 39
		5.0 (CD) 63; 4.7 (N) 74; 4.7 (M) 74
		4.3 (U) 74
109	$3,4-(CH_2-2'-C_6H_4)(2-fluorenoyl-1-triazine)$	4.1 (AB) 24; 5.1 (CD) 63; 5.8 (BJ) 63
		4.8 (N) 74; 4.7 (M) 74; 5.0 (U) 74
110	$3-(D,L)-CH(OH)C_6H_5$	6.5 (H) 235
111	$3-CH_2OC_6H_5$	7.8 (H) 235; 7.7 (X) 235; 5.4 (BN) 255
110		7.3 (AB) 54
112	$3-CH_2OC_6H_4-3$ -CI	7.7 (H) 235; 7.5 (X) 235; 5.0 (BN) 255
113	3-0CH ₂ C ₆ H ₅	7.7 (H) 235; 5.8 (A) 235; 5.9 (M) 221
114		4.2 (DIN) 222 7.0 (AD) 84.7.2 (H) 051.7.0 (M) 051
114	$4 - 0 \subset \Pi_2 \cup_6 \Pi_5$	7.0 (AD) 64; 7.3 (A) 201; 7.3 (N) 201 7.0 (H) 995; $C \neq (N)$ 995; $C \neq (M)$ 991
115	3-0011 ₂ 0611 ₄ -3,4 -01 ₂	$(1.9 (\Pi) 230; 0.4 (\Lambda) 230; 0.8 (\Pi) 221$
116	4-0CH-C-H3' 4'-Cl-	7.4 (H) $251.7.9$ (M) 251
117	3-Cl: 4-OCH-C-H-	7.5 (II) 154
118	3-C1; 4-OCH ₂ C ₆ H ₂ -2'-SO ₂ F	7 4 (II) 126
119	$3-Cl: 4-OCH_{2}C_{2}H_{2}-3'-SO_{2}F$	7.7 (U) 126
120	3-Cl: 4-OCH ₂ C _e H ₄ -4'-SO ₂ F	7.6 (U) 126
121	3-Cl; 4-OCH ₂ C ₆ H ₃ -3'-Cl-2'-SO ₂ F	7.4 (U) 126
122	3-Cl; 4-OCH2C6H3-4'-Cl-2'-SO2F	7.5 (U) 126
123	3-Cl; 4-OCH ₂ C ₆ H ₃ -5'-Cl-2'-SO ₂ F	7.3 (U) 126
124	3-Cl; 4 -OCH ₂ C ₆ H ₃ -6'-Cl-2'-SO ₂ F	7.7 (U) 126
125	$3-Cl; 4-OCH_2C_6H_3-2'-Cl-3'-SO_2F$	7.5 (U) 126
126	$3-Cl; 4-OCH_2C_6H_3-4'-Cl-3'-SO_2F$	8.0 (U) 126
127	$3-Cl; 4-OCH_2C_6H_3-6'-Cl-3'-SO_2F$	7.4 (U) 126
128	$3-Cl; 4-OCH_2C_6H_3-2'-Cl-4'-SO_2F$	7.4 (U) 126
129	3-Cl; 4-OCH ₂ C ₆ H ₃ -3'-Cl-4'-SO ₂ F	7.4 (U) 126
130	$4 - OCH_2CO - c - N(CH_2)_5$	7.1 (U) 154
131	3-CI; 4-UCH ₂ CU-c-N(CH ₂) ₅	7.5 (U) 154
132	$4 - CH_2 CH_2 CON(C_2H_5)_2$	7.3 (U) 154
133	$4 - CH_2 CH_2 CU - C - N (CH_2 CH_2)_2 U$	7.3 (U) 154 7.0 (AD) 50
104	3 CH NHC H - 4' SO NH	7.2 (AD) 00 7.7 (H) 995, 6.8 (V) 995, 5.0 (DN) 999
135	$3-Cn_2 nn_6 n_4 - 4 - 50_2 nn_2$ $3-Cn_7 H_2$	(A = 1, 1, 2, 2, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
130	3-CONHC.H4'-SO.F	6.0 (N) 64.5 A (II) 64.5 Q (AB) 64
138	$4 - CONHC_{0}H_{1} - 4' - SO_{0}F$	4.7 (N) 64 ; 3.2 (II) 64 ; 3.8 (AB) 64
100	1 001 006-4 1 002	4.5 (Q) 135: 4.4 (S) 135: 4.0 (U) 135
139	3-CONHC _e H ₄ -3'-SO ₂ F	6.6 (N) 72: 6.2 (U) 72
140	3-CONHCH2-3'-C5H4N	7.1 (U) 121
141	4-CONHC ₆ H ₄ -3'-SO ₂ F	4.7 (N) 72; 4.0 (U) 72
142	$3-CH_2CH_2C_6H_5$	7.6 (AB) 24; 7.0 (BJ) 39; 7.8 (CD) 63
		8.2 (U) 110
143	$4-CH_2CH_2C_6H_5$	7.9 (U) 110; 7.8 (AB) 53
144	$3-CH_2CH_2C_6H_4-4'-SO_2F$	8.1 (U) 110
145	$4 - CH_2 CH_2 C_6 H_4 - 4' - SO_2 F'$	7.8 (N) 79; 7.4 (U) 79
146	4-CI; 3-(CH ₂) ₂ C ₆ H ₄ -4'-SO ₂ F 2 Cl. 4 (CH) C H 4/ SO F	5.8 (U) 125 7.8 (U) 08: 8.1 (N) 199: 7.7 (M) 199
147	$3-C1; 4-(CH_2)_2C_6H_4-4-5O_2F$	7.8 (U) 98; 8.1 (N) 122; 7.7 (M) 122 8.2 (U) 125
140	$3 - C_1$; $4 - (C_{12})_2 C_6 R_3 - 2 - C_1 - 4 - S_{12} C_2 F$	0.3 (U) 120 7.9 (II) 195
149	$3 - CI; 4 - (CH_2)_2 C_6 H_3 - 3 - CI - 4 - SO_2 F$	7.0 (U) 120 9.3 (II) 195
150	$3 - C_1, 4 - (C_{H_2})_2 - C_6 - R_3 - 4 - C_1 - 3 - S_0 -$	8.3 (U) 125 8.3 (U) 125
159	3-Cl: 4-(CH ₂) ₂ C ₆ H ₃ -3-Cl-2-5O ₂ F	8.0 (U) 125
152	3-Cl: 4-(CH ₂) ₂ C ₆ H ₃ -4-Cl-2-SO ₂ F	7.8 (U) 125
154	3-CH ₂ OC ₂ H ₂ -3'-CH ₂	8.0 (H) 235; 7.2 (X) 235; 5.3 (BN) 255
155	3-CH ₂ OC ₄ H ₄ -3'-CH ₂ OH	7.9 (H) 235; 7.4 (X) 235; 5.4 (BN) 255
156	3-CH2OC4H4-3'-OCH3	8.0 (H) 235; 7.6 (X) 235; 5.6 (BN) 255
157	3-CH ₂ OC ₆ H ₄ -3'-CN	7.8 (H) 235; 7.6 (X) 235; 5.3 (BN) 255
158	3-CH ₂ OC ₆ H ₄ -3'-NHCONH ₂	7.8 (H) 235; 7.5 (X) 235; 5.4 (BN) 255
159	3-CH ₂ OC ₆ H ₄ -3'-NHCSNH ₂	7.8 (H) 235; 7.3 (X) 235; 4.4 (BN) 255
160	3-OC ₆ H ₄ -4'-NHCOCH ₂ Br	7.1 (AB) 70; 7.9 (N) 70; 7.5 (U) 70
161	3-CI; 4-UCH ₂ C ₆ H ₄ -3'-CN	7.5 (U) 154 7.4 (U) 196
162	э-UI; 4-UUП2U6H3-2'-UH3-4'-SU2F э ОСН СН С Н	(.4 (U) 120 6.6 (AB) 54
103 164	3-0(CH_)-0C_H-	7 1 (AB) 54 8 2 (H) 235 6 8 (X) 140
104	0 0 (0 112/2006115	7.2 (M) 221: 3.7 (BN) 222
165	3-O(CH ₂) ₂ OC ₂ H ₄ -4'-SO ₂ F	7.8 (U) 124
166	4-O(CH ₂) ₂ OC ₆ H ₄ -4'-SO ₂ F	7.8 (N) 79; 7.3 (U) 79
167	4-O(CH ₂) ₂ OC ₆ H ₄ -4'-NH ₂	7.2 (H) 251
168	4-Cl; $3-\overline{O}(CH_2)_2OC_6H_4-4^7-SO_2F$	7.3 (U) 124

n o.	X	activity (enzyme) ref
100	0.01 4.0(011) 0.0 H 4/ 00 F	
169	$3-CI; 4-O(CH_2)_2OC_6H_4-4-SO_2F$	7.4 (∪) 98; 7.9 (⊌) 98
170	3-CH ₂ CONHC ₆ H ₅	6.5 (AB) 64
171	3-CH.CONHC.H.4/-SO.F	7 3 (N) 64. 7 2 (M) 64. 6 5 (AB) 64
111	0-011200111108114 4 8021	(11) 04, 1.2 (11) 04, 0.0 (112) 04
		6.5 (U) 64
172	4-CH ₂ CONHC ₆ H ₄ -4'-SO ₂ F	7.7 (N) 64; 7.0 (U) 64; 7.3 (AB) 64
		7.3 (Q) 135: 7.3 (D) 135: 7.7 (U) 135
179	A CH CONHC H 9/ SO F	(\mathbf{q}) 100, 10 (1) 100, 11 (0) 100
173	4-CH2CONHC6H4-3-502F	8.1 (N) 72; 7.5 (U) 72
174	$3-CH_2NHCONHC_6H_5$	7.5 (U) 155
175	3-CH_NHCONHC_H3'-Cl	8.0 (U) 155
176	2 CH NHCONHC H 2/ NO	0 1 (TI) 155
110		0.1(0)100
177	3-CH ₂ NHCONHC ₆ H ₄ -3'-SO ₂ F	7.2 (AB) 72; 7.6 (N) 72; 7.2 (U) 72
178	4-CH ₂ NHCONHC ₆ H ₄ -3'-SO ₂ F	8.0 (N) 79: 7.5 (U) 79
179	ACH NHCONHC H A/ SO F	8 0 (N) 79. 7 1 (II) 79. 7 3 (II) 99
110	4-011211110011110g114-4-0021	5.0(11) 10, 1.1(0) 10, 1.0(0) 00
		7.6 (Q) 91
180	3-Cl; 4-CH ₂ NHCONHC ₆ H ₄ -4'-SO ₂ F	7.9 (U) 91; 8.8 (Q) 135; 8.6 (S) 135
		87 (II) 135
101	9 CL 4 CH NHCONHC H 9/ CL 4/ SO F	
101	$3-01; 4-01_2$ NHCONHC ₆ $H_3-3-01-4-50_2$ F	7.7 (0) 99
182	$4-CH_2CH_2NHSO_2C_6H_4-3'-SO_2F$	7.6 (N) 79; 6.8 (U) 79
183	4-CH-CH-NHSO-C-H4'-SO-F	74 (N) 79 70 (II) 79
104		
104	3-0CH2CONHC6H5	0.8 (U) 104
185	$4-OCH_2CONHC_6H_5$	7.9 (U) 154
186	3-OCH CONHC H -4'-SOF	6.9 (II) 127
197	A OCH CONHC H A SO F	7.9 (N) 70, 7.9 (II) 70
107	4-00H20011106H4-4-502F	1.0 (IN) 19; 1.3 (U) 19
188	4-OCH ₂ CONHC ₆ H ₄ -3'-SO ₂ F	8.0 (N) 79; 7.2 (U) 79
189	3-Cl: 4-OCH ₂ CONHC ₂ H ₂ -3'-SO ₂ F	7.7 (U) 98
190	3-CI: A-OCH-CONHC.H -4/-SO.F	7.4 (II) 08: 7.6 (NI) 199: 7.6 (M) 199
190	$3-01, 4-0.011_{2} = 0.0110_{6} = 14_{-4} = 30_{2} = 1$	7.4(0) 90; 7.0 (N) 122; 7.0 (NI) 122
191	3-Br; 4-UCH ₂ CUNHC ₆ H ₄ -4'-SO ₂ F	8.1 (U) 109
192	3-Cl: 4-OCH ₂ CONHC ₂ H ₃ -2'-Cl-4'-SO ₂ F	7.7 (Q) 109
193	3 CI- 4 OCH CONHC H 3/ CL4/ SO F	7.7(0) 100
100		
194	$3-Cl; 4-OCH_2CONHC_6H_3-4'-Cl-3'-SO_2F'$	7.8 (Q) 109
195	3-Cl: 4-OCH ₂ CONHC ₂ H ₃ -2'-Cl-5'-SO ₂ F	7.7 (Q) 109
196	3.5-CL: 4-OCH-CONHC.H4'-SO-F	7.7 (II) 109
100		7.7 (0) 109
197	3-CI; 4-OCH ₂ CH ₂ NHSO ₂ C ₆ H ₄ -3'-SO ₂ F'	7.4 (Q) 106
198	3-Cl; 4-OCH ₂ CH ₂ NHSO ₂ C ₆ H ₄ -4'-SO ₂ F	7.4 (Q) 106
199	4-SCH-CONHC-H4'-SO-F	7 5 (II) 197
200	A CLASCH CONHOLD OF COL	
200	$3-01; 4-50H_200NH0_6H_4-3-50_2F$	7.7 (U) 127
201	3-Cl; 4-SCH ₂ CONHC ₆ H ₄ -4'-SO ₂ F	7.4 (U) 127
202	3-(CHa)-CaHa	8 2 (AB) 53
202		$(\mathbf{I}, \mathbf{D}) = (\mathbf{I}, \mathbf{D}) = (\mathbf{V}) = (\mathbf{V}) = (\mathbf{D}, \mathbf{V}) = ($
203	$3 - CH_2 O C_6 H_4 - 3 - C_2 H_5$	7.8 (H) 235; 7.1 (A) 235; 5.3 (BN) 255
204	$3-CH_2OC_6H_4-3'-NHCOCH_3$	8.0 (H) 235; 7.5 (X) 235; 5.5 (BN) 255
205	3-CH_NHC_H3'.5'-(CONH_)	7.7 (H) 235: 6.8 (X) 235: 4.7 (BN) 222
206		7.0 (II) 154
200	$4-0\Pi_2 \cup \Pi_2 \cup \Pi_1 \cup \Pi_2 \cup \Pi_3 \cup I_3 \cup I$	7.3 (U) 104
207	$4-CH_2CON(CH_3)C_6H_5$	7.0 (U) 154
208	3-(CH ₀) ₀ CONHC ₀ H ₂ -4'-SO ₀ F	7.2 (N) 64: 7.6 (M) 64: 7.1 (U) 64
		70 (AD) 64
222		7.0 (AD) 04
209	$4-(CH_2)_2CONHC_6H_4-4'-SO_2F$	7.7 (N) 64; 8.2 (M) 64; 7.1 (U) 64
		7.9 (U) 91: 7.6 (U) 91: 8.1 (U) 135
		71(AB) 64.78(O) 98.86(O) 135
		1.1 (AD) 04, 1.0 (Q) 30, 0.0 (Q) 100
		8.5 (S) 135
210	$4-(CH_2)_2CONHC_6H_4-3'-SO_2F$	8.1 (N) 72; 7.4 (U) 72; 7.9 (M) 79
211	4-CH=CHCONHC ₆ H ₄ -3'-SO ₆ F	59 (N) 79
		5 0 (N) 70 5 C (U) 70
212	$4-CH = CH CONHC_6H_4-4-SU_2F$	5.2 (N) 79; 5.6 (U) 79
213	$3-CH = CHCONHCH_2 - 3' - C_5H_4N$	6.8 (U) 121
214	3-Cl: 4-(CH ₂) ₂ CONHC ₂ H ₄ -4'-SO ₂ F	7.6 (U) 98: 7.8 (Q) 98: 7.8 (M) 122
	/ 2/2 0 4 2	7 8 (N) 199
015		1.0(11)122
215	$4 - \bigcup_2 \bigcup_2 \bigcup_2 \bigcup_0 \bigcup_0 \bigcup_0 \bigcup_0 \bigcup_0 \bigcup_0 \bigcup_0 \bigcup_0 \bigcup_0 \bigcup_0$	8.1 (IN) 79
216	4-CH ₂ NHCONHC ₆ H ₄ -3'-OCH ₃	8.0 (U) 155
217	4-CH_NHCONHC_H3'-CN	8.2 (U) 155
218	A CH NHCONHC H 9/ CH A/ SO F	7.0 (II) 00
218	4-0H21VHC01VHC6H3-2-0H3-4-502F	7.9 (0) 99
219	4-CH ₂ NHCONH-C ₆ H ₃ -3'-CH ₃ -4'-SO ₂ F	7.7 (U) 99
220	3-Cl: 4-CH ₀ NHCONHC ₂ H ₀ -3'-CH ₀ -4'-SO ₂ F	8.0 (U) 99
991	3 O(CH) CH	$7A(\mathbf{H})$ 995, $67(\mathbf{V})$ 995, $A7(\mathbf{DN})$ 999
221		7.4 (H) 230; 0.7 (A) 230; 4.7 (BN) 222
222	$3 - O(CH_2)_3 C_6 H_5$	7.1 (AB) 54
223	$3-O(CH_2)_3OC_6H_5$	7.0 (AB) 54
224	3-0(CH.).0C.H3/-CF.	8.9 (H) 935.7 0 (X) 935.7 1 (M) 991
222	3-0(0112)2006114-3-01 ⁻³	(11) 230, (10) (A) 230, (11) (M) 221
		4.1 (BN) 222
225	$3-OCH_2CON(CH_3)C_6H_5$	6.7 (U) 154
226	4-OCH ₂ CON(CH ₂)C ₆ H ₅	6.2 (U) 154
997	S-CI- A-OCH-CON(CH)C-H	7 Q (II) 154
441 000	0 Ol + OOH O H + (OO NOT)	1.7 (U) 104 7 5 (II) 154
228	$3-01; 4-00n_20_6n_4-4'-S0_2N(CH_3)_2$	7.5 (U) 154
229	3-OCH ₂ C ₆ H ₄ -3'-NHCOCH ₂ Br	6.7 (AB) 70; 6.9 (N) 70; 7.0 (U) 70
230	3-0(CH ₀),0C ₀ H4'-SO ₀ F	8.0 (U) 124
021	1-0(CH).0CH-1/-80 F	C Q (TT) 09
401		
232	3-CI; 4-U(UH_2) ₃ UC ₆ H ₄ -4'-SU ₂ F	7.1 (U) 98; 7.2 (N) 122; 7.3 (M) 122
233	4-Cl; 3-O(CH ₂) ₈ OC ₆ H ₄ -4'-SO ₂ F	7.5 (U) 124
234	3-Cl: 4-OCH, CON(CH,)C,H,-4'-SO,F	7.5 (U) 98
925	S-CI- A-OCH-CONUC U-9/CU A/ SO F	7.5 (0) 100
200	0-01, 7-0011200141106113-2 -0113-4 -002F	1.0 (8) 100

TABLE X (Continued)

no.	X	activity (enzyme) ref
236	3-Cl; 4-OCH ₂ CONHC ₆ H ₃ -3'-CH ₃ -4'-SO ₂ F	7.7 (Q) 109
237	3-Cl; 4-OCH2CONH-C6H3-4'-CH3-3'-SO2F	7.6 Q) 109
238	3-Cl; 4-OCH ₂ CONHC ₆ H ₃ -2'-CH ₃ -5'-SO ₂ F	7.6 (Q) 109
239	3-Cl; 4 -OCH ₂ CONHC ₆ H ₃ -2'-OCH ₃ -5'-SO ₂ F	7.8 (Q) 109
240	3-Cl; 4-OCH(CH ₃)CONHC ₆ H ₄ -4'-SO ₂ F	7.1 (Ú) 127
241	$3-Cl; 4-O(CH_2)_2NHCOC_6H_4-3'-SO_2F$	7.1 (Q) 106
242	3-Cl; 4-O(CH ₂) ₂ NHCOC ₆ H ₄ -4'-SO ₂ F	7.4 (Q) 106
243	3-Cl; 4-O(CH ₂) ₂ NHCONHC ₆ H ₄ -3'-SO ₂ F	7.4 (Q) 106
244	3-Cl; 4 -O(CH ₂) ₂ NHCONHC ₆ H ₄ -4'-SO ₂ F	8.0 (U) 106; 7.9 (N) 122; 7.9 (M) 122
245	3-Cl; 4-O(CH ₂) ₃ NHSO ₂ C ₆ H ₄ -3'-SO ₂ F	7.6 (Q) 106
246	3-Cl; 4-O(CH ₂) ₃ NHSO ₂ C ₆ H ₄ -4'-SO ₂ F	7.3 (Q) 106
247	3-Cl; $4-S(CH_2)_2CONHC_6H_4-4'-SO_2F$	7.4 (U) 127
248	$3-(CH_2)_4C_6H_5$	8.6 (AB) 39; 8.3 (U) 110
249	$4-(CH_2)_4C_6H_5$	8.0 (AB) 39; 8.0 (U) 110
250	$3-(CH_2)_4OC_6H_5$	8.3 (U) 110
251	$4-(CH_2)_4OC_6H_5$	8.2 (U) 110
252	$3-CH_2OC_6H_4-3'-CH(CH_3)_2$	7.8 (H) 235; 7.1 (X) 235; 5.4 (BN) 255
253	$3 - (CH_2)_4 C_6 H_4 - 2^2 - CI$	8.2 (AB) 53 8.9 (DC) 198: 8.9 (AB) 59: 8.1 (CD) 69
204	$3 - (CH_2)_4 C_6 H_3 - 2^2, 4^2 - CI_2$	8.2 (BC) 126; 8.3 (AB) 53; 8.1 (CD) 63
955		8.0 (U) 110; 0.7 (DJ) 03 7.0 (DC) 199, 9.9 (AD) 59, 7.9 (CD) 69
200	$4 - (C \Pi_2)_4 C_6 \Pi_3 - 2, 4 - C I_2$	7.0 (DC) 126; 0.3 (AD) 53; 7.3 (CD) 63 5.0 (DI) 69: 7.0 (II) 110
956	3 (CH) CH 9/ 6/ Cl	9.3 (D9) 53; 7.5 (C) 110 9.4 (AD) 53
250	$3 - (CH_2) + C_1 + C_2 + C_2$ $3 - (CH_2) + C_2 + C_2 + C_2$	84 (AB) 53
258	$3-Cl: 4(CH_{a}).C_{a}H_{a}$	80 (AB) 53: 7.9 (II) 110
259	3-(CH_), C_H, -4'-SO_F	81 (H) 110 77 (M) 122 79 (N) 122
260	$4 - (CH_2) + C_0 H_4 - 4' - SO_2 - 4$	7.7 (U) 98: 7.7 (M) 122: 7.9 (N) 122
261	$4-(CH_{2})_{4}OC_{2}H_{4}-4'-SO_{2}F$	8.1 (N) 125
262	3-(CH ₂), C _e H ₂ -3'-SO ₂ F	8.1 (U) 110
263	3-(CH2)4C6H3-4'-Cl-3'-SO2F	8.4 (U) 125
264	3-(CH2), C, H3-5'-Cl-2'-SO2F	8.0 (U) 125
265	$3 - (CH_2)_4 C_6 H_3 - 3' - Cl - 4' - SO_2 F$	7.7 (U) 125
266	$3-(CH_2)_4C_6H_32'-Cl-4'-SO_2F$	8.0 (U) 125
267	$4-(CH_2)_4C_6H_3-2'-Cl-4'-SO_2F$	8.0 (U) 125
268	4-Cl; $3-(CH_2)_4C_6H_4-4'-SO_2F$	6.7 (U) 125
269	$3-Cl; 4-(CH_2)_4C_6H_4-4'-SO_2F$	8.1 (U) 110
270	$3-Cl; 4-(CH_2)_4C_6H_4-3'-SO_2F$	8.0 (U) 125
271	3-Cl; $4-(CH_2)_4C_6H_4-2'-SO_2F$	7.7 (U) 125
272	3-Cl; 4-(CH ₂) ₄ C ₆ H ₃ -2'-Cl-4'-SO ₂ F	8.0 (U) 125; (AA) 248
273	$3-Cl; 4-(CH_2)_4C_6H_3-3'-Cl,4'-SO_2F$	7.7 (U) 125
274	3-Cl; 4-(CH ₂) ₄ C ₆ H ₃ -4'-Cl-3'-SO ₂ F' 2 Cl: 4 (CH ₂) C H $= 5$ (Cl 2' SO F	8.1 (U) 125 7.1 (U) 195
275	3-Cl; 4-(CH ₂) ₄ C ₆ H ₃ -5'-Cl-2'-SO ₂ F 2 Cl: 4 (CH) C H 2(Cl 2) SO F	7.1 (U) 120 9.0 (II) 195
270	$3 - C_1; 4 - (C_{12})_4 C_6 R_3 - 3 - C_1 - 2 - S_{02} r$	0.2 (U) 120 7 8 (U) 195
271	$3-CI; 4-(CH_2)_4C_6H_3-4-CI-2-5C_2F$ $3-(CH_1)_CH_4/-NHCOCH_Br$	8.0 (AB) 70: 8.3 (N) 70: 8.4 (II) 70
218	4-(CH_2)_2C_6H_4-4-HHOUCH_2BI	7 8 (N) 72: 7 2 (II) 72
280	4-(CH ₂) ₃ CONHC ₂ H ₄ -3'-SO ₂ F	7.9 (N) 72 ; 7.2 (U) 72
281	4-(CH ₀) ₀ CONHC ₀ H ₄ -4'-SO ₂ F	7.7 (N) 72: 7.4 (U) 72
282	4-(CH ₂) ₃ CONHC ₂ H ₂ -2'-CH ₂ -4'-SO ₂ F	8.2 (N) 81: 7.7 (U) 81
283	4-(CH ₂),CONHC ₂ H ₂ -3'-CH ₂ -4'-SO ₂ F	7.9 (N) 81; 7.3 (U) 81; 7.9 (M) 122
		8.7 (Q) 135; 8.5 (S) 135; 8.6 (U) 135
284	4-(CH ₂) ₂ CONHC ₆ H ₃ -4'-CH ₃ -3'-SO ₂ F	8.0 (N) 81; 7.4 (U) 81
285	4-(CH ₂) ₂ CONHC ₆ H ₃ -3'-OCH ₃ -4'-SO ₂ F	7.5 (N) 81; 7.6 (U) 81
286	$4-(CH_2)_2CONHC_6H_3-4'-OCH_3-3'-SO_2F$	8.2 (N) 81; 7.4 (U) 81
287	4-(CH ₂) ₂ CONHC ₆ H ₃ -6'-OCH ₃ -3'-SO ₂ F	8.1 (N) 81; 7.4 (U) 81
288	$4-CH_2CON(CH_3)CH_2C_6H_5$	7.3 (U) 154
289	$4-(CH_2)_2CON(CH_3)C_6H_5$	7.6 (U) 154
290	4-CH(CH ₃)CH ₂ CONHC ₆ H ₄ -4'-SO ₂ F	7.3 (N) 80; 7.1 (U) 80; 7.1 (Q) 81
		8.6 (Q) 135; 8.3 (S) 135; 8.6 (U) 135
291	$4-CH_2CH(CH_3)CONHC_6H_4-4'-SO_2F$	7.6 (N) 80; 7.3 (U) 80
292	$4 - (CH_2)_2 CON(CH_3) C_6 H_4 - 4^2 - SO_2 F_2$	8.0 (N) 80; 7.4 (U) 80
293	$3 - O(CH_2)_4 C_6 H_5$	7.1 (AD) 04 7.5 (U) 194.9 0 (U) 995.6 9 (V) 995
294	$3 - O(C H_2)_4 O C_6 H_5$	7.0 (U) 124; 6.0 (Π) 230; 6.8 (X) 230 7.9 (M) 991; 4.8 (Π N) 999
295	3-O(CH_)-OC_H2'-NHCOCH_Br	7.2 (N) 70.68 (U) 70
296	3-O(CH _a) ₂ OC _a H ₄ -3'-NHCOCH ₄ Br	7.3 (AB) 70; 7.7 (N) 70; 7.1 (II) 70
297	3-O(CH _a) ₂ OC _a H ₄ -4'-NHCOCH _a Br	7.3 (AB) 70; 8.1 (N) 70; 7.4 (U) 70
298	4-O(CH ₂) ₂ OC ₆ H ₄ -4'-NHCOCH ₂ Br	7.3 (AB) 70; 7.7 (N) 70; 7.2 (U) 70
299	3-Cl; 4-OCH ₂ C ₆ H ₄ -3'-CON(CH ₃) ₂	7.7 (U) 154; 4.0 (BN) 222
300	$4-O(CH_2)_4OC_6H_4-4'-SO_2F$	7.2 (U) 98
301	$3-Cl; 4-O(CH_2)_4OC_6H_4-4'-SO_2F$	7.6 (U) 124
302	4-Cl; $3-O(CH_2)_4OC_9H_4-4'-SO_2F$	7.2 (U) 124
303	$3-Cl; 4-U(CH_2)_2U(CH_2)_2UC_6H_4-4'-SO_2F$	7.1 (U) 124
304	3-CI; 4-U(CH ₂) ₃ CUNHC ₆ H ₄ -3'-SU ₂ F 2 CI: 4 O(CH) CONHC H 4' CO F	7.2 (U) 127 7.9 (U) 197
305	3-01; 4-0(OH_2)3001NH06H4-4'-802E	(.2 (U) 12) 7 0 (U) 106, 7 6 (O) 106
300	3-CI- 4-O(CH_)-NHCOC.H -4/-80.F	7.3 (II) 106

TABLE	X	(Continued)

