Thermodynamic and Kinetic Data for Cation–Macrocycle Interaction[†]

REED M. IZATT,* JERALD S. BRADSHAW, STEVEN A. NIELSEN, JOHN D. LAMB, and JAMES J. CHRISTENSEN

Departments of Chemistry and Chemical Engineering and Thermochemical Institute, Brigham Young University, Provo, Utah 84602

DEBABRATA SEN

Department of Chemistry, Indian Institute of Technology, Kharagpur, India

Received December 3, 1984 (Revised Manuscript Received May 10, 1985)

Contents

1.	In	troduction	271
II.	Th Ini	ermodynamics of Cation-Macrocycle teraction	273
	Α.	Cation-Coronand Complexation	273
		1. Relative Cation and Ligand Cavity Sizes	275
		2. Number and Stereochemical Arrangement of Ligand Binding Sites	318
		3. Substitution on the Macrocycle Ring	319
		4. Solvent Effects	320
		5. Catlon-Polyamine Complexation	320
		6. Cation-Polythloether Complexation	321
		7. Catlon-Mixed Donor Atom Macrocycle Complexation	321
	в.	Cation-Cryptand Complexation	321
		 Relative Cation/Anion and Ligand Cavity Sizes 	321
		2. Number and Stereochemical Arrangement of Ligand Blnding Sites	322
		3. Substitution on the Macrocycle Ring	323
		4. Solvent Effects	323
	C.	Cation-Spherand Complexation	323
	D.	Anion Effect	324
	Е.	Macrocyclic Effect	324
		1. Tetraamines	324
		2. Polythia Ethers	324
		3. Cyclic Polyethers	324
		4. Mixed Donor Atom Macrocycles	324
	F.	Cryptate Effect	325
III.	Kir	etics of Cation-Macrocycle Interaction	325
	Α.	Crown Ethers	325
	В.	Cryptands	333
	C.	Macrocycles Containing Nitrogen Donor Atoms	334
	D.	Macrocycles Containing Oxygen and Nitrogen Donor Atoms	334
	E.	Kinetic Data for Reactions Involving Metal-Macrocycle Complexes	334
IV.	Re	ferences	335

I. Introduction

The discovery¹⁻³ that cations and anions form stable complexes with macrocyclic polyethers and polyamines

[†]Contribution No. 273 from the Thermochemical Institute.

has opened the door to several broad and fruitful areas of chemical investigation. The interest in these macrocycles was stimulated when it was found that certain of them formed stable complexes with alkali and alkaline earth metal ions and that preferential cation complexation resulted when the relative sizes of the cation and ligand cavity were matched.⁴ In addition, these synthetic ligands are similar in their structures and reactions to many naturally occurring compounds of the macrocyclic type which are known to exhibit selective cation complexation.⁵ A number of macrocyclic compounds having more than one cyclic ring and having donor atoms such as sulfur and phosphorus in place of the well-known oxygen, nitrogen, and oxygen-nitrogen combinations have been synthesized.⁶ The synthesis and subsequent study of a large number of these ligands have presented a challenge in interpreting the cation and anion binding data in terms of the observed selectivities and solvation characteristics of the ligands under various experimental conditions. Chiral derivatives of macrocycles can distinguish between enantiomers of optically active organic cations⁷⁻⁹ and have been used in their separation.⁸ Macrocyclic ligands have been used successfully for diverse processes such as separation of ions by transport through artificial and natural membranes, liquid-liquid or solid-liquid phase-transfer reactions, dissolution in apolar solvents of metal and organic salts, preparation of ion-selective electrodes, isotope separations, and in the understanding of some natural processes through mimicry of metalloenzymes.¹⁰

Understanding the interactions between macrocyclic ligands and ions requires the study of various parameters governing the reactions. Extensive thermodynamic and kinetic data have been collected by various investigators during the past 15 years and several review articles have been published which deal with cation-macrocycle interactions. Those reviews which contain compilations of equilibrium constant (K), enthalpy change (ΔH) , entropy change (ΔS) , rate constant (k), and activation parameter data (ΔX^*) are listed below together with the major areas of emphasis in each case.

1. Christensen, Eatough, and Izatt, "The Synthesis and Ion Binding of Synthetic Multidentate Macrocyclic Compounds", 1973.¹¹ The review deals with the synthetic multidentate macrocyclic compounds containing multiple donor atoms and exhibiting ion-binding properties. The article consists, in part, of a compilation of log K, ΔH , and ΔS values for cation-macrocycle interaction published through December 1972.

2. Liesegang and Eyring, "Kinetic Studies of Synthetic Multidentate Macrocyclic Compounds", 1978.¹²

Reed M. Izatt was born in Logan, UT, and received his B.S. degree at Utah State University in 1951. He received his Ph.D. degree in 1954 with Professor W. Conard Fernelius in coordination chemistry at The Pennsylvania State University. After 2 years of postdoctoral work at Carnegie-Mellon University, he joined the Brigham Young University Chemistry Department in 1956. He delivered the Annual Sigma Xi lecture at BYU in 1966 and the Annual BYU Faculty Lecture in 1970 and was BYU Teacher of the Month in October 1974. He received the BYU Karl G. Maeser Research and Creative Arts Award in 1967 and was the recipient of an NIH Career Development Award (1967-1972), the Utah Award (American Chemical Society) in 1971, the Huffman Award (Calorimetry Conference) in 1983, and the Willard Gardner Award of the Utah Academy of Sciences, Arts, and Letters in 1985. He is a member of the Organizing Committee for the annual International Symposium on Macrocyclic Chemistry. His research interests include the design of membrane systems for the carrier-mediated selective separation of cations, calorimetry applied to metal-ligand and nonelectrolyte interactions, and the compilation of thermodynamic data.

Jerald S. Bradshaw was born in Cedar City, UT, and received a B.A. degree in Chemistry at the University of Utah in 1955. After 4 years as an officer in the U.S Navy, he enrolled in a Ph.D. program at UCLA. He received the Ph.D. in 1963 with Professor Donald J. Cram on electrophilic substitution at saturated carbon. He received an NSF postdoctoral fellowship for the 1962-1963 academic year to work with Professor George S. Hammond at California Institute of Technology. After 3 years as a research chemist at Chevron Research in Richmond, CA, he joined the faculty at the Brigham Young University at Provo, UT in 1966. He was named Professor of the Year at BYU in 1975. He was a U.S. National Academy of Science Exchange Professor for the academic year of 1972-1973 and the Summer of 1982 working with Professor Miha Tisler at the University of Ljubljana, Yugoslavia. He also was a visiting professor with Dr. J. F. Stoddart at the University of Sheffield, England in 1978. He was a member of the Advisory Board for the International Society of Heterocyclic Chemistry (1982-1984) and a member of the American Chemical Society. His research interests are the synthesis and cation complexation properties of macrocyclic multidentate compounds, the photochemical reactions of heterocyclic compounds, and the preparation of new polysiloxanes for chromatography uses.

Steven A. Nielsen was born in Redlands, CA. He received his B.A. degree from Brigham Young University in 1984. He will enter medical school in 1985. He has worked with Professors Izatt, Christensen, and Bradshaw on the retrieval and compilation of thermodynamic data.

John D. Lamb was born in Brockville, Ontario, Canada. He received his Ph.D. degree in Inorganic Chemistry in 1978 from Brigham Young University with Professor Reed M. Izatt. His dissertation concerned the characterization of synthetic macrocyclic ligand complexes, their solution stability, cation selectivity patterns, and membrane transport. Thereafter he served as an Associate Research Scientist at Brigham Young University with specific charge over the computer and separations projects. From 1982 to 1984, he worked with the U.S. Department of Energy in Washington, D.C., as Program Manager for Separation and Analysis in the Office of Basic Energy Sciences. He has recently returned to Brigham Young University as Associate Professor of Chemistry. In 1985, he assumes responsibility as Director of Research Administration for Brigham Young University in addition to his faculty assignment. He continues a strong interest in the chemistry of macrocycles and facilitated transport in liquid membranes.

Kinetic data for crown ether- and cryptand-metal complexation through 1976 and some thermodynamic data are included.

3. Lamb, Izatt, Christensen, and Eatough, "Thermodynamics and Kinetics for Cation-Macrocycle Interaction", 1979.⁴ A compilation is given of log K, ΔH , and ΔS values for cation-macrocycle interaction through 1976 together with some kinetic data.

4. Poonia and Bajaj, "Coordination Chemistry of Alkali and Alkaline Earth Cations", 1979.¹³ Several aspects of coordination complexes of alkali and alkaline earth cations are discussed. Included are some equilibrium constants for the reaction of these cations with macrocyclic ligands.

James J. Christensen was born in Salt Lake City, UT. He obtained B.S. and M.S. degrees from the University of Utah and a Ph.D. degree from Carnegie-Mellon University, all in chemical engineering. He joined the Brigham Young University faculty in 1957 where he is a professor in the Chemical Engineering Department. He has spent short leaves at Du Pont (1959), Dow Chemical Company (1964), Oxford University (1964), Polytechnical Institute at Mexico City (1973), Exxon (1981), and the Bartlesville Energy Technology Center (1981). He was the Annual Sigma Xi Lecturer at BYU in 1966 and delivered the Annual Faculty lecture at BYU in 1970. He has received the following awards: Karl G. Maeser Research and Creative Arts Award (1967), NIH Career Development Award (1967-1972), Utah Award of the American Chemical Society (1976), and Huffman Award of the Calorimetry Conference (1976). His research interests include the development of flow calorimeters capable of operating at elevated temperatures and pressures, the study of the thermodynamics of nonelectrolyte and cation-macrocycle interactions, and the compilation of thermodynamic data.

Debabrata Sen was born in Chittagong (now in Bangladesh). He obtained the M.Sc. (1947), Ph.D. (1952), and D.Sc. (1965) degrees from Calcutta University working with Professor P. Ray. He did postdoctoral work at The Pennsylvania State University and at the University of California (Berkeley). He has worked as a Research Officer, Government of India (1955-1958); Reader in Chemistry, Jadavpur University, Calcutta (1958-1966); and since 1966 has been Professor of Chemistry, Indian Institute of Technology, Kharagpur. He was associated with Brigham Young University as a Visiting Professor (May-Oct 1981); University of Heidelberg, West Germany as a Senior DAAD Fellow (Dec 1981-Feb 1982), and visited various institutes and universities in Novosibirsk, Leningrad, and Moscow in the USSR (Sept-Oct 1984) as a guest of the Institute of Catalysis, Siberian branch of the USSR Academy of Sciences. His research interests and publications are in the fields of synthetic and structural studies of transition-metal complexes. especially with biguanides and on homogeneous catalytic reactions.

5. deJong and Reinhoudt, "Stability and Reactivity of Crown-Ether Complexes", 1980.¹⁴ The article deals mainly with the physical organic aspects of crown-ether chemistry. Numerous log K and a few ΔH and ΔS data for cation-macrocycle interaction are compiled and a discussion is given of these data in relation to organic reactions. The literature up to 1978 is covered.

The present article provides a tabulation of the thermodynamic (Table I) and kinetic (Table IV) data incorporated in publications on the title subject through early 1984. In addition, we have attempted in the text to draw the reader's attention to the various parameters involved in ion-macrocycle interaction such as relative cation/anion and ligand cavity sizes, the number and stereochemical arrangement of ligand binding sites, substitution on the macrocyclic ring(s), solvent effects, macrocyclic effects, and type of bonding. Appropriate examples taken from the tables of data are used to illustrate these parameters. The compounds included in the Review are listed by formula and abbreviation in Charts I-XIII. (Cyclic aza compounds are listed as aza crowns with the nomenclature found in the reference given in parentheses.)

The compilation of log K, ΔH , and $T\Delta S$ values is intended to be exhaustive and includes data for coronand and cryptand complexes with alkali, alkaline earth, transition-metal, and post-transition-metal ions, and organic cations. Nomenclature for the crown-type compounds has been presented and discussed.¹⁵ The abbreviations used in the Tables can be understood by reference to the structures and names given in Charts I-XIII. Equilibrium constants are the most numerous thermodynamic data included in the review. These constants have been determined under a variety of temperature, ionic strength, and solvent conditions and the attempt has been made to provide as much information as possible concerning these conditions for each entry. It is important to note that these data are valid only at the specific experimental conditions given.

Kinetic data are compiled for formation and dissociation of ion-macrocycle complexes. In addition, reference is given to representative kinetic data for reactions of metal-macrocycle complexes which involve aquation, hydrolysis, anion substitution, macrocycle exchange, and reduction potential.

II. Thermodynamics of Cation–Macrocycle Interaction

Table I contains log K, ΔH , and ΔS data for the interaction of macrocycles and related ligands with cations in solution. The method used to determine log Kis given in each case. The method used to determine ΔH is given only if it is different than that used to determine log K. In these cases, the method is placed in parentheses immediately after the ΔH value. The medium (solvent, supporting electrolyte) used in each determination, the temperature of measurement, and the literature reference are given, also.

A. Cation–Coronand Complexation

Selective binding of cations in solution is a distinctive feature of the solution chemistry of macrocyclic polyethers. The design and synthesis of new macrocyclic

ligands with different cavity sizes, donor atom types, ring substituents, etc. have resulted in a large number and variety of compounds. Few of these macrocycles have been studied with respect to their cation complexation properties. However, many of those which have been investigated show unique selective cation complexation behavior. The process of ion-macrocycle association depends on several factors related to characteristic properties of the ligand, reacting ion, and solvent. These energy quantities are depicted in the following Born-Haber cycle where X^- = anion and L

CHART III

= macrocyclic ligand.

In polar solvents, the equilibrium associated with K_3 predominates over that associated with K_1 whereas in apolar solvents the opposite is the case. An illustration of the importance of the relative solvation energies of M^+ and \bar{M}^+X^- in determining the cation selectivity of 18C6 is given by Yamabe et al.⁸⁹ These workers describe the photoelectron spectra of 18C6 and 12C4 by molecular orbital calculations using the CNDO/2 method for the crown ethers and their cation complexes. The relative stabilities of the Na⁺ and K⁺ complexes of 18C6 in aqueous solution are explained reasonably by consideration of the hydrated cation and complex indicating the important role of solvation in determining cation selectivity by this crown ether.

n=1: Cv15C5 n=2: Cy18C8

,с**онн(сн₂)**,,сн,

CO,H

Cb(Oc1Ace1)15C5

m=1 n=13: Cb(TetrdecAcet)15C5 m=1. n=17: Cb(OctodecAcet)15C5

m=2 n=17 Cb(OctedecAcet)18C8

m=2 n=3 Ch(BuAcett18C) m=2. n=7. Cb(OctAcet)18C6 m=2. n=13: Cb(TetredecAcet)18C6

n =

 $\begin{array}{l} R = CH_{*}OCH_{*}; \ O(MB15C5), \\ R = O_{*}C(CH_{*})_{*}CO_{*}; \ E(CbB15C5), \\ R = C = N(CN_{*})_{*}C = N; \ Bu(NMB15C5), \\ R = O_{*}C(CH_{*})_{*}CO_{*}; \ Pent(CbB15C5)_{*} \\ R = O_{*}C(CH_{*})_{*}CO_{*}; \ Pent(CB15C5)_{*} \\ R = O_{*}C(CH_{*})_{*}CO_{*}; \ Pent(CB15C5)_{*} \\ R = O_{*}C(CH_{*})_{*}CO_{*}; \ Pent(CH_{*})_{*}CO_{*}; \ Pent(CH_{*}$ $\begin{array}{l} R = O_{2}C(CH_{2}O_{2}) + entr(OBE15C5)_{2} \\ R = O_{2}CCH_{2}CH_{2}OCH_{2}CH_{2}CO_{2}; \ EOE(CbB15C5)_{2} \\ R = O_{2}C(CH_{2}CH_{2}O)_{2}CH_{2}CH_{2}CO_{2}; \ (EO)_{2}E(CbB15C5)_{2} \end{array}$ $R = O_2C(CH_2)_{a}CO_2$; Oct(CbB15C5)₂ $R = C = N(CH_2)_{a}N = C$; Non(NMB15C5)₂ R=C=N(CH2) N=C; Dec(NMB15C5)

m, n=1; R=H; Cy₂18C8 m, n=1; R=(CH₃)₃C (1-BuCy),18C8 m=1, n=2, R=H; Cy,21C7 m, n=2; R=H; Cy,24C8

R=n-C₂H₄; Oc118C8 $\begin{array}{l} n = n \cdot c_{17} n_{28}; \ \text{Dodec18C5} \\ n = c_{17} n_{28}; \ \text{Dodec18C5} \\ n = c_{18} n_{27}; \ n 18C5 \\ n = n \cdot c_{18} n_{19}; \ \text{OcH}_2; \ \text{Oc10M18C8} \\ n = n \cdot c_{19} n_{29}; \ n 20 n_{29}; \ \text{Dodec0M18C8} \\ n = n \cdot c_{19} n_{29}; \ n 20 n_{29};$

n = 1. $R = CH_3$: Me₃15C5 n = 2. $R = CH_3$: Me₃18C6

CHART VI

R=H; A15C5 R=CH₂; MeA15C5 R=n-C.H.; BuA15C5 R=n-C.H.; OctA15C5 R=CH,=CHCH; AM15C5 R=C,H₆CH₂·; BzA15C5 R=H0CH₂CH₂·; H0EA15C5 R=CH₃OCH₂CH₂·; M0EA15C5 R≈CH₃OCH₂CH₂·; M0DEA15C5 $\begin{array}{l} R = CH_{3}OCH_{2}CH_{2}:\mathbf{M}\\ R = H(OCH_{3}CH_{3}:\mathbf{H});\\ H(OE)_{A}18C5\\ R = CH_{4}(OCH_{3}CH_{2});\\ \mathbf{M}_{6}O(E)_{A}A18C5\\ R = H(OCH_{3}CH_{3});\\ H(OE)_{A}A18C5\\ R = CH_{3}(OCH_{3}CH_{2});\\ \mathbf{M}_{6}O(E)_{A}A18C5\\ R = CH_{3}(OCH_{3}CH_{2});\\ \mathbf{M}_{6}O(E)_{A}CH_{2}C5\\ \mathbf{M}_{6}O(E)_{A}A18C5\\ \mathbf{M}_{6}O(E)_{A}A18C5\\ \mathbf{M}_{6}O(E)_{A}CH_{2}C5\\ \mathbf{M}_{6}O(E)_{$ =CH₂(OCH₂CH₂).; Me(OE).A15C5 H=CH₃(OCH₂CH₂)_e; Me(OE)₂A15C5 - CH₃(OCH₂CH₂), Me(OE), A15C5

 $\begin{array}{l} n=1, \ R, \ R_{*}=H; \ B15CS \\ n=1, \ R_{*}=H, \ R_{*}=C+A_{*}C(c), \ AcatoB15CS \\ n=1, \ R_{*}=H, \ R_{*}=C+A_{*}A_{*}C(c), \ AcatoB15CS \\ n=1, \ R_{*}=H, \ R_{*}=C+A_{*}A_{*}C(c), \ AcatoB15CS \\ n=1, \ R_{*}=H, \ R_{*}=K_{*}; \ BrB15CS \\ n=1, \ R_{*}=H, \ R_{*}=K_{*}, \ Ch(c), \ C_{*}UB15CS \\ n=1, \ R_{*}=H, \ R_{*}=C+A_{*}, \ C_{*}UB15CS \\ n=1, \ R_{*}=H, \ R_{*}=C+A_{*}, \ C_{*}UB15CS \\ n=1, \ R_{*}=H, \ R_{*}=CA_{*}, \ C_{*}UB15CS \\ n=2, \ R_{*}=H, \ R_{*}=CA_{*}, \ C_{*}UB15CS \\ n=1, \ R_{*}=CA_{*}, \ R_{*}$

n=2. R.=H. R.=n-C.H.NHC(0): n-BuAce1B18C8 n=2. R.=H. R.=CH.; MeB16C6

R.R.=H: 815C5

n=3, R₁,R₂=H; **B21C7** n=6, R₁,R₂=H; **B30C10**

R.=H. R.=CH.; 7. 9-Me.B.15C5 -CH₃, R₂H; 8, 10-Me₂B₂15C5

A-C=0, D, E=NH; 1, 4-A,15C5 A, S. D=0, C, E=NH; 1.7-A-15C5(2.1) A, S, C, O=O; E=S; T15C5 A, B, C=O; D, E=S; 1, 4-7,15C5 A, S, D=O; C, E=S; 1, 7-7,15C6 A. S. C. D. E=S: T,15C5 A=O; S. E=NH; C. D=S; 4. 13-A,-7, 10-T,15C5 =0; 8, E=S; C, D=NH 7, 10-A,-4, 13-T,15C5

Ph.Phos.15C5

CHART VIII

m, n=1, R=Sr; (BrB),18C6 m, n=1; R=(CH₃)₃C-; (1-BuB),18C8 m, n=1; $R=CH_3$; (MeB)₂18C8 m,n=1, $R=NO_2$; (N1B)₂18C6 $m_n = 1, n=2, R=H; B,21C7$ m=0, n=4, R=H; B,21C7 m=0, n=4, R=H; 1,7-B,24C4 m=1, n=3, R=H; 1,10-B,24C8 m, n=2, R=H; 1,13-B,24C8 m, n=2, R=CH; (MeB),24C8m=2, n=3, R=H; B,27C9 m, n=3; R=H; B,30C10 m, n=3; R=CH₃; (M+B)₃30C10 m.n=8, R=H; B.80C2C

R=C_H,CH,OCH, (BzOM),18C6 R=(C,H3)3COCH, (TrHOM)-18C6 R=OCICH3),OCH,CH-(DMD),18C6 R=(CH₃),NC(O): (Me,Acet),18C6 R=CH₃NHC(O): (MeAcet),18C8 R='0,C: Cb.18C8 R=CH₃O₂CCH₂NHClO (MeCbMAcel),18C6 R='0,CCH2NHC(0): (CbMAcet),18C8 R='0,CCHCH2CH2CH2NC(O) (ProCbe).18C6 $R = C_{6}H_{3}CH_{2}CH(CO_{2})NHC(O).$ (PheCbe).18C6 =13-CaHaN)CHICO2)NHCIO R (TrpCbe).18C6 R = 0,CCH,CH,CH(CO;)NHC(0) (GluCbe).18C6 R = (2-C., He-6-SO3)NHC(O) (SulNepAcet), 18C8 R=(2·C++++-3·CO;)NHC(O); (CbNepAce1),18C6

- $R = \{H, N\}, CNH(CH_{2}),$
- $CH(CO_2)NHC(O);$ (ArgCbe),18C6 $R = H_3NCH_2CH_2NHC(O);$
- (enCbe),18C6 R=CH=CHCH=C(CONH2)CH=N-

CH2CH2NHCIO): (NICEAcet)+18C6

1. Relative Cation and Ligand Cavity Sizes

Many K_3 and K_1 values have been determined by using diverse experimental methods. The enhancement of complex stability by a close correspondence between the ionic crystal radius of the metal ion and the radius of the cavity formed by the crown-ether ring has been noted.¹¹ Full participation of all macrocycle donor atoms with the complexed cation is expected to give the highest possible stability to the resulting complex. The selectivity of 18C6 for certain of the alkali and alkaline earth cations is shown in Figure 1.

Cavity radii for the macrocyclic ligands were computed originally from different types of molecular models such as Corey-Pauling-Kolton (CPK) and Fisher-Hirschfelder-Taylor (FHT). X-ray crystallographic studies have made possible the accurate determination of the positions of the interacting atoms and ions in the complexes as well as their dimensions

CHART IX

CHART XI

in the free state. The best fit of the X-ray data is found with CPK models.¹⁸⁷ Some representative macrocycle cavity radii are given in parentheses: 15C5 (0.86-0.92 Å), 18C6 (1.34-1.43 Å), 21C7 (1.7 Å).¹⁸⁷ Ionic radii are given in Table II for many of the cations listed in Table I.

The cation radii listed in Table II are taken from a more comprehensive listing by Shannon¹⁸⁸ which is based on X-ray structural analyses of oxides and fluorides. This set of ionic radii and others valid for nonhydrated cations have been discussed.¹⁸⁹ Marcus¹⁹⁰ has set forth arguments for the use of hydrated cation radii in correlations involving solvated cations. These radii have been calculated for more than 30 ions by using published data of the average distances between the ions and the nearest water molecules, obtained by diffraction and computer simulation methods.

The data in Figure 1 show that for both alkali and alkaline earth metal ions the maximum stability for complexes with 18C6 occurs when the metal ion to ligand cavity ratio is approximately unity as is the case

CHART XIII

with K^+ and Ba^{2+} . The greater stability at a ratio of unity is largely due to the enthalpy term indicating a greater electrostatic bond energy for those ions whose dimensions best match those of the ligand cavity.^{53,61,115}

Virginimyci

In many cases, the stoichiometry of cation-macrocycle interaction has not been investigated thoroughly. An interesting example of complexation behavior possible in the solid state is provided by the RbSCN- B_218C6 complex.¹⁹¹ The X-ray crystal structure of this complex indicates that the metal is in the macrocycle cavity, but one-third of the cavities are empty. Thus, the complex is 1:1 while the solid-state stoichiometry is 2:3. Other crystal forms may be possible depending on experimental conditions, i.e., solvent, relative solute concentrations, etc. Also, B15C5 forms a 1:2 complex with KI in the solid state,¹⁹² but only 1:1 stoichiometry has been assumed in methanol-water solvents.¹¹⁹

The formation of a 1:1 metal ion-coronand complex does not necessarily mean that the metal ion is located within the cavity of the macrocycle. The alkali metal thiocyanates of B₂18C6 were reported by Pedersen¹⁹³ to have metal to ligand ratios of 1:1, 1:1 and 1:2, and 1:2 and 2:3 for potassium, rubidium, and cesium, respectively. A "sandwich" structure, in which the metal ion is located between two coronand molecules, was suggested as the most probable one for the 1:2 complexes. Similarly, the 2:3 complex can be visualized as two metal ions between three coronand molecules arranged flatwise in three tiers.¹⁹³

The ESR spectrum of spin-labeled B15C5 in ethanol in the presence of NaSCN was similar to that of the present compound, whereas in the presence of KSCN a drastic change of the ESR spectrum was noted when the molar ratio of KSCN-B15C5 was 1:2.¹⁹⁴ The diminished line intensity resulting from spin-spin interaction as SCN⁻ concentration was increased was interpreted to mean that the stability of the 1:2 KSCN-B15C5 complex was much larger than that of the 1:1 complex. In some cases, the metal ion may have directed bonding orbitals which preclude bonding to all

Figure 1. Selectivity of 18C6: log K values for reaction of 18C6 with metal cations in water at 25 °C vs. the ratio of the ionic cation radius to the 18C6 cavity radius.⁴ The low K value for Ca^{2+} is reported as <0.5.¹¹ Reprinted with permission from ref 4. Copyright 1979, Plenum Press.

of the oxygen atoms in the coronands. This was shown in the case of a complex between cobalt chloride and Cy_218C6 where both a sandwich type structure and a chain-type polymer configuration with an alternating array of cobalt cations and cyclic polyether molecules have been proposed.¹⁹⁵

Comparison of equilibrium constants for a large number of 1:1 cation-macrocycle complexes reveals that log K values for complexes with 15C5 are much lower than those with the ligand 18C6 for all cations studied except Na⁺, Li⁺, and NH₄⁺. On the other hand, the larger coronands Cy₂21C7 and Cy₂24C8 bind Cs⁺ more strongly than do smaller macrocycles and generally are selective for Cs⁺ over all other cations.

Extensive work has been done on the reactions of mono- and bivalent cations with two of the isomers of Cy_218C6 in water.^{53,115,116} These ligands have high selectivity toward certain cations. For example, the difference in log K values between the Ca^{2+} and Pb^{2+} complexes is 5. Neither isomer has measurable affinity in water for either Cd^{2+} or Zn^{2+} , but both isomers have high affinity for Hg^{2+} .

The "ion-in-the-hole" model has limited usefulness in predicting relative binding capacities of metal cations with polyethers. For example, as the number of ring atoms increases, the macrocycle flexibility increases and it becomes difficult to define the cavity diameter.

TABLE I. Log K, ΔH , and ΔS Values for Cation-Macrocycle Interaction in Solution

ligand	cation	$\log K^a$	method ^b	ΔH , kJ/mol	$\Delta S,$ J/(K mol)	<i>т.</i> °С	medium	ref
 	Hg ²⁺	(3)	Cal	-57.82	- / ()	25	70% MeOH	16
T ₂ 9C3	Hg ²⁺	(1)	Cal	-52.01		25	70% MeOH	16
-	Hg ²⁺	(2)	Cal	-62.55		25	70% MeOH	16
12C4	H ⁺	2.2 (1)	\mathbf{Pot}			25	MeCN	335
	H+	0.63 (2)	Pot			25	MeCN	335
	Li ⁺	~0	NMR			27	$H_2O, 0.02 \text{ M LiClO}_4$	17
	L1' L;+	~0	Cond			27	Me_2SO , 0.02 M LICIO ₄ MeCN (onion = I^{-})	17
	L1 [*] 1 i ⁺	3.40 4.25	NMR	-16.3 (Cal)	97 9	20 27	MeCN (amon – 1) MeCN 0.02 M LiClO.	10
	Li ⁺	1.62	NMR	-13.4 (Cal)	-14.2	27	$Me_{\circ}CO, 0.02 M LiClO_4$ (NMR), 0.5 M LiClO_4 (Cal)	17
	Li ⁺	~0	NMR	-3.3 (Cal)		27	MeOH, 0.02 M LiClO ₄ (NMR), 0.5 M LiClO ₄ (Cal)	17
	Li+	>4 (1)	NMR	-36.8 (Cal)		27	NMe, 0.02 M LiClO ₄	17
	Li+	1.6 (2)	NMR	-19.2 (Cal)	-34.3	27	NMe, 0.02 M LiClO_4	17
	Li ⁺	2. 93	Pot			25	PC, ? M Et_4NClO_4	19
	L1 ⁺	0.70	NMR	-10.9 (Cal)	>41.8	27	$P_{c}, 0.02 \text{ M LiCIO}_{4}$ $P_{c}, 0.02 \text{ M LiCIO}_{4}$	17
	L1 1.;+	0.70 ~0	NMR			27	$Fy, 0.02 \text{ M LiCIO}_4$	17
	Na ⁺	3.32	Cond			25	MeCN (anion = BPh_{-})	18
	Na ⁺	1.47(1)	Cal	12.6	-14.0	25	MeOH	20
	Na ⁺	2.29 (2)	Cal	-28.0	-50.5	25	MeOH	20
	Na ⁺	1.41 (1)	ISE			25	MeOH	21
	Na⁺	2.20 (2)	ISE			25	MeOH	21
	Na⁺	1.7	ISE			25	MeOH	22
	Na" Not	3.6 (1)	Polg			20	$PC, ? \mathbf{M} \mathbf{Et}_4 \mathbf{NCIO}_4$ $PC, ? \mathbf{M} \mathbf{Et}_4 \mathbf{NCIO}_4$	19
	Na ⁺	2.57(2)	Pot			25 25	PC ? M Et.NCIO.	19
	Na ⁺	2.81(2)	Pot			25	PC, ? M Et NClO ₄	19
	K+	1.59 (1)	Pot	-21.3 (Cal)	-41.3	25	MeOH	20
	K+	0.56 (2)	Pot			25	MeOH	20
	\mathbf{K}^{+}	1.74	ISE			25	MeOH	22
	K+	1.58 (1)	ISE			25	MeOH	21
	K* V+	0.15 (2)	ISE Dolg			25	MeUH DC 2 M Et NCIO	21 10
	Rh+	2.15	Polg			25 25	PC ? M Et.NCIO.	19
	Cs ⁺	1.43	Polg			25	PC. ? M ELANCIO $_4$	19
	Mg ²⁺	2.61 (1)	Pot			25	PC, 0.1 M Et ₄ NClO ₄	23
	Mg^{2+}	3.6 (2)	Pot			25	PC, 0.1 M Et_4NClO_4	23
	Ca ²⁺	5.53 (1)	Pot			25	PC, 0.1 M Et_4NClO_4	23
	Ca ²⁺	3.98 (2)	Pot			25	PC, 0.1 M Et ₄ NClO ₄	23
	Sr2+	5.29(1)	Pot Pot			25	$PC, 0.1 \text{ M Et}_4 \text{NCIO}_4$ $PC, 0.1 \text{ M Et}_4 \text{NCIO}_4$	23
	Bo ²⁺	2.02 (2) 4.63 (1)	Pot			25	$PC_{0,1}$ M EtaNolog	23
	Ba ²⁺	3.27 (2)	Pot			25	PC, 0.1 M Et ₄ NClO ₄	23
	La ³⁺	5.00 (1)	Pot			25	PC, 0.1 M Et_4NClO_4	24
	La ³⁺	1.98 (2)	Pot			25	PC, 0.1 M Et_4NClO_4	24
	Pr ³⁺	5.27 (1)	Pot			25	PC, 0.1 M Et_4NClO_4	24
	Pr ^{o+}	1.82(2)	Pot			25	PU, 0.1 M Et ₄ NUIO ₄ PC, 0.1 M Et ₄ NUIO	24
	Nd°' Nd3+	5.19 (1) 1.55 (2)	Pot			20 95	$PC_{10} = 0.1 \text{ M Et}_{10} \text{ NCIO}_{10}$	24 94
	Sm^{2+}	8.4(1+2)	Pot			25	PC. 0.1 M Et NCIO	24
	Sm ³⁺	5.17 (1)	Pot			25	PC, 0.1 M Et ₄ NClO ₄	24
	Sm ³⁺	1.59 (2)	Pot			25	PC, 0.1 M Et ₄ NClO ₄	24
	Tb³+	5.15 (1)	Pot			25	PC, 0.1 M Et_4NClO_4	24
	Tb ³⁺	0.94 (2)	Pot			25	PC, 0.1 M Et_4NClO_4	24
	Y b ²⁺	8.3(1+2)	Pot			25	PC, 0.1 M Et ₄ NCIO $_4$	24
	Y D ^{0 +} T 11 ³⁺	4.94	Pot			25 25	$PC_{10} = 0.1 \text{ M Et}_{10} \text{NC}_{10} \text{ NC}_{10}$	24
	Ph ²⁺	7.68 (1)	Pot			25	PC, 0.1 M Et $NClO_4$	24
	Pb ²⁺	4.02 (2)	Pot			25	PC, 0.1 M Et_4NClO_4	24
	Tl+	3.71	Pot			25	PC, 0.1 M Et_4NClO_4	24
	NH_4^+	1.3	Pot			25	MeOH	22
Me_412C4	Li ⁺	3.46	Cond			25	MeCN	18
HOMISCA	Na⁺ Na‡	1.41	ISE			25	MeOH	11, 20 91
HOM12C4	Na ⁺	1.37 (1)	ISE			25 25	MeOH	21
	K ⁺	1.43 (1)	ISE			25	MeOH	21
	K+	<0 (2)	ISE			25	MeOH	21
OctOM12C4	Na ⁺	1.32 (1)	ISE			25	MeOH	21
	Na ⁺	1.97 (2)	ISE			25	MeOH	21
	K⁺ K+	1.36 (1)	ISE			20 95	MeOH	21
BzOM12C4	Na+	1.35(1)	ISE			25	MeOH	21
22011201	Na ⁺	1.98 (2)	ISE			25	MeOH	21
	K+	1.42 (1)	ISE			25	MeOH	21
	K+	1.29 (2)	ISE			25	MeOH	21

ligand	cation	$\log K^a$	method ^b	ΔH , kJ/mol	$\Delta S,$ J/(K mol)	<i>T</i> , °C	medium ^c	ref
A ₂ 12C4	H+	9.53 (1)	Pot			25	H ₂ O, 0.1 M Et ₄ NClO ₄	26
2	H+	7.65 (2)	\mathbf{Pot}			25	H_2O , 0.1 M Et ₄ NClO ₄	26
	Co ²⁺	5.76	\mathbf{Pot}			25	H_2O , 0.1 M Et_4NClO_4	26
	Ni ²⁺	5.91	Pot			25	H_2O , 0.1 M Et_4NClO_4	26
	Cu^{2+}	8.16	Pot			25	H_2O , 0.1 M Et ₄ NClO ₄	26
A 19C4	Zn^{2+}	6.22	Pot			25	$H_2O_1 = 0.20$ NoClO	26
A41204	н+	9 90 (2)	Polg			15	$H_2O, \mu = 0.20, NaClO_4$ $H_2O, \mu = 0.20, NaClO_4$	32 32
	н+	10.7(1)	Polg			25	$H_2O, \mu = 0.20, HaciO_4$ $H_2O, \mu = 0.20, NaClO_4$	27. 28
	H+	9.7 (2)	Polg			25	$H_2O, \mu = 0.20, NaClO_4$	27, 28
	H+	1.73 (3)	Pot			25	H ₂ O	27
	H+	0.94 (4)	\mathbf{Pot}			25	H ₂ O	27
	H ⁺	10.51(1)	Polg			35	$H_2O, \mu = 0.20, NaClO_4$	32
	H ' Cu2+	9.49 (2)	Polg	95.0	151 (2010)	35	$H_2O, \mu = 0.20, \text{ NaClO}_4$	32
	Cu ²⁺	24.8	Polg	-76.6	215	25	H_2O H_2O $\mu = 0.20$	28 31-34
	Cu ²⁺	24.8	Pot	-95.0 (Cal)	157	25	$H_{2}O, 0.5 M KNO_{3}$	35
	Zn ²⁺	16.2	Polg	-33.1	197	25	$H_2O, \mu = 2$	32
	Zn ²⁺		Cal	-60.7		25	H ₂ O	30, 251
	Cd ²⁺	14.3	Polg	-34.3	159	25	$H_2O, \mu = 0.2$	32
	Hg2+	25.5	Polg	-98.7	157.8	25	H_2O , 0.20 M NaClO ₄	36
(ChMA) 1904	го., Ц+	10.9 11.09 (1)	Polg Pot	-27.0	213	25	$n_2 O, \mu = 0.2$ H O 1 M NoCl	32 97
(001117)41204	H+	9,23 (2)	Pot			20 25	$H_{2}O$, 1 M NaCl	27
	H+	4.24 (3)	Pot			25	H_2O , 1 M NaCl	27
	H+	4.18 (4)	\mathbf{Pot}			25	$H_2O, 1 M NaCl$	27
	H^+	1.88 (5)	\mathbf{Pot}			25	H_2O , 1 M NaCl	27
	H ⁺	1.71 (6)	Pot			25	H_2O , 1 M NaCl	27
	H' U+	9.95 (1)	Pot			80	H_2O , 1 M NaCl	27
	и н+	6.26 (2) 4 22 (3)	Pot			80	$H_{2}O, 1 M NaCl$	27
	н+	3.65 (4)	Pot			80	$H_{2}O, 1$ M NaCl	27
	H^+	2.22 (5)	\mathbf{Pot}			80	H_2O , 1 M NaCl	27
	H ⁺	1.30 (6)	\mathbf{Pot}			80	H_2O , 1 M NaCl	27
	Na ⁺	2.52	Pot			25	H_2O , 1 M NaCl	27
	Mg ²⁺	11.03	Pot			20	$H_{2}O, 0.1 M KCI$	337
	Sr ²⁺	12.80	Pot			20	$H_{2}O, 0.1 \text{ M KC}$	337
	Co ²⁺	18.42	Pot			20	$H_{2}O, 0.1 M KCl$	337
	Ni ²⁺	17.25	\mathbf{Pot}			20	$H_{2}O, 0.1 M KCl$	337
	Cu ²⁺	19.06	Pot			20	H_2O , 0.1 M KCl	337
	Zn^{2+}	18.90	Pot			20	$H_2O, 0.1 M KCl$	337
	Da ²⁺ Ph ²⁺	19.08	Pot			20	$H_{2}O, 0.1 M KCI$	337
T12C4	Ag ⁺	2.71	Cal	-42.80	-91.68	25	H_2O , 0.1 M Ker	16
	Ag+	(1)	Cal	-43.47		25	70% MeOH	16
	Ag ⁺	3.68 (2)	Cal	-44.10	-77.50	25	70% MeOH	16
	Hg ²⁺	(1)	Cal	-50.21		25	70% MeOH	16
	Hg ²⁺ Dh ²⁺	(2)	Cal	-52.05	64.90	25	70% MeOH	16
1.7-T-12C4	Ασ ⁺	(1)	Uai	-24.02 -70.21	-04.30	25 25	п₂∪ 70% МеОН	16 16
1,, 121201	Ag ⁺	4.26 (2)	Cal	-49.33	-83.96	25	70% MeOH	16
	Hg ²⁺	(1)	Cal	-69.83		25	70% MeOH	16
	Hg ²⁺	(2)	Cal	-62.51		25	70% MeOH	16
T_412C4	Cu2+	3.382	Spec			5	H_2O , 0.1 M HClO ₄	37
	Cu ²⁺	3.39 3.30	Spec	0.46	66 5	15	H_2O , 0.1 M HCIO ₄	37
	Cu^{2+}	3.39	Spec	0.40	00.0	20 35	$H_2O_1 0.1 M HOIO_4$ $H_2O_1 0.1 M HOIO_4$	37 37
	Cu ²⁺	3.39	Spec			25	$H_2O_1 0.1 \text{ M HClO}_4$	38
	Cu ²⁺	2.51	Spec			25	80% MeOH, 0.1 M HClO4	38
	Cu ²⁺	2.38	Spec			25	80% MeOH, 0.1 M HClO ₄	39
D10C4	Cu ²⁺	2.44	TJ			25	80% MeOH, 0.1 M HClO ₄	38
D13U4	Li ⁺	5 (1) 1.7 (9)	NMR			25 25	CH_2OI_2 (anion = CIO_4^-) CH_2OI_2 (anion = CIO_4^-)	41 41
	Li+	2.4(1)	NMR			25	$MeCN$ (anion = ClO_4)	41
	Li+	~3 (1)	NMR			25	NMe (anion = ClO_4^{-})	41
	Li ⁺	1.26 (2)	NMR			25	NMe (anion = ClO_4^{-})	41
A413C4	H+ 17+	11.30(1)	Polg			15	$H_2O, \mu = 0.20, NaClO_4$	32
	н' н+	10.31 (2)	Polg			15	$H_2O, \mu = 0.20, \text{ NaClO}_4$ $H_2O, \mu = 0.20, \text{ NaClO}_4$	32
	H+	10.10 (1)	Polg			25 25	$H_2O, \mu = 0.20, \text{ NaClO}_4$ $H_2O, \mu = 0.20, \text{ NaClO}_4$	32 32
	H+	10.90 (1)	Polg			35	$H_2O, \mu = 0.20, NaClO_4$	32
	H+	9.91 (2)	\mathbf{Polg}			35	$H_2O, \mu = 0.20, NaClO_4$	32
	Cu ²⁺ 7~ ²⁺	29.1	Polg D-1-	-122	141	25	$H_2O, \mu = 0.20$	33, 34
	Hg ²⁺	15.6 25.3	Polg	-103.3	139.3	20 25	$n_20, \mu = 0.2$ $H_20, 0.20$ M NaClO.	32 36
	0							~~

TABLE I (Continued)