	Y	activity (anorma) act
по.	Λ	activity (enzyme) rei
308	4-O(CHa) NHCONHCaHa-3'-SOaF	7.3 (U) 106: 7.5 (Q) 106
000	O CLAOCU) NHCONHO H O/ CO F	7 9 /II\ 100
309	$3-CI; 4-O(CH_2)_8NHOONHO_6H_4-3-SO_2F$	7.3 (U) 100
310	$3-Cl; 4-O(CH_2)_8NHCONHC_6H_4-4'-SO_2F$	7.7 (U) 106
311	3-Cl- 4-O(CH-) NHCONHC-H-3'-CH-4'-SO-F	7.8 (II) 106: 7.4 (Q) 106
010		0.1 (AD) 54
312	$3-(UH_2)_5U_6H_5$	8.1 (AB) 54
313	$3-CH_2OC_8H_4-3'-C(CH_3)_3$	8.0 (H) 235; 7.2 (X) 235; 5.4 (BN) 255
214	A (CH) CON(CH)CH C H	7 9 (II) 154
314	$4 - (C \Pi_2)_2 - C O I (C \Pi_3) - C \Pi_2 - C B \Pi_5$	
315	3-CH ₂ CH(C ₆ H ₅)CH ₂ NHCOCH ₂ Br	6.5 (AB) 71; 6.7 (N) 71; 6.7 (U) 71
316	3-CH-NHCONHC-H3'-CON(CH_)	78 (II) 155
010		A E (DN) OFF
317	$3 - O(CH_2)_{10} CH_3$	4.5 (BN) 255
318	$3-O(CH_2)_AOC_BH_A-3'-CF_3$	7.3 (H) 235; 6.8 (X) 235; 6.8 (M) 221
		48 (BN) 255
	A AVAILA AA NI AVANIAAA NI B	4.0 (DR) = 2.0 (DR)
319	3-O(CH ₂) ₃ OC ₆ H ₄ -3'-NHCOCH ₂ Br	6.9 (AB) 70; 7.6 (N) 70; 7.0 (U) 70
320	3-O(CH_a)_OC_H4'-NHCOCH_Br	6.7 (AB) 70: 7.5 (N) 70: 7.0 (U) 70
201	2 C + A O (C +) O C + A S O F	7.6 (II) 194
321	5-01, 4-0(0H2)5006H4-4-502F	7.0 (0) 124
322	$4-Cl; 3-O(CH_2)_5OC_6H_4-4'-SO_2F$	6.7 (U) 124
323	3-CI: 4-O(CHa), CONHCaHa-4'-SOaF	7.2 (U) 127
204	0 OI, 1 O(OH) NHCOCH 4 COF	77 (II) 106
324	$3-CI; 4-O(CH_2)_4NHOOC_6H_4-4-SO_2F$	7.7 (0) 106
325	3-Cl: 4-O(CH ₂)_NHCOC ₆ H ₄ -3'-SO ₂ F	7.4 (Q) 106
396	2 CL & O(CH) NHCONHC H & SO F	7.5 (0) 106
520	3-01, 4-0(0112)/1110011106111-4-5021"	1.0 (4) 100
327	3-Cl; 4-O(CH ₂) ₄ NHCONHC ₆ H ₄ -3'-SO ₂ F	7.7 (U) 106
328	3-Cl: 4-O(CH_)-NHCOC+H-4'-CH-3'-SOF	7.3 (Q) 106
820		
329	$3-Cl; 4-O(CH_2)_3NHCONHC_6H_8-4^{\circ}-CH_8-3^{\circ}-SO_2F$	8.1 (U) 172; 7.7 (Q) 106
330	3-Cl: 4-O(CH ₂), NHCONHC ₂ H ₂ -3'-CH ₂ -4'-SO ₂ F	7.2 (Q) 106
221	2 CLAD(CH) NUCONUC H 2/ OCH 5/ SO F	7.2(0) 106
331	3-CI; 4-O(CH2)8NHOONHO6H3-2-OCH3-5-502F	(1.0 (W) 100
332	3-NHCOCH ₂ Br; 4 -O(CH ₂) ₈ C ₆ H ₅	5.2 (AB) 71; 6.1 (N) 71; 6.3 (U) 71
000	HaN	5 5 (AD) 04
333		5.5 (AB) 84
	4-0C6H4-4-N // NH2	
	λ—-Ň	
	CH3 CH3	
334	H ₂ N	6.9 (AB) 84
004		
	4-SC6H4-4-N	
	$\lambda \sim N$	
	CH- CH-	
	Hani	
335		5.4 (AB) 84
	}= ^N ,	
	4-SO2C6H4-4'-N /)-NH2	
	\wedge "	
	CH3 CH3	
336	H ₂ N	47 (AB) 84
000		4.1 (AD) 04
	4-5-5-6H4-4-N //NH2	
	λ	
337		5.4 (AB) 84
	> <u> </u>	
	4-(SO)2C6H4-4'-N	
	$\overline{\wedge}$ "	
	Снз Снз	
226	3-(CH.) C.H. 3'-NHCOCH B*	79 (AB) 70 84 (N) 70 74 (U) 70
000		(AD) =
339	3-(UH2)4U6H4-4'-NHCUCH2Br	8.0 (AB) 70; 8.4 (N) 70; 8.0 (U) 70
340	4-(CH_)-C_H_4/-SO_F	7 1 (II) 195
010		
341	3-0(Cn ₂) ₁₁ Cn ₃	7.6 (H) 236; 6.1 (X) 235; 4.6 (BN) 255
342	3-O(CH ₂) ₂ OC ₆ H ₄ -4'-NHCOCH=CHCOOH	7.1 (AB) 70; 8.1 (N) 70; 7.7 (U) 70
24.9	3-C1- 4-0CH-C-H-3'-CON(CH)	Q 1 (TT) 164
0*0		0.1 (U) 104
344	3-UI; 4-UCH ₂ C ₆ H ₄ -3'-CO-c-(CH ₂) ₄	7.8 (U) 154
345	3-Cl: 4-OCH ₂ C ₂ H ₂ -3'-CO-c-N(CH ₂ CH ₂) ₂ O	78 (II) 154
940	2 Cl. 1 O(CH) OC H 4 CO F	$F_{0}(0) = 104$
340	$3-01; 4-0(0 \Pi_2)_6 0 U_6 \Pi_4 - 4 - 3 U_2 \Gamma$	7.0 (Q) 124; 7.5 (U) 124
947	H ₂ N	7 9 (AD) 94
041		1.2 (AD) 04
	4-CH2-C6H4-4-N / NH2	
	<u>≻</u> ~N	
	CH ₁ CH ₁	
0.40	A OTIOU OTI OTI O TI AUTI NULCOOTI D	$c \in (\mathbf{AD})$ $\pi_1, c \in (\mathbf{N})$ $\pi_1, s \in (\mathbf{II})$ π_1
348		0.0 (AD) (1; 0.4 (1)) (1; 0.0 (U) (1
349	4-CH(CH ₂ CH ₂ CH ₂ C ₆ H ₅)CH ₂ NHCOCH ₂ Br	5.8 (AB) 71; 6.5 (N) 71; 6.5 (U) 71
350	3-O(CH ₂), CH ₂	4.8 (B N) 255
000		$\pi (AD) \pi (AD) $
351	o-U(UH2)8UU8H4NHUUUH=CHUUUH	7.1 (AD) 70; 0.1 (IN) 70; 7.6 (U) 70
352	3-CONH-3'-C5H4N+CH2C8H4-3"-SO2F	6.1 (U) 121
25.9	3-CI-4-OCH-C-H-3-CO-e-N(CH)	80 (II) 154
000		
354	3-UI; 4-UUH ₂ U ₆ H ₄ -4'-SU ₂ C ₆ H ₅	8.2 (N) 139
355	3-Cl: 4-OCH ₂ C ₆ H ₄ -4'-SO ₂ OC ₆ H ₄ -2"-Cl	8.6 (N) 139
950		7.7 (N) 190
300	3 - 01, 4 - 00 - 0206 - 04 - 3020 - 06 - 4 - 30 - 01	7.7 (IN) 100
357	3-Cl; 4-OCH ₂ C ₆ H ₄ -4'-SO ₂ OC ₆ H ₄ -4''-Cl	7.8 (N) 139
358	3-CI: 4-OCH C H -4'-SO OC H - 2"-F	8.7 (N) 139
000	0 01, 4 001 0 11 4 00 00 11 00 7	0 E (N) 190
359	3-U1; 4-UCH ₂ U ₆ H ₄ -4'-SO ₂ OC ₆ H ₄ -3''-F	8.5 (N) 139
360	3-Cl; 4-OCH ₂ C ₆ H ₄ -4′-SO ₂ OC ₆ H ₄ -4″-F	8.4 (N) 139

n o.	X	activity (enzyme) ref
361	3-Cl; 4-OCH ₂ C ₆ H ₄ -4'-SO ₂ OC ₆ H ₃ -3",4"-Cl ₂	8.2 (N) 139
362	H2N	7.9 (AB) 84
	4-CH-CH-C-H	
	X-N	
	снз снз	
363	4-C ₆ H ₃ -2'-NH ₂ -4'-CONHC ₆ H ₄ -4'-SO ₂ F	(AB, N, U) 64
3 64	$3-O(CH_2)_{13}CH_3$	4.5 (BN) 255
365	3-CONH-3'-CH ₂ C ₆ H ₄ N ⁺ CH ₂ C ₆ H ₄ -4"-SO ₂ F	6.3 (U) 121
3 66	3-Cl; 4 -OCH ₂ C ₆ H ₄ -3'-CONHC ₆ H ₅	8.0 (U) 154
367	3-C1; 4-OCH2	6.4 (U) 124
368	3-Cl; $4-OCH_2C_6H_4-4'-CH_2OC_6H_4-4''-SO_2F$	6.8 (U) 124
369	3-Cl; 4 -OCH ₂ C ₆ H ₄ -4'-CONHC ₆ H ₄ -4''-SO ₂ F	6.9 (U) 127
370	3-Cl; 4-OCH ₂ C ₆ H ₄ -3'-CONHC ₆ H ₄ -4''-SO ₂ F	6.9 (U) 127
371	3-Cl; 4-OCH ₂ C ₆ H ₄ -4'-CONHC ₆ H ₄ -3"-SO ₂ F	7.4 (U) 127
372	3-Cl; 4-OCH ₂ C ₆ H ₄ -3'-CONHC ₆ H ₄ -3"-SO ₂ F	7.2 (U) 127
373	3-Cl; 4 -OCH ₂ C ₆ H ₄ -2'-CONHC ₆ H ₄ -4"-SO ₂ F	7.2 (U) 127
374	$3-Cl; 4-OCH_2C_6H_4-4'-SO_2OC_6H_4-3''-CH_3$	8.4 (N) 139
375	3-Cl; 4-OCH ₂ C ₆ H ₄ -4'-SO ₂ OC ₆ H ₄ -2"-CF ₃	8.3 (N) 139
376	3-Cl; 4-OCH ₂ C ₆ H ₄ -4'-SO ₂ OC ₆ H ₄ -3''-CF ₃	8.1 (N) 139
377	3-CI; 4-OCH ₂ C ₆ H ₄ -4'-SO ₂ OC ₆ H ₄ -2''-CN	8.7 (N) 139
378	$3-CI; 4-OCH_2C_6H_4-4'-SO_2OC_6H_4-3''-CN$	8.2 (N) 139
379	3 - 01; 4 - 00 + 2 - 6 + 4 - 3 - 5 - 2 - 00 + 4 - 4 0 + 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	8.4 (N) 139
3 0 0 291	$3-Cl; 4-OCH_2C_6H_4-4-SO_2OC_6H_4-2^{-OCH_3}$	8.4 (N) 139
380	$3-01; 4-00H_2 C_6 H_4 - 4 - 50_2 0 C_6 H_4 - 3 - 00H_3$	8.0 (N) 139 8.4 (N) 190
002	$5-01, 4-0011_{2}_{6114}-4-50_{2}_{2}_{0}_{6114}-4-0011_{3}_{1}$	0.4 (IN) 137
000) <u> </u>	7.1 (AB) 84
	4-C(CH ₃) ₂ -C ₆ H ₄ -4-N	
	$\overline{\sum}$	
384	CH3 CH3 9-(CH-)-CONH-9-(C-H N+CH-C H-4/-SO F	6 9 (II) 191
385	$3 - (CH_2)_2 - (CH_1)_3 - (C_5H_4)_4 - (CH_2)_6 - (CH_2)_2 - (CH$	5.7 (N) 90.4 9 (U) 90
386	$4 - CH_0CH(C_0H_0)CONHC_0H_0 + 30_0F$	6.7 (M) 80: 7.1 (N) 80: 6.7 (U) 80
387	4-CH ₀ CH(C ₀ H ₁)CONHC ₀ H ₁ -3'-SO ₀ F	6.7 (M) 97; 7.1 (N) 97; 6.7 (U) 97
388	3-CH ₂ CH(CeH ₂)CONHCeH ₂ -4'-SO ₂ F	6.3 (N) 97: 6.3 (U) 97
389	3-Cl; 4 -OCH ₂ C _g H ₄ -3'-CON(CH ₃)C _g H ₅	8.1 (U) 154
390	3-CH=CHCONHCH ₂ -3'-C ₆ H ₄ N+CH ₂ C ₆ H ₄ -4''-SO ₂ F	6.8 (U) 121
391	$4-CH_2CH(C_6H_4-2''-CH_3)CONHC_6H_4-4'-SO_2F$	7.2 (N) 80; 6.4 (U) 80
392	4-CH ₂ CH(C ₆ H ₄ -3 ^{''} -CH ₈)CONHC ₆ H ₄ -4 ['] -SO ₂ F	7.2 (N) 80; 6.7 (U) 80; 6.7 (Q) 97
393	4-CH ₂ CH(C ₆ H ₄ -4″-CH ₈)CONHC ₆ H ₄ -4′-SO ₂ F	7.2 (N) 80; 6.2 (U) 80
394	$4-CH_2CH(C_6H_4-2''-OCH_3)CONHC_6H_4-4'-SO_2F$	6.3 (U) 97
395	$4-CH_2CH(C_6H_4-3''-OCH_3)CONHC_6H_4-4'-SO_2F$	6.5 (U) 97
396	3-Cl; 4-OCH ₂ C ₆ H ₄ -4'-SO ₂ OC ₆ H ₄ -2''-CON(CH ₈) ₂	8.6 (N) 139
397	3-U1; 4-UCH ₂ U ₆ H ₄ -4'-SU ₂ UC ₆ H ₄ -3''-CON(CH ₃) ₂	8.8 (N) 139
398	3-UI; 4-UUH ₂ U ₆ H ₄ -4'-SU ₂ UU ₆ H ₄ -4''-UUN(CH ₃) ₂ 2 CI: 4 O(CH) OC H A SO OC H A'' O	8.6 (N) 139 CC (U) 194
3 9 ,9	3-01; 4-0(Ung)4UUgn4-4-3UgUUgn4-4''-UI A CH CH(CH CH C H)CONHC H A/ SO F	0.0 (U) 124 6.0 (N) 90, 5.7 (U) 90
400 A01		0.2 (IN) 80; 0.7 (U) 80 6 9 (II) 104
401	+-0112011(u-010117)00141106114-4-0021	0.2 (0) 104

$H_2N \xrightarrow{N} R_1$						
n o.		R ₂	R ₂ '	activity (enzyme) ref		
1	CH ₃	CH ₃	CH ₃	4.1 (AB) 21; 4.3 (BJ) 39 4.2 (CD) 63; 4.5 (N) 74 4.4 (M) 74: 4.1 (U) 74		
2	C_2H_5	CH3	CH ₃	4.4 (M) 74, 4.1 (U) 74 3.7 (AB) 24; 4.2 (CD) 63 4.2 (BJ) 63		
3	$n-C_3H_7$	CH_3	CH3	5.0 (AB) 21; 5.3 (BJ) 39 5.5 (CD) 63		
4	n-C ₄ H ₉	CH3	CH3	6.4 (AB) 21; 5.7 (BJ) 39 6.0 (CD) 63; 6.9 (N) 74 6.4 (M) 74; 6.4 (U) 74		

no.	R ₁	R ₂	R ₂ ′	activity (enzyme) ref
5	<i>i</i> -C ₅ H ₁₁	CH ₈	CH ₃	7.2 (AB) 21; 6.2 (B J) 39 6.5 (CD) 63; 8.2 (N) 74
				7,1 (BC) 128; 7.1 (M) 74 7,1 (II) 74
6	$n-C_6H_{13}$	CH ₈	CH ₃	6.5 (AB) 21; 6.0 (BJ) 39 6.4 (CD) 63
7	$CH_2C_6H_5$	CH3	CH ₃	5.5 (AB) 24; 6.0 (CD) 63
8	<i>n</i> -C ₃ H ₁₇	CH ₃	CH ₃	6.8 (AB) 21; 6.6 (BJ) 39 7.1 (CD) 63; 7.9 (Q) 74
9	$(CH_2)_2C_6H_5$	CH3	CH ₃	7.3 (M) 74; 7.2 (U) 74 6.1 (AB) 24; 5.9 (CD) 63
10	$(CH_2)_{8}C_{6}H_{5}$	CH ₈	CH ₃	5.4 (BJ) 63 7.6 (AB) 24; 7.0 (CD) 63
				7.6 (BC) 128; 7.2 (BJ) 63 7.8 (N) 74; 7.7 (M) 74 7.3 (U) 74
11	$(CH_2)_4C_6H_b$	CH ₈	CH ₃	7.3 (C) 14 7.4 (AB) 24; 7.2 (CD) 63 7.7 (BC) 128: 7.7 (BI) 63
				8.5 (N) 74; 7.5 (M) 74 7.4 (U) 74
12	C_2H_5	н	$C_{e}H_{5}$	1.8 (AB) 24; 3.5 (BJ) 39
13	C_6H_5	н	C_6H_5	4.6 (AB) 84; 5.3 (N) 75
				5.0 (M) 75
14	$C_{\theta}H_{4}-2'-Br$	H	C ₆ H ₅	2.6 (N) 75; 2.6 (M) 75
10	$C_6 H_4 - 2^{\prime} - F$	H		3.8 (IN) 75; 4.1 (IN) 75 3.8 (IN) 75; 3.9 (IM) 75
10	$C_{6}H_{4}^{-3'}-Cl$	H	$C_{\theta}H_{\delta}$	6.7 (CD) 63; 6.0 (BJ) 9
18	CaH-4'-Cl	н	C.H.	5.3 (AB) 9 5.0 (AB) 9: 5.0 (AB) 84
10		 u	сн с	5.4 (BJ) 9 5.9 (AB) 24
20	$C_{1}H_{1}+4'_{1}+OCH_{1}C_{2}H_{2}$	л Ч	C ₆ n ₅	4 9 (AB) 84
20 21	$C_{6}H_{4}$ -4'-Cl	н		3.5 (AB) 84
00			CU C U	6 0 (AB) 94: 6 0 (CD) 69
22	UgH4-3'-UI	н	$CH_2C_8H_5$	6.0 (AB) 24; 6.9 (CD) 63 6.0 (BJ) 63; 6.6 (N) 74 6.5 (M) 74; 6.8 (U) 74
23	C ₆ H ₄ -3'-Cl	н	(CH ₂) ₂ C ₂ H ₅	7.1 (AB) 24
24	C ₆ H ₄ -3'-Cl	Н	C ₆ H ₄ -4′-ŇHCOCH ₃	3.7 (AB) 24; 3.7 (BJ) 39 3.9 (N) 74; 4.0 (M) 74
25	(CH ₂)₄C _a H ₅	н	C ₄ H ₄ -4'-NHCOCH ₃	3.6 (U) 74 6.2 (AB) 24; 6.4 (BJ) 39
				6.3 (N) 74; 6.3 (M) 74 6.9 (U) 74
26	C ₆ H ₅	CH ₈	CH ₂ OC ₆ H ₅	5.6 (AB) 60
27	C ₆ H ₅	CH ₃	$(CH_2)_2C_6H_5$	5.6 (AB) 60
28	$C_{6}H_{5}$	CH ₃	(CH ₂) ₃ C ₆ H ₄ -4'-NHCOCH ₂ Br	5.8 (AB) 61; 6.6 (N) 61 5.9 (U) 61
29	$C_{6}H_{\delta}$	CH ³	$(CH_2)_3OC_6H_4$ -2'-NHCOCH ₂ Br	5.6 (AB) 61; 6.0 (N) 61 5.8 (U) 61
30	C_6H_5	CH ₃	(CH ₂) ₃ OC ₆ H ₄ -3'-NHCOCH ₂ Br	6.4 (AB) 61; 6.7 (N) 61 6.5 (U) 61
31	C ₆ H ₅	CH3	(CH ₂) ₃ OC ₆ H ₄ -4'-NHCOCH ₂ Br	6.6 (AB) 61; 6.2 (N) 61 6.2 (U) 61
32	C_6H_4 -4'-Cl		$(CH_2)_2CH(CH_3)(CH_2)_2$	5.0 (AB) 84
33 24	$O \cup \Pi_2 \cup_6 \Pi_5$		$(CH_2)_2 CH(CH_3)(CH_2)_2$	0.1 (AB) 84 2.2 (AB) 84
35	C = 0' 2' (C = C = C = C = C = C = C = C = C = C		$(CH_2)_2 CH(CH_3)(CH_2)_2$ $(CH_4)_1 CH(CH_4)(CH_4)_2$	3.4 (AB) 84
00	$C_{6}H_{2}-2, 3 - (CH - CH - CH - CH) - 4 - CH$		NH2	0.4 (AD) 04
36	U ₆ H ₄ -4'-UI			3.9 (AB) 84
			-CH2CH2 -CH2CH2 NH2	
<u>~-</u>			$C_{6}H_{4}$ - 4 - Cl	
37	U ₈ H ₄ -4′-UI C H -4′-CI		Un_3 (1,2-denyaro) $n_2C_1H_2$ (1.2-denyaro)	(AD) 21 55 (AB) 97
39	$C_{0}H_{-4}$ -Cl		$C_{a}H_{a}$ (1.2-dehydro)	5.6 (AB) 27
40	$C_{e}H_{4}$ -4'-Cl		C_6H_4 -3'-Cl (1,2-dehvdro)	(AB) 27
41	C ₆ H ₄ -4'-Cl		C ₆ H ₄ -4'-Cl (1,2-dehydro)	5.7 (AB) 27
42	C ₆ H ₄ -4'-Cl		$CH_2C_6H_5$ (1,2-dehydro)	(AB) 27
4 3	C ₆ H ₄ -4'-Cl		(CH ₂) ₅ C ₆ H ₅ (1,2-dehydro)	6.8 (AB) 27

TABLE XII. Inhibition by Substituted Pyrimidines

	D	P	B	 D	activity (anguma) mf
1					
1	H	NH_2	$i - C_{\delta} H_{11}$	CH ₃	3.9 (AB) 57
z	H	NH ₂	C_6H_4 -4'-Cl	CH3	3.4 (AB) 57
3	H	NH ₂	$(CH_2)_{3}NHC_{6}H_5$	CH ₈	3.9 (AB) 57
4 5	л U		$(CH_2)_{3}N(C_{6}\Pi_{5})SO_2C_{6}\Pi_{4}-4-C\Pi_{3}$	CH3	0.9 (AD) 11 0.9 (AD) 6
0	п	OH SU	$(CH_2)_{3}$ $(CH_2)_{3}$ $(CH_3)_{3}$ $(CH$	CH3	2.0 (AB) 0 4.1 (AB) 6
0		<u>5н</u> Ц			4.1 (AB) 0
7		п	$CH = CH_2$		4.4 (DJ) 210
0		п	$CH = CH_2$	$C_{6}H_{4}$ -4-0CH ₃	4.4 (DJ) 210 2.0 (DJ) 219
9 10		л Ч		CH 4 OCH	3.5 (DJ) 210 4.9 (DJ) 919
10		п u			4.4 (DJ) 210
19	NH.	н	CH(CH.)SCH.	C.H4/-OCH.	4.1 (BJ) 218
13	NH.	н	i-C-H.		31 (AB) 57
14	NH ₂	н	CoH4-4'-Cl	CH.	2.8 (AB) 57
15	NH.	H	(CH _a) _a NHC _a H _a	CH.	3.3 (AB) 57
16	NH ₂	Ĥ	(CH ₂) ₂ NHC ₄ H ₅	C _e H ₅	(AB) 37
17	NH.	NH ₂	H	H H	7.0 (BJ) 212; (BI, BK) 198
18	NH ₂	NH ₂	H	CH.	3.0 (AB) 21
19	NH ₂	NH ₂	H	CeHs	3.8 (AB) 50
20	NH ₂	NH_2	н	C ₆ H ₄ -4'-C ₆ H ₅	4.5 (AB) 37
21	NH2	NH_2	Н	NH_2	2.9 (AB) 19
22	NH ₂	NH_2	н	OH	1.9 (AB) 19
23	NH_2	NH_2	C_2H_5	OH	1.8 (AB) 21
24	NH_2	NH_2	$n-C_3H_7$	CH_3	5.1 (O) 149
25	NH_2	NH_2	$n-C_3H_7$	NH_2	3.5 (AB) 21
26	NH_2	$\overline{NH_2}$	$n-C_3H_7$	OH	3.3 (AB) 28
27	NH_2	NH_2	CH ₂ CH=CHCH ₃	OH	4.4 (AB) 28
28	NH_2	$\dot{N}H_2$	$CH_2CH_2CH = CH_2$	OH	4.0 (AB) 28
29	NH_2	NH_2	$n-C_4H_9$	CH_3	5.7 (AB) 21
30	NH_2	NH_2	$n-C_4H_9$	NH_2	4.6 (AB) 21
31	NH_2	NH_2	$n-C_4H_9$	C_6H_5	4.5 (AB) 37
32	NH_2	NH_2	$n-C_4H_9$	OH	4.4 (AB) 28
33	NH_2	\mathbf{NH}_2	$t-C_4H_9$	CH_3	5.5 (O) 149
34	NH_2	NH_2	CH(CH ₃)CH ₂ CH ₃	OH	3.2 (AB) 28
35	NH_2	NH_2	n-C ₆ H ₁₁	CH ₃	6.0 (AB) 27
36	NH_2	NH_2	$i-C_5H_{11}$	CH ₃	6.6 (AB) 21
37	NH_2	NH_2	$i-C_5H_{11}$	CI	4.1 (AB) 57
38	NH_2	NH_2	ι -C ₅ H ₁₁		5.7 (AB) 21
39	NH_2	NH_2	$i - C_5 H_{11}$	OH	5.4 (AB) 28
40	NH ₂	NH_2	$CH_2CH = C(CH_3)_2$	OH	4.8 (AB) 28
41		INH ₂	$CH(CH_3)CH_2CH_2CH_3$	OH	4.1 (AD) 20 4.9 (AD) 99
42			$CH_2CH(CH_3)CH_2CH_3$	OH OH	4.0 (AD) 20 9.9 (AD) 20
43				CH	3.3 (AB) 20
44			$n - C_{6} H_{13}$	OH OH	$45 (\Delta B) 91$
40	NH	NH.	$CH(CH_{13})$	0H	51 (AB) 28
40	NU	NH	o-C.H	CH.	69 (O) 149
48	NH.	NH.	c-CoHu	OH OH	4.4 (AB) 28
49	NH.	NH.	CH ₂ -c-C ₂ H ₁₁	CH	6.4 (O) 187
50	NH.	NH ₀	CH ₂ CH ₂ -c-C ₂ H ₁₁	CH ₂	6.6 (O) 187
51	NH.	NH ₂	$n-C_{7}H_{15}$	CH	6.7 (O) 149
52	NH.	NH,	$n-C_8H_{17}$	CH ₃	6.7 (O) 149
53	NH ₂	NH2	$n-C_{9}H_{17}$	OH	4.3 (AB) 21
54	NH ₂	NH ₂	adamantyl	н	8.2 (O) 143; 6.7 (O) 138
	-	-	-		5.7 (BJ) 143
55	NH_2	NH_2	adamantyl	CH_3	6.5 (O) 143; 8.2 (O) 138
					9.2 (O) 234; 7.1 (BJ) 143
					9.4 (E) 234
56	NH_2	NH_2	adamantyl	C_2H_5	9.9 (E) 234; 8.7 (O) 158
					9.9 (O) 234
57	\mathbf{NH}_2	NH_2	adamantyl	C ₄ H ₉	6.4 (O) 158
58	NH_2	NH_2	NHCO-adamantyl	CH_3	4.9 (O) 143; 4.9 (O) 138
F0	N17	NITT	OU NHOOGH	u	3.0 (D5J) 143 (O, PL) 149, (O) 199
59			CH ₂ INHCUCH ₂ -adamantyi	n Cu	(U, DJ) 143; (U) 138 4.9 (O) 197
60			2/ C. U	CH.	4.4 (U) 107 7 1 (O) 187
69 69		NH	$2 \sim 10^{17}$	CH	7.6 (0) 149
63	NH-	NH-	CH_NHCO(CH_)_CH_	H	5.0 (O) 143
64	NH-	NH-	CeHe	он	5.7 (AB) 28
65	NH	NH	CeH5	CH ₂ C ₂ H ₄	(BN) 238
66	NH ₂	NH ₂	$C_6H_4-2'-Br$	H	3.9 (M) 104; 3.7 (AA) 104
	-	-	• •		

no.	\mathbb{R}_2	R4	R_{δ}	R ₆	activity (enzyme) ref
67	\mathbf{NH}_2	\mathbf{NH}_2	C ₆ H ₄ -4'-CH ₃	CH ₃	3.8 (AL) 104 5.0 (M) 104; 6.8 (AA) 104
68	NH ₂	\mathbf{NH}_2	C ₆ H ₄ -4′-Cl	н	6.0 (AL) 104 5.8 (M) 104; 5.0 (AA) 104
69	$\rm NH_2$	$\rm NH_2$	C ₆ H ₄ -4′-Cl	CH₃	5.0 (AL) 104; 6.1 (AB) 9 5.9 (M) 104; 5.6 (AA) 104
70	NH_2	NH_2	C ₆ H ₄ -4'-Cl	CF ₃	6.1 (AB) 104; 5.7 (AL) 104 4.3 (AB) 27
71	NH_2	NH_2	C ₆ H ₄ -4'-Cl	CH ₂ Br	6.1 (AB) 215
72	NH_2	NH_2	C ₆ H₄-4′-Cl	COO-	3.0 (AB) 25
73	NH_2	NH_2	C ₆ H ₄ -4'-Cl	C_2H_{δ}	8.4 (M) 69; 6.1 (M) 32 8.9 (M) 136; 6.2 (M) 104
					6.1 (M) 88: 6.7 (D) 88
					5.7 (A) 32; 7.5 (K) 32
					7.3 (K) 45; 6.3 (J) 32
					5.6 (BJ) 88; 4.6 (BJ) 32
					5.6 (BJ) 115; 9.4 (AP) 116 10.3 (AP) 144. (AP) 132
					9.3 (AP) 115; 9.3 (AP) 88
					7.5 (BJ) 212; 6.2 (AA) 104
					8.4 (AA) 181; 6.7 (AN) 144
					6.0 (BR) 220: 8.9 (Q) 136
					6.1 (BQ) 220; 8.7 (C) 136
					8.8 (AQ) 211; 5.1 (AM) 90
					6.7 (AI) 90; 6.0 (AK) 90
					6.7 (AL) 67; 7.6 (I) 182
					6.0 (Z) 88; 5.6 (G) 211
					5.5 (AT) 115; 8.5 (AS) 181
					6.6 (AU) 90; 6.6 (AJ) 90 6.1 (AD) 115; 6.3 (AW) 220
					6.6 (BO) 220; 7.6 (BE) 147
					4.8 (BG) 32; 5.5 (AZ) 32
					5.2 (AU) 144; 4.0 (BX) 144
					4.4 (BW) 144; 6.2 (BU) 144 4.8 (BV) 144: 4.4 (BV) 144
					5.1 (BC) 128; (BI) 198
					(BK) 198; (BN) 238
					(AY) 220; (W) 249 (E) 240
74	NH_2	NH_2	C ₆ H ₄ -4'-Cl	COOC ₂ H ₅	3.8 (AB) 25
75	NH_2	NH_2	C ₆ H ₄ -4'-Cl	OC ₂ H ₅	4.4 (BJ) 218
76 77	NH ₂ NH	NH ₂ NH	$C_{6}H_{4}-4'-Cl$	OC_3H_7 CH-C-H-	5.0 (BJ) 218 (BN) 238
78	NH ₂	NH ₂	$C_{6}H_{4}-4'-Cl$	(CH ₂) ₂ C _a H ₄ -4'-NHCOCH ₃ Br	(BN) 238 7.0 (BJ) 52; 6.3 (AB) 56
					6.6 (N) 73; 6.6 (U) 73
79			$C_6H_4-4'-Cl$	$(CH_2)_2C_8H_4-3'-NHCOC_6H_4-4''-SO_2F$	5.0 (N) 77; 5.3 (U) 77
00	14112	INTI ₂	06114-4-01	$(CH_2)_2 C_6 H_4 - 3 - INHCONHC_6 H_4 - 3^{-} - SO_2 F$	5.8 (U) 77
81	NH_2	NH_2	C ₆ H ₄ -4'-Cl	$(CH_2)_2C_6H_4$ -4'-NHCONHC $_6H_4$ -3"-SO $_2F$	6.4 (M) 77; 6.1 (N) 77
20	NH	NU	C.H4/ Cl	(CH) NHCOCH P.	5.8 (U) 77 5.1 (N) 72; 6.2 (U) 72
83	NH ₂	NH_2	$C_{6}H_{4}-4'-Cl$	CH ₂ NHC ₂ H ₄ -4'-COCH ₂ Cl	5.1 (N) 73; 6.2 (C) 73 5.2 (N) 73
	-	-	•••		5.3 (U) 73
84	$\rm NH_2$	NH_2	C ₆ H ₄ -4'-Cl	(CH ₂) ₂ NHCONHC ₆ H ₄ -3"-SO ₂ F	5.4 (N) 73 5.1 (U) 73
85	\mathbf{NH}_2	NH_2	C ₆ H ₄ -4'-Cl	$CH_2OC_6H_4$ -4'-NHCOCH ₂ Br	4.9 (N) 73 5.8 (II) 73
86	\mathbf{NH}_{2}	\mathbf{NH}_{2}	C_6H_4 -4'-Cl	$CH_2OC_6H_4$ -4'-COCH ₂ Cl	4.9 (N) 73
87	\mathbf{NH}_2	\mathbf{NH}_2	C ₆ H ₄ -4'-Cl	$\mathrm{CH}_{2}\mathrm{OC}_{6}\mathrm{H}_{4}\text{-}3^{\prime}\text{-}\mathrm{NH}\mathrm{COC}_{6}\mathrm{H}_{4}\text{-}3^{\prime\prime}\text{-}\mathrm{SO}_{2}\mathrm{F}$	4.5 (U) 77
88	\mathbf{NH}_2	$\rm NH_2$	C ₆ H ₄ -4'-Cl	$\mathrm{CH}_{2}\mathrm{OC}_{6}\mathrm{H}_{4}\text{-}4'\text{-}\mathrm{NH}\mathrm{COC}_{6}\mathrm{H}_{4}\text{-}3''\text{-}\mathrm{SO}_{2}\mathrm{F}$	5.3 (M) 77 5.3 (N) 73
89	NH_2	\mathbf{NH}_2	C ₆H₄-4 ′-Cl	CH2OC6H4-3'-NHCONHC6H4-3''-SO2F	4.3 (U) 77 5.9 (N) 73
90	$\rm NH_2$	\mathbf{NH}_2	C_6H_4 -4'-Cl	CH2OC6H4-4'-NHCONHC6H4-3''-SO2F	6.3 (U) 73 5.8 (M) 77
~					6.8 (N) 77 5.2 (U) 77
91	INH ₂	NH ₂	U ₆ H ₄ -4'-Cl	UH2UU6H4-4'-CH2NHCUC6H4-3"-SO2F	6.5 (M) 77; 6.4 (N) 77 6.2 (U) 77
92	\mathbf{NH}_2	NH2	C ₆ H ₃ -3′,4′-Cl ₂	Me	8.1 (K) 45; 8.7 (O) 234 9.0 (E) 234; 7.0 (D) 266 5.0 (M) 104; 5.0 (AA) 104 5.7 (AL) 104; (M) 200