				$\Delta H,$	ΔS ,			
ligand	cation	$\log K^a$	$method^b$	kJ/mol	J/(K mol)	<i>T</i> , ⁰C	medium ^c	ref
(ChMA) 1904	M-2+	6.96	Det		···· ···	20	HO 01 MKC	0.07
$(CDMA)_413C4$	NIg-	0.30	Pot			20	$H_2O, 0.1 M KOI$	337
	Ca ²⁺	8.06	Pot			20	H_2O , 0.1 M KCl	337
	Sr^{2+}	11.70	\mathbf{Pot}			20	H_2O , 0.1 M KCl	337
	Ba ²⁺	7.24	Pot			20	H ₂ O, 0.1 M KCl	337
	Co^{2+}	14 98	Pot			20	H_0 0.1 M KCl	337
	NI:2+	15.00	D-4			20	H_2O , 0.1 M KCl	007
	INI ²¹	10.70	Pot			20	$H_20, 0.1 M KCl$	337
	Cu ²⁺	17.29	Pot			20	H_2O , 0.1 M KCl	337
	Zn ²⁺	14.42	\mathbf{Pot}			20	H_2O , 0.1 M KCl	337
	Cd ²⁺	16.54	Pot			20	H ₀ O, 0.1 M KCl	337
	Dh2+	15.62	Pot			20	$H \cap O I M KC$	227
m 10C/	T 0 C-2+	10.00	100 D-+			20	H_2O , 0.1 M $HOPO$	07
141304	Cu	3.08	Pot			Э	$H_20, 0.1 \text{ M} HClO_4$	37
	Cu ²⁺	3.49	Pot			15	H_2O , 0.1 M $HClO_4$	37
	Cu ²⁺	3.44	\mathbf{Pot}	-9.9	32.6	25	H_2O , 0.1 M HClO ₄	37
	Cu ²⁺	3.39	Pot			35	$H_{2}O_{1}O_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	37
	C_{11}^{2+}	243	Kin			25	80% MOH 01 MHCIO.	38
	C.,2+	0.49	Snoo			25	SON MOON OI M HOIO	20
		2.43	Spec			20	80% MeOH, 0.1 M HClO ₄	39
	Cu ²⁺	3.44	Spec			25	H_2O , 0.1 M $HCIO_4$	38
Cy ₂ 14C4	Na ⁺	2.18	ISE			25	MeOH	11, 25
	K+	1.30	ISE			25	MeOH	11.25
B.A.14C4	H+	9 19 (1)	Pot			25	95% MeOH 01 M Me.NCl	49 43
D2A21404	11	5.15 (1)	Det			20	05% MeOH, 0.1 M, Methor	40 49
	H '	5.40 (2)	Pot			25	95% MeOH, 0.1 M Me ₄ NCI	42, 43
	Ni ²⁺	3.7	Pot			25	95% MeOH, 0.1 M Me_4NCl	42
	Cu^{2+}	8.2	\mathbf{Pot}			25	95% MeOH, 0.1 M Me ₄ NCl	44
MeB ₂ A ₂ 14C4	H+	9.41 (1)	\mathbf{Pot}			25	H ₂ O, 1.0 M KCl	42
	ਸ+	6.01 (2)	Pot			25	H_0 10 M KCl	49
	11	0.01(2)	D-4			20	$0.5 \text{ M} \cdot 0.1 \text{ M} \cdot M \cdot 101$	42
	п [.]	9.48 (1)	Pot			20	95% MeOH, 0.1 M Me ₄ NCI	42
	H+	4.98 (2)	Pot			25	95% MeOH, 0.1 M Me ₄ NCl	42
	Ni ²⁺	3.5	\mathbf{Pot}			25	95% MeOH, 0.1 M Me₄NCl	42
2.3.2.3-A.14C4	H+	11.82(1)	Polg			15	$H_{0}O_{1} \mu = 0.20$, NaClO ₄	32
,,_,4	ਸ+	10 50 (2)	Polg			15	$H_{2}O_{\mu} = 0.20 \text{ N}_{2}O_{1}O_{2}$	32
	11	10.00(2)	D-la			10	$H_{20}, \mu = 0.20, H_{20}, H_{20}$	20
	n'	11.50(1)	Polg			25	$H_2O, \mu = 0.20, \text{ NaClO}_4$	32
	H⁺	10.30 (2)	Polg			25	$H_2O, \mu = 0.20, NaClO_4$	32
	H+	11.49 (1)	Spec			25	H ₂ O, 0.1 M NaOH	48
	H+	11.23(1)	Polg			35	$H_{2}O_{1} \mu = 0.20$, NaClO ₄	32
	ਸ+	10 15 (2)	Polg			35	$H_{0} = 0.20$ NeClO	32
	и+	10.10(2)	Dot			05	$H_{0} 0.5 M KNO$	45
	п	11.59 (1)	Pot			25	$H_2O, 0.5 M KNO_3$	40
	H⁺	10.62 (2)	Pot			25	H_2O , 0.5 M KNO ₃	45
	H+	1.61 (3)	Pot			25	H_2O , 0.5 M KNO ₃	45
	H+	2.42(4)	Pot			25	H ₀ O. 0.5 M KNO ₂	45
	NI:2+	22.5	Spec			10	$H_{0} = 01$ NoOH	19
	1N1- NT-2+	23.0	Spec		<u> </u>	10	$H_20, \mu = 0.1, NaOH$	40
	N1 ²⁺	22.2	Spec	-129.7 (Cal)	-8.4	25	$H_2O, \mu = 0.1, NaOH$	48
	Ni ²⁺	21.2	Spec			40	$H_2O, \mu = 0.1, NaOH$	48
	Ni ²⁺ (H) ^e			-100.8 (Cal)		25	H_2O (pH 14?)	47
	$Ni^{2+}(L)^{e}$			-78.2 (Cal)		25	$H_{0}O(pH 14?)$	47
	Ni ²⁺	99.9	Polg	_129.7	-8.4	25	н.О	31 33 34 48
	INI- 12 2±	22.2	roig	-129.7	-0.4	20	$\Pi_2 O$	01, 00, 04, 40
	Zn ²			-61.9		25	H_2O (pH 14)	251
	Zn ²⁺	15.5	Polg	-31.8	192	25	H_2O	32
	Hg ⁺	23	Polg	-137.7	-20.5	25	H_2O , 0.20 M NaClO ₄	36
	Cu^{2+}		Cal	-135.6		25	$H_{0}O(pH 14)$	251
0 0 0 0 A 14C4	N;2+ (L1)e		oui	-82 4 (Cal)		25	$H \cap (pH 14?)$	50
2,2,3,3-A41404	111 (11) 112+ (1)e			(02.4 (0al))		20	11_{20} (p11 14.)	50
	$NI^{2+}(L)^{e}$			-60.2 (Cal)		25	$H_2 U (pH 14?)$	50
	Cu ²⁺	22.36	Pot	-87.5 (Cal)		25	$H_2O, \mu = 0.5$	46
	Ni ²⁺			–53.6 (Cal)		25	$H_2O, \mu = 0.5$	46
	Ni ²⁺			-36.4 (Cal)		25	$H_2O, \mu = 0.5$	46
2224-A.14C4	H+	10.98(1)	Pot			25	H.O. 0.5 M KNO	46
2,2,2,4-1141404	и+	0.75 (9)	Dot			25	$H \cap O = M K N O$	16
	п ***	9.75 (2)	FOL			20	H_2O , 0.5 M KNO ₃	40
	H⁺	4.86 (3)	Pot			25	H_2O , 0.5 M KNO ₃	46
	H+	2.00 (4)	Pot			25	H ₂ O, 0.5 M KNO ₃	46
Me ₂ A ₂ Pv14C4	Ni ²⁺ (H) ^e			-50.2 (Cal)		25	H ₂ O (pH 14?)	50
	Ni ²⁺ (L) ^e			-31.8 (Cal)		25	H_O (nH 14?)	50
N. 1.1/0/	TT+	0.70 (1)	D-4	01.0 (Cal)		20	$H \cap A \in M K \times O +$	45
NIe_4A_414C4	п	9.70 (1)	FUL			20	HOOFNERNOST	110 111
	H	9.31 (2)	Pot			25	$n_2 0, 0.5 M KN 0_3$	40
	H+	3.09 (3)	\mathbf{Pot}			25	H_2O , 0.5 M KNO ₃	45
	H+	2.64 (4)	Pot			25	H_2O , 0.5 M KNO ₃	45
Me.A.14C4	H+	12.6 (1)	Solv Extr			25	H ₂ O	51
	 н+	10 4 (2)	Pot			25	ห.้ด	51
	11 17+	10.4 (2)				20 05	ц О	51
	H	0.8 (3)	Pot			20		01
	H+	0.8 (4)	Pot			25	H_2O	51
rac	H^+	18.2	Spec			25	H ₂ O, 0.1 M NaOH	48
	H+	11.6 (1)	Pot			25	H ₂ O	11
	 ਸ+	107 (9)	Pot			25	H_0	11
	11 17+	10.7 (2)	Dat			20 0E	и о	11
	H'	2.7 (3)	Pot			20		11
	H⁺	2.3 (4)	Pot			25	H ₂ O	11
meso	H+	11.69 (1)	Spec			25	H_2O , 0.1 M NaOH	48
rac	H+	11.6 (1)	Spec			25	H ₂ O, 0.1 M NaOH	48
100	и+	18.2	Snec			25	H ₀ O 01 M NeOH	48
Iac	11	10.2	Spec			20	1120, 011 IN INCOM	

ligand	cation	$\log K^a$	$method^b$	$\Delta H,$ kJ/mol	$\Delta S,$ J/(K mol)	<i>T</i> . ⁰C	medium	ref
	NT:2+	00.00				10	$H O = 0.1 N_{0}OH$	40
meso	IN1- NI:2+	23.06	Spec	$117.6(C_{2})$	94	10	$H_{2}O, \mu = 0.1, NaOH$	48
meso	IN1- NI:2+	21.90	Spec	-117.6 (Cal)	34	20	$H_{2}O, \mu = 0.1, NaOH$	48
meso	INI-*	21.02 20 (blue complex)	Det			40	$H_{2}O, \mu = 0.1, NaOH$	40 51
	Cu^{2+}	20 (blue, complex)	Pot			20	$H_20, \mu = 0.1$	51 51
	Cu^2 +	20 (red, complex)	FOL			25	$H_2O, \mu = 0.1$	11
	Cu^{2+}	20	Spec			20	H_2O (blue complex)	11
Mo & 14C4diana	$7n^{2+}$	20	Polg			10	H_2O (red complex) H_2O (red complex)	11
Megn414C4ulene	Zn^{2+}	9.5	Polg	-497	377	25	$H_2O, \mu = 0.1, N_2OO_4$	49
	Zn^{2+}	9.4	Polg		57.7	30	$H_{20}, \mu = 0.1, NaClO_{4}$	49
	Zn^{2+}	9.9	Polg			35	$H_{2}O_{\mu} = 0.1$ NaClO ₄	40
	Zn ²⁺	8.9	Polg			50	$H_2O, \mu = 0.1$, NaClO ₄	49
(CbMA),14C4	H+	11.56 (1)	Pot			25	$H_{2}O, 1$ M NaCl	27
(H+	10.18 (2)	Pot			25	$H_{2}O, 1 M NaCl$	27
	H+	4.05 (3)	Pot			25	$H_2O, 1 M NaCl$	27
	H+	3.38 (4)	Pot			25	$H_{2}O, 1 M NaCl$	27
	H+	2.17 (5)	Pot			25	$H_2O, 1 M NaCl$	27
	H+	1.42 (6)	\mathbf{Pot}			25	$H_2O, 1 M NaCl$	27
	H+	10.11 (1)	\mathbf{Pot}			80	H_2O , 1 M NaCl	27
	H^+	9.50 (2)	Pot			80	H_2O , 1 M NaCl	27
	H^+	4.02 (3)	\mathbf{Pot}			80	H_2O , 1 M NaCl	27
	H^+	3.29 (4)	Pot			80	H_2O , 1 M NaCl	27
	H^+	1.90 (5)	\mathbf{Pot}			80	H_2O , 1 M NaCl	27
	H^+	10.15 (2)	\mathbf{Polg}			35	$H_2O, \mu = 0.20, NaClO_4$	32
	H+	11.07 (1)	\mathbf{Pot}			20	H_2O , 1 M KCl	27
	H+	9.75 (2)	\mathbf{Pot}			20	H_2O , 1 M KCl	27
	H ⁺	4.31 (3)	Pot			20	H_2O , 1 M KCl	27
	H+	3.46 (4)	Pot			20	H_2O , 1 M KCl	27
	Na ⁺	1.64	Pot			25	H_2O , 1 M NaCl	27
	Mg ²⁺	3.02	Pot			20	H_2O , 0.1 M KCl	337
	Ca ²⁺	3.48	Spec			25	H_2O (pH 10.4), 0.25 M NaCl	29
(CbMA) ₄ 14C4	Ca ²⁺	9.48	Pot			20	$H_2O, 0.1 M KCl$	337
	Sr-'	6.15	Pot			20	$H_2O, 0.1 M KCI$	337
	Ba ²⁺	4.32	Pot			20	$H_2O, 0.1 M KCI$	337
	NI:2+	15.00	Pot			20	$H_2O, 0.1 M KCI$	337
	Cu2+	10.20	Pot			20	$H_{2}O, 0.1 M KCI$	337
	Cu- 7n ²⁺	15.00	Pot			20	$H_{2}O, 0.1 M KCI$	337 997
	Cd2+	15.53	Pot			20	$H_{2}O, 0.1 M KCl$	337 997
	Ph ²⁺	14.73	Pot			20	H_{20} , 0.1 M KCl	337
T.14C4	Cu^{2+}	4.54	Pot			20 5	$H_{2}O_{1} 0.1 M HClO_{2}$	37
141101	Cu ²⁺	4.04	Pot			15	$H_{2}O_{1}O_{1}MHCIO_{4}$	37
	Cu ²⁺	4.34	Pot	-17.7	23.4	25	$H_{2}O_{1}O_{1}O_{1}MHCO_{2}O_{1}$	37 38
	Cu ²⁺	4.22	Pot		2011	35	$H_{2}O, 0.1 M HClO_{4}$	37
	Cu ²⁺	4.3	Pot			5	H ₂ O, 0.010 M HClO	37
	Cu ²⁺	4.4	Pot			5	H ₂ O, 0.025 M HClO ₄	37
	Cu ²⁺	4.4	\mathbf{Pot}			5	H ₂ O, 0.050 M HClO	37
	Cu^{2+}	4.5	\mathbf{Pot}			5	H ₂ O, 0.100 M HClO ₄	37
	Cu ²⁺	5.0	\mathbf{Pot}			5	H_2O , 0.500 M HClO ₄	37
	Cu ²⁺	4.2	\mathbf{Pot}			15	H_2O , 0.010 M HClO ₄	37
	Cu ²⁺	4.3	Pot			15	H ₂ O, 0.025 M HClO ₄	37
	Cu ²⁺	4.3	\mathbf{Pot}			15	H_2O , 0.050 M $HClO_4$	37
	Cu ²⁺	4.4	\mathbf{Pot}			15	H_2O , 0.100 M HClO ₄	37
	Cu ²⁺	4.9	\mathbf{Pot}			15	H_2O , 0.500 M $HClO_4$	37
	Cu ²⁺	4.1	Pot	-13.96	7.6	25	H_2O , 0.010 M $HClO_4$	37
	Cu ²⁺	4.2	Pot	-15.59	6.6	25	H_2O , 0.025 M $HClO_4$	37
	Cu ²⁺	4.2	Pot	-16.14	6.4	25	H_2O , 0.050 M $HClO_4$	37
	Cu ²⁺	4.3	Pot	-17.51	5.7	25	H_2O , 0.100 M $HClO_4$	37
	Cu ²⁺	4.8	Pot	-20.27	5.6	25	H_2O , 0.500 M $HClO_4$	37
	Cu ²⁺	4.0	Pot			35	H_2O , 0.010 M $HClO_4$	37
	Cu ²⁺	4.1	Pot			35	H_2O , 0.025 M HClO ₄	37
	Cu^2	4.1	Pot			30	H_2O , 0.050 M HCIO ₄	37
	Cu^{2+}	4.2	Pot			25	$H_{2}O, 0.100 \text{ M} HClO_{4}$	37
	Cu^{2+}	3.48	Kin			95 95	80% MOOH 0 10 M HCIO	38
	Cu^{2+}	3.48	Snec			25	80% MeOH 0 10 M HCIO	38 30
B ₂ A ₂ 15C4	H ⁺	9.69 (1)	Pot			25	$H_{2}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1$	42
-22-001	H+	7.63 (2)	Pot			25	$H_{2}O, 0.1 M KCl$	42
	H+	9.96 (1)	Pot			25	$H_{2}O, 1.0 M KCl$	42
	H+	8.01 (2)	Pot			25	H ₂ O, 1.0 M KCl	42
	H+	9.42 (1)	Pot			25	90% MeOH, 0.1 M Me_NCl	42
	H+	6.50 (2)	Pot			25	90% MeOH, 0.1 M Me ₄ NCl	42
	H+	9.81 (1)	Pot			25	95% MeOH, 0.1 M Me NCl	42, 43
	H+	6.82 (2)	\mathbf{Pot}			25	95% MeOH, 0.1 M Me ₄ NCl	42, 43
	Ni ²⁺	5.1	Pot			25	H_2O , 0.1 M KCl	42
	Ni ²⁺	5.4	Pot			25	H_2O , 1 M KCl	42

1: J		$b = V_{0}$		ΔH ,	$\Delta S,$	T 40		
ngano	cation	log K	method	kJ/mol	J/(K mol)	1,-0	medium	rei
	Ni ²⁺	5.2	Pot			25	90% MeOH, 0.1 M Me₄NCl	42
	Ni ²⁺	5.4	Pot			25	95% MeOH, 0.1 M Me₄NCI	42
HOD A 15CA	Cu ²⁺	7.Z	Pot			25	95% MeOH, 0.1 M Me ₄ NCl 0.5% MrOH 0.1 M Mr NCl	44
HUB ₂ A ₂ 15C4	п' u+	9.40 (1)	Pot			25	95% MeOH, 0.1 M Me $_4$ NOI	42
	П N;2+	6.49 (2) 5 4	Pot			25	95% MeOH, 0.1 M Me ₄ NCI	42
CLB-A-15C4	и- и+	936(1)	Pot			25	95% MeOH, 0.1 M Me ₄ NCI	42
C12D2A210C4	н+	6 29 (2)	Pot			25	95% MeOH, 0.1 M MeINCI	42
	Ni ²⁺	4.8	Pot			25	95% MeOH, 0.1 M Me/NCl	42.44
	Cu ²⁺	6.8	Pot			25	95% MeOH, 0.1 M Me/NCl	44
Me ₂ B ₂ A ₂ 15C4	H ⁺	10.14 (1)	Pot			25	H ₂ O, 1.0 M KCl	42
	H+	7.92 (2)	\mathbf{Pot}			25	H_2O , 1.0 M KCl	42
	H+	9.64 (1)	\mathbf{Pot}			25	95% MeOH, 0.1 M Me ₄ NCl	42
	H+	6.61 (2)	\mathbf{Pot}			25	95% MeOH, 0.1 M Me₄NCl	42
	Ni ²⁺	<4	Pot			25	H_2O , 1.0 M KCl	42
	Ni ²⁺	<4	Pot			25	95% MeOH, 1.0 M Me₄NCl	42
2,3,3,3-A ₄ 15C4	H ⁺	11.40(1)	Polg			15	$H_2O, \mu = 0.20, NaClO_4$	32
	H' U+	10.30(2)	Polg			15	$H_2O, \mu = 0.20, \text{ NaClO}_4$	32
	п' u+	11.20(1) 10.10(2)	Polg			25	$H_2O, \mu = 0.20, N_2OO_4$	32
	п u+	10.10(2)	Polg			20	$H_2O, \mu = 0.20, N_2OO_4$	32
	н+	9 90 (2)	Polg			35	$H_2O, \mu = 0.20, HacloyH_2O, \mu = 0.20, NaClO$	32
	н+	11.08(1)	Pot			25	$H_{2}O_{1} = 0.20, Hactor _{4}$	45
	н+	10.38 (2)	Pot			25	$H_{2}O_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	45
	H+	5.28 (3)	Pot			25	$H_{2}O, 0.5 M KNO_{3}$	45
	H+	3.60 (4)	Pot			25	$H_2O, 0.5 M KNO_3$	45
	Cu^{2+}	24.4	Polg			25	$H_2O, \mu = 0.2$	32
	Cu ²⁺		Cal	-110.9	95 (calcd)	25	H_2O (pH 14)	30, 251
	Zn ²⁺		Cal	-69.0		25	H ₂ O	30
	Zn ²⁺	15.0	Polg	-34.3	172	25	$H_2O, \mu = 0.2$	32
	Hg^{2+}	23.7	\mathbf{Polg}	-103.3	106.7	25	H_2O , 0.20 M NaClO ₄	36
2,3,2,4-A ₄ 15C4	H ⁺	11.04 (1)	Pot	-46.4	16.7	25	H_2O , 0.5 M KNO ₃	52
	H ⁺	10.47 (2)	Pot	-51.5	8.4	25	H_2O , 0.5 M KNO ₃	52
	H ⁺	3.98 (3)	Pot	-27.2	-4.6	25	$H_2O, 0.5 M KNO_3$	52
m 1504	H ⁺ O2+	3.41 (4)	Pot	-30.5	-10.9	25	$H_2O_1 0.5 M KNO_3$	52 97
T ₄ 15C4	Cu ²⁺	3.30	Pot			0 15	$H_2O_1 0.1 \text{ M} HClO_4$	37
	Cu^{2+}	3.29	Fot			15	$H_{2}O, 0.1 M HClO$	38
	Cu^{2+}	3.09	Pot	-137	15.1	25	$H_{2}O_{1}O_{1}O_{1}O_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	30
	Cu^{2+}	3.11	Pot	10.7	10.1	35	$H_{2}O_{1}O_{1}O_{1}MHClO_{4}$	37
	Cu ²⁺	3.17	Spec			25	$H_{2}O, 0.1 \text{ M HClO}$	38
	Cu ²⁺	2.33	Kin			25	80 % MeOH, 0.1 M HClO4	38
	Cu ²⁺	2.36	Spec			25	80% MeOH, 0.1 M HClO ₄	39
A416C4	H+	10.73 (1)	Pot	-46.4	14.6	25	H_2O , 0.5 M KNO ₃	52
-	H^+	9.85 (2)	Pot	-47.7	8.4	25	H_2O , 0.5 M KNO ₃	52
	H+	6.83 (3)	\mathbf{Pot}	-42.7	-3.8	25	H_2O , 0.5 M KNO ₃	52
	H ⁺	3.96 (4)	Pot	-33.5	-10.9	25	H_2O , 0.5 M KNO ₃	52
B_2A_216C4	H ⁺	9.95 (1)	Pot			25	H_2O , 0.1 M KCl	42
	H+	7.71 (2)	Pot			25	H_2O , 0.1 M KCl	42
	H ⁺	10.14(1)	Pot			25	H_2O , 1.0 M KCl	42
	п' u+	8.07 (2)	Pot			20	$n_2 0, 1.0 \text{ M KCl}$	42
	п u+	7.09(2)	Pot			25	95% MeOH, 0.1 M Me NCl	42, 40
	11 Ni ²⁺	5.9	Pot			25	H_{0} 0.1 M KCl	42, 40
	Ni ²⁺	5.5	Pot			25	$H_{2}O, 1.0 \text{ M KC}$	42
	Ni ²⁺	5.8	Pot			25	95% MeOH. 0.1 M Me ₄ NCl	42
	Cu ²⁺	7.7	Pot			25	95% MeOH, 0.1 M Me ₄ NCl	44
T₄16C4	Cu ²⁺	2.27	Pot			5	H_2O , 0.1 M HClO ₄	37
•	Cu ²⁺	2.23	\mathbf{Pot}			15	H_2O , 0.1 M $HClO_4$	37
	Cu^{2+}	2.20	\mathbf{Pot}	-6.0	22.2	25	H_2O , 0.1 M $HClO_4$	37
	Cu ²⁺	2.16	Pot			35	H_2O , 0.1 M $HClO_4$	37
	Cu ²⁺	2.20	\mathbf{Spec}			25	H_2O , 0.1 M HClO ₄	38
	Cu ²⁺	0.95	Kin			25	80% MeOH, 0.1 M HClO ₄	38
	Cu^{2+}	0.95	Spec			25	80% MeOH, 0.1 M HClO ₄	39
A 1004	Cu ²⁺	1.04	Spec	40 F	20 F	25	$\partial U $ Meon, 0.1 M HClO ₄ H O 0.5 M KNO	38 59
A41704	п u+	11.20 (1)	Pot	-43.0 _/6 /	20.0 11 9	20	H_0 0.5 M KNO.	52
	и+	7 96 (3)	Pot	-40.4	0.0	25	$H_{2}O, 0.5 M KNO_{3}$	52
	H+	6.30 (4)	Pot	-45.6	-9.6	25	H ₂ O, 0.5 M KNO ₂	52
B ₂ A ₂ 17C4	H+	9.56 (1)	Tit		2.0	25	95% MeOH	43
-220-	H+	7.98 (2)	Tit			25	95% MeOH	43
	H+	9.63 (1)	Pot			25	95% MeOH, 0.1 M Me ₄ NCl	42
	H ⁺	8.10 (2)	Pot			25	95% MeOH, 0.1 M Me ₄ NCl	42
	Ni ²⁺	3.5	Pot			25	95% MeOH, 0.1 M Me ₄ NCl	42
	Cu ²⁺	7.2	Pot			25	95% MeOH, 0.1 M Me₄NCl	44

TABLET	(Continued)
INDLUI	Communed)

				ΔΗ,	ΔS ,			_
ligand	cation	$\log K^a$	method ^o	kJ/mol	J/(K mol)	<i>T</i> , °C	medium ^c	ref
15C5	H+	4.1	\mathbf{Pot}			25	MeCN	335
	H ₃ O+	4.45	Pot			25	MeCN	335
	L1+ I;+	~0	NMR			27	$H_2O, 0.02 \text{ M LiCIO}_4$	17
	Li+	~0 3.60	Cond			27	$Me_{2}SO, 0.02 M LICIO_{4}$ MeCN (anion = I^{-})	18
	Li ⁺	>4	NMR	-21.3 (Cal)	>6.3	27	MeCN (anon = 1) MeCN, 0.02 M LiClO	17
	Li+	3.59	NMR	-19.7 (Cal)		27	$Me_{\circ}CO, 0.02 M LiClO_{4}$ (NMR), 0.5 M LiClO ₄ (Cal)	17
	Li ⁺		NMR	-19.2 (Cal)	4.2	27	Me ₂ CO, 0.5 M LiClO ₄	17
	Li ⁺	1.23	NMR	-11.3 (Cal)	-14.2	27	MeOH, 0.02 M LiClO ₄	17
	Li ⁺	>4	NMR	–43.5 (Cal)		27	NMe, 0.02 M LiClO_4	17
	Li ⁺	4.26	Cond			25	PC	52 a
	L1' L1+	>4	NMR	-16.7 (Cal)	>20.9	27	$PC, 0.02 \text{ M LiClO}_4$	17
	Li Li+	2.40 ~0	NMR			27	$Fy, 0.02 \text{ M LiCIO}_4$	17
	Li+	- 0	Cal	0		25	MeOH	61
	Na ⁺	0.70	Cal	-6.28	-7.5	25	H ₂ O	53
	Na ⁺	0.67	IEM			25	H ₂ O	20a
	Na ⁺	0.70	Elec			25	H ₂ O	54
	Na ⁺	0.79	ISE			25	H ₂ O	55
	Na⁺ N-†	0.44	NMR			25		57
	Na ⁺	4.00	Spec NMP			20		330 57
	Na ⁺	1.31	NMR			25	Meso	57
	Na ⁺	5.24	Pot			10	MeCN	58
	Na ⁺	4.9	Pot	-24.1	15.1	25	MeCN	58
	Na ⁺	5.28	Cond			25	$MeCN (anion = BPh_4)$	18
	Na ⁺	>4	NMR			25	MeCN	57
	Na ⁺	4.81	Pot			40	MeCN	58
	Na' Nat	1.49	ISE			25	20% MeOH	55 55
	Na ⁺	2.71	ISE			20 25	40% MeOH 60% MoOH	55 55
	Na ⁺	2.65	ISE			25	80% MeOH	55
	Na ⁺	2.97	ISE			25	90% MeOH	55
	Na ⁺	2.97	ISE			25	90% MeOH	59, 60
	Na ⁺	3.48	Cal	-20.9	-3.37	25	MeOH	61
	Na ⁺	3.30	Cal	-22.6	-12.6	25	MeOH	67
	Na' Not	3.14(1)	Pot	-23.01 (Cal)	-17.27	25	MeOH	20
	Na ⁺	2.4 (2)	ISE			20 25	MeOH	20 55
	Na ⁺	3.30(1)	ISE			25	MeOH	21
	Na ⁺	1.44 (2)	ISE			25	MeOH	21
	Na ⁺	3.24	ISE			25	MeOH	22
	Na ⁺	3.27	Pot			25	MeOH	62
	Na ⁺	3.31	Pot			25	MeOH	63
	Na⁺ Na⁺	>4(1)	NMR			25	NMe NM-	57
	Na ⁺	1.6 (2)	Cond			20	NMe PC	57 590
	Na ⁺	2.68	NMR			25	Pv	52a 57
	Na ⁺	>4	NMR			25	THF	57
	K+	0.74	Cal	-17.2	-43.5	25	H ₂ O	53
	K+	0.74	Elec			25	H ₂ O	54
	K+	0.76	IEM			25	H ₂ O	20a
	K' K+	2.98	Cond	_22.0	-95.0	25	$MeCN (anion = BPh_4^{-})$	18
	K+	3.77(1) 2.71(2)	Cal	-32.2	-33.9	20 25	MeOH	61 61
	K+	3.35(1)	Cal	-32.6	-45	25	MeOH	67
	K+	2.65 (2)	Cal	-36.8	-73	25	MeOH	67
	K+	3.1 (1)	ISE			25	MeOH	64
	K+	2.9 (2)	ISE			25	MeOH	64
	K* V+	3.61(1)	Pot	-32.22 (Cal)	-39.31	25	MeOH	20
	K+	1 (2) 2 24 (1)	POL			25	Meuh	20
	к+	2.34(1)	ISE			25 25	MeOH	21
	K+	3.43	ISE			25	MeOH	22
	K+	3.3-3.6	Pot			25	MeOH	62
	K+	3.34	Pot			25	MeOH	63
	K⁺ ¤⊾+	3.41	Cond		14.0	25	PC	52 a
	К0 Rh+	0.62	Cond	-7.95	-14.6	25		53 59-
	Cs ⁺	0.8	Cal	-5.4	-2.1	25 25	H ₀ O	52a 53
	Cs ⁺	0.79	IEM			25	H_2O	20a
	Cs ⁺	2.62	Cal	-31.9	-57	25	MeOH	67
	Cs ⁺	2.18	Cal	-49.0	-122	25	MeOH	61
	Us ⁺ M~²+	2.69	Cond	0		25	PU MoOH	52a
	Ca ²⁺	2.18	Cal	-6.07	91.3	20 25		61 61
	Ca ²⁺	2.55 (1)	Cal	-11.7	9.5	25	MeOH	67

				ΔH ,	ΔS,			
ligand	cation	$\log K^a$	$method^{b}$	kJ/mol	J/(K mol)	<i>T</i> , °C	medium ^c	ref
	Ca ²⁺	2.1 (2)	Cal	20.1	108	25	MeOH	67
	Ca ²⁺	2.36	ISE	20.1	100	25	MeOH	22
	Sr^{2+}	1.95	Cal	-3.8	25	25	H ₂ O	53
	Sr^{2+}	2.63	Cal	-19.6	-15.5	25	MeOH	61
	Ba^{2+}	1.71	Cal	-4.77	16.7	25	H ₂ O	53
	La ³⁺	6.27	Pot			25	PC, 0.1 M Et ₄ NClO ₄	65
	La ³⁺	6.49 (1)	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	24
	La ³⁺	3.69 (2)	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	24
	Pr ³⁺	6.22	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	65
	Nd ³⁺	6.55 (1)	Pot			25	PC, 0.1 M Et_4NClO_4	24
	Nd ³⁺	2.10 (2)	Pot			25	PC, 0.1 M Et_4NClO_4	24
	Sm ^{o+}	6.11	Pot			25	PC, 0.1 M Et_4NCIO_4	65
	Tb ^{o+}	5.96 (1)	Pot			25	PC, 0.1 M Et ₄ NClO ₄	24
	TD**	1.70 (2)	Pot			25	PC, 0.1 M Et_4NCIO_4	24
	Dy°⁺ ⊑_3+	5.00	Pot			20	$PC, 0.1 \text{ M EtaNOIO}_4$	65
	VL3+	5.59	Pot			20	$PC_{0.1} M E_{1} NCIO_{4}$	65
	T 13+	5.83 (1)	Pot			25	$PC_{0.1} M Et_4 NCIO_4$	24
	Lu ³⁺	2.06 (2)	Pot			25	$PC_{0.1} M Et_{1} NClO_{1}$	24
	Ag+	0.94	Cal	-13.51	-27.2	25	H_0O	53
	Ag ⁺	3.62	Cal	-27.53	-23.0	25	MeOH	61
	Ag+	5.67	Pot			25	PC, 0.1 M Et ₄ NClO ₄	65
	Hg^{2+}	1.68	Cal	-15.06	-16.7	25	H ₂ O	53
	тĭ́+	1.23	Cal	-16.77	-32.6	25	H ₂ O	53
	Tl+	5.29 (1)	\mathbf{Pot}			25	PC, 0.1 M Et₄NClO₄	24
	Tl+	1.45 (2)	Pot			25	PC, 0.1 M Et ₄ NClO ₄	24
	Pb^{2+}	1.85	Cal	-13.63	-10.46	25	H ₂ O	53
	Pb ²⁺	16.55 (1 + 2)	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	24
	NH_4^+	1.71	Cal	-1.0	29.3	25	H ₂ O	53
	NH_4^+	3.03	ISE			25	MeOH	22
	Cu ²⁺			0		25	MeOH	61
Cb(OctAcet)15C5	Na ⁺	3.4	ISE			25	90% MeOH, 0.1 M NMe ₄ Cl	334
	Na⊤	3.4	Pot			25	90% MeOH, 0.1 M NMe ₄ Cl	334
	K' 17+	3.0	ISE			25	90% MeOH, 0.1 M NMe ₄ Cl	334
	К' DL+	2.9	POL			20	90% MeOH, 0.1 M NMe ₄ Cl	334 224
	Rb+	2.0	Pot			25	90% MeOH, 0.1 M NMe ₄ Cl	334 334
Ch(Tatra A get) 15C5	No ⁺	2.1 A A	ISE			25	90% MeOH 0.1 M NMe ₄ Cl	334
CD(Tellarcel)10C0	No ⁺	49	Pot			25	90% MeOH 01 M NMe Cl	334
	K+	3.0	ISE			25	90% MeOH, 0.1 M NMe ₄ Cl	334
	к+	2.9	Pot			25	90% MeOH, 0.1 M NMe ₄ Cl	334
	Rb+	2.6	ISE			25	90% MeOH, 0.1 M NMe ₄ Cl	334
	Rb^+	2.7	Pot			25	90% MeOH, 0.1 M NMe ₄ Cl	334
Cb(OctadecAcet)15C5	K+	2.9	\mathbf{Pot}			25	90% MeOH, 0.1 M NMe ₄ Cl	334
Cy15C5	Li+	<1.0	Pot			25	H ₂ O	11, 25
	Na+	<0.3	\mathbf{Pot}			25	H_2O	11, 25
	Na ⁺	3.71	ISE			25	MeOH	11, 25
	Na ⁺	3.42	Pot			25	MeOH	63
	K+	0.6	ISE			25	H ₂ O	11, 25
	K ⁺	3.58 (1)	ISE			25	MeOH	11, 25
	K' V+	1.00 (2)	ISE Bat			20	MoOH	11, 20
	∩ C₄+	2.78 (1)	Pot			25	MeOH	11. 95
	Cs ⁺	1.91 (2)	Pot			25	MeOH	11, 25
Hex15C5	Na ⁺	3.15	Pot			25	MeOH	63
	K ⁺	3.19	Pot			25	MeOH	63
Dec15C5	Na ⁺	3.18	Pot			25	MeOH	63
	K+	3.15	Pot			25	MeOH	63
Ph15C5	Na ⁺	3.34	Pot			25	MeOH	63
	K+	3.38	Pot			25	MeOH	63
HOM15C5	Na ⁺	2.75	ISE			25	90% MeOH	66
MeOM15C5	Na⁺	2.74	ISE			25	90% MeOH	66
OctOM15C5	Na ⁺	3.13	Pot			20	MeOH	63 69
	K' K+	2.90 (1) 9.55 (9)	Pot			20 95	MeOH	63
DodecOM15C5	No+	3.14	Pot			25	MeOH	63
DOUGOUNITOOD	K ⁺	3.09 (1)	Pot			25	MeOH	63
	к+	2.41 (2)	Pot			25	MeOH	63
MeOEOM15C5	Na ⁺	2.83	ISE			25	90% MeOH	59, 60, 66
2-HOP rOM15C5	Na ⁺	2.82	ISE			25	90% MeOH	66
2-MeOPhOM15C5	Na ⁺	2.97	ISE			25	90% MeOH	66
	Na ⁺	3.24	Cal	-22.3	-12.9	25	MeOH	67
	K+	3.32 (1)	Cal	-32.6	-46	25	MeOH	67 67
	K ⁺	2.53 (2)	Cal	-36.8	-75	25		07
4-MeUPhOM15C5	Na ⁺ N-+	2.00	126	_00.6	_90	20		00 67
	BAT	2.50	UAL	-22.0	-20	20	1410/11	

				ΔH ,	ΔS ,			
ligand	cation	$\log K^a$	$method^b$	kJ/mol	J/(K mol)	T, °C	medium	ref
				,				
	K ⁺	3.17(1)	Cal	-33.8	-53	25	MeOH	67
	K+	2.77 (2)	Cal	-31.0	-51	25	MeOH	67
	Cs^+	2.63 (1)	Cal	-32.6	-5 9	25	MeOH	67
	Cs^+	2.37 (2)	Cal	13.4	90	25	MeOH	67
2-MeO-4-(2HOPr)PhOM15C5	Na ⁺	2.93	ISE			25	90% MeOH	66
MeOEOM(Me)15C5	No+	3.87	Pot			25	MeOH	69.
meobom(me)1000	174	0.07	Det			20	Meon	020
5	N'	3.42	FOL			20	MeOH	628
PyMOM(Me)15C5	Na⊤	3.58	Pot			25	MeOH	62
	K+	3.08	\mathbf{Pot}			25	MeOH	62
THFMOM(Me)15C5	Na ⁺	4.02	Pot			25	MeOH	62
	K+	3.49	Pot			25	MeOH	62
$2 - M_{\Theta} OPh OM (M_{\Theta}) 15C5$	No+	3 79	Pot			25	MeOH	62
2-meor nom(me)1000	V+	2 25	Pot			25	MOH	60
0 1 01/04 \1505		3.30	FOL			20	Meon	02
QuinOM(Me)15C5	INA '	4.87	Pot			25	MeOH	62
	K ⁺	3.56	Pot			25	MeOH	62
QuinOM(Hex)15C5	Na+	4.85	\mathbf{Pot}			25	MeOH	62
	K+	3.41	\mathbf{Pot}			25	MeOH	62
MeOEOM(Hex)15C5	Na ⁺	3.90	Pot			25	MeOH	62
	K+	3 20	Pot			25	MeOH	62
(MAOFOM) 1505	No+	2.94	Pot			25	Moou	60
(MeOLOM) ₂ 15C5	INA	3.04	FOL			20	MeOH	62
	K'	3.44	Pot			25	MeOH	62
(MeOEOEOM) ₂ 15C5	Na⁺	3.86	Pot			25	MeOH	62
	K+	3.98	Pot			25	MeOH	62
PhOM15C5	Na ⁺	3.07(1)	ISE			25	MeOH	21
	No+	1 94 (2)	ISE			25	MeOH	21
	LZ+	216(1)	ISE			20	Mool	01
	N 17+	3.16 (1)	ISE			20	Meon	21
	K	1.27 (2)	ISE			25	MeOH	21
Me ₅ 15C5 (mixed isomers)	Na+	3,34	Pot			25	MeOH	63
	K^+	2.85	\mathbf{Pot}			25	MeOH	63
B15C5	Li ⁺	3.77	Cond			25	PC	68
	Na ⁺	0.40	Elec			25	H ₀	54
	No+	2 80	NMP			25	MaCN	71
	INA	2.60				20	DAT	11
	INa '	1.6	NMR			25	DMF	57
	Na+	0.98	Spec			25	99% Me ₂ SO	72
	Na+	1.1	NMR			25	Me_2SO	57
	Na ⁺	>4	NMR			25	MeCN	57
	Ne ⁺	4 55	Polg			22	MeCN 0.05 M Bu.NCIO	70
	Nat	1.00	Cond			05	Me CO	, o
	INU.	3.34	Cond	F (0	10.0	20		69
	Na	0.72	Cal	-7.40	-10.9	25	20% MeOH	73
	Na ⁺	1.17	Cal	-11.0	-14.6	25	40% MeOH	73
	Na ⁺	1.64	Cal	-15.8	-21.7	25	60% MeOH	73
	Na ⁺	1.99	Cal	-16.0	-15.5	25	70% MeOH	73
	Na ⁺	2.26	Cal	-34.8	-73.6	25	80% MeOH	73
	No ⁺	2.05	ISE	0.00	1010	25	MOU	64
	Nat	0.00	Cond			20	MeOH	0 4
	Na	3.37	Cond			25	MeOH	74
	Na	2.87	Pot			25	MeOH	340
	Na ⁺	>4 (1)	NMR			25	NME	57
	Na	0.8 (2)	NMR			25	NME	57
	Na ⁺	4.35	Cond			25	PC	68
	Na ⁺	2.6	NMR			25	Pv	57
	No+	>4	NMP			25	THE	57
	114	0.90	Cal	07	05 E	20		70
	N N	0.38		-9.7	-20,0	25		13
	K-	0.38	Liec			25	n ₂ U	54
	K+	1.29	NMR			25	99% Me ₂ SO	72
	K+	3.40	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	K+	1.20	Cal	-7.5	-2.1	25	20% MeOH	73
	K+	1.92	Cal	-10.5	1.7	25	40% MeOH	73
	к+	1.5(1)	Cal			25	70% MoOH	79
	v+	2.0 (1) 2.65 (0)	Cal	_58 9 (1 ± 0)	_115.5	20 0E	70% MoOH	79
	N'	2.00 (2)		-30.2(1+2)	-115.5	20	70% MeOH	73
	KT.	2.2 (1)	Cal	A . A		25	80% MeOH	73
	KT	2.60 (2)	Cal	-64.9 (1 + 2)	-125.5	25	80% MeOH	73
	K+	2.8 (1)				25	MeOH	64
	K+	3.15 (2)				25	MeOH	64
	K+	2.78	Cond	-26.4	-35.4	25	PC	68
	K+	0.97	Pot.			25	50% THF/H-0	11
	Rh+	1 29	NMP			25	99% Ma SO	70
	DL+	2.20	Dole			20	MACNI A OF M D. NOIO	74
	T 0'	2.80	r ug			22	MECN, 0.05 M BUANCIO	70
	K D [™]	1.8 (1)	Cal			25	70% MeOH	73
	Rb⁺	1. 9 7 (2)	Cal	-50.2 (1 + 2)	-98.3 (1 + 2)	25	70% MeOH	73
	\mathbf{Rb}^+	2 .38	Cond			2 5	PC	68
	$\mathbf{R}\mathbf{b}^+$	0.46	Pot			2 5	50% THF	11
	Cs+	1. 13	NMR			25	99% Me ₂ SO	72
	Ca ⁺	3.10	Polg			22	MeCN, 0.05 M Bu-NCIO	70
	Ca ⁺	1.70	Cal	-10.2	-1.7	25	70% MeOH	73
	Č•+	1.91	Cond			25	MeOH	7/
	C_+	2 02	Cond			05	MoOH	20
	U 8	2.00	Cona			20	MEOU	00

				ΔH ,	ΔS,			
ligand	cation	$\log K^a$	$method^{b}$	kJ/mol	J/(K mol)	T, °C	medium ^c	ref
						· · · · · · · · · · · · · · · · · · ·		
	Ba ²⁺	2. 6 0	NMR			25	MeCN	71
	דיו+	5.20	Pole			22	MeCN 0.05 M Bu NCIO	70
	11	0.20	TOLE			22		10
	$T1^+$	3.00	Polg			22	MeOH, 0.05 M Bu_4NClO_4	70
	Ph ²⁺	2.04	Cal	-21.37	-32.6	25	70% MeOH	73
	NIT +	0.00 (1)	NND	=1.01	02.0	05	MON	
	NH_4'	2.30(1)	NMR			25	MeUN	71
	NH.+	2.00 (2)	NMR			25	MeCN	71
A	NT-+	0.00	01			05	M. CO	20
ACELOBIDUD	INa '	3.09	Cond			25	Me ₂ CO	69
AdrB15C5	Na ⁺	2.94	Pot			25	MeOH	340
	V +	0.60 (1)	Det			05	MOU	240
	r	2.63 (1)	POL			20	MeOH	340
	K+	3.41 (2)	\mathbf{Pot}			25	MeOH	340
ALAR15C5	No ⁺	2.05	Cond			95	Maco	60
AluBioCo	INA	3.00	Cond			20	Me ₂ CO	09
AmB15C5	Na+	3.91	Cond			25	Me ₂ CO	69
BrB15C5	No+	3 3 1	Cond			25	MeCO	60
DIDIOCO	144	0.01	Conu			20		05
<i>t</i> -BuB15C5	Mg₂∓	6.72	Pot			25	PC, 0.1 M Et_4NCIO_4	23
	Ca ²⁺	6.05	Pot			25	PC. 0.1 M Et. NCIO.	23
	Q-2+	E EE (1)	D-4			05	DO 01 MEL NOIO	
	or.	5. 55 (1)	Pot			25	$PC, 0.1 \text{ M Et}_4 \text{NC} 10_4$	23
	Sr^{2+}	5.05 (2)	Pot			25	PC. 0.1 M Et ₄ NClO ₄	23
	D_{-2+}	E 9 E (1)	Det			05	DC 01 M Et NOIO	00
	Da	5.35 (1)	FOL			20	FC, 0.1 W EtaNOI04	20
	Ba ²⁺	5.05 (2)	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	23
	T.o3+	3 26 (1)	Pot			25	PC 0.1 M Et.NCIO.	94
	La	3.20 (1)	100			20		24
	La³+	2.65 (2)	Pot			25	PC, 0.1 M Et_4NCIO_4	24
	Co3+	362	Pot			95	PC 0.1 M Et NCIO	24
		0.02	100			20		27
	Prot	3.60	Pot			25	PC, 0.1 M Et_4NCIO_4	24
	Nd3+	3 75	Pot			25	PC. 0.1 M Et.NCIO.	94
			100					21
	Sm^{2+}	10.8(1 + 2)	Pot			25	PC, 0.1 M Et_4NCIO_4	24
	Sm ³⁺	3.45	Pot			25	PC. 0.1 M Et. NCIO	24
	0.13+	0.00	Det			05		
	Gao	3.02	Pot			25	PC, 0.1 M Et_4NCIO_4	24
	Tb ³⁺	2.85	Pot			25	PC. 0.1 M Et. NClO	24
	D-3+	0.00	Det			05	DC 01 M Et NCIO	04
	Dy	2.90	Pot			25	$PC, 0.1 W EtaNCIO_4$	24
	Ho ³⁺	2.80	Pot			25	PC, 0.1 M Et ₄ NClO ₄	24
	12-3+	0.00	Det			95	DC 01 M Et NCIO	04
	Er-	2.82	FOL			20	$FC, 0.1 W ELANCIO_4$	24
	Tm^{3+}	2.81	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	24
	Vh2+	$84(1 \pm 2)$	Pot			95	PC 0.1 M Et.NCIO	94
	10-	$0.4(1 \pm 2)$	FOL			20		24
	Yb ³⁺	2.80	Pot			25	PC, 0.1 M Et_4NCIO_4	24
	L 11 ³⁺	2.80	Pot			25	PC 0.1 M Et.NCIO	94
		2.00	100			20		27
	$T1^{+}$	4.13 (1)	Pot			25	PC, 0.1 M Et_4NCIO_4	24
	T1+	2 22 (2)	Pot			25	PC. 0.1 M Et.NCIO	24
	D1.9+	2.22(2)	D.4			05	DO 01 MEt NOIO	
	PD*	7.85 (1)	Pot			25	$PC, 0.1 M Et_4 NCIO_4$	24
	Pb^{2+}	6.54(2)	Pot			25	PC. 0.1 M Et.NClO	24
	12+	0.46	Cand			05	TUE	011
E(CDB15C5)	n	0.40	Cond			20		211
Pent(CbB15C5)	K+	7.11	Cond			25	THF	211
$O_{a+}(ChB15C5)$	¥+	6 78	Cond			95	тнг	911
061(0001303)	K	0.78	Conu			20		211
EOE(CbB15C5)	K+	7.81	Cond			25	THF	211
	NH.+	4 87	Cond			25	THE	911
	1114	4.07	Cond			20		211
(EO) ₂ E(CbB15C5)	K⁺	7.51	Cond			25	THE	211
	NH. ⁺	4.78	Cond			25	THF	211
	NT +	0.01	0.1			05	No. 00	
HUDBIDUD	INA '	3.21	Cond			25	Me ₂ CO	69
MeB15C5	Na ⁺	3.60	Cond			25	Me ₂ CO	69
	NI-+	4.00	- Conce			05	Dier	006
	INA '	4.28	Spec			20	DIOX	330
$O(MeB15C5)_{2}$	Na ⁺	4.67	Spec			25	Diox	336
NI+D15C5	No+	9.65	Cond			95	Maco	60
INILD IDCD	INA	2.00	Conu			20		03
(Nit) ₂ B15C5	Na⁺	2.18	Cond			25	Me ₂ CO	69
B.15C5	Ne+	9 9	ISE			25	MeOH	64
D21000	114	2.2				20	MOUL	04
	K ⁺	2.0 (1)	ISE			25	MeOH	64
	K+	3.21(2)	ISE			25	MeOH	64
DAL DAL	NT . +	1.0	TOP			05	MOU	04
rac-7,9-Me ₂ B ₂ 15C5	INA'	1.9	ISE			25	MeOn	04
	K+	1.4 (1)	ISE			25	MeOH	64
	V +	9.17(9)	ICE			95	MOH	64
	r	3.17 (2)	ISE			20	Medi	04
meso-7, 9-Me 2B215C5	Na ⁺	2.1	ISE			25	MeOH	64
PRO 6 10 Mo B 1505	No+	1 1	ISE			95	MaOH	64
/ac-0,10-14102D210C0	INA	1.1	196			20		04
	K+	0.9 (1)	ISE			25	MeOH	64
	К+	3.1 (2)	ISE			25	MeOH	64
A 44 M		0.1 (2)	TOP				N OU	
<i>mes</i> 0-6,10-Me ₂ B ₂ 15C5	Na⊤	1.5	ISE			25	MeOH	64
	K+	1.4 (1)	ISE			25	MeOH	64
	v +	9.07 (0)	ISE			 0E	MoOH	64
	V.	3.27 (2)	ISE			25	MEOU	04
Bu(NCB15C5)	K+	5.57	Kin			23	MeOH, 0.15 M LiCl	332
	Bh+	5.76	Kin			22	MOH 0 15 M LICI	332
	ND .	0./0	NII			23	MEOH, 0.10 MILICI	004
Non(NCB15C5)	K^+	5.73	Kin			23	MeOH, 0.15 M LiCl	332
	Rh+	5 72	Kin			23	MeOH. 0.15 M LiCl	332
B 01001-0-	100	0.12	17111			20	MOIL OF MILIO	000
Dec(NCB15C5) ₂	КT	5.08	Kin			23	MEUR, 0.15 M LICI	33Z
	Rb+	5.38	Kin			23	MeOH, 0.15 M LiCl	332
ALECE	No+	2.06	ISE			25	MOH	76
AIDUD	INA	2.00	130			40	MEOII	70
	K+	2.72	ISE			25	MeOH	76
	NH +	3.05	Pot			25	MeOH	75
Nr. 1.1-0-	14114	0.00	100			20	M-OH	
MeA15C5	NH₄+	3.2	Pot			25	MeOH	75
BuA15C5	Na ⁺	2.62	ISE			25	90% MeOH	59, 6 0
LATTICO U	* •a	2.02	101					, ••