TABLE XII (Continued)

no.	R ₂	R ₄	R ₅	R ₆	activity (enzyme) ref
					8.0 (Q) 9; 7.5 (AB) 9
					6.3 (AA) 9
93	NH_2	NH_2	C ₆ H ₃ -3′,4′-Cl ₂	C_2H_5	7.7 (AB) 9; 7.7 (BJ) 9
94	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH=CHC ₆ H ₅	7.6 (Q) 119
95	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	$CH_2-CH_2C_6H_5$	7.5 (Q) 119
96	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	$CH = CHCH_2C_6H_5$	7.7 (Q) 119
97	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	$CH_2CH_2CH_2C_6H_5$	7.5 (Q) 119
98	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	$(CH=CH)_2C_6H_5$	7.0 (Q) 119
99	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$(CH_2)_4C_6H_5$	7.7 (Q) 119
100	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	CH=CHC ₆ H ₄ -4′-SO ₂ F	7.4 (Q) 119
101	NH_2	NH_2	$C_{6}H_{3}-3',4'-Cl_{2}$	$(CH_2)_2C_6H_4-4'-SO_2F$	7.4 (Q) 119
102	NH_2	\mathbf{NH}_2	C ₆ H ₃ -3',4'-Cl ₂	(CH ₂) ₂ C ₆ H ₄ -4'-NHCOCH ₂ Br	6.2 (N) 73; 6.2 (U) 73
103	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$CH = CH - 1' - C_{10}H_7$	7.4 (Q) 119
104	NH_2	\mathbf{NH}_2	C ₆ H ₃ -3',4'-Cl ₂	$CH = CH - 2' - C_{10}H_7$	6.9 (Q) 119
105	NH_2	\mathbf{NH}_2	C ₆ H ₃ -3',4'-Cl ₂	$(CH_2)_2 - 1' - C_{10}H_7$	7.1 (Q) 119
106	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	$(CH_2)_2 - 2' - C_{10}H_7$	6.6 (Q) 119
107	NH_2	$\rm NH_2$	C ₆ H ₃ -3',4'-Cl ₂	$CH_2OC_6H_5$	7.1 (Q) 119
108	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	$CH_2OC_6H_4$ - SO_2F	7.7 (Q) 119
109	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$CH_2O-1'-C_{10}H_7$	7.5 (Q) 119
110	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$CH_2O-2'-C_{10}H_7$	6.6 (Q) 119
111	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$(CH_2)_2C_6H_4-4'-(CH_2)_2C_6H_5$	6.8 (Q) 119
112	NH_2	NH_2	$C_6H_3-3'4'-CI_2$	$CH = CHC_6H_4 - 4' - CH = CH - C_6H_4 - 4'' - SO_2F$	6.5 (Q) 119
113	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$CH = CHC_6H_4 - 3' - CH = CHC_6H_4 - 4'' - SO_2F$	6.5 (Q) 119
114	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$(CH_2)_2C_6H_4-4'-(CH_2)_2C_6H_4-4''-SO_2F$	7.3 (U) 119
115	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$(CH_2)_2C_6H_4-4'-(CH_2)_2-C_6H_4-3''-SO_2F$	7.4 (U) 119
116	NH_2		$C_6H_3-3',4'-Cl_2$	$(\mathbf{CH}_2)_2\mathbf{C}_6\mathbf{H}_4$ -3'- $(\mathbf{CH}_2)_2\mathbf{C}_6\mathbf{H}_4$ -4''-SO ₂ F'	6.5 (U) 119
117			$C_6 H_3 - 3', 4' - Cl_2$	$(CH_2)_2$ -4'-C ₅ H ₄ N'CH ₂ C ₆ H ₄ -3''-SO ₂ F	6.8 (U) 121
118		NH ₂	C_6H_3 -3',4'- Cl_2	$(U\Pi_2)_2$ -4'- $U_5\Pi_4$ N' $U\Pi_2U_6\Pi_4$ -4''-SU ₂ F	6.4 (U) 121
119			$C_6\Pi_3$ -3',4'- Cl_2	$(CH_2)_2^{-3} - C_5H_4N^{+}CH_2C_8H_4^{-3}^{-3} - SO_2F$	6.3 (U) 121 6.7 (II) 191
120			$C_{6}\Pi_{3}$ -3,4°- C_{12}	$(CH_2)_2$ -3- C_5H_4N $CH_2C_6H_4$ -4"-5 O_2F	6.7 (U) 121 6.6 (N) 77
121	\mathbf{Nn}_2	IN II 2	C6H3-3',4'-Cl2	$(CH_2)_2C_6H_4$ -4 -INHCOC6H4-3"-SO2F	0.0(1N) 77
					6.1 (U) 77 7.5 (O) 04
109	NH	NH	C.H3/ M-Ch	(CH.) C.H. M-NHCOC H M SO F	7.0 (Q) 54 7.9 (II) 04
124			$C_{6}H_{3}-3,4-Cl_{2}$	$(CH_2)_2 C_6 H_4^{-4} - MICOC_6 H_4^{-4} - SO_2 F$ $(CH_2)_2 C_6 H_4^{-4} - CH NHCOC_H 2% SO F$	7.2 (U) 54 7.6 (II) 96
123	NH	NH.	$C_{6}II_{3}-3, 4-CI_{2}$	$(CH_2)_2 C_{6}H_4^{-4} - CH_2 (CH_0) C_{6}H_4^{-3} - SO_2 F$	7.6 (0) 96
125	NH.	NH.	$C_{6}H_{3}-3', 4'-Cl_{2}$	$(CH_2)_2C_6H_4^{-4} - CH_2NHCOC_6H_4^{-4} - SO_2P$	7.0 (Q) 50 7.2 (Q) 108
120	14112	14112	06113-0,4-012	SO.F	1.2 (Q) 100
126	NH.	NH.	C.H3' 4'-Cl.	(CHa)aCaHa-4'-NHCONHCaHa-4''-SOaF	61 (II) 94
120	NH ₂	NH ₂	C.H3'.4'-Cl.	$(CH_2)_2C_0H_4 = 1111001(HC_0H_4 = -5C_2)$	7 1 (Q) 108
128	NH.	NH ₂	C.H3'.4'-Cl.	$(CH_2)_2C_{gH_4} = CH_2(CH_2)CH_1CONHC_{gH_4} = CO_2 F$	7.1 (Q) 108
129	NH ₂	NH ₂	CeH-3'.4'-Clo	$(CH_2)_2 C_2 H_4 - 4' - CH_2 NHCONHC_2 H_4 - 4'' - SO_2 F$	7.5 (U) 96
130	NH ₂	NH ₂	C.H3'.4'-Cl	(CH ₂) ₂ C ₆ H ₄ -4'-CH ₂ NHCONHC ₆ H ₄ -3''-SO ₂ F	7.5 (U) 96
131	NH ₂	NH ₂	CeH3-3',4'-Cl2	(CH ₂) ₂ C ₆ H ₄ -3'-CH ₂ NHSO ₂ C ₆ H ₄ -4"-SO ₂ F	7.3 (Q) 108
132	NH ₂	NH_2	C ₆ H ₃ -3',4'-Cl ₂	(CH ₂) ₂ C ₆ H ₄ -3'-CH ₂ NHSO ₂ C ₆ H ₄ -3"-SO ₂ F	7.0 (Q) 108
133	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	(CH ₂) ₄ C ₆ H ₄ -4'-NHCOC ₆ H ₄ -3''-SO ₂ F	6.8 (Q) 108
134	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	$(CH_2)_4$ -3'-C ₅ H ₄ N ⁺ CH ₂ C ₆ H ₄ -4''-SO ₂ F	7.3 (U) 121
135	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₄ -4'-NHCOC ₆ H ₄ -4"-SO ₂ F	6.7 (U) 94
136	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₄ -4'-NHSO ₂ C ₆ H ₄ -3"-SO ₂ F	7.7 (U) 94
137	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₄ -4'-NHSO ₂ C ₆ H ₄ -4''-SO ₂ F	7.3 (U) 94
138	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ NHC ₆ H ₄ -4'-COCH ₂ Cl	6.6 (N) 73; 6.0 (U) 73
139	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₄ -4'-NHCOC ₆ H ₄ -3''-SO ₂ F	6.7 (N) 77; 6.1 (U) 77
140	NH_2	NH_2	C ₆H ₃ -3′,4′-Cl ₂	CH2OC6H4-4′-CH2NHCOC6H4-3″-SO2F	6.1 (U) 95; 6.5 (Q) 91
141	NH_2	NH_2	C ₆ H ₃ -3′,4′-Cl ₂	CH2OC6H4-3'-CH2NHCONHC6H4-3''-SO2F	7.2 (Q) 108
142	\mathbf{NH}_2	NH_2	$C_6H_3-3',4'-Cl_2$	CH2OC6H4-4′-NHCONHC6H4-3″-SO2F	6.8 (M) 77; 6.8 (N) 77
					6.0 (U) 77
143	NH_2	\mathbf{NH}_2	$C_{6}H_{3}-3',4'-Cl_{2}$	$CH_2OC_6H_4$ -3'-NHCONH C_6H_4 -3''-SO ₂ F	6.1 (M) 77; 6.2 (N) 77
					5.8 (U) 77
144	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	$CH_2C_6H_4$ -4'-NHCOC ₆ H ₄ -4''-SO ₂ F	5.7 (U) 93
145	\mathbf{NH}_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	$CH_2OC_6H_4$ -3'-NHCONH C_6H_4 -3''-SO ₂ F	6.2 (N) 73; 5.8 (U) 73
146	NH_2	NH_2	$C_{6}H_{3}-3',4'-Cl_{2}$	$CH_2OC_6H_4$ -3'- $CH_2NHCOC_6H_4$ -3''- SO_2F	7.2 (U) 108
147	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$CH_2OC_6H_4$ -3'- $CH_2NHCOC_6H_4$ -4''- SO_2F	7.2 (U) 108
148			$C_6H_3-3',4'-Cl_2$	$CH_2 OC_6 H_4$ -3'- $CH_2 NHSO_2 C_6 H_4$ -3''- $SO_2 F$	7.0 (U) 108
149	NILI	INFL2		CH_OC_HA/_CH_NHSO_2U6H₄-4″-3U2H CH_OC_HA/_CH_NHSO_CH9// SO_F	7.2 (U) 100 7.2 (II) 95
100	NH	NH	C.H9/ 4/ Cl	CH_OC_H_4'_CH_NHSO_C_H_4''_SO_F	68 (II) 95
152	NH-	NH-	C.H3' 4'-Cl.	$CH_0C_0H_{-3}$ - $CH_0NHC_0H_{-4}$ - SO_2F	7.1 (U) 108
153	NH-	NH-	C.H3' 4'-Ch	CHOCCH-3'-CHANHCONHCAH-3'-SO2F	6.8 (U) 95
154	NH-	NH-	C.H3'.4'-Cl.	CH ₀ OC ₆ H ₄ -4'-CH ₀ NHCONHC ₆ H ₄ -3'-SO ₂ F	6.8 (U) 95
155	NH ²	NH ²	C _a H ₀ -3'.4'-Cl ₀	$CH_2OC_{a}H_3-2'-Cl-4'-NHCOC_{a}H_4-3''-SO_{a}F$	6.3 (U) 94
156	NH	NH.	CeH3-3'.4'-Cla	CH ₂ OC ₆ H ₃ -2'-Cl-4'-NHCOC ₆ H ₄ -4''-SO ₅ F	6.5 (U) 94
157	NH,	NH ₂	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -3'-Me-4'-NHCOC ₆ H ₄ -	6.5 (U) 94
	4	-	~ ~ ~ ~ *	3 ⁷ ′-SŎ₂Ě	
158	NH_2	\mathbf{NH}_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -3′-Me-4′-NHCOC ₆ H ₄ -	6.9 (U) 94
_				4″-SO ₂ F	
159	NH_2	\mathbf{NH}_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -2'-Cl-4'-NHCONHC ₆ H ₄ -4''-SO ₂ F	5.1 (U) 93
160	NH_2	\mathbf{NH}_2	C ₆ H ₃ -3',4'-Cl ₂	$CH_2OC_6H_3$ -3'-Me-4'-NHCONHC $_6H_4$ -4''-SO $_2F$	6.5 (U) 93

no.	R_2	R4	R5	R ₆	activity (enzyme) ref
161	NH ₂	NH ₂	CeH2-3',4'-Cl2	CH_OC_H_3-3'-Cl-4'-NHCONHC_H4''-SO_F	6.0 (U) 93
162	NH ₂	NH,	CeH3-3',4'-Cl2	CH ₂ OC ₂ H ₃ -3'-Me-4'-NHCONHC ₂ H ₄ -3''-SO ₂ F	6.5 (U) 92; 7.2 (Q) 92
163	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH2OC6H3-3'-Cl-4'-NHCONHC6H4-3"-SO2F	6.5 (U) 92
164	NH_2	NH ₂	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -2'-Cl-4'-NHCONHC ₆ H ₄ -3"-SO ₂ F	5.7 (U) 92
165	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -2',6'-(Me) ₂ -4'-NHCONHC ₆ H ₄ -3''-SO ₂ F	5.5 (U) 92
166	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH2OC6H3-2'-Cl-4'-NHSO2C6H4-3"-SO2F	7.5 (Q) 108
167	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -3'-Me-4'-NHSO ₂ C ₆ H ₄ -3"-SO ₂ F	7.7 (Q) 108
168	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -2'-Cl-4'-NHSO ₂ C ₆ H ₄ -4"-SO ₂ F	7.3 (Q) 108
169	NH_2	NH_2	C ₆ H ₃ -3′,4′-Cl ₂	CH ₂ OC ₆ H ₃ -3′-Me-4′-NHSO ₂ C ₆ H ₄ -4″-SO ₂ F	7.3 (Q) 108
170	NH_2	NH_2	C ₆ H ₃ -3′,4′-Cl ₂	$CH_2OC_6H_3$ -2'-OMe-4'-CH ₂ NHCOC ₆ H ₄ -3''-SO ₂ F	7.3 (Q) 107
171	NH_2	NH_2	C ₆ H ₃ -3′,4′-Cl ₂	$CH_2OC_6H_3$ -2'-Cl-4'-CH_2NHCOC_6H_4-3''-SO_2F	7.3 (Q) 107
172	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -3′-Me-4′-CH ₂ NHCOC ₆ H ₄ -3″-SO ₂ F	7.0 (Q) 107
173	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -2'-OMe-4'-CH ₂ NHCOC ₆ H ₄ -4"-SO ₂ F	7.0 (Q) 107
174	NH_2	$\rm NH_2$	C ₆ H ₃ -3',4'-Cl ₂	$CH_2OC_6H_3$ -2'-Cl-4'-CH ₂ NHCOC ₆ H ₄ -4''-SO ₂ F	7.3 (Q) 107
175	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	$CH_2OC_6H_3$ -3'-Me-4'-CH ₂ NHCOC ₆ H ₄ -4''-SO ₂ F	7.0 (Q) 107
176	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$CH_2OC_6H_3$ -2'-OMe-4'-CH ₂ NHCOC ₆ H ₄ -3''-SO ₂ F	7.3 (Q) 107
177	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$CH_2OC_6H_3$ -2'-CI-4'-CH ₂ NHCOC ₆ H ₄ -3''-SO ₂ F	7.2 (Q) 107
178		NH_2	C_6H_3 -3',4'- Cl_2	$CH_2OC_6H_3$ -3'-Me-4'- $CH_2NHCOC_6H_4$ -3''-SO ₂ F	6.8 (U) 107
179	NH2	INH ₂	C_6H_3 -3',4'- Cl_2	$CH_2UC_6H_3$ -2'-UMe-4'-CH_2NHCUNHC_6H_4-4''-SU2F	7.0 (Q) 107
180	IN II 2	$\mathbf{N}\mathbf{n}_2$	C6H3-3',4'-Cl2	$CH_2 U C_6 \Pi_3 - 2^{-} - CH_2 NHCONHC_6 \Pi_4 - 47.80 E$	7.2 (Q) 107
191	NU	NL	CH 2/ A/ Cl	4° - $3U_2\Gamma$	71(0)107
101		NII	$C_{6}\Pi_{3}$ -3',4'- C_{12}	$CH_2OC_6H_3^{-3}$ -Me-4-CH_2NHCONHCH_9// Mo 4// SO F	7.1 (Q) 107 6.0 (O) 107
182	NH.	NH2	$C_{6} H_{3} - 3, 4 - C_{12}$	$CH_2OC_6H_3^{-2} - CH_4 - CH_2NHCONHC_6H_3^{-3} - Me^{-4} - SO_2F$	7.4 (O) 107
194	NH.	NH	$C_{6}H_{3}-3, 4-C_{12}$	$CH_{2}OC_{6}H_{3}^{-2}$ -OME-4 -CH ₂ NHSO ₂ C ₆ H ₄ -3 -SO ₂ F	7.4 (Q) 107 7.4 (Q) 107
185	NH.	NH.	C-H-3' 4'-Cl	$CH_2OC_8H_3^{-2} - OF_4^{-} - OH_2IVIISO_2C_8H_4^{-3} - SO_2F$ $CH_2OC_8H_3^{-3} - M_{\bullet}^{-4} - CH_2NHSO_2C_8H_4^{-3} - SO_2F$	7.4 (0) 107
186	NH.	NH	C.H3' 4'-Cl	$CH_{2}OC_{\theta}H_{2}=0^{-1}Me^{-4} - CH_{2}H_{1}H_{2}O_{2}C_{\theta}H_{4}=0^{-1}OC_{2}H_{2}$	7.2 (0) 107
187	NH ₂	NH.	CoHo-3' 4'-Clo	$CH_2OC_6H_3^{-2} - OMe^{-4} - CH_2(CHSO_2C_6H_4^{-4} - SO_2F)$ $CH_2OC_2H_3^{-2} - Cl_24' - CH_2NHSO_2C_6H_4^{-4}' - SO_2F$	69 (O) 107
188	NH.	NH.	C.H3' 4'-Cl.	$CH_2OC_8H_3^{-2} - OF_4^{-1} - OH_2^{-1}H_3O_2^{-1}C_4^{-4} - SO_1^{-4}$	7.0 (Q) 107
189	NH.	NH	C.H3'.4'-C	CHOCoH -4'-NHCOC-H-4'-Me-3''-SOF	6.8 (II) 94
190	NH.	NH.	C.H3'.4'-Cl.	CH_OC_H_4 4 - NHCOC_H_22'-Cl-5''-SO_F	7 1 (II) 94
191	NH ₂	NH	CeH ₂ -3'.4'-Cl ₂	CH ₂ OC ₂ H ₂ -4'-NHCONHC ₂ H ₂ -3''-SO ₂ F-4''-OMe	6.8 (II) 92
192	NH ₂	NH.	CeH3-3',4'-Cl2	CH ₂ OC _e H ₂ -4'-NHCONHC _e H ₂ -3''-SO ₂ F-4''-OEt	6.3 (IJ) 92
193	NH_2	NH ₂	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC _e H ₄ -4'-NHCONHC _e H ₂ -3''-SO ₂ F-6''-OMe	6.3 (U) 92
194	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH2OCeH4-4'-NHCONHC4H2-3"-SO2F-6"-Cl	6.3 (U) 92
195	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	(CH ₂) ₂ C ₆ H ₄ -4'-NHCONHC ₆ H ₃ -2"-Cl-5"-SO ₂ F	7.1 (U) 94
196	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	(CH ₂) ₂ C ₆ H ₄ -4'-NHCONHC ₆ H ₃ -3"-Cl-4"-SO ₂ F	6.0 (U) 94
197	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	(CH ₂) ₂ C ₆ H ₄ -4'-CH ₂ NHCOC ₆ H ₃ -2"-Cl-5"-SO ₂ F	7.7 (Ú) 96
198	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	$(CH_2)_2C_6H_4-4'-CH_2NHCOC_6H_3-3''-SO_2F-4''-Me$	7.6 (U) 96
199	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₄ -4'-CH ₂ NHCOC ₆ H ₃ -3''-SO ₂ F-4''-Cl	7.5 (Q) 95
					7.0 (U) 95
200	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₄ -4'-CH ₂ NHCOC ₆ H ₃ -3''-SO ₂ F-4''-Me	7.7 (U) 95
			· · · · · · · · ·		(Q) 95
201	NH_2	\mathbf{NH}_2	C ₆ H ₃ -3′,4′-Cl ₂	$\mathrm{CH}_{2}\mathrm{OC}_{6}\mathrm{H}_{4}$ -4'- $\mathrm{CH}_{2}\mathrm{NHCOC}_{6}\mathrm{H}_{3}$ -3"- $\mathrm{SO}_{2}\mathrm{F}$ -4"- <i>i</i> - $\mathrm{C}_{3}\mathrm{H}_{7}$	6.9 (U) 95
			O TT AL (1) O		(Q) 95
202	NH_2	NH_2	$C_6H_3-3',4'-Cl_2$	$CH_2OC_6H_4$ -4'- $CH_2NHCOC_6H_3$ -2"- Cl -5"- SO_2F	7.0 (U) 95
203	NH ₂	NH_2	C_6H_3 -3',4'- Cl_2	$CH_2SC_6H_4-4'-NHCONHC_6H_4-3''-SO_2F$	(Q) 108
204		NH ₂	$C_6 \Pi_3 - 3', 4' - C_{12}$	$CH_2OC_6H_4$ -4'-NHCONH C_6H_3 -3''-Me-4''-SO ₂ F'	5.7 (U) 93
200	NH2		$C = 3,4' - C_{12}$	$CH_2OC_6\Pi_4$ -4 - $CH_2NHCONHC_6\Pi_3$ -3"-S O_2F -4" - Me	7.0 (U) 95
200	NH.		$C_{6}H_{3}-3,4^{-}C_{12}$	$CH_2 \cup C_6 \Pi_4 = 4 - C \Pi_2 U \Pi C U U \Pi C_6 \Pi_3 = 2^{\circ} - C I - 0^{\circ} - S \cup_2 F$	6.4 (U) 95
207	NH.	NH2	C_{6}^{113} , $3', 4'$, C_{12}	$CH_{2}OC_{\theta}\Pi_{4} - 4 - C\Pi_{2}V\Pi CON\Pi C_{\theta}\Pi_{3} - 3'' - Me - 4'' - SO_{2}\Gamma$	6.4 (U) 95
200	NH.	NH	C.H3' 4'-Cl	$CH_2OC_6H_4^{-3}$ - $CH_2NHCONHC_6H_3^{-3}$ - SO_2F^{-4} - Me	7.3 (U) 108 6.5 (O) 108
210	NH	NH.	C.H3'.4'-Cl.	$CH_{2}OC_{6}H_{4}=0.0121000000000000000000000000000000000$	6.9 (L) 04
211	NH.	NH.	CeH-3'4'-Clo	CH20C2H-3'-Me-4'-NHCOC2H-2'-Cl-5''-SO2F	7.0 (L) 94
212	NH ₂	NH	C ₆ H ₆ -3'.4'-Cl ₂	CH ₂ OC ₂ H ₂ ·2′-Cl-4′-CH ₂ NHCONHC ₂ H ₂ ·2′-Cl-5″-SO ₂ F	7.4 (Q) 107
213	NH,	NH.	C ₆ H ₃ -3'.4'-Cl ₂	CH ₂ OC ₆ H ₂ -2'-Cl-4'-CH ₂ NHCONHC ₆ H ₂ -3''-SO ₆ F-4''-M ₂	6.8 (Q) 107
214	NH_{2}	NH.	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₄ H ₂ -2'-Cl-4'-NHCOC ₄ H ₂ -4''-Me-3''-SO ₂ F	6.3 (II) 94
215	NH_2	NH ₂	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₂ -3'-Me-4'-NHCONHC ₆ H ₂ -3''-Me-4''-SO ₂ F	6.8 (U) 93
216	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₂ -3'-Cl-4'-NHCONHC ₆ H ₂ -3''-Me-4''-SO ₂ F	6.0 (U) 93
217	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH2OC6H3-3'-Cl-4'-NHCONHC6H3-3"-Cl-4"-SO2F	5.7 (U) 93
218	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -3'-Cl-4'-NHCONHC ₆ H ₃ -3''-OMe-4''-SO ₂ F	6.3 (U) 93
219	NH_2	NH_2	C ₆ H ₃ -3′,4′-Cl ₂	CH ₂ OC ₆ H ₃ -3'-Cl-4'-NHCONHC ₆ H ₃ -3''-SO ₂ F-4''-OMe	6.7 (U) 92
220	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -3'-Cl-4'-NHCONHC ₆ H ₃ -3''-SO ₂ F-6''-OMe	6.6 (U) 92
221	$\rm NH_2$	\mathbf{NH}_2	C ₆ H ₃ -3′,4′-Cl ₂	CH2OC6H3-3′-Me-4′-NHCONHC6H3-	6.9 (U) 92
	****		0.11. 01.11.01	3''-SO ₂ F-6''-OMe	
222	NH ₂	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₃ -3'-Cl-4'-NHCONHC ₆ H ₃ -3''-SO ₂ F-6''-Cl	6.2 (U) 92
223	INH2	NH_2	$C_6H_3-3',4'-Cl_2$	$CH_2OC_6H_3-3'-Me-4'-NHCONHC_6H_3-3''-SO_2F-6''-Cl$	6.9 (U) 92
224	INFI2	NH ₂	$C_6 n_3 - 3', 4' - Cl_2$	$Un_2UU_6n_3$ -2'-Ul-4'-CH ₂ NHCUU ₆ H ₃ -2''-Cl-5''-SO ₂ F	7.0 (Q) 107
440 996	NH	INH2		$\Box_2 \cup \Box_6 \Box_3^{-2} - \Box_{-4'} - \Box_2 NHUUU_6 H_3 - 4'' - Me - 3'' - SU_2 F$	6.9 (Q) 107
227	NH-	NH	CaHar3' 4'-Cla	CH.OC.H.4/-(CH.).NHCOC U 4// SO F	(13 (b) 108 6 8 (O) 108
228	NH-	NH.	C.H3(4'-C)	$CH_{2}O_{6}H_{4}-4'-(CH_{2})_{2}NHCONHC_{4}-4''-5U_{2}F$	0.0 (Ψ) 100 7.0 (Ω) 108
229	NH.	NH.	C.H3'.4'-Clo	$CH_{2}OC_{\theta}H_{4}$ - $4'$ - $(CH_{0})_{0}NHCONHC_{0}H_{4}$ - $3'$ - $SO_{2}F$	6.8 (Q) 108
230	NH ₂	NH ₆	C ₆ H ₃ -3',4'-Cl ₂	CH ₂ OC ₆ H ₄ -4'-(CH ₂) ₂ NHSO ₂ C ₆ H ₄ -3''-SO ₂ F	7.3 (Q) 108
231	NH_2	NH_2	C ₆ H ₃ -3',4'-Cl ₂	CH2OC6H4-4'-(CH2)2NHSO2C6H4-4"-SO5F	7.0 (Q) 108
232	NH_2	NH_2	C ₆ H ₃ -3'-NH ₂ -4'-Cl	C_2H_5	5.8 (M) 104

TABLE XII (Continued)

		<u></u>			
<u>no.</u>	R ₂	R_	R ₅	R ₆	activity (enzyme) ref
					5.8 (AA) 104
					5.6 (AL) 104
233	NH_2	NH_2	C ₆ H ₃ -3'-NO ₂ -4'-Cl	C_2H_5	7.0 (M) 104
					8.2 (AA) 104
					7.8 (AL) 104
234	\mathbf{NH}_2	\mathbf{NH}_2	$C_6H_3-3',4'-(OMe)_2$	CH_3	3.5 (M) 104
					5.5 (AA) 104
005		NIT			5.1 (AL) 104
235	NH_2	NH ₂	$C_{6}H_{2}$ -3',4',5'-(OMe) ₈	H	3.6 (BJ) 258
230			$C_{6}\Pi_{4}$ -4'- $C\Pi_{2}$ INICONH $C_{6}\Pi_{5}$		7.0 (U) 100
201	NH	NU.	$C_{\theta} H_{4}^{-4} - CH_{2} NHCONHC_{\theta} H_{4}^{-3} - CI$	CH3	7.7 (U) 155 7.9 (U) 155
239	NH ₂	NH ₂	CoH4-4'-CH2NHCONHCoH4-3'-OME	CH ₃	80 (II) 155
240	NH.	NH ₂	Cell'-CH-NHCONHCell-3"-CN	CH.	7.7 (II) 155
241	NH ₂	NH ₂	C.H.4'-CH-NHCONHCH-H3"-CONM	e, CH,	7.9 (U) 155
242	NH_2	NH_2	C ₆ H ₄ -4'-CH ₂ NHCONHC ₆ H ₃ -3"-Me-4"-SC	$\mathbf{\hat{P}_{2}F}$ \mathbf{CH}_{3}	8.0 (U) 155
243	NH_2	NH_2	2'-CH ₂ -pyridyl	- H Î	3.5 (BJ) 201
244	NH_2	NH_2	3'-CH ₂ -pyridyl	Н	5.3 (BJ) 201
245	NH_2	NH_2	4'-CH ₂ -pyridyl	н	4.6 (BJ) 201
246	NH_2	\mathbf{NH}_2	3'-CH ₂ -pyridyl-(NO)	Н	4.3 (BJ) 201
247	$\rm NH_2$	$\rm NH_2$	4'-CH ₂ -pyridyl-(NO)	H	4.2 (BJ) 201
248	NH_2	NH_2	3'-CH ₂ -pyridyl-6'-OCH ₃	H	5.7 (BJ) 201
249			3'-CH ₂ -pyridyl-5'-Br,6'-UCH ₃	H	6.2 (BJ) 201
200	NH ₂		$3^{\circ} - CH_2$ -pyridyi- $5^{\circ} - OCH_3$ - $5^{\circ} - OH$	H	5.0 (BJ) 201 5.4 (BJ) 201
259	NH	NH	$2 - CH_2 - pyridy - 4, 6 - (OCH_3)_2$ $3' - CH_2 - pyridy - 5', 6' - (OCH_3)_2$	п Ц	6.8 (BI) 201
253	NH.	NH ₂	3'-CH-pyridyl-2' 6'-(OCH_a)	н	6.2 (BJ) 201
254	NH.	NH ₂	4'-CH_2-pyridyl-2',6'-(OCH_3)	H H	6.7 (BJ) 201
255	NH	NH ₂	CH ₂ C _a H _s	H	5.2 (BN) 263; 6.2 (BJ) 259
	-	-	- 0 0		5.4 (BJ) 34; 5.6 (AZ) 34
					6.0 (BG) 34; 5.7 (H) 246
					3.9 (F) 260
256	\mathbf{NH}_2	NH_2	CH ₂ C ₆ H ₄ -3'-Br	н	7.0 (BJ) 263; 6.2 (BN) 263
					4.7 (F) 260; 6.1 (H) 246
257	NH_2	\mathbf{NH}_2	$CH_2C_6H_4-4'-Br$	н	6.8 (BJ) 263; 6.2 (BN) 263
050	NUT	NIT			4.2 (F) 260; 5.7 (H) 246
208	INE ₂	IN II 2	$Cn_2C_6n_4-3$ -Cl	п	A = A = A = A = A = A = A = A = A = A =
259	NH.	NH	CH ₂ C ₂ H ₂ -4'-C)	н	64 (BJ) 263 62 (BN) 263
200	14142	11122		**	4.3 (F) 260: 5.9 (M) 104
					4.1 (AA) 104; 5.6 (H) 246
					3.7 (AL) 104
260	NH_2	NH_2	$CH_2C_6H_4-4'-Cl$	CH_3	5.6 (M) 104; 4.6 (AA) 104
					4.3 (AL) 104
261	\mathbf{NH}_2	\mathbf{NH}_2	CH ₂ C ₆ H ₄ -3'-F	н	5.4 (BN) 263; 4.3 (F) 260
060	NU	NU		ч	0.8 (II) 240; 0.2 (DJ) 203 c 9 (DI) 969, 57 (DN) 969
202	11112	1112		11	4.3 (F) 260, 5.7 (H) 246
263	NH	NH	CH ₂ C ₂ H ₂ -3'-I	н	7.2 (BJ) 263: 6.7 (BN) 263
200	2	2	01120614 0 1	••	4.6 (F) 260
264	NH_2	NH_2	$CH_2C_6H_4-4'-NH_2$	н	6.3 (BJ) 263; 5.5 (BN) 263
	-				6.3 (BJ) 259; 5.1 (H) 246
					3.7 (F) 260
265	NH_2	\mathbf{NH}_2	$CH_2C_6H_4-4'-NO_2$	н	6.0 (BN) 263; 6.2 (BJ) 259
					6.2 (BJ) 263; 5.5 (H) 246
000	NILI	NU	CHCH // NO	CH.	5.8 (F) 200 6.0 (M) 104: 4.3 (AA) 104
266	INIT ₂	1112	$CH_2C_{6H_4}-4-INO_2$	0113	$A = (\Delta I) 104; 4.3 (AA) 104$
967	NH.	NH	CH_C_H3'-OH	н	6.5 (BJ) 263: 5.8 (BN) 263
201	14112		011206114 0 011		3.6 (F) 260
268	NH_2	NH_2	$CH_2C_6H_4$ -3'- CH_3	н	6.7 (BJ) 263; 5.8 (BN) 263
	_				4.1 (F) 260; 5.7 (H) 246
269	NH_2	NH_2	$CH_2C_6H_4$ -4'- CH_3	Н	6.5 (BJ) 263; 5.8 (BN) 263
070	NIT	NILI		ч	4.2 (F) 260; 5.2 (H) 246 e 9 (DI) 969, 5.7 (DN) 969
270	$IN\Pi_2$	IN II 2	$CH_2C_6H_4$ -3- CH_2OH	п	3.8 (F) 260
271	NH	NHa	CH ₂ C ₂ H ₂ -3'-CF ₂	н	7.0 (BJ) 263; 6.2 (BN) 263
	2				4.3 (F) 260; 6.0 (H) 246
272	NH_2	NH_2	$CH_2C_6H_4-4'-OCH_3$	Н	6.6 (BJ) 263; 6.3 (BN) 263
				••	4.2 (F) 260; 5.5 (H) 246
273	NH_2	NH_2	$CH_2C_6H_4$ -3'- OCH_3	н	3.9 (BJ) 263; 5.9 (BN) 263
974	NU	NU	CH-C-H-44-0CH-	ч	4.0 (F) 200; 0.0 (H) 246 6.8 (B.I) 969 6.9 (DNI) 969
414	14115	14112	011206114-4-00113	11	3.7 (F) 260: 5.4 (H) 246
275	NH_2	\mathbf{NH}_{2}	CH ₂ C ₆ H ₄ -3'-OSO ₂ CH ₃	н	6.9 (BJ) 263; 5.9 (BN) 263
	-	-	······································		4.2 (F) 260
276	NH_2	\mathbf{NH}_2	$CH_2C_6H_4-4'-N(CH_3)_2$	н	6.8 (BJ) 263; 6.2 (BN) 263

		·			
no.	R ₂	R4	R ₅	R ₆	activity (enzyme) ref
277	NH₂	NH_2	CH ₂ C ₆ H ₄ -4′-NHCOCH ₃	н	3.6 (F) 260; 5.5 (H) 246 6.9 (BJ) 263; 6.0 (BN) 263
278	NH_2	NH_2	CH ₂ C ₆ H ₄ -3'-CH ₂ OCH ₃	н	4.1 (F) 260; 5.6 (H) 246 6.6 (BJ) 263; 5.6 (BN) 263
279	NH₂	\mathbf{NH}_2	CH ₂ C ₆ H ₄ -3'-OCH ₂ CONH ₂	н	4.5 (F) 260 5.6 (BJ) 263; 6.0 (BN) 263
260	NH2	\mathbf{NH}_2	CH ₂ C ₆ H ₄ -3'-O(CH ₂) ₂ OCH ₃	н	3.7 (F) 260 6.5 (BJ) 263; 6.1 (BN) 263
281	NH_2	NH_2	CH ₂ C ₆ H ₄ -4'-O(CH ₂) ₂ OCH ₃	н	3.9 (F) 260 6.4 (BJ) 263; 6.0 (BN) 263
282	\mathbf{NH}_2	NH_2	CH ₂ C ₆ H ₄ -3'-O(CH ₂) ₃ CH ₃	н	3.3 (F) 260 6.8 (BJ) 263; 6.1 (BN) 263
283	NH_2	NH_2	CH ₂ C ₆ H ₄ -4'-O(CH ₂) ₃ CH ₃	н	5.0 (F) 260 6.9 (BJ) 263; 6.4 (BN) 263
284	NH_2	NH ₂	CH ₂ C ₆ H ₄ -3'-CH ₂ O(CH ₂) ₃ CH ₃	н	4.3 (F) 260 6.5 (BJ) 263; 5.5 (BN) 263
285	NH_2	NH ₂	CH ₂ C ₆ H ₄ -3'-O(CH ₂) ₅ CH ₃	н	4.6 (F) 260 6.9 (BJ) 263; 5.8 (BN) 263
286	NH_2	NH_2	$CH_2C_6H_4$ -4'-O(CH_2) ₅ CH_3	н	6.1 (BJ) 263; 5.7 (BN) 263 5.0 (F) 260
287	NH_2	NH_2	CH ₂ C ₆ H ₄ -3'-O(CH ₂) ₆ CH ₃	н	6.4 (BJ) 263; 5.6 (BN) 263
288	NH_2	NH_2	$CH_2C_6H_4-4'-O(CH_2)_6CH_3$	н	5.6 (BJ) 263; 5.4 (BN) 263
289	NH_2	NH_2	$CH_2C_6H_4$ -3'-O(CH_2) ₇ CH_3	н	6.2 (BJ) 263; 5.3 (BN) 263
290	NH_2	\mathbf{NH}_2	CH ₂ C ₆ H ₄ -3'-OCH ₂ C ₆ H ₅	н	7.0 (BJ) 263; 6.1 (BN) 263
					5.0 (F) 260; 6.6 (H) 246
291	NH_2	NH_2	$CH_2C_6H_4-4'-NHC_6H_4-4''-CO-Asp$	Н	10.0 (BE) 147
292	NH_2	NH_2	$CH_2C_6H_4-4'-NHC_6H_4-4''-CO-Asp$	CH ₃	10.0 (BE) 147
293	$\rm NH_2$	$\rm NH_2$	CH ₂ C ₆ H ₃ -3',4'-(OH) ₂	н	4.8 (H) 246; 6.5 (BJ) 259 5.5 (BJ) 263; 5.8 (BN) 263 3.5 (F) 260
294	NH	NH	CH ₂ C ₂ H ₂ -3'.5'-(OH) ₂	н	3.0 (BJ) 263: 3.4 (BN) 263
295	NH ₂	NH ₂	$CH_2C_6H_3$ -3'-NO ₂ -4'-NHCOCH ₃	н	7.0 (BJ) 263; 6.0 (BN) 263 4.2 (F) 260; 5.7 (H) 246
296	NH.	NH.	CH_C_H_3'-CH_4'-OCH	н	6.3 (H) 246; 7.7 (BJ) 259
297	NH_2	NH ₂	$CH_2C_6H_3-3',5'-(CH_2OH)_2$	H	6.3 (BJ) 263; 5.7 (BN) 263 2.7 (F) 260
298	\mathbf{NH}_2	NH_2	$CH_2C_6H_3$ -3'- CF_3 -4'- OCH_3	н	7.7 (BJ) 263; 7.3 (BN) 263
299	$\rm NH_2$	$\rm NH_2$	$CH_2C_6H_3-3',4'-(OMe)_2$	Н	6.1 (M) 104; 3.8 (AA) 104 7.7 (BJ) 263; 6.9 (BN) 263 4.7 (F) 260; 5.7 (H) 246
300	$\rm NH_2$	\mathbf{NH}_2	$CH_2C_6H_3-3',4'-(OMe)_2$	CH3	4.7 (AL) 104; (BN) 238 5.6 (M) 104; 3.6 (AA) 104 2.6 (AL) 104; (BN) 238
301	$\rm NH_2$	\mathbf{NH}_2	$CH_2C_6H_3-3',5'-(OMe)_2$	Н	8.4 (BJ) 263; 6.4 (BN) 263 7.2 (BJ) 253; 7.2 (BJ) 197
302	$\rm NH_2$	\mathbf{NH}_2	CH ₂ C ₆ H ₃ -3',4'-[O(CH ₂) ₂ OCH ₃] ₂	н	4.0 (M) 253; 4.1 (F) 260 7.2 (BJ) 263; 6.5 (BN) 263
303	NHa	NH	CH ₂ C ₂ H ₂ -3'-Cl-4'-OH: 5-OMe	н	4.0 (F) 260 4.1 (H) 237: 8.3 (BJ) 237
304	NH	NH₄	CH ₂ C _e H ₂ -3'.5'-(CH ₂) ₂ -4'-OH	H	7.1 (BJ) 259: 4.1 (M) 259
305	$\rm NH_2$	$\overline{NH_2}$	$CH_2C_6H_2-2'-Br-4',5'-(OMe)_2$	Н	6.1 (M) 104; 3.9 (AA) 104 4.1 (AL) 104
3 06	$\rm NH_2$	NH_2	$CH_2C_6H_2-3'-Br-4',5'-(OMe)_2$	H	6.7 (M) 104; 3.6 (AA) 104 7.3 (BJ) 236
307	\mathbf{NH}_2	NH_2	CH ₂ C ₆ H ₂ -3'-Cl-4',5'-(OMe) ₂	н	4.0 (M) 236: 7.4 (BJ) 236
308	NH_2	NH_2	CH ₂ C ₆ H ₂ -3'-NH ₂ -4',5'-(OMe) ₂	H	3.1 (M) 236; 6.0 (BJ) 236
309	NH_2	$\overline{NH_2}$	CH ₂ C ₆ H ₂ -3',5'-(OMe) ₂ -4'-I	Н	3.9 (M) 236; 7.6 (BJ) 236 7.6 (BJ) 197
310	$\rm NH_2$	\mathbf{NH}_2	CH ₂ C ₆ H ₂ -3′,5′-(OMe) ₂ -4′-OH	Н	8.0 (BJ) 230; 4.0 (M) 230 4.3 (H) 237; 3.6 (M) 244 8.3 (B) 244; 6.9 (AB) 244
311	NH-	NH-	CH_C_H3'.5'-(OM_)-4'-OH	н	(B.I) 249
312	NH	NH-	$CH_{0}C_{0}H_{0}=3'.5'-(OM_{0})_{-4'-OH}$	CH.	65 (BJ) 244.63 (AD) 244
212	NH.	NH	CH_C.H_S' 5'-(OM_) -4' OH	она п-С.Ч.	6 1 (BT) 944, 5 9 (AD) 644
010 Q1 <i>A</i>	NH	NH	CH_C_H_2' 5'-(OMe) 4' OH	<i>п</i> -Сзп7 С.Ч	U.I (DU) 244; D.O (AF) 244 5 7 (DI) 944. (M) 944
315	NH.	NH.	$CH_{0}C_{12}$, $CH_{0}C_{12}$	U6n5 H	0.7 (D0) 244; (W1) 244 7 8 (B.I) 996. (M) 996
316	NH ₂	\mathbf{NH}_2	$CH_2C_{\theta}H_2^{-3},5' \cdot (OMe)_2^{-4'-Br}$	H	5.7 (BQ) 236; 8.9 (AZ) 236 5.3 (AK) 236; 8.9 (AZ) 236 5.3 (AK) 236; 8.0 (BJ) 197 8.5 (BG) 236; 6.4 (BF) 236
317	NH.	NH.	CH4C3H43' 5'+(OM2)4'-C)	ч	5.5 (BT) 236; (M) 236 8.5 (BJ) 197; (M) 236
318	NH.	NH-	$CH_{0}C_{0}H_{0}=0.0-(OM_{0})_{2}=4-OI$	л Ц	7.7 (BJ) 197. A 1 (M) 992
319	NH.	NH.	CH_C_H_3/_SM_4/_OM_5/_B*	л Ч	80 (BJ) 259
320	NH.	NH.	CH ₀ C ₂ H ₀ -3'.5'-(CH ₀) ₀ -4'-OMe	ਸ	6.8 (BJ) 259: 3.6 (M) 259
321	NH.	NH	CH ₂ C ₂ H ₂ -2'-CH ₂ -4'.5'-(OMe)	Ĥ	7.3 (BJ) 258
322	$\rm NH_2$	NH_2	CH ₂ C ₆ H ₂ -3'-CH ₃ -4',5'-(OMe) ₂	н	4.0 (M) 236; 7.4 (BJ) 236

TABLE XII (Continued)

no.	R ₂	R ₄	R ₅	R ₆	activity (enzyme) ref
323	NH ₂	NH ₂	CH ₂ C ₆ H ₂ -3',5'-(OMe) ₂ -4'-CH ₃	Н	3.9 (M) 236; 8.1 (BJ) 236
324	NH_2	NH_2	CH ₂ C ₆ H ₂ -2',3',4'-(OMe) ₃	Н	6.0 (BJ) 258
325	NH_2	NH_2	$CH_2C_6H_2-2',4',5'-(OMe)_3$	Н	5.7 (M) 104; 3.4 (AA) 104
992	NU	NU	$CHCH 2/4/5/(OM_{\odot})$	ч	4.2 (AL) 104 6.0 (M) 104 2.6 (M) 28
320	\mathbf{NH}_2	IN II 2	$CH_2C_6H_2-3^{\circ},4^{\circ},5^{\circ}-(OMe)_3$	п	9.0 (PI) 104; 3.0 (MI) 32 9.0 (PI) 901.03 (PI) 115
					8.3 (BJ) 185: 8.4 (BJ) 210
					8.3 (BJ) 88; 8.9 (BJ) 263
					8.3 (BJ) 32; 8.3 (BJ) 253
					8.0 (BJ) 197; 8.6 (BJ) 34
					8.1 (AP) 116; 7.1 (AP) 115
					7.1 (AP) 88; 3.6 (M) 88
					5.6 (H) 246; 5.0 (AK) 90 7.9 (BC) 290; (AD) 199
					89 (AP) 244: 48 (AK) 236
					3.5 (A) 32; 5.0 (AR) 115
					6.1 (AX) 220; 8.1 (AZ) 236
					8.3 (AZ) 32; 8.4 (AZ) 51
					6.0 (AW) 220; 4.8 (BT) 236
					5.6 (BR) 236; 6.9 (BN) 263
					6.6 (AN) 115; 6.6 (AN) 90 2 4 (1) 29: (BN) 938
					6.6 (AN) 144: 4.7 (K) 67
					4.7 (K) 146; 4.5 (K) 45
					8.1 (BG) 236; 4.7 (AY) 220
					7.7 (BC) 171; 6.2 (CD) 63
					3.8 (F) 260; (BK) 198
					4.7 (AT) 115; 7.5 (BO) 220
					4.8 (AB) 63; 5.1 (A) 221 7.2 (BP) 165: 8.8 (BC) 34
					8.4 (BG) 32: 4.0 (AU) 144
					5.6 (BN) 222; 7.5 (BM) 146
					6.0 (AL) 67; 6.0 (AL) 90
					4.0 (BU) 144; 4.2 (AV) 144
					6.3 (AI) 90; (Z) 88
					4.7 (BV) 144; 3.4 (J) 146 2.5 (A) 146: 8.4 (BF) 147
					4.0 (BX) 144; 6.5 (BS) 146
					3.7 (AD) 146; (W) 249
					6.1 (AO) 90; 4.2 (BW) 144
					4.2 (AE) 146; 5.3 (AF) 146
					6.0 (I) 182; (BI) 198
					6.1 (AJ) 90; 4.7 (AM) 90
					4.4 (BY) 144; 5.0 (AC) 146 9.4 (AA) 104: 9.9 (AT) 104
					6.0 (D) 88
327	NH	NH	CH ₂ C ₂ H ₂ -3'.4',5'-(OMe) ₂	Cl	(BJ) 244
328	NH_2	NH_2	CH ₂ C ₆ H ₂ -3',4',5'-(OMe) ₃	NH_2	5.0 (BJ) 244
329	NH_2	NH_2	CH ₂ C ₆ H ₂ -3',4',5'-(OMe) ₃	CH ₃	7.0 (BJ) 244; 6.5 (AP) 244
330	$\rm NH_2$	NH_2	$CH_2C_6H_2-3', 4', 5'-(OMe)_3$	SCH ₃	(BJ) 244
331	\mathbf{NH}_2	\mathbf{NH}_2	$CH_2C_6H_2-3', 4', 5'-(OMe)_3$	$N(CH_3)_2$	2.3 (BJ) 244; (BK) 198 (PI) 198
332	NH	NH	CH_C_H3(4'.5'-(OMe)_	n-CaHa	2.8 (M) 244: 5.8 (BJ) 244
333	NH ₂	NH ₂	$CH_2C_6H_2-3', 4', 5'-(OMe)_3$	$i-C_3H_7$	5.7 (BJ) 244; (M) 244
334	NH_2	NH_2	CH ₂ C ₆ H ₂ -3',4',5'-(OMe) ₃	C ₆ H ₅	5.5 (BJ) 244; (M) 244
335	NH_2	NH_2	CH ₂ C ₆ H ₂ -3',4',5'-(OMe) ₃	OC_6H_5	(M) 244; (BJ) 244
336	NH_2	\mathbf{NH}_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-SCH_3$	Н	3.7 (H) 237; 3.6 (M) 236
					3.4 (M) 259; 8.4 (BJ) 236
0.97	NL	NU	CHCH 2/ SCH 4/ 5/ (OMa)	ц	8.5 (BJ) 259 8.2 (DJ) 259
338	NH ₂	NH ₀	$CH_2C_6H_2-3-SCH_3-4, 5-(CMe)_2$ $CH_2C_6H_2-3', 5'-(SMe)_2-4'-OMe$	H	8.1 (BJ) 259
339	NH ₂	NH_2	$CH_2C_6H_2-3',4',5'-(SMe)_3$	H	8.3 (BJ) 259
340	$\overline{NH_2}$	NH_2	$CH_2C_6H_2$ -3'-OMe-4'-Br-5'-OEt	Н	4.3 (M) 236; 8.3 (BJ) 236
341	NH_2	NH_2	$CH_2C_6H_2-4',5'-(OMe)_2-3'-CH_2OH$	H	6.9 (BJ) 258
342	NH ₂		$CH_2C_6H_2-3',5'-(OMe)_2-4'-CH_2OH$	H	3.2 (M) 228; 7.7 (BJ) 228
343 344			$CH_2C_6H_2-3, 5 - (OMe)_2-4 - CN$ $CH_2C_6H_2-3', 5' - (OMe)_2-4' - CH_2NH_2$	н	6.2 (BJ) 228; (M) 228
345	NH,	NH ₂	$CH_2C_6H_2-3',5'-(OMe)_2-4'-COOH$	H	5.8 (BJ) 228; (M) 228
346	NH_2	NH_2	CH ₂ C ₆ H ₂ -3',5'-(OMe) ₂ -4'-CONH ₂	н	7.6 (BJ) 228; (M) 228
347	NH_2	\mathbf{NH}_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-NHCH_3$	H	7.9 (BJ) 236; (M) 236
348	NH ₂	NH ₂	$CH_2C_6H_2$ -3'- CH_3 -4'- OMe -5'- CH_2CH_3	H	7.3 (BJ) 259; 4.1 (M) 259
349 350			Оп206п2-3,5-(ОШ/2-4'-DГ СН ₀ СеНо-3',5'-(ОМе)о-4'-С-Н-	л Н	4.7 (191) 200; 0.4 (DJ) 200 8.0 (BJ) 259: 8.0 (BJ) 253
000	2	- ***2		**	3.7 (M) 259; 3.7 (M) 253
351	NH_2	\mathbf{NH}_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-SEt$	н	8.7 (BJ) 259
352	NH_2	NH ₂	$CH_2C_6H_2-3',5'-(OMe)_2-4'-N(CH_3)_2$	H	7.5 (BJ) 236; (M) 236
353	NH_2	NH_2	CH ₂ C ₆ H ₂ -3',5'-(OMe) ₂ -4'-COOCH ₃	н	3.1 (M) 228; 8.0 (BJ) 228

BLE XII	(Continued)				
no.	R ₂	R	R ₅	R ₆	activity (enzyme) ref
354	NH_2	NH_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-CH_2OCH_3$	н	7.7 (BJ) 228; (M) 228
355	NH_{2}	NH_{2}	$CH_2C_6H_2-3',5'-(OMe)_2-4'-COCH_3$	н	3.1 (M) 228: 7.7 (BJ) 228
356	NH	NH	CH ₂ C ₂ H ₂ -3'.5'-(OMe) ₂ -4'-CH(OH)CH ₂	н	3.0 (M) 228: 7.3 (BJ) 228
357	NH.	NH.	$CH_{2}C_{2}H_{2}-3', 5'-(OMe)_{2}-4'-C(=NOH)CH_{2}$	ü	7.0 (BJ) 228; (M) 228
007	NILI	NLI	$CH C H = 2/5/(OM_{\odot}) / OCH CH C]$	п	(D) (D) 220; (W) 220
308	INH ₂	$\mathbf{N}\mathbf{n}_2$	$CH_2C_6H_2-3, 3-(OMe)_2-4-OCH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	н	8.3 (BJ) 259; 7.8 (BJ) 253
					3.6 (M) 259; 3.2 (M) 253
359	NH_2	NH_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-OC_2H_5$	Н	8.1 (BJ) 253; 3.2 (M) 253
360	NH_2	NH_2	$CH_{2}C_{6}H_{2}-3',5'-(OMe)_{2}-4'-OCH_{2}CH_{2}OH$	н	7.7 (BJ) 253; (M) 253
361	NH	NH	CH ₂ C ₂ H ₂ -3'.5'-(OMe) ₂ -4'-OCH ₂ CH ₂ NH ₂	н	7.7 (BJ) 253; (M) 253
369	NH	NH	$CH_{2}C_{1}H_{2}S_{2}S_{2}C_{1}O(M_{e}) - 4'-OCH_{2}O(H_{2}C_{1})$	и и	C 5 (D I) 059. (M) 059
002			$OII_2O_6II_2O_5, 5 - (OMe)_2 + OOII_2OO_2II$	п	0.0 (DJ) 200; (MI) 200
363	INIT ₂	INH ₂	$CH_2C_6H_2-3, 5 - (OMe)_2-4 - SCH_2CH_2OMe$	н	7.0 (BJ) 259
364	NH_2	NH_2	$CH_2C_6H_2$ -3',5'-(OMe) ₂ -4'-OCH ₂ CH ₂ OMe	Н	7.7 (BJ) 259; 7.7 (BJ) 253
					8.4 (BJ) 237; 8.5 (BJ) 210
					8.4 (BJ) 263; (M) 259
					(M) 253 3 6 (H) 237
					(\mathbf{N}) 200, 0.0 (\mathbf{N}) 201 (\mathbf{D}) 969, 9.9 (\mathbf{E}) 960
0.05		NULL			0.9 (BN) 203; 3.3 (F) 200
365	NH_2	NH ₂	$CH_2C_6H_2-3^{\circ}, 5^{\circ}-(OMe)_2-4^{\circ}-OC_3H_7$	н	7.9 (BJ) 253; 3.6 (M) 253
366	NH_2	NH_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-OCH(CH_3)_2$	н	7.6 (BJ) 253; (M) 253
007	NITT	NILI			
367	INH ₂	IN II 2	$CH_2C_6H_2-3', 5'-(OMe)_2-4'-OCH_2CHCH_2O'$	н	7.8 (BJ) 253; (M) 253
368	NH_2	\mathbf{NH}_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-OCH_2CH=CH_2$	н	8.3 (BJ) 253; 3.3 (M) 253
369	NH_2	NH_2	CH ₂ C ₆ H ₂ -3',5'-(OMe) ₂ -4'-OCH ₂ CH ₂ CH ₂ OH	н	8.4 (BJ) 253; (M) 253
370	NH_2	NH_2	CH ₂ C ₆ H ₂ -3',5'-(OMe) ₂ -4'-OCH ₂ CH(OH)CH ₂ OH	н	7.8 (BJ) 253
371	NH	NH.	CH ₂ C _e H ₂ -3'.5'-(OMe) ₂ -4'-OCH ₂ CH ₂ CH ₂ Cl	н	8.3 (BJ) 253 3.6 (M) 253
379	NH	NH ⁰	CH_C.H3' 5'-(OMa)-4'-OCH CU CU NU	11 11	7 9 (DI) 059. (M) 059
074	14112 NTT	NU	$OU \cap U = 9/5/(ONf_{2}) + (ONf_{2})/(ONf_{2})$	п.	1.3 (DJ) 203; (WI) 203
3/3	INH ₂	INH ₂	$U_{12}U_{6}\Pi_{2}$ -3',5'-(UMe) ₂ -4'-UUN(Me) ₂	н	4.6 (BJ) 228; (M) 228
374	NH_2	NH_2	$CH_2C_6H_2-3'5'-(OMe)_2-4'-C(OH)(Me)_2$	н	7.8 (BJ) 236; 3.1 (M) 236
					8.1 (BG) 236; 7.1 (AZ) 236
					4.6 (BF) 236: 5.1 (BT) 236
					5.9 (DD) 200, 4.6 (AV) 200
075	NILL	NITT			5.8 (BR) 230, 4.0 (AR) 230
370			$CH_2C_6H_2-3, 5-(OMe)_2-4-COOEt$	н	7.9 (BJ) 228; 3.1 (M) 228
376	NH_2	NH_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-C(=CH_2)Me$	н	8.5 (BJ) 236; 8.6 (BJ) 259
					2.8 (M) 236; 2.8 (M) 259
					9.1 (BG) 236; 8.8 (AZ) 236
					5.6 (BF) 236: 4.8 (BT) 236
					5 A (BR) 236; A G (AK) 236
977	NL	NL	CHCH 2/5/ (OMa) // CH(OH)Et		5.4 (DI) 200, 4.0 (AR) 200
077		NIT2	$CH_2C_6H_2^{-3}, 3^{-1}(OMe)_2^{-4} - CH(OH)Et$	н	7.9 (BJ) 228; 3.2 (M) 228
378	NH_2	\mathbf{NH}_2	$CH_2C_6H_2-3', 5'-(OMe)_2-4'-COCH_2SO_2Me$	н	7.1 (BJ) 228; (M) 228
379	NH_2	NH_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-CH(Me)_2$	н	7.7 (BJ) 228; (M) 228
380	NH_2	NH_2	$CH_{2}C_{6}H_{2}-3',5'-(Et)_{2}-4'-OMe$	н	7.9 (BJ) 259; 4.2 (M) 259
381	NH	NH	CH ₂ C ₂ H ₂ -3' 5'-(Et) ₂ -4'-OMe	SCH.	(B.I) 244
307	NH	NH		ц ц	9.9 (DI) 950, 5 4 (M) 950
004	NILL2	NIT	$CH_{2}C_{6}H_{2}^{-3} - 24^{-4} - OH_{-3} - C_{3}H_{7}^{-3}$	п	8.2 (BJ) 209; 5.4 (W) 209
303			$CH_2C_6H_2-3', 5'-(ONIe)_2-4'-OC_4H_9-n$	п	8.0 (BJ) 253; 3.2 (M) 253
384	\mathbf{NH}_2	\mathbf{NH}_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-OC_4H_9-i$	н	7.7 (BJ) 253
385	NH_2	NH_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-OC_4H_9-sec$	н	7.8 (BJ) 253
386	NH_{2}	NH_{2}	CH ₂ C ₂ H ₂ -3',5'-(OMe) ₂ -4'-O-CH ₂ CO ₂ C ₂ H ₂	н	7.8 (BJ) 253; (M) 253
387	NH	NH	CH_C_H3'.5'-(OMe)-4'-COCH(Me)	н	67 (BJ) 228 32 (M) 228
200	NU	NU	CH C H = 2/Ft A/OMo 5/C H	и Ц	(DI) 220, 0.2 (M) 220
000	NUL	NIL2	$CH_{2}C_{6}H_{2}^{-3} - D_{1}^{-4} - OMe^{-3} - C_{3}H_{7}^{-3}$	п	7.9 (BJ) 209; 4.0 (M) 209
389	NH ₂	NH_2	$CH_2C_6H_2$ -3'-OMe-4'-C(OH)(Me) ₂ -5'-OEt	н	8.0 (BJ) 236; 4.1 (M) 236
390	\mathbf{NH}_2	NH_2	$CH_2C_6H_2$ -3'-OMe-4'-C(=CH_2)CH_3-5'-OEt	н	8.5 (BJ) 236; (M) 236
391	NH_2	NH_2	CH ₂ C ₆ H ₂ -3'-OMe-4'-CO ₂ Et-5'-OEt	н	(BJ) 236; (M) 236
392	NH ₂	NH,	$CH_2C_8H_2-3',5'-(OMe)_2-4'-pvrrol-1''-vl$	н	8.3 (BJ) 236: 4.3 (M) 236
393	NH	NH	CH ₂ C ₄ H ₂ -3'.5'-(n-C ₂ H ₂) ₂ -4'-OH	н	8.0 (BJ) 259: 5.7 (M) 259
394	NH.	NH	CH_C_H_3' 5'-(OFt)-4'-C(CH_) OF	 ц	8 A (B.I) 996- 9 A (MA) 996
00#±	NILT	NILT	$OII O H 0 (t) (OI3) 2^{-4} O(OI3) 2^{-0} OII OII O H 0 (t) (OI3) 2^{-0} OII OII OII OII OII OII OII OII OII OI$	л Т	0.4 (DJ) 200; 0.4 (IVI) 200
090 00 -	INFI2	1N Π 2	$\bigcup_{n_2 \cup n_2 \cup n_2 \to n_3} (\bigcup_{n_2 \cup n_2 \to n_3} (\bigcup_{n_2 \cup n_2 \to n_3} (\bigcup_{n_2 \to n$	н	8.7 (BJ) 236; 3.4 (M) 236
396	\mathbf{NH}_2	NH_2	$CH_2C_6H_2-3',5'-(OEt)_2-4'-CO_2Et$	H	8.3 (BJ) 236; 3.7 (M) 236
397	NH_2	NH_2	CH ₂ C ₆ H ₂ -3',5'-(OMe) ₂ -4'-CO ₂ C ₄ H ₉	Н	7.8 (BJ) 228; 3.4 (M) 228
398	NH	NH	CH ₂ C ₂ H ₂ -3'.5'-(OMe) ₂ -4'-OC ₂ H ₂ .	н	7.8 (BJ) 253: 3.6 (M) 253
399	NH.	NH.	$CH_{0}C_{0}H_{0}=3^{\prime}5^{\prime}-(OM_{0})=4^{\prime}-C(OH)(F+)$	 ਪ	80 (BJ) 998 (M) 998
000	1112		011206112-0 ,0 -(01110)2-4 -0(011)(EU)2	п	0.0 (10) 440; (11) 440 7.1 (17) 000
400	N.T.T.	NITT			(.1 (AL) 230
400	NH ₂	NH ₂	$UH_2U_6H_2-3', 5'-(n-U_3H_7)_2-4'-UMe$	н	7.4 (BJ) 259; 4.7 (M) 259
401	NH_2	NH_2	$CH_2C_6H_2-3',5'-(i-C_3H_7)_2-4'-OMe$	н	6.8 (BJ) 259; 4.9 (M) 259
402	\mathbf{NH}_2	NH_2	CH ₂ C ₆ H ₂ -3'-OMe-4'-pyrrol-1"-vl-5'-OEt	н	8.5 (BJ) 236: (M) 236
403	NH	NH.	$CH_{2}C_{e}H_{2}-3'.5'-(t-C_{2}H_{e})_{2}-4'-OH_{e}$	н	4.5 (BJ) 259: 5.7 (M) 259
404	NH.	NH	$CH_{C}H_{-}(OFt) = 4' = 5'$		97 (DI) 002. 00 (WI) 000
101	1112	2	011206112-(0100)2-4 -Py1101-1 -y1		0.7 (D0) 400; 0.8 (1V1) 400
					5.3 (AK) 236; 8.6 (AZ) 236
					8.7 (BG) 236; 6.3 (BF) 236
					4.7 (BT) 236; 5.9 (BR) 236
405	NH_{2}	NH_{2}	$CH_2C_6H_2-3',5'_{-}(OMe)_2-4'-O-n-C_6H_1$	н	8.4 (BJ) 253: 3.7 (M) 253
406	NH.	NH.	CH_C_H_3' 5'-(OMe)-4'-O(CH_)-CO_H	н	7.7 (B.I) 959-95 (M) 959
407	NU	NU	$C\mathbf{U} \cap \mathbf{U} = 2/5/(\mathbf{O}M_{0}) + O(\mathbf{O}\mathbf{U}) \times \mathbf{N}\mathbf{U}$	11	7.7 (DU) 200, 0.0 (NI) 200
407	INFI2	INFI2	$On_2 O_6 n_2 - 3$, $3^{\circ} - (Oivie)_2 - 4^{\circ} - O(OH_2)_6 - INH_2$	п	7.8 (BJ) 253; 3.2 (M) 253
408	NH ₂	NH_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-OCH_2CH_2N(CH_2CH_2)_2O$	н	7.8 (BJ) 253; (M) 253
409	NH_2	NH_2	CH ₂ C ₆ H ₂ -3',5'-(OMe) ₂ -4'-OC ₆ H ₄ -4''-NH ₂	н	8.2 (BJ) 253
410	NH_2	NH_2	CH ₂ C ₆ H ₂ -3',5'-(OMe),-4'-OC ₆ H ₄ -4"-NO ₂	н	8.1 (BJ) 253: 4.3 (M) 253
411	NH_{2}	NH ₂	$CH_{2}C_{e}H_{2}-3',5'-(t-C_{4}H_{0})-4'-OMe$	н	6.4 (BJ) 259: 4.5 (M) 259
412	NH.	NH.	$CH_{0}C_{0}H_{0}=3',5'=(t-C_{0}H_{0})=4'=OM_{0}$	NH-	4 2 (B.I) 944
419	NILI	NU	$O\mathbf{U} \cap \mathbf{U} = 0 \mathbf{E} (\mathbf{O} \mathbf{M}_{-}) \mathbf{A} (\mathbf{O} \mathbf{U} \setminus \mathbf{O} \mathbf{A} \mathbf{E})$	TTT	54 (DU) 455 50 (DI) 050 0.0 (DD) 050
410	14112	1112	011206112-0,0-(0ME)2-4-0(0112)5002ME	п	7.2 (DJ) 203; 3.2 (M) 203