				ΔH .	ΔS.			
ligand	cation	$\log K^a$	$method^{b}$	kJ/mol	J/(K mol)	T. ℃	medium ^c	ref
	NI-+	2.00	Cal	17.96		05	MeQU	67
	INA Kt	3,22	Cal	-17.30	0.4 90 A	20	MeQH	07 67
	$C_{n^{2+}}$	2.99	Cal	-20.0	-32.0	20	MeOH	67
	Ca ²⁺	2.03 (1)	Cal	-13.8	103	25	MeOH	67
OctA15C5	Na ⁺	2.91	ISE	14.0	100	25	MeOH	76
oturioco	K ⁺	3.05	ISE			25	MeOH	76
AlA15C5	Na ⁺	2.82	ISE			25	90% MeOH	59
BzA15C5	Na ⁺	2.48	ISE			25	90% MeOH	59
HOEA15C5	Na ⁺	3.92	ISE			25	MeOH	76
	K+	3.67	ISE			25	MeOH	76
MeOEA15C5	Na ⁺	3 .66	ISE			25	90% MeOH	59,60
	Na ⁺	4.33 (1)	Cal	-26.74	-6.8	25	MeOH	67
	Na ⁺	2.30 (2)	Cal	-2.1	37	25	MeOH	67
	K+	4.20 (1)	Cal	-38.0	-47.0	25	MeOH	67
	K+	2.19 (2)	Cal	-2.51	34	25	MeOH	67
	Cs⁺	2.79	Cal	-32.9	-57.0	25	MeOH	67
	Ca ²⁺	3.78 (1)	Cal	-10.8	36.2	25	MeOH	67
		2.71 (2)	Cal	7.5	77	25	MeOH	67
	NH4' Not	3.15	ISE			25	90% MeOH	75
$H(OE)_2AI5C5$	Na Vt	4.08	ISE			25	MeOH	76
Ma(OF) A1505	No ⁺	4.42	ISE			20		/0 50 60
Me(OE) ₂ AISCS	NH.+	4.10	ISE			25	90% MeOH	59,00 75
H(OE)-A15C5	Na ⁺	4 34	ISE			25	MaOH	76
II(OL)gilloco	K+	4.77	ISE			25	MeOH	76
Me(OE).A15C5	Na ⁺	4.32	ISE			25	MeOH	76
	K ⁺	4.85	ISE			25	MeOH	76
	NH4 ⁺	3.4	ISE			25	90% MeOH	75
Me(OE)_A15C5	NH.+	3.5	ISE			25	90% MeOH	75
Me(OE),A15C5	NH.+	3.5	ISE			25	90% MeOH	75
Me(OE) ₈ A15C5	NH₄+	3.0 5	ISE			25	90% MeOH	75
$1,4-A_215C5$	H^+	9.20 (1)	Pot			25	H_2O , 0.1 M Et_4NClO_4	26
	H+	6.30 (2)	\mathbf{Pot}			25	H_2O , 0.1 M Et_4NClO_4	26
	Co ²⁺	4.90	\mathbf{Pot}			25	H_2O , 0.1 M Et_4NClO_4	26
	Ni ²⁺	5.05	\mathbf{Pot}			25	H_2O , 0.1 M Et_4NClO_4	26
	Cu ²⁺	8.86	\mathbf{Pot}			25	H_2O , 0.1 M Et_4NClO_4	26
	Zn ²⁺	5.04	Pot			25	H_2O , 0.1 M Et_4NClO_4	26
$1,7-A_215C5$ (2.1)	H+	8.76 (1)	Pot			25	H_2O , 0.1 M Et_4NClO_4	77
	H ⁺	8.04 (2)	Pot			25	H_2O , 0.1 M Et_4NClO_4	77
	H ⁺	9.26 (1)	Pot			25	H_2O , 0.1 M Et_4NCIO_4	26
	H' 1.3+	8.12 (2)	Pot			25	H_2O , 0.1 M Et_4NCIO_4	26
	La [°] La ³⁺	1.08	Pot			25	MeOH, $0.05 \text{ M Et_ANCIO_4}$	60 65
	D_3+	14.4	Pot			25	$M_{0}OH = 0.05 M Et NCIO_{4}$	65
	D_3+	1.54	Pot			20	PC = 0.1 M E + NCIO	65
	Nd ³⁺	7.86	Pot			25	$M_{\bullet}OH = 0.05 \text{ M Et}_{\bullet}NCIO$	65
	Sm ³⁺	7.00	Pot			25	MeOH 0.05 M Et.NCIO	65
	Sm ³⁺	14.9	Pot			25	PC. 0.1 M Et.NCIO	65
	Eu ³⁺	8.59	Pot			25	MeOH, 0.05 M Et. NClO	65
	Eu ³⁺	14.6	Pot			25	PC, 0.1 M Et ₄ NClO ₄	65
	Gd ³⁺	7.67	\mathbf{Pot}			25	MeOH, 0.05 M Et ₄ NClO ₄	65
	Tb ³⁺	8.29	Pot			25	MeOH, 0.05 M Et ₄ NClO ₄	65
	Dy ³⁺	8. 96	Pot			25	MeOH, $0.05 \text{ M Et}_4 \text{NClO}_4$	65
	Dy ³⁺	15.2	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	65
	Ho ³⁺	8.81	\mathbf{Pot}			25	MeOH, 0.05 M Et_4NClO_4	65
	Er ³⁺	8.70	Pot			25	MeOH, $0.05 \text{ M Et}_4 \text{NClO}_4$	65
	Erot	14.8	Pot			25	PC, 0.1 M Et_4NClO_4	65
	Y °'	8.66	Pot			25	MeOH, $0.05 \text{ M Et}_4 \text{NClO}_4$	65
	1°m ³⁺	9.46	Pot			25	MeOH, $0.05 \text{ M Et}_4 \text{NCIO}_4$	65
	10°	10.4	Pot			25	$PC, 0.1 \text{ M Et}_{4} \text{NCIO}_{4}$	65
	Co^{2+}	5.00	Pot			20	H_2O , 0.1 M EtaNCIO ₄	11
	Ni ²⁺	3.73	Pot			25	$H_2O_1 0.1 M Et_4NCIO_4$	20
	Ni ²⁺	4.05	Pot			25	$H_{2}O_{1}O_{1}$ M Et NCIO.	26
	Cu ²⁺	7.17	Pot			25	$H_{0}O_{1}O_{1}$ M Et NCIO	20 77
	Cu ²⁺	8.15	Pot			25	$H_{2}O, 0.1 M Et NCIO$	26
	Cu ²⁺	4.37	Pot			25	Me ₂ SO, 0.1 M Et ₄ NClO ₄	78
	Cu ²⁺	4.49	Spec			25	Me ₂ SO, 0.1 M Et ₄ NClO ₄	78
	\mathbf{Zn}^{2+}	5.34	Pot			25	H ₂ O, 0.1 M Et ₄ NClO ₄	26
	Ag ⁺	5.85	Pot			25	H_2O , 0.1 M Et_4NClO_4	77
	Ag ⁺	5.17	Pot			25	Me_2SO , 0.1 M Et_4NClO_4	79
	Ag [™]	7.61 (1)	Pot			25	MeOH, 0.05 M Et ₄ NClO ₄	80
	Ag⁺ A ∞+	3.60 (2)	Pot			25	MeOH, 0.05 M Et ₄ NClO ₄	80
	7.0 ²⁺	10.0 5 10	rot Pot			20	FO, ULI M ETANOIO H.O. O.1 M Et NOIO	00 77
	Cd2+	6.46	Pot			20	$H_{2}O$, 0.1 M EtaNOIO4 H_O 0.1 M Et.NCIO	77
	Cd ²⁺	8,72 (1)	Pot			25	MeOH. 0.05 M Et.NCIO	80
	~~					2 0		~~

ligand	cation	$\log K^a$	method ^b	ΔH , kJ/mol	$\Delta S,$ J/(K mol)	<i>T</i> . ⁰C	medium	ref
	Cd ²⁺	3.27 (2)	Pot			25	MeOH 0.05 M Et.NCIO	80
	Hg ²⁺	16.65	Pot			25	MeSO 01 M Et.NCIO	78
	Pb^{2+}	5.85	Pot			25	$H_2O_2O_3$, on H_2D_4 H_2O_4 $H_2O_2O_3$ $H_2O_2O_4$	77
	Pb^{2+}	3.57	Pot			25	M_{2} , or M_{2} M_{2} , M_{1} M_{2} , M_{2} , M_{2} , M_{1} M_{2} ,	78
	Pb^{2+}	7.87 (1)	Pot			25	MeOH, 0.05 M Et. NCIO	80
	Pb ²⁺	3.49 (2)	Pot			25	MeOH, 0.05 M Et ₄ NClO ₄	80
	Pb ²⁺	7.86 (1)	Spec			25	MeOH, 0.05 M Et ₄ NClO ₄	80
	Pb ²⁺	4.22 (2)	Spec			25	MeOH, 0.05 M Et ₄ NClO ₄	80
	₽b²+	8.64 (1)	Spec			25	PC, 0.01 M Et ₄ NClO ₄	81
	Pb ²⁺	3.66 (2)	Spec			25	PC, 0.01 M Et_4NClO_4	81
T15C5	Ag+	5.0 (1)	Cal	-39.20	-35.10	25	H ₂ O	16
	Ag ⁺	2.45 (2)	Cal	-14.52	-1.83	25	H ₂ O	16
	Hg ²⁺	(1 + 2)	Cal	-70.58		25	H ₂ O	16
	Tl+	0.80	Cal	-32.2	-92.7	25	H_2O	16
	Pb ²⁺	1.65	Cal	-21.51	-40.58	25	H_2O	16
1, 4- T ₂ 15C5	Ag⁺	(1)	Cal	-50.71		25	H ₂ O	16
	Ag II.2+	3.31 (2)	Cal	-23.4	-15.16	25	H ₂ O	16
	Hg- 11-2+	(1)		-47.36	11	25		16
	rig-	5.1 (Z)	Cal	-32.59	-11	20		16
	Dh2+	1 91		_02.8	-56 96	20		16
1.7-T-15C5	Γυ- Δα+	(1)	Cal	-23.0	-30.00	20		16
1,7-121000	Δα ⁺	(1) 27(2)	Cel	-4.9	37 9	25	H ₂ O	16
		(1)	Car	-67.36	01.0	25	H ₂ O	16
	H_{p}^{2+}	2.91 (2)	Cal	-20.9	-14.5	25	H_2O	16
	TI+	<0.2	Cal	20.0	14.0	25	H_2O	16
	Pb ²⁺	1.62	Cal	-31.8	-75.7	25	H ₂ O	16
4,13-A ₂ -7,10- T ₂ 15C5	H+	8.60 (1)	Pot			25	H_2O , 0.1 M NaClO ₄	82, 84
-	H+	7.55 (2)	\mathbf{Pot}			25	H_2O , 0.1 M NaClO ₄	82, 84
	Co ²⁺	5.42	\mathbf{Pot}			25	H_2O , 0.1 M NaClO ₄	77, 82, 84
	Ni ²⁺	7.98	\mathbf{Pot}			25	H_2O , 0.1 M NaClO ₄	77, 82, 84
	Cu ²⁺	11.55	\mathbf{Pot}			25	H_2O , 0.1 M NaClO ₄	77, 82, 84
	Ag ⁺	8.95	\mathbf{Pot}			25	H_2O , 0.1 M NaClO ₄	77, 82
	Ag ⁺	12.21 (Ag_2L)	Pot			25	H_2O , 0.1 M NaClO ₄	82
	Ag⁺	14.15 (AgHL)	Pot			25	H_2O , 0.1 M NaClO ₄	82
	$Zn^{2\tau}$	5.09	Pot			25	H_2O , 0.1 M NaClO ₄	77, 82, 84
	Cd2+	6.53	Pot			25	H_2O , 0.1 M NaClO ₄	77, 82
710 4 (19	PD- U+	0.07 8 86 (1)	Pot	00.0F	FF 70	25	H_2O , 0.1 M NaCIO ₄	77, 82, 84
T.15C5	п	8.00 (1)	Car	-33.00	00.78	20	$H_2O, 0.1 \text{ M NaClO}_4$	02, 03, 89
121000	н+	5 21 (2)	Cal	-40 92	37 74	25	H-O 0.1 M NaClO	82 83 85
	Co ²⁺	5 22	Pot	40.32	01.14	25	$H_2O, 0.1 \text{ M} \text{ NaClO}_4$	82,83,85
	Ni ²⁺	8.06	Pot			25	H_2O , 0.1 M NaClO	82, 83
	Cu ²⁺	13.26	Cal	-52.47	77.45	25	$H_{2}O, 0.1$ M NaClO	82, 83, 85
	Ag^+	9. 9 1	Pot			25	H_2O , 0.1 M NaClO ₄	82, 83
	Ag^+	15.22 (AgHL)	Pot			25	H_2O , 0.1 M NaClO ₄	82, 83
	Ag^+	12.6 (Ag_2L)	\mathbf{Pot}			25	H_2O , 0.1 M NaClO ₄	82, 83
	Zn^{2+}	4.43 (1)	\mathbf{Pot}			25	H_2O , 0.1 M NaClO ₄	82, 83
	Zn ²⁺	3.48 (2)	\mathbf{Pot}			25	H_2O , 0.1 M NaClO ₄	82, 83
	Cd^{2+}	7.13	\mathbf{Pot}			25	H_2O , 0.1 M NaClO ₄	82, 83
	Pb ²⁺	6.78	Cal	-39.83	-4.01	25	H_2O , 0.1 M NaClO ₄	82, 83, 85
	Cu ²⁺	4.35	Pot			5	H_2O , 0.1 M HClO ₄	37
	Cu2+	4.27	Pot	10.0		15	$H_2O, 0.1 \text{ M} \text{ HClO}_4$	37
	Cu ²⁺	4.18	Pot	-12.6	37.7	25	$H_{2}O, 0.1 \text{ M} HClO_{4}$	37, 38
	Cu^{2+}	4.12 2.00	Fot			30 95	$\mathbf{H}_2\mathbf{O}, \mathbf{U}, \mathbf{I}, \mathbf{M}, \mathbf{H}\mathbf{O}\mathbf{O}_4$	37 29
	Cu ²⁺	4.99 9 QQ	Snec			20	80% MeOH, 0.1 M HClO	30
	Cu^{2+}	418	Spec			25	80% MeOH, 0.1 M HCIO,	38
PhoPhose15C5	Mg ²⁺	2.88	Cond			22	MeCN	86
18C6	H ⁺	3.282	Cond			25	DCE	123
	H+	6.5	Pot			25	MeCN	335
	H+	6.3	\mathbf{Pot}			25	PC	335
	$H_{3}O^{+}$	6.4	\mathbf{Pot}			25	MeCN	335
	Li+	3.73	Cond			25	MeCN (anion = I^{-})	18
	Li+	~0	NMR			27	H_2O , 0.02 M LiClO ₄	17
	Li⁺	~0	NMR	o / o . "		27	Me_2SO , 0.02 M LiClO ₄	17
	Li [⊤]	2.34	NMR	~U (Cal)	44.8	27	MeUN, 0.02 M LICIO (ND/D) $\alpha \in \mathcal{M} \cup \mathcal{C}$	17
	L1 ⁺ 1:+	1.50	NMK	-14.6 (Cal)	-20.5	27	Me_2OU , 0.02 M LICIO ₄ (NMR), 0.5 M LICIO ₄ (Cal)	17
	L1'	1.01	NMR	-117 (Cal)		27	$M_{2}OU$, 0.02 M L11 $M_{2}OH$ 0.02 M L(CIO (NMP) 0.5 M L(CIO (C-1))	17
	Li ⁺	>4	NMR	$\sim 12.6 (Cal)$	>0	21 97	$M_{e} = 0.02 \text{ M LiCiO}_{4}$ (191914), 0.5 W LiCiO ₄ (Cal)	17
	Li+	2.69	NMR	-15.9 (Cal)	-2.5	27	PC	17
	Li ⁺	0.62	NMR	(Oul)	2.0	27	Py	17
	Li+	~0	NMR			27	TMG	17
	Na ⁺	0.8	Cal	-9.41	-15.5	25	H ₂ O	53
	Na ⁺	0.82	IEM			25	H ₂ O	20a

		1 120		ΔH ,	$\Delta S,$		11 .	
ligand	cation	log K ^a	method ^o	kJ/mol	J/(K mol)	<i>T</i> , °C	medium	ref
	Na ⁺	1.80	ISE			25	H₂O H C	55
	Na ⁺ N-+	0.82	NMR 2			25		57 80
	Na ⁺	<0.3	ISE			20 25	H ₂ O	11 25
	Na ⁺	4.54, 4.55	Spec			25	Diox	336
	Na ⁺	2.31	NMR			25	DMF	57
	Na ⁺	1.41	NMR			25	Me ₂ SO	57
	Na ⁺	1.43	ISE			25	Me ₂ SO	90a
	Na ⁺	3.8	NMR			25	MeCN	57
	Na⁺ N-+	4.55	ISE			25	MeCN	90a
	Na ⁺	4.7	Pot	16	96.3	10	MeCN	08 58
	Na ⁺	4.8	Pot	1.0	20.8	40	MeCN	58
	Na ⁺	>4	NMR			25	Me ₂ CO	57
	Na ⁺	2.18	ISE			25	20% MeOH	55
	Na ⁺	2.47	ISE			25	40% MeOH	55
	Na ⁺	2.81	ISE			25	60% MeOH	55
	Na⁺ Na‡	2.76	Cal	-20.45	-15.9	25	70% MeOH	73
	Na ⁺	3.20		_97.8	-93.1	25	SU% MeOH	00 01 02
	Na ⁺	3.73	ISE	-21.0	-20,1	25	90% MeOH	51, 52
	Na ⁺	4.33	Cal	-33.9	-30.9	25	99% MeOH	92
	Na ⁺	4.36	Cal	-35.1	-34.4	25	MeOH	61, 91, 92
	Na ⁺	4.38	Cal	-31.38	-21.76	25	MeOH	20
	Na ⁺	4.46	Cond			25	MeOH	74
	Na ⁺	4.32	Elec			25	MeOH	54
	Na Na ⁺	4.30	ISE			25	MeOH	55 99
	Na ⁺	4.32	ISE			25	MeOH	11 25
	Na ⁺	>4	NMR			25	NMe	57
	Na ⁺	5.68	Cond			25	PC	52 a
	Na ⁺	5.25	ISE			25	PC	90a
	Na ⁺	>4	NMR			25	PC	57
	Na' Nat	>3	NMR			25	Py THE	57
	Na ⁺	4 34	ISE			20	MeOH	114
	K ⁺	2.03	Cal	-26.0	-47.7	25	H ₂ O	53
	K+	2.06	IEM			25	H ₂ O	20a
	K+	2.15	Pot	-23.43 (Cal)	-37.63	25	H_2O	20
	K+	2.03	D /			25	H ₂ O	89
	K⁺ ¥+	2.06	Pot			25	H ₂ O	11, 25
	к+	3.28	Cond			25	Spec Me ₂ SO	93
	K+	3.21	ISE			25	Me ₂ SO	90a
	K+	5.72	Cond			25	MeCN	93
	K+	5.70	ISE			25	MeCN	90a
	K+ V+	4.33	Cal	-40.5	-53.1	25	70% MeOH	73
	к+	0.30 6.05	Cal	-49.3 -55.3	-62.6	25	90% MeOH 99% MaOH	92
	Ř+	6.10	ISE	00.0	00.0	23	MeOH	114
	K+	6.08	ISE			24	MeOH	114
	K+	6.06	Cal	-56.1	-72.2	25	MeOH	61, 92
	K* V+	6.08	Cond			25	MeOH	93
	K' K+	6.20	Cond			25	MeOH	74 54
	ĸ+	5.93	ISE			25	MeOH	64
	K+	6.08	ISE			25	MeOH	22
	K+	6.18	\mathbf{Pot}	-53.14 (Cal)	-6 0.37	25	MeOH	20
	K ⁺	6.10	ISE			25	MeOH	11, 25
	K' K+	6.24	Cond			25	PC	52a
	Rh ⁺	1.56	Cal	-16.0	-23.8	25 25	гс H.O	50a 53
	Rb ⁺	3.46	Cal	-38.76	-64.0	25	70% MeOH	73
	Rb+	5.32	ISE			23	MeOH	114
	Rb ⁺	5.32	Cal	-50.6	-67.8	25	MeOH	61
	Kb⁺ P⊾+	5.73 5.25	Cond			25	MeOH MeOH	74
	Rb ⁺	5.32	Cond			25 25	PC	114 52a
	Ĉs+	0.99	Cal	-15.85	-33.9	25	H ₂ O	53
	Cs^+	0.98	IEM			25	H ₂ O	20a
	Cs ⁺	0.8	ISE			25	H_2O	11, 25
	Cs ⁺	3.95 (1)	NMR			25	DMF	94
	Cs ⁺	0.39 (2) 3.04 (1)	NMP			25 25	DMP	94 94
	Čs+	0.0 (2)	NMR			25	DMSO	94
	Cs ⁺	>4 (1)	NMR			25	MeCN	94

ligand	cetion	log Ka	method ^b	ΔH , k.I/mol	ΔS , $I/(K mol)$	<i>т •</i> с	mediume	ref
	Co+	0.57 (9)	NMP		o/ (11 mor)	25	MaCN	04
	Cs ⁺	5 30 (1)	NMR			25	MecO	94 94
	Cs ⁺	1.53 (2)	NMR			25	Me ₂ CO	94
	Cs ⁺	2.84	Cal	-33.8	-59.0	25	70% MeOH	73
	Cs^+	4.70	ISE			22	MeOH	114
	Cs^+	4.79 (1)	Cal	-47.2	6 6.7	25	MeOH	61
	Cs ⁺	2.06 (2)	Cal	-13.9	-7.2	25	MeOH	61
	Cs ⁺	4.49	Cond			25	MeOH	74
	Cs ⁺	4.62 (1)	POL			25	MeOH	11, 25
	Cs ⁺	4.03	NMR	-69.96	157.3	25	MeNH	95
	Čs ⁺	4.48	Cond			25	PC	52a
	Cs^+	4.52	ISE			25	PC	90a
	Cs ⁺	4.18 (1)	NMR			25	PC	94
	Cs ⁺	1.04(2)	NMR			25	PC	94
	Cs ⁺	≥6.7 (1)	NMR			-38	Py D	98
	Cs ⁺	3.07(2)	NMR			-3 0 -29	ry Pv	98
	Cs ⁺	2.79 (2)	NMR			-29	Pv	98
	Cs ⁺	≥6 (1)	NMR			-18	Py	98
	Cs^+	2.64 (2)	NMR			-18	Py	98
	Cs ⁺	≥6 (1)	NMR			-1	Ру	98
	Cs ⁺	2.34(2)	NMR			-1	Py	98
	Cs⁺ C=‡	$\geq 6(1)$	NMR			12	Py Du	98
	Cs ⁺	2.08 (2)	NMR			12 94	ry Pv	90
	Cs ⁺	1.9(2)	NMR			24	Pv	98
	Cs ⁺	5.7 (1)	NMR			25	Py	94
	Cs^+	1.87 (2)	NMR			25	Py	94
	Cs ⁺	1.89 (2)	NMR	-24.3 (2)	-44.8 (2)	25	Py	98
	Ca ²⁺	<0.5	Cal			25	H ₂ O	53
	Ca ²⁺	0.48	1EM Pot			25		20a 97
	Ca ²⁺	2.51	Cal	-17.86	-11.7	25	70% MeOH	73
	Ca ²⁺	3.86	Cal	-11.5	35.4	25	MeOH	61
	Ca ²⁺	3.90	ISE			25	MeOH	22
	Sr^{2+}	2.8	Pot			25	H ₂ O	87
	Sr^{2+}	2.72	Cal	-15.1	1.25	25	H_2O	53
	Sr ²⁺	5.0 >5.5	Cal	-31.3	-10.5	20 25	M₀OH	73 61
	Ba ²⁺	3.87	Cal	-31.7	-33.0	25	H ₂ O	53
	Ba^{2+}	6.0	Cal	-44.58	-35.5	25	70 [°] % MeOH	73
	Ba ⁺	6.56	Cal	-43.2	-19.4	25	90% MeOH	92
	Ba ⁺	7.03	Cal	-43.4	-11.1	25	99% MeOH	92
	Ba' Lo ³⁺	7.04	Cal	-43.55	-11.3	25	$M_{0}CN \text{ (anion - NO -)}$	61, 92 100
	La ³⁺	3.29	Cal	11 76	-37.3	25	M_{eOH}	100
	La ³⁺	8.75	Pot	11.70	102	25	PC, 0.1 M Et ₄ NClO ₄	65
	Ce ³⁺	4.5	Cal	-43.0	-55.6	25	MeCN (anion = NO_3^{-})	100
	Ce ³⁺	3.57	Cal	10.63	104	25	MeOH	101
	Pr ³⁺	3.7	Cal	-44.0	-76.9	25	$MeCN (anion = NO_3^{-})$	100
	Pr ^{o+}	2.63	Cal	18.66	113	25	MeUH	101
	Nd ³⁺	3.5	Cal	-36.2	-54.3	25	$MeCN$ (anion = NO_{2}^{-})	100
	Nd ³⁺	2.44	Cal	19.96	114	25	MeOH	101
	Sm^{3+}	2.03	Cal	15.36	90.4	25	MeOH	101
	Sm^{3+}	8.10	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	65
	Eu^{3+}	2.7	Cal	-12.8	8.7	25	$MeCN (anion = NO_3^{-})$	100
	Eu ^o '	1.84	Cal	12.8	78.2	25	MOH	101
	Dv ³⁺	7.90	Pot	10.01	11.0	25	PC, 0.1 M Et ₄ NClO ₄	65
	$\tilde{\mathbf{Er}^{3+}}$	7.67	Pot			25	PC, $0.1 \text{ M Et}_4 \text{NClO}_4$	65
	Yb ³⁺	7.50	Pot			25	PC, 0.1 M Et_4NClO_4	65
	Ag ⁺	1.50	Cal	-9.07	-1.7	25	H ₂ O	53
	Ag+	1.60	Pot			25	$H_2 \cup$ $H_1 \cap O_2 \cap M_1 \cap O_2 \cap$	11, 25
	Ag+	6.21	Pot			25	M_{20} , 0.5 M $Elolo_4$ Me ₂ SO, 0.1 M Et ₄ NClO ₄	79
	Ag+	4.58	Cal	-38.3	-40.7	25	MeOH	61, 102
	Ag ⁺	4.57	ISE			25	MeOH	90a
	Ag ⁺	10.18(1)	Pot			25	MeOH, 0.05 M Et NCIO	80
	Ag' Ag+	3.33 (2) 7.10	rot ISE			20 95	$\frac{1}{1000} \text{ m} = \frac{1}{1000} $	80 90a
	Ag ³⁺	7.05	Pot			25	PC, 0.1 M Et_NClO	65
	Cď ²⁺	5.59	Pot			25	H_2O , 0.5 M LiClO ₄	88
	Cd ²⁺	5.31	Pot			25	H_2O , 0.1 M Et ₄ NClO ₄	77
	Ud ²⁺	7.83 (1)	Pot			25	MEOH, $0.05 \text{ M Et_4}\text{NCIO_4}$	80

ligand	action	log K ^o	methodb	ΔH , k.I./mol	ΔS , $I/(K mol)$	<i>τ</i> •C	mediume	rof
nganu	Cation	0.50 (0)	D	KO/IIIOI	5/(IX III01)	1, 0		161
		3.58 (2)	Pot	10.6	10.7	25	MeOH, 0.05 M Et_4NCIO_4	80
	ng Ti+	2.42	Cal	-19.0	-19.7	25	H O	03 52
	11 Tl+	2.2.	Pot	-99	-34 7	25	$H_{2}O$ 0.10 M N ₂ ClO ₂ (pH 2)	103
	Ťl+	4.85	Fluor		01.0	25	EtOH	180
	 Tì+	4.6	Fluor			25	MeOH	180
	T1+	5.26	ISE			25	MeOH	90a
	T1+	7.13	ISE			25	PC	90a
	Pb ²⁺	4.27	Cal	-21.6	9.2	25	H ₂ O	53
	Pb ²⁺	4.4	Pot	-13	40.6	25	H ₂ O, 0.10 M NaClO ₄ , (pH 2)	103
	Pb ²⁺	7.01	Pot			25	$H_2O, 0.5 M LiClO_4$	88
	Pb ²⁺	6.90	Pot	00 (25	H_2O , 0.1 M Et_4NCIO_4	77
	PD*' DL2+	6.0 0.49 (1)	Cal	-38,4	-4.6	25	70% MeUH	73
	FD- DL2+	9.40 (1) 9.99 (9)	Pot			20	MOH, 0.05 M EtaNCIO ₄ MOH 0.05 M Et NCIO	80
	Ph ²⁺	3.66(2)	Spec			25	$PC = 0.01 \text{ M Et.} NClO_2$	81
	NH.+	1.23	Cal	-9.79	-9.2	25	$H_{0}O$	53
	NH ⁺	1.23	?			25	H ₂ O	89
	NH +	1.1	ISE			25	H ₂ O	11, 25
	NH4 ⁺	4.27	Cal	-38.8	-48.5	25	MeOH	104, 105
	NH4 ⁺	4.14	ISE			25	MeOH	22
	NH ₂ NH ₃ ⁺	4.21	Cal	-43.6	-65.7	25	MeOH	104, 105
	CH ₃ NHNH ₃ ⁺	3.41	Cal	-39.7	-68.0	25	MeOH	105
	HONH ₃ ⁺	3.99	Cal	-37.7	-50.2	25	MeOH	104, 105
	CH ₃ NH ₃ ⁺	4.25	Cal	-44.8	-59.8	25	MeOH	104, 105
	$C_2 H_5 N H_3$	3.99	Cal	-44.0	-73.3	25	MeOH	104, 105
	$(C \Pi_8)_2 N \Pi_2$	3 00	Cal	-422	-67.4	20	MeOH	104, 105
	CH-CHCH-NH ⁺	4 02	Cel	-44.0	-70.8	25	MeOH	105
	n-CoHeNHa ⁺	3.97	Cal	-42.1	-64.1	25	MeOH	104. 105
	$n-C_{3}H_{7}NH_{4}^{+}$	3.90	Cal	-41.2	-63.6	25	MeOH	105
	$n-C_3H_7NH_3^+$	6.36	Spec		•	26.6	C ₆ H ₆	106
	i-C ₃ H ₇ NH ₃ ⁺	3.56	Cal	-40.4	-67.3	25	MeOH	105
	$i-C_3H_7NH_3^+$	6.21	Spec			26.6	C_6H_6	106
	C₄H ₉ NH₂ ⁺	1.98	Cal	-30.8	-65.3	25	MeOH	104, 105
	$n-C_4H_9NH_3^+$	7.75	Spec			6	$C_{\theta}H_{\theta}$	106
	$n-C_4H_9NH_3^+$	6.36	Spec			26.6	$C_{6}H_{6}$	106
	$n - C_4 H_9 N H_3^+$	5.99	Spec			35		106
	sec-U ₄ H ₉ NH ₃	(.18 E 95	Spec			000		106
	sec-C H.NH. ⁺	5.49	Spec			20.0	$C_{6}H_{6}$	106
	t-C.H.NH.+	6.98	Spec			6	CaHa	106
	$t-C_{4}H_{0}NH_{0}^{+}$	5.66	Spec			26.6	C _a H _a	106
	t-C ₄ H ₀ NH ₃ ⁺	5.30	Spec			35	C _e H _e	106
	t-C₄H ₉ NH ₃ ⁺	2.90	Cal	-32.5	-53.1	25	MeOH	104, 105
	$n-C_{5}H_{11}NH_{3}^{+}$	6.36	Spec			26.6	C_6H_6	106
	sec-C ₅ H ₁₁ NH ₃ ⁺	5.91	Spec			26.6	C ₆ H ₆	106
	$t-C_{5}H_{11}NH_{3}^{+}$	5.35	Spec			26.6	C_6H_6	106
	$n-C_3H_6(C_2H_5)NH_3^+$	4.93	Spec	00 F		26.6	C ₆ H ₈	106
	$C_2 \Pi_5 OC(0) C \Pi_2 N \Pi_3$	პ. 04 ეიც	Cal	-38.0	-00.0	20		105
	PhCH(CH_)NH_+	3.84	Cal	-39.8		25	MeOH	105
	morpholinium	2.05	Cal	-28.6	-56.6	25	MeOH	105
	$^{+}H_{3}N(CH_{2})_{2}NH_{3}^{+}$	3.05 (1)	Cal	-49.4	-108.1	25	MeOH	105
	$^{+}H_{3}N(CH_{2})_{2}NH_{3}^{+}$	3.75 (2)	Cal	-44.4	-75.8	25	MeOH	105
	⁺ H ₃ N(CH ₂) ₃ NH ₃ ⁺	3.20 (1)	Cal	-51.9	-112.3	25	MeOH	105
	⁺ H ₃ N(CH ₂) ₃ NH ₃ ⁺	3.79 (2)	Cal	-38.5	-57.6	25	MeOH	105
	$^{+}\mathrm{H}_{3}\mathrm{N(CH}_{2})_{4}\mathrm{NH}_{3}^{+}$	3.51(1)	Cal	-41.9	-73.0	25	MeOH	105
	$^{+}H_{3}N(CH_{2})_{4}NH_{3}^{+}$	3.47(2)	Cal	-49.0	-98.3	25	MeOH	105
	$H_3N(CH_2)_5NH_3$	3.1(1) 9.7(9)	Cal	-46.9	-98.3	25	MeOH	105
	+H N(CH) NH +	3.7 (2)	Cal	-44.0	-02.0	20	MoOH	105
	$^{+}H_{a}N(CH_{a})_{a}NH_{a}^{+}$	3.9(2)	Cal	- <u>41</u> 4	-64.6	25	MeOH	105
	PhNH _o +	3.80	Cal	-39.9	-61.7	25	MeOH	105, 107, 108
	2-CH ₃ PhNH ₃ ⁺	2.86	Cal	-31.7	-51.9	25	MeOH	105, 107, 108
	4-CH ₃ PhNH ₃ +	3.82	Cal	-41.5	-66.1	25	MeOH	105, 108
	2,6-(CH ₃) ₂ PhNH ₃ ⁺	2.00	Cal	-2 3. 6	-40.7	25	MeOH	105, 107
	$3,5-(CH_3)_2PhNH_3^+$	3.74	Cal	-37 .9	-55.7	25	MeOH	105, 108
	PhN_2^{\uparrow}	4.44	Spec			50	DCE	109
	rnin ₂ ' Dhn.+	4.782	Spec	_95.0	. 70.1	00 0=	DCE MoOH	110, 111
	PhN_{a}^{+}	2.00	പ	-30.2	-/U.I _151 K	20 25	MeOH	107
	PhN _o +	2.46	Spec	00.0	101.0	15	MeOH	112
	4-FPhN ₂ ⁺	2.52	Cal	-35.8	-71.5	25	MeOH	107
	$4-ClPhN_2^+$	4.74	Spec	-		50	DCE	109
	$4-ClPhN_2^+$	4.888	Spec			50	DCE	110, 111

ligand	cation	log K ^o	$method^b$	ΔH , kJ/mol	$\Delta S,$ J/(K mol)	<i>T</i> . ⁰C	medium	ref
	4-CIPhN.+	2.62	Cel	-36.2	-71.5	-, -	MeOH	107
	3-ClArN ⁺	2.02	Spec	-50.2	-71.5	15	MeOH	112
	4-CNArN ⁺	3.15	Spec			15	MeOH	112
	3-CNPhN ₂ +	5.27	Spec			50	DCE	110
	$2-CH_3PhN_2^+$	3.34	Spec			50	DCE	109
	$2 - CH_3PhN_2^+$	3.97	Spec			15	DCE	112
	3-CH ₃ PhN ₂ ⁺	4.29	Spec			50	DCE	109
	3-CH ₃ PhN ₂ +	4.53	Spec			50	DCE	110
	4-CH ₃ PhN ₂ ⁺	4.40	Spec			50	DCE	109
	4-CH ₃ PhN ₂ ⁺	4.39	Spec			50	DCE	110
	$4 - CH_3 PhN_2^+$	5.10	Spec	05.0	66 1	15	DUE	112
	$4 - CH_3 P n N_2$	2.30	Cal	-30.9 -41 0	-77.1	25	MeOH	107
	4-CH.PhN.+	2.20	Snec	-41.5	-91.0	15	MeOH	100
	4-CF.PhN.+	2.85	Cal	-37.2	-70.1	25	MeOH	107
	2.6(CH ₃),PhN ₂ ⁺	2.01	Spec			15	DCE	112
	4-NO ₂ PhN ₂ +	3.02	Cal	-35.1	60 .3	25	MeOH	107
	$4-NO_2ArN_2^+$	3.10	Spec			15	MeOH	112
	3-CH ₃ OArN ₂ +	2.63	Spec			15	MeOH	112
	3-CH ₃ OPhN ₂ ⁺	4.78	Spec			50	DCE	110
	$4-CH_3OPhN_2^+$	2.56	Spec			15	Me ₂ CO	112
	$4-CH_3OPhN_2^+$	3.23	Spec			15	CH ₂ Cl ₂	112
	$4 - CH_3 OPhN_2$	3.45	Spec			15		112
	$4 - CH_3 OPhiN_2$	4.07	Spec			15	DCE	112
	$4-CH_3OFIIN_2$	2.07	Cal	_33.0	-75 7	25	MaOH	112
	4-CH ₂ OPhN ₂ ⁺	2.01	Snec	00.0	10.1	15	MeOH	119
	4-CH ₂ OPhN ₂ ⁺	2.00	Spec			15	THF	112
	$2-CH_{3}C(O)PhN_{3}^{+}$		Spec			50	DCE	109
	3-CH ₃ C(O)PhN ₂ +	5.06	Spec			50	DCE	109
	$3-CH_{3}C(O)PhN_{2}^{+}$	5.02	Spec			50	DCE	110
	$4-CH_3C(O)PhN_2^+$	5.05	Spec			50	DCE	109
	$4-(CH_3)_3CPhN_2^+$	4.28	Spec			50	DCE	109
	$4-(CH_3)_2NPhN_2^+$	1.56	Spec			15	MeOH	112
Cb(OctAcet)18C6	Na ⁺	4.2	Pot			25	90% MeOH, 0.1 M NMe₄Cl	334
Cy18C6	Li [≁]	<0.7	ISE			25	H_2O	11, 25
	Na⁺ Nat	0.8	ISE			25		11, 25
	Na V+	4.09	ISE			25	MeOH H O	11, 25
	K+	5.89	ISE			25	M₂OH	11, 25
	Cs ⁺	0.8	ISE			25	H ₂ O	11, 25
	Cs ⁺	4.30 (1)	ISE			25	MeOH	11, 25
	Cs ⁺	1.52 (2)	ISE			25	MeOH	11, 25
	Ag ⁺	1.7-1.9	Pot			25	H_2O , from 3 to 0.3 mM Ag ⁺	11, 25
	NH₄ ⁺	1.1	ISE			25	H ₂ O	11, 25
cis-anti-cis-Cy ₂ 18C6	H ⁺	8.3	Cond			25	DCE	113
	Na ⁺	1.2-1.6	ISE			25	H_2O , from 8 to 1 mM Na ⁺	11, 25
	Na ⁺	0.69	Cal	-6.57	-8.8	25	H ₂ O	53
	Na Nat	1.7	Cal	-10.5	-2.5	20		11
	Na ⁺	~4.0 3.68	ISE		-04.1	25	MeOH	11 25
	K ⁺	1.63	Cal	-21.2	-40	25	H ₂ O	53, 115, 116
	 К+	1.78	ISE			25	H ₂ O	11, 25
	K+	2.7	Cal	-32.2	-56.5	25	Me ₂ SO	11
	K+			-43.9	-43.9	25	MeOH	11
	K+	5.38	ISE			25	MeOH	11, 25
	Rb ⁺	0.87	Cal	-16.6	-38.9	25	H ₂ O	53, 115
	Cs ⁺	0.9	Cal			25	H ₂ O	115
	Cs ⁺	0.9	ISE			25	H ₂ O	11, 25
	CS S_2+	3.49	LOL	-12.2	63	25	MeOH	11, 20 52 115
	Ba ²⁺	2.04	Cal	-25.9	-24.3	25	H ₂ O	53 115
	Ag ⁺	1.59	Cal	-8.74	1.3	25	H ₂ O	11, 53, 115
	Ag ⁺	1.8	ISE			25	H ₂ O	11, 25
	Hg_{2}^{2+}	1.57 (1)	Cal	-18.15	-31.0	25	H ₂ O	53
	Hg_{2}^{2+}	1.1 (2)	Cal	-23.8	-58.5	25	H ₂ O	53
	Hg ²⁺	2.60	Cal	-10.66	13.8	25	H ₂ O	53
	T1+	1.83	Cal	-17.9	-25	25	H ₂ O	53
	PD**	4.43	Cal	-1/.6	25.9	25		00 11 59 115
	NH.+	0.80	ISE	-14.20	-02.0	20 25	H ₂ O	11, 03, 110
	CH ₂ NH ₂ +	0.66	Cal	-3.76	0	25	H ₂ O	53
cis-syn-cis-Cv ₂ 18C6	H+	>9	Spec	2.70	-	25	CHCl₃	117
J	H+	8.6	Cond			25	DCE	113
8.	H ⁺	2.939	Cond			25	DCE	123
	H+	8.2	\mathbf{Pot}			25	MeCN	335