TABLE	XII	(Continued)

no.	R_2	R ₄	R ₅	R ₆	activity (enzyme) ref
414	NH ₂	NH ₂	CH ₂ C ₆ H ₂ -3',5'-(OMe) ₂ -4'-O(CH ₂) ₃ N-c-(CH ₂) ₄	н	7.3 (BJ) 253; (M) 253
415	NH_2	NH_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-OCH_2C_6H_5$	н	7.8 (BJ) 253; 4.3 (M) 253
416	\mathbf{NH}_2	NH_2	CH ₂ C ₆ H ₂ -3',5'-(OMe) ₂ -4'-OCH ₂ C ₆ H ₄ -4''-NO ₂	Н	8.1 (BJ) 253; (M) 253
417	NH_2	NH_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-O-n-C_8H_{17}$	H	8.4 (BJ) 253
418	\mathbf{NH}_2	NH_2	$CH_2C_8H_2-3',5'-(OMe)_2-4'-O(CH_2)_3N-$	н	7.7 (BJ) 253; (M) 253
419	NH.	NH.	$(CH_2CH_2)_2 (CH_3)$ $CH_2C_2H_2 3' 5' = (OM_e)_2 4' = OC_2H_2 4'' = NHCOCH_2Br$	н	84 (BJ) 253 (M) 253
420	NH.	NH ₂	$CH_{2}C_{g}H_{2}-3',5'-(OMe)_{2}-4'-O(CH_{2})_{2}N-1'',2''-(CO)_{2}C_{e}H_{4}$	Ĥ	7.7 (BJ) 253
421	NH ₂	NH_2	$CH_2C_8H_2-3',5'-(OMe)_2-4'-OCH_2C_8H_2-$	Н	7.7 (BJ) 253; 4.8 (M) 253
	-	-	3",4",5"-(OMe) ₃		
422	NH_2	NH_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-O(CH_2)_4-N-1'',2''-(CO)_2C_6H_4$	Н	7.6 (BJ) 253; 4.3 (M) 253
423	NH_2	NH_2	$CH_2C_6H_2-3',5'-(OMe)_2-4'-O(CH_2)_6-N-1'',2''-(CO)_2C_6H_4$	H	7.4 (BJ) 253
424	NH_2	NH_2	$C(=CH_2)C_6H_2$ -3',4',5'-(OMe) ₃	H	5.6 (BJ) 185
420 496		NH	$CH(CH_3)C_6H_2^{-3}, 4', 5' - (OMe)_3$	п Ч	0.3 (BJ) 180 4.0 (BI) 185
420	NH.	NH.	$CH(C_{1}H_{2})C_{6}H_{2}^{-3}$, 4, 5, $(OMe)_{3}$	H	(B.I) 185
428	NH ₂	NH ₂	$C(=CHCH_0)C_{e}H_{2}-3',4',5'-(OMe)_{3}$	H	6.3 (BJ) 185
429	NH ₂	NH_2	$COH(C_2H_5)C_6H_2-3',4',5'-(OMe)_3$	н	5.4 (BJ) 185
430	NH_2	NH_2	$COH(CH=CH_2)C_6H_2-3',4',5'-(OMe)_3$	Н	4.1 (BJ) 185
431	NH_2	NH_2	$C = CHCH_2CH_3)C_6H_2-3',4',5'-(OMe)_3$	н	(BJ) 185
432	NH_2	NH_2	$CH(C_{3}H_{7})C_{6}H_{2}-3',4',5'-(OMe)_{3}$	Н	5.7 (BJ) 185
433	NH_2	NH_2	$COH(C_3H_7)C_6H_2-3',4',5'-(OMe)_3$	н	4.0 (BJ) 185
434	NH ₂	NH ₂	$CUH(CH_2CH=CH_2)C_6H_2^{-3'}, 4', 5' - (CMe)_3$	H	5.7 (BJ) 185
400	$\mathbf{N}\mathbf{n}_2$	IN II 2	$Cn_2C_6n-2'-Br-3',4',5'-(OMe)_3$	н	6.0 (M) 104; 3.4 (AA) 104
436	NH.	NH	(CHa)aCaHa	СН	67 (AB) 21
437	NH ₂	NH ₂	$(CH_2)_3C_8H_5$	NH ₂	5.1 (AB) 19
438	NH_2	NH_2	$(CH_2)_3C_6H_5$	ОН	4.2 (AB) 19
439	NH_2	NH_2	$(CH_2)_4C_6H_5$	CH3	7.6 (AB) 19; 7.6(AB) 21
440	\mathbf{NH}_2	NH_2	$(CH_2)_4C_6H_5$	$n-C_3H_7$	7.7 (AB) 37
441	NH_2	NH_2	$(CH_2)_4C_6H_5$	C ₆ H ₅	6.0 (AB) 37
442	NH_2	NH_2	$(CH_2)_4C_6H_5$	$CH_2C_6H_5$	6.5 (AB) 37
443			$(CH_2)_4 C_6 H_5$		5.0 (AB) 19 5.1 (AB) 10
445	NH ₂	NH ₀	$(CH_2)_4 \subset_{6H_5}$	(CHa)aCaHa-4'-NHCOCHaBr	74 (AB) 56: 70 (BJ) 52
446	NH ₂	NH ₂	(CH ₂) ₄ C ₆ H ₄ -4'-NHCOC ₆ H ₄ -3''-SO ₂ F	H	8.2 (U) 102
447	NH_2	NH_2	(CH ₂) ₄ C ₆ H ₄ -4'-NHCOC ₆ H ₄ -4''-SO ₂ F	н	7.3 (U) 102
448	NH_2	NH_2	(CH ₂) ₄ C ₆ H ₄ -4'-NHCOC ₆ H ₄ -3''-SO ₂ F	CH ₃	8.0 (U) 102
449	NH_2	NH_2	(CH ₂) ₄ C ₆ H ₄ -4'-NHCONHC ₆ H ₄ -4''-SO ₂ F	Н	7.3 (U) 102
450	NH_2	NH_2	$(CH_2)_4C_6H_4-4'-NHCOC_6H_4-3''-SO_2F$	NH ₂	7.2 (Q) 105; 8.0 (U) 105
451			$\mathbf{NHCH}_{2}\mathbf{C}_{6}\mathbf{H}_{4}$ -3'- $\mathbf{NHCUCH}_{2}\mathbf{Br}$	C ₆ H ₅	4.6 (N) 76; 4.3(U) 76
402	NH	NH ₂	$NH(CH_2) = C_6H_4 - 4' - NH_2$	C ₆ H ₅	4.7 (IN) 76; 3.8 (U) 76 6.4 (AB) 50
454	NH ₂	NH ₂	NH(CH ₂) ₃ C ₆ H ₄ -4'-NHCOCH ₂ Br	C _e H _z	7.3 (N) 76: 6.7 (U) 76
	2	2			6.1 (AB) 50
455	NH_2	NH_2	$NHCO(CH_2)_2C_6H_5$	C_6H_5	3.6 (AB) 50
456	NH_2	NH_2	$CH_2NHC_6H_4-4'-COCH_2Cl$	C ₆ H ₄ -4'-Cl	5.6 (M) 65; 4.3 (AB) 65
4577	NIT	NILL		C H # C	5.3 (N) 65; 5.2 (U) 65
407 459			$CH_2 NHC_6 H_4 - CH = CH COCH_2 CI$	$C \mathbf{H} (A C)$	5.2 (II) 65; 5.1 (U) 65
459	NH.	NH.	$CH_2 HC_6 H_4 - 4' - (CH_2) + COCH_2 C CH_2 C C C C C C C C C C C C C C C C C C C$	$C_{6}H_{4} - 4' - C_{1}$	6.5 (N) 65; 5.4 (U) 65
460	NH ₂	NH ₂	$(CH_2)_{0}NHC_{e}H_{5}$	CH ₃	5.7 (AB) 37
461	NH_2	NH_2	$(CH_2)_3 NHC_6 H_5$	C_6H_5	6.1 (AB) 37
462	NH_2	NH_2	$(CH_2)_3 NHC_6 H_5$	$CH_2C_6H_5$	5.4 (AB) 37
463	NH_2	NH_2	$(CH_2)_3NHCOC_6H_4-4'-NH_2$	CH ₃	3.1 (AB) 17
464	NH_2	NH_2	$(CH_2)_3NHCOC_6H_4-4'-NO_2$	CH ₃	3.5 (AB) 17
465	NH ₂	NH ₂	$(CH_2)_3 NHSO_2 C_4 H_9 - n$		2.2 (AB) 17
400	NH_2	NH ₂	$(CH_2)_3(HSO_2C_6H_4-4-CH_3)$ $(CH_2)_2N(C_2H_2)SO_2C_6H_4-4'-CH_2$	CH ₃	3.2 (AB) 17 3.7 (AB) 17
468	NH ₂	NH ₂	$(CH_2)_{3} N(C_2H_2) SO_2 C_2 H_4 - 4 - CH_3$	CH ₃	5.7 (AB) 18
469	NH_2	NH_2	$OC_{6}H_{4}-4'-Cl$	H	5.6 (M) 104; 3.8 (AA) 104
	-	-			4.1 (AL) 104
470	NH_2	\mathbf{NH}_2	OC ₆ H ₄ -4'-Cl	CH ₃	5.7 (M) 104; 4.3 (AA) 104
					4.7 (AL) 104; 4.6 (AB) 9
471	NH.	NH.	OC-H-4'-OMe	н	5.8 (M) 104 4.6 (AA) 104
711	1112	14112	008114-4-0144C		4.2 (AL) 104
472	NH_2	NH_2	OC ₆ H ₄ -4'-NO ₂	CH ₃	4.8 (M) 104; 4.1 (AA) 104
	-	-		-	5.2 (AL) 104; (BN) 238
473	NH_2	NH_2	OC ₆ H ₂ -2'-CH(CH ₃) ₂ -4'-Cl-5'-CH ₃	H	(BN) 238
414			$(UH_2)_3UU_6H_5$		5.5 (AB) 51
476	NH.	NH-	$(CH_2)_3OC_6H_4 + 1O_2$ $(CH_0)_0C_6H_4 + 4'-NH_2$	~6 ^{m5} NH₀	4.2 (AB) 49
477	NH ₂	NH ₉	$(CH_2)_3OC_6H_4-4'-NH_2$	C ₆ H ₅	5.1 (AB) 51
478	NH_2	NH_2	(CH ₂) ₃ OC ₆ H ₄ -4'-NHCOCH ₂ Br	C ₆ H₅	6.8 (N) 76; 6.5 (U) 76
					5.1 (AB) 51
479	\mathbf{NH}_2	NH_2	(CH ₂) ₃ OC ₆ H ₄ -NHCOC ₆ H ₄ -3"-SO ₂ F	CH ₃	7.7 (Q) 101; 7.8 (U) 101

TABLI	11X 5	(Continued)

TUDUE		minued)			
no.	R ₂	R4	R ₅	R ₆	activity (enzyme) ref
480	NH ₂	NH ₂	(CH ₂) ₃ OC ₆ H ₄ -4'-NHCOC ₆ H ₄ -4''-SO ₂ F	CH ₃	7.6 (U) 101
481	NH_2	$\overline{NH_2}$	(CH ₂) ₃ OC ₆ H ₄ -4'-NHCOC ₆ H ₃ -3''-SO ₂ F- 4''-CH ₃	CH3	7.7 (U) 101
482	NH_2	NH_2	(CH ₂) ₃ OC ₆ H ₄ -4'-NHCONHC ₆ H ₃ -3''-SO ₂ F-4''-CH ₃	CH ₃	7.8 (U) 101
483	NH_2	NH_2	$(CH_2)_3OC_6H_4$ -4'-NHCOCH ₂ Br	\mathbf{NH}_2	4.6 (AB) 49; 5.5 (N) 76
404	NITT	NIT	(CH) OC H // NHCO(CH) NHCOCH D-	NIT	5.1 (U) 76
404 485	NH2 NH	NH	$(CH_2)_3 \cup C_6 \Pi_4 - 4' - NHCU (CH_2)_2 NHCU (CH_2)_5 G \in \mathbf{F}$		4.0 (AB) 49 5.6 (M) 76: 5.8 (II) 76
486	NH ₂	NH ₂	$(CH_2)_3 OC_6 H_4 - 4' - NHCOC_6 H_4 - 3'' - SO_2 I'$	NH ₂	5.4 (Q) 105: 6.2 (M) 76
	2	2	(2/300-4		6.0 (AA) 76; 5.2 (U) 76
487	NH_2	NH_2	(CH ₂) ₃ OC ₆ H ₄ -4'-NHCOC ₆ H ₄ -4''-SO ₂ F	\mathbf{NH}_2	6.3 (N) 76; 5.4 (U) 76
488	NH_2	NH_2	$(CH_2)_3OC_6H_4$ -4'-NHCONHC $_6H_4$ -3"-SO $_2F$	\mathbf{NH}_2	6.2 (M) 76; 6.2 (N) 76
100				2.17.7	5.4 (U) 76
489			$(CH_2)_3 \cup C_6 H_4 \cdot 4' \cdot NHCONHC_6 H_4 \cdot 4'' \cdot SO_2 F$		5.8 (N) 76; 5.4 (U) 76 6.9 (N) 76; 6.1 (U) 76
490	NH ₂	NH ₂	$(CH_2)_3 OC_6 H_4^{-4} - IAHCOIAHC_6 H_4^{-3} - SO_3 H$ $(CH_2)_2 OC_2 H_4^{-2} - Cl_2 4' - NHCOC_2 H_4^{-3}' - SO_3 H$	NH ₂	5.8 (Q) 100 5.9 (U) 100
492	NH ₂	NH ₂	$(CH_2)_3 OC_8 H_4 - 4' - NHCOC_8 H_6 - 3'' - SO_2 F - OC_8 H_4 - 4' - NHCOC_8 H_6 - 3'' - SO_6 F - OC_8 H_6 -$	NH ₂	5.3 (Q) 100; 5.9 (U) 100
	2		4″-Me		
493	NH_2	NH_2	$(CH_2)_3OC_6H_4$ -4'-NHCOC $_6H_3$ -2''-Me-5''-SO ₂ F	\mathbf{NH}_2	5.5 (U) 100
494	NH_2	NH_2	(CH ₂) ₃ OC ₆ H ₄ -4'-NHCOC ₆ H ₃ -3''-SO ₂ F-	\mathbf{NH}_2	6.1 (U) 100
405	NITT	NILL	4''- <i>i</i> -C ₃ H ₇	NIT	
490	\mathbf{NH}_2	\mathbf{NH}_2	$(CH_2)_3 OC_6 H_4 - 4' - NHCO (CH_2)_3 C_6 H_5 - 4'' - NHCO CH_2 Br$	\mathbf{NH}_2	5.9 (IN) 76; 4.8 (U) 76
496	NH-	NH.	(CH2)2C2H-4'-NHCOC2H-3'-SO2F	NH ₂	7.2 (Q) 105: 7.9 (U) 105
497	NH-	NH.	NH ₂	C ₆ H ₅	3.0 (AB) 50
498	NH_2	NH_2	N=NC ₆ H ₅	NH ₂	5.0 (M) 104; 4.8 (AA) 104
	-	-		-	5.1 (AL) 104
499	NH_2	NH_2	N=NC ₆ H ₄ -3′-F	NH_2	(AA) 133
500	NH_2	NH_2	$N = NC_6H_4 - 2' - Cl$	$\rm NH_2$	(AA) 133
501	NH_2	NH_2	$N = NC_6H_4 - 3' - CI$		(AA) 133
502	NH ₂	NH ₂	$N = NC_{\theta}H_{4}-4'-CI$		(AA) 133 (AA) 199
503 504			$N = N C_{\theta} \Pi_{4} - 3 - BI$	NH2	(AA) 133 (AA) 199
505	NH.	NH.	$N = NC_{6}H_{4} + 2^{-}J$	NH.	(AA) 133
506	NH.	NH ₂	$N = NC_{\theta}H_{4}-3'-I$	NH ₂	(AA) 133
507	NH ₂	NH ₂	$N = NC_{e}H_{4} - 4' - I$	NH ₂	(AA) 133
508	NH_2	NH_2	$N = NC_6H_4 - 3' - NO_2$	NH ₂	(AA) 133
509	NH_2	NH_2	$N = NC_6H_4 - 4' - SO_2NH_2$	$\overline{NH_2}$	(M) 31
510	NH_2	NH_2	$N = NC_6H_3 - 2', 5' - Cl_2$	NH ₂	(AA) 133
511	NH_2	$\rm NH_2$	$N = NC_6H_3 - 2', 5' - Cl_2$	$NH(CH_2)_3N(Et)(CH_2)_2Cl$	5.6 (Q) 113; 5.7 (R) 113
512	NH.	NH.	$N = NC_{a}H_{a}2' 4'_{a}C_{b}$	NH(CH.)-N(Et)(CH.)-C)	5.5 (T) 113 6.0 (O) 113:5 9 (R) 113
012	14112	14112	10 100g113 2,4 -012	1111(0112/311(121)(0112)201	5.7 (T) 113
513	NH_2	NH_2	$N = NC_6H_3 - 2', 6' - Cl_2$	NH ₂	(AA) 133
514	NH_2	NH_2	$N = NC_6H_3 - 2', 6' - Cl_2$	NH(CH ₂) ₃ N(Et)(CH ₂) ₂ Cl	6.2 (Q) 113; 6.7 (R) 113
				-	6.5 (T) 113
515	NH ₂	$\rm NH_2$	$N = NC_6H_3 - 2', 3' - Cl_2$	NH ₂	(AA) 133
516	\mathbf{NH}_2	NH_2	$N = NC_6H_3-2', 3'-Cl_2$	$NH(CH_2)_3N(Et)(CH_2)_2Cl$	7.0 (Q) 113; 7.0 (R) 113
517	NU	NL	N-NC H 2/ // Cl	NILI	6.7 (1) 113 (AA) 199
518	NH ₂	NH ₂	$N = NC_{6}H_{3}-3, 4-Cl_{2}$ $N = NC_{7}H_{2}-3', 4'-Cl_{2}$	NH_2 NH(CH), N(Ft)(CH.) C)	(AA) 100 61 (0) 119 57 (P) 119
010	11112	11112			5.5 (T) 113
519	NH_2	NH_2	$N = NC_{e}H_{3}-3',5'-Cl_{2}$	NH ₂	5.1 (AL) 104; (AA) 133
520	NH_2	NH_2	N=NC ₆ H ₃ -3′,5′-Cl ₂	NH(CH ₂) ₃ N(Et)(CH ₂) ₂ Cl	6.5 (Q) 113; 6.5 (R) 113
					6.3 (T) 113
521	NH_2	NH_2	$N = NC_6H_4 - 2' - CH_3$	NH ₂	(AA) 133
522	NH_2	NH_2	$N = NC_6H_4 - 3' - CH_3$	\mathbf{NH}_2	(AA) 133
523	INH2 NU	INH2 NLI	$N = N C_6 \pi_4 - 4' - C \pi_3$ $N = N C_1 H_2 - 4' - 0 C H_3$	INH2 NU	(AA) 133 (AA) 199
024 595	NH	NH2	$N = NC_{6}H_{4} - 4 - 0 CH_{3}$	ип ₂ NH.	(AA) 133 (AA) 139
526	NH.	NH.	$N = NC_{a}H_{a}-2'-CF_{a}$	NH ₀	(AA) 133
527	NH ₂	NH ₂	$N = NC_{e}H_{4} - 3' - CF_{3}$	NH ₂	(AA) 133
528	NH ₂	NH ₂	$N = NC_6H_4 - 4' - CF_3$	NH ₂	(AA) 133
529	NH_2	NH_2	N=NC ₆ H ₃ -2'-CH ₃ -3'-Cl	NH_2	(AA) 133
530	NH_2	NH_2	$N=NC_{6}H_{4}-4'-COONa$	NH_2	(M) 31
531	NH_2	NH_2	$N=NC_6H_4-2'-C_2H_5$	NH ₂	(AA) 133
032 599			$N = N C_{\theta} H_{4} \cdot \delta' \cdot C_{2} H_{5}$ $N = N C_{0} H_{1} \cdot \delta'_{2} C_{0} H_{5}$	NH	(AA) 133 (AA) 199
534	NH.	NH-	$N = NC_{0}H_{0} \cdot 2^{\prime} \cdot 6^{\prime} - (CH_{0})_{0}$	NH	(AA) 133 (AA) 133
535	NH-	NH.	$N = NC_{e}H_{o}^{-3'}.5'-(CH_{o})_{o}$	NH ₂	(AA) 133
536	NH ₂	NH ₂	N=NC ₆ H ₄ -2'-COOMe	NH ₂	(AA) 133
537	NH_2	NH_2	N=NC ₆ H ₄ -3'-COOEt	NH2	(AA) 133
538	NH_2	NH_2	$N=NC_{6}H_{4}-4'-COOEt$	Cl	(M) 31
539	NH_2	NH_2	$N = NC_6H_4 - 4' - COOEt$	NH ₂	(AA) 133; (M) 31
540			$N = NC_6 H_4 - 4' - CO_2 Et$ $N = NC_6 H_4 - 4' - CO_7 E$	N(Et) ₂ N(CH CH) N(CH) OU	(M) 31 (M) 31
542	NH.	NH.	$N = NC_{e}H_{-4}^{-4} - CO_{e}Et$	$N(CH_2CH_2)_2N(CH_2)_2OH$	(M) 31
0-14	2	2			(111) 01