]:	antic-	1 V4	math - Jh	ΔH ,	$\Delta S,$	T 00		
ligand	cation	10g K*	metnod"	KJ/mol	J/(K mol)	1, 0	meaium*	rei
	н ₃ 0* Li+	8.3 0.6	Pot ISE			25 95	MeUN H-O	335 11 95
	Na ⁺	1.21	Cal	0.67	25.5	25 25	H ₂ O	53
	Na ⁺	1.5-1.85	Pot			25	H_2O , from 8 to 1 mM Na ⁺	11, 25
	Na ⁺	4.81	Spec			25	Diox	336
	Na ⁺	4.08	ISE			25	MeOH	11, 25
	K+ K+	2.02	Cal	-16.2	-15.9	25	H ₂ O	53, 115, 116
	K' K+	2.18	ISE			25		11, 25
	Rb ⁺	1.52	Cal	-13.9	-17.6	25	HeOI	53, 115
	Rb ⁺	1.47	Cal	-14.5	-21	25	H ₂ O	116
	Cs ⁺	0.96	Cal	-10.1	-15.5	25	H ₂ O	53, 115, 116
	Cs ⁺	3.45	NMR			25	DMF	95
	Cs ⁺	2.20	NMR			25		95
	Cs ⁺	1.25	ISE			25 25	$H_2 U$ Ma CO	11, 25
	Cs ⁺	>4	NMR			25	MeCN	95
	Cs ⁺	4.61 (1)	ISE			25	MeOH	11, 25
	Cs^+	0.59 (2)	ISE			25	MeOH	11, 25
	Cs ⁺	~4	NMR			25	PC	95
	Cs ⁺	>5	NMR	15 /		25	Py	95
	Sr ²⁺	3.24	Cal	-15.4	10.5	H ₂ O 25	53, 115 H O	n 59 115
	Δα ⁺	2.36	Cal	-20.6	46.0	20 25	H_2O	53, 115
	Ag ⁺	2.3	Pot	0.0	40.0	25	H ₂ O	11, 25
	Hg_{2}^{2+}	1.93 (1)	Cal	-9.03	6.7	25	H ₂ O	53
	Hg_{2}^{2+}	0.6-1.8 (2)	Cal	25. 5	109	25	H_2O	53
	Hg^{2+}	2.75	Cal	-3.0	42.7	25	H ₂ O	53
	'1'1* D⊾2+	2.44	Cal	-15.1	-4.2	25	H ₂ O	53
	NH.+	4.95	Cal	-23.3	-5.0	25 25		00 53 115
	NH ⁴	1.55	ISE	5.0	0.0	25	H ₂ O	11. 25
	CH ₃ NH ₃ ⁺	0.82	Cal	-3.2	5.0	25	H_2O	53
$trans-anti-trans-Cy_218C6$	Na ⁺	2.52	ISE			24.5	MeOH	114
	K ⁺	3.26	ISE			19	MeOH	114
	Rb ⁺ Ca ⁺	2.73	ISE			22	MeOH	114
trans-syn-trans-Cy-18C6	Ne ⁺	2.27	ISE			19.0 91	MeOH	114
11 ana-3971-11 ana-0921000	K ⁺	4.14	ISE			22.5	MeOH	114
	Rb ⁺	3.42	ISE			23	MeOH	114
	Cs^+	3.00	ISE			19	MeOH	114
$Cy_2 18C6$ (mixture of isomers)	H+	~6	Cond			25	CHCl ₃	117
	Li⁺ ĭ;+	<2	Polg			25	MeOH	215
	Li+	<2	Polg			25	PrOH	215 915
	Na ⁺	4.41. 4.44	Spec			25	Diox	336
	Na ⁺	4.21	Polg			25	MeOH	215
	Na ⁺	4.70	Polg			25	EtOH	215
	Na ⁺	4.90	Polg			25	PrOH	215
	K' K+	5.73, 5.75 5.97	Spec			25		336
	к+	6.58	Polg			25 25	EtOH	215
	K+	7.24	Polg			25	PrOH	215
	K+	6.60	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	Rb ⁺	5.40	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	Us ⁺ Ce ⁺	4.25 5.1	Polg			25	MeUH	215
	Cs ⁺	5.76	ലവള ലപ്പ			20 95	PrOH	210 915
	Cs ⁺	5.10	Polg			20	MeCN, 0.05 M Bu/NClO	70
	Cs^+	3.45	NMR			25	DMF	94
	Cs ⁺	2.20	NMR			25	Me_2SO	94
	Cs ⁺	>4	NMR			25	MeCN	94
	Us" Cet	>4	NMR NMP			25	Me ₂ CO	94
	Cs ⁺	>5	NMR			20 25	Pvr	54 94
	Tl+	7.40	Polg			22	MeCN, 0.05 M Bu NClO	70
	Tl+	5.20	Polg			22	MeOH, 0.025 M Bu, NClO,	70
$(t-BuCy)_218C6$	Li ⁺	<0.6	Cond			25	H ₂ O	11
	Na ⁺ V+	1.42	Cond			25	H ₂ O	11
	л Сs ⁺	2.08	Cond			25	H ₂ O	11
	Rb+	1.53	Cond			25	H ₂ O	11
	NH_4^+	1.28	Cond			25	H ₂ O	11
$K_{2}18C6$	Na ⁺	2.5	Cal	-9.5	16	25	MeOH	118, 119
	К ^т DL+	2.79	Cal	-24.6	-29.0	25	MeOH	118, 119
	LD.	2.09	Ual	-29.3	-58	25	MeUH	119

ligand	action	log Ka	method ^b	ΔH , k.L/mol	ΔS , $J/(K mol)$	T °C	mediume	rof
			Gul	K 0/III01	07 (IT III01)	1, 0		110
		2.55	Cal	-6.4	27.5	25		119
	∆σ+	2.50	Cal	-6.4	26.4	25 25	MeOH	102 119
Oct18C6	Na ⁺	3.91	Spec	0.1	20.1	25	MeOH	63
	K ⁺	5.03	Spec			25	MeOH	63
Dodec18C6	Na ⁺	3,93	Spec			25	MeOH	63
	K ⁺	5,28	Spec			25	MeOH	63
Ph18C6	Na ⁺	4.17	Spec			25	MeOH	63
OctOM18C6	K' Na ⁺	5.06 3.88	Spec			20	MeOH	63 69
00000000	K ⁺	5.36	Spec			25	MeOH	63
DodecOM18C6	Na ⁺	3.83	Spec			25	MeOH	63
	K+	5.37	Spec			25	MeOH	63
(BzOM) ₄ 18C6	t-BuNH ₃ ⁺	4.30	NMR			?	CDCl ₃	120
(TritOM) ₄ 18C6	t-BuNH ₃ ⁺	<4.0	NMR			?	CDCl ₃	120
(DMD) ₄ 18C6	Na' V+	3.59	ISE			? ?	MeOH	120
	Rh ⁺	4.40	ISE			2	MeOH	120
	t-BuNH _o +	<1.5	NMR			?	CDCl ₂	120
	PhCH ₂ NH ₃ +	6.18	NMR			?	CDCl ₃	120
(Me ₂ Acet) ₄ 18C6	K+	1.9	ISE			25	H ₂ O, Buff 0.1 M, pH 7.0	121
	NH4 ⁺	<0.70	ISE			25	H ₂ O, Buff 0.1 M pH 7.0	121
(MeAcet) ₄ 18C6	K+	1.3	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
Cb418C6	K ⁺ NU +	5.5 9.5	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	CH-NH ⁺	29	ISE			25 25	H_2O , buffer 0.1 M, pH 7.0 H_2O huffer 0.1 M pH 7.0	121
	CH ₃ CH ₃ NH ₃ ⁺	2.4	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	$(CH_3)_2CHNH_3^+$	1.6	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	CH ₃ (CH ₂) ₃ NH ₃ ⁺	2.3	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	$(CH_3)_3CNH_3^+$	1.6	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	$C_6H_5CH_2NH_3^+$	2.8	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	$C_{\theta}H_{5}CH_{2}CH_{2}NH_{3}$	2.5	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	$U_6 \Pi_5 U \Pi_2 U \Pi_2 U \Pi_3$ HOCH CH NH +	1.4 97	ISE			25 25	H_2O , buffer 0.1 M, pH 7.0 H_2O buffer 0.1 M pH 7.0	121
	HOCH ₂ CH ₂ CH ₂ NH ₂ ⁺	2.5	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	HOCH ₂ CH(CH ₃)NH ₃ ⁺	1.6	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	HOCH(C ₆ H ₅)CH ₂ NH ₃ ⁺	2.74	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	$(CH_3)_2 NH_2^+$	<0.7	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	$HOCH_2CH_2NH_2^+CH_3$	1	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	$C H CH CH N^+(CH_3)_2$	0.7	ISE			20 25	H_2O , buffer 0.1 M, pH 7.0 H.O. buffer 0.1 M pH 7.0	121
	$C_{6}II_{5}CII_{2}CII_{2}IV$ (CII ₃) ₃ adrenaline(1+)	1.8	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	ephedrine(1+)	1.3	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	H ₃ N ⁺ CH ₂ CO ₂ Me	2.8	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	guanidinium	1.65	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	Histaminium	3.8	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	imidazolium	1 9 79	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	noradrenaline $(1+)$	2.72	ISE			20 25	H_2O , buffer 0.1 M, pH 7.0	121
	phenylalaninium	1.5	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	serotoninium	2.51	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	tryptaminium	2.51	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	$^{+}H_{3}N(CH_{2})_{2}NH_{3}^{+}$	4.6 (1:1?)	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	$^{+}\text{H}_{3}\text{N(CH}_{2})_{3}\text{NH}_{3}^{+}$	3.8(1:1?)	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	$H_3N(CH_2)_4NH_3$	3.23 (1:1?)	ISE			20 25	H_2O , buffer 0.1 M, pH 7.0	121
	$^{+}H_{a}N(CH_{a})_{a}NH_{a}^{+}$	<2.95(1:1?)	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	$(CH_3)_2NH^+(CH_2)_2NH_3^+$	4.40	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	(CH ₃) ₂ NH ⁺ (CH ₂) ₃ NH ₃ ⁺	3.61	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
(MeCbMAcet) ₄ 18C6	K ⁺	1.3	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
(CbMAcet) ₄ 18C6	K+	2.81	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
		1.5	ISE			20	H_2O , buffer 0.1 M, pH 7.0	121
(ProCha),18C6	NH.+	1.7	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
(PheCba)₄18C6	NH₄ ⁺	2.18	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
(TrPCba) ₄ 18C6	K ⁺	4.74	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	NH₄ ⁺	2.64	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	$CH_3NH_3^{T}$	2.0	ISE			25	H_2U , butter 0.1 M, pH 7.0	121
	C ₂ H ₂ CH ₂ NH ₂ ⁺	2.18	ISE			20 25	$H_{2}O$, buffer 0.1 M, pH 7.0	121
	$C_{6}H_{5}(CH_{2})_{2}NH_{2}^{+}$	2	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	HO(CH ₂) ₂ NH ₃ ⁺	2.18	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	C ₆ H ₅ CH(OH)CH ₂ NH ₃ ⁺	2.18	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	$^{+}H_{3}N(CH_{2})_{2}NH_{3}^{+}$	4 (1:1?)	ISE			25	H_2O , butter 0.1 M, pH 7.0	121
	n ₃ in(Un ₂) ₃ inn ₃ '	0.Z0 (1:17)	196			4 0	n_20 , butter 0.1 M, pri 7.0	121

ligand	cation	$\log K^a$	$method^b$	∆H, kJ/mol	ΔS, J/(K mol)	<i>T</i> , ⁰C	medium ^c	ref
	+H3N(CH2)4NH3+	2.8 (1:1?)	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	Nic ⁺ EtNH ₃ ⁺	3.36	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	Nic ⁺ BuNH ₃ ⁺	2.6	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
(GluCba) ₄ 18C6	K+	4.43	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	NH_4^+	2.40	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	$^{+}H_{3}N(CH_{2})_{2}NH_{3}$	2.9(1.17) 2.63(1.17)	ISE			20 25	H_2O , buffer 0.1 M, pH 7.0	121
	$^{+}H_{2}N(CH_{2})_{3}NH_{3}^{+}$	2.26(1:1?)	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
(SulNapAcet)₄18C6	K ⁺	3	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	NH4 ⁺	1.7	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	$^{+}H_{3}N(CH_{2})_{4}NH_{3}^{+}$	2.18 (1:1?)	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
	$^{+}\text{H}_{3}\text{N(CH}_{2})_{6}\text{NH}_{3}^{+}$	2.40 (1:1?)	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
(ChNan Apot) 18C6	$H_3N(CH_2)_6NH_3^+$ K+	2.65 (1:1?)	ISE			25 25	H_2O , buffer 0.1 M, pH 7.0	121
(CDIVapAcet)41800	HOCH CH NH +	3.23 1.81	ISE			25	$H_{2}O$, buffer 0.1 M, pH 7.0	121
(ArgCba)₄18C6	K ⁺	2.58	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	$^{-}O_{3}S(CH_{2})_{2}NH_{3}^{+}$	<0.7	ISE			25	H ₂ O, buffer 0.1 M, pH 7.0	121
	$^{-}O_2C(CH_2)_3NH_3^+$	<0.7	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
(Ch.) 1800	$^{-}O_{2}C(CH_{2})_{5}NH_{3}^{+}$	<0.7	ISE			25	H_2O , buffer 0.1 M, pH 7.0	121
(enCDa) ₄ 18Cb (NicEAcot) 18C6	K†	$1.3 \sim 0.7$	ISE			20	H_2O , buffer 0.1 M, pH 7.0	121
Meal8C6 (mixed isomers)	Na ⁺	2.94	Spec			25	MeOH	63
Megreeo (mined isomers)	K ⁺	3.86	Spec			25	MeOH	63
B18C6	Na ⁺	2.5	Cond			25	DMF	338
	Na ⁺	1.70	NMR			25	99% Me ₂ SO	72
	Na ⁺	4.9	Cond			25	MeCN	338
	Na' Nat	4.90	Polg			22	$M_{0} CO$	69
	Na ⁺	4.72	Pot			25 25	MeOH	340
	Na ⁺	4.03	Spec			25	MeOH	122
	Na ⁺	4.5	Cond			25	MeOH	338
	Na ⁺	5.3	Cond			25	PC	338
	K+	3.6	Cond			25	DMF	338
	K ⁺ V+	2.8	Cond			25	Me_2SO	338
	K+	2.00 5.3	Spec Cond			25 25	MeCN	338
	K+	5.30	Polg			22	$MeCN$, 0.05 M Bu_4NClO_4	70
	K ⁺	5.10	Cond			25	Me ₂ CO	69
	K+	5.05	\mathbf{Pot}			25	MeOH	340
	K+	5.2	ISE			25	MeOH	64
	K ⁺ K ⁺	5.20	Polg			22	MeOH, 0.025 M Bu ₄ NClO ₄	70
	K+	5.21 5.7	Spec Cond			20 25	MeOH MeOH	338
	K+	5.4	Cond			25	PC	338
	Rb ⁺	3.2	Spec			25	DMF	338
	Rb ⁺	2.6	Spec			25	Me ₂ SO	338
	Rb ⁺	2.49	Spec			25	99% Me ₂ SO	72
	RD' Ph+	4.4	Cond			25	MeCN 0.05 M By NCIO	338
	Rb ⁺	4.40	Snec			25	MeOH	122
	Rb ⁺	5.1	Cond			25	MeOH	338
	Rb ⁺	4.5	Cond			25	PC	338
	Cs ⁺	2.8	Spec			25	DMF	338
	Cs ⁺	2.4	Spec			25	Me_2SO	338
	Us' Cat	2,25	Spec			25	99% Me ₂ SU M ₂ CN	22
	Cs ⁺	3.0 4.05	Polg			20	MeCN 0.05 M Bu-NCIO	338 70
	Čs ⁺	3.66	Spec			25	MeOH	122
	Cs ⁺	4.1	Cond			25	MeOH	338
	Cs ⁺	3.6	Cond			25	PC	338
	Ca^{2+}	3.50	Spec			25	MeOH	122
	5r- B-2+	4.92 5.95	Spec			25	MeOH MeOH	122
	TI ⁺	5.70	Polg			22	MeCN, 0.05 M Bu.NClÖ	70
	Tl+	4.60	Polg			22	MeOH, 0.025 M Bu ₄ NClO ₄	70
	$n_{C_3}H_7NH_3^+$	5.09	Spec			26.6	C ₆ H ₆	106
	i-C ₃ H ₇ NH ₃ ⁺	5.16	Spec			26.6	C ₆ H ₆	106
	$n - C_4 H_9 N H_3^+$	6.36 5 1 9	Spec			6		106
	$n - C_4 \Pi_9 \Pi \Pi_3$	0.10 178	Spec			20.0 35	∪ ₆ n ₆ C₂H₂	106
	sec-C ₄ H ₆ NH ₆ ⁺	6.11	Spec			6	C ₆ H ₆	106
	sec-C4H9NH3+	4.88	Spec			26.6	C ₆ H ₆	106
	sec-C ₄ H ₉ NH ₃ +	4.50	Spec			35	C_6H_6	106
	$t-C_4H_9NH_3^+$	6.28 5.00	Spec			6		106
	ι-∪ ₄ Π9INH3 ⁺	a.00	Spec			26.6		106

ligand	cation	$\log K^a$	$method^b$	ΔH , kJ/mol	$\Delta S, J/(K mol)$	<i>T</i> , °C	medium ^c	ref
	$t-C_4H_9NH_3^+$	4.62	Spec			35	C ₆ H ₆	106
	$n-C_{5}H_{11}NH_{3}^{+}$	5.24	Spec			26.6	C ₆ H ₆	106
	$sec-C_5H_{11}NH_3^+$	4.92	Spec			26.6	C_6H_8	106
	$t-C_{5}H_{11}NH_{3}^{+}$	4.66	Spec			26.6	$C_{6}H_{6}$	106
	$n-C_{3}H_{6}(C_{2}H_{5})NH_{3}^{+}$	3.98	Spec			26.6	C_6H_6	106
8,15-Me ₂ B18C6	Na ⁺	3.76	Cond			25	MeOH	74
	K ⁺	4.39	Cond			25	MeOH	74
	Rb ⁺	3.90	Cond			25	MeOH	74
	Cs ⁺	3.38	Cond			25	MeOH	74
8,11,15-Me ₃ B18C6	Na ⁺	3.53	Cond			25	MeOH	74
	K ⁺	3.91	Cond			25	MeOH	74
	Rb ⁺	3.37	Cond			25	MeOH	74
	Cs ⁺	2.99	Cond			25	MeOH	74
AcetoB18C6	$n-C_4H_9NH_3^+$	4.79	Spec			26.6	$C_{6}H_{6}$	106
	sec-C ₄ H ₉ NH ₃ ⁺	4.55	Spec			26.6	C_6H_6	106
	t-C₄H ₉ NH ₃ ⁺	4.68	Spec			26.6	C_6H_6	106
AdrB18C6	Na⁺	4.35	Pot			25	MeOH	340
	K ⁺	5.05	Pot			25	MeOH	340
AldB18C6	Na⁺	4.59	Cond			25	Me ₂ CO	69
	K ⁺	4.89	Cond			25	Me ₂ CO	69
N-BuAcetB18C6	Na'	4.51	Cond			25	Me ₂ CO	69
M-D1000	K' N +	4.75	Cond			25	Me ₂ CO	69
MeB18C6	Na'	5.09	Cond			25	Me ₂ CO	69
	Na' V+	4.30, 4.36	Spec			25	Diox	336
	K' V+	0.00 E 100 E 100 E 00	Cond			25		69
NHD1000	К' N-+	5.193, 5.190, 5.23	Spec			25		336
NILB18C6	INA V+	4.07	Cond			25		69
B 1900	К' U+	4.80	Cond			20	Me ₂ CO	69
B ₂ 18C6	п' u+	2.32	Cona			20	$CHCl_3$ ion pair with Br	117
		3./ 9.4	Pot			20	MeCN	335
	П ₃ О I ;+	3.4 0	Fot			20	H O	330 194
	L) I ;+	20	Cond			20		124
	L1 I ;+	3.0	Cond			20	DMI	120
	Li No ⁺	3.20	Space			20		120
	Na ⁺	1.10	Sol			25	H ₂ O	124 00o
	Na ⁺	3 957	Cond			10		30a 196
	No ⁺ BPh. ⁻	3 791	Cond			10	DME	120
	N_0^+	3.791	Cond			20	DME	120
	Ne ⁺ BPh. ⁻	3 684	Cond			20	DME	120
	Na ⁺	3.66	Cond	-163	16.3	30	DME	120
	Itu	internolated	cond	10.0	10.0	00	BNE	120
	Na ⁺ .BPh. ⁻	3.62	Cond	-14.2	22.6	30	DME	126
	114 ,2214	interpolated	00114	- 1.2	22.0	00		120
	Na ⁺	3.559	Cond			40	DME	126
	Na ⁺ .BPh. ⁻	3.535	Cond			40	DME	126
	Na ⁺	2.8	NMR			25	DMF	128
	Na ⁺	3.34	Cond			25	DMF	125
	Na ⁺	3.25	NMR			29	DMF	131
	Na ⁺	2.69	Cond			30	DMF	11
	Na ⁺	3.30	Cond			25	Me ₂ SO	125
	Na ⁺	1.93	ISE			25	Me ₂ SO	90a
	Na ⁺	5.13	Pot			10	MeCN	58
	Na ⁺	5.00	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	Na ⁺	5.00	Pot	-14.3	47.7	25	MeCN	58
	Na ⁺	4.85	ISE			25	MeCN	90a
	Na ⁺	5.04	Cond			25	MeCN	11
	Na ⁺	4.9	Pot			40	MeCN	58
	Na ⁺	4.5	Cal	-31.2	-18.8	25	MeOH	127
	Na ⁺	4.36	Elec			25	MeOH	54
	Na ⁺	4.36	ISE			25	MeOH	11, 25
	Na ⁺	4.4	Sol			25	MeOH	90a
	Na ⁺	4.36	Spec	.		25	MeOH	63
	Na ⁺	6.3	Pot	-35		5-65	NBnz, $0.01 \text{ M Bu}_4\text{NPh}_4\text{B}$	129
	Na ⁺	3.88	Cond			25	PC DC	125
	INAT IZ+	ə.20 1.07	ISE			25	ru H O	90a 104
	N' N+	1.07	ରpec ବଧ			20	л₂∪ Ч ∩	124
	л К+	1.0 5.46	S01			20 95	$\frac{11}{20}$	208 199
	к+	0.40 3.51	Cord			20 25	DMF	195
	к+	3.64	NMP			20	DMF	131
	й+	3.26	Sol			25	DMF (anion = $C^{(-)}$)	133
	 K+	3.15	ISE			25	DMF (anion = ClO_{-})	133
	K+	2.5	Cal	-23.0	-36.7	25	Me ₂ SO	11
	K+	2.52	Cond			25	Me ₂ SO	93
							-	

TADIEI /	(Continued)
TABLEI	Continued

				ΔH ,	ΔS ,			
ligand	cation	$\log K^a$	$method^b$	kJ/mol	J/(K mol)	<i>T</i> , ⁰C	medium ^c	ref
	¥+	9.41	Cand			95	Mo SO	195
	K .	3.41	Cond			25	Me ₂ SO	120
	K ⁺	2.46	ISE			25	Me ₂ SO	90a
	K+	4.83	Cond			25	MeCN	11, 93
	K+	4.81	ISE			25	MeCN	90a
	K+	4.70	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	к+	5.00	ISE			25	MeOH	11 25
	11 12+	5.00	Cal	10.04	20.00	20	Meon	107
	K 12+	5.1		-40.04	-30.00	20	Meon	127
	K'	5.08	Cond			25	MeOH	93
	K+	5.00	Elec			25	MeOH	54
	K+	4.8	ISE			25	MeOH	64
	K+	5.05	ISE			25	MeOH	90a
	К+	5.00	Spec			25	MeOH	63
	к+	4 60	Polg			22	MeOH 0.025 M Bu NCIO	70
	12+	4.00	P olg			22 E 0E	ND. ~ 0.01 M D. NDL D	100
	K I	6.0	Pot			0 -0 0	NBnz, 0.01 M Bu_4NFn_4B	129
	K⁺	5.08	Cond			25	PC	125
	K+	5.13	ISE			25	PC	90a
	K+	5.41	Sol			25	i-PrOH (anion = picrate)	133
	К+	1.87	Pot			25	50% THF/H.O	11
	Rh+	1.08	Snec			25	H.O	194
	DL+	1.00	Dele			20	MaCN A OF M By NCIO	70
		3.70	Polg			22	MICIN, 0.05 MI BUANCIO4	10
	Rb	3.54	Cond			25	DMF	125
	Rb+	2.89	NMR			25	DMF	131
	Rb+	3.37	Cond			25	Me ₂ SO	125
	Rb+	4.23	Sol			25	MeOH	90a
	Rh+	3 76	Cond			25	PC	195
	DL+	0.10	LOID			25	DO DO	120
	KD'	3.91	ISE			20		90a
	Rb ⁺	1.35	Pot			25	50% THF/H ₂ O	11
	Cs^+	0.83	Spec			25	H_2O	124
	Cs^+	1.48	NMR			25	DMF	94
	Cs ⁺	3 48	Cond			25	DMF	125
	Ca+	0.10	NMP			25	DME	191
		2.30				20		131
	Cs	1.34	NMR			25	Me ₂ SO	94
	Cs ⁺	3.31	Cond			25	Me ₂ SO	125
	Cs^+	3.55 (1)	ISE			25	MeOH	11, 25
	Cs^+	2.92 (2)	ISE			25	MeOH	11, 25
	Cs ⁺	3.50	Pot			22	MeCN, 0.05 M Bu, NCIO,	70
	C ₀ +	1.54	NMR			25	MoCN	94
	0-+	1.04	INIT			20	Meen	00-
	Cs.	3.09	ISE			25	MeCN	90a
	Cs	>3	NMR			25	Me ₂ CO	94
	Cs^+	3.55	Cond			25	PC	125
	Cs ⁺	3.31	ISE			25	PC	90a
	Cs^+	~3	NMR			25	PC	94
	Co+	3.85 (1)	NMR			25	Pv	94
	C-+	0.00 (1)	NIMD			20	г.у D-	04
		2.30 (2)	NMR			20	ry N O	94
	Ca ²	0	Spec			25	H_2O	124
	Sr^{2+}	1.0	Spec			25	H_2O	124
	\mathbf{Sr}^{2+}	3.55	Kin			-15	MeOH, 0.05 M LiClO ₄	130
	Ba^{2+}	~ 1.95	Spec			25	H ₂ O	124
	Ba ²⁺	4.28	Cal	-21.2	11.1	25	MeOH	127
	B.CI+	~ 9 15	Spec			25	H.O	124
	L -3+	0	Spec			20	н <u>о</u>	104
	a_ ∧+	1 41	Spec			20		124
	Ag	1.41	Spec			25		124
	Ag⁺	1.5	Sol			25	H ₂ O	90a
	Ag ⁺	4.04	Sol, ISE			25	MeOH	90a
	Ag^+	5.82	ISE			25	PC	90a
	TĨ+	1.50	Spec			25	H_O	124
	T1+	1.5	Sol			25	H 0	90.
	T1+	0.45	NMD			20		30a
	11	2.40	NMR			29		131
	$\mathbf{T}\mathbf{I}^{+}$	4.90	Polg			22	MeCN, 0.025 M Bu ₄ NClO ₄	70
	Tl+	4.00	\mathbf{Polg}			22	MeOH, $0.025 \text{ M Bu}_4\text{NClO}_4$	70
	Tl+	3.92	Sol, ISE			25	MeOH	90a
	Tl+	3.80	ISE			25	MeOH	90a
	TI+	4.98	Pot			25	PC	24
	 Ti+	5.05	ISE			25	PC	 90e
	DL2+	1 00	Shore Shore			20	чо чо	104
	ר 0	1.03	Spec			20		124
	ĽD4″	9.74	Pot			25	PC	24
	NH_4^+	~ 0.30	Spec			25	H₂O	124
$meso$ -6,10- Me_2B_218C6	Na ⁺	3.56	ISE			25	MeOH	64
	K+	4.13	ISE			25	MeOH	64
rac-6.10-Me.B.18C6	Na ⁺	3.77	ISE			25	MeOH	64
	к+	4.37	ISE			25	MeOH	64
maso-7 9-Mo B 1904	No+	9.70	ISE			25	MOH	64
///eau-1,0-141e2D21000	INA IZ+	2.10	100			20	MeOH	04
	N.±	0.42	ISE			20 05	MOU	04
rac-7,9-Me ₂ B ₂ 18C6	Na	3.03	ISE			25	MeOH	64
	K ⁺	4.04	ISE			25	MeOH	64

1. 1		1 . 170		ΔH ,	$\Delta S,$	<i></i>		
ligand	cation	log K ^o	method	kJ/mol	J/(K mol)	1, 0	medium	rei
syn-(AmB) ₂ 18C6	Na⁺ Na‡	3.031	Cond			10		126
	Na ⁺	2.860	Cond			20	DMF	126
	Na ⁺	2.544	Cond			40	DMF	126
(BrB) ₂ 18C6	H+	5.86	Spec	-27.6	-96.1	25	CHCl ₃	117
$(t-BuB)_{2}18C6$	Na ⁺	5.36	Polg			25	PC, ? M Et ₄ NClO ₄	132
	Na ⁺	5.41	Pot			25	PC, $0.1 \text{ M Et}_4 \text{NClO}_4$	132
	K+	5.38	ISE	-27.6	-96.1	25	n-BuOH (anion = picrate)	133
	K ⁺ V+	3.30	Sol			20	DMF (anion = $C\Gamma$)	133
	K+	2.07	Sol			25	$Me_{2}SO$ MeCN (anion = Cl ⁻)	133
	K+	4.90	Sol			25	MeCN (anion = Br^{-})	133
	K+	5.15	ISE			25	MeCN (anion = picrate)	133
	K+	5.23	Sol			2 5	Me_2CO (anion = Br^{-})	133
	K+	5.62	ISE			25	<i>i</i> -PrOH	133
	K+	5.18	Sol			25	MeOH (anion = IO_3^{-})	133
	K ' Ma ²⁺	5.32	Sol Dot			25	PC (anion = CI) $PC (a 1 M Et NCIO$	133
		6.86	Pot			25	PC. 0.1 M Et. NClO.	23
	Sr^{2+}	7.82	Pot			25	PC. 0.1 M Et $NClo_4$	23
	Ba ²⁺	7.66	\mathbf{Pot}			25	PC, 0.1 M Et ₄ NClO ₄	23
	La ³⁺	5.14	\mathbf{Pot}			25	PC, 0.1 M Et ₄ NClO ₄	132
	Ce ³⁺	4.95	Pot			25	PC, 0.1 M Et ₄ NClO ₄	132
	Pr ³⁺	4.79	Pot			25	PC, 0.1 M Et_4NClO_4	132
	Nd° [≁]	4.58	Pot			25	PC, 0.1 M Et ₄ NClO ₄	132
	Cd3+	4.00	Pot			20 25	PC 0.1 M Et NCIO	132
	Ծս Th ³⁺	3.50	Pot			25	PC. 0.1 M Et $NClore$	132
	Dy ³⁺	3.40	Pot			25	PC, 0.1 M Et_4NClO_4	132
	Ho ³⁺	3.29	\mathbf{Pot}			25	PC, 0.1 M Et ₄ NClO ₄	132
	\mathbf{Er}^{3+}	3.16	Pot			25	PC, 0.1 M Et_4NClO_4	132
	Tm^{3+}	2.94	Pot			25	PC, 0.1 M Et_4NClO_4	132
	Y b ³⁺ I3+	2.57	Pot			25 25	PC, 0.1 M Et ₄ NCIO ₄ PC 0.1 M Et NCIO	132
	Sm ³⁺	2.01	Polg			25	$PC_{0.1} M Et_4 NCIO_4$	132
	Sm^{2+}	7.60	Polg			25	PC. 0.1 M Et. NClO	132
	Yb ³⁺	2.68	Polg			25	PC, 0.1 M Et ₄ NClO ₄	132
	Yb ²⁺	7.31	Polg			25	PC, 0.1 M Et ₄ NClO ₄	132
	Tl+	4.98	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	24
	Pb ²⁺	9.74	Pot			25	PC, 0.1 M Et_4NClO_4	24
(MeB) ₂ 18C6	Na⁺ Na†	3.69	Spec			25	DIOX MCCN 0.05 M By NCIO	336
	K+	5.10	Spec			22	Diox	336
	K+	4.80	Polg			22	MeCN, 0.05 M Bu/NClO	70
	K+	4.37	NMR			25	MeOH	83
	K+	5.00	Polg			22	MeOH, 0.025 M Bu ₄ NClO ₄	70
	Rb+	4.00	Polg			22	MeCN, $0.05 \text{ M Bu}_4\text{NClO}_4$	70
	Cs ⁺	3.40	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	'T1+ m:+	5.00	Polg			22	MeCN, 0.025 M Bu ₄ NClO ₄	70
syn_(NitB)_18C6	No+	3.60 1.99	Cond			30	DMF	126
A18C6	Na ⁺	2.77	ISE			25	MeOH	76
	K+	4.18	ISE			25	MeOH	76
	K+	3.90	ISE			25	MeOH	11, 25
	Ag ⁺	3.3	Pot			25	H ₂ O	11, 25
Nr. 1.1000	NH_4^+	3.55	ISE			25	90% MeOH	75
MeA18Cb	NH_4 No ⁺	4.00 9.51	ISE			20	90% MeOH MoOH	75 76
00141606	INA K ⁺	4.65	ISE			25	MeOH	76
A1A18C6	Na ⁺	3.10	ISE			25	90% MeOH	59
HOEA18C6	Na ⁺	4.75	ISE			Ž 5	MeOH	76
	K+	5.49	ISE			25	MeOH	76
MeOEA18C6	Na ⁺	4.18	ISE	01.1	0.0	25	90% MeOH	59
	ina No ⁺	0.0 (1) 9.7 (9)	Cal	-31.1 -59	2.ð 39	20 25		67
	K ⁺	5.35	Cal	-51.8	-71	25	MeOH	67
	Cs ⁺	4.24 (1)	Cal	-44.9	-69.3	25	MeOH	67
	Cs ⁺	2.10 (2)	Cal	-3.8	28	25	MeOH	67
	Ca ²⁺	4.83 (1)	Cal	-13.3	48	25	MeOH	67 07
	Ca ²⁺	3.45 (2)	Cal	3.1	76	25		67 75
H(OE)-A18C6	Nr14 Na+	4.2 4.34	ISE			20 25	MeOH	76 76
11(01)2/11000	K+	5.88	ISE			25	MeOH	76
Me(OE) ₂ A18C6	Na ⁺	5.7 (1)	Cal	-28.0	15	25	MeOH	67
-	Na ⁺	3.7 (2)	Cal	-1.8	65	25	MeOH	67
	K+		Cal	-52.5		25	MeOH	67

				ΔH ,	ΔS ,			
ligand	cation	$\log K^{a}$	$method^{b}$	kJ/mol	J/(K mol)	T. °C	medium	ref
	Cs ⁺	4.34	Cal	-49.4	-83	25	MeOH	67
	Ca ²⁺	4.23 (1)	Cal	-11.6	42.0	25	MeOH	67
	Ca ²⁺	3.08(2)	Cal	4.6	74	25	MeOH	67
	NH +	475	ISE	1.0	• •	25	90% MaOH	75
U(OF) A 19CC	NI-+	4.70	ISE			20	M-OH	75
H(UE)3A18C6	INA '	4.20	ISE			25	MeOH	76
	K⁺	5.69	ISE			25	MeOH	76
Me(OE) ₃ A18C6	Na ⁺	4.28	ISE			25	MeOH	76
-	K+	5.96	ISE			25	MeOH	76
	NH.+	4.6	ISE			25	90% MeOH	75
MA(OF) A1906	NIII +	4.0	ICE			05	000 MaOH	75
Me(OE) A18C6		4.4	ISE			20	90% MeOH	70
Me(OE) ₅ A18C6	NH4 ⁺	4.05	ISE			25	90% MeOH	75
Me(OE) ₈ A18C6	NH4 ⁺	3.6	ISE			25	90% MeOH	75
B ₂ A18C6	K+	3.20	\mathbf{Pot}			25	MeOH	11, 25
OctB _o A18C6	К+	4.10	Pot			25	MeOH	11.25
Dv19C6	No ⁺	1.00	Cal	-99.76	20	25	MOU	61 109
1 91800	IVA	4.05		-22.70	2.0	20	Meon	01, 102
	K'	5.35	Cal	-38.1	-25.4	25	MeOH	61, 102
	Rb+	4.56	Cal	-36.4	-34.8	25	MeOH	61
	Ca ²⁺	5.26	Cal	-12.1	60.0	25	MeOH	61
	Ba ²⁺	>5.5	Cal	-32.3		25	MeOH	61, 102
	Cu2+	162	C	-7.02	65.1	25	MOU	61
	0u	4.00	Cal	-1.05	00.1	20	Meon	01 100
	Ag	>5.0	Cal	-34.85		25	MeOH	61, 102
	Ag+	2.58 (2)	Cal	10.8	85.6	25	MeOH	61
(S,S)-Me ₂ Py18C6	(S)-TryOMe ⁺	2.29	Cal	-14.4	-4.3	25	MeOH	9
	(R)-TrvOMe ⁺	2.43	Cal	-14.4	-1.9	25	MeOH	9
K Py18C6	No ⁺	4 20	<u>C</u>	_25.0	_1.9	25	MOH	102 110
R ₂ 1 y1000		4.20	Cal	-20.9	-4.0	20	Meon	102, 119
	K'	4.66	Cal	-38.9	-41.3	25	MeOH	102, 119
	Rb⁺	4.24	Cal	-37.95	-46.1	25	MeOH	119
	Ba ²⁺	4.34	Cal	-25.2	-1.6	25	MeOH	102, 119
	Ag ⁺	4.88	Cal	-32.76	-16.5	25	MeOH	102, 119
	Δα+	5.15	Cal	-34.3	-16.5	25	MOH	Q
	NU +	0.10	Cal	20.4	10.0	20	MeOH	110
	Nn ₄	2.93		-32.4	-03	20	MeOH	119
	NH_4^+	3.29	Cal	26.0	-24.2	25	MeOH	9
(S,S)-Me ₂ K ₂ Py18C6	Ag ⁺	5.01	Cal	-37.5	-30.0	25	MeOH	9
	(S)-TrvOMe ⁺	1.76	Cal	-19.2	-30.6	25	MeOH	9
	(R)-TryOMe+	1 73	Cal	-17.2	-94 7	25	MeOH	9
	(S) NonE+NH +	2.06	Cal	-96 4	_40.2	25	MOU	0
	(D) Napelining	2.00	Car	-20.4	-49.3	20	MeOH	9
	(\mathbf{R}) -NapEtNH ₃	2.47	Cal	-27.6	-45.2	25	MeOH	9
	(S)-AlaOMe ⁺	1.78	Cal	-14.6	-14.8	25	MeOH	9
	(R)-AlaOMe ⁺	2.02	Cal	-14.8	-10.9	25	MeOH	9
	NH.+	2.81	Cal	-26.2	-33.9	25	MeOH	9
(S.S)-Ph-K-Pv18C6	$\Delta \sigma^+$	5.01	Cal	-35.6	-23.5	25	MeOH	<u>0</u>
(0,0)-1 1121221 91000	(0) m() (.+	0.01		10.05	20.0	20	Meon	9
	(S)-TryOMe	2.00	Cal	-10.00	-17.6	20	MeOH	9
	(R)-TryOMe ⁺	1.96	Cal	-15.36	-14.0	25	MeOH	9
	(S)-AlaOMe ⁺	1.84	Cal	-14.0	-11.8	25	MeOH	9
	(R)-AlaOMe ⁺	1.85	Cal	-13.8	-10.9	25	MeOH	9
	NH.+	2.72	Cel	-23.0	-25.1	25	MeOH	9
17 4 1906	U+	0.50 (1)	Det	20.0	20.1	05		90
1,7 - A ₂ 1800	11 774	9.09 (1)	FOL			20	H_2O , 0.1 M Et ₄ NCIO ₄	26
	H⁺	8.01 (2)	Pot			25	H_2O , 0.1 M Et_4NCIO_4	26
	Co ²	3.26	\mathbf{Pot}			25	H_2O , 0.1 M Et_4NClO_4	26
	Ni ²⁺	3.21	\mathbf{Pot}			25	$H_{2}O_{1}O_{1}M Et_{4}NClO_{4}$	26
	Cu ²⁺	7.40	Pot			25	$H_{\bullet}O_{\bullet}0.1$ M Et NCIO	26
	Zn ²⁺	4.26	Pot			25	H_0 0.1 M Ft NCIO	26
1 10 4 1906 (9.9)	U+	9.20	Det	26 0 (Cal)	E0 1	20	$H_{2}O, 0.1 M M_{2} NOO$	20
$1,10-A_21000$ (2.2)	11 · · · · · · · · · · · · · · · · · ·	9.08 (1)	FOL	-36.0 (Cal)	53.1	20	H_2O , 0.1 M Me ₄ NCIO ₄	99
	H	7.94 (2)	Pot	-39.7 (Cal)	18.4	25	H_2O , 0.1 M Me_4NCIO_4	99
	H+	9.20 (1)	\mathbf{Pot}			25	H_2O , 0.1 M Et_4NClO_4	77
	H^+	8.02 (2)	Pot			25	H ₂ O, 0.1 M Et ₄ NClO ₄	77
	H+	9 30 (1)	Pot			25	H_0 0.1 M Ft NCIO	26
	11 11+	9.15 (0)	Det			20	H_2O , 0.1 M Et NOIO	20
	11 11+	0.10 (2)	POL			20	11_2O , 0.1 IVI Et ₄ NCIO ₄	20
	H'	9.245 (1)	Pot			25	H_2O , 0.5 M LiClO ₄	88
	H+	8.23 (2)	\mathbf{Pot}			25	H ₂ O, 0.5 M LiClO ₄	88
	H+	9.28 (1)	Pot			25	95% MeOH. 0.1 M Me. NCl	87
	н+	7.97 (2)	Pot			25	95% MeOH 01 M Me NO	87
	11 1 ;+	1.07 (2)	Pot			20	of MaOH 01 MM Meanor	07
		1.07	FOL			20	95% MeOH, 0.1 M Me ₄ NCI	0/
	INA	4.30	Cond			25	MeUN	90
	K+	4.32	Cond			25	MeCN	90
	K+	2.04	Pot			25	MeOH	11, 25
	Rb+	3.37	Cond			25	MeCN	90
	Ce+	9 4 9	Cond			25	MeCN	<u>00</u>
	0.+	10	D-4			20	HOALMAN NO	30
		1.0	rot			25	$\Pi_2 U$, U.1 M Me ₄ NCl	99
	Ca ²⁺	4.04	Pot			25	95% MeOH, 0.1 M Me₄NCl	87
	Sr ²⁺	2.57	Pot	-10.9 (Cal)	13.0	25	H_2O , 0.1 M Me ₄ NCl	99
	Sr ²⁺	5.60	Pot			25	95% MeOH. 0.1 M Me.NCl	87
	Ba ²⁺	2.98	Pot	-12.6 (Cel)	15.1	25	H ₀ O 01 M M ₂ NCl	99
	 L_a ³⁺	619	Pot	12.0 (Uai)	10.1	05	050 MODE OIN NO	97
	Γ_{a}^{2+}	0.10	FUL D-4			20	55 % MEOR, 0.1 M MeANCI	01
	0.24	≤3.5	Pot			25	95% MeOH, 0.1 M Me4NCl	87
	U047	≤2.5	Pot			25	H_2O , 0.1 M Et_4NClO_4	77

ligand	antion	log Ka	methodb	ΔH , k L/mol	$\Delta S,$	T 0C	madiume	rof
inganiu		N		K 0/1101	5/(К ШОІ)	1, 0		101
	C0 ²⁺	3.25	Pot			25	$H_2O, 0.1 \text{ M Et}_4\text{NCIO}_4$	26
	IN1- NI:2+	≥2.5 <9.5	Pot			25	95% MeOH, 0.1 M Me ₄ NOI	87
	Ni ²⁺	3 43	Pot			20	H_{20} , 0.1 M $Et_4 NCIO_4$	26
	Cu ²⁺	6.18	Pot			25	$H_{2}O_{1}O_{1}O_{1}O_{1}O_{2}O_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	20 77
	Cu ²⁺	7.59	Pot			25	$H_{2}O, 0.1 \text{ M Et}_{4} \text{NClO}_{4}$	26
	Cu ²⁺	3.00	Pot			25	Me ₂ SO, 0.1 M Et ₄ NClO ₄	78
	Cu ²⁺	3.30	Spec			25	$Me_2SO, 0.1 M Et_4NClO_4$	78
	Cu ²⁺	8.77	Pot			25	95% MeOH, 0.1 M Me₄NCl	87
	Ag ⁺	7.8	\mathbf{Pot}			25	H ₂ O	11, 25
	Ag ⁺	7.8	Pot	-38.3 (Cal)	21	25	H_2O , 0.1 M Me ₄ NCl	99
	Ag	7.90	Pot			25	H_2O , 0.1 M Et_4NCIO_4	77
	Ag A =+	8.08	Pot			25	H_2O , 0.5 M LICIO ₄	88
	Λg Δg+	10.21	Pot			25	$M_{2}SO, 0.1 M Et_{4}NCIO_{4}$	80
	Ag+	3.33 (2)	Pot			25	MeOH, 0.05 M Et NClO	80
	Zn ²⁺	4.31	Pot			25	$H_{2}O, 0.1$ M Et ₄ NClO ₄	26
	Zn ²⁺	3.19	Pot			25	H ₂ O, 0.1 M Et ₄ NClO ₄	77
	Zn ²⁺	≥2.5	\mathbf{Pot}			25	95% MeOH, 0.1 M Me₄NCl	87
	Cd ²⁺	5.31	\mathbf{Pot}			25	H_2O , 0.1 M Et_4NO_3	77
	Cd ²⁺	5.25	Pot	-2.9 (cal)	90	25	H_2O , 0.1 M Me ₄ NCl	99
	Cd ²⁺	5.59	Pot			25	H_2O , 0.5 M LiClO ₄	88
	Cd2+	7.18	Pot			25	95% MeOH, 0.1 M Me ₄ NNO ₃	87
	Cd2+	7.83 (1)	Pot			25	MeOH, 0.05 M Et_4NCIO_4	80
	Ua ²⁺	3.58 (2)	Pot	-71 8 (Cal)	109	25	$\mathbf{MeOH}, 0.05 \mathbf{M} \mathbf{Et_4} \mathbf{NOO_4}$	80
	Ph ²⁺	6 90	Pot	-71.8 (Cal)	102	20 95	H_2O , 0.1 M Me ₄ NCI H ₂ O 0.1 M Et. NCIO	99. 77
	Pb ²⁺	7.01	Pot			25	$H_{2}O_{1}$ 0.5 M LiClO ₄	88
	Pb^{2+}	4.22	Pot			25	$M_{2}SO_{2}O_{1}$ M Et NClO	78
	Pb ²⁺	9.48 (1)	Pot			25	MeOH, 0.05 M Et ₄ NClO ₄	80
	Pb^{2+}	2.82 (2)	Pot			25	MeOH, $0.05 \text{ M Et}_4\text{NClO}_4$	80
	Pb ²⁺	11.64 (1)	Spec			25	PC, 0.01 M Et ₄ NClO ₄	81
	Pb ²⁺	3.66 (2)	Spec			25	PC, 0.01 M Et_4NClO_4	81
Me_2A_218C6	H ⁺	9.28 (1)	Pot			25	95% MeOH, 0.01 M Me₄NBr	134
	H ⁺ N-+	6.70 (2)	Pot			25	95% MeOH, 0.01 M Me ₄ NBr	134
	Na' Not	3.26	Pot			25	95% MeOH, 0.01 M Me ₄ NBr MoOH 0.01 M Mo NBr	134, 172
	K+	0.1 138	Pot			25	95% $M_{\bullet}OH = 0.01 M M_{\bullet}NB_{\bullet}$	134 179
	к+	5.3	Pot			25	MeOH. 0.01 M Me ₄ NBr	134
	Rb+	4.3	Pot			25	MeOH, 0.01 M Me ₄ NBr	134
	Ca ²⁺	4.4	\mathbf{Pot}			25	95% MeOH, 0.01 M Me ₄ NBr	134
	Sr^{2+}	6.1	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	Ba ²⁺	6.7	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134, 172
$(AcetM)_2A_218C6$	H+	6.684 (1)	Pot			25	H_2O , 0.5 M LiClO ₄	88
	H ⁺	5.40 (2)	Pot			25	$H_2O, 0.5 M LiClO_4$	88
	INA V+	<2	Pot			20	$H_{2}O, 0.5 M LiClO_{4}$	88
	К Мσ ²⁺	<2	Pot			25	$H_{2}O, 0.5 M LiClO_{4}$	88
	Ca ²⁺	5.65	Pot			25	H_2O , 0.5 M LiClO	88
	Cu ²⁺	7.38	Pot			25	H_2O , 0.5 M LiClO ₄	88
	Ag ⁺	6.25	Pot			25	H_2O , 0.5 M LiClO ₄	88
	Cd^{2+}	8.60	\mathbf{Pot}			25	H ₂ O, 0.5 M LiClO ₄	88
	Pb ²⁺	10.70	Pot			25	H_2O , 0.5 M LiClO ₄	88
(HOE) ₂ A ₂ 18C6	H⁺ +	8.702 (1)	Pot			25	H_2O , 0.5 M LiClO ₄	88
	H ⁺ N-+	7.47 (2)	Pot			25	H_2O , 0.5 M LICIO ₄	88 99
	INA IZ+	<2	Pot			20	$H_20, 0.5 M LiClO_4$	00 88
	$M_{\sigma^{2+}}$	<2	Pot			25	$H_{2}O, 0.5 \text{ M LiClO}_{4}$	88
		4.08	Pot			25	$H_{2}O, 0.5 M LiClO_{4}$	88
	Cu ²⁺	6.60	Pot			25	H_2O , 0.5 M LiClO ₄	88
	Ag ⁺	7.27	\mathbf{Pot}			25	H_2O , 0.5 M LiClO ₄	88
	Cd^{2+}	7.96	\mathbf{Pot}			25	H_2O , 0.5 M LiClO ₄	88
	Pb ²⁺	9.20	Pot			25	H_2O , 0.5 M LiClO ₄	88
	Pb2+	4.22	Pot			25	Me_2SU , 0.1 M Et_4NCIO_4	78
(MeUE) ₂ A ₂ 18C6	н′ u+	8.840 (1) 7 / 9 (0)	Pot Pot			25	H_{0} 0.5 M LICIO ₄	00 88
	Aa+	7.95	Pot			20 25	H_{20} , 0.5 M LICIO ₄	88
	Cd ²⁺	5.01	Pot			25	H_2O , 0.5 M LiClO ₄	88
	Pb ²⁺	8.39	Pot			25	H ₂ O, 0.5 M LiClO ₄	88
$(Me)(R)A_218C6$	Na ⁺	3.35	\mathbf{Pot}			25	95% MeOH, 0.1 M Me ₄ NBr	134
	K+	4.80	Pot			25	95% MeOH, 0.1 M Me₄NBr	134
B_2A_218C6	K+	1.63	ISE			25	H ₂ O	11, 25
A ₄ 18C6	H ⁺	9.67 (1)	Pot			25	H_2U , 0.1 M Et ₄ NClO ₄	26
	H ⁺ Co ²⁺	8.85 (2) 9.69	Pot			25 95	H_2O , 0.1 M ET4NOIO4 H_O 0.1 M F+ NCIO	20 26
	Ni ²⁺	12.49	Pot			25	H_2O_1 0.1 M Et NCIO	26
	A 14						2-,	

······································				ΔH ,	ΔS,		· · · · · · · · · · · · · · · · · · ·	
ligand	cation	$\log K^{\alpha}$	method ^b	kJ/mol	J/(K mol)	<i>T</i> , °C	medium ^c	ref
	Cu ²⁺	15 .50	Pot			25	H ₂ O, 0.1 M Et ₄ NClO ₄	26
	Zn ²⁺	10 .9 0	\mathbf{Pot}			25	H_2O , 0.1 M Et_4NClO_4	26
A ₆ 18C6([18]aneN ₆)	K+	~ 0.8	\mathbf{Pot}			35	$H_2O. 0.2 M NaClO_4$	135
	Ca ²⁺	2.5	Pot	-28	-50	35	H_2O , 0.2 M NaClO ₄	135
	Sr ²⁺	3.2	Pot			25	H_2O , 0.2 M NaClO ₄	135
	La ³⁺	5.7	Pot			25	H_2O , 0.2 M NaClO ₄	135
		18.9	Pot			35	H_2O , 0.2 M NaClO ₄	135
	N12+	19.6	Pot	0.0	00	35	H_2O , 0.2 M NaClO ₄	135
	Cu ²⁺	21.6	Pot	-96	92	25	H_2O , 0.2 M NaClO ₄	135
	$2n^{-1}$	17.8	Pot	-52	167	25	$H_2O, 0.2 \text{ M NaClO}_4$	135
	Uu- Ha2+	20.1	Pole	-09	142	20	$H_{2}O, 0.2 M NaClO_{4}$	100
	11g Ph ²⁺	14 1	Pot	-170	84	25	$H_{2}O_{1}O_{2}O_{2}M_{1}N_{2}OO_{4}$	195
T18C6	No ⁺	2 57	Cel	-20 9	-20.8	25	M_0H	61
11000	K ⁺	3.61	Cal	-37.7	-57.3	25	MeOH	61
	Rb ⁺	2.99	Cal	-36.0	-63	25	MeOH	135a
	Ba ²⁺	3.4	Cal	-25.5	-20.5	25	MeOH	61
	Ag ⁺	>5.5	Cal	-51.5		25	MeOH	61
1,4-T ₂ 18C6	Ag ⁺	3.0 (1)	Cal	-65.7	-168	25	H ₂ O	16
, -	Hg ²⁺	(2)	Cal	-118.8		25	H ₂ O	16
	TĨ+	1.38	Cal	-30.5	-76.1	25	H ₂ O	16
	Pb ²⁺	2.63	Cal	-36.94	-73.57	25	H ₂ O	16
$1,10-T_218C6$	K+	1.15	\mathbf{Pot}			25	MeOH	11
	Ag ⁺	4.34	\mathbf{Pot}			25	H_2O	11, 25
	Ag ⁺		Cal	-69.9		25	H ₂ O	16
	Hg ²⁺		Cal	-74.48		25	H ₂ O	16
	Tl+	0.93 (1)	Cal	-46.0	-136.6	25	H ₂ O	16
	Pb ²⁺	3.13 (1)	Cal	-88.7	-237	25	H_2O	16
K_2T18C6	Ag ⁺	3.05	Cal	-29.2	-39.4	25	MeOH	102, 119
K ₂ 19C6	Na ⁺	1.8	Cal	-4.6	19	25	MeOH	118, 119
	K* ₽.°+	2.55	Cal	-33.1	-62.2	25	MeOH	118, 119
W 0000	Ba ²⁺	1.41	Cal	-20.4	-41.5	25	MeOH	118, 119
$K_{2}20C6$	Na⁺ K+	1.7	Cal	-4.2	19	25	MeOH	119
	K'	1.94	Cal	-23.4	-41.5	25	MeOH	119
New 90CG	К0' TU+	1.74		-29.3	-05	20	DME	119
Nap ₂ 2006	11 K+	0.56		-20.5	-96	29		131
R ₂ 2100	Rb+	1.71	Cal	-20.5	-30	25	MeOH	119
	Cs ⁺	1.00	Cel	-48.1	-149	25	MeOH	119
21C7	H+	5.3	Pot	40.1	1 72	25	MeCN	335
2107	Na ⁺	1.73	Cal	-43.4	-112	25	MeOH	61
	Na ⁺	2.54	ISE			25	MeOH	22
	K ⁺	4.22	Cal	-35.94	-39.7	25	MeOH	61
	K+	4.35	ISE			25	MeOH	22
	K+	4.41	ISE			25	MeOH	11, 25
	Rb ⁺	4.86	Cal	-40.4	-42.5	25	MeOH	61
	Cs ⁺	5.01	Cal	-46.77	-61.0	25	MeOH	61
	Cs ⁺	5.02	ISE			25	MeOH	11, 25
	Ca ²⁺	2.80	ISE			25	MeOH	22
	Sr ²⁺	1.77	Cal	-29.7	-65.7	25	MeOH	61
	Ba ²⁺	5.44	Cal	-28.5	8.6	25	MeOH	61
	Ag⊤	2.46	Cal	-28.9	-49.7	25	MeOH	61
	NH4 ⁺	3.27	ISE			25	MeOH	22
	PHN_2	0./09 5 199	Spec			50	DCE	110, 111
	2 CH DLN +	5.56	Spec			50	DCE	110, 111
	4 CH PbN +	5.00	Spec			50	DCE	110
	3-CH.OPhN.+	5.85	Spec			50	DCE	110
Cv-21C7	Ce ⁺	19	ISE			25	H-O	11 25
K_21C7	K+	2.32	Cel	-27.0	-46.3	25	MeOH	119
2	Rb ⁺	2.27	Cal	-41.3	-94.9	25	MeOH	119
	Ba ²⁺	1.73	Cal	-34.9	-84	25	MeOH	119
B21C7	K+	1.94	Spec	-		25	99% Me ₂ SO	72
	Rb ⁺	2.66	Spec			25	99% Me ₂ SO	72
	Cs ⁺	2.53	Spec			25	99% Me ₂ SO	72
$B_{2}21C7$	H+	2.9	\mathbf{Pot}			25	MeCN	335
	Na ⁺	~-~	NMR			30	DMF	136
	Na ⁺	~-∞	NMR			30	Me_2SO	136
	Na ⁺	2.28	NMR			30	Me ₂ CO	136
	Na ⁺	2.78	NMR			30	MeCN	136
	Na' Nat	2.40	ISE			25	MeUH	11, 25
	Na ⁺	0.14 9.50	NMR			30 90	INIVIE Dy	130
	K ⁺	2.00 1 30	ISP			30 95	гу М₀ОН	11 95
	Cs ⁺	2.78	NMP			20	DMF	136
	Čs ⁺	2.84	NMR	-43	-88	30	DMF	136

				ΔH ,	ΔS ,			
ligand	cation	$\log K^a$	$method^{b}$	kJ/mol	J/(K mol)	T. °C	medium ^c	ref
	Cs ⁺	2.51	NMR			40	DMF	136
	Cs ⁺	2.43	NMR			50	DMF	136
	Cs ⁺	2.06	NMR			60	DMF	136
	Ce ⁺	1.93	NMR			70	DMF	136
	Cat	1.70	NIMD			20	Ma SO	196
		1.72				30	Me280	130
	Cs	4.11	NMR			20	MeCN	136
	Cs ⁺	3.95	NMR	-34	-38	30	MeCN	136
	Cs ⁺	3.73	NMR			40	MeCN	136
	Ce+	3.41	NMR			60	MeCN	136
	Cat	9.15	NMD			75	MeCN	100
		3.10	NMR			10	Mech	130
	US .	4.52	NMR			10	Me ₂ CO	136
	Cs⁺	4.19.	NMR			20	Me ₂ CO	136
	Cs ⁺	3.93	NMR	-46	-78	30	Me_2CO	136
	Cs^+	3.64	NMR			40	Me ₂ CO	136
	Cs^+	3.36	NMR			55	Me	136
	Co+	4.1.4	NMR			20	MOH	196
	0.+	4.14		07.7	1.5	20	Meon	130
	Cs'	3.96	NMR	-27.7	-15	30	MeOH	136
	Cs^+	3.83	NMR			40	MeOH	136
	Cs ⁺	3.68	NMR			50	MeOH	136
	Cs^+	3.54	NMR			60	MeOH	136
	C.+	4 20 (1)	ISF			25	MOH	11 25
	0.+	4.20 (1)	ISE			20	Meon	11, 25
	Cs'	1.9 (2)	ISE			25	MeOH	11, 25
	Cs ⁺	4.40	NMR			15	NMe	136
	Cs ⁺	4.14	NMR	-32	-26	30	NMe	136
	Cs ⁺	3.81	NMR			45	NMe	136
	C•+	3.66	NMR			60	NMA	136
	Cs C+	0.00	NIMIN			00		100
	Cs ⁺	3.39	NMR			75	INME	136
	Cs⁺	3.21	NMR			90	NMe	136
	Cs^+	4.12	NMR			20	PC	136
	Cs ⁺	3.80	NMR	-47	-80	30	PC	136
	Ce ⁺	3 47	NMR			40	PC	136
	C.+	0.47	NIMD			50		100
	Cs ¹	3.20	INIVIR			50	PC	136
	Cs ⁺	3.16	NMR			60	PC	136
	Cs^+	4.27	NMR	-30.2	-18	30	Ру	136
	Cs ⁺	4.07	NMR			40	Pv	136
	Cs ⁺	3.89	NMR			50	Pv	136
	Co+	279	NMP			60	гу D.,	196
	Cs	0.70				60	Fy D	130
	Cs	3.57	NMR			75	Ру	136
	Cs ⁺	3.39	NMR			90	Ру	136
	Tl+	2.18	NMR			30	DMF	136
	T1+	0.63	NMR			30	Me ₂ SO	136
	 Ti+	>5	NMR			30	MeCN	136
	T1 T1+	4 171	NMD			00	Meerin	100
	11	4./1	NMR			30	Me ₂ CO	136
	T17	3.97	NMR			30	MeOH	136
	Tl+	>5	NMR			30	NMe	136
Bz ₂ K ₂ A ₂ 21C7	H+	5.24	Volt			22	NBnz, 0.01 M Bu ₄ N- π (3)-	137
- L L L							1.2-dicerbollylcobaltate(III)	
	т:+	7 10	17-14			00	ND 0.01 M DL A-DL D	107
		7.19	Volt			22	NBnz, $0.01 \text{ M} \text{Ph}_4\text{AsPh}_4\text{B}$	137
	Na⁺	5.46	Volt			22	NBnz, 0.01 M Ph_4AsPh_4B	137
	Mg ²⁺	11.96 (1 + 2)	Volt			22	NBnz 0.01 M Ph ₄ AsPh ₄ B	137
	Ca ²⁺	18.31(1+2)	Volt			22	NBnz, 0.01 M Ph ₄ AsPh ₄ B	137
	Sr ²⁺	16.92(1 + 2)	Volt			2 2	NBnz 0.01 M Ph.AsPh.B	137
	Be ²⁺	$15.59(1 \pm 2)$	Volt			22	NBng 0.01 M Ph AsPh B	197
K T0107	La V+	20.00 (1 + 2)	Cal	_16 1	_19.0	05	MACH	110
$R_2 1 2107$	R'	2.09	Car	-16.1	-13.9	25	MeOH	119
	Rb⁺	2.52	Cal	-23.0	-28.8	25	MeOH	119
	Cs ⁺	1.91	Cal	-12.7	-5.9	25	MeOH	119
24C8	Na ⁺	2.35	ISE			25	MeOH	22
	K+	3 53	ISE			25	MeOH	22
	v+	0.00	ISE			05	MoOH	11 05
	n'	3.40	ISE			25	MeOH	11, 20
	Cs⁺	4.15	ISE			25	MeOH	11, 25
	Ca ²⁺	2.66	ISE			25	MeOH	22
	NH₄+	2.63	ISE			25	MeOH	22
Cv ₂ 4C8	Cs ⁺	1.9	ISE			25	H ₂ O	11. 25
- 5 2	PhN.+	4 528	Spec			50	DCE	110 111
	A CIDENI +	4.020	Spec			50	DCE	110, 111
	4-OFFIN ₂	4.312	Spec			50	DCE	110, 111
	$3-CH_3PhN_2^+$	4.17	Spec			50	DCE	110
	$4-CH_3PhN_2^+$	4.26	Spec			50	DCE	110
	3-CH ₃ OPhN ₂ +	4.55	Spec			50	DCE	110
1.7-B-24C8	Na ⁺	2.55	Pot			25	MeOH	138
.,	K+	3.85	Pot			25	MeOH	138
	Ph+	10	Dot			20 0F	MOU	100
1.10 0.000	RD'	4.2	POL			20		100
$1,10-B_224C8$	Na⊤	2.15	Pot			25	MeOH	138
	K+	3.45	\mathbf{Pot}			25	MeOH	138
	Rb+	3.8	Pot			25	MeOH	138
1,13-B ₂ 24C8	H+	3.2	\mathbf{Pot}			25	MeCN	335
, 2	Na ⁺	~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NMR			30	DMF	136
	. 14					00		100

				ΛH	AS			
12	4	$1 - V_0$		la I /	I/(IZ = 1)	T 40		
ligand	cation	log A-	method	kJ/moi	J/(K mol)	1,-0	medium	rei
	Na ⁺	~-®	NMR			30	MesSO	136
	Not	4.00	Pola			00	MaCNI 0.05 M By NCIO	70
	INA	4.00	roig			ZZ	MECN, 0.05 M Bu ₄ NClO ₄	70
	Na⁺	2.95	NMR			30	MeCN	136
	Na ⁺	1.54	Cal	-32.4	-79.0	25	70% MeOH	73
	Na ⁺	1.54	Elec			25	70% MeOH	54
	No+	0.05	Det			05	MOU	100
	INA	2.20	FOL			20	MeOH	130
	Na⁺	3.74	NMR			30	NMe	136
	Na ⁺	4.16	Cond	-37.7	-46.0	25	PC	52a, 333
	Na ⁺	2.89	NMR			30	Pv	136
	174	2.00	D-1-			00	MCN 0.05 M D. NOO	100
	n	3.70	Polg			22	MeCN, 0.05 M Bu ₄ NCIO ₄	70
	K+	2.42	Cal	-35.7	-73.6	25	70% MeOH	73
	K+	2.42	Elec			25	70% MeOH	54
	к+	3.6	Pot			25	MOH	138
	17+	0.0	Could	07.0	10.1	20	Meon	100
	n'	3.57	Cond	-30.3	-49.4	25	MeOH	333
	K+	3.49	ISE			23	MeOH	11, 25
	K+	3.20	Polg			22	MeOH, 0.025 M Bu ₄ NClO ₄	70
	K+	3 73	Cond	-34.5	-44 4	25	PC	520 333
	DL+	0.10	D-1-	04.0	33.3	20	MCN 0.05 M D. NOIO	70
	RD	3.40	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	Rb⁺	2.55	Cal	-36.5	-73.6	25	70% MeOH	73
	Rb+	3.86	Cond	-39.4	-57.7	25	MeOH	333
	Rh+	3.85	Pot			25	MeOH	138
	DL+	0.55	C	00.0	(0.0	05	DO	50- 000
	RD	3.00	Cond	-32.9	-42.3	25	PC	oza, 333
	Cs^+	2.10	NMR	-25.6	-43	30	DMF	136
	Cs^+	1.61	NMR			30	Me ₂ SO	136
	Co+	3 94	NMR	-94.0	-36	30	MeCN	196
	C +	0.04		-04.0	-30	00		130
	Cs	3.80	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	Cs^+	3.71	NMR	-47	-84	30	Me_2CO	136
	Cs^+	2.48	Cal	-37.34	-77.8	25	70% MeOH	73
	Co+	2.94	Cond	26.9	40.0	25	MOU	000
	0.+	0.04	Cond	-30.0	-49.0	20	MeOH	000
	Cs	3.78	Pot			25	MeOH	11, 25
	Cs^+	3.60	NMR	-41	-67	30	MeOH	136
	Cs^+	5.4	Pot			5-65	NBnz, 0.01 M Bu, NBPh	129
	Co+	4 11	NMR	_96.9	_7	20	NMo	196
	0.°+			20.2	-,	00	DO	130
	Cs	3,40	Cona	-32.3	-42.3	25	PC	52 a , 333
	Cs^+	3.25	NMR	-34	-48	30	PC	136
	Cs^+	4.00	NMR	-25.0	-6	30	Pv	136
	Co+	2 65	NMR		-	0	DME	196
	0.+	2.00	NIM			10	DMP	100
	Cs '	2.46	NMR			10	DMF	136
$1,13-B_224C8$	Cs ⁺	2.32	NMR			20	DMF	136
	Cs^+	2.10	NMR			30	DMF	136
	Co+	2.02	NMR			40	DME	196
	0.+	1.02	NIM			40	DMP	100
	Cs	1.89	NMR			50	DMF	136
	Cs ⁺	4.50	NMR			5	MeCN	136
	Cs^+	3.94	NMR			30	MeCN	136
	Ce ⁺	3 77	NMR			40	MeCN	196
	0.+	0.77	NIME				Meeri	100
	Cs.	3.57	INIVIR			50	MeCN	130
	Cs⁺	3.45	NMR			60	MeCN	136
	Cs^+	3.19	NMR			75	MeCN	136
	Cs^+	4.37	NMR			5	MecO	136
	C.+	4 15	NMD			15	Mc200	100
		4.10				15	Me ₂ CO	130
	Cs⁺	3.71	NMR			30	Me ₂ CO	136
	Cs^+	3.37	NMR			40	Me ₂ CO	136
	Cs^+	3.07	NMR			55	Me	136
	Ce ⁺	4 04	NMR			10	MOH	196
	0.+	1.01				10	Meon	100
	Cs	3.80	NMR			20	MeOH	136
	Cs ⁺	3.65	NMR			30	MeOH	136
	Cs^+	3.36	NMR			40	MeOH	136
	Ce ⁺	3.11	NMR			50	MOH	196
	0.+	0.00	NIME			00	MOU	100
	US CS	2.00	NNR			60	MeOn	136
	Cs⊤	4.26	NMR			20	NMe	136
$1,13-B_224C8$	Cs^+	4.11	NMR			30	NMe	136
	Cs^+	3.91	NMR			45	NMe	136
	Co+	2.69	NMP			60	NM	100
	0.+	0.00				00	TATATG	100
	US	3.52	INMK			75	IN Me	136
	Cs ⁺	3.37	NMR			90	NMe	136
	Cs ⁺	3.56	NMR			20	PC	136
	Ce+	3 25	NMP			20	PC	136
	0-+	9 1 0	NINED			10	DC	100
	UB C	3.12	INIMIK			40	rU	130
	Cs ⁺	3.09	NMR			50	PC	136
	Cs^+	2.78	NMR			60	PC	136
	Cs ⁺	2.70	NMR			70	PC	136
	C•+	4 00	NMP			20		136
	C₀+	4.00	TATATT			30	ту Б	100
	Cs⊤	3.76	NMR			45	Ру	136
	Cs ⁺	3.60	NMR			60	Ру	136
	Cs^+	3.44	NMR			75	Pv	136
	Ce+	3 27	NMP			<u>00</u>	- 5 Pv	136
		1 16	NMD			90	DME	196
	11	1.10	TATATL			30	TARL	190

				ΔH ,	ΔS ,			
ligand	cation	$\log K^a$	$method^{b}$	kJ/mol	J/(K mol)	T. °C	medium ^c	ref
					-/(
	Tl+	<1.00	NMR			30	Me_2SO	136
	T1+	4.81	NMR			30	MeCN	136
	T1+	4.90	D-1-			00	MCON OCT M D. NOIO	100
	11	4.80	Polg			22	MeCN, 0.05 M Bu_2NCIO_4	70
	Tl+	4.15	NMR			30	Me ₂ CO	136
	T1+	3.19	NMR			30	MeOH	136
	mi+	2.40	Del-			00	MOUL 0.005 M De NOIO	70
	11	3.40	Polg			22	MeOH, 0.025 M Bu ₄ NCIO ₄	70
	Tl+	>5	NMR			30	NMe	136
	T1+	1.64	NMR			30	Pv	136
	NT-+	4.10	D-1-			00	MCN OC M D. NOO	100
(MeB) ₂ 24C8	INA	4.10	Polg			22	MeCN, $0.05 \text{ M Bu}_4 \text{NCIO}_4$	70
	K+	3.90	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	К+	3.50	Polg			22	MeOH. 0.025 M Bu, NClO	70
	DL+	2 00	Dolg				MOCN OOS M By NCIO	70
	KU C	3.90	rong			22		70
	Cs⁺	3.90	Polg			22	MeCN, $0.05 \text{ M Bu}_4\text{NClO}_4$	70
	Tl+	5.00	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	T1+	3 30	Pola			00	MOOH 0.05 M By NCIO	70
1 (5 0 (0 0	· +	0.00 A F (1)	1 01g	50.0		22		10
$1,4 - 1_2 24 C 8$	Ag⁺	4.5 (1)	Cal	-59.8	-115	25	H_2O	16
	Ag ⁺	5.0 (2)	Cal	-8.8	-66	25	H ₂ O	16
	$H_{\sigma^{2+}}$	• •	Cel	-57 3		95	น้อ	16
	116 mi+		Cu	01.0		20	1120	10
	11		Cal	0		25	H_2O	16
	Pb^{2+}		Cal	0		25	H_2O	16
1 13-T-24C8	$\Delta \sigma^+$	(1)	Cal	-57 7		25	н.o	16
1,10 1 22400	TT 2+	(1)	Cul	50.5		20	1120	10
	Hg-	(1)	Cal	-96.9		25	H_2O	16
	Tl+		Cal	0		25	H ₂ O	16
	Ph ²⁺		Cal	٥		25	но	16
B 0500	10	1 50	Cal		105 0	20		10
B ₂ 27C9	Na	1.50	Cal	-49.1	-135.9	25	70% MeOH	73
	K+	2.86	Cal	-39.7	-78.6	25	70% MeOH	73
	Ce ⁺	2.89	NMR			-10	DMF	136
	0.+	2.00				10	DMD	100
	Us	2.78	NMR			0	DMF	136
	Cs^+	2.58	NMR			10	DMF	136
	Cs^+	2.33	NMR			20	DMF	136
	0.+	2.00	NND	00		20	DME	100
	Cs.	2.20	NMR	-30	-07	30	DMF	136
	Cs^+	2.05	NMR			40	DMF	136
	Ce ⁺	4 94	NMR			9	MeCN	136
	0.+	4.17	NIMO			10	MOON	100
	Cs.	4.17	NMR			17	MeCN	136
	Cs^+	3.89	NMR			30	MeCN	136
	Cs^+	3.63	NMR			45	MeCN	136
	0.+	0,00	NIMD			20	M-CN	100
	Cs	3.30	INIVIR			63	MIECIN	130
	Cs^+	3.09	NMR			77	MeCN	136
	Ce ⁺	4 43	NMR			20	MecCO	136
	0.+	4.40	NIMO	C1	100	20	M- CO	100
	Cs	4.24	NMR	-01	-120	30	Me ₂ CO	130
	Cs^+	3.88	NMR			40	Me_2CO	136
	Cs^+	3.62	NMR			50	MeCO	136
	0.+	0.00	NIMO			55	Mc CO	100
	Cs.	3.22	NMR			99	Me ₂ CO	130
	Cs ⁺	1.42	Cal	-25.69	-59.0	25	70% MeOH	73
	Cs^+	3.74	NMR			25	MeOH	136
	Cat	9 50	NMD	_01	_00	20	MOH	196
	Cs	3.52	INIVIR	-21	-22	30	Meon	190
	Cs ⁺	3.46	NMR			40	MeOH	136
	Cs^+	3.32	NMR			50	MeOH	136
	Co+	2 22	NMP			50	MOH	126
		0.22		• •		09	Meon	100
	Cs⁺	4.29	NMR	-31	-19	30	NMe	136
	Cs^+	4.24	NMR			40	NMe	136
	Co+	4.14	NMR			50	NMe	136
	0.5	4.14				00		100
	Cs⁺	3.81	NMR			61	NMe	136
	Cs^+	3.48	NMR			75	NMe	136
	Co+	3 46	NMR			90	NMo	136
	0.+	0.40				10	DO	100
	Cs⁺	<4	NMR			12	PC	136
	Cs^+	3.64	NMR	-47	-86	30	PC	136
	Co+	3 97	NMR			40	PC	136
	0.5	0.27				40	10	100
	Cs⁺	3.18	NMR			46	PC	136
	Cs ⁺	2.95	NMR			57	PC	136
	Ce+	2 84	NMR			64	PC	136
	0.+	4.15	NIMO	0.0	00	0.0	Du	100
	US	4.15	NMR	-38	-30	30	Py	130
	Cs ⁺	3.93	NMR			48	Ру	136
	Cs^+	3.78	NMR			56	Ру	136
	Č-+	3 61	NMP			69	Py	136
	US C ±	0.01	TAINTL			00	- y D	100
	Cs⁺	3.35	NMR			82	гу	136
	Cs^+	3.08	NMR			98	Ру	136
B30C10	<u>к</u> +	1 25	Snec			25	99% Me.SO	72
1200010	11 11	1.20	Spec			20	00 / Mc 00	70
	KD-	1.57	spec			25	99% IVIE2SU	12
	Cs^+	1.38	Spec			25	99% Me ₂ SO	72
B-30C10	H+	3.6	Pot			25	MeCN	335
1200010	T ;+	~0	5000			05	MeOH	130
		~0	Spec			20	MEUTI	102
	Na ⁺	3.60	Polg			22	MeUN, 0.05 M Bu ₄ NClO ₄	70
	Na ⁺	2.0	ISE			25	MeOH	11, 25
	No+	9 1	Snee	-17		25	MeOH	139
	ING	4·1	Spec	11		20		200

T.	A D	TD	т.	(n		1
17	AB	LĽ.	1 0	Con	unu	eal

				ΔH ,	ΔS ,			
ligand	cation	$\log K^a$	method ^o	kJ/mol	J/(K mol)	<i>T</i> , °C	medium ^c	ref
	Na ⁺	2.114	Spec	-16.7		25	MeOH, 0.15 M LiCl	11
	Na ⁺	6.6	\mathbf{Pot}			5-65	NBnz, 0.01 M Bu ₄ NPh ₄ B	129
	K+	4.70	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	K+	3.90	Polg			22	MeOH, 0.025 M Bu ₄ NClO ₄	70
	K+	4.60	ISE			25	MeOH	11, 25
	K+	4.6	Spec	-48		25	MeOH, 0.15 M LiCl	139
	K+	4.568	Spec	-48.1		25	MeOH, 0.15 M LiCl	11
	K+	1.35	\mathbf{Pot}			25	50% THF/H ₂ O	11
	Rb+	4.70	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	Rb+	4.6	Spec	-53		25	MeOH	139
	Rb+	4.643	Spec	-53.1		25	MeOH, 0.15 M LiCl	11
	Rb ⁺	1.56	\mathbf{Pot}			25	50% THF/H ₂ O	11
	Cs^+	3.39	NMR	-21.5	-6.4	30	$MeCN (anion = SCN^{-})$	140, 141
	Cs ⁺	3.50	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	Cs ⁺	4.04	NMR			30	Me_2CO (anion = picrate)	141
	Cs⁺	3.99	NMR			30	Me_2CO (anion = SCN^{-})	140, 141
	Cs⁺	4.05	NMR			30	Me_2CO (anion = 0.0025 M BPh ₄ ⁻)	141
	Cs ⁺	3.96	NMR	-56.4	-110	30	Me_2CO (anion = 0.005 M BPh ₄ ⁻)	140, 141
	Cs⁺ C +	4.230	Spec	-46.9		25	50% MeOH, 0.15 M LICI	11
	Cs ⁺	4.2	Spec	-47	05 F	25	MeOH MeOH (anian = SON=)	139
	Cs ⁺	4.18	NMR	-03.2	-95.5	30	MeOH (anion = SON)	140, 141
	Cs ⁺	4.30	NMD	-22.2	-27.9	30	Nine (amon $= ClO_4$) Pu (option $= PDh^{-1}$)	140, 141
	US Ma ²⁺	4.41	Dot	-33.2	-24.0	20	PC = 0.1 M F + NCIO	140, 141
	C_{a2}^{1VIg}	2.03	Dot			20	$PC = 0.1 \text{ M Et}_4 \text{NOIO}_4$	23
	Cs C_2+	5.28 7.67	Pot			25	$PC_{0.1} \mathbf{M} \mathbf{E}_{4} \mathbf{N} \mathbf{C}_{10}$	23
	Ba2+	0.33	Pot			25	$PC_{0.1}$ M Et NCIO	23
	La ⁺	4 29	Pot			25	$PC_{0.1} M Et_{1} NClO_{1}$	20
	Ce ³⁺	4.10	Pot			25	$PC_{0,1}$ M Et NCIO	24
	Pr ³⁺	4.12	Pot			25	$PC_{10} = 0.1 \text{ M Et}_{1} + 0.004$	24
	Nd ³⁺	4.10	Pot			25	PC, 0.1 M Et NCIO.	24
	Sm ³⁺	8.3(1+2)	Pot			25	PC, $0.1 \text{ M} \text{ Et}_{N} \text{ClO}_{A}$	24
	Sm ³⁺	3.75	Pot			25	PC, 0.1 M Et NCIO	24
	Gd ³⁺	3.53	Pot			25	PC, 0.1 M Et ₄ NClO ₄	24
	Tb ³⁺	4.07	Pot			25	PC, 0.1 M Et ₄ NClO ₄	24
	Er^{3+}	4.48	Pot			25	PC, 0.1 M Et_4NClO_4	24
	Yb ²⁺	7.5	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	24
	Yb ³⁺	4.76	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	24
	Lu ³⁺	4.80	\mathbf{Pot}			25	PC, 0.1 M Et_4NClO_4	24
	Tl+	5.60	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄	70
	Tl+	4.4	Fluor			25	MeOH	180
	Tl+	4.5	Spec	-46		25	MeOH	139
	Tl+	4.10	Polg			22	MeOH, 0.025 M Bu ₄ NClO ₄	70
	Tl+	4.505	Spec	-46.0		25	MeOH, 0.015 M Bu ₄ NClO ₄	11
	T1+	5.35	Pot			25	PC, 0.1 M Et_4NClO_4	24
	Pb ²⁺	11.45	Pot			25	PC, 0.1 M Et_4NClO_4	24
	NH_4^{+}	2.4	Spec	-23		25	MeOH	139
	NH4 ⁺	2.431	Spec	-23.0		25	MeOH, 0.15 M LiCl	11
(MeB) ₂ 30C10		3.60	Polg			22	MeCN, 0.05 M Bu ₄ NClO ₄ M_{2}	70
	K' V+	4.80	Polg			22	MeUN, 0.05 M Bu_4 NCIO ₄	70
	Dh+	4.70	Polg			22	$M_{0}CN$ 0.05 M B_{11} NCIO	70
	Rb+	4.50	Polg			22	$M_{0}OH = 0.025 M B_{11} NC1O$	70
	Ce+	3.80	Polg			22	$MeCN_{0.05} M Bu_1 NClO_{0.00}$	70
(MeB)_30C10	Св Ті+	5 70	Polg			22	MeCN 0.05 M Bu NCIO	70
(1102)/200010	T1+	4.20	Polg			22	MeOH, 0.025 M Bu NClO	70
B-60C20	к+	3.90	ISE			25	MeOH	11. 25
2.1.1	H+	11.84	Pot			1.2	H ₂ O	142
	H+	11.17	Pot			25	H ₂ O	142
	H+	10.64 (1)	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	H+	7.85 (2)	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	H^+	11.32 (1)	\mathbf{Pot}	37.2 (Cal)	92.2	25	H_2O , 0.1 M Et_4NClO_4	77, 143
	H+	8.14 (2)	\mathbf{Pot}	-33.4 (Cal)	43.9	25	H_2O , 0.1 M Et_4NClO_4	77, 143
	H+	12.65 (1)	Pot	-42.2 (Cal)	99.9	25	MeOH, 0.05 M Et_4NClO_4	143
	H+	8.46 (2)	Pot	58.1 (Cal)	-32.6	25	MeOH, 0.05 M Et_4NClO_4	143
	H+	10.48 (1)	Pot			25	H_2O , 0.25 M Me ₄ NC1	154
	H⁺	7.86 (2)	Pot			25	H_2O , 0.25 M Me ₄ NCl	154
	H ⁺ U+	11.59 (1)	Pot Det			25	95% MeOH, 0.1 M Me4NCl	87 97
	п u+	1.12(2)	Pot			20	90% MeOR, 0.1 M Me ₄ NUI H.O. 0.05 M Me NP ₂	0/ 19/
	н+	6 56 (2)	Pot			20 95	$H_0 \cap 05 M M_0 NR_{*}$	104 194
	Lí+	5.5	Pot	-21.3 (Cel)	33.5	25	$H_{0}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1$	104 87 134 144
	Li+		Cal	-21.8	00.0	25	H ₂ O, piperdine HCl buffer, $\mu = 0.1$ M, pH 11.4	155
	Li+	6.99	EMF			25	DMF, 0.1 M Et ₄ NClO ₄	145
	Li ⁺	5.84	EMF			25	DMSO, 0.1 M Et ₄ NClO ₄	145

				<i>H</i> ,	ΔS ,			
ligand	cation	$\log K^{\circ}$	$method^{b}$	kJ/mol	J/(K mol)	T. °C	medium ^c	ref
				/	/ . ,			
	Li+	8.47	EMF			25	EtOH, 0.1 M Et_4NClO_4	145
	Li+	>10	EMF			25	MeCN, 0.1 M Et_4NClO_4	145
	Li+	7.58	Pot			25	95% MeOH. 0.01 M Me. NBr	134
	I;+	7.03	Pot			25	95% MOOH 01 M Me NBr	87
	L1 T ·+	1.55				20		1.0
	Li	8.04	Pot			25	MeOH, $0.05 \text{ M} \text{ Et}_4 \text{NOIO}_4$	146
	Li+	>6.0	Pot			2 5	MeOH, 0.01 M Me ₄ NBr	134
	Li ⁺	6.43	EMF			25	NMP, 0.1 M Et ₄ NPic	145
	Li ⁺	12.4	Ag ⁺ ISE			25	PC	147
	I ;+	19.87	Pot			25	PC 0.1 M LICIO	79
		12.07	FOL	00 0 (C 1)	10	20	$\mathbf{H} = \mathbf{O} + $	104 144
	Na	3.2	Pot	-22.6 (Cal)	12	25	H_2O , 0.05 M Me ₄ NBr, pH 12 (ΔH , ref 144)	134, 144
	Na⁺	2.8	Pot			25	H_2O , 0.1 M Bu_4NCIO_4	148
	Na ⁺	5.23	Pot			25	DMF, 0.1 M Et_4NClO_4	145
	Na ⁺	4.63	Pot			25	Me ₂ SO, 0.1 M Et ₄ NClO ₄	145
	Ne ⁺	43	Pot			25	Me-SO 0.1 M Bu NCIO	148
	Nat	7.00	Det			05	EtOU 01 M Et NDio	145
	INA	7.09	Fot			20	EIOH, 0.1 M EI4NFIC	140
	Na⁺	>9	Pot			25	MeCN, 0.1 M Et_4NCIO_4	145
	Na ⁺	9.57	\mathbf{Pot}			10	MeCN	58
	Na ⁺	9.09	Pot	-53.8	-7.0	25	MeCN	58
	Ne ⁺	8.62	Pot			40	MoCN	58
	INA	0.02	1 00 D-4			40	M-ON 01 M D. NCIO	149
	INA	9.8	Pot			25	Meon, 0.1 M Bu_4 NCIO ₄	140
	Na ⁺	6.08	Pot			25	95% MeOH, 0.01 M Me ₄ NBr	134
	Na ⁺	6.53	Pot			25	95% MeOH, 0.1 M Me₄NCl	87
	Na ⁺	6.1	Pot			25	MeOH. 0.01 M Me ₄ NBr	134
	Ne ⁺	67	Pot			25	$M = OH 0.1 M B_{11} NC O$	148
	Nat	5.00	D-4			20	NMD 0.1 M E4 ND:	145
	INA'	5.06	Pot			25	NMP, 0.1 M EtaNPic	140
	Na ⁺	4.5	Pot			25	Me_4U , 0.1 M Bu_4NClO_4	148
	Na ⁺	8.8	Ag ⁺ ISE			25	PC	147
	K+	<2.0	Pot			2 5	H ₂ O, 0.05 M Me ₄ NBr	134
	к+	< 4	NMR			?	MecO	149
	17+		Det					145
	K	<2.5	Pot			25	DMF, 0.1 M Et ₄ NCIO ₄	140
	K+	1.0	NMR			?	DMF	149
	K+	- 00	NMR			?	Me_2SO	149
	к+	<2.0	Pot			25	MesSO, 0.1 M Et. NCO.	145
	<u>v</u> +	<26	Pot			25	$F_{1}OH = 0.1 M F_{1} M P_{1}$	145
	<u>к</u>	22.0				20	M.CN. 0.1 M EXAMINE	145
	K	2.84	Pot			25	MeON, 0.1 M Et_4NCIO_4	145
	K+	2.8	NMR			?	MeCN	149
	K+	2.26	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	K +	23	Pot			25	MOH 0.01 M Me NBr	134
	17+	0.46	Det			25	NMD 0.1 M Et ND:	145
	K.	2.46	Pot			25	NWF, 0.1 WELLANFIC	140
	K+	3.3	Ag ⁺ ISE			25	PC	147
	K+	2.5	NMR			?	Ру	149
	Rh ⁺	<2.0	Pot			25	H ₂ O, 0.05 M Me ₄ NBr	134
	Dh+	<2.0	Pot			25	95% MoOH 0.1 M Mo NBr	194
	ΠU D1+	1 0	Det			20	MOULOIMMA ND	194
	RD	1.9	Pot			25	MeOH, 0.1 M Me4NBr	104
	Rb+	<2.2	Ag ⁺ ISE			25	PC	147
	Cs^+	<2.0	\mathbf{Pot}			25	H ₂ O, 0.05 M Me₄NBr	134
	Ce ⁺	<20	Pot			25	95% MeOH, 0.01 M Me, NBr	134
	Cot	<2.0	Det			25	MOOH 0.01 M Mo NBr	194
	08	\ 2.0	FOL			20	Meon, cor M M. ND	104
	Mg ²	2.5	Pot			25	H_2O , 0.05 M Me ₄ NBr	134
	Mg ²⁺	4.0	Pot			25	95% MeOH, 0.01 M Me₄NBr	134
	Ca ²⁺	2.50	\mathbf{Pot}	-0.4 (Cal)	46.4	25	H_2O , 0.05 M Me ₄ NBr, pH 12 (ΔH , ref 144)	134, 144
	Ca ²⁺	3.2	Kin	21.3	134	25	H ₂ O, piperidine HCl, pH 11.5, $\mu = 0.1$	157
	$C_{n^{2+}}$	2 30	Kin	-1 3	46	25	H-O 01 M nineridine HCl nH 115	150
	Ca C-2+	2.50	C-1	1.0		20	HO minoriding HO $= 0.1 M$ mH 114	155
	Ca ²⁺		Cal	-1.7		25	H_2O , piperialne HOI, $\mu = 0.1$ M, pH 11.4	100
	Ca ²⁺	3.08	Pot			25	DMF, 0.1 M Et_4NCIO_4	145
	Ca^{2+}	4.34	\mathbf{Pot}			2 5	95% MeOH, 0.01 M Me₄NBr	134
	Ca ²⁺	4.5	Pot			25	95% MeOH, 0.1 M Me/NBr	87
	Ce^{2+}	5.49	$\Delta \sigma^+$ ISE			25	MeOH	152
		0.40				20	DO	1.47
	Ca ²⁺	8.6	Ag' ISE			25	PC	147
	Sr^{2+}	<2.0	Pot			25	H_2O , 0.05 M Me ₄ NBr	134
	Sr^{2+}	2.90	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	Ba ²⁺	<2.0	Pot			25	H ₂ O, 0.05 M Me ₄ NBr	134
	Ba ²⁺	<20	Pot			25	95% MeOH, 0.01 M Me, NBr	134
	Da 03+	< <u>2.0</u>	D-4			20	$H \cap O = M M_0 NC$	154
	Sm°'	0.0	r ut			20		154
	Ho	6.21	Pot			25	$n_20, 0.25 \text{ M} \text{ Me}_4 \text{NU}$	104
	Tm^{3+}	6.8	\mathbf{Pot}			25	H_2O , 0.25 M Me ₄ NCl	154
	Yb ³⁺	6.51	Pot			25	H ₂ O, 0.25 M Me₄NCl	154
	Lu ³⁺	6.55	Pot			25	H ₂ O. 0.25 M Me.NCl	154
	C_{2+}	< 17	Pot			05	H_O 01 M Ft.NCIO	77
	00-1 NT+2+	24.1	FOL D-4			20	H_{0} of ME4 MOIO	77
	INI ²	≥4.5	POL			20	$\Pi_2 \cup, \cup, I$ IN ELANCIU ₄	
	Cu ²⁺	7.78 (1)	Pot			25	H_2O , 0.1 M Et_4NCIO_4	77
	Cu ²⁺	7.51 (2)	Pot			25	H_2O , 0.1 M Et_4NClO_4	77
	Cu ²⁺	4.08	Pot			25	Me_2SO , 0.1 M Et ₄ NClO ₄	78
	Cu ²⁺	<7.3	Pot			25	95% MeOH. 0.1 M Me. NCl	87
	∆_+	11 19	Pot	-71 5	_05	05	H.O	151
	Ag	11.13	POL	-/1.0	-20	20 05	$\Pi_2 \cup$	77
	Ag⁺	ö.52	POL			20	11_{2} , 0.1 W EL4NOIO4	