no.	R_2	R_4	R_5	R_6	activity (enzyme) ref
543	NH.	NH.	$N = NC_{2}H_{-4'}CO_{2}Et$	NH(CH_)-N(Et)CH_CH_C]	46 (0) 78: 44 (B) 78
040	1112	1112		INII(CI12)2IN(EC)CI12CI12CI	4.0 (6) 70, 4.4 (10) 70
					4.7 (1) 78; (M) 38
544	NH_2	NH_2	$N = NC_6H_4$ -4'-COOEt	NH(CH ₂) ₃ N(Et)CH ₂ CH ₂ Cl	(M) 43
545	NH_2	NH_2	N=NC ₆ H ₄ -4'-COOEt	$NH(CH_2)_4N(Et)CH_2CH_2Cl$	(M) 43
546	NH ₂	NH	N=NCeH-4'-COOEt	NH(CH _a), N(Et)CH _a CH _a Cl	(M) 43
5 477	NU	NL	N-NCH // COOFt	NU(CU) NUCU	(M) 43
047			$N = NC_6 \Pi_4 - 4 - COULL$	NHOU OHOUN NHO H	(11) 43
548	NH_2	NH ₂	$N=NC_6H_4-4'-COUEt$	NHCH ₂ CHClCH ₂ NHC ₆ H ₅	(M) 43
549	NH_2	NH_2	N=NC ₆ H ₄ -4'-COOEt	NHCH ₂ CH(OH)CH ₂ NHC ₆ H ₅	(M) 43
550	NH_2	NH_2	N=NC ₆ H ₄ -4'-COOEt	NH(CH ₂) ₆ N(Et)CH ₂ CH ₂ Cl	(M) 43
551	NH	NH	$N = NC_{0}H_{1} - 2' - CH(CH_{0})_{0}$	NH	(AA) 133
559	NH.	NH.	$N = N(C_1 H_2 A_2 N(Ft)).$	NH.	(M) 31
5004	NITT	1411 <u>2</u>	$N = N(O_{114} + N(O_{11} O_{11} O_{11}))$	1111 <u>2</u>	
003	1NH2		$N = NC_6 \pi_4 - 4 - N(C \pi_2 C \pi_2 C I)_2$		
554	\mathbf{NH}_2	NH_2	$N = NC_6H_4 - 4' - N(CH_2CH_2Br)_2$	NH_2	(M) 31
555	NH_2	NH_2	$N = NC_6H_4-4'-N(Et)CH_2CH_2Cl$	NH_2	(M) 31
556	NH ₂	NH	$N = N(CH_2)_2C_2H_4-2'-CH_2$	NH	(M) 31
557	NH.	NH.	$N = N(CH_a) \cdot C \cdot H \cdot 4' \cdot CH_a$	NH.	(M) 31
2001	NL	NU	$\mathbf{N} = \mathbf{N}(\mathbf{C}\mathbf{H}_2) = \mathbf{C}\mathbf{H}_2 + \mathbf{C}\mathbf{H}_3$		$(\Lambda \Lambda)$ 199
000			$N = N(C \Pi_2)_3 C_6 \Pi_4 - 4 - C \Pi_3$		(AA) 133
559	NH_2	NH_2	$N=N-1'-C_{10}H_7$	NH_2	(AA) 133
560	NH_2	NH_2	N=NC ₆ H ₄ -4'-CO-Glu	Cl	(M) 31
561	NH_{2}	NH ₂	N=NC ₆ H ₄ -4'-CO-Glu	NH_2	(M) 31
562	NH.	NH	$N = NC_{a}H_{-4'}-CO_{-}Gh_{1}$	N(Et)	(M) 31
569	NH	NH.	N=NC.H%-C.H.	NH.	(AA) 133
000	14112 NTTT	1112 NILI	$\mathbf{N} = \mathbf{N} \mathbf{O} \mathbf{H} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{H}$	11112 NILI	(4.4) 100
564	INH_2	INH ₂	$IN = IN \cup_6 \Pi_4 - 4' - \bigcup_6 \Pi_5$		(AA) 133
565	\mathbf{NH}_2	NH_2	$N=N(CH_2)_6C_6H_4-2'-CH_3$	\mathbf{NH}_2	(AA) 133
566	\mathbf{NH}_2	NH_2	$N = N(CH_2)_8 C_6 H_4 - 4' - CH_3$	NH_2	(AA) 133
567	NH	NH(CH_)_C_H_	i-C ₆ H ₁₁	CH.	3.2 (AB) 57
569	NH	NH(CH.) C H	i-C-H.	CH	3.8 (AB) 57
000	1411 ₂				0.0 (AD) 57
569	NH ₂	$NH(CH_2)_2C_6H_5$	$C_{6}H_{4}-4'-Cl$	CH ₃	3.1 (AB) 57
570	NH_2	$NH(CH_2)_3C_6H_5$	C ₆ H ₄ -4′-Cl	CH ₃	3.7 (AB) 57
571	NH_2	$NH(CH_2)_3C_6H_5$	$i-C_6H_{13}$	NH_2	4.5 (AB) 57
572	NH	OH	H	CH	1.7 (AB) 19
573	NH.	OH	CH.	CH.	21 (AB) 21
574	NU	011	C u	CH.	97 (AB) 91
574	NILI	OH			2.7 (AD) 21 2.0 (AD) 21
070	$IN\Pi_2$			CH ₃	3.0 (AB) 21
576	NH_2	OH	$CH_2CH=CH_2$	CH ₃	2.7 (AB) 21
577	NH_2	он	$CH_2CH_2CO_2H$	CH ₃	(M) 12
578	NH_2	OH	$n-C_4H_9$	CH_3	3.6 (AB) 21
579	\mathbf{NH}_2	OH	$n-C_5H_{11}$	CH_3	4.5 (AB) 21
580	NH	OH	<i>i</i> -C ₅ H ₁₁	CH	5.1 (AB) 21
581	NH	OH	n-CoHio	CH _s	4.5 (AB) 21
590	NH.	OH	n-C-H	CH.	36 (AB) 21
2004 200	NU		n-ogrij7 odomentul	u u	45(0) 143
000	NITT		adamanty		F O (T) 190
584				CH ₃	0.0 (L) 100
585	NH_2	OH	NHCOCH=N-adamantyl	CH ₃	3.1 (0) 143
586	NH_2	OH	$(CH_2)_3^+NH_2-n-C_4H_9$	CH ₃	(AB) 48
587	NH_2	OH	(CH ₂) ₃ NHCOCH ₃	CH_3	2.9 (AB) 17
588	NH	ОН	(CH ₂) ₂ NHCOCH ₂ Br	CH	2.5 (AB) 58
580	NH.	OH	(CH.).NHCOCH.Br	C.H.	29 (AB) 58
500	NIL			CU	45 (AB) 57
090	$1N\Pi_2$	OH OH	C6H4-4-CI	CH ₃	4.0 (AB) 07
591	NH_2	он	$(CH_2)_3C_6H_5$	CH ₃	3.8 (AB) 21
592	NH_2	он	$(CH_2)_4C_6H_5$	CH ₃	4.5 (AB) 19
593	NH_2	ОН	$(CH_2)_4C_6H_5$	C00-	2.4 (AB) 25
594	NH	OH	$(CH_2)_4C_8H_5$	COOC ₂ H ₅	(AB) 25
505	NH	он	(CHJ,C,H,	COOCH _S CN	(AB) 25
506	NH.	OH	(CH_{a})	СНО	(AB) 25
000	NILT	011		C.H	63 (AB) 51
597		OH	$(U \Pi_2)_4 U_6 \Pi_5$		0.3 (AB) 01
598	NH_2	OH	$(CH_2)_4C_6H_5$	$(CH_2)_2C_6H_4-4$ -NHCUCH ₂ Br	3.7 (AB) 56; 3.0 (BJ) 52
599	NH_2	OH	$(CH_2)_4C_6H_5$	(CH ₂) ₄ C ₆ H ₄ -4'-NHCOCH ₂ Br	4.4 (M) 40; 3.3 (BJ) 52
600	NH_2	OH	$(CH_2)_4C_6H_4-4'-COOH$	CH ₃	5.6 (AB) 36
601	NH	OH	$(CH_2)_{4}C_{4}H_{4}-4'-COOC_{2}H_{5}$	CH ₃	4.9 (AB) 36
602	NH	OH	(CH ₀) ₀ NH-3'-pyridine	CH.	3.0 (AB) 55
603	NH.	OH	(CH ₂) ₂ NHC ₂ H ₄	CH	3.1 (AB) 46: (AB) 11
000			(2/3-(3	(M) 12
604	NH	ОЧ	(CH.)-NHC.H.	C.H.	57 (M) 10
60F	NILI	OU	$(OII_2)_{31}$ (OII) NUC U	CUCU	5.4 (M) 10
605					0.12 (111) 10 0.0 (110) 22
606	NH ₂	OH	$(\bigcup \Pi_2)_3 \square \Pi \bigcup_6 \Pi_4 - 4' - 1'$		0.4 (ALD) 00
607	NH_2	OH	$(UH_2)_3 NH U_6 H_4 - 3' - CF_3$	CH ₃	3.8 (AB) 55
608	NH_2	он	$(CH_2)_3NHCH_2C_6H_5$	CH ₃	4.5 (AB) 7
609	NH_2	OH	$(CH_2)_2CONHC_6H_4-4'-CONHCH(CO_2H)(CH_2)_2CO_2H$	CH₃	(M) 12
610	NH_2	ОН	$(CH_2)_3NH-2'$ -naphthyl	CH ₃	3.6 (AB) 55
611	NH	ОН	$NH(CH_2)_3C_8H_5$	CH ₃	3.2 (AB) 19
612	NH.	ОН	NH(CH ₀) ₂ NHČ ₂ H ₄ -4′-CO-Glu	н	4.3 (BN) 13
612	NH	0H	NHCOCHANHCAH	CH	(AB) 8
614	NU	0H	NHCOCH NHC H _4/_CO_Chy	CH.	(AB) 8
212	NU	04	(CH.).N(COCH.)CH C H	CH.	3 2 (AB) 55
010	LVII2		$(OI1_2)_3IV(OOOI1_3)OII_2O_8II_5$	CH	97 (AB) 55
616	INH ₂		$(On_2)_3 N(OOn_3)On_2 - Z' - pyriaine$		4.1 (AD) 00
617	\mathbf{NH}_2	UH	(CH ₂) ₃ N(COCH ₃)CH ₂ -3'-pyridine	CH ₃	2.4 (AB) 55

TABLE XII (Continued)

n 0	Ra	R.	R.	R.	activity (enzyme) ref
		011			
618		OH	$(CH_2)_{3}N(COCH_3)CH_2-4$ -pyrigine		2.4 (AB) 55
619			$(CH_2)_3 N(COCH_3) CH_2 - 2' - Iuryl$		3.7 (AB) 33 4.1 (AB) 30. (M) 13
620			$(CH_2)_3$ $(CH_2)_3$ $(CH_4)_4$ $(COOH_2)_3$ $(CH_2)_3$ $(CH_2)_3$ $(CH_4)_4$ $(COOH_2)_3$ $(CH_2)_3$ $(CH_2$		4.1 (AB) 50; (IVI) 12
621	NH ₂	OH	$(CH_2)_3NHC_6H_4-4^{\circ}-COCH_2Br$	CH ₃	(AB) 58
622			$(CH_2)_3$ NHC H_4 -4'-CUNHCH ₂ CUUH		3.8 (AB) 30; (M) 12
623			$(CH_2)_3NHC_6H_4-4^{-}CH=CHCUCH_2CI$		4.7 (AB) 30
624		OH	$(CH_2)_3 NHC_6 H_4 - 4' - (CH_2)_2 COCH_2 CI$		4.0 (AB) 30
620		OH	$(CH_2)_3 NHC_6 H_4^2 - (CH_2)_2 NHCOCH_2 Br$		3.9 (AB) 47
626		OH	$(CH_2)_3 NHC_6 H_4 - 4' - CH = CHCOCH_2 CI$		3.7 (AB) 47
627			$(CH_2)_3NHC_6H_4-4^{-}(CH_2)_2CUCH_2CI$		4.3 (AB) 47
620			$(CH_2)_3 NHC_6 H_4^{-4} - (CH_2)_2 NHC UCH_2 Dr$		3.7 (AB) 47
629			$(CH_2)_3 NHC_6 H_4 - 4' - (CH_2)_4 COCH_2 CI$		4.0 (AD) 30 (AD) 20: (M) 10
630			$(CH_2)_3 NHC_6 H_4^4 - CONH(CH_2)_3 COOH$		(AB) 30; (M) 12
631	NH ₂	UH	$(CH_2)_3$ NHC ₆ H ₄ -4-CO-GIU	CH3	4.0 (AB) 30; 5.7 (M) 10 (P) 3
632	NH_2	OH	$(CH_2)_3NHC_6H_4-4'-CONHCH(CO_2H)(CH_2)_2CONH_2$	CH_3	(M) 12
633	NH_2	он	$(CH_2)_3NHC_6H_4-4'-(CH_2)_6COCH_2Cl$	CH3	(AB) 235
634	NH_2	он	(CH ₂) ₃ NHCOC ₆ H ₅	CH_3	3.3 (AB) 58
635	NH_2	он	(CH ₂) ₃ NHCOC ₆ H ₄ -3'-CH ₂ Br	CH_3	3.4 (AB) 58
636	NH_2	он	(CH ₂) ₃ NHCOC ₆ H ₄ -4'-CH ₂ Br	CH3	3.4 (AB) 58
637	NH_2	OH	(CH ₂) ₃ NHCOC ₆ H ₄ -4'-CH ₂ Br	C_6H_5	3.4 (AB) 58
638	NH_2	он	(CH ₂) ₃ NHCOC ₆ H ₄ -4'-COCH ₂ Br	CH_3	4.1 (AB) 58
639	NH_2	ОН	(CH ₂) ₃ NHCOC ₆ H ₄ -4'-COCH ₂ Br	C_6H_5	(AB) 58
640	NH_2	он	$(CH_2)_3NHCOC_6H_4$ -3'-CH ₂ OEt	CH_3	3.0 (AB) 58
641	NH_2	он	(CH ₂) ₃ NHCOC ₆ H ₄ -4'-COOH	CH3	3.3 (AB) 36
642	NH_2	он	$(CH_2)_3NHCOCH_2C_6H_5$	CH_3	3.0 (AB) 17
64 3	NH_2	он	$(CH_2)_3NHSO_2C_6H_4-4'-CH_3$	CH_3	2.6 (AB) 17
644 ·	NH_2	он	(CH ₂) ₃ NHSO ₂ C ₆ H ₄ -4′-COOH	CH3	2.5 (AB) 36
645	NH_2	OH	$(CH_2)_3N(n-C_4H_9)COC_6H_5$	CH_3	3.7 (AB) 17
646	NH_2	он	$(CH_2)_3N(COCH_3)-C_6H_4-4'-COOH$	CH_3	4.3 (AB) 36
647	NH_2	OH	$(CH_2)_3N(n-C_4H_9)SO_2C_6H_4-4'-CH_3$	CH_3	3.7 (AB) 17
648	NH_2	ОН	$(CH_2)_3OC_6H_5$	CH_3	(AB) 7
649	NH_2	OH	(CH ₂) ₃ OC ₆ H ₄ -4'-NHCOCH ₂ Br	CH_3	4.1 (AB) 41
650	NH_2	OH	(CH ₂) ₃ OC ₆ H ₄ -4'-NHCOCH ₂ Br	C_6H_5	4.0 (AB) 41
651	NH ₂	OH	÷ H-	н	4.3 (BN) 13
			N NC ₆ H ₄ -4'-CONHCH(CO ₂ H)(CH ₂) ₂ CO ₂ H		
652	NH ₂	OCH ₂ C _a H ₄	i-CsH11	CH	3.5 (AB) 57
653	NH ₂	SH	i-C ₅ H ₁₁	CH	5.6 (AB) 57
654	NH ₂	SH	CeH4-4'-Cl	CH	5.8 (AB) 57
655	NH ₂	SH	(CH ₂) ₃ NHC ₆ H ₅	CH	4.4 (AB) 55
656	NH	SH	(CH ₂) ₃ NHC ₄ H ₄ -4'-Cl	CH ₃	4.9 (AB) 55
657	NH ₂	SH	(CH ₂) ₂ NHC ₄ H ₄ -4'-N(CH ₂) ₂	CH	4.5 (AB) 55
658	NH	SH	(CH ₂) ₃ N(COCH ₂)C ₂ H ₅	CH	4.7 (AB) 18
659	NH ₂	SH	$(CH_2)_3N(COC_6H_5)C_6H_5$	CH ₃	4.3 (AB) 18
660	NH_2	SH	$(CH_2)_3N(COOC_6H_5)C_6H_5$	CH_3	(AB) 18
661	NH2	SH	(CH ₂) ₄ C ₆ H ₅	$C_{6}H_{5}$	3.5 (AB) 37
662	NH(CH ₂) ₃ C ₆ H ₅	NH_2	<i>i</i> -C ₅ H ₁₁	NH_2	2.8 (AB) 57
66 3	$N(CH_3)_2$	он	(CH ₂) ₃ NHC ₆ H ₅ CH ₃	CH ₃	(AB) 11
664	OH	NH_2	C ₆ H ₄ -4′-Cl	CH	2.5 (AB) 57
66 5	SH	NH_2	C ₆ H ₄ -4′-Cl	CH ₃	2.4 (AB) 57
		-		•	

dihydrofolate reductase, we have no doubt missed some examples. The literature is so extensive and publication has occurred in such a wide variety of places that the probability for missing reports is high.

Registry No. Dihydrofolate reductase, 9002-03-3.

XIV. References

- (1) Seeger, D. R.; Cosulich, D. B.; Smith, J. M.; Hultquist, M. E. J. Am. Chem. Soc. 1949, 71, 1753.
- (2) Becker, F. E., Ed. "Cancer"; Plenum Press: New York, 1977, Vol. 5.
- (3) Roth, B.; Bliss, E.; Beddell, C. R. In "Molecular Aspects of Anti-Cancer Drug Action"; Neidle and Warring, Eds.; Macmillan: New York, 1983; p 363. (4) Roth, B.; Flaco, E. A.; Hitchings, G. H.; Bushby, S. R. M. J. Med.
- Chem. 1962, 5, 1103. , Roth, B. In "Handbook of Experimental Pharmacology";
- Hitching, G. H., Ed.; Springer: Heidelberg, Vol. 64, Chapter 5, in
- press. (6) Symposium on Trimethoprim-Sulfamethoxazole. J. Infect. Dis. 1973, 128, S425.

- (7) Daniel, L. J.; Norris, L. C. J. Biol. Chem. 1947, 170, 747.
- Daniei, L. J.; Norris, L. C. J. Biol. Chem. 1947, 170, 141.
 Burchall, J. J.; Hitchings, G. H. Mol. Pharmacol. 1965, 1, 126.
 Roth, B.; Cheng, C. C. Prog. Med. Chem. 1982, 19, 270.
 Baker, B. R. "Design of Active-Site-Directed Irreversible Enzyme Inhibitors"; Wiley: New York, 1967; pp 192-266.
 Blakley, R. L. "The Biochemistry of Folic Acid and Related Pteridines"; North-Holland: Amsterdam, 1969.
 Desarchard Chemothery 1020, 17, 97.

- Gready, J. E. Adv. Pharmacol. Chemother. 1980, 17, 37.
 Hitchings, G. H.; Roth, B. In "Enzyme Inhibitors as Drugs"; M. Sandler, Ed.; Macmillan: London, 1980. (14) Hitchings, G. H.; Smith, S. L. Adv. Enzyme Regul. 1979, 18,
- 349.
- McCormack, J. J. Med. Res. Rev. 1981, 1, 303.
 (16) Freisheim, J. H.; Matthews, D. A. In "Folate Antagonists as Therapeutic Agents"; Sirotnak, F. M., Burchall, J. J., Emsinger, W. B., Montgomery, J. A., Eds.; Academic Press: New York, Vol. 1, in press.
- (17) Bertino, J. R., Ed. Ann. N.Y. Acad. Sci. 1971, 186.
- (18) Pfleiderer, W., Ed. Chem. Biol. Pteridines, Proc. Int. Symp., 5th 1975.

- (19) Kisliuk, R. L.; Brown, G. M., Eds. Chem. vs. Biol. Pteridines, Proc. Int. Symp., 6th 1979.
 (20) Roberts, G. C. K. In "Drug Action at the Molecular Level"; Roberts, G. C. K., Ed.; Macmillan: New York, 1977; pp 127-150.
 (21) Li, R. L.; Hansch, C.; Matthews, D.; Blaney, J. M.; Langridge, R.; Delcamp, T. J.; Susten, S. S.; Freisheim, J. H. Quant. Struct.-Act. Relat. Pharmacol., Chem. Biol. 1982, 1, 1.

- (22) Hitchings, G. H. Trans. Roy. Soc. Trop. Med. Hyg. 1952, 9, 46, **46**7
- (23) Hitchings, G. H. In "Drugs, Parasites and Hosts"; Goodwin, L. G., Nimmo-Smith, R. H., Eds.; Churchill: London, 1962; p 196.
 (24) Gutteridge, W. E.; Jaffe, J. J.; McCormack, J. J. Biochem. Biophys. Acta 1969, 191, 753.

- (25) Burchall, J. J. J. Infect. Dis. 1973, 128, S437.
 (26) Roberts, G. C. K.; Feeney, J.; Burgen, A. S. V.; Yuferov, V.; Dann, J. G. Bjur, R. Biochemistry 1974, 13, 5351.
 (27) Dietrich, S. W.; Smith, R. N.; Brendler, S.; Hansch, C. Arch.
- (21) Dietrich, S. W.; Sinkir, K. N.; Bendler, S., Hansen, C. Arch. Biochem. Biophys. 1979, 194, 612.
 (28) Dietrich, S. W.; Blaney, J. M.; Reynolds, M. A.; Jow, P. Y. C.; Hansch, C. J. Med. Chem. 1980, 23, 1205.
 (29) Li, R. L.; Dietrich, S. W.; Hansch, C. J. Med. Chem. 1981, 24,
- 538 (30) Li, R. L.; Hansch, C.; Kaufman, B. T. J. Med. Chem. 1982, 25,
- 435.
- (31) Hansch, C.; Li, R. L.; Blaney, J. M.; Langridge, R. J. Med. Chem. 1982, 25, 777.
- Chem. 1982, 25, 777.
 (32) McCormack, J. J.; Jaffe, J. J. J. Med. Chem. 1969, 12, 662.
 (33) Jaffe, J. J.; McCormack, J. J.; Meymarian, E. Biochem. Pharmacol. 1972, 21, 719.
 (34) Taylor, E. C.; Berrier, J. V.; Cocuzza, A. J.; Kobylecki, R.; McCormack, J. J. Med. Chem. 1977, 20, 1215.
 (35) McCormack, J. J. In ref 18, p 125.
 (36) Rawn, J. D. "Biochemistry"; Harper and Row: New York, 1983; p 929.

- (37) Benkovic, S. J. Ann. Rev. Biochem. 1980, 49, 227.
 (38) Danenberg, P. V. Biochim. Biophys. Acta 1977, 473, 73.
 (39) Friedkin, M. Adv. Enzymol. Relat. Areas Mol. Biol. 1973, 38,

- 235
- (40) Kessel, D.; Hall, T. C.; Roberts, D.; Wodinsky, I. Science (Washington, D.C.) 1965, 150, 752.
 (41) Goldman, L. D. Trans. N. Y. Acad. Sci. 1971, 186, 400.
 (42) Nahas, A.; Nixon, P. F.; Bertino, J. R. Cancer Res. 1972, 32,
- 1416

- (43) Sirotnak, F. M.; Donsbach, R. C. Cancer Res. 1972, 32, 2120.
 (44) Bender, R. A. Cancer Chemother., Rep., Part 3 1975, 6, 73.
 (45) Stone, S. R.; Morrison, J. F. Biochemistry 1982, 21, 3757.
 (46) Kaufman, B. T.; Pierce, J. V. Biochem. Biophys. Res. Commun. 1971, 44, 608
- (47) Erickson, J. S.; Mathews, C. K. Biophys. Res. Commun. 1971, 43, 1164.
- (48) Kaufman, B. T.; Kemerer, V. F. Arch. Biochem. Biophys. 1977,
- 179, 420.
 (49) Voltz, K. W.; Matthews, D. A.; Alden, R. A.; Freer, S. T.; Hansch, C.; Kaufman, B. T.; Kraut, J. J. Biol. Chem. 1982, 257, 2528
- (50) Gleisner, J. M.; Peterson, D. L.; Blakley, R. L. Proc. Natl. Acad.
- (50) Grishel, J. 1974, 71, 3001.
 (51) Bitar, K. G.; Blankenship, D. T.; Walsh, K. A.; Dunlap, R. B.; Reddy, A. V.; Freisheim, J. H. FEBS Lett. 1977, 80, 119.
 (52) Bennett, C. D.; Rodkey, J. A.; Sondey, J. M.; Hirschmann, R.
- Biochemistry 1978, 17, 1328.
- (53) Kumar, A. A.; Blankenship, D. T.; Kaufman, B. T.; Freisheim, J. H. Biochemistry 1980, 19, 667. (54) Lai, P. H.; Pan, Y. C.; Gleisner, J. M.; Peterson, D. L.; Blakley,
- R. L. In "Chemistry and Biology of Pteridines"; Kisliuk, R. L., Brown, G. M., Eds.; Elsevier: New York, 1979; p 437.
 (55) Stone, D.; Paterson, S. J.; Raper, J. H.; Phillips, A. W. J. Biol.

- (50) Stolle, D., Patrison, S., Raper, S. H., Phillips, A. W. S. Bitt. Chem. 1979, 254, 480.
 (56) Smith, S. L.; Patrick, P.; Stone, D.; Phillips, A. W.; Burchall, J. J. J. Biol. Chem. 1979, 254, 11475.
 (57) Wang, C. C.; Stotish, R. L.; Poe, M. J. Protozolol. 1975, 22, 564.
 (58) Ferone, R.; Burchall, J. J.; Hitchings, G. H. Mol. Pharmacol. 1966, 540. 1969, 5, 49.
- (59) Ferone, R. J. Biol. Chem. 1970, 245, 850.
- (60) Ferone, R.; Roland, S. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 5802
- (61) Manteuffel-Cymborowska, M.; Grzelakowska-Sztabert, B. J. Insect. Physiol. 1970, 16, 1419.
- (62) Manteuffel-Cymborowska, M.; Zielińska, Z. M. Comp. Biochem. Physiol. 1975, 50B, 35.
- (63) Jaffe, J. J.; McCormack, J. J.; Meymarian, E.; Doremus, H. M. J. Parasit. 1977, 63, 547. (64) Suzuki, N.; Iwai, K. Plant Cell. Physiol. 1970, 11, 199. (65) Reddy, V. A.; Rao, N. A. Arch. Biochem. Biophys. 1976, 174,
- 675

- 675.
 (66) Burde, N. L.; Alekseeva, L. V.; Andreeva, N. A. J. Org. Chem. USSR (Engl. Transl.) 1973, 9, 1033.
 (67) Smith, S. L.; Stone, D.; Novak, P.; Baccanari, D. P.; Burchall, J. J. J. Biol. Chem. 1979, 254, 6222.
 (68) Fling, M. E.; Elwell, L. P. J. Bacteriol. 1980, 141, 779.
 (69) Pattishall, K. H.; Acar, J.; Burchall, J. J.; Goldstein, F. W.; Harvey, R. J. J. Biol. Chem. 1977, 252, 2319.
 (70) Stone, D.; Smith, S. L. J. Biol. Chem. 1979, 254, 10857.
 (71) Zolg, J. W.; Hänggi, U. J. Nucleic Acids Res. 1981, 9, 697.
 (72) Blakley, R. L.; Morrison, J. F. Pteridine Chem., Proc. Int. Symp., 4th, 1970, 315.
 (73) Cheng, Y. C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.

(74) Williams, M. N.; Poe, M.; Greenfield, N. J.; Hirschfield, J. M.; Hoogsteen, K. J. Biol. Chem. 1973, 248, 6375.

Blanev et al.

- Hoogsteen, K. J. Biol. Chem. 1973, 248, 0570.
 (75) Cha, S. Biochem. Pharmacol. 1975, 24, 2177.
 (76) Williams, J. W.; Duggleby, R. G.; Cutler, R.; Morrison, J. F. Biochem. Pharmacol. 1980, 29, 589.
 (77) Werkheiser, W. C. J. Biol. Chem. 1961, 236, 888.
 (78) Werkheiser, W. C.; Zakrzewski, S. F.; Nichol, C. A. J. Pharmacol. Eur. Theorem 1961, 129.
- macol. Exp. Ther. 1962, 137, 162.
- (79) Morrison, J. F. Trends Biochem. Sci. 1982, 7, 102.
 (80) Dietrich, S. W.; Dreyer, N. D.; Hansch, C.; Bentley, D. L. J. Med. Chem. 1980, 23, 1201.
 (81) Myers, C. E.; Eliot, H. M.; Chabner, B. A. Cancer Ther. Rep.
- 1976, 60, 615.
- (82) Rothenberg, S. P.; da Costa, M.; Iqbal, M. P. Cancer Treat. Rep. 1977, 61, 575.
 (83) Wang, Y. M.; Lantin, E.; Sutow, W. W. Clin. Chem. 1976, 22,
- 1053
- (84) Poe, M.; Wu, J. K.; Florance, J. R.; Hoogsteen, K. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1979, 38, 625.
 (85) Kamen, B. A.; Takach, P. L.; Vatev, R.; Caston, J. D. Anal. Biochem. 1976, 70, 54.
- (86) Rothenberg, S. P.; Iqbal, M. P.; Da Costa, M. Anal. Biochem.
- 1**980**, *103*, 152
- (87) Rosowsky, A.; Yu, C. S.; Uren, J.; Lazarus, H.; Wick, M. J. Med. Chem. 1981, 24, 559.
 (88) Daniel, L. J.; Norris, L. C.; Scott, M. L.; Heuser, G. F. J. Biol. Chem. 1947, 169, 689.

- (89) Baker, B. R. Cancer Chemother. Rep. 1959, 4, 1.
 (90) Perault, A. M.; Pullman, B. Biochim. Biophys. Acta 1961, 52, 266

- 200.
 (91) Neely, B. W. Mol. Pharmacol. 1967, 3, 108.
 (92) Zakrzewski, S. F. J. Biol. Chem. 1963, 238, 1485.
 (93) Bolin, J. T.; Filman, D. J.; Matthews, D. A.; Hamlin, R. C.; Kraut, J. J. Biol. Chem. 1982, 257, 13650.
 (94) Cocco, L.; Groff, J. P.; Temple, C., Jr.; Montgomery, J. A.; London, R. E.; Matwiyoff, N. A.; Blakley, R. L. Biochemistry 1981 20, 2072. 1981, 20, 3972.
- (95) Baker, B. R.; Schwan, T. J.; Novotny, J.; Ho, B. T. J. Pharm. Sci. 1966, 55, 295.
- Sci. 1966, 55, 295.
 (96) Poe, M. Science (Washington, D.C.) 1976, 194, 533.
 (97) Birdsall, B.; Burgen, A. S. V.; de Miranda, J. R.; Roberts, G. C. K. Biochemistry 1978, 17, 2102.
 (98) Perkins, J. P.; Bertino, J. R. Biochemistry 1966, 5, 1005.
 (99) Burgen, A. S. V.; Roberts, G. C. K.; Feeney, J. Nature (London) 1975, 253, 753.
 (100) Nain M. C.; Bridger, T. W.; Herkel, T. L.; Kielink, B. L.;

- (100) Nair, M. G.; Bridges, T. W.; Henkel, T. J.; Kisliuk, R. L.; Gaumont, Y.; Sirotnak, F. M. J. Med. Chem. 1981, 24, 1068.
- (101) Elliot, R. D.; Temple, C., Jr.; Montgomery, J. A. J. Med. Chem. 1974, 17, 553
- (102) Hampshire, J.; Hebborn, P.; Triggle, A. M.; Triggle, D. J. J. Med. Chem. 1968, 11, 583.
 (103) Kumar, A. A.; Mangum, J. H.; Blankenship, D. T.; Freisheim, J. H. J. Biol. Chem. 1981, 256, 8970.
 (104) Rosowsky, A.; Wright, J. E.; Ginty, C.; Uren, J. J. Med. Chem.
- 1982, 25, 960.
- (105) Fölsch, E.; Bertino, J. R. Mol. Pharmacol. 1970, 6, 93.
 (106) Baker, B. R.; Hurlbut, J. A. J. Med. Chem. 1968, 11, 233.
 (107) Ryan, A. J.; Vermeulen, N. M. J.; Baker, B. R. J. Med. Chem. 1970, 13, 1140.

- (108) Baggott, J. E.; Krumdieck, C. L. Biochemistry 1979, 18, 1036.
 (109) Montgomery, J. A.; Piper, J. R.; Elliot, R. D.; Temple, C., Jr.; Roberts, E. C.; Shealy, Y. F. J. Med. Chem. 1979, 22, 862.
 (110) Wright, W. B., Jr.; Cosulick, D. B.; Fahrenbach, M. J.; Waller, C. W.; Smith, J. M., Jr.; Hultquist, M. E. J. Am. Chem. Soc. 1949, 71, 2005. 71, 3014.
- (111) Suster, D. C.; Tărnăuceanu, E.; Ionescu, D.; Dobre, V.; Niculescu-Duvăz, I. J. Med. Chem. 1978, 21, 1162.
 (112) Suster, D. C.; Tărnăuceanu, E.; Botez, G.; Dobre, V.; Niculescu-Duvăz, I. J. Med. Chem. 1978, 21, 1165.
- (113) Chaykovsky, M.; Brown, B. L.; Modest, E. J. J. Med. Chem. 1975, 18, 909.
- (114) Rosowsky, A.; Beardsley, G. P.; Ensminger, W. D.; Lazarus, H.; Yu, C. S. J. Med. Chem. 1978, 21, 380.
 (115) Lee, W. W.; Martinez, A. P.; Goodwin, L. J. Med. Chem. 1974,
- 17, 326.
- (116) Jacobs, S. A.; Adamson, R. H.; Chabner, B. A.; Derr, C. J.; Johns, D. G. Biochem. Biophys. Res. Commun. 1975, 63, 692.
 (117) Plante, L. T.; Crawford, E. J.; Friedkin, M. J. Med. Chem. 1976, 19, 1295.

- 1976, 19, 1295.
 (118) Baugh, C. M.; Krumdieck, C. L.; Nair, M. G. Biochem. Biophys. Res. Commun. 1973, 52, 27.
 (119) Shen, W. C.; Ryser, H. J. P. Mol. Pharmacol. 1979, 16, 614.
 (120) Chu, B. C. F.; Whiteley, J. M. Mol. Pharmacol. 1980, 17, 382.
 (121) Chu, B. C. F.; Fan, C. C.; Howell, S. B. J. Natl. Cancer Inst. (U.S.) 1981, 66, 121.
 (122) Harding, N. G. L. Ann. N. Y. Acad. Sci. 1971, 186, 270.
 (123) Chu, B. C. F.; Whiteley, J. M. Mol. Pharmacol. 1977, 13, 80.
 (124) Robinson, D. A.; Whiteley, J. M.; Harding, N. G. L. Biochem. Soc. Trans. 1973, 1, 722. Soc. Trans. 1973, 1, 722. (125) Galivan, J.; Baliñski, M.; Whiteley, J. M. Arch. Biochem. Biophys. 1982, 216, 544.

- (126) Whiteley, J. M. Ann. N. Y. Acad. Sci. 1971, 186, 29.
- (127) Greco, W. R.; Hakala, M. T. J. Pharmacol. Exp. Ther. 1980,
- (12) Greco, W. R., Hakala, M. T. S. T. Karmacon, E. P. 1987, 1987, 212, 39.
 (128) Bertino, J. R.; Iannotti, A. T.; Perkins, J. P.; Johns, D. G. Biochem. Pharm. 1966, 15, 563.
 (129) Johns, D. G.; Loo, T. L. J. Pharm. Sci. 1967, 56, 356.
 (130) Henderson, E. S.; Adamson, R. H.; Oliverio, V. T. Cancer Res. 1967, 56, 1012.
- 1965, 25, 1018.
- (131) Johns, D. G.; Iannotti, A. T.; Sartorelli, A. C.; Booth, B. A.;
 Bertino, J. R. Biochim. Biophys. Acta 1965, 105, 380.
 (132) Johns, D. G.; Valerino, D. M. Ann. N. Y. Acad. Sci. 1971, 186,
- 378
- (133) Loo, T. L.; Adamson, R. H. Biochem. Pharmacol. 1962, 11, 170.
- (134) Loo, T. L.; Adamson, R. H. J. Med. Chem. 1965, 8, 513.
 (135) Davidson, J. O.; Oliverio, V. T. Clin. Pharmacol. Ther. 1965,
- 6 325
- (136) Bertino, J. R.; Perkins, J. P.; Johns, D. G. Biochemistry 1965,
- 4, 839. (137) Hutchison, D. J. Cancer Chemother. Rep., Part 1 1968, 52, 697.
- (138) Shimoyama, M.; Hutchison, D. J. Proc. Am. Cancer Res. 1969, 10, 80.
- (139) Duch, D. S.; Edelstein, M. P.; Bowers, S. W.; Nichol, C. A. Cancer Res. 1982, 42, 3987.
 (140) Duch, D. S.; Edelstein, M. P.; Nichol, C. A. Mol. Pharmacol.
- 1**980**, *18*, 100
- (141) Hansch, C. Faramco 1979, 34, 89.
 (142) Rosowsky, A.; Lazarus, H.; Yuan, G. C.; Beltz, W. R.; Mangini, L.; Abelson, H. T.; Modest, E. J.; Frei, E., III. Biochem. Pharmacol. 1980, 29, 648.
- (143) Rosowsky, A.; Marini, J. L.; Nadel, M. E.; Modest, E. J. J. Med. Chem. 1970, 13, 882.
 (144) Ashton, W. T.; Walker, F. C., III; Hynes, J. B. J. Med. Chem.
- 1973, 16, 694.
- (145) Modest, E. J.; Foley, G. E.; Pechet, M. M.; Farber, S. J. Am.
- (146) Nickes, B. 5., 76, 855.
 (146) Silipo, C.; Hansch, C. J. Am. Chem. Soc. 1975, 97, 6849.
 (147) Kim, K. H.; Dietrich, S. W.; Hansch, C.; Dolnick, B. J.; Bertino, J. R. J. Med. Chem. 1980, 23, 1248.
- (148) Hitchings, G. H.; Roth, B. U.S. Patent 2 909 522, 1959.
 (149) Heumann, L. Belg. Patent 812 375.
- (150) Aschoff, H. S.; Vergin, H. J. Antimicrob. Chemother. Suppl. B 1979, 5, 19.
- (151) Hitchings, G. H. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 467.
 (152) Elslager, E. F.; Davoll, J. "Lectures in Heterocyclic Chemistry"; Castle, R. N., Townsend, L. B., Eds.; Hetero Corpo-ration: Orem, UT, 1974; Vol. 2, S-97.
 (153) Lien, E. J.; Hansch, C.; Anderson, S. M. J. Med. Chem. 1968,
- 11.430
- (154) Roth, B.; Strelitz, J. Z.; Rauckman, B. S. J. Med. Chem. 1980, 23, 379.
- (155) Roth, B.; Aig, E.; Rauckman, B. S.; Strelitz, J. Z.; Phillips, A. P.; Ferone, R.; Bushby, S. R. M.; Sigel, C. W. J. Med. Chem. 1981, 24, 933.
- (156) Kompis, I.; Then, R.; Boehni, E.; Rey-Bellet, G.; Zanetti, G.; Montavon, M. Eur. J. Med. Chem. 1980, 15, 17. (157) Kompis, I.; Mueller, W.; Boehni, E.; Then, R.; Montavon, M.

- (15) Kompis, I.; Miener, W.; Boenni, E.; Fiel, K.; Mondavon, M. Eur, J. Med. Chem. 1977, 12, 531.
 (158) Stogryn, E. L. J. Med. Chem. 1972, 15, 200.
 (159) Gapski, G. R.; Whiteley, J. M.; Rader, J. I.; Cramer, P. L.; Henderson, G. B.; Neef, V.; Huennekens, F. M. J. Med. Chem. 1977, 12, 552 1**975**, 18, 526.
- (160) Kumar, A. A.; Freisheim, J. H.; Kempton, R. J.; Anstead, G. M.; Black, A. M.; Judge, L. J. Med. Chem. 1983, 26, 111. (a)
 Rosowsky, A.; Wright, J. E.; Shapiro, H.; Beardsley, P.; Lazarus, H. J. Biol. Chem. 1982, 257, 14162.
 Martin, Y. C. "Quantitative Drug Design"; Dekker: New York,
- 197
- (162) Daniel, C.; Wood, F. S. "Fitting Equations to Data", 2nd ed.; Wiley-Interscience: New York, 1980.
 (163) Taft, R. W. In "Steric Effects in Organic Chemistry"; Newman, M. S., Ed.; Wiley: New York, 1956; p 556.
 (164) Unger, S. H.; Hansch, C. Prog. Phys. Org. Chem. 1976, 12, 91.
 (165) Charton, M. J. Am. Chem. Soc. 1975, 97, 1552.
 (166) Charton, M. In "Design of Biopharmaceutical Properties Through Products and Analogues": Roche E. B. Ed. American

- (100) Chailer and Analogues"; Roche, E. B., Ed.; American Pharmaceutical Association: Washington, D.C., 1977; p 228.
 (167) Hansch, C.; Leo, A. "Substituent Constants for Correlation Analysis in Chemistry and Biology"; Wiley-Interscience: New York 1970.
- York, 1979. (168) Verloop, A. Philos. Trans. R. Soc. London, Ser. B 1981, 295,
- (169) Verloop, A.; Hoogenstraaten, W.; Tipker, J. In "Drug Design"; Ariëns, E. J., Ed.; Academic Press: New York, 1976, Vol. VII, p 165.
- (170) Kubinyi, H. Drug. Res. 1979, 23, 97.
 (171) Leo, A.; Hansch, C.; Jow, P. Y. C. J. Med. Chem. 1976, 19, 611.
 (172) Yoshimoto, M.; Hansch, C. J. Med. Chem. 1976, 19, 71.
 (173) Kubinyi, H. J. Med. Chem. 1976, 19, 587.

- (174) Kim, K. H.; Hansch, C.; Fukunaga, J. Y.; Steller, E. E.; Jow,

- (174) Kim, K. H.; Hansch, C.; Fukunaga, J. Y.; Steller, E. E.; Jow, P. Y. C.; Craig, P. N.; Page, J. J. Med. Chem. 1979, 22, 366.
 (175) Denny, W. A.; Cain, B. F.; Atwell, G. J.; Hansch, C.; Panthananickal, A.; Leo, A. J. Med. Chem. 1982, 25, 276.
 (176) Hansch, C.; Calef, D. F. J. Org. Chem. 1976, 41, 1240.
 (177) Miller, E.; Hansch, C. J. Pharm. Sci. 1967, 56, 92.
 (178) Hansch, C.; Silipo, C. J. Med. Chem. 1974, 17, 661.
 (180) Dietrich, S. W.; Smith, R. N.; Fukunaga, J. Y.; Olney, M.; Hansch, C. Arch. Biochem. Biophys. 1979, 194, 600.
 (181) Hansch, C.; Dietrich, S. W.; Fukunaga, J. Y. J. Med. Chem. 1981, 24, 544.

- (181) Hansch, C.; Dietrich, S. W.; Fukunaga, J. Y. J. Mea. Chem. 1981, 24, 544.
 (182) Guo, Z. R.; Dietrich, S. W.; Hansch, C.; Dolnick, B. J.; Bertino, J. R. Mol. Pharmacol. 1981, 20, 649.
 (183) Coats, E. A.; Genther, C. S.; Dietrich, S. W.; Guo, Z. R.; Hansch, C. J. Med. Chem. 1981, 24, 1422.
 (184) Hansch, C.; Hathaway, B. A.; Guo, Z. R.; Selassie, C. D.; Dietrich, S. W.; Volz, K. W.; Blaney, J. M.; Langridge, R.; Kauf-man, B. T. J. Med. Chem. 1984, 27, 129.
 (185) Hathaway, B. A.; Guo, Z. R.; Hansch, C.; Delcamp, T. J.; Susten, S. S.; Freisheim, J. H., J. Med. Chem. 1984, 27, 144.
 (186) Fukunaga, J. Y.; Hansch, C.; Steller, E. E. J. Med. Chem. 1976, 19, 605.

- 19, 605. (187) Hansch, C.; Fukunaga, J. Y.; Jow, P. Y. C.; Hynes, J. B. J. Med. Chem. 1977, 20, 96.
- (168) Chen, B. K.; Horvâth, C.; Bertino, J. R. J. Med. Chem. 1979, 22, 483.
- (189) Santi, D. V. J. Med. Chem. 1980, 23, 103.
- (190) Hansch, C.; Silipo, C.; Steller, E. E. J. Pharm. Sci. 1975, 64, 1186
- (191) Free, S. M., Jr.; Wilson, J. W. J. Med. Chem. 1964, 7, 395.
 (192) Cammarata, A.; Rogers, K. S. In "Advances in Linear Free-Energy Relationships"; Chapman, N. B., Shorter, Jr., Eds.; Plenum: New York, 1972; p 403. (193) Simon, Z.; Badilescu, I.; Racovitan, T. J. Theor. Biol. 1977, 66,
- 485.
- (194) Stephan, A.; Badilescu, I.; Simon, Z. An. Univ. Timisoara, Ser. (194) Stephan, A.; Badnescu, I.; Simon, Z. An. Chib. Timisodra, Ser. Stiinte Fiz.-Chim. 1977, 15, 61.
 (195) Crippen, G. M. J. Med. Chem. 1979, 22, 988.
 (196) Crippen, G. M. J. Med. Chem. 1980, 23, 599.
 (197) Ghose, A. K.; Crippen, G. M. J. Med. Chem. 1982, 25, 892.
 (198) Ghose, A. K.; Crippen, G. M. J. Med. Chem. 1983, 26, 996.
 (199) Crippen, G. M. Top. Curr. Chem., in press.
 (200) Crippen, G. M. In "Pharmacochemistry Library"; Elsevier: Ameterdom in press

- Amsterdam, in press. (201) Crippen, G. M.; Havel, T. F. Acta Crystallogr., Sect. A 1978,
- A34, 282.
- (202) Braun, W.; Bösch, C.; Brown, L. R.; Gö, N.; Wüthrich, K. Biochim. Biophys. Acta 1981, 667, 377.
 (203) Brown, L. R.; Braun, W.; Kumar, A.; Wüthrich, K. Biophys. J. 1982, 37, 319.
- (204) Battershell, C.; Malhotra, D.; Hopfinger, A. J. J. Med. Chem. 1981, 24, 812.

- 1981, 24, 812.
 (205) Hopfinger, A. J. J. Med. Chem. 1981, 24, 818.
 (206) Hopfinger, A. J. J. Am. Chem. Soc. 1980, 102, 7196.
 (207) Hopfinger, A. J. Arch. Biochem. Biophys. 1981, 206, 153.
 (208) Hopfinger, A. J. J. Med. Chem. 1983, 26, 990.
 (209) Roberts, G. C. K.; Feeney, J.; Burgen, A. S. V.; Yuferov, V.; Dann, J. G.; Bjur, R. Biochemistry 1974, 13, 5351.
 (210) Pastore, E. J.; Kisliuk, R. L.; Plante, L. T.; Wright, J. M.; Kaplan, N. O. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 3849.
 (211) Kimber, B. J.; Griffiths, D. V.; Birdsall, B.; King, R. W.; Scudder, P.; Feeney, J.; Roberts, G. C. K.; Burgen, A. S. V. Bio-chemistry 1977, 16, 3492.
 (212) Poe, M.; Hoogsteen, K.; Matthews, D. A. J. Biol. Chem. 1979, 254, 8143.
 (213) Birdsall, B.; Feeney, J.; Roberts, G. C. K.; Burgen, A. S. V.
- 254, 8143.
 (213) Birdsall, B.; Feeney, J.; Roberts, G. C. K.; Burgen, A. S. V. FEBS Lett. 1980, 120, 107.
 (214) Hyde, E. I.; Birdsall, B.; Roberts, G. C. K.; Feeney, J.; Burgen, A. S. V. Biochemistry 1980, 19, 3746.
 (215) Birdsall, B.; Burgen, A. S. V.; Hyde, E. I.; Roberts, G. C. K.; Feeney, J. Biochemistry 1981, 20, 7186.
 (216) Birdsall, B.; Connector A. Hudd, E. L. Chan, C. M. Beberts, M. Beberts, C. M. Beberts, M. Beberts

- (216) Birdsall, B.; Gronenborn, A.; Hyde, E. I.; Clore, G. M.; Roberts, G. C. K.; Feeney, J.; Burgen, A. S. V. Biochemistry 1982, 21, 5831.
 (217) D'Souza, L.; Freisheim, J. H. Biochemistry 1972, 11, 3770.
 (218) Greenfield, N. J. Biochem. Biophys. Acta 1975, 403, 32.
 (219) Gupta, S. V.; Greenfield, N. J.; Poe, M.; Makulu, D. R.; Willing M. N. Marsten, B. A. Bartine, J. B. Barther, B. A. Barther, J. B. Barther, J. B. Barther, J. B. Barther, J. B. Barther, B. A. Barther, J. B. Barther, B. A. Barther, J. B. Barther, J. B. Barther, B. A. B

- liams, M. N.; Moroson, B. A.; Bertino, J. R. Biochemistry 1977, 16, 3073.
- (220) Reddy, A. V.; Behnke, W. D.; Freisheim, J. H. Biochem. Bio-
- phys. Acta 1978, 533, 415. (221)_Hood, K.; Bayley, P. M.; Roberts, G. C. K. Biochem. J. 1979, 177.425
- (222) Reddy, A. V.; Rao, N. A. Arch. Biochem. Biophys. 1977, 183, 90.
- (223) Saperstein, D. D.; Rein, A. J.; Poe, M.; Leahy, M. F. J. Am. Chem. Soc. 1978, 100, 4296.
 (224) Matthews, D. A.; Alden, R. A.; Bolin, J. T.; Freer, S. T.; Hamlin, R.; Xuong, N.; Kraut, J.; Poe, M.; Williams, M.; Hoogs-teen, K. Science (Washington, D.C.) 1977, 197, 452.

- (225) Matthews, D. A.; Alden, R. A.; Bolin, J. T.; Filman, D. J.; Freer, S. T.; Hamlin, R.; Hol, W. G. J.; Kisliuk, R. L.; Pastore, E. J.; Plante, L. T.; Xuong, N.; Kraut, J. J. Biol. Chem. 1978, 253, 6946
- (226) Matthews, D. A.; Alden, R. A.; Freer, S. T.; Xuong, N.; Kraut, J. J. Biol. Chem. 1979, 254, 4144.
 (227) Baker, D. J.; Beddell, C. R.; Champness, J. N.; Goodford, P. J.; Norrington, F. E. A.; Smith, D. R.; Stammers, D. K. FEBS
- (227) Baker, D. J., Beuden, O. I., Champhoes, J. I., Goodford, P. J.; Norrington, F. E. A.; Smith, D. R.; Stammers, D. K. FEBS Lett. 1981, 126, 49.
 (228) Baker, D. J.; Beddell, C. R.; Champness, J. N.; Goodford, P. J.; Norrington, F. E. A.; Roth, B.; Stammers, D. K. Acta Crystallogr., Sect. A Suppl. 1981, A37, C-58.
 (229) Kuyper, L. F.; Roth, B.; Baccanari, D. P.; Ferone, R.; Beddell, C. R.; Champness, J. N.; Stammers, D. K.; Dann, J. G.; Norrington, F. E. A.; Baker, D. J.; Goodford, P. J. J. Med. Chem. 1982, 25, 1120. (a) Poe, M.; Springer, J. P.; Hoogsteen, K. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1981, 40, 1837.
 (230) Filman, D. J.; Bolin, J. T.; Matthews, D. A.; Kraut, J. J. Biol. Chem. 1982, 257, 13663.
 (231) Richardson, J. S.; Getzoff, E. D.; Richardson, D. C. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 2574.
 (232) Langridge, R.; Ferrin, T. E.; Kuntz, I. D.; Connolly, M. L. Science (Washington, D.C.) 1981, 211, 661.
 (234) Huang, C.; Ferrin, T. E.; Gallo, L.; Langridge, R. Molecular Graphics Laboratory, School of Pharmacy, University of California, San Francisco.

- nia, San Francisco.
- (235) Feldmann, R. J.; Bing, D. H.; Furie, B. C.; Furie, B. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 5409.
- (236) Berzofsky, J. A.; Buckenmeyer, G. K.; Hicks, G.; Gurd, F. R. N.; Feldmann, R. J.; Minna, J. J. Biol. Chem. 1982, 257, 3189.
 (237) Furie, B.; Bing, D. H.; Feldmann, R. J.; Robison, D. J.; Burnier, J. P.; Furie, B. C. J. Biol. Chem. 1982, 257, 3875.
 (238) Honoble C. David Lettell, Clin. Phys. 106 (1997).

- (238) Hansch, C. Drug Intell. Clin. Pharm. 1982, 257, 3875.
 (238) Hansch, C. Drug Intell. Clin. Pharm. 1982, 16, 391.
 (239) Smith, R. N.; Hansch, C.; Kim, K. H.; Omiya, B.; Fukumura, G.; Selassie, C. D.; Jow, P. Y. C.; Blaney, J. M.; Langridge, R. Arch. Biochem. Biophys. 1982, 215, 319.
 (240) Blaney, J. M.; Jorgensen, E. C.; Connolly, M. L.; Ferrin, T. E.; Langridge, R.; Oatley, S. J.; Burridge, J. M.; Blake, C. C. F. J. Med. Chem. 1982, 27, 285.
- Med. Chem. 1982, 25, 785.
- (241) Hansch, C.; Blaney, J. M. In "Drug Design: Fact or Fancy"; Academic Press: New York, in press.
 (242) (a) Richards, F. M. Annu. Rev. Biophys. Bioeng. 1977, 16, 151.
- (b) Connolly, M. L. Science (Washington D.C.) 1983, 221, 709.
- (243) Hood, K.; Roberts, G. C. K. Biochem. J. 1978, 171, 357.
 (244) Subramanian, S.; Kaufman, B. T. Proc. Natl. Acad. Sci. U.

- (248) Poe, M.; Hoogsteen, K. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1974, 33, 1382
- (249) Blaney, J. M. Ph.D. Thesis, University of California, San Francisco, CA, Dec 1982.
- (250) Matthews, D. A.; Bolin, J. T.; Filman, D. J.; Volz, K. W.; Kraut, J., J. Biol. Chem., in press.
- (251) Baccanari, D. P.; Stone, D.; Kuyper, L. J. Biol. Chem. 1981, 256. 1738
- (252) Hyde, R. M.; Roth, B. In "Strategy in Drug Research"; Buis-
- (252) Hyde, R. M.; Roull, B. in Strategy in Didg Research , Buls-man, J. A. K., Ed.; Elsevier: Amsterdam, 1982; p 385.
 (253) Beddell, C. R., unpublished results.
 (254) Khwaja, T. A.; Pentecost, S.; Selassie, C. D.; Guo, Z. R.; Hansch, C. J. Med. Chem. 1982, 25, 153.
 (255) Selassie, C. D.; Guo, Z. R.; Hansch, C.; Khwaja, T. A.; Pente-cost, S. J. Med. Chem. 1982, 25, 157.
 (256) Selassie, C. D.; H. P. L. Hansch, C.; Khwaja, T. A.; Diag, C.
- (256) Selassie, C. D.; Li, R. L.; Hansch, C.; Khwaja, T. A.; Dias, C. B. J. Med. Chem. 1982, 25, 518. (257) Browman, G. P.; Lazarus, H. Cancer Treat. Rep. 1980, 64, 231.
- (258) Greco, W. R.; Hakala, M. T. J. Pharmacol. Exp. Ther. 1980,
- 219, 39. (259) Sirotnak, F. M.; Moccio, D. M.; Goutas, L. J.; Kelleher, L. E.;
- Montgomery, J. A. Cancer Res. 1982, 42, 924. (260) Genther, C. S.; Coats, E. A.; Selassie, C. D.; Hansch, C., un-
- published results.
- (261) Harper, M. E.; Kellems, R. E. Cancer Bull. 1981, 33, 43.
 (262) Huennekens, F. M.; Vitols, K. S.; Henderson, G. B. Adv. Enzymol. Relat. Areas Mol. Biol. 1978, 47, 313.
 (263) Sirotnak, F. M. Pharmacol. Ther. 1980, 8, 71.
 (264) Sirotnak, F. M.; Chello, P. L.; Brockman, R. W. Meth. Cancer Development of Control o

- (205) Shotnak, T. M.; Oneb, T. D., Drockman, R. W. Metr. Carter, Res. 1979, 16, 381.
 (265) Chello, P. L.; Sirotnak, F. M.; Dorick, D. M.; Donsbach, R. C. Cancer Res. 1977, 37, 4297.
- (266) Sirotnak, F. M.; Donsbach, R. C. Cancer Res. 1976, 36, 1151. (a) Kamen, B. A.; Cashmore, A. E.; Dreyer, R. N.; Moroson, B. A.;
 Hsieh, P.; Bertino, J. R. J. Biol. Chem. 1980, 255, 3254.
 (267) Fischer, G. A. Biochem. Pharmacol. 1961, 7, 75.
 (268) Hakala, M. T.; Zakrzewski, S. F.; Nichol, C. A. J. Biol. Chem.

1961, 236, 952.

- (269) Alt, F. W.; Kellems, R. E.; Schimke, R. T. J. Biol. Chem. 1976, 251, 3063.
- (270) Bostock, C. J.; Clark, E. M.; Harding, N. G. L.; Mounts, P. M.; Tyler-Smith, C.; van Heyningen, V.; Walker, P. M. B. Chromo-soma 1979, 74, 153.
- (271) Dolnick, B. J.; Berenson, R. J.; Bertino, J. R.; Kaufman, R. J.; Nunberg, J. H.; Schimke, R. T. J. Cell Biol. 1979, 83, 394.
 (272) Kellems, R. E.; Alt, F. W.; Schimke, R. T. J. Biol. Chem. 1976,
- 251.6987.
- (273) Setzer, D. R.; McGrogan, M.; Schimke, R. T. J. Biol. Chem. 1982, 257, 5143
- (274) Nunberg, J. H.; Kaufman, R. J.; Schimke, R. T.; Urlaub, G.; Chasin, L. A. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 5553.
- (275) Crouse, G. F.; Simonsen, C. C.; McEwan, R. N.; Schimke, R. T. J. Biol. Chem. 1982, 257, 7887.
 (276) Littlefield, J. W. Proc. Natl. Acad. Sci. U.S.A. 1969, 62, 88.
 (277) Schimke, R. T.; Kaufman, R. J.; Alt, F. W.; Kellems, R. F.
- Science (Washington, D.C.) 1978, 202, 1051. (278) Albrecht, A. M.; Biedler, J. L.; Hutchison, D. J. Cancer Res.
- 1972, 32, 1539. (279) Flintoff, W. F.; Davidson, S. V.; Siminovitch, L. Somatic Cell
- *Genet.* 1976, 2, 245. (280) Jackson, R. C.; Niethammer, D. *Eur. J. Cancer* 1977, *13*, 567. (281) Goldie, J. H.; Krystal, G.; Hartley, D.; Gudauskas, G.; Dedhar,
- S. Eur. J. Cancer 1980, 16, 1539. (282) Haber, D. A.; Beverley, S. M.; Kiely, M. L.; Schimke, R. T. J.

- (282) Haber, D. A.; Beverley, S. M.; Klely, M. L.; Schimke, R. T. J. Biol. Chem. 1981, 256, 9501.
 (283) Flintoff, W. F.; Essani, K. Biochemistry 1980, 19, 4321.
 (284) Burns, C. P.; Luttenegger, D. G.; Dudley, D. T.; Buettner, G. R.; Spector, A. A. Cancer Res. 1979, 39, 1726.
 (285) Walsh, R. J. A.; Wooldridge, K. R. H.; Jackson, D.; Gilmour, J. Eur. J. Med. Chem. 1977, 12, 495.
 (286) Walsher, K. B. H. Ford, Chem. 1980, 15, 62
- (286) Wooldridge, K. R. H. Eur. J. Med. Chem. 1980, 15, 63. (287) Smith, C. C.; Genther, C. S.; Coats, E. A. Eur. J. Med. Chem. 1979, 14, 271.
- (288) Hansch, C.; Fukunaga, J. Y.; Jow, P. Y. C.; Hynes, J. B. J. Med. Chem. 1977, 20, 96.

Appendix References

- (1) Werkheiser, W. C. J. Biol. Chem. 1961, 236, 888.
- Misra, D. K.; Adamson, R. H.; Loo, T. L.; Oliverio, V. T. Life Sci. 1963, 2, 407.

- (3) Baker, B. R.; Morreal, C. E. J. Pharm. Sci. 1963, 52, 840.
 (4) Zakrzewski, S. F. J. Biol. Chem. 1963, 238, 1485.
 (5) Zakrzewski, S. F. J. Biol. Chem. 1963, 238, 4002.
 (6) Baker, B. R.; Ho, B.-T.; Neilson, T. J. Heterocycl. Chem. 1964, 1963, 238, 1963.
- 1, 79. (7) Baker, B. R.; Ho, B.-T.; Chheda, G. B. J. Heterocycl. Chem. 1964, 1, 88.

- Baker, B. R.; Sachdev, K. J. Pharm. Sci. 1964, 53, 1020.
 Baker, B. R.; Ho, B.-T. J. Pharm. Sci. 1964, 53, 1137.
 Baker, B. R.; Santi, D. V.; Shapiro, H. S. J. Pharm. Sci. 1964, 53, 1317. (11) Baker, B. R.; Ho, B.-T. J. Pharm. Sci. 1964, 53, 1457

- (12) Baker, B. R.; Santi, D. V.; Almaula, P. I.; Werkheiser, W. C. J. Med. Chem. 1964, 7, 24.
 (13) Tong, G. L.; Lee, W. W.; Goodman, L. J. Am. Chem. Soc. 1964, 86, 5664.
- (14) Bertino, J. R.; Booth, B. A.; Bieber, A. L.; Cashmore, A.; Sar-torelli, A. C. J. Biol. Chem. 1964, 239, 479.
- (15) Kashket, E. R.; Crawford, E. J.; Friedkin, M.; Humphreys, S. R.; Goldin, A. Biochemistry 1964, 3, 1928.
- (16) Johns, D. G.; Sartorelli, A. T.; Iannotti, A. T.; Bertino, J. R. Proc. Am. Assoc. Cancer Res. 1964, 5, 32.

- (17) Baker, B. R.; Coward, J. K. J. Pharm. Sci. 1965, 54, 714.
 (18) Baker, B. R.; Ho, B.-T. J. Pharm. Sci. 1965, 54, 1187.
 (19) Baker, B. R.; Santi, D. V. J. Pharm. Sci. 1965, 54, 1252.
 (20) Baker, B. R.; Ho, B.-T. J. Pharm. Sci. 1965, 54, 1261.
 (21) Baker, B. R.; Ho, B.-T.; Santi, D. V. J. Pharm. Sci. 1965, 54, 1265. 141

- 1410.
 (22) Baker, B. R.; Jordaan, J. H. J. Pharm. Sci. 1965, 54, 1740.
 (23) Baker, B. R.; Jordaan, J. H. J. Heterocycl. Chem. 1965, 2, 21.
 (24) Baker, B. R.; Ho, B.-T. J. Heterocycl. Chem. 1965, 2, 72.
 (25) Baker, B. R.; Jordaan, J. H. J. Heterocycl. Chem. 1965, 2, 162.
 (26) Baker, B. R.; Ho, B.-T. J. Heterocycl. Chem. 1965, 2, 335.
 (27) Baker, B. R.; Ho, B.-T. J. Heterocycl. Chem. 1965, 2, 340.
 (28) Baker, B. R.; Lourens, G. J. J. Heterocycl. Chem. 1965, 2, 340.
 (29) Baker, B. R.; Lourens, G. J. J. Heterocycl. Chem. 1965, 2, 344.
- (29) Bertino, J. R.; Perkins, J. P.; Johns, D. G. Biochemistry 1965,
- 4.839
- ⁴, 839.
 (30) Baker, B. R.; Jordaan, J. H. J. Med. Chem. 1965, 8, 35.
 (31) Hampshire, J.; Hebborn, P.; Triggle, A. M.; Triggle, D. J. Vickers, S. J. Med. Chem. 1965, 8, 745.
 (32) Burchall, J. J.; Hitchings, G. H. Mol. Pharmacol. 1965, 1, 126.
 (33) Mead, J. A. R.; Greenberg, N. H.; Schrecker, A. W.; Seeger, D. R.; Tomcufcik Biochem. Pharmacol. 1965, 14, 105.
- (34) Hitchings, G. H.; Burchall, J. J. Adv. Enzymol. 1965, 27, 417.
- (35) Baker, B. R.; Schwan, T. J.; Novotny, J.; Ho, B.-T. J. Pharm. Sci. 1966, 55, 295.
- (36) Baker, B. R.; Ho, B.-T.; Coward, J. K.; Santi, D. V. J. Pharm. Sci. 1966, 55, 302. (37) Baker, B. R.; Shapiro, H. S. J. Pharm. Sci. 1966, 55, 308. (38) Hampshire, J.; Hebborn, P.; Triggle, A. M.; Triggle, D. J. J.

- (38) Hampshire, J.; Hebborn, P.; Triggle, A. M.; Triggle, D. J. J. Pharm. Sci. 1966, 55, 453.
 (39) Baker, B. R.; Ho, B.-T. J. Pharm. Sci. 1966, 55, 470.
 (40) Baker, B. R.; Jordaan, J. H. J. Pharm. Sci. 1966, 55, 1417.
 (41) Baker, B. R.; Shapiro, H. S. J. Pharm. Sci. 1966, 55, 1422.
 (42) Mertes, M. P.; Patel, N. R. J. Med. Chem. 1966, 9, 868.
 (43) Chadwick, M.; Hampshire, J.; Hebborn, P.; Triggle, A. M.; Triggle, D. J. J. Med. Chem. 1966, 9, 874.
 (44) Perkins, J. P.; Bertino, J. R. Biochemistry 1966, 5, 1005.
 (45) Bertino, J. R.; Iannotti, A. T.; Perkins, J. P.; Johns, D. G. Biochem. Pharmacol. 1966, 15, 563.
 (46) Baker, B. R.; Shapiro, H. S. J. Pharm. Sci. 1967, 56, 28.
 (47) Baker, B. R.; Shapiro, H. S. J. Pharm. Sci. 1967, 56, 33.
 (48) Baker, B. R.; Schwan, T. J.; Ho, B.-T. J. Pharm. Sci. 1967, 56, 38.

- 38
- (49) Baker, B. R.; Santi, D. V. J. Pharm. Sci. 1967, 56, 380.
 (50) Baker, B. R.; Jackson, G. D. F.; Meyer, R. B., Jr. J. Pharm. Sci. 1**967**, *56*, *566*.
- (51) Baker, B. R.; Meyer, R. B., Jr. J. Pharm. Sci. 1967, 56, 570.
 (52) Baker, B. R.; Jordaan, J. H. J. Pharm. Sci. 1967, 56, 660.
 (53) Baker, B. R.; Ho, B.-T.; Lourens, G. J. J. Pharm. Sci. 1967, 56,
- 73
- (54) Baker, B. R.; Lourens, G. J. J. Pharm. Sci. 1967, 56, 871.
 (55) Baker, B. R.; Novotny, J. J. Heterocycl. Chem. 1967, 4, 23.
 (56) Baker, B. R.; Jordaan, J. H. J. Heterocycl. Chem. 1967, 4, 31.
- (57) Baker, B. R.; Lourens, G. J.; Jordaan, J. H. J. Heterocycl. Chem. 1967, 4, 39.