				ΔH ,	ΔS ,			
ligand	cation	$\log K^a$	method*	kJ/mol	J/(K mol)	<i>T</i> , ⁰C	medium ^c	ref
	Ag ⁺	8.62	Pot	-98.5	-165	25	DFM. 0.1 M Et.NClO	145, 151
	Ag+	6.17	Pot			25	$Me_{s}SO_{s}O_{1}M$ Et NClO	145
	Ag ⁺	5.45	Pot			25	Me ₂ SO, 0.1 M Et ₂ NClO ₂	79
	Ag ⁺	9.70	\mathbf{Pot}			25	EtOH, 0.1 M Et. NClO	145
	Ag ⁺	7.70	Pot			25	MeCN, 0.1 M Et_NClO	145
	Ag ⁺	10.61	Pot	-102.9	-142	25	MeOH, 0.1 M Et ₄ NClO ₄	146, 151
	Ag ⁺	10.30	\mathbf{Pot}			25	MeOH, 0.05 M Et ₄ NClO ₄	80
	Ag ⁺	7.64	Pot			25	NMP, 0.1 M Et ₄ NPic	145
	Ag ⁺	14.44	Ag ⁺ ISE			25	PC, 0.1 M Et_4NClO_4	145, 147
	Ag ⁺	15.00	Pot			25	PC, 0.1 M Et ₄ NClO ₄	79
	Zn ²⁺	≤5.3	\mathbf{Pot}			25	H_2O , 0.1 M Et_4NClO_4	77
	Cd^{2+}	≤5.5	\mathbf{Pot}			25	H_2O , 0.1 M Et_4NClO_4	77
	Cd^{2+}	≤7.7	\mathbf{Pot}			25	MeOH, 0.05 M Et ₄ NClO ₄	80
	Hg ²⁺	15.97	Pot			25	H_2O , 0.1 M Et_4NClO_4	78
	Hg ²⁺	18.71 (B ₁₁₁)	Pot			25	H_2O , 0.1 M Et_4NClO_4	78
	Pb ²⁺	7.93	Pot			25	H_2O , 0.1 M Et_4NClO_4	77
	Pb ²⁺	3.68	Pot			25	Me_2SO , 0.1 M Et_4NClO_4	78
	Pb ²⁺	8.18 (1)	Pot			25	MeOH, 0.05 M Et_4NClO_4	80
	Pb2+	4.04 (2)	Pot			25	MeOH, 0.05 M Et_4NCIO_4	80
	Pb**	7.01 (1)	Spec			25	$PC, 0.01 \text{ M Et}_4 \text{NCIO}_4$	81
4 0 1 1	PD*'	4.29 (2)	Spec			25	$PC, 0.01 \text{ M Et}_4 \text{NCIO}_4$	81
$A_22.1.1$	H' 11+	10.25 (1)	Pot			25	H ₂ O ^c	153
	H' 1.+	9.55 (2)	Pot D-+			25	H ₂ O ^c	153
	L1 ·	1.0	Pot D-+			25	H ₂ O ⁴	103
	NI:2+	1.9	FOL Det			20	П ₂ О ⁻ Ч Оd	103
	Γ_{12}^{-1}	1.0	Pot			20		153
	Δa^+	11.5	Pot			25		159
	7.n ²⁺	11.3	Pot			25	H_2O H_1O^d	153
	Cd2+	16.3	Pot			25	H ₂ O ^d	153
	TI+	<10.0	Pot			25	H ₂ O ^d	153
Me.A.2.1.1	н+	11.18 (1)	Pot			25	H ₂ O ^d	153
1110211221111	н+	9.75 (2)	Pot			25	H_0O^d	153
	H+	2.42 (3)	Pot			25	H_2O^d	153
	Li ⁺	3.8	Pot			25	H ₂ O ^d	153
	Li ⁺	>3.8	Pot			25	95% MeOH ^d	153
	Li+	>4.0	Pot			25	MeOH ^d	153
	Na ⁺	<1.0	Pot			25	H_2O^d	153
	Mg ²⁺	2.4	Pot			25	H_2O^d	153
	Ca ²⁺	2.2	Pot			25	H_2O^d	153
	Co ²⁺	9.9	Pot			25	H_2O^d	153
	Ni ²⁺	10.0	Pot			25	H_2O^d	153
	Cu^{2+}	16.0	Pot			25	H_2O^d	153
	Ag ⁺	12.7	\mathbf{Pot}			25	H_2O^d	153
	Zn ²⁺	11.2	Pot			25	H_2O^a	153
	Cd ²⁺	12.4	Pot			25	H_2O^a	153
	Hg ²⁺	26.6	Pot			25	H_2O^a	153
	T1*	3.9	Pot			25	H_2O^{a}	153
2.2.1	H' 11+	11.78	Pot			1.2	H ₂ O	142
	H' 11+	10.91	Pot			25		142
	п' u+	10.55 (1) 7 50 (9)	Pot			20	H_2O , 0.05 M Me ₄ NBr H O 0.05 M Me NPr	134
	п u+	1.00(2)	Pot	-25.1 (Cal)	02.0	20	$H_2O_1 0.05 M Me_4NBr$	104
	и+	774(2)	Pot	-171 (Cal)	90.2	25	H_2O , 0.1 M Et NCIO	77 143
	н+	10.75(1)	Pot	1111 (041)	50.1	25	$H_{2}O_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	154
	н+	7.68 (2)	Pot			25	$H_{0}O_{1}O_{2}O_{2}O_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	154
	H+	10.97 (1)	Pot			25	95% MeOH. 0.1 M Me/NCl	87
	H+	7.31 (2)	Pot			25	95% MeOH, 0.1 M Me ₄ NCl	87
	H+	10.42 (1)	Pot			25	95% MeOH, 0.01 M Me, NBr	134
	H+	6.60 (2)	Pot			25	95% MeOH, 0.01 M Me ₄ NBr	134
	H+	11.53 (1)	Pot	-55.6 (Cal)	33.8	25	MeOH, 0.05 M Et ₄ NClO ₄	143
	H^+	9.48 (2)	\mathbf{Pot}	-58.9 (Cal)	-16.3	25	MeOH, $0.05 \text{ M Et}_4 \text{NClO}_4$	143
	Li+	2.50	Pot	0.0 (Cal)	47.7	25	H_2O , 0.05 M Me ₄ NBr, pH 12 (ΔH , ref 144)	134, 144
	Li+	3.58	Pot			25	DMF, 0.1 M Et ₄ NClO ₄	145
	Li ⁺	2.77	Pot			25	Me_2SO , 0.1 M Et_4NClO_4	145
	Li+	5.38	Pot			25	EtOH, 0.1 M Et, NPic	145
	Li ⁺	10.33	Pot			25	MeCN, 0.1 M Et_4NClO_4	145
	Li [≁]	4.18	Pot			25	95% MeOH, 0.1 M Me ₄ NBr	134
	L1 ⁺	4.46	Pot			25	95% MeOH, 0.1 M MeaNCl	87 140
	т;+	0.00 \50	rut Dot			20	MOOH 0.01 M Ma NP-	140 197
	т.+	20.0	Pot			20 25	NMP 0.1 M Ft ND:-	104
	Li+	9.6	100 Ag+ ISF			25		147
	Na+	5.40	Pot	-22.38 (Cal)	25.9	25	$H_{0}O_{1}O_{2}O_{2}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3$	134 144
	Na ⁺	5.4	Pot	22.00 (Oar)	20.0	25	$H_{0}O, 0.1 \text{ M Bu}$ NClO	148
	Na ⁺	7.93	Pot			25	DMF, 0.1 M Et ₄ NClO ₄	145

ligand	cation	log Kª	$method^b$	ΔH , kJ/mol	$\Delta S, J/(K mol)$	<i>T</i> , ⁰C	medium ^c	ref
	Na ⁺	6.98	Pot	·	· · · · · · · · · · · · · · · · · · ·	25	Me ₂ SO, 0.1 M Et ₄ NClO ₄	145
	Na ⁺	6.9	Pot			25	Me_2SO , 0.1 M Bu_4NClO_4	148
	Na ⁺	7.24	Pot			25	Me ₂ SO, 0.1 M NaClO ₄	79
	Na ⁺	10.20	Pot			25	EtOH, 0.1 M Et ₄ NPic	145
	Na ⁺	12.4	Pot			25	MeCN, 0.1 M Bu ₄ NClO ₄	148
	Na ⁺	8.84	Pot			25	95% MeOH, 0.01 M Me₄NBr	134
	Na ⁺	9.35	\mathbf{Pot}			25	95% MeOH, 0.1 M Me₄NCl	87
	Na ⁺	9.65	\mathbf{Pot}			25	MeOH, 0.05 M Et_4NClO_4	146
	Na ⁺	9.3	Pot			25	MeOH, 0.1 M Bu_4NClO_4	148
	Na ⁺	>8.0	Pot			25	95% MeOH, 0.01 M Me₄NBr	134
	Na ⁺	6.55	Pot			25	NMP, 0.1 M Et_4NPic	145
	Na⁺ N.+	12.1	Ag⁺ ISE			25		147
	Na' N-+	12.78	Pot			25	PC, 0.1 M NaClO ₄ Ma U 0.1 M Pri NClO	79
	INA IV+	2.05	Pot	-98.5 (Cal)	-19.7	20	Me_4U , 0.1 M Bu_4NOIU_4 H O 0.05 M Mo ND ₂ pH 12 (AH rof 144)	148
	к к+	0.90 6.66	Pot	-20.5 (Cal)	-15.1	25	$M_{2}O, 0.00 \text{ M Me}_{4}NBr, pH 12 (\Delta H, ref 144)$	134, 144
	к+	5.00	Pot			25	M_{0} SO 0.1 M Et NCIO	145
	к+	8.56	Pot			25	EtOH 01 M Et. NPic	145
	к+	7.45	Pot			25	95% MeOH, 0.01 M Me.NBr	134
	к+	8.54	Pot			25	MeOH, 0.05 M Et.NClO	146
	K+	>7.0	Pot			25	MeOH, 0.01 M Me, NBr	134
	K+	8.54	Cond	-59.9		25	MeOH	156
	K ⁺	6.11	Pot	-		25	NMP, 0.1 M Et ₄ NPic	145
	K+	9.9	Ag ⁺ ISE			25	PC	147
	Rb^+	2.55	Pot	-22.6 (Cal	-27.2	25	H_2O , 0.05 M Me ₄ NBr, pH 12 (ΔH , ref 144)	134, 144
	Rb+	5.35	Pot			25	DMF, 0.1 M Et ₄ NClO ₄	145
	Rb+	4.64	Pot			25	$Me_2SO, 0.1 M Et_4NClO_4$	145
	Rb^+	6.88	Pot			25	EtOH, 0.1 M Et₄NPic	145
	Rb+	5.80	\mathbf{Pot}			25	95% MeOH, 0.1 M Me ₄ NBr	134
	Rb^+	>6.0	Pot			25	MeOH, 0.01 M Me ₄ NBr	134
	Rb ⁺	6.74	Pot			25	MeOH, 0.05 M Et_4NClO_4	146
	Rb ⁺	5.55	Pot			25	NMP, 0.1 M Et ₄ NPic	145
	Rb ⁺	7.0	Ag ⁺ ISE			25		147
	Cs ⁺	<2.0	Pot			25	H_2O , 0.05 M Me ₄ NBr	134
	Cs ⁺	3.61	Pot			25	DMF, 0.1 M Et $_4$ NCIO $_4$	140
	Cs ⁺	3.23	Pot			25	$Me_2SO, 0.1 M Et_4NCIO_4$ EtOH 0.1 M Et ND:	140
	Cs Cs+	3 00	Pot			20	65% MoOH 0.01 M Mo NBr	140
	Cs ⁺	~ 5.0	Pot			25	MeOH 0.05 M Et. NCIO	134
	Cs ⁺	4.33	Pot			25	MeOH, 0.01 M Me.NBr	146
	Čs ⁺	3.87	Pot			25	NMP. 0.1 M Et.NPic	145
	Cs ⁺	4.9	Ag ⁺ ISE			25	PC	147
	Mg ²⁺	<2.0	Pot			25	H_2O , 0.05 M Me ₄ NBr	134
	Mg^{2+}	<2.0	Pot			25	95% MeOH, 0.01 M Me ₄ NBr	134
	Ca ²⁺	6.8	Kin	-29.7	29	25	H_2O , piperidine HCl, pH 11.5, $\mu = 0.1$	157
	Ca ²⁺	6.95	\mathbf{Pot}	-12.1 (Cal)	92.0	25	H_2O , 0.05 M Me ₄ NBr, pH 12 (ΔH , ref 144)	134, 144
	Ca ²⁺	6.86	Kin	-5.4	113	25	H_2O , 0.1 M piperidine HCl, pH 11.5	150
	Ca ²⁺	6.67	Pot			25	DMF, 0.1 M Et_4NClO_4	145
	Ca ²⁺	9.61	Pot			25	95% MeOH, 0.01 M Me ₄ NBr	134
	Ca ²⁺	9.92	Ag ⁺ ISE			25	MeOH	152
	Ca ²⁺	11.0	Ag' ISE	05 5 (C-1)	E 4 9	25	$PU = H O = 0.05 M M_0 ND_{\pi} = H 10 (AH = 14)$	14/
	Sr ²⁺	1.30	Pot	-25.5 (Cal)	94.0	20	$n_20, 0.05 \text{ M} \text{ Me}_4 \text{ NBr}, \text{ pr} 12 (\Delta n, \text{ ref} 144)$	134, 144
	Sr ²⁺	11.04	Pot			25	MaOH	159
	Ba ²⁺	6.30	Pot	-26 4 (Cal)	32.2	25	$H_{a}O = 0.05 \text{ M} \text{ Me}_{a}\text{NBr} \text{ nH} 12 (\Delta H \text{ ref} 144)$	134 144
	Ba ²⁺	9.70	Pot	2011 (Out)		25	95% MeOH. 0.01 M Me./NBr	134
	Ba ²⁺	10.62	Pot			25	MeOH	152
	La ³⁺	6.59	Pot			25	H_2O , 0.25 M Me_4NCl	154
	La ³⁺	8.26	\mathbf{Pot}			25	MeOH, 0.05 M Et ₄ NClO ₄	65
	La ³⁺	18.6	Pot			25	PC, 0.1 M Et_4NClO_4	65
	Pr ³⁺	6.58	\mathbf{Pot}			25	H_2O , 0.25 M Me_4NC1	154
	Pr ³⁺	9.31	Pot			25	MeOH, $0.05 \text{ M Et}_4 \text{NClO}_4$	65
	Pr ^{o+}	18.7	Pot			25	PC, 0.1 M Et_4NClO_4	65
	Nd°'	9.86	Pot			20	MeOH, 0.05 M Et_4NCIO_4	60 1 <i>54</i>
	Sm ³⁺	0.70 9.70	r ot Pot			20	$M_{0}OH = 0.05 M Et NCIO$	65
	Sm ³⁺	19.0	Pot			25	PC. 0.1 M Et.NClO	65
	Eu^{2+}	10.2	Pot			25	$H_{2}O, 0.25$ M Me ₄ NCl	154
	Eu ²⁺	9.31	Volt	-36.8	54	25	H ₂ O	158
	Eu ³⁺	5.94	Volt	7.9	140	25	H ₂ O	158
	Eu ³⁺	6.8	Pot			2 5	H ₂ O, 0.25 M Me ₄ NCl	154
	Eu ³⁺	10.57	Pot			25	MeOH, 0.05 M Et ₄ NClO ₄	65
	Eu ³⁺	19.0	Pot			25	PC, 0.1 M Et ₄ NClO ₄	65
	Gd ^{o+}	6.7	Pot			25	H_2U , 0.25 M Me ₄ NCl M-OUL 0.05 M Ft NGCO	154
	60°* mls+	10.14	Pot			25	MEURI, 0.05 M Et4NCIO ₄ H O_1 0.95 M M $_0$ NCI	00 154
	T D,	0.0	rot			25	$\Pi_2 O$, 0.25 IVI IVIE4INOI	104

		1 770		ΔH ,	$\Delta S,$.	1	6
ligand	cation	log K ^a	method ^o	kJ/mol	J/(K mol)	<i>T</i> , °C	medium ^c	ref
	Tb^{3+}	10.26	\mathbf{Pot}			25	MeOH, 0.05 M Et ₄ NClO ₄	65
	Dv^{3+}	10.45	Pot			25	MeOH, 0.05 M Et ₄ NClO ₄	65
	Dv ³⁺	19.0	Pot			25	PC. 0.1 M Et. NCIO	65
	Ho ³⁺	10.86	Pot			25	MeOH 0.05 M Et.NCIO	65
	Er ³⁺	6 60	Pot			25	$H_{1}O_{1}O_{2}S M M_{e}NCI$	154
	E-3+	10.79	Pot			25	$M_{2}O, 0.20 M Me_{1}O$	65
	E-3+	10.78	Det			20	DC = 0.1 M Et NCIO	65
	Er"	19.2				20	PC, 0.1 M EtaNCIO	60
	Y	10.34	Pot			25	MeOH, 0.05 M Et ₄ NClO ₄	65
	Tm³≁	6.88	Pot			25	H_2O , 0.25 M Me_4NCl	154
	Tm^{3+}	11.61	\mathbf{Pot}			25	MeOH, $0.05 \text{ M Et}_4 \text{NClO}_4$	65
	Yb ³⁺	12.00	\mathbf{Pot}			25	MeOH, 0.05 M Et ₄ NClO ₄	65
	Yb ³⁺	19.1	\mathbf{Pot}			25	PC, 0.1 M Et ₄ NClO ₄	65
	Co ²⁺	5.40	\mathbf{Pot}			25	H_2O , 0.1 M Et ₄ NClO ₄	77
	Co ²⁺	5.92	Pot			25	95% MeOH. 0.1 M MeANCl	87
	Ni ²⁺	4.28	Pot			25	$H_{0}O_{1}O_{1}$ M Et. NClO	77
	Cu^{2+}	7.56 (1)	Pot			25	$H_{2}O_{1}O_{1}MEt_{1}NCO_{1}O_{2}$	77
	C_{1}^{2+}	514(2)	Pot			25	H_{20} , h_{1} M E_{1} h_{10}	77
	Cu^{2+}	0.14 (2)		_17.0	-9.4	25	$M_2O_1 = 0.1 \text{ M} = D_1(1)O_1O_4$	150
	Cu- C2+	2.1	Car Vin	-17.9	-0.4	20	Me ₂ SO	109
	Cu ²⁺	2.5	Kin			25	Me ₂ SU	159
	Cu ²⁺	3.77	Pot			25	Me_2SO , 0.1 M Et_4NCIO_4	78
	Cu ²⁺	8.71	Pot			25	95% MeOH, 0.1 M Me₄NCl	87
	Ag+	10.6	Pot			25	H_2O , 0.1 M Me ₄ NBr	134
	Ag ⁺	10.6	\mathbf{Pot}			25	H_2O , 0.1 M Bu_4NClO_4	148
	Ag ⁺	11.82	\mathbf{Pot}	-51.0	54	25	H ₂ O	151
	Ag ⁺	10.60	\mathbf{Pot}			25	$H_{2}O$, 0.1 M Et ₄ NClO ₄	77
	Ag+	12.43	Pot			25	$H_{0}O_{1}O_{1}$ M Et NCIO	78
	$\Delta \sigma^+$	12.43	Pot	-88 7	-14	25	DMF 01 M ELNCIO	151
	$\Delta \sigma^+$	19.41	Pot	00.1	11	25	DMF 0.1 M Et NCIO	145
	Λg ⁺	0.61	Det			20	M_{1} SO 0.1 M Et NCIO	145
	Ag A +	9.01	FOL D-+			20	M_{2} SO, 0.1 M D_{2} NOIO	140
	Ag	8.2	Pot			25	$Me_2SO, 0.1 M Bu_4NCIO_4$	148
	Ag	9.73	Pot			25	Me_2SO , 0.1 M Et_4NCIO_4	79
	Ag ⁺	13.84	Pot			25	EtOH, 0.1 M Et_4NPic	145
	Ag ⁺	11.24	\mathbf{Pot}			25	MeCN, 0.1 M Et ₄ NClO ₄	145
	Ag+	9.7	\mathbf{Pot}			25	MeCN, 0.1 M Bu ₄ NClO ₄	148
	Ag ⁺	14.64	Pot	-80.8	8	25	MeOH, 0.1 M Et ₄ NClO ₄	146, 151
	Ag ⁺	13.3	Pot			25	MeOH, 0.1 M BuANCIO	148
	Ag ⁺	14.30 (1)	Pot			25	MeOH, 0.05 M Et. NClO	80
	Ag ⁺	5.20 (2)	Pot			25	MeOH, 0.05 M Et NCIO	80
	Δσ+	10.45	Pot			25	NMP 01 M Et. NPic	145
	Ag+	18 50	ISF			25	PC = 0.1 M F + NC10	145 147
	Δg ⁺	19.00	Bet			20	PC, 0.1 M Et NCIO	140, 147
	Ag	10.00				20	$PC, 0.1 \text{ M Et}_4 \text{NC} IO_4$	19
	Ag	10.5	Pot			25	Me_4U , 0.1 M Bu_4NCIU_4	148
	Zn ²⁺	5.41	Pot			25	H_2O , 0.1 M Et_4NCIO_4	77
	Cd ²⁺	10.04	Pot			25	H_2O , 0.1 M Et_4NClO_4	77
	Cd^{2+}	11.30	\mathbf{Pot}			25	MeOH, $0.05 \text{ M Et}_4 \text{NClO}_4$	80
	Hg ²⁺	19.97	Pot			25	H_2O , 0.1 M Et_4NClO_4	78
	T1+	6.8	Kin			25	H ₂ O	160
	Pb ²⁺	13.12	Pot			25	$H_{2}O_{1}O_{1}$ M Et ₄ NClO ₄	77
	Pb ²⁺	8.37	Pot			25	MesSO, 0.1 M Et. NCIO	78
	Ph ²⁺	15 11 (1)	Pot			25	MeOH 0.05 M Et.NCIO	80
	Ph2+	4 96 (2)	Pot			25	MOOH 0.05 M Et NCIO	80
	Dh2+	16.94(1)	Spoo			20	$\mathbf{PC} = 0.1 \mathbf{M} \mathbf{F} + \mathbf{NC} \mathbf{O}$	00
	Dh2+	10.34(1)	Spec			20	PC, 0.1 M Et NCIO	01
mr.0 0 1	No ⁺	3.13 (2)	Spec			20	$FC, 0.1 \text{ M} EtaNOIO_4$	01
py2.2.1	INA T	4.09	Spec			25		277
	ĸ	4.78	Spec			25	H ₂ O	277
K ₂ py2.2.1	Na⁺	4.58	Spec			25	H_2O	277
	K+	5.25	Spec			25	H_2O	277
2.2.2	H+	10.66	Cond			1.2	H ₂ O	142
	H+	9.86	Cond			25	H ₂ O	142
	H^+	10.00 (1)	Pot	-35.1 (Cal)	73.1	25	H_2O , 0.1 M Et ₄ NClO ₄	77, 143
	H+	7.53 (2)	Pot	-18.8 (Cal)	83.2	25	H ₂ O, 0.1 M Et ₄ NClO ₄	77, 143
	H+	9.95 (1)	Pot	• •		25	H ₂ O, 0.25 M Me ₄ NCl	154
	н+	7.59 (2)	Pot			25	$H_{2}O_{1}O_{2}S M M_{e}NC$	154
	н+	971(1)	Pot	-45.9	34 3	25	$H_{2}O_{1}O_{1}$ M Me NCl	00
	и+	7.91(9)	Pot	19.0	76.6	20	H_2O , 0.1 M Me NCl	<i>33</i>
	11 U+	1.01 (4)	101 Via	-10.0	10.0	20 05	$\mathbf{H}_{0}, 0, 1 \in \mathbf{M} \text{ with a state of } \mathbf{M}_{0}$	99 150
	п. п.	9.0 (1)	Kin Vin			25	Π_2 , 0.1 M piperidine HCl	150
	п' т-	7.4 (2)	Kin			25	$n_20, 0.1$ M piperidine HCl	150
	H ⁺	9.60 (1)	Pot			25	H_2O , 0.05 M Me ₄ NBr	134
	HT TT	7.28 (2)	Pot			25	H_2O , 0.05 M Me ₄ NBr	134
	HT	10.05 (1)	Pot			25	H_2O , 0.1 M Me_4NCl	87
	H+	7.15 (2)	Pot			25	H_2O , 0.1 M Me_4NCl	87
	H+	9.85 (1)	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	H+	6.64 (2)	Pot			25	95% MeOH, 0.01 M Me₄NBr	134
	H+	10.72 (1)	\mathbf{Pot}	-51.8 (Cal)	30.9	25	MeOH, 0.05 M Et₄NClO₄	143
	H+	9.03 (2)	\mathbf{Pot}	-53.9 (Cal)	-8.4	25	MeOH, 0.05 M Et ₄ NClO ₄	143
	Li+	1.25	Cal	-5.86	4.2	25	H ₂ O	161

ligand	cation	$\log K^a$	$method^b$	ΔH, kJ/mol	$\Delta S, J/(K mol)$	<i>T</i> . ⁰C	medium ^c	ref
	T ;+	<20	Pot		- , (,	25		194
	Li ⁺	<1.4	CvVol			25	H_2O , 0.01 M Et.NCIO	169
	Li ⁺	<1.0	Pot			25	M_{20} , $0.1 M Et_{1}$ NClO	145
	Li ⁺	<1.0	CvVolt			25	$Me_{2}SO, 0.1 M Et_{4}NClO_{4}$	162
	Li ⁺	≤2.3	Pot			25	$EtOH, 0.1 M Et_4 NClO_4$	145
	Li ⁺	6.97	Pot			25	$MeCN$, 0.1 M Et_4NClO_4	145
	Li+	1.8	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	Li ⁺	~ 1	Pot			25	95% MeOH, 0.1 M Me₄NCl	87
	Li ⁺		Cal	0.71	52.3	25	MeOH	161
	Lit	2.6	Pot			25	MeOH, 0.01 M Me ₄ NBr	134
	Li ⁺	2.97	Pot			25	NMP, 0.1 M Et_4NPic	145
	LI No ⁺	0.9	Ag 15E	-21.88		20		14/
	Na ⁺	39	Pot	-31.00 -31.0 (Cal)	-29.3	25	$H_{2}O$ $H_{2}O$ 0.05 M Me NBr pH 10.4 (AH ref 144)	134 144
	Na ⁺	4.11	Pot	-31.0 (Cal)	-25.0	25	$H_{2}O, 0.1 \text{ M Me}_{1}NO1$	99
	Na ⁺	3.9	CyVol			25	H_2O , 0.01 M Et ₄ NClO ₄	162
	Na ⁺	3.9	Pot			25	H_2O , 0.1 M Bu_4NClO_4	148
	Na ⁺		Cal	-39.96		25	DMF	339
	Na ⁺	5.83	Pot			25	DMF	163
	Na ⁺	6.17	Pot			25	DMF, 0.1 M Et_4NClO_4	145
	Na ⁺	F 0	Cal	-44.64		25	Me ₂ SO	339
	Na' Nat	5.3	Pot			25	Me_2SO , 0.1 M Et_4NOIO_4	145
	Na ⁺	4.9 5.4	ISE Pot			20	$Me_2 = 0$ Ma SO 0.1 M By NCIO	163
	Na ⁺	5.4	CvVolt			25	$Me_2SO_1 0.1 M Et_NCIO_4$	140
	Na ⁺	5.28	Pot			25	$Me_2SO, 0.1 M NaClO4$	79
	Na ⁺	8.57	Pot			25	EtOH, 0.1 M Et_4 NPic	145
	Na ⁺	>7	Cond			25	MeCN	90
	Na ⁺	10.68	ISE			25	MeCN	163
	Na ⁺	9.63	Pot			25	MeCN, 0.1 M Et_4NClO_4	145
	Na ⁺	10.9	Pot			25	MeCN, 0.1 M Bu ₄ NClO ₄	148
	Na ⁺	7.21	Pot	-44.4 (Cal)	-11.0	25	95% MeOH, 0.01 M Me ₄ NBr, pH 10.4 (ΔH , ref 144)	134, 144
	Na' Not	7.4	Pot	-44 64	0.1	25	95% MeOH, 0.1 M Me ₄ NCI MoOH	87
	INA '	N80	Dat	-44.04	2.1	25		101
	Na ⁺	7.9	CvVol			25	MeOH, 0.05 M Et.NCIO	162
	Na ⁺	7.98	Pot			25	MeOH, 0.05 M Et NCIO	146
	Na ⁺	7.8	Pot			25	MeOH, 0.1 M Bu ₄ NClO ₄	148
	Na^+	5.82	Pot			25	NMP, 0.1 M Et ₄ NPic	145
	Na ⁺	10.1	ISE			25	PC	163
	Na ⁺	10.25	Pot			25	PC	163
	Na ⁺	10.5	Ag ⁺ ISE			25	PC	147
	Na⁺ Na⁺	10.83	Pot			25	$PU, 0.1 \text{ M} \text{ NaClO}_4$	79
	INA K+	5.0 5.3		-48	-58.9	20	$Me_4 \cup$, $U.I M Bu_4 N \cup IO_4$	140
	K+	0.0	Cal	-48.4	-00.9	25	H ₂ O	161
	к+	5.4	Kin	10.1		25	H ₂ O	160
	K+	5.4	Pot	-47.7 (Cal)	-59.0	25	H_2O , 0.05M Me ₄ NBr, pH 10.4 (ΔH , ref 144)	134, 144
	K+	5.58	Pot	-46.0 (Cal)	-48.1	25	H_2O , 0.1 M Me_4NCl	99
	K⁺	5.4	CyVol			25	H_2O , 0.01 M Et_4NClO_4	162
	K+		Cal	-54.52		25	DMF	339
	K* V+	7.98	EMF	50.0 (CL)	07	25	DMF, 0.1 M Et ₄ NClO ₄	145
	K+	7.89		-53.0 (Cal)	-27	25	$DMF, 0.1 \ ME_4 NC IO_4$ Me, SO	191
	K+	6.95	ISE	01.17		25	Me ₂ SO	163
	K+	7.11	Pot			25	Me_2SO , 0.1 M Et_4NClO_4	145
	K+	6.0	CyVol			25	$Me_2SO, 0.1 M Et_4NClO_4$	162
	K+	6.92	Pot	-60.8	-71	25	Me_2SO , 0.1 M Et_4NClO_4	151
	K ⁺	10.50	Pot			25	EtOH, 0.1 M Et ₄ NPic	145
	K ⁺	>7	Cond			25	MeCN	90
	K* 12+	10.46	ISE	7(1(0-1)		25	MeUN	163
	K+	10.71	Pot	-74.1 (Cal)	-44	20	$M_{0}CN_{0,1}ME_{1,N}CO_{1}$	101
	K+	5.6	Pot			25	H_{sO} , 0.1 M ELINCIO	166
	κ+	6.0	Pot			25	5% MeCN, 0.1 M Et_4NClO_4	166
	K+	6.5	Pot			25	10% MeCN, 0.1 M Et ₄ NClO ₄	166
	K+	7.1	Pot			25	20% MeCN, 0.1 M Et ₄ NClO ₄	166
	K+	7.7	Pot			25	30% MeCN, 0.1 M Et ₄ NClO ₄	166
	K⁺ V+	8.1	Pot			25	40% MeCN, 0.1 M Et $_4$ NClO 50% MaCN 0.1 M Et NClO	100
	K+	8.9	Pot			20 25	60% MeCN, 0.1 M EtaNClO	166
	Ř+	9.2	Pot			25	70% MeCN, 0.1 M Et.NClO	166
	K+	9.7	Pot			25	80% MeCN, 0.1 M Et ₄ NClO ₄	166
	K+	10.3	Pot			25	90% MeCN, 0.1 M Et ₄ NClO ₄	166
	K+	10.9	Pot			25	95% MeCN, 0.1 M Et ₄ NClO ₄	166
	K+	11.4	Pot			25	MeCN, 0.1 M Et_4NClO_4	166

ТΑ	RL.	ΕI	(Con	tinu	ed)
1 1	ББ	<u> </u>	1001	unu	cur

					ΔH ,	ΔS ,			
K* 0.75 Pete -75.56 (Cal) -86.4 26.5 MoOH 0.01 M Ma,NBr, pH 10.4 (AB, ref 144) K* Cold -71.29 -86.4 25 MoOH 0.01 M Ma,NBr, K* 10.4 Pot 25 MoOH 0.01 M Ma,NBr, MoOH 0.01 M Ma,NBr, K* 10.4 Pot 25 MOOH 0.01 M Ma,NBr, MoOH 0.01 M Ma,NBr, K* 11.2 Agr ISE 26 PC No MA, NDR, MoOH 0.01 M Ma,NDR, MoH 0.01 M Ma,NDR,	ligand	cation	$\log K^a$	method ^b	k J/mol	J/(K mol)	<i>T</i> , °C	medium ^c	ref
Rr Cal -71.29 -96.4 26 MOH K* 10.4 Pot 25 Model, 0.05 M E_NCIO, K* 10.4 Pot 25 Model, 0.05 M E_NCIO, K* 10.3 Pot 35 Model, 0.05 M E_NCIO, K* 10.3 Pot 35 Pot 35 K* 11.10 Pot -69.2 -20 25 PC, 0.1 M E_NCIO, K* 11.10 Pot -69.2 -20 25 PO, 0.1 M M_N, NE, pH 10.4 (ΔH , ref 144) Rb* 6.36 Pot -65.40 (Cal) -25.4 Pot Pot Pot Rb* 6.57 Pot 55.16 (Cal) 25 DMG Max NCIO, Rb* 55.7 CyVoit 25 DMSO, 0.1 M E_NNCIO, Rb* 55.7 CyVoit 25 DMSO, 0.1 M E_NNCIO, Rb* 56.7 CyVoit 25 DMSO, 0.1 M E_NNCIO, Rb* 57.8 Pot 25.0 DMAY		K+	9.75	Pot	-79.5 (Cal)	-80.3	25	95% MeOH, 0.01 M Me NBr, pH 10.4 (ΔH, ref 144)	134, 144
K° > 7.0 Pot 25 MODE, 0.01 M Me,NBr. K° 10.48 Pot 25 MODE, 0.05 M EL,NCIO, K° 11.2 Art SEB 25 MODE, 0.01 M Me,NBr. K° 11.2 Art SEB 25 POC K° 11.2 Art SEB 26 POC K° 11.2 Art SEB 20 POC K° 11.2 Art SEB 28 POC K° 11.0 Pot -60.2 20 POT POT Rb* Cold -44.6 (Cal) -62.8 25 PLO, 0.05 M Me,NED, PLO (JAM, Me,NET, PH 10.4 (JAH, ref 144) Rb* 4.36 Pot -63.4 Pot 25 DMSG, 0.1 M EL,NCDO, Rb* 5.36 Pot 25 DMSG, 0.1 M EL,NCDO, MCD, 0.05 M Me,NBr. Rb* 6.36 Pot 25 DMSG, 0.1 M EL,NCDO, MCD, 0.05 M Me,NBr. Rb* 6.36 Pot 25 DMSG, 0.1 M EL,NCDO, MCD, 0.05 M Me,NBr. Rb* 6.36 Pot 25 DMSG, 0.1 M EL,NCDO,		K+		Cal	-71.29	-36.4	25	MeOH	161
K* 10.4 Pot 25 MoOR, 005 M EL, NICO, K* 6.4 Pot 23 NUP, 0.1 M EL, NFIC K* 6.4 Pot 23 PC K* 11.0 Ar BEB 20 20 20 K* 11.0 Ar BEB 20 20 20 20 K* 11.0 Ar BEB 20 20 20 20 20 K* 11.0 Ar BEB 20 20 20 20 20 R* 4.55 Pot -49.4 (Cal) -82.8 24 100, 0.01 M EL, NCIO, Rb* 4.35 Pot -55.6 20.1 M EL, NCIO, 20 20 Rb* 5.7 Cyvoit 25 25 20.0 M Me, NBr, pH 10.4 (AF, ref 144) Rb* 8.88 Pot -35 20 20.0 M Me, NBr, pH 10.4 (AF, ref 144) Rb* 8.88 Pot 25 MOOR, 10.0 M Me, NBr, pH 10.4 (AF, ref 144) Rb* 8.88 <th< td=""><td></td><td>K+</td><td>>7.0</td><td>Pot</td><td></td><td></td><td>25</td><td>MeOH, 0.01 M Me₄NBr</td><td>134</td></th<>		K+	>7.0	Pot			25	MeOH, 0.01 M Me ₄ NBr	134
K° 10.8 Pot 25 McOH, 0.05 M Eq,NCIO, K° 10.73 Pot 25 NLP, 0.05 M Eq,NCIO, K° 11.10 Pot 25 PC K° 11.10 Pot 25 PC K° 11.10 Pot 435 Pot K° 10.4 Status Pot 436 Rb ⁻ 4.35 Pot -49.4 (Cal) -82.8 25 H,0,0.05 M Eq,NDT, pH 10.4 (ΔH , ref 144) Rb ⁻ 4.36 CyVol 25 DMF 10.1 M Eq,NCIO, Rb ⁻ 6.56 Pot 25 DMF 10.1 M Eq,NCIO, Rb ⁻ 5.55 Pot 25 DMF 10.1 M Eq,NCIO, Rb ⁺ 5.60 79.1 25 BMOH 10.1 M Eq,NCIO, Rb ⁺ 8.0 Pot -79.2 25 BMOH, 0.01 M Me,NBr, pH 10.4 (ΔH , ref 144) Rb ⁺ 8.0 Pot -28.2 (Cal) -114.6 26 BoxMOH, 0.01 M Me,NBr, PH		K+	10.41	\mathbf{Pot}			25	MeOH, $0.05 \text{ M Et}_4 \text{NClO}_4$	146
K* -8.4 Pot 25 NMP: 0.1 M BL,NFIc K* 11.0 Pot -20 25 PC. 0.1 M BL,NCIO, K* 11.0 Pot -49.4 (20) -20 25 PC. 0.1 M BL,NCIO, Rb* 4.06 Pot -49.4 (20) -85.4 25 HQ. 0.06 M M_NMR; pH 10.4 (ΔH , ref 144) Rb* 4.06 Pot -49.4 (20) -87.4 25 HQ. 0.00 M M_NMR; pH 10.4 (ΔH , ref 144) Rb* 4.06 Pot -49.4 (20) -87.4 25 DMR Rb* 6.76 Pot 25 DMR 0.1 M BL,NCIO, Rb* 5.7 Cod 25 DMR<0.1 M BL,NCIO,		K+	10.8	\mathbf{Pot}			25	MeOH, 0.05 M Et_4NClO_4	162
K ⁺ 10.73 Pet 25 PC K ⁺ 11.10 Pet -20 25 PC, 0.1 M Eq.NCIO, K ⁺ 11.10 Pet -34 -35 -37 THP Rb ⁺ 4.36 Pet -38 23 H _Q O, 0.05 M M _P ,NBr, pH 10.4 (ΔH , ref 144) Rb ⁺ 4.36 CyVal -56.40 (Cal) 25 H _Q O, 0.01 M Eq.NCIO, Rb ⁺ 6.58 Pet -58.9 DMF, 0.1 M Eq.NCIO, 25 Rb ⁺ 5.85 Pet 25 DMF, 0.1 M Eq.NCIO, 25 Rb ⁺ 5.85 Pet 25 BOM, 0.1 M Eq.NCIO, Rb ⁺ 5.85 Pet 25 MoCH 25 Rb ⁺ 6.40 Pot -78.1 25 MoCH MaCH, 0.00 M Meq.NBr, PH 10.4 (ΔH , ref 144) Rb ⁺ 8.40 Pot -78.1 25 MoCH 0.01 M Eq.NBr, PH 10.4 (ΔH , ref 144) Rb ⁺ 8.46 Pot -78.1 25 MoCH 0.00 M Meq.NBr		K+	~ 8.4	\mathbf{Pot}			25	NMP, 0.1 M Et ₄ NPic	145
K* 11.10 Adv 158 25 PC 25 PC K* 0.4 Spec -34 -155 -50 THP 28 PL 20 28 28 PL 20 28 28 PL 20 28 28 PL 20 28 28 28 26 28		K+	10.73	\mathbf{Pot}			25	PC	163
K ⁺ 11.10 Pot -08.2 -20 25 PC, 0.1 M Ex,NClo, Rb ⁺ Cal -48.25 25 H ₀ 0.0 M Ma,NEr, pH 10.4 (ΔH , ref 144) Rb ⁺ 4.36 Pot -48.4 (Cal) -97.4 25 H ₀ O, 0.0 M Ma,NEr, pH 10.4 (ΔH , ref 144) Rb ⁺ 4.36 Pot -46.4 (Cal) -97.4 25 H ₀ O, 0.0 M Ma,NEr, pH 10.4 (ΔH , ref 144) Rb ⁺ 6.76 Cyvol 59.16 (Cal) 25 DMSO, 0.1 M Ex,NClo, Rb ⁺ 5.7 Cyvol 25 DMSO, 0.1 M Ex,NClo, Rb ⁺ 5.7 Could manual state sta		K+	11.2	Ag ⁺ ISE			25	PC	147
		K+	11.10	\mathbf{Pot}	-69,2	-20	25	PC, 0.1 M Et_4NClO_4	151
Rb* Cal -49.25 -49.4 (Cal) -67.4 25 H ₂ O 0.05 M Ma_NBr, pH 10.4 (ΔH , ref 144) Rb* 4.36 Cyvol -67.4 25 H ₂ O 0.01 M Ba_NClo, Rb* 6.36 Cal -67.4 25 H ₂ O 0.01 M Ba_NClo, Rb* 6.36 Cal -67.4 25 DMSO DMSO Rb* 5.66 Pot 50.16 (Cal) 25 DMSO, 0.1 M Ea/NClo, Rb* 5.67 CyVolt 25 DMSO, 0.1 M Ea/NClo, 25 Rb* 5.68 Pot -70.1 25 MeOH MeOH, 0.01 M Ma_NBr, pH 10.4 (ΔH , ref 144) Rb* 5.00 Actin 11.6 25 MEOH MeOH MeOH MeOH Rb* 5.00 Actin 11.6 25 Pot 25 Pot Rb* 5.00 Actin 11.6 25 Pot 25 Pot Rb* 5.00 Actin 11.6 25 Pot 25 Pot		K+	0.4	Spec	-34	-155	-50	THF	165
Bb* 4.36 Pot -49.4 (Ca) -52.8 25 H ₂ O, 0.05 M Me ₂ NF: pH 10.4 (<i>AH</i> , ref 144) Bb* 4.3 CyVol -55.40 (Ca) 25 DMF Bb* 6.78 Pot -55.40 (Ca) 25 DMF Bb* 6.78 Pot 55.55 Pot 25 DMSO DM E ₁ , NCIO, Bb* 5.75 Pot 25 DMSO 0.11 M E ₁ , NCIO, DMSO 0.11 M E ₁ , NCIO, Bb* 5.75 Pot 25 MoOH DMSO, 0.11 M E ₂ , NCIO, Bb* 5.65 Pot 25 MoOH MacN M ₂ , NE ₁ DMSO Bb* 7.60 Pot -82.0 (Ca) -114.6 25 MoOH, 0.01 M Me ₂ , NBr, Bb* 36.40 Pot -82.0 (Ca) -114.6 25 MoOH, 0.01 M Me ₂ , NBr, Bb* 4.04 Oct -21.7 -45.2 25 MoOH, 0.01 M Me ₂ , NBr, Bb* 4.04 Col -21.7 -45.2 25 DMF Ca ² 1.64 Col -21.7 -45.2 25 <		Rb+		Cal	-49.25		25	H_2O	161
Bb* 4.68 Pot -4.9.4 (Cal) -67.4 25 H ₂ O, 0.1 M Be, NClo, Bb*		Rb+	4.35	\mathbf{Pot}	-49.4 (Cal)	-82.8	25	H_2O , 0.05 M Me ₄ NBr, pH 10.4 (ΔH , ref 144)	134, 144
Rb* 4.3 CyVal 25 HyO, 0.01 ME, NCIO, Rb* 6.78 Pot 35.40 (Cal) 25 DMR, 0.1 M E, NCIO, Rb* 5.88 Pot 25 DMSO, 0.1 M E, NCIO, Rb* 5.83 Pot 25 DMSO, 0.1 M E, NCIO, Rb* 5.30 Cord -74.85 -79.1 25 McOH Rb* 8.40 Pot -82.0 (Cal) -114.6 25 McOH Me, NBr, pH 10.4 (ΔH , ref 144) Rb* 8.68 Pot 25.0 (Cal) -114.6 25 McOH, 0.05 M Me, NBr, Rb* 8.68 Pot 25.0 (Cal) -114.6 25 McOH, 0.05 M Me, NBr, Rb* 8.68 Pot 25 McOH, 0.05 M Me, NBr, McOL, 0.1 M E, NCIO, Rb* 7.28 Pot 25 McOH, 0.05 M Me, NBr, McOL, 0.20 Ca* 1.44 Cal -2.17 -45.2 25 HyO, 0.01 M Me, NBr, Ca* 1.44 Cod -36.6 -25 25 DMSO McNIO, McOH McOH		Rb ⁺	4.06	\mathbf{Pot}	-49.4 (Cal)	-87.4	25	H_2O , 0.1 M Me ₄ NCl	99
Rb ⁺ 58.40 (Cal) 28 DMF, 0.1 M BL/NCIO, Rb ⁺ 6.78 Pot 25 DMR, 0.1 M BL/NCIO, Rb ⁺ 5.86 Pot 25 DMSO, 0.1 M BL/NCIO, Rb ⁺ 5.76 CyVolt 25 DMSO, 0.1 M BL/NCIO, Rb ⁺ 5.70 Cond 25 BOLN, 0.1 M BL/NFIC Rb ⁺ 5.70 Cond -79.1 25 MaCN Rb ⁺ 5.80 Pot -79.1 25 MaCN Rb ⁺ 5.80 Pot -79.1 25 MaCN 0.01 M M_m/Br, pH 10.4 (ΔH , ref 144) Rb ⁺ 7.28 Pot 25 MaCN 0.05 M BL/NFlo Rb ⁺ 5.60 Pot 25 MACN 0.05 M BL/NCIO, Ca ⁺ 1.24 Cal -21.7 -45.2 25 DMSO Ca ⁺ Cal -30.66 25 DMF 0.1 M BL/NCIO, Ca ⁺ Cal -30.66 25 DMSO 0.1 M EL/NCIO, <		Rb ⁺	4.3	CyVol			25	H_2O , 0.01 M Et_4NClO_4	162
Rb* 5.78 Pot 25 DMF, 0.1 M E1, NC10, Rb* 5.88 Pot 25 DMS0, 0.1 M E1, NC10, Rb* 5.77 CyVolt 25 DMS0, 0.1 M E1, NC10, Rb* 5.80 Pot 25 DMS0, 0.1 M E1, NC10, Rb* 5.80 Pot 25 DMS0, 0.1 M E1, NC10, Rb* 5.60 Pot 25 BMS0, 0.1 M E1, NC10, Rb* 8.40 Pot -721 25 McH, 0.1 M Me, NBr, pH 10.4 (ΔH , ref 144) Rb* 8.60 Pot 25 McH, 0.0 M Me, NBr, pH 10.4 (ΔH , ref 144) Rb* 8.68 Pot 25 PC 25 Rb* 8.69 Pot 25 PC 26 PC Cs* 1.44 Cal -21.7 -45.2 25 PC Cs* 1.44 Cal -35.6 -92.5 25 DMF Ca* 2.16 NMR 25 DMF 26 DMF Ca* 1.40 Cal -35.6 -92.2 25 DMSO McH, 0.1 M		Rb ⁺			-55.40 (Cal)		25	DMF	339
Rb* 5.85 Pot 22 DMSO, 0.1 M EL,NCIO, Rb* 5.7 CyVolt 20 DMSO, 0.1 M EL,NCIO, Rb* 5.7 CyVolt 20 DMSO, 0.1 M EL,NCIO, Rb* 5.28 Pot 20 DMSO, 0.1 M EL,NCIO, Rb* 5.40 Pot 20 MeN Rb* 5.40 Pot 20 MeN Rb* 5.40 Pot 20 MeOH, 0.00 M Me,NEr, pH 10.4 (ΔH , ref 144) Rb* 8.68 Pot 20 MeOH, 0.00 M Me,NEr, pH 10.4 (ΔH , ref 144) Rb* 8.68 Pot 20 MeOH, 0.00 M Me,NEr, pH 10.4 (ΔH , ref 144) Rb* 7.28 Pot 25 MeOH, 0.00 M Me,NEr, pH 10.4 (ΔH , ref 144) Ca* C.41 -30.66 25 DMF Ca* Ca* C.41 -30.66 25 DMF Ca* Ca* 1.44 Cal -30.66 25 DMSO Ca* 1.44 CyVol 25 MeCN		Rb ⁺	6.78	Pot	50 60 (G N		25	DMF, 0.1 M Et_4NClO_4	145
Rb ⁺ 5.57 CyVolt 25 DMSU, 0.1 M EL,NC10, Rb ⁺ 9.28 Pot 26 ED(H, 0.1 M EL,NC10, Rb ⁺ 9.28 Pot 28 ED(H, 0.1 M EL,NC10, Rb ⁺ Cal -74.85 -79.1 25 ED(H, 0.1 M EL,NC10, Rb ⁺ Cal -74.20 (Cal) -114.6 25 Sigs MeOH, 0.05 M Me_NBr, pH 10.4 (ΔH , ref 144) Rb ⁺ S4.0 Pot -22.0 (Cal) -114.6 25 MeOH, 0.05 M Me_NBr, pH 10.4 (ΔH , ref 144) Rb ⁺ S4.0 Pot -28.8 -105 -50 PD(H) MeOH, 0.05 M Me_NBr Rb ⁺ 28.4 Pot -28.5 -105 -50 PHF Ca ⁺ 24.4 Space -21.7 -45.2 25 HO DMF OL M Me_NDr Ca ⁺ 24.6 Space -21.6 PMF DMF DMSO Ca ⁺ Ca ⁺ Space Ca ⁺ 24.6 Space 25 DMF DMF DMSO DMSO DMF Ca ⁺ 44.7 Pot 25 D		Rb ⁺		-	59.16 (Cal)		25	DMSO	339
Rb 9.7 Cyvoit 20 DMSU, 0.1 M EL, NULD, Rb 9.22 Pot 22 MeDH 23 MeCN Rb S.0 Pot 22 MeCN 24 MeCN Rb S.0 Pot -12.0 23 MeCH 24 MeCN Rb S.0 Pot -22.0 Cal -114.6 23 MeCH, 0.05 M EL, NULD, Rb S.0 Pot -22.0 Cal -42.0 24 MeCH, 0.05 M EL, NULD, Rb 30.0 Ag' ISE 25 PC 26 PC 27 Rb 30.0 Ag' ISE 29 20 72 140 0.05 M EL, NULD, Ca' 2.16 NM 21.7 -45.2 25 HQ 20 Mecl N Ca' 2.16 NM 23 MeCl N MeL, NEr, 21.0 Mecl N 21.0 Mecl N Ca' 2.16 NM 23 DMB 0.1 M EL, NCLO, 23.0 MBS 0.0 1.1 M EL, NCLO, Ca' 2.16 NM <td></td> <td>Rb[≁]</td> <td>5.85</td> <td>Pot</td> <td></td> <td></td> <td>25</td> <td>DMSO, 0.1 M Et_4NCIO_4</td> <td>145</td>		Rb [≁]	5.85	Pot			25	DMSO, 0.1 M Et_4NCIO_4	145
Rb >28 Pot 28 EDUn, 0.1. M EL_NPIc Rb* Cal -74.85 -79.1 23 MeCN Rb* Cal -74.85 -79.1 23 MeCN Rb* S40 Pot -22.0 (Cal) -114.6 25 95% MeOH, 0.05 M Me_NBr, pH 10.4 (ΔH , ref 144) Rb* 840 Agr 138 Pot -22.0 (Cal) -114.6 25 MeOH, 0.05 M Me_NBr, pH 10.4 (ΔH , ref 144) Rb* 82.8 Pot -23 MeOH, 0.05 M Me_NBr, pH 10.4 (ΔH , ref 144) 26 27 Cal -38 -105 -50 PHF Ca* 24.4 Set -21.7 -45.2 25 HO, 0.05 M Me_NBr PHF -22.1 PMF Ca* 21.6 NMR 23 DMF 23 DMF 24 Agr 20.0 25 25 25 26 DMSO Ca* 1.46 NMR 25 DMSO 26 26.1 26 26.1 27.1 27.2 25 25 25 26 26.1 27.1 27.2 25 25 26 <td></td> <td>Rb⁺</td> <td>5.7</td> <td>Cyvolt</td> <td></td> <td></td> <td>25</td> <td>DMSO, 0.1 M Et₄NCIO₄</td> <td>162</td>		Rb ⁺	5.7	Cyvolt			25	DMSO, 0.1 M Et ₄ NCIO ₄	162
		Rb'	9.28	Pot			25	EtOH, 0.1 M Et ₄ NPic	145
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			>1	Cond	7495	FO 1	25	MeCIN	90
R0* > 840 Poil -0.20 (Cal) -11.4 or 20 Bore methy, 0.01 M set, NBr, pr. 10.0 (LM, pr. 144) R0* 8.89 Poil 20 MeOH, 0.05 M Me, NBr MeOH, 0.05 M Me, NBr R0* 7.28 Poil 20 More H, 0.05 M Me, NBr MeOH, 0.05 M Me, NBr R0* 4.6 Spec -6.8 -105 -50 PC C* 1.44 Cal -21.7 -45.2 25 HeQ 0.01 M Be, NBr C* 2.16 NMR 21 DMF 0.11 M Be, NClo, Cal -30.96 25 C* 2.16 NMR 23 DMF 30.01 M Be, NClo, Cal -30.96 25 C* 1.45 NMR 25 DMSO 25 25 26 26 27 26 26 27 26 27 28			8.40		-/4.00 90.0 (C-1)	-79.1	20	$MEOR \qquad MeOH 0.01 M Me NBr = H 10.4 (AH ref 1.44)$	101
		RU Rh+	0.40 S6 0	Pot	-02.0 (Cal)	-114.0	20	$M_0OH = 0.05 \text{ M M}_0 \text{ NB}_{r}$	134, 144
R0 200 MORT, 0.00 M EX, NPic R1 3.0 Ag' 1SE 20 R0 4.6 Spec -8.6 -105 R0 4.6 Spec -8.6 -105 R0 6.05 THP 21 H,0 0.06 M Me,NBr Ca* C.1.4 CyVol 25 H,0 0.06 M Me,NBr Ca* Cal -30.96 25 DMF 25 DMF Ca* 2.16 NMR 25 DMSO 0.1 M Ex,NCIO, 26 Ca* 1.40 Cal -35.6 -92.5 25 DMSO 0.1 M Ex,NCIO, Ca* 1.43 CyVol 25 DMSO, 0.1 M Ex,NCIO, 26 4.17 Ca* 4.57 NMR 25 DMCO, 0.1 M Me,NCIO, 26 4.18 1.14 CyVol 26 56% MeOH, 0.01 M Me,NBr, pH 10.4 (ΔH , ref 144) Ca* 4.57 Pot -49.8 (Cal) -99.2 56% MeOH, 0.01 M Me,NBr, pH 10.4 (ΔH , ref 144) 26 4.24 Aq* 15E 26 PC 27 26 MeCN 27		ПU DL+	20.0	Pot			20	$M_{\circ}OH$ 0.05 M E+ NCIO	134
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Rb+	7.99	Pot			25	NMP 01 M Ft NPic	140
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Rb ⁺	9.0	Δa^+ ISE			25	PC	145
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Rb ⁺	46	Snec	-8.8	-105	-50	THE	165
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs ⁺	1 44	Cal	-217	-45.2	25	H ₀ O	161
		Cs ⁺	<2.0	Pot	21.,	10.2	25	$H_{2}O$ 0.05 M Me/NBr	134
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs ⁺	<1.4	CvVol			25	H_2O , 0.01 M Et NCIO	162
		Čs ⁺		Cal	-30.96		25	DMF	339
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Čs ⁺	2.16	NMR	00000		25	DMF	167
		Cs ⁺	2.16	Pot			25	DMF, 0.1 M Et.NClO	145
		Cs ⁺	1.40	Cal	-35.6	-92.5	25	DMSO	339
		Cs^+	1.45	NMR			25	DMSO	167
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs ⁺	1.4	CyVol			25	DMSO, 0.1 M Et₄NClO₄	162
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs^+	4.17	Pot			25	EtOH, 0.1 (Et ₄ NPic	145
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs^+	4.54	Cond			25	MeCN	90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs^+	4.57	NMR			25	MeCN	167
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs^+	4.57	Pot			25	MeCN, 0.1 M Et ₄ NClO ₄	145
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs^+	4.03	NMR			25	Me ₂ CO	167
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs ⁺	3.54	Pot	-49.8 (Cal)	-99.2	25	95% MeOH, 0.01 M Me ₄ NBr, pH 10.4 (ΔH, ref 144)	134, 144
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs^+		Cal	-49.92	-83.3	25	MeOH	161
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs^+	4.4	\mathbf{Pot}			25	MeOH, 0.01 M Me ₄ NBr	134
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs ⁺	~4.4	Pot			25	NMP, 0.1 M Et_4NPic	145
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs ⁺	3.97	NMR			25	PC	167
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs ⁺	4.2	Ag ⁺ ISE			25	PC	147
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs ⁺	>5	NMR			25	Py	167
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs ⁺	8.0	Spec			-50	THE	165
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Mg*'	<2.0	Pot			25	H_2O , 0.05 M Me ₄ NBr	134
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ivig-	<2.0	Pot Pot	0.9 (Cal)	91.6	20	95% MeOH, 0.01 M Me ₄ NBr $H \cap O$ 0.05 M Mo NPr pH 10.4 (AH ref 1.44)	134
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ce^{2+}	4.57	Pot	-0.8 (Cal)	81.0 84 5	20	$H_{0} = 0.1 \text{ M} \text{ Me}_{0} \text{ NC}^{1}$	10 4 , 144 99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ca ²⁺	4.07	Kin	-9.1	79	25	H ₂ O, nineridine HCl	150
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ca ²⁺	4.40	Kin	-2.9	75	25	$H_{0}O$, piperidine HCl, pH 11.5 $\mu = 0.1$ M	157
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ca ²⁺	3.84	Pot	2.0	10	25	DMF 0.1 M Et.NCIO.	145
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ca ²⁺	7.60	Pot	-27.6 (Cal)	52.7	25	95% MeOH, 0.01 M Me/NBr, pH 10.4 (ΔH , ref 144)	134, 144
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ca ²⁺	7.5	Pot	2.10 (0 41)		25	95% MeOH. 0.1 M Me ₂ NCl	87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ca ²⁺	8.14	Ag ⁺ ISE			25	MeOH	152
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ca ²⁺	10.8	Ag ⁺ ISE			25	PC	147
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sr^{2+}	8.0	Pot	-43.1 (Cal)	8	25	H ₂ O, 0.05 M Me ₄ NBr pH 10.4 (ΔH, ref 144)	134, 144
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Sr^{2+}	8.26	Pot	-44.4 (Cal)	9.2	25	H_2O , 0.1 M Me ₄ NCl	99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Sr^{2+}	11.5	\mathbf{Pot}	-59.0 (Cal)	21.9	25	95% MeOH, 0.01 M Me ₄ NBr, pH 10.4 (ΔH, ref 144)	134, 144
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Sr^{2+}	11.75	Pot			25	MeOH	152
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sr^{2+}	12.90	Spec			-15	MeOH	130
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ba ²⁺	9.5	Pot	-59.0 (Cal)	-16.7	25	H_2O , 0.05 M Me ₄ NBr, pH 10.4 (ΔH , ref 144)	134, 144
$Ba^{*^{-}}$ 12 Pot -84.1 (Cal) -53.3 25 95% MeOH, 0.01 M Me ₄ NBr, pH 10.4 (ΔH , ref 144) La^{3+} 6.45 Pot 25 H ₂ O, 0.25 M Me ₄ NCl La^{3+} 9.4 Pot 25 95% MeOH, 0.1 M Me ₄ NCl 4000000000000000000000000000000000000		Ba ²⁺	9.7	Pot	-59.8 (Cal) p	-15.5	25	H_2O , 0.1 M Me ₄ NCl	99
La ²⁺ 6.45 Pot 25 H_2O , 0.25 M Me ₄ NCl La ³⁺ 9.4 Pot 25 95% MeOH, 0.1 M Me ₄ NCl 36 La ³⁺ 12.91 Pot -54.5 64 25 PC Ce ³⁺ 8.4 Pot 25 95% MeOH, 0.1 M Me ₄ NCl 36 Ce ³⁺ 14.20 Pot -76.5 15 25 PC 37 Pr ³⁺ 6.37 Pot 24.5 25 H ₂ O, 0.25 M Me ₄ NCl 36 Pa ³⁺ 15.89 Pot -04.5 25 PC 36 37 36		Ba ²⁺	12	Pot	-84.1 (Cal)	-53.3	25	95% MeOH , 0.01 M Me ₄ NBr, pH 10.4 (ΔH , ref 144)	134, 144
La ²⁺ 9.4 Fot 25 95% MeOH, 0.1 M Me ₄ NCl La ³⁺ 12.91 Pot -54.5 64 25 PC Ce ³⁺ 8.4 Pot 25 95% MeOH, 0.1 M Me ₄ NCl Ce ³⁺ 14.20 Pot -76.5 15 25 PC Pr ³⁺ 6.37 Pot 204.5 25 H ₂ O, 0.25 M Me ₄ NCl Da ³⁺ 15.89 Pot 204.5 25 DC		La° ⁺	6.45	Pot			25	$H_2U, U.25 M Me_4NUI$	154
Lat 12.91 F0t -94.0 64 25 FC Ce ³⁺ 8.4 Pot 25 95% MeOH, 0.1 M Me ₄ NCl Ce ³⁺ 14.20 Pot -76.5 15 25 PC Pr ³⁺ 6.37 Pot 25 H ₂ O, 0.25 M Me ₄ NCl Data 15 25 H ₂ O, 0.25 M Me ₄ NCl		La"' L-3+	9.4	POL Dot	-54 F	04	25	90% Meun, 0.1 m me4nul DC	87
Ce Ce Ce For Zo Softweeth, 0.1 M Mean Cr Ce ³⁺ 14.20 Pot -76.5 15 25 PC Pr ³⁺ 6.37 Pot 25 H ₂ O, 0.25 M MeaNCl 25 Pa ³⁺ 15.98 Pot 25 H ₂ O, 0.25 M MeaNCl 26		⊥а°′ С∽3+	8 Y 15'AT	Pot Pot	-04.0	04	20 95	ГС 95% Ма́ОН 0.1 М Ма МСІ	17U 97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ce ³⁺	14 90	Pot	-76 5	15	20		07 170
\mathbf{L}_{2}^{-1} = 0.0, \mathbf{L}_{2}^{-1} = 0.0		Dr ³⁺	6.37	Pot	10.0	10	25	$H_{0}O_{1}O_{2}S$ M Me ₄ NCl	154
FT 10.00 FUL -94.0 -20 20 PU		Pr ³⁺	15.88	Pot	-94.5	-28	25	PC	170

				ΔH ,	ΔS ,			
ligand	cation	$\log K^a$	method ^e	kJ/mol	J/(K mol)	<i>T</i> , ⁰C	medium ^c	ref
	Sm ³⁺	5 94	Pot			25	H-O 0.25 Me.NCl	154
	Sm 8+	15.00	Det	06.9	17	20	DC	104
	Sm ^o	15.99	Pot	-90.3	-17	25	FC	170
	Eu ²⁺	10.48	Kin	-51.3	8	25	H ₂ O	158
	Eu_2^+	13.0	Pot			25	H_2O , 0.25 M Me_4NCl	154
	Eu^{3+}	3.37	Kin	16.7	121	25	H ₂ O	158
	Eu^{3+}	5.90	Pot			25	H ₂ O. 0.25 M Me ₂ NCl	154
	Th ³⁺	16.58	Pot	-104.3	-9	25	PC	170
	ц _о 3+	6.0	Pot	10110	0	25	HO 0.95 M Ma NO	154
	10-	0.2	FOL D (100.0	04	20	$11_{2}O, 0.25$ WI WIE4NOI	104
	Y D°'	17.56	Pot	-106.6	-24	25	PU	170
	Co ²⁺	≤2.5	Pot			25	H_2O , 0.1 M Et_4NCIO_4	77
	Co^{2+}	≤4	Pot			25	95% MeOH, 0.1 M Me₄NCl	87
	Ni ²⁺	≤3.5	Pot			25	H_2O , 0.1 M Et_4NClO_4	77
	Ni ²⁺	≤4.5	Pot			25	95% MeOH, 0.1 M Me, NCl	87
	C_{11}^{2+}	6.81	Pot			25	H_0 0.1 M Et.NClO	77
	Cu2+	<6	Pot			25	95% MOOH 0.1 M Mo NCI	97
	Cu Cu2+	20	T OL			20		07 50
	Cu	2.68	Pot			25	$Me_2SO, 0.1 M Et_4NCIO_4$	78
	Ag⁺	9.6	Pot			25	H_2O , 0.1 M Me ₄ NBr	134
	Ag ⁺	9.6	\mathbf{Pot}			25	H_2O , 0.1 M Bu_4NClO_4	148
	Ag ⁺	9.6	Pot	-53.6 (Cal)	4.2	25	H_2O , 0.1 M Me ₄ NCl	99
	Ag+	9.53	Pot			25	H ₀ O 0.1 M Et.NClO	171
	Δ <i>α</i> +	9.85	Pot			25	H_0 0.1 M Et NCIO	77
	Δg A _+	0.00		05 01		20	D_{ME}	000
	Ag		Car	-00.01	•	25		339
	Ag	10.03	Pot	-56.4 (Cal)	-3	25	DMF, 0.1 M Et_4NClO_4	151
	Ag+	10.07	\mathbf{Pot}			25	DMF, 0.1 M Et ₄ NClO ₄	145
	Ag ⁺	9.77	Pot			25	DMF	163
	Ag+			-51.42 (Cal)		25	MesSO	339
	Δσ+	7 15	Pot	-47.8 (Cel)	-94	25	Me-SO 01 M Et.NCIO	151
	A a ⁺	7.20	Pot	41.0 (Oal)	24	20	$M_{2}SO, 0.1 \text{ M Et } NCIO$	145
	Ag	7.30	POL			25	$Me_2SO, 0.1 M Et_4 NCIO_4$	140
	Ag	7.0	Pot			25	Me ₂ SO	163
	Ag ⁺	7.2	Pot			25	Me_2SO , 0.1 M Bu_4NClO_4	148
	Ag ⁺	7.15	\mathbf{Pot}			25	Me_2SO , 0.1 M Et_4NClO_4	79
	Ag ⁺	11.51	Pot			25	EtOH, 0.1 M Et. NCIO	145
	Ag+	63	Pot			25	HMPT 0.1 M Et. NCIO	151
	A a+	9.55	Pot			25	57 MoCN 01 M Et NCIO	171
	Ag A_+	0.00	P OL			20		171
	Ag	8.21	Pot			25	10% MeCN, 0.1 M Et ₄ NClO ₄	171
	Ag⁺	8.03	Pot			25	20% MeCN, 0.1 M Et ₄ NClO ₄	171
	Ag ⁺	8.03	Pot			25	30% MeCN, 0.1 M Et ₄ NClO ₄	171
	Ag ⁺	8.08	Pot			25	40% MeCN, 0.1 M Et ₄ NClO ₄	171
	Ag ⁺	8.15	Pot			25	50% MeCN, 0.1 M Et.NClO	171
	Δσ+	8.22	Pot			25	60% MeCN 01 M Et.NCIO	171
	A_=+	9.90	Det			20	70% McCN 01 M Et NCIO	171
	Ag Ag	0.30	FOL D +			20	1078 MECH, 0.1 M ELINCIO	171
	Ag	8.40	Pot			25	80% MeCN, 0.1 M Et ₄ NCIO ₄	171
	Ag⁺	8.75	Pot			25	90% MeCN, 0.1 M Et_4NClO_4	171
	Ag ⁺	8.87	\mathbf{Pot}			25	95% MeCN, 0.1 M Et ₄ NClO ₄	171
	Ag ⁺	8.99	\mathbf{Pot}			25	MeCN, 0.1 M Et ₄ NClO ₄	145, 171
	Ag+	9.3	Pot			25	MeCN, 0.1 M Bu, NClO	148
	$\Delta \sigma^+$	89	Pot			25	MeCN	145 163
	116 1 a ⁺	800	Pot	-54.4 (Cal)	-11	25	MCN 01 M Et NCIO	151
	Ag	0.92	F OL	-34.4 (Cal)	-11	20	MOUL OI MELANCIO	101
	Ag	12.20	Pot	-85.8 (Cal)	-54	25	MEOH, 0.1 M Et_4NCIO_4	146, 151
	Ag+	11.95	Pot			25	MeOH	163
	Ag ⁺	12.3	\mathbf{Pot}			25	MeOH	148
	Ag ⁺	12.00 (1)	\mathbf{Pot}			25	MeOH, 0.05 M Et_4NClO_4	80
	Ag ⁺	3.25 (2)	\mathbf{Pot}			25	MeOH, 0.05 M Et ₄ NClO ₄	80
	Ag+	9.17	Pot			25	NMP. 0.1 M Et. NPic	145
	A g ⁺	16.3	Pot			25	$PC = 0.1 M F_{\pm} NCIO$	145 147
	Λσ ⁺	16.00	Det	_00 5 (C-1)	-17	20	PC = 0.1 M E NCIO	151
	Ag	10.29	FOL	-99.0 (Cal)	-17	20	$PC, 0.1 \text{ M} EtaNOIO_4$	101
	Ag	16.33	Pot			25	PC, 0.1 M Et_4NCIO_4	79
	Ag+	16.54	Pot			25	PC	163
	Ag ⁺	9.5	\mathbf{Pot}			25	Me₄U, 0.1 M Bu₄NClO₄	148
	Zn ²⁺	≤2.5	Pot			25	$H_2O_1 0.1 M Et_1NClO_1$	77
	Zn^{2+}	<4	Pot			25	95% MeOH, 0.1 M Me/NCl	87
	Cd2+	68	Pot	2.1 (Cal)	138.1	25	H ₂ O 0.1 M Me ₂ NCl	99
	C42+	7 10	Pot	(001)	100.1	25	H_0 0.1 M Et NCIO	77
	C22+	10 41	Det			20	MACH OAS MENNION	80
		10.41	FOL D.4		10/5	20	MOON, 0.00 M EMNOIO4	00
	Hg⁴™	18.2	POL	-00.7 (Cal)	124.7	25	$n_2 O, 0.1 \text{ M} \text{ Me}_4 \text{NCl}$	99
	11^{+}	6.4	Kin			25	H ₂ U	160
	Tl+	6.3	\mathbf{Pot}			25	H_2O , 0.1 M Me ₄ NBr	134
	Tl+	5.5	Pot	-55.2 (Cal)	-61.9	25	H_2O , 0.1 M Me ₄ NCl	99
	Tl+	6.4	CyVol			25	H ₂ O, 0.01 M Et ₄ NClO	162
	T]+	7.7	Pot	-66.1	-75	25	DMF. 0.1 M ELNCIO	151
	T1+	6.3	Pot	. –		25	DMSO, 0.1 M Et.NCIO	151
	T1+	61	CyVolt			95	Meso, 0.1 M Et. NCIO	162
	11 T)+	E 00	Det			20	HMDT	151
	11	0.04	FOL			20		101
	TIT	12.30	ISE			25	MeCN	103
	T1+	10.05	Pot			25	MeOH	163
	Tl+	10.1	CyVol			25	MeOH, 0.05 M Et ₄ NClO ₄	162

ligand	cation	$\log K^a$	$method^b$	ΔH , kJ/mol	$\Delta S, J/(K mol)$	<i>T</i> , ⁰C	medium	re
	Tl+	11.94	Pot			25	PC	16
	Tl+	11.78	\mathbf{Pot}			25	PC, 0.1 M Et ₄ NClO ₄	15
	Pb^{2+}	12.0	Pot			25	H ₂ O, 0.05 M Me₄NBr	13
	Pb ²⁺	12.36	Pot	-57.7 (Cal)	42.3	25	H_2O , 0.1 M Me ₄ NCl	99
	Pb^{2+}	12.72	Pot	,		25	H ₂ O, 0.1 M Et ₂ NClO ₄	77
	Ph ²⁺	7.23	Pot			25	MesSO, 0.1 M Et. NCIO	78
	Ph ²⁺	14 84 (1)	Pot			25	MeOH 0.05 M Et.NCIO	80
	Ph2+	4 70 (9)	Pot			25	MOH 0.05 M Et NCIO	80
	P D Dh2+	4.19 (2)	I OL Smaa			25	$\mathbf{PC} = 0.01 \mathbf{M} \mathbf{E} + \mathbf{NC} \mathbf{O}$	00
	F U ⁻	10.00 (1)	Spec			20	PC, 0.01 M Et NOIO	01
	PD ²	5.20 (2)	Spec			25	PC, 0.01 M Et_4NCIO_4	81
52.2.2	H⁺	10.49	Pot			1.2	HMPT	14:
	H+	9.69	Pot			25	HMPT	14
	Li ⁺	2.19	Ag ⁺ ISE			25	MeOH, $0.02 \text{ M Et}_4 \text{NClO}_4$	17
	Na ⁺	7.4	Pot			25	95% MeOH	17
	Na ⁺	7.50	Ag ⁺ ISE	-39.7 (Cal)	-10	25	MeOH, 0.02 M Et ₄ NClO ₄	17
	K+	9.05	\mathbf{Pot}			25	95% MeOH	17
	K+	9.21	Ag ⁺ ISE	-65.3 (Cal)	43	25	MeOH, 0.02 M Et ₄ NClO ₄	17
	Rb ⁺	7.19	Ag ⁺ ISE	-57.7 (Cal)	56	25	MeOH, 0.02 M Et ₄ NClO ₄	17
	Cs ⁺	2.98	Ag ⁺ ISE	,		25	MeOH, 0.02 M Et.NClO	17
	Čs ⁺	2,99	Cal	-31.8	50	25	MeOH	17
	Če+	2.9	NMR	-4.06	41.4	25	MeOH	16
	Č•+	1 70	NMR	2.00		25	DMF	16
	C.+	3.55	NMP			25	MeCN	16
	C-+	0.00 9 E 4	NIME			20	MacO	10
		0.04				20		10
	Us '	3.17	INMK			25		16
	Cs⁺	3.76	NMR			25	ry	16
	Ca ²⁺	7.19	Ag ⁺ ISE			25	MeOH	15
	Sr^{2+}	10.52	Ag ⁺ ISE			25	MeOH	15
	Ba^{2+}	11.05	\mathbf{Pot}			25	95% MeOH	17
	Ba^{2+}	11.05	Ag ⁺ ISE			25	MeOH	15
3 ₂ 2.2.2	H+	9.5	Pot			25	H ₂ O	16
-	Li ⁺	2.0	Ag ⁺ ISE			25	MeOH	17
	Na ⁺	3.44	Pot			25	H₂O	16
	Na ⁺	7.3	Pot			25	95 ⁻ % MeOH	17
	Na ⁺	7.37	Pot			25	MeOH	16
	No ⁺	7.60	Agt ISE			25	MeOH	17
	INA K+	1.00	Dot			25	HO	16
	К 17+	4.00				20		10
	K '	0.0	POL			25	95% MeOn	17
	K'	8.74	Ag ISE			25	MeOH	17
	K ⁺	8.60	Pot			25	MeOH	16
	Rb ⁺	5.91	Ag ⁺ ISE			25	MeOH	17
	Cs ⁺	2.61	Ag ⁺ ISE			25	MeOH	17
	Ca ²⁺	5.94	Ag ⁺ ISE			25	MeOH	15
	Sr^{2+}	9.05	Ag ⁺ ISE			25	MeOH	15
	Ba^{2+}	5.65	Pot			25	H_2O	16
	Ba^{2+}	8.5	\mathbf{Pot}			25	95% MeOH	17
	Ba ²⁺	8.87	Pot			25	MeOH	16
	Ag ⁺	8.90	Pot			25	H₂O	16
	Δσ ⁺	11 78	Pot			25	MeOH	16
	T1+	4 61	Pot			25	H ₀ 0	16
		70	Pot			20	MaOH	10
00000	T :+	1.3	101 Art 1917			20	Manu	10
0002.2.2	ы NT_+	2.0	A -+ 10E			20	MOU	17
	INA.	1.0	Ag ISE			20	MaOH	17
	K ⁺	9.42	Ag ISE			25	MECH	17
	Kb ⁺	7.61	Ag ⁺ ISE			25	MeOH	17
	Cs ⁺	3.21	Ag ⁺ ISE			25	MeOH	17
1eA2.2.2	H+	10.55 (1)	\mathbf{Pot}			25	H ₂ O ^a	15
	H+	8.57 (2)	\mathbf{Pot}			25	H ₂ O ^d	15
	H+	2.55 (3)	\mathbf{Pot}			25	H_2O^d	15
	Li+	1.5	Pot			25	H_2O	15
	Li ⁺	4.0	Pot			25	95% MeOH ^d	15
	Na ⁺	3.2	Pot			25	H_2O^d	15
	K+	4.2	Pot			25	H ₂ O ^d	15
	Rb+	3.0	Pot			25	H ₂ O ^d	15
	Ce+	<20	Pot			25	H_O ^d	15
	M~2+	10	1 0L Dot			20	H_Od	10
	Ca2+	1.5	Pot			20 05	H_O ^d	10
	0_2+	4.0	FUL Det			20	11 ₂ U ⁻	15
	51*' D 2+	1.4	FOL			25		15
	Ba ²⁺	9.0	Pot			25		15
	Co	5.2	Pot			25		15
	Ni ²⁺	5.0	Pot			25	H ₂ O ^a	15
	Cu ²⁺	9.7	\mathbf{Pot}			25	H ₂ O ^d	15
	Ag^+	10.8	\mathbf{Pot}			25	H ₂ O ^d	15
	Zn ²⁺	6.3	\mathbf{Pot}			25	H ₂ O ^a	15

				ΔH .	ΔS .			
ligand	cation	log Ka	method ^b	k.I/mol	J/(K mol)	T °C	medium ^c	rof
	cution	108 11	Hiethiou			1, 0		
	Tl+	6.3	\mathbf{Pot}			25	H_2O^a	153
	Pb^{2+}	14.1	Pot			25	H ₂ O ^d	153
A-999	н+	10.19(1)	Pot			25		153
A22.2.2	11 11+		D-4			20		100
	n	8.08 (2)	Pot			25	H ₂ O ²	103
	H≁	3.76 (3)	Pot			25	H_2O^a	153
	Li+	<1.0	\mathbf{Pot}			25	H_2O^d	153
	Na ⁺	<1.0	Pot			25	H ₀ O ^d	153
	K +	1.5	Pot			25	ц Оd	159
	D1+	1.0				20		100
	RD	<1.0	Pot			25	H_2O^{a}	153
	Ag⁺	8.7	Pot			25	H_2O^a	153
	Cd^{2+}	12.7	\mathbf{Pot}			25	H_2O^d	153
	דו+	4.2	Pot			25	HOd	153
M. A 999	·u+	10.01 (1)	Det			20	H Od	150
Ivie ₂ A ₂ 2.2.2	11	10.01 (1)	FOL			20		153
	H	8.92 (2)	Pot			25	H_2O^a	153
	H+	2.75 (2)	\mathbf{Pot}			25	H_2O^{α}	153
	Li ⁺	2.4	Pot			25	$H_{2}O^{d}$	153
	Li+	<40	Pot			25		153
	T :+	10	Det			20	org M.OUd	150
	LI	3.8	Pot			25	95% MeOH	193
	Na ⁺	2.5	Pot			25	H_2O^a	153
	Na ⁺	<5.0	\mathbf{Pot}			25	$MeOH^d$	153
	K+	27	Pot			25	$H_{\bullet}O^{d}$	153
	11 12+	2.1 <5.0	Det			20	MaOUd	150
		< 5.0	Fot			20	MeOn	193
	Rb⁺	2.3	Pot			25	H_2O^a	153
	Rb+	<4.0	Pot			25	$MeOH^d$	153
	Ce ⁺	<20	Pot			25	H-Od	159
	Ca+	~2.0	Det			20	M-OUd	150
	Cs.	3.8	Pot			25	MeOH	153
	Mg ²⁺	2.6	\mathbf{Pot}			25	H_2O^a	153
	Ca ²⁺	4.3	Pot			25	$H_{0}O^{d}$	153
	Sr2+	61	Pot			25	H.O ^d	152
	D 2+	0.1	100			20		103
	Ba ²⁺	6.7	Pot			25	H ₂ O ^a	153
	Co ²⁺	4.9	\mathbf{Pot}			25	H_2O^d	153
	Ni ²⁺	5.1	Pot			25	H ₀ O ^d	153
	C112+	197	Pot			25		159
	Uu .	12.7	F OL			20		103
	Ag⁺	11.5	Pot			25	H_2O^a	153
	Zn ²⁺	6.0	\mathbf{Pot}			25	H_2O^d	153
	Cd^{2+}	12.0	Pot			25	$H_{a}O^{d}$	153
	Hg2+	24.0	Pot			25	H Od	159
		24.5				20		100
	11.	5.5	Pot			25	H_2O^a	153
	Pb^{2+}	15.3	\mathbf{Pot}			25	H_2O^d	153
Me.A.2.2.2	H+	9.68(1)	Pot			25	$H_{0}O^{d}$	153
	u+	0.37 (2)	Pot			25		159
	11	5.37 (2)	100			20		100
	H	5.65 (3)	Pot			25	H_2O°	153
	H+	2.26 (4)	\mathbf{Pot}			25	H_2O^d	153
	Li ⁺	3.5	Pot			25	95% MeOH ^d	153
	Li+	<1	Pot			25	MeOHd	159
	л. +	10	D-+			20	Meon	100
	INA	4.2	Pot			20	MeOH	193
	K+	1.7	Pot			25	H_2O^a	153
	K+	<5.0	\mathbf{Pot}			25	MeOH ^d	153
	Rh+	<40	Pot			25	MeOH ^d	153
	C.+	0.0	Det			05	MoOHd	150
	Cs.	3.3	Fot			20	MeOH	103
	Ca²⁺	1.5	Pot			25	H_2O^a	153
	Sr^{2+}	1.5	\mathbf{Pot}			25	H_2O^d	153
	Ba ²⁺	3.7	Pot			25	H _o O ^d	153
	C_{0}^{2+}	5.9	Pot			25	H Od	159
	NU2+	0.2	100			20	1120 11 od	100
	N12	5.7	Pot			25	H_2O^2	193
	Cu^{2+}	12.5	Pot			25	H_2O^a	153
	Ag ⁺	13.0	Pot			25	$H_{2}O^{d}$	153
	$7n^{2+}$	6.8	Pot			25	H.Od	153
	0.12+	10.0	D.4			20		150
	Ca	10.7	Pot			20	H_2O^2	193
	Hg ²⁺	26.1	Pot			25	H_2O^a	153
	T1+	4.1	\mathbf{Pot}			25	H ₂ O ^d	153
	Ph ²⁺	15.5	Pot			25	H ₀ O ^d	153
220	 н+	9 92 (1)	Pot			25	95% MOH 0.01 M MA NP-	134
2.2.Ug	11 TT+	0.02 (1) 0.00 (0)	101			20	OF MACHING AND AND	104
	H	6.60 (2)	Pot			25	95% MeOH, 0.01 M Me4NBr	134
	Li^+	<2.0	\mathbf{Pot}			25	MeOH, 0.01 M Me ₄ NBr	134
	Na+	3.00	Pot			25	95% MeOH, 0.01 M Me₄NBr	134, 172
	Na+	3.5	Pot			25	MeOH 0.01 M Me NBr	134
	174	4.95	D.4			25	OLD MOOL ON MANA	194 170
	N ·	4.30	rot			20	55% MEOR, U.U. MIMEANBE	104, 172
	K ⁺	5.2	Pot			25	MeOH, 0.01 M Me ₄ NBr	134
	Rb+	3.4	\mathbf{Pot}			25	MeOH, 0.01 M Me ₄ NBr	134
	Cs ⁺	2.7	Pot			25	MeOH. 0.01 M Me. NBr	134
	Be ²⁺	<20	Pot			25	95% MeOH 0.01 M Me NP-	134 179
aia 9.9 K De N	Cu2+	0 46	ena.			20		175
c_{18} -2.2. $R_2 r_{y_2} N_2$		2.40	spec			30	n ₂ 0, 3.3% EIOH	1/0
	Pb²⁺	2.42	Spec			30	H ₂ O, 3.3% EtOH	175
$trans-2.2.K_2Py_2N_2$	Pb ²⁺	2.58	Spec			30	H ₂ O, 3.3% EtOH	175

ΤA	RI	E I	(Con	tinued)
1 5	VDT		(COII	unueu	

				ΔH ,	$\Delta S,$			
ligand	cation	$\log K^a$	method	kJ/mol	J/(K mol)	<i>T</i> , °C	medium	ref
3.2.2	H^+	8.50 (1)	\mathbf{Pot}			25	H_2O , 0.05 M Me_4NBr	134
	H^+	7.33 (2)	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	H+	9.14 (1)	Pot			25	95% MeOH, 0.01 M Me₄NBr	134
	H^+	6.55 (2)	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	Li ⁺	<2.0	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	Li+	<2.0	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	Li ⁺	2.3	\mathbf{Pot}			25	MeOH, 0.01 M Me ₄ NBr	134
	Na ⁺	1.65	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	Na ⁺	4.57	\mathbf{Pot}			25	95% MeOH, 0.01 M Me ₄ NBr	134
	Na ⁺	4.8	\mathbf{Pot}			25	MeOH, 0.01 M Me ₄ NBr	134
	K^+	2.2	\mathbf{Pot}	-12.6 (Cal)	0	25	H_2O , 0.05 M Me ₄ NBr, pH 10.4 (ΔH , ref 144)	134, 144
	K+	7.0	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	K^+	>7.0	\mathbf{Pot}			25	MeOH, 0.01 M Me ₄ NBr	134
	Rb+	2.05	\mathbf{Pot}	-17.6 (Cal)	-19.7	25	H_2O , 0.05 M Me ₄ NBr, pH 10.4 (ΔH , ref 144)	134, 144
	Rb+	7.30	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	Rb+	>6.0	\mathbf{Pot}			25	MeOH, 0.01 M Me₄NBr	134
	Cs^+	1.8	Cal	-23	-41	25	H ₂ O	144
	Cs^+	2.0	\mathbf{Pot}	-22.6 (Cal)	-41.4	25	H_2O , 0.05 M Me ₄ NBr, pH 10.4 (ΔH , ref 144)	134, 144
	Cs^+	7.0	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	Cs^+	>6.0	\mathbf{Pot}			25	MeOH, 0.01 M Me₄NBr	134
	Mg^{2+}	<2.0	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	Mg ²⁺	<2.0	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	Ca ²⁺	~ 2.0	\mathbf{Pot}	0.67 (Cal)	40.2	25	H_2O , 0.05 M Me ₄ NBr, pH 10.4 (ΔH , ref 144)	134, 144
	Ca ²⁺	4.74	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	Sr^{2+}	3.4	\mathbf{Pot}	-13.8 (Cal)	18.4	25	H_2O , 0.05 M Me ₄ NBr, pH 10.4 (ΔH , ref 144)	134, 144
	Sr^{2+}	7.06	\mathbf{Pot}			25	95% MeOH, 0.01 M Me₄NBr	134
	Ba^{2+}	6.0	\mathbf{Pot}	-25.9 (Cal)	28.0	25	H_2O , 0.05 M Me ₄ NBr, pH 10.4 (ΔH , ref 144)	134, 144
	Ba ²⁺	10.40	\mathbf{Pot}			25	95% MeOH, 0.01 M Me ₄ NBr	134
3.3.2	H+	8.16 (1)	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	H^+	7.31 (2)	\mathbf{Pot}			25	H_2O , 0.05 M Me_4NBr	134
	Li+	<2.0	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	Na ⁺	<2.0	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	Na ⁺	3.2	\mathbf{Pot}			25	MeOH, 0.01 M Me₄NBr	134
	K+	<2.0	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	K+	6.0	\mathbf{Pot}			25	MeOH, 0.01 M Me₄NBr	134
	Rb+	<0.7	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	Rb+	6.15	\mathbf{Pot}			25	MeOH, 0.01 M Me₄NBr	134
	Cs^+	<2.0	\mathbf{Pot}			25	H_2O , 0.05 M Me_4NBr	134
	Cs ⁺	>6.0	\mathbf{Pot}			25	MeOH, 0.01 M Me₄NBr	134
	Mg ²⁺	<2.0	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	Ca ²⁺	~ 2.0	Pot			25	H_2O , 0.05 M Me_4NBr	134
	Sr^{2+}	~ 2.0	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	Ba ²⁺	3.5	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
3.3.3	H+	7.70 (1)	\mathbf{Pot}			25	H_2O , 0.05 M Me_4NBr	134
	H ⁺	6.96 (2)	\mathbf{Pot}			25	H_2O , 0.05 M Me ₄ NBr	134
	Li+	<2.0	Pot			25	H_2O , 0.05 M Me_4NBr	134
	Na ⁺	<2.0	Pot			25	H_2O , 0.05 M Me_4NBr	134
	Na ⁺	2.7	\mathbf{Pot}			25	MeOH, 0.01 M Me₄NBr	134
	K+	<2.0	Pot			25	H_2O , 0.05 M Me ₄ NBr	134
	K+	5.4	Pot			25	MeOH, 0.01 M Me₄NBr	134
	Rb ⁺	<0.5	Pot			25	H_2O , 0.05 M Me_4NBr	134
	Rb ⁺	5.7	Pot			25	MeOH, 0.01 M Me ₄ NBr	134
	Cs⁺	<2.0	Pot			25	H_2O , 0.05 M Me ₄ NBr	134
	Cs⁺	5.9	Pot			25	MeOH, 0.01 M Me ₄ NBr	134
	Mg ² ⁺	<2.0	Pot			25	H_2O , 0.05 M Me ₄ NBr	134
	Ca ²⁺	<2.0	Pot			25	H_2O , 0.05 M Me ₄ NBr	134
/	Sr ²⁺	<2.0	Pot			25	H_2O , 0.05 M Me_4NBr	134
1.1/1.1	Na'	1.7	ISE			25	H ₂ O	176
	Na⁺	4.3 (1)	ISE			25	95% MeOH, 0.1 M Et_4NBr	176
	Na⁺	1.5 (2)	ISE			25	95% MeOH, 0.1 M Et_4NBr	176
	Na'	4.5	ISE			25	MeOH	11, 176, 176a
	K'	1.1	ISE			25	H ₂ O	176
	N' DL+	0.8	ISE			25	MeOH	11, 176, 176a
		2.0	ISE			20		176
	RD'	0.4	IOF			25	Meon	11, 176, 176a
	Co+	1.40 <60	ISE			25		176
	Ca^{2+}	~0.U 6.52	Dot Dot			20		11, 176, 176a
	Ca- Sr ²⁺	6.00	Pot			20 05		170
	B-2+	80	Pot			20		176
	Ag+	6.0	ISE			20	H ₂ O	11
	Ag+	>9.5	ISE			25	MeOH	11
	Ag+	>6.0	ISE			25	MeOH	11
2.2/2.2	Na ⁺	<1.5	ISE			25	H ₂ O	176
1	Na ⁺	3.6 (1)	ISE			25	95% MeOH, 0.1 M Et. NBr	176
								· -

ligand	cation	$\log K^a$	$method^b$	ΔH, kJ/mol	$\Delta S, J/(K mol)$	<i>T</i> , °C	medium ^c	ref
	Na ⁺	3.2 (2)	ISE		1	25	95% MeOH, 0.1 M Et ₄ NBr	176
	K+	~ 1.5	ISE			25	H ₂ O	176
	K+	4.8 (1)	ISE			25	95% MeOH, 0.1 M Et₄NBr	176
	K ⁺	3.9 (2)	ISE			25	95% MeOH, 0.1 M Et_4NBr	176
	KD' PL+	~ 1.5	ISE			25	H_2U	176
	Rb ⁺	3.7(1) 3.3(2)	ISE			25 25	95% MeOH, 0.1 M Et ₄ NBr 95% MeOH 0.1 M Et ₂ NBr	176
	Cs ⁺	4.4(1)	ISE			25	95% MeOH, 0.1 M Et ₄ NBr	176
	Cs ⁺	3.0 (2)	ISE			25	95% MeOH, 0.1 M Et₄NBr	176
	Ca ²⁺	4.0	ISE			25	95% MeOH, 0.1 M Et ₄ NBr	176
	Sr^{2+}	3.5	ISE			25	H ₂ O	176
	Sr^{2+}	5.5 (1)	ISE			25	95% MeOH, 0.1 M Et ₄ NBr	176
	Sr^{2+}	5.5 (2)	ISE			25	95% MeOH, 0.1 M Et ₄ NBr	176
	Ba ²⁺	4.4 67(1)	ISE			25	$H_2 U$ 95% MaOH 0.1 M NMa Br	176
	Ba ²⁺	6.3(2)	ISE			25	95% MeOH, 0.1 M NMe ₄ Br	176
Pent2.2/2.2	Na ⁺	3.2(1)	ISE			25	95% MeOH, 0.1 M NEt ₄ Br	176
,	Na ⁺	1.5 (2)	ISE			25	95% MeOH, 0.1 M NEt ₄ Br	176
	K ⁺	4.0 (1)	ISE			25	95% MeOH, 0.1 M NEt₄Br	176
	K ⁺	3.2 (2)	ISE			25	95% MeOH, 0.1 M NEt₄Br	176
	Rb ⁺	3.5(1)	ISE			25	95% MeOH, 0.1 M NEt₄Br	176
	Rb ⁺	3.0(2)	ISE			25	95% MeOH, 0.1 M NEt ₄ Br	176
	Cs ⁺	3.5(1) 2.5(2)	ISE			25	95% MeOH, 0.1 M NEt ₄ Br 95% MeOH 0.1 M NEt Br	176
B-22/22	Na ⁺	3.0(1)	ISE			25	95% MeOH, 0.1 M NEt ₄ Br	176
	Na ⁺	2.9 (2)	ISE			25	95% MeOH, 0.1 M NEt ₄ Br	176
	K+	3.6 (1)	ISE			25	95% MeOH, 0.1 M NEt₄Br	176
	K+	2.7 (2)	ISE			25	95% MeOH, 0.1 M NEt ₄ Br	176
	Rb ⁺	3.0 (1)	ISE			25	95% MeOH, 0.1 M NEt₄Br	176
	Rb ⁺	2.8 (2)	ISE			25	95% MeOH, 0.1 M NEt ₄ Br	176
	Ca^{2+}	3.6 4 0 (1)	ISE			25	95% MeOH, 0.1 M NMe ₄ Br	176
	Sr ²⁺	4.5 (1) 5 (2)	ISE			25	95% MeOH 0.1 M NMe $_4$ Br	176
	Ba ²⁺	5.9(1)	ISE			25	95% MeOH, 0.1 M NMe ₄ Br	176
	Ba ²⁺	6 (2)	ISE			25	95% MeOH, 0.1 M NMe₄Br	176
valinomycin	Li ⁺	<0.7	Spec			25	MeOH	5, 178
	Na ⁺	0.67	Spec			25	MeOH	5, 178
	Na ⁺	1.08	Pot			25	MeOH	5, 178
	K* V+	6.3	Cond	8 0 (C -1)	0.16	25	EtOH	5, 178
	K' V+	0.07 1.0	Spec	-8.9 (Cal)	-2.16	20		อ 178
	K+	1.97	Spec			25	70% MeOH	178
	K+	3.67	Spec			25	90% MeOH	178
	K+		Cal	-19		25	MeOH	179
	K+	>3.9	Pot			25	MeOH	178
	K ⁺	4.43	Cond			25	MeOH	5, 178
	К ⁺ К+	4.79	Fluor			25	MeOH MeOH	180 5 178
	Rh+	4.50 6.46	Cond			25	EtOH	5
	Rb ⁺	5.12	Fluor			25	MeOH	180
	Rb ⁺	5.26	Spec			25	MeOH	5, 178
	Cs ⁺	5.81	Cond			25	EtOH	5
	Cs ⁺	4.32	Fluor			25	MeOH	180
	Cs ⁺	4.41	Spec			25	MeOH	5, 178
	Mg^{2+}	<0.7	Spec			25	MeOH	5
	Ca ²⁺	2.70	Spec			20	MOH	5 5
	Be ²⁺	3.34	Spec			25	MeOH	5
	Ag ⁺	3.90	Spec			25	MeOH	5, 178
	TI+	4.62	Fluor			25	EtOH	180
	T1+	4.4	Fluor			25	MeOH	180
	Tl+	3.73	Spec			25	MeOH	5, 178
	NH_4^+	1.67	Spec			25	MeOH	5,178 5,178
enniatin D	$(\ln n_2)_2 \cup \ln n_2'$ Li ⁺	0.40	Spec			20 25	MeOH	5, 178
emnatin D	Na ⁺	3.11	Cond			25	EtOH	178
	Na ⁺	3.41	ORD			25	EtOH	178
	Na ⁺	2.38	Pot			25	MeOH	178
	Na ⁺	2.41	Spec			25	MeOH	5, 178
	K+	3.57	Cond			25	EtOH	17
	K ⁺ V +	3.81	ORD			25 25		178
	к. К+	1.101	Spec			25 25	70% MeOH	178
	K+	2.45	Spec			25	90% MeOH	178
	K+	2.919	Spec			25	MeOH	178

				ΔH ,	ΔS ,			
ligand	cation	$\log K^a$	$method^b$	kJ/mol	J/(K mol)	<i>T</i> , °C	medium ^c	ref
	к+	2 924	Pot			25	MeOH	178
	Rh+	2.324	Spec			25	MeOH	178
	Co+	2.74	Spec			25	MeOH	178
	US M-2+	1.04	Spec			20	MOU	170
	Ivig-	1.2	Spec			20	Meon	5
	Car	3.0	Spec			25	MeOH	5
	Sr ²⁺	2.65	Spec			25	MeOH	5
	Ba ²⁺	2.93	Spec			25	MeOH	5
	Mn^{2+}	0.6	Spec			25	MeOH	5
	Tl+	2.7	Spec			25	MeOH	178
	Tl+	<3	Fluor			25	MeOH	180
	NH₄+	1.92	Spec			25	MeOH	178
cvclo-(Pro-Glv)	Li ⁺	2.26	ĊD			20	80% MeOH	181
0,000 (200 0.0,73	Na ⁺	0.34	CD			20	H ₂ O	181
	Na ⁺	2 04	CD			20	80% MeOH	181
	K+	1 46	CD			20	80% MeOH	181
	Ma^{2+}	5.00 (1)	CD			20	MeCN	181
	Ma ²⁺	0.00(1)	CD			20	MeCN	191
	Ivig-	2.01 (2)				20	Mech	101
	Car	2.11	CD			20	H_2O	181
	Ca ²⁺	5.04	CD			20	MeUN	181
	Ca ²⁺	3.15	CD			20	80% MeOH	181
	Ba^{2+}	2.62	CD			20	80% MeOH	181
nonactin	Na ⁺	3.27	Cal	-27.4	-29.4	25	EtOH	183
	Na ⁺	3.3	Osm			30	EtOH	183
	Na ⁺	3.97	Polg			22	MeCN, 0.025 M Bu₄NClO₄	182
	Na ⁺	2.7	Fluor			25	MeOH	180
	Ne ⁺	2.71	Cal	-11.1	14.6	25	MeOH	183
	No+	23	<u>O</u> sm		17.0	30	MeOH	183
	Na ⁺	2.0	Dot			20	Nhpz	199
	INA IZ+	1.0	FOL	50.0	744	20	Rollz E+OU	123
	K'	5.26	Cal	-32.2	-/4.4	20	EtOH	100
	K ⁺	4.6	Usm			30	ETOH	183
	K ⁺	4.43	Polg			22	MeCN, 0.025 M Bu ₄ NClO ₄	182
	K+	3.9	Fluor			25	MeOH	180
	K+	4.49	Cal	-43.6	-60.3	25	MeOH	183
	K+	3.6	Osm			30	MeOH	183
	Rb+	3.87	\mathbf{Polg}			22	MeCN, 0.025 M Bu ₄ NClO ₄	182
	Rb ⁺	3.81	Fluor			25	MeOH	180
	Rb+	3.5	Osm			30	MeOH	183
	Cs ⁺	2.59	Polg			22	MeCN, 0.025 M Bu/NClO	182
	Čs ⁺	3 23	Fluor			25	MeOH	180
	C•+	2.86	Osm			30	MeOH	183
	$\mathbf{B}_{n^{2+}}$	2.00	Osm			30	FtOH	183
	Da Da^{2+}	1.6	Oam			20	MON	192
		1.0	NMP			30	MaOH	190
	11.	4,15	NMR			25	MeON EtOU	100
monactin	Na	3.5	Usm			30	EtOH	183
	Na⁺	4.28	Polg			22	MeCN	182
	Na ⁺	2.7	Fluor			25	MeOH	180
	Na ⁺	2.5	Osm			30	MeOH	183
	K+	4.5	Osm			30	EtOH	183
	K+	4.78	\mathbf{Polg}			22	MeCN	182
	K+	4.4	Fluor			25	MeOH	180
	K+	4.04	Osm			30	MeOH	183
	Rb ⁺	4.0	Fluor			25	MeOH	180
	Rb ⁺	3.5	Osm			30	MeOH	183
	C•+	36	Fluor			25	MeOH	180
	Ca+	201	0			20	Manh	100
	US D=2+	0.04	Osm Osm			30	MaQU	100
	Ba"'	2.2	Usm			30	MeOH	100
	117	4.57	Fluor			25	MeUH	180
dinactin	Na⁺	3.6	Osm			30	EtOH	183
	Na ⁺	4.44	Polg			22	MeCN	182
	Na ⁺	2.9	Fluor			25	MeOH	180
	Na ⁺	2.9	Osm			30	MeOH	183
	K+	5.24	Polg			22	MeCN	182
	K+	4.7	Fluor			25	MeOH	180
	K+	3.7	Osm			30	MeOH	183
	Rh+	3.5	Fluor			25	MeOH	180
	Rb ⁺	3.6	Osm			30	MeOH	183
	Ce+	3.5	Flue			25	MeOH	180
	C.+	30	<u>n</u>			20	MeOH	1.89
	$\mathbf{D}_{a^{2+}}$	0.4 9.1	0sm			20	MOOH	189
	 +	4.1 1 0E	USH Flore			30	MaQU	100
		4.80	riuor			25		100
trinactin		3.5	Usm			30	LUN	183
	K ⁺	5.44	Poig			22	MeUN	182
	Rb⁺	3.9	Usm			30	MeUH	183
	Cs ⁺	3.3	Osm			30	MeOH	183
								- 50

ligand	cation	$\log K^a$	$method^b$	ΔH, kJ/mol	$\Delta S, J/(K mol)$	<i>T</i> , ⁰C	medium ^c	ref	
monensin	Na ⁺	4.9	Fluor			25	MeOH	180	
	K^+	4.5	Fluor			25	MeOH	180	
	Rb+	4.2	Fluor			25	MeOH	180	
	Cs^+	3.7	Fluor			25	MeOH	180	
	Tl+	4.42	Fluor			25	MeOH	180	
virginiamycin	H+	7.80	Spec			25	30% H ₂ O in MeOH	184	
	Mg^{2+}	3.10	Spec			25	30% H ₂ O in MeOH	184	
	Ca ²⁺	2.50	Spec			25	30% H ₂ O in MeOH	184, 185	
	Mn^{2+}	2.15	Spec			25	40% H ₂ O in MeOH	184, 185	
	Ni ²⁺	5.05	Spec			2 5	40% H ₂ O in MeOH	184, 185	
ferrocene C	Na ⁺	2.40	Spec			25	CH_2Cl_2	186	
	K+	2.11	Spec			25	CH_2Cl_2	186	
Meferrocene C	Li ⁺	2.31	Spec			25	CH,Cl,	186	
	Na ⁺	2.42	Spec			25	CH ₂ Cl ₂	186	
	K +	1.96	Snec			25	CH_CL	196	

^aReactions: The log K values are for 1:1 interactions unless consecutive reactions occur. Interactions of the 1:1 type are either of the cation-ligand type (cation-L, no further designation) or of the cation-protonated-ligand type (indicated by MHL, etc., placed in parentheses following the log K value). Two kinds of consecutive reactions have been reported. The most numerous kinds are those in which either protons interact consecutively with the macrocycle or macrocycles interact consecutively with the cation. These interactions are indicated by (1), (2), etc., placed after the log K value. The second and less common kind of consecutive reaction is that in which cations interact consecutively with the macrocycle to form M_2L species. Where these occur, the second reaction is indicated by placing the reaction product (M_2L , etc.) in parentheses after the log K value. ^b Methods: CD = circular dichroism, Cal = calorimetry, Cond = conductivity, CyVol = cyclic voltammetry, Elec = electrophoresis, Fluor = fluorescent spectra, Int = interpolated, IEM = ion exchange membrane, ISE = ion selective electrode, Kin = kinetic (calculated from kinetic data), NMR = nuclear magnetic resonance spectroscopy, ORD = optical rotatory dispersion, OSM = osmometry, Polg = polarography, Pot = potentiometry, Sol = solubility, Spec = spectrophotometric, Volt = convolution potential sweep voltammetry. ^cSolvents: C₆H₆ = benzene, Diox = 1,4-dioxane, DCE = 1,2-dichloroethane, DME = dimethoxyethane, DMF = dimethylformamide, Me₂SO = dimethyl sulfoxide, EtOH = ethanol, Form = formamide, HMPT = hexamethylphosphorotriamide, *i*-PrOH = isopropyl alcohol, MeCN = acetonitile, Me₂CO = acetone, MeNH₂ = methylamine, MeOH = pyridine, *t*-BuOH = *tert*-butyl alcohol, THF = tetrahydrofuran, TMG = tetramethylguanidine, TMU = tetramethyluracil, Me₄U = tetramethylurea. ^d [NMe₄Cl] or [NMe₄NO₃] variable, $\mu = 0.1$ M. ^eH = high spin, L = low spin.