- (58) Baker, B. R.; Coward, J. K. J. Heterocycl. Chem. 1967, 4, 188.
 (59) Baker, B. R.; Santi, D. V. J. Heterocycl. Chem. 1967, 4, 216.
 (60) Baker, B. R.; Johnson, M. A. J. Heterocycl. Chem. 1967, 4, 447.
 (61) Baker, B. R.; Johnson, M. A. J. Heterocycl. Chem. 1967, 4, 507.
- (62) Mertes, M. P.; Zielinski, J.; Pillar, C. J. Med. Chem. 1967, 10, 320
- (63) Baker, B. R. J. Med. Chem. 1967, 10, 912.
- (64) Baker, B. R.; Lourens, G. J. J. Med. Chem. 1967, 10, 1113.
 (65) Baker, B. R.; Huang, P. C.; Pogolotti, A. L., Jr. J. Med. Chem. 1967, 10, 1134

- (66) Neely, W. B. Mol. Pharmacol. 1967, 3, 108.
 (67) Jaffe, J. J.; McCormack, J., Jr. Mol. Pharmacol. 1967, 3, 359.
 (68) Roberts, D. W.; Hall, T. C. J. Clin. Pharmacol. J. New Drugs 1968, 8, 217.
- (69) Nichol, C. A. Adv. Enzyme Regul. 1968, 6, 305.

- (70) Baker, B. R.; Lourens, G. J. J. Med. Chem. 1968, 11, 26.
 (71) Baker, B. R.; Lourens, G. J. J. Med. Chem. 1968, 11, 34.
 (72) Baker, B. R.; Lourens, G. J. J. Med. Chem. 1968, 11, 38.
 (73) Baker, B. R.; Huang, P. C.; Meyer, R. B., Jr. J. Med. Chem.

- (73) Baker, B. R.; Huang, P. C.; Meyer, R. B., Jr. J. Med. Chem. 1968, 11, 475.
 (74) Baker, B. R. J. Med. Chem. 1968, 11, 483.
 (75) Baker, B. R.; Johnson, M. A. J. Med. Chem. 1968, 11, 486.
 (76) Baker, B. R.; Meyer, R. B., Jr. J. Med. Chem. 1968, 11, 489.
 (77) Baker, B. R.; Huang, P. C.; J. Med. Chem. 1968, 11, 489.
 (77) Baker, B. R.; Hueng, P. C.; J. Med. Chem. 1968, 11, 485.
 (78) Hampshire, J.; Hebborn, P.; Triggle, A. M.; Triggle, D. J. J. Med. Chem. 1968, 11, 583.
 (79) Baker, B. R.; Lourens, G. J. J. Med. Chem. 1968, 11, 666.
 (80) Baker, B. R.; Lourens, G. J. J. Med. Chem. 1968, 11, 672.
 (81) Baker, B. R.; Lourens, G. J. J. Med. Chem. 1968, 11, 677.
 (82) Hurlbert, B. S.; Ferone, R.; Herrmann, T. A.; Hitchings, G. H.; Barnett, M.; Bushby, S. R. M. J. Med. Chem. 1968, 11, 711.
 (83) Horwitz, S. B.; Kisliuk, R. L. J. Med. Chem. 1968, 11, 907.
 (84) Capps, D. B.; Bird, O. D.; Elslager, E. F.; Gavrilis, Z. B.; Roush, J. A.; Thompson, P. E.; Vaitkus, J. W. J. Heterocycl. Chem. 1968, 5, 355. 5, 355.
- (85) Andreeva, N. A.; Bukin, V. N.; Gofshtein, L. V. Biokhimiya 1968, 33, 299.
 (86) McCullough, J. L.; Nixon, P. F.; Bertino, J. R. Ann. N. Y. Acad.
- Sci. 1969, 186, 131.
- (87) Hutchinson, D. J.; Sirotnak, F. M.; Albrecht, A. M. Proc. Am.
- (a) Farcinson, D. S., Biolandi, T. H., Hill, F. K. H. Free, A. K. A. Soc. Cancer Res. 1969, 10, 41.
 (88) Ferone, R.; Burchall, J. J.; Hitchings, G. H. Mol. Pharmacol. 1969, 5, 49.
 (89) Slavik, K.; Slavikovā, V.; Motyčka, K.; Hermanovā, E.; Souček, N. S. Starik, K.; Slavikovā, V.; Motyčka, K.; Hermanovā, E.; Souček,
- Tomsova, Z.; Spundovā, M.; Novākovā, E. Mol. Pharmacol.
- 1969, 5, 137. (90) Jaffe, J. J.; McCormak, J. J.; Gutteridge, W. E. Exp. Parasitol.
- (90) Jaffe, J. J.; McCormak, J. J.; Gutteriuge, W. E. Dap. 1 a. detects 1969, 25, 311.
 (91) Baker, B. R.; Lourens, G. J.; Meyer, R. B., Jr.; Vermeulen, N. M. J. Med. Chem. 1969, 12, 67.
 (92) Baker, B. R.; Vermeulen, N. M. J. J. Med. Chem. 1969, 12, 74.
 (93) Baker, B. R.; Vermeulen, N. M. J. J. Med. Chem. 1969, 12, 79.
 (94) Baker, B. R.; Vermeulen, N. M. J. J. Med. Chem. 1969, 12, 82.
 (95) Baker, B. R.; Vermeulen, N. M. J. J. Med. Chem. 1969, 12, 86.
 (96) Baker, B. R.; Vermeulen, N. M. J. J. Med. Chem. 1969, 12, 86.
 (96) Baker, B. R.; Vermeulen, N. M. J. Med. Chem. 1969, 12, 89.
 (97) Baker, B. R.; Lourens, G. J. J. Med. Chem. 1969, 12, 92.
 (98) Baker, B. R.; Lourens, G. J. J. Med. Chem. 1969, 12, 95.

(99) Baker, B. R.; Lourens, G. J. J. Med. Chem. 1969, 12, 101.
(100) Baker, B. R.; Meyer, R. B., Jr. J. Med. Chem. 1969, 12, 104.
(101) Baker, B. R.; Meyer, R. B., Jr. J. Med. Chem. 1969, 12, 108.
(102) Baker, B. R.; Meyer, R. B., Jr. J. Med. Chem. 1969, 12, 224.
(103) Roth, B. J. Med. Chem. 1969, 12, 227.
(104) McCormeck, J. J. Leffe, J. L. J. Med. Chem. 1969, 12, 669.

Chemical Reviews, 1984, Vol. 84, No. 4 405

- (103) Koth, B. J. Med. Chem. 1969, 12, 227.
 (104) McCormack, J. J.; Jaffe, J. J. J. Med. Chem. 1969, 12, 662.
 (105) Baker, B. R.; Meyer, R. B., Jr. J. Med. Chem. 1969, 12, 662.
 (106) Baker, B. R.; Janson, E. E. J. Med. Chem. 1969, 12, 672.
 (107) Baker, B. R.; Vermeulen, N. M. J. J. Med. Chem. 1969, 12, 680.
 (108) Baker, B. R.; Vermeulen, N. M. J. J. Med. Chem. 1969, 12, 684.
 (109) Baker, B. R.; Ashton, W. T. J. Med. Chem. 1969, 12, 884.
 (110) Baker, B. R.; Janson, E. E.; Vermeulen, N. M. J. J. Med. Chem. 1969, 12, 884.
 (110) Baker, B. R.; Janson, E. E.; Vermeulen, N. M. J. J. Med. Chem. 1969, 12, 894. Chem. 1969, 12, 898. (111) Albrecht, A. M.; Hutchison, D. J. Mol. Pharmacol. 1970, 6, 323.
- (112) Bird, O. D.; Vaitkus, J. W.; Clarke, J. Mol. Pharmacol. 1970,
- 6. 573.
- (113) Freudenthal, R.; Lowe, J. K.; Hebborn, P. Mol. Pharmacol.
- (116) Fredericz, 1970, 6, 617.
 (114) Johns, D. G.; Capizzi, R. L.; Nahas, A.; Cashmore, A. R.; Bertino, J. R. Biochem. Pharmacol. 1970, 19, 1528.
 (114) Outtowidge W. F.: Ogilvie, B. M.; Bridget, M.; Dunnett, S. J.
- Int. J. Biochem. 1970, 1, 230. (116) Ferone, R. J. Biol. Chem. 1970, 245, 850.

- (110) Ferone, R. J. Biol. Chem. 1970, 245, 850.
 (117) Manteuffel-Cymboroska, M.; Grzelakowska-Sztabert, B. J. Insect. Physiol. 1970, 16, 1419.
 (118) Ferone, R.; O'Shea, M.; Yoeli, M. Science (Washington D.C.) 1970, 167, 1263.

- (119) Baker, B. R.; Vermuelen, N. M. J. J. Med. Chem. 1970, 13, 82.
 (120) Mertes, M. P.; Lin, A. J. J. Med. Chem. 1970, 13, 276.
 (121) Baker, B. R.; Vermeulen, N. M. J.; Ryan, A. J. J. Med. Chem. 1970, 13, 280.
- (122) Baker, B. R.; Vermeulen, N. M. J.; Ashton, W. T.; Ryan, A. J. J. Med. Chem. 1970, 13, 1130.
- (123) Baker, B. R.; Vermeulen, N. M. J. J. Med. Chem. 1970, 13, 1143
- (124) Baker, B. R.; Ashton, W. T. J. Med. Chem. 1970, 13, 1149.
 (125) Baker, B. R.; Vermeulen, N. M. J. J. Med. Chem. 1970, 13, 1154.

- (126) Baker, B. R.; Ashton, W. T. J. Med. Chem. 1970, 13, 1161.
 (127) Baker, B. R.; Ashton, W. T. J. Med. Chem. 1970, 13, 1165.
 (128) Blakley, R. L.; Schrock, M.; Sommer, K.; Nixon, P. F. Ann. N.Y. Acad. Sci. 1971, 186, 119.
- (129) Montgomery, J. A.; Elliott, R. D.; Straight, S. L.; Temple, C., Jr. Ann. N.Y. Acad. Sci. 1971, 186, 227.
- (130) Rosowsky, A.; Modest, E. J. Ann. N.Y. Acad. Sci. 1971, 186, 258.
- (131) Johns, D. G.; Valerino, D. M. Ann. N.Y. Acad. Sci. 1971, 186, 378.
- (132) Hitchings, G. H. Ann. N.Y. Acad. Sci. 1971, 186, 444.
 (133) Chatterjee, S. S.; Garrison, D. R.; Kaprove, R.; Moran, J. F.; Triggle, A. M.; Triggle, D. J.; Wayne, A. J. Med. Chem. 1971, 14, 499
- (134) Struck, R. F.; Shealy, Y. F.; Montgomery, J. A. J. Med. Chem. 1971, 14, 693.
- (135) McCullough, J. L.; Bertino, J. R. Biochem. Pharmacol. 1971, 20, 561.
- (136) Jarabak, J.; Bachur, N. R. Arch. Biochem. Biophys. 1971, 142, 417.
- (137) Erickson, J. S.; Mathews, C. K. Biochem. Biophys. Res. Commun. 1971, 43, 1164.
 (138) Ho, Y. K.; Zakrzewski, S. F. Proc. Am. Assoc. Cancer Res. 1971, 12, 44.

(139) Baker, B. R.; Ashton, W. T. J. Med. Chem. 1972, 15, 945.
 (140) Farquhar, D.; Loo, T. L.; Vadlamudi, S. J. Med. Chem. 1972,

(140) Faquinar, D., Loo, T. L., Vatianiudi, S. J. Med. Chem. 1972, 15, 567.
 (141) Slavik, K.; Cihař, R.; Souček, J.; Hermanová, E.; Přistoupilová, K.; Slaviková, V. Mol. Pharmacol. 1972, 8, 740.
 (142) Poe, M.; Greenfield, N. J.; Hirshfield, J. M.; Williams, M. N.; Hoogsteen, K. Biochemistry 1972, 11, 1023.
 (143) Ho, Y. K.; Hakala, M. T.; Zakrzewski, S. F. Cancer Res. 1972, 2010.

(144) Jaffe, J. J.; McCormack, J. J.; Meymarian, E. Biochem. Pharmacol. 1972, 21, 719.
(145) Erickson, J. S.; Mathews, C. K. J. Biol. Chem. 1972, 247, 5661.
(146) Burchall, J. J. J. Infect. Dis. 1973, 128, S437.
(147) Sirotnak, F. M. Biochim. Biophys. Acta 1973, 302, 13.
(148) Erickson, J. S.; Mathews, C. K. Biochemistry 1973, 12, 372.
(149) Ho. Y. K. Zakraewski, S. F. Mand, L. H. Biochemistry 1973.

(149) Ho, Y. K.; Zakrzewski, S. F.; Mead, L. H. Biochemistry 1973,

12, 1003.
 (150) Rowe, P. B.; Lewis, G. P. Biochemistry 1973, 12, 1962.
 (151) Williams, M. N.; Poe, M.; Greenfield, N. J.; Hirshfield, J. M.; Hoogsteen, K. J. Biol. Chem. 1973, 248, 6375.
 (152) Burde, N. L.; Alekseeva, L. V.; Andreeva, N. A. J. Org. Chem. USSR (Engl. Transl.) 1973, 9, 1033.
 (153) Johns, D. G.; Farquhar, D.; Chabner, B. A.; Wolpert, M. K.; Adamson, R. H. Experientia 1973, 29, 1104.
 (154) Baker, B. R.; Ashton, W. T. J. Med. Chem. 1973, 16, 209.
 (155) Ashton, W. T.; Kirk, L. L.; Baker, B. R. J. Med. Chem. 1973, 16, 453.

(156) Ashton, W. T.; Walker, F. C., III; Hynes, J. B. J. Med. Chem.

32, 1023

12, 1003.

1973, 16, 694.

- (157) Roberts, E. C.; Shealy, Y. F. J. Med. Chem. 1973, 16, 697. (158) Jonak, J. P.; Mead, L. H.; Ho, Y. K.; Zakrzewski, S. F. J. Med.
- Chem. 1973, 16, 724.

- (159) Rosowsky, A. J. Med. Chem. 1973, 16, 1190.
 (160) Ashton, W. T.; Hynes, J. B. J. Med. Chem. 1973, 16, 1233.
 (161) Elslager, E. F.; Davoll, J. Lect. Heterocyclic Chem. 1974, 2, S-97
- (162) d'Urso-Scott, M.; Uhoch, J.; Bertino, J. R. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 2736.
 (163) Johns, D. G.; Farquhar, D.; Chabner, B. A.; McCormack, J. J. Biochem. Soc. Trans. 1974, 2, 602.
 (164) Carlin, S. C.; Rosenberg, R. N.; VandeVenter, L.; Friedkin, M. Mol. Pharmacol. 1974, 10, 194.
 (165) De Graw, J. I.; Brown, V. H.; Colwell, W. T. J. Med. Chem. 1974, 17, 144.

- 1974, 17, 144.
- (166) Roberts, E. C.; Shealy, Y. F. J. Med. Chem. 1974, 17, 219.
 (167) Lee, W. W.; Martinez, A. P.; Goodman, L. J. Med. Chem. 1974,
- 17, 326.
- (168) DeGraw, J. I.; Kisliuk, R. L.; Gaumont, Y.; Baugh, C. M.; Nair, M. G. J. Med. Chem. 1974, 17, 552.
 (169) Elliott, R. D.; Temple, C., Jr.; Montgomery, J. A. J. Med. Chem. 1974, 17, 553.
- (170) Richter, W. E., Jr.; McCormack, J. J. J. Med. Chem. 1974, 17, 943.
- (171) Hynes, J. B.; Ashton, W. T.; Bryansmith, D.; Freisheim, J. H. J. Med. Chem. 1974, 17, 1023.
 (172) Chaykovsky, M.; Rosowsky, A.; Papathanasopoulos, N.; Chen, K. K. N.; Modest, E. J.; Kisliuk, R. L.; Gaumont, Y. J. Med. Chem. 1074(15, 1016). Chem. 1974, 17, 1212.
- (173) Nair, M. G.; Mercer, L. P.; Baugh, C. M. J. Med. Chem. 1974,
- 17, 1268. (174) Rosowsky, A.; Papathanasopoulos, N. J. Med. Chem. 1974, 17, 1272
- (175) Rosowsky, A.; Chen, K. K. N. J. Med. Chem. 1974, 17, 1308.
- (176) Jacobs, S. A.; Adamson, R. H.; Chabner, B. A.; Derr, C. J.; Johns, D. G. Biochem. Biophys. Res. Commun. 1975, 63, 692.
 (177) McCuen, R. W.; Sirotnak, F. M. Biochim. Biophys. Acta 1975,

- (17) Victure, V. V., Shoula, T. J. L. 2019
 (178) Friedkin, M.; Plante, L. T.; Crawford, E. J.; Crumm, M. J. Biol. Chem. 1975, 250, 5614.
 (179) Temple, C., Jr.; Kussner, C. L.; Montgomery, J. A. J. Org. Chem. 1975, 40, 2205.
 (190) Nair M. C. Comphell, P. T. Braverman, E.; Baugh, C. M. (180) Nair, M. G.; Campbell, P. T.; Braverman, E.; Baugh, C. M.
- Tetrahedron Lett. 1975, 2745.
- (181) Wang, C. C.; Stotish, R. L.; Poe, M. J. Protozool. 1975, 22, 564.
 (182) Poe, M.; Bennett, C. D.; Donoghue, D.; Hirshfield, J. M.; Williams, M. N.; Hoogsteen, K. In "Chemistry and Biology of Pteridines"; Plfeiderer, W. Ed.; de Gruyter, W.: Berlin, 1975; p 51.
- (183) McCormack, J. J. In "Chemistry and Biology of Pteridines";
- (135) McCormack, J. J. In Chemistry and Biology of Periodines, Pfleiderer, W., Ed.; de Gruyter, W.: Berlin, 1975; p 125.
 (184) Mautner, H. G.; Kim, Y. H.; Gaumont, Y.; Kisliuk, R. L. In "Chemistry and Biology of Pteridines"; Pfleiderer, W., Ed.; de Gruyter, W.: Berlin, 1975; p 515.
 (185) Rey-Bellet, G.; Böhni, E.; Kompis, I.; Montavon, M.; Then, R.;

- Zanetti, G. Eur. J. Med. Chem. 1975, 10, 7.
 (186) Hynes, J. B.; Ashton, W. T. J. Med. Chem. 1975, 18, 263.
 (187) Kavai, I.; Mead, L. H.; Drobniak, J.; Zakrzewski, S. F. J. Med. Chem. 1975, 18, 272.
- (188) Elliott, R. D.; Temple, C., Jr.; Frye, J. L.; Montgomery, J. A. J. Med. Chem. 1975, 18, 492.
- (189) Hynes, J. B.; Garrett, C. M. J. Med. Chem. 1975, 18, 632.
 (190) Kim, Y. H.; Gaumont, Y.; Kisliuk, R. L.; Mautner, H. G. J. Med. Chem. 1975, 18, 776.
 (191) Hynes, J. B.; Buck, J. M.; D'Souza, L.; Freisheim, J. H. J. Med.

- (101) Tynes, J. B.; Buck, J. M.; D'Souza, L.; Freisheim, J. H. J. Med. Chem. 1975, 18, 1191.
 (192) Nair, M. G.; Campbell, P. T. J. Med. Chem. 1976, 19, 825.
 (193) Plante, L. T.; Crawford, E. J.; Friedkin, M. J. Med. Chem. 1976, 19, 1295.
- (194) Dann, J. G.; Ostler, G.; Bjur, R. A.; King, R. W.; Scudder, P.; Turner, P. C.; Roberts, G. C. K.; Burgen, A. S. V.; Harding, G. L. L. Biochem. J. 1976, 157, 559.
 (195) Reddy, V. A.; Rao, N. A. Arch. Biochem. Biophys. 1976, 174,
- 675.
- (196) Jackson, R. C.; Hart, L. I.; Harrap, K. R. Cancer Res. 1976, 36, 1991.
- 36, 1991.
 (197) Kompis, I.; Wick, A. Helv. Chim. Acta 1977, 60, 3025.
 (198) Pattishall, K. H.; Acar, J.; Burchall, J. J.; Goldstein, F. W.; Harvey, R. J. J. Biol. Chem. 1977, 252, 2319.
 (199) Bertino, J. R.; Sawicki, W. L. Proc. Am. Assoc. Cancer Res. 1977, 18, 168.
 (200) Calvert, A. H.; Cridland, J. S.; Harrap, K. H. J. Clin. Path. 1977, 20, 1154.

- (200) Calvert, A. H.; Crialana, J. S.; Harrap, R. H. J. Cum. 1 and 1977, 30, 1154.
 (201) Kompis, I.; Mueller, W.; Boehni, E.; Then, R.; Montavon, M. Eur. J. Med. Chem. 1977, 12, 531.
 (202) Hansch, C.; Fukunaga, J. Y.; Jow, P. Y. C.; Hynes, J. B. J. Med. Chem. 1977, 20, 96.
 (203) Hynes, J. B.; Eason, D. E.; Garrett, C. M.; Colvin, P. L., Jr.; Shores, K. E.; Freisheim, J. H. J. Med. Chem. 1977, 20, 588.

- (204) Taylor, E. C.; Berrier, J. V.; Cocuzza, A. J.; Kobylecki, R.; McCormack, J. J. J. Med. Chem. 1977, 20, 1215.
- (205) Chaykovsky, M.; Hirst, M.; Lazarus, H.; Martinelli, J. E.;
 Kisliuk, R. L.; Gaumont, Y. J. Med. Chem. 1977, 20, 1323.
 (206) Kisliuk, R. L.; Strumpf, D.; Gaumont, Y.; Leary, R. P.; Plante, L. J. Med. Chem. 1977, 20, 1531.
- (207) Rosowsky, A.; Beardsley, G. P.; Ensminger, W. D.; Lazarus, H.; Yu, C. S. J. Med. Chem. 1978, 21, 380.
 (208) Nair, M. G.; O'Neal, P. C.; Baugh, C. M.; Kisliuk, R. L.; Gaumont, Y.; Rodman, M. J. Med. Chem. 1978, 21, 673.
 (209) Biedler, J. L.; Albrecht, A. M.; Spengler, B. A. Eur. J. Cancer
- 1978, 14, 41
- 1978, 14, 41.
 (210) Aschoff, H. S.; Vergin, H. J. Antimicrob. Chemother. (Suppl. B) 1979, 5, 19.
 (211) Kan, S. C.; Siddiqui, W. A. J. Protozool. 1979, 26, 660.
 (212) Poe, M.; Breeze, A. S.; Wu, J. K.; Short, C. R., Jr.; Hoogsteen, K. J. Biol. Chem. 1979, 254, 1799.
 (213) Greco, W. R.; Hakala, M. T. J. Biol. Chem. 1979, 254, 12104.
 (214) Bertino, J. R.; Sawicki, W. L.; Moroson, B. A.; Cashmore, A. R.; Elslager, E. F. Biochem. Pharmacol. 1979, 28, 1983.
 (215) McCormack, J. J.; Allen, B. A.; Ledig, K. W.; Hillcoat, B. L.

- R.; Elslager, E. F. Biochem. Pharmacol. 1979, 28, 1983.
 (215) McCormack, J. J.; Allen, B. A.; Ledig, K. W.; Hillcoat, B. L. Biochem. Pharmacol. 1979, 28, 3227.
 (216) Colwell, W. T.; Brown, V. H.; Degraw, J. I.; Morrison, N. E. In "Chemistry and Biology of Pteridines"; Kisliuk, R. L., Brown, G. M., Eds.; Elsevier: North-Holland, New York, 1979, p 215.
 (217) Piper, J. R.; Montgomery, J. A. Dev. Biochem. 1979, 4, 261.
 (218) Dwivedi, C. M.; Krishna Murti, C. R. Dev. Biochem. 1979, 4, 401
- 401
- (219) Sirotnak, F. M.; Chello, P. L.; Piper, J. R.; Montgomery, J. A.; Degraw, J. I. Dev. Biochem. 1979, 4, 597.
 (220) Then, R. L.; Angehrn, P. Antimicrob. Agents Chemother.
- 1**979**, *15*, 1
- (221) Dietrich, S. W.; Smith, R. N.; Fukunaga, J. Y.; Olney, M.;
- Hansch, C. Arch. Biochem. Biophys. 1979, 194, 600. (222) Dietrich, S. W.; Smith, R. N.; Brendler, S.; Hansch, C. Arch. Biochem. Biophys. 1979, 194, 612.
- (223) Chen, B. K.; Horváth, C.; Bertino, J. R. J. Med. Chem. 1979,

- (223) Chen, B. K.; Horväth, C.; Bertino, J. R. J. Med. Chem. 1979, 22, 483.
 (224) Lin Shwu-Ching, Holmes, G. P.; Dunn, D. L.; Skinner, C. G. J. Med. Chem. 1979, 22, 741.
 (225) Nair, M. G.; Chen, S. Y.; Kisliuk, R. L.; Gaumont, Y.; Strumpf, D. J. Med. Chem. 1979, 22, 850.
 (226) Montgomery, J. A.; Piper, J. R.; Elliott, R. D.; Temple, C., Jr.; Roberts, E. C.; Shealy, Y. F. J. Med. Chem. 1979, 22, 862.
 (227) Martinelli, J. E.; Chaykovsky, M.; Kisliuk, R. L.; Gaumont, Y.; Gittelman, M. C. J. Med. Chem. 1979, 22, 869.
 (228) Kompis, I.; Then, R.; Boehni, E.; Rey-Bellet, G.; Zanetti, G.; Montavon, M. Eur. J. Med. Chem. 1980, 15, 17.
 (229) Jones, T. R. Eur. J. Cancer 1980, 16, 707.
 (230) Calvert, A. H.; Jones, T. R.; Dady, P. J.; Grzelakowska-Sztabert, B.; Paine, R. M.; Taylor, G. A. Eur. J. Cancer 1980, 16, 713.
 (231) Williams, J. W.; Duggleby, R. G.; Cutler, R.; Morrison, J. F. Biochem. Pharmacol. 1980, 29, 589.
 (232) Grzelakowska-Sztabert, B.; Balińska, M.; Chmurzyńska, W.;

- (232) Grzelakowska-Sztabert, B.; Balińska, M.; Chmurzyńska, W.; Manteuffel-Cymborowska, M.; Zielińska, Z. M. Biochem. Phar-
- macol. 1980, 29, 2741.
 (233) Sirotnak, F. M.; Chello, P. L.; Moccio, D. M.; Piper, J. R.; Montgomery, J. A.; Parham, J. C. Biochem. Pharmacol. 1980, 29, 3293.
- (234) Greco, W. R.; Hakala, M. T. Mol. Pharmacol. 1980, 18, 521.
 (235) Guo, Z. R.; Dietrich, S. W.; Hansch, C.; Dolnick, B. J.; Bertino, J. R. Mol. Pharmacol. 1980, 20, 649.
- (236) Kompis, I.; Then, R.; Wick, A.; Montavon, M. In "Enzyme Inhibitors"; Urs Brodbeck, Ed.; Verlag Chemie: Basel, 1980; p
- 177. (237) Vergin, H.; Bishop, G. B.; Prikryl, J.; Liebenow, W. In "Enzyme Inhibitors"; Urs Brodbeck, Ed.; Verlag Chemie: Basel, 1980; p 191.
- (238) Dunn, S. M. J.; King, R. W. Biochemistry 1980, 19, 766.
 (239) Flintoff, W. F.; Essani, K. Biochemistry 1980, 19, 4321.
 (240) Greco, W. R.; Hakala, M. T. J. Pharmacol. Exp. Therap. 1980,
- 212, 39.
 - (241) Grivsky, E. M.; Lee, S.; Sigel, C. W.; Duch, D. S.; Nichol, C. A. J. Med. Chem. 1980, 23, 327.
 (242) Roth, B.; Strelitz, J. Z.; Rauckman, B. S. J. Med. Chem. 1980,
- 23, 379. (243) Rauckman, B. S.; Roth, B. J. Med. Chem. 1980, 23, 384.
- (244) Roth, B.; Aig, E.; Lane, K.; Rauckman, B. S. J. Med. Chem. 1980, 23, 535.
- 1980, 23, 535.
 (245) Nair, M. G.; Chen, S. Y.; Kisliuk, R. L.; Gaumont, Y.; Strumpf, D. J. Med. Chem. 1980, 23, 889.
 (246) Dietrich, S. W.; Blaney, J. M.; Reynolds, M. A.; Jow, P. Y. C.; Hansch, C. J. Med. Chem. 1980, 23, 1205.
 (247) Ki Hwan Kim, Dietrich, S. W.; Hansch, C.; Dolnick, B. J.; Bertino, J. R. J. Med. Chem. 1980, 23, 1248.
 (248) Kumar, A. A.; Mangum, J. H.; Blankenship, D. T.; Freisheim, J. H. J. Biol. Chem. 1981, 256, 8970.
 (249) Haber, D. A.; Beverley, S. M.; Kiely, M. L.; Schimke, R. T. J. Biol. Chem. 1981, 256, 9501.

- Biol. Chem. 1981, 256, 9501.
- (250) Williams, J. W.; Morrison, J. F. Biochemistry 1981, 20, 6024.

- (252) Rosowsky, A.; Yu, C. S.; Uren, J.; Lazarus, H.; Wick, M. J.
- Med. Chem. 1981, 24, 559. (253) Roth, B.; Aig, E.; Rauckman, B. S.; Strelitz, J. Z.; Phillips, A. P.; Ferone, R.; Bushby, S. R. M.; Sigel, C. W. J. Med. Chem. 1981, 24, 933.
- (254) Nair, M. G.; Bridges, T. W.; Henkel, T. J.; Kisliuk, R. L.;
 Gaumont, Y.; Sirotnak, F. M. J. Med. Chem. 1981, 24, 1068.
 (255) Coats, E. A.; Genther, C. S.; Dietrich, S. W.; Guo, Z. R.;
 Hansch, C. J. Med. Chem. 1981, 24, 1422.
- (256) Rosowsky, A.; Forsch, R.; Uren, J.; Wick, M. J. Med. Chem. 1981, 24, 1450
- (257) Jones, T. R.; Calvert, A. H.; Jackman, A. L.; Brown, S. J.; Jones, M.; Harrap, K. R. *Eur. J. Cancer* 1981, 17, 11.
 (258) Roth, B. In "Handbook of Experimental Pharmacology"; Springer-Verlag: West Berlin, 1982; Vol. 64, Chapter 5.
 (259) Roth, B.; Cheng, C. C. In "Progress in Medicinal Chemistry";

- Ellis, G. P., Wet, G. B., Eds.; Elsevier, Biomedical Press: Amsterdam, 1982; Vol. 19, p 269.
 (260) Li, R. L.; Hansch, C.; Matthews, D.; Blaney, J. M.; Langridge, R.; Delcamp, T. J.; Susten, S. S.; Freisheim, J. H. Quant. Struct.-Act. Relat. 1982, 1, 1.
 (261) Directory Data Description Construction De Margareza.
- (261) Niculescu-Duvaz, I.; Ciustea, G.; Stoicescu, D.; Muresan, Z.;
- (262) Niculescu-Duvas, I.; Craescu, J., Mitreall, J.;
 (262) Niculescu-Duvas, I.; Craescu, T. Neoplasma 1982, 29, 53.
 (263) Hansch, C.; Li, R. L.; Blaney, J. M.; Langridge, R. J. Med. Chem. 1982, 25, 777.
- (264) Rosowsky, A.; Wright, J. E.; Ginty, C.; Uren, J. J. Med. Chem. 1982, 25, 960.
- (265) Rosowsky, A.; Forsch, R. J. Med. Chem. 1982, 25, 1454.
 (266) Duch, D. S.; Edelstein, M. P.; Bowers, S. W.; Nichol, C. A. Cancer Res. 1982, 42, 3987.
- (267) Domin, B. A.; Cheng, Y. C.; Hakala, M. T. Mol. Pharmacol. 1982, 21, 231.
- (268) Kumar, A. A.; Friesheim, J. H.; Kempton, R. J.; Anstead, G. M.; Black, A. M.; Judge, L. J. Med. Chem. 1983, 26, 111.