TABLE II. Radii (Å) of Some Representative Cations^{188,169}

cation	radius, Å	cation	radius, Å	cation	radius, Å
Li ⁺	0.76	Ba ²⁺	1.35	Cu ²⁺	0.77
Na ⁺	1.02	Eu^{2+}	1.17	Zn^{2+}	0.74
K+	1.38	Mn ²⁺	0.67 (L) ^a	Cd ²⁺	0.95
Rb+	1.52		0.83 (H)ª	Pb ²⁺	1.19
Cs^+	1.67	Fe^{2+}	0.61 (L) ^a	Hg ²⁺	1.19
Ag ⁺	1.15		0.78 (H) ^a	La ³⁺	1.03
TI^+	1.50	Co ²⁺	0.65 (L) ^a	Ce ³⁺	1.01
Mg^{2+}	0.72		0.75 (H) ^a	Eu^{3+}	0.95
Ca ²⁺	1.00	Ni ²⁺	0.63 (L) ^a	Ho ³⁺	0.90
\mathbf{Sr}^{2+}	1.18		0.69 (H) ^a	Lu ³⁺	0.86
$^{a}L = lor$	w spin, H =	high spir	1.		

Among the alkali metal cations, the $\log K$ data in Figure 1 for M^+ -18C6 interaction show maximum stability for K⁺. In the case of 21C7, the log K data in Table I show the stability order $Cs^+ > Rb^+ > K^+ >> Na^+$. Coronands as large as B₂30C10 and B₂60C20 form remarkably stable complexes with K⁺ and Tl⁺.^{25,70} These larger polyethers are capable of wrapping around the cation to form a three-dimensional cavity with all oxygen atoms coordinated to the cation. For instance, X-ray crystallographic data indicate that B₂30C10 encloses K⁺ completely.¹⁹⁶ Evidence for twisted conformations of other large podands in solution in the presence of metal ions has been reported also.^{136,197} The stabilities of the complexes formed by these ligands with small cations, such as Na⁺, are appreciable, probably as a result of the ligands being capable of reducing the two-dimensional cavity size by twisting to adjust to the size of the smaller cation. A discussion of the macrocycle hole-size cation-diameter relationship is found in ref 20 and 22.

It may be concluded that for the larger alkali and alkaline earth metal ions, cation size is responsible primarily for the complexing characteristics. The

smaller cations in these series are solvated strongly and, generally, complexes formed with macrocycles are less stable than those formed by the larger cations of the same family. Depending on the solvent, the energy required for desolvation of the cation may vary and, in some cases, may be too high to be compensated by the complexation step. This effect is operative for Li⁺ complexes which, generally do not form in aqueous or methanol solution, but which are quite stable in solvents of low solvating power such as acetonitrile.¹⁷ Larger cations are unable to organize the ligand as well as smaller ones. These two effects cause the ΔH and hence the stability of the 18C6 complexes of cations at the two ends of the size spectrum to be smaller than those of the intermediate size cations. Similarly, complexes formed by large dipositive ions usually have higher stabilities than those formed by monopositive ions of similar size, while the opposite is true for small cations of differing charges. For example, the ligand 18C6 prefers Na⁺ over Ca²⁺ (similar ionic radii) while in the large cation range Ba^{2+} is usually preferred over K^+ . These cation size effects are reflected, also, in both the enthalpy and entropy changes associated with complexation.53,198

2. Number and Stereochemical Arrangement of Ligand Binding Sites

Even the small polyethers, such as 15C5, cannot be considered to be completely rigid molecules. Most of them are quite flexible and are capable of orienting their donor groups in space. The larger macrocycles are free to fold resulting in a smaller three-dimensional cavity which has a closer size correspondence to the cation than does the unfolded ligand. For example, uncomplexed 18C6 exists in an open-cavity conforma-

TABLE III. Cation Selectivity and Extraction Sequences as a Function of Solvent

crow	n ether	solvent	cation selectivity	ref
B ₂ 18C6		water	$K^+ > Na^+ > Rb^+ > Cs^+$	131, 216
-		methanol	$K^+ > Na^+ > Rb^+ > Cs^+$	131, 216
		dimethylformamide	$K^+ > Na^+ > Rb^+ > Cs^+$	131, 216
		dimethyl sulfoxide	$K^+ > Na^+ > Rb^+ > Cs^+$	131, 216
		acetonitrile	$Na^+ > K^+ > Rb^+ > Cs^+$	70
None	SCN ⁻	$H_2O \rightarrow organic solvent$	$Cs^+ > Rb^+ > K^+ > Na^+$	217
		(56% toluene-44% 1-butanol)		
18C6	picrate ion	$H_0O \rightarrow CH_0Cl_0$	$K^+ > Rb^+ > Cs^+ > Na^+ > Li^+$	218
Cv.18C6	SCN-	2 2 2	$K^+ > Rb^+ > Cs^+ > Na^+$	217
Cv ₂ 18C6	Cl-	$H_0O \rightarrow CH_0Cl_0$	$K^+ > Rb^+ > Cs^+ > Na^+ > Li^+$	218
52	OH-	2 2 2	$K^+ > Na^+$	219, 220
18C6	picrate ion	$H_0 O \rightarrow C_0 H_0$	$K^+ > Rb^+ > Cs^+ > Na^+$	221
B.18C6	picrate ion	$H_0 O \rightarrow C_0 H_0$	$K^+ > Rh^+ > Cs^+ > Na^+$	221
$B_2 18C6$	picrate ion	$H_2^{-2} \to C_6^{6}$	$K^+ > Tl^+ > Rb^+ > Cs^+ > Na^+ > Li^+$	222, 223

tion with its oxygen atoms alternately above and below their plane.¹⁹⁹ This arrangement of the oxygen donor atoms is maintained in the K⁺ complex.²⁰⁰ However, the structure of the Na⁺-18C6 complex is quite different. In this case, the 18C6 is folded with one oxygen atom out of the plane in order to obtain a better fit of the ligand to the smaller Na⁺ ion.²⁰¹

Binding constants depend to a great extent on the ion-dipole interaction. Any changes in number, magnitude, and direction of ligand dipoles will affect the binding energy. In a study of four different isomers of Cy_218C6 , the following order of alkali cation complexing ability was observed: cis-syn-cis > cis-anti-cis > trans-syn-trans > trans-anti-trans.^{114,202} Though the enthalpy of complex formation was found to be more favorable for the cis-anti-cis than for the cis-syn-cis isomer, a less favorable entropy contribution for the latter resulted in the above order of complex stability in the case of these two isomers.¹¹⁵

For alkali and alkaline earth metal ions there are no real stereochemical requirements for complexation. However, the donor groups of the ligand should provide an electronically basic environment to replace all or part of the cation's solvation shell. For example, K⁺ is 10coordinated in its bis-B15C5 complex, 6-coordinate planar in its 18C6 complex, 8-coordinate in its B₂24C8 complex, presumably 9-coordinate in its B₂27C9 complex, and 10-coordinate in its B₂30C10 complex.¹⁸⁷

3. Substitution on the Macrocycle Ring

Addition of benzene groups to 18C6 alters the cation selectivity of the ligand. The K value for the formation of the Ba^{2+} -18C6 complex in methanol solvent is larger than that for formation of the K⁺ complex by a factor of 10. On the other hand, B₂18C6 displays the opposite preference, binding K⁺ better than Ba^{2+} in methanol by approximately the same amount. The change due to aromatic substituents may be attributed to some combination of ligand bulkiness leading to the isolation of the cation from the solvent, and the electron-withdrawing power of the benzo group(s) which weaken the electron-donor ability of the oxygen atoms resulting in a weaker metal-ligand interaction.

The cyclohexano group has a less dramatic effect on the stability of complexes and on cation selectivity. Aliphatic substituents on this ligand do not alter the binding properties to any measurable extent. The variation of the aqueous solution cation binding abilities of the cis-syn-cis and cis-anti-cis isomers of Cy_218C6 is likely due to differences in solvation of their complexes resulting from the different positioning of the bulky cyclohexane substituents.

The dinitro derivative of B_218C6 has more than six times less affinity for Na⁺ than has the parent compound ($B_{2}18C6$) in DMF while the stability of the Na⁺ complex of the corresponding amino derivative is nearly identical with that of B₂18C6.^{125,126,128} This finding is rationalized in terms of the electron-withdrawing and electron-donating properties of the substituents.¹²⁶ The stability of Na⁺-4'-monosubstituted B15C5 complexes in acetone at 25 °C is altered by a factor of 22 with the substituents NH_2 and NO_2 .⁶⁹ Similar behavior was noted for disubstituted B15C5 complexes. For those complexes of Na⁺ with substituted B15C5 ligands, a good Hammett correlation was obtained by plotting log K values vs. $(\sigma_p^- + \sigma_m)$ with a ρ value of -0.45. The negative ρ value indicates that binding capacity is decreased by electron-withdrawing substituents. The selectivity of K⁺ over Na⁺ was much less for the nitro-substituted B18C6 than for the methyl-substituted ligand.69

The correlation between K and substituent effects is poorer for Li⁺ and Na⁺ than for K⁺, Rb⁺, Cs⁺, and NH₄^{+.203} For example, changing the substituent from CH₃ to NO₂ resulted in a reduction in the K value by a factor of about 6 for K⁺, but only about 3 for Na^{+.69} The greater effect of substituents seen with the larger cations was attributed to the fact that these cations are influenced by all binding sites available in the ligand whereas small cations can minimize substituent effects by selecting the most basic sites.

The effect of a carbonyl group adjacent to an oxygen atom on metal ion binding has been studied for 18C6 and its pyridino derivative.^{102,118,204} Introduction of the carbonyl group in 18C6 to form K₂18C6 lowers the binding constants in the cases of Na⁺, K⁺, and Ba²⁺ by $10^{2}-10^{4}$. The lowered K values are due primarily to decreased ΔH values, the ΔS values becoming even more favorable for complexation. The addition of two carbonyl groups to Py18C6 to form K₂Py18C6 lowers the binding capacity for K⁺ and Ba²⁺, but increases that for Na⁺. Variation of the ΔH values does not follow any clear trend. The carbonyl groups are not bonded to the cation.¹¹⁹

It is known^{4,11,134} that the three-dimensional cryptands form considerably more stable metal complexes than do the corresponding two-dimensional coronands. Okahara⁷⁶ and Gokel²⁰⁵ and their co-workers have noted enhancement of stability in cation complexes of threedimensional N-oligoethylene glycol monoaza crown ethers. An additional factor contributing to complex stability is seen in macrocycles if cation charge neutralization occurs on complexation.²⁰⁶

Coronands show pronounced cooperative effects of crown units. Binding constants per crown unit for small cations (Li⁺, Na⁺) do not vary between polymer and monomer, but with larger cations (K⁺, Rb⁺, Cs⁺) preferential binding by polymers is observed.^{207,208} Additional polyether groups in a monomeric macrocycle show no cooperative effect.²⁰⁹ However, the K value for potassium picrate-L ion-pair formation in tetrahydrofuran is 50 times less if L = monomeric 15C5 than if L = two B15C5 units connected by an (OCH₂CH₂OC-H₂CH₂O) bridge.^{210,211}

Chiral coronands have been synthesized by several workers.^{8,212} Arms added to the host provide an additional dimension for the study of host-guest interactions. Such arms may allow manipulation of the hydrophobic-lipophilic balance of the host and may provide counterions for interaction with ionic guests. Resolution of amino acid esters has been reported using binaphthyl host compounds.²¹³ K values measured in methanol differed nearly twofold for the interaction of the two enantiomers of the protonated methyl ester of alanine with chiral (S,S)-Me₂K₂Py18C6.⁷ Log K values for the interaction of these guest enantiomers with (S,S)-Ph₂K₂Py18C6 showed no difference. Comparison of the log K values for these chiral coronands with the log K values for their interaction with NH_4^+ showed that the NH_4^+ complexes were approximately ten-fold more stable. Thus, steric hindrance was seen in the cases of both of these crowns, but chiral recognition only in the case of the dimethyl crown.

4. Solvent Effects

Frensdorf²⁵ noted that K values for the reaction of cyclic polyethers with metal cations are 10^3 — 10^4 larger in methanol than in water. The $\log K$ value for the interaction of Na⁺ with B15C5 increases regularly with increasing weight percent $CH_3OH^{.73}$ The enhancement of stability in methanol over that in water is primarily an enthalpic effect.^{73,144} On the other hand, the difference between the reaction entropies found in water and those found in methanol oppose this stability enhancement. The enthalpic stabilization is explained by the expenditure of less energy in the cation desolvation step in the solvent of lower dielectric constant. A compensating effect (enthalpy stabilized, entropy de-stabilized) has been noted¹³⁶ in the variation of the enthalpy and entropy changes of complexation by B₂21C7, B₂24C8, and B₂27C9 with Cs⁺ in several solvents of low to medium donicity (nitromethane, acetonitrile, acetone, methanol, and propylene carbonate).

The parameters governing the substitution of a solvent, S, for water W, for M^+ -crown (Cr) interaction follow from the following thermodynamic cycle.¹⁴ This

$$\begin{array}{c|c} \mathbf{M}_{\Psi}^{+} + \mathbf{Cr}_{\Psi} & \stackrel{\Delta \mathbf{X}_{\Psi}}{\longrightarrow} & (\mathbf{M}^{+} \cdot \mathbf{Cr})_{\Psi} \\ \\ \Delta \mathbf{X}_{tr} & & \Delta \mathbf{X}_{tr} & \\ \mathbf{M}_{S}^{+} + \mathbf{Cr}_{S} & \stackrel{\Delta \mathbf{X}_{e}^{-}}{\longrightarrow} & (\mathbf{M}^{+} \cdot \mathbf{Cr})_{S} \end{array}$$

cycle indicates that free energies of transfer (X = G)for cation, ligand, and complexed cation need to be considered in order to understand the absolute and relative values of K_W and K_S . Thermodynamic data for K⁺—B₂18C6 interaction in

Thermodynamic data for K^+ — B_218C6 interaction in aprotic solvents¹⁴ show that values of $\Delta\Delta G + \Delta G_{tr}$ (K^+), change with solvent. These data are interpreted to mean that there is appreciable interaction of the solvent with the crown ether complexes. However, the effect is not large enough to change the order of relative log K values for K^+ - B_218C6 interaction: propylene carbonate > acetonitrile > dimethylformamide > dimethyl sulfoxide. Abraham and Ling²¹⁴ in a study of free energies and entropies of transfer from water to methanol of 18C6- M^{n+} complexes concluded that 18C6 shields M^{n+} from the solvent more effectively than crystal structure determinations would suggest.

The reactions of the alkali metal ions with Cy_218C6 in methanol, ethanol, and 1-propanol have been studied.²¹⁵ As in water, the ligand is consistently selective for K⁺ over Na⁺ and Cs⁺, but selectivity between Na⁺ and Cs⁺ reverses in going from water to the alcoholic solvents. The equilibrium constant in protic solvents increases regularly for all alkali cations in the order: water < methanol < ethanol < 1-propanol.

Log K values have been reported for the 1:1 interaction in several solvents of various cations with 18C6 and its benzo and dibenzo derivatives. The sequence of the selectivities toward cations is solvent dependent as is illustrated with the M^+ - B_218C6 systems in Table The cation sequences are the same in water. III. methanol, dimethylformamide, and dimethyl sulfoxide, but the positions of Na^+ and K^+ are reversed in acetonitrile. A reversal of Na^+/K^+ selectivity in apolar, aprotic solvents was observed for fluorenvl salts also.²²⁴ Sequences for the extraction of alkali metal cations from water into organic solvents¹⁴ are given, also, in Table III. Cation selectivity in these cases depends on differences both in the distribution constants and in the binding constants in the water-saturated organic solvent. DeJong and Reinhoudt¹⁴ point out that, although general patterns in the effect of solvent on extraction sequence are seen, further studies are needed to arrive at a model which would have predictive value.

Arnett and Moriarity²²⁵ report calorimetric results which show large variations in the heat of complexing of DC18C6 with different alkali metal cations. In addition, their results show a considerable solvent effect on ΔH of complexation using H₂O, acetone, tetrahydrofuran, and dimethyl sulfoxide.

5. Cation-Polyamine Complexation

Substitution of sp^3 nitrogen for ether oxygen in the coronand ring reduces the affinity of the ligand for the alkali and alkaline earth metal ions. A large number of cyclic polyamines having three to six functional groups in the ring have been synthesized. However, the majority of these have four functional groups more or less evenly distributed in a ring consisting of 12 to 16 atoms. Unlike coronands and cryptands, these compounds are prepared through one of a number of condensation reactions in which a transition-metal ion functions as a template.

Most monocyclic polyamine macrocycles form metal complexes in which four almost equivalent nitrogen atoms are coordinated in a single plane about the metal ion and two other groups are bound in the axial sites above and below the plane. Relatively few log K values are available for metal ion binding to macrocycles of this type. Kodama and his co-workers¹³⁵ report log K values for saturated macrocyclic polyamine ligands with 5 and 6 nitrogen donor atoms and ring sizes of 15 and 18 members. These ligands are particularly effective in complexing bivalent transition-metal ions. Graddon and his co-workers²²⁶ report enthalpy changes for the interaction in acetonitrile of four tetraaza macrocycles with Zn²⁺. Their results support five-coordinated structures for the complex ions.

Desreux and his co-workers²⁷ have studied the deuteration in D₂O of two tetraza tetraacetic macrocycles. Two amino groups of each of these macrocycles are deuterated at pD values of ~10. When the acidity is increased, deuterons associate successively with the four carboxylate groups, leaving the remaining two amino groups essentially undeuterated. These macrocycles appear to be the first shown to have nitrogen atoms which are less basic than carboxylate groups.

6. Cation-Polythioether Complexation

Complexes of Ni²⁺ and Co²⁺ with coronands containing three, four, six, and eight ring sulfur atoms have been reported. $^{227-230}$ The configuration of the metal ion-coronand complex is a function of the ring size and of the number of sulfur atoms in the ring. For example, a tridentate macrocycle gives a sandwich-type 2:1 ligand:metal complex with Ni^{2+,228} Sexadentate ligands with 18-20 ring members have four of the sulfur atoms in a plane with the metal atom and two other sulfur atoms occupying positions above and below the plane.²²⁹ The nickel complex of an octadentate ligand contains two Ni²⁺ ions.²²⁷ Stoichiometry of 4:1 (ligand:metal) for two palladium and platinum complexes is reported indicating bridging by the sulfur donor atoms.²²⁷ Binding constants for the reaction of Cu²⁺ with a number of cyclic polythio ligands in 80% methanol have been determined.³⁹

7. Cation-Mixed Donor Atom Macrocycle Complexation

Numerous macrocycles containing mixtures of oxygen, nitrogen, and sulfur donor atoms have been synthesized. Thermodynamic quantities associated with their cation complexation have been determined in a number of cases.

a. Nitrogen-Oxygen Donor Atoms. A number of macrocycles containing both nitrogen and oxygen donor atoms have been synthesized.²³¹⁻²³³ Generally, the metal complexes of these macrocycles are 1:1 (metal:ligand) with the metal ion located at the center of the macrocycle. However, recent determinations⁸⁰ of log K values in methanol for the reaction of Ag⁺, Cd²⁺, and Pb²⁺ with the coronands 1,7-A₂15C5 and 1,10-A₂18C6, as well as with the cryptands 2.1.1 and 2.2.2, show that binuclear complexes, M_2L^{2n+} , are present in all these cases, in addition to the expected mononuclear MLⁿ⁺ complexes. Substitution of oxygen by nitrogen in coronands such as 18C6 and B₂18C6 results in macrocycles which have less affinity for K⁺ than did the parent macrocycle. Log K values in these cases decrease in the order of de-

creasing electronegativity of the substituted group, O > NR > NH.²⁵ However, replacing oxygen donor atoms by nitrogen results in increased K values for Ag⁺ complexation. The different stability orders in the cases of K⁺ and Ag⁺ are likely a reflection of different types of bonding in the complexes of these cations; K⁺ binding being primarily electrostatic whereas Ag⁺ binding may involve both electrostatic and covalent contributions.

An interesting study has been reported of macrocycles in which two additional groups containing OH sites are attached to two nitrogens of diaza crown ethers.²³⁴ The results indicate that K values for complexes of $A_{2}15C5$ (2.1) with bivalent metal cations such as Ca^{2+} , Sr^{2+} , and Ba^{2+} increase by factors of 85, 89, and 30, respectively. The same trend is observed in the case of the complexes of $A_{2}18C6$ (2.2) and its derivatives. On the other hand, substituted diaza crowns with equal numbers of binding sites, viz. two CH_2CH_2OH units, have a smaller stabilizing effect than one $CH_2CH_2OCH_2CH_2OCH_2CH_2$ bridge in the cryptands.

Log K values for the interaction of Sr^{2+} and Ba^{2+} with aza crown ethers (R 2.2) decrease markedly as the R substituents become larger.²³⁵ This effect is probably stereochemical in nature.

b. Sulfur-Oxygen Donor Atoms. Substitution of sulfur for oxygen in several crown-3, crown-4, crown-5, crown-6, and crown-8 macrocycles produces dramatic effects on K values for metal ion-ligand interaction.¹⁶ In aqueous solution, little or no reaction occurs between the sulfur-containing macrocycles and either alkali or alkaline earth metal ions. Compared to the oxygencontaining macrocycles, the stabilities of metal com-plexes with Ag^+ and Hg^{2+} are enhanced markedly and those with Tl^+ and Pb^{2+} are reduced by sulfur substitution. For many of the cyclic thioethers, Ag^+ and Hg^{2+} complexes have 1:2 cation:ligand stoichiometries. However, Tl⁺ and Pb²⁺ give 1:1 complexes. If the donor sulfur atoms were to point into the ring cavity, the size of the cavity would be decreased considerably. However, X-ray studies indicate that even for crown-4. crown-5, and crown-6 rings, sulfur atoms are directed away from the cavity.²³⁶ Hence, binding of sulfur-con-taining crowns to Ag^+ and Hg^{2+} may not be of the inclusion type. Formation of 2:1 (metal:ligand) complexes in these systems points to the above possibility.

B. Cation–Cryptand Complexation

An extension of crown-ether chemistry is found in the case of cryptands. These macrobicyclic ligands are capable of ion encapsulation due to their cage-like structures. Generally, their metal complexes have 1:1 metal-ligand ratios.

1. Relative Cation/Anion and Ligand Cavity Sizes

Generally, that metal ion whose ionic crystal radius best matches the radius of the cavity formed by the cryptand on complexation will form the most stable complex. The correspondence between cavity size and complex stability is more pronounced with the cryptands than with the coronands. Figure 2 illustrates how in proceeding through a series of these ligands of increasing size, each of the alkali metal ions is preferen-

Figure 2. Selectivity of cryptands: log K values for reaction of several cryptands with alkali metal cations at 25 °C vs. cation radius.¹³⁴ Data points: (a) value reported <2.0; (b) in 95% CH₃OH; (c) in CH₃OH. Reprinted with permission from ref 134. Copyright 1975, American Chemical Society.

tially bound according to its size.

This correspondence between K values and the match of macrocycle cavity and cation diameters is found for alkaline earth cryptates, also. However, such a correspondence is not found for Cu²⁺-cryptand complexes.¹⁵⁹

For smaller macrobicycles, cations near the selectivity peak have ionic diameters close to the ligand cavity diameters calculated using CPK models. Complexation in several nonaqueous solvents of Cs⁺ by cryptands 2.2.2, B2.2.2, and 3.2.2 has been studied over the temperature range -100 to 63 °C using a ¹³³Cs NMR technique.¹⁶⁸ It was found that an inclusive complex was formed at all temperatures with cryptand 3.2.2 whose cavity size is commensurate with that of the cation. With B2.2.2, only exclusive complex formation (cation partially enclosed in the ligand cavity) was found, probably due to the smaller cavity size and higher rigidity of this macrocycle. With cryptand 2.2.2, a temperature and solvent-dependent exclusive-inclusive equilibrium was observed. In polar solvents, the equilibrium was essentially completely displaced toward the inclusive complex at ~ 100 °C, but in tetrahydrofuran solutions the formation of the inclusive complex was hindered by the strong cation-anion interaction.

Binuclear species as well as 1:1 species in propylene carbonate solvent have been reported.^{78,81} Although structures of the binuclear species are not known, it is probable that in the $2Pb-2.1.1^{4+}$ complex both Pb^{2+}

cations lie outside the cavity. On the other hand, in the $2Pb-2.2.1^{4+}$ and $2Pb-2.2.2^{4+}$ species the larger cavity size may make possible a structure in which either both Pb^{2+} lie outside or one Pb^{2+} lies outside and one Pb^{2+} lies inside the cavity. The pK, ΔH , and ΔS values have been determined¹⁴³ for the reaction $H_{i-1}L^{(i-1)+} + H^+ =$ $H_i L^{i+}$ (i = 1, 2) where L = 2.1.1, 2.2.1, 2.2.2. The relative magnitudes of the ΔH and ΔS values were used to deduce possible in-out conformations for the protonated forms of the cryptands. When this procedure was used the first proton (highest pK value) in 2.1.1 was postulated to be located inside the cavity while the second proton was postulated to be located outside the cavity both in water and methanol. In the cases of 2.2.1 and 2.2.2, both protons were located inside the cavity in water, but outside the cavity in methanol.

Cylindrical cryptands formed by two rings connected by two bridges have been synthesized. These macrocycles possess two lateral cavities, the macrocyclic units, and one central cavity inside the macrotricycle (e.g., see compound $B_22.2/2.2$, Chart XII). These ligands are capable of forming mononuclear and binuclear complexes of appreciable stability with alkali and alkaline earth metal cations. The stabilities and selectivities of complexation by these unusual cryptands are such that the ligand may be considered to have two almost independent macrocyclic subunits. These ligands are topologically well suited for the designed positioning of two metal cations in a binuclear inclusion complex.¹⁷⁶

Comparisons of log K for M^{n+} -cryptand interaction in aqueous solution vs. the ionic radius of M^{n+} show interesting effects.¹⁵⁴ The monovalent alkali metal ions show the lowest complex stability with the cryptands, but exhibit a moderately strong stability dependence on cation size. Complexes formed by the alkaline earth cations are more stable. The bivalent transition- and post-transition-metal cations, which fall in a lower range of ion sizes than the alkaline earth metal ions, form complexes of highest stability and show the greatest dependence of $\log K$ on cation size. However, this trend is not sustained in the case of trivalent lanthanide cations which form complexes which are comparable in stability to those of the alkaline earth cations and whose stabilities show almost no dependence on the cation radii. Log K values for the reaction of Eu^{2+} with 2.2.1 and 2.2.2 are larger than those for the corresponding reactions involving Sr^{2+} by 2.5 and 5 log K units, respectively, despite the fact that these cations have nearly identical ionic radii (Table II).

Certain bicyclic alkaneammonium ions exhibit²³⁷ ion pairing with Cl⁻ and Br⁻ in which the anion diffuses into the hydrocarbon cavity. Chloride ion appears to form a more stable complex than bromide ion while no encapsulation of I⁻ was detected.

2. Number and Stereochemical Arrangement of Ligand Binding Sites

Cryptands can assume any of three conformations according to the configuration of the two nitrogen bridgeheads—namely, in-in, in-out, or out-out. Free 2.2.2 cryptand exists in the in-in conformation in the crystalline state. In complexes, the same configuration persists with the metal ion being included in the cavity. These cryptand ligands are more rigid than podands over a broader range of cavity sizes and show a wide range of selectivity. However, cryptands having sizes greater than that of 2.2.2 show signs of flexibility in ion encapsulation. Lehn and Sauvage¹³⁴ concluded that rigid ligands display "peak selectivity", while flexible ligands exhibit "plateau selectivity." Rigid ligands which are too small to accommodate the metal ion may form 2:1 complexes.

NMR spectral studies indicate that the out-out isomer of 1,11-diazabicyclo[9.9.9]nonacosane bis(deuteriochloride) was slowly converted into the in-in isomer when dissolved in 50% deuteriotrifluoroacetic acid until an equilibrium condition was reached. Chloride ion reacted with the in-in form to produce a new anion consistent with the encapsulation of the halide ions in the molecular cavity of the bicyclic amine.²³⁷ It was postulated that, in part, the stability of the complexes must be due to the high positive potential of the hole with respect to anions and from hydrogen bonding within the cavity. However, the encapsulated and external chloride ions exchanged rapidly.

Numerous polyoxamacrobicyclic diamines have been synthesized.^{134,172,176} These ligands form metal ion complexes by encapsulating the ion in the central cavity of the macrocycle. X-ray structural determinations confirm the position of the metal ion and indicate that the two nitrogen atoms participate in bond formation along with the oxygen donors. These ligands are capable of forming very stable complexes and can selectively encapsulate ions. Since these macrocycles have a three-dimensional arrangement of binding sites, the stability constants are usually higher than those of the similar two-dimensional ligands. For example, $\log K$ for the reaction in methanol:water (95% / 5% v/v) solutions of K^+ with the 2.2.2 cryptand is larger than that with 2.2. This "macrobicyclic effect" is of enthalpic origin.^{99,144}

3. Substitution on the Macrocycle Ring

Addition of benzene rings to either one or two bridges of the 2.2.2 cryptand alters the selectivity of this ligand toward metal ions.¹⁷² With one benzo substituent, the stability in 95% methanol of the Na⁺ complex increases compared to the corresponding 2.2.2 complex while the stabilities of the K⁺ and Ba²⁺ complexes decrease. Addition of another benzene substituent (to the second bridge) causes a further decrease in the stabilities of the K⁺ and Ba²⁺ complexes with the stability of the K⁺ complex being slightly greater than that of the Ba²⁺ complex. The stability decrease in the case of the Ba²⁺ complexes as ligand bulkiness increased was attributed to decreased interaction of the complexed cation with the polar solvent.

Cox and his co-workers¹⁷⁴ studied the effect of substituents on the thermodynamic and kinetic stability of alkali metal cryptates in methanol. They found that alkyl ($C_{10}H_{21}$) and benzo substitution caused a reduction in the cryptate stabilities which was attributable to a cooperative action of reducing the complex formation rates and increasing the complex dissociation rates.

4. Solvent Effects

The stability constants for the 1:1 reaction of cryptands with cations in methanol are larger than those for the same reaction in water. The degree to which stability is enhanced for methanol over water is dependent on the cation and cryptand under consideration.¹³⁴

Spiess et al.⁸¹ report that log K values for formation of complexes of Pb²⁺ with 2.2.1 and 2.2.2 in various solvents increase in the order water, methanol, propylene carbonate. This stability order parallels the order of decreasing solvating ability of these solvents. On the other hand, these authors find that the Pb— $2.1.1^{2+}$ stability in these solvents increases in the order propylene carbonate, methanol, water. This reversal in stability order with respect to solvent is ascribed to the noninclusive nature of the 2.1.1 complex.

Cation selectivity by macrobicyclic ligands is affected by the nature of the solvent. For example, the selectivity curve for the alkali metal ions is steeper in methanol than in water especially on the side corresponding to larger cations.

In determining selectivity, the solvation of the cation has been considered to be more important than the solvation of the complex. However, for ligands which are large enough to encapsulate the entire cation, the solvent can act only on the entire complex species and has no direct interaction with the cation.¹⁶⁴ On the other hand, a study of the volumes of complexation of cryptands with mono- and divalent cations in water and methanol showed that 2.2.2 did not totally shield the complexed cation from the environment.²³⁸ With the organic ethylene groups on the outside of the complex, the cation may be considered to be embedded in a hvdrophobic environment. This isosteric effect is more pronounced in the cryptands and, presumably, contributes to the higher selectivity of the cryptands for metal ions. The importance of ligand solvation has been shown by Abraham et al.²³⁹ in their work on the overall transfer of Na⁺ complexes from water to methanol where a large contribution of the ligand solvation effect must be considered in elucidating thermodynamic properties of the reaction. It has been suggested that cryptates might be useful in providing extra thermodynamic assumptions for the estimation of the thermodynamics of transfer of single ions. Two possible extreme cases (L = cryptand, tr = transfer): (a) $\Delta G_{tr}(ML^+) = \Delta G_{tr}(L), \ \Delta H_{tr}(ML^+) = \Delta H_{tr}(L);$ (b) $\Delta G_{tr}(ML^+) = 0, \ \Delta H_{tr}(ML^+) = 0$ were pointed out by Gutknecht et al.¹⁵¹ for aprotic polar solvents. However, Abraham et al.²⁴⁰ indicated from their work on watermethanol systems that neither (a) nor (b) is valid in terms of enthalpy and free energy changes.

Popov¹⁴⁰ used multinuclear NMR to study alkali metal ion-macrocycle complexation in nonaqueous solvents. He reports a solvent dependency of K, ΔH , and ΔS for the interaction of Cs⁺ with B₂30C10 and 2.2.2. In the case of Cs⁺-2.2.2 interaction, ΔH and ΔS were essentially invariant with solvent during formation of the "inclusive" complex (Cs⁺ shielded from the solvent), but during formation of the "exclusive" complex (Cs⁺ partially exposed to the solvent) ΔH and ΔS varied significantly with solvent. It was concluded that the cation is largely desolvated in the formation of exclusive complexes.

C. Cation–Spherand Complexation

Spherands are a new class of macrocycles synthesized by Cram and his co-workers^{241–245} in which the ligating sites are fully organized during synthesis rather than during complexation. These macrocycles show remarkable selectivity toward cations. For example, when the ionic diameter for cations becomes too large for the preformed cavity, no complexation occurs. This behavior is in contrast to that of coronand and cryptand macrocycles (Figures 1 and 2) in which size related peak selectivity is found. The order of relative binding strengths as measured by extraction of Li⁺ and Na⁺ picrates in CDCl₃ saturated with D₂O at 25 °C is spherands > cryptands > hemispherands > coronands > open-chain polyethers.²⁴¹

D. Anion Effect

The main emphasis in the work on ion encapsulation by coronands and cryptands has been on the interaction of solvated cations with these ligands. Some authors have given consideration to the reaction of ion pairs with macrocycles in computing K values valid in solvents of medium to low dielectric constant. However, the effect of the anion on the reactivity of the cation with these ligands has usually been suppressed deliberately either through the choice of noncoordinating anions such as tetraphenylborate ion or, more often, by using high dilution conditions during experiments. Work with K⁺-picrate and NH₄⁺-picrate ion pairs and with K^+ and NH_4^+ indicates preference for the free cations over the ion pair in the case of complexation with bis(crown ethers) in tetrahydrofuran.²¹¹ However, Shchori et al.¹²⁴ found that B₂18C6 forms stronger complexes in water with [BaCl]⁺ than with Ba²⁺. This result was attributed to partial charge neutralization. NMR spectral studies of K^+ -2.2.2 cryptand complex in acetonitrile indicated formation of hydrogen bonds between the NH group of this ligand and the accompanying acetate anion.²⁴⁶

E. Macrocyclic Effect

Increased stability is observed for the complexes of cyclic ligands over those with an open chain of similar composition. Cabbiness and Margerum⁵¹ term this extra stability the "macrocyclic effect". In work on cyclic tetraamine ligands, they note that the macrocyclic effect is about ten times larger than the chelate effect observed for Cu^{2+} with multidentate amine complexes. Cyclic polyethers form much more stable complexes than do their corresponding open-chain analogues. Attempts to assign either an enthalpic or entropic origin to the macrocyclic effect have been unsuccessful. Depending on the system investigated, either or both origins have been identified for this effect.

1. Tetraamines

Margerum and his co-workers found the enthalpy term to predominate when the formation of Ni²⁺ complexes of A₄12C₄ (cyclam) and its noncyclic analogue are compared.^{48,247} Dei and Gori reached a similar conclusion from their work on the Cu⁺ complexes of these ligands.²⁴⁸ However, both Paoletti and his coworkers^{30,249,250} and Kodama and Kimura^{28,31,32} found that the entropy term was responsible primarily for the macrocyclic effect using Cu²⁺ complexes of cyclen and its noncyclic analogue. Paoletti and his co-workers concluded that the relative magnitude of the enthalpy contribution is critically dependent on the match between cation and ligand cavity sizes for transition metals.²⁵¹

2. Polythia Ethers

Lucia, et al.²⁵² report log K, ΔH , and ΔS values for the reaction in aqueous solution of Cu^{2+} with a series of open-chain and cyclic polythioethers. These ethers are not solvated extensively and the tetrathioether complex shows a much smaller macrocyclic effect than does the corresponding tetraamine complex. These authors found ΔH for the reaction of Cu^{2+} with the open-chain thia ligands to be virtually identical to that with the optimally fitting cyclic ligand T₄14C4. Log K values for formation of the two complexes were significantly different leading to the conclusion that in this case the macrocyclic effect is entirely attributable to the more favorable entropy change associated with the formation of the less flexible cyclic ligand.

3. Cyclic Polyethers

Frensdorff²⁵ noted a remarkable increase in the stability of metal complexes of cyclic polyethers over those of their linear counterparts by comparing the complexes of Na⁺ and K⁺ with pentaglyme and 18C6 in methanol. Comparison of the stability of Pb-18C6²⁺ to those of Pb-tetraglyme(2+) and Pb:tetraglyme₂(2+) led Kodama and Kimura¹⁰³ to conclude that the macrocyclic effect, in this case, could be attributed entirely to the favorable entropy contribution. In a recent study,⁹² log K, ΔH , and ΔS values for the interaction in methanol of Na⁺, K⁺, and Ba²⁺ with five podands and their noncyclic analogues indicated that the effect, generally, is the result of more favorable enthalpy factors. For example, stabilization of K⁺ by 18C6 compared to either pentaethylene glycol or pentaglyme is due totally to the enthalpy contribution, while the Ba^{2+} complex is stabilized by both enthalpy and entropy, though the enthalpy term predominates. However, it is pointed out that the results do not conclusively point to any single microscopic source for the macrocyclic effect in polyethers, but they do indicate that unfavorable conformational enthalpy changes of the linear polyethers are important factors. It may be concluded that the macrocyclic effect is not yet simply defined and that different systems may respond to different stabilizing factors.

4. Mixed Donor Atom Macrocycles

Izatt et al.¹⁶ compared the stabilities of a number of linear ligands containing five heteroatoms (S, O) to their cyclic analogues. The stabilities of 2:1 (metal:ligand) Ag⁺ and Hg²⁺ complexes of the linear ligands differ only slightly from those of the corresponding cyclic ligands. The ΔH values for 1:1 reactions were also similar. In the case of sulfur-substituted crown ethers, it is doubtful if the metal ion is situated in the ring cavity in the complex. If only outwardly turned sulfur atoms are involved in complexation, no "macrocyclic effect" is to be expected.

Enhanced stabilities due to the macrocyclic effect have been attributed to the slow decomposition rates of complexes of metal ions with macrocycles compared to those with their open-chain analogues. Busch and his co-workers termed this effect "multiple juxtapositional fixedness."253 This effect is also apparent in the decomposition rate of the cyclic tetraamine complex of Cu^{2+} , which is much lower than that of its linear counterpart.²⁵⁴ The straight chain ligand can undergo successive $S_N 1$ replacement steps, and, in acid medium, the dissociated groups can be quickly protonated. However, dissociation of a complex involving a macrocyclic ligand requires the distortion of the ligand so as to weaken a coordination bond for final rupture. Invariably, this will impart higher stability to complexes with cyclic ligands. This result has been substantiated through the work of Jones et al.²⁵⁵ using a cyclic tetrathia complex. In this case, the ligands are free from protonation processes. The authors conclude that configurational effects in the dissociation step are mainly responsible for the extra stability of the complex formed by the macrocycle over that formed by the linear analogue.

F. Cryptate Effect

The increase in the stability of complexes formed by the macrobicyclic ligands over those formed by macrocycles has been noted by Lehn and his co-workers.¹³⁴ This stability increase is more pronounced than that described as the macrocyclic effect and has been designated either as a "cryptate effect" or as a "macrobicyclic cryptate effect." By comparing the thermodynamic quantities associated with formation of the K⁺-2.2.2 complex to those for the K⁺-Cy₂18C6 complex, Kauffmann et al. concluded that the cryptate effect is of enthalpic origin.¹⁴⁴ Similar comparisons between the stability data for Ba²⁺ and Ca²⁺ complexes of monocyclic and bicyclic ligands indicate, also, that the cryptate effect is a result of enthalpic stabilization.⁹⁹

III. Kinetics of Cation–Macrocycle Interaction

Kinetic studies of metal cation-macrocycle interactions began with the investigations of biological macrocycles. These ligands are similar to the synthetic crown ethers and cryptands in their complexation properties. Reaction of monovalent cations with valinomycin in methanol may be represented by where M⁺,

$$\mathbf{M^+}_{\mathrm{solv}} + \mathbf{V'}_{\mathrm{solv}} \xleftarrow{k_{12}}{\mathbf{M^+}_{\mathrm{solv}}} \mathbf{M^+}_{\mathrm{solv}} \quad \mathbf{V'} \xleftarrow{k_{23}}{\mathbf{k}_{32}} \mathbf{MV^+}$$

solv, and V represent the cation, solvent, and valinomycin, respectively. The final step is a diffusion-controlled bimolecular collision reaction with an open form of valinomycin followed by replacement of solvent molecules around the cation by ester carbonyl oxygen atoms of the ligand. The second step involves encapsulation of the cation by valinomycin. The latter step is the rate-determining one.^{12,178}

Kinetic and activation parameters for cation-macrocycle interactions are given in Table IV, together with the method, temperature, and solvent (medium) used in their determination, and appropriate literature references. Excluded from Table IV are data relating to reactions in which the ligand deprotonates as a result of complex formation as well as ligand exchange reactions such as those in which the cation is complexed by other than the solvent species.

A. Crown Ethers

Shchori et al.²⁶⁹ from an ²³Na NMR spectral study of Na⁺-B₂18C6 complexation in DMF concluded that the primary reaction involved is a complexation process:

Na⁺,
$$nDMF + B_2 18C6 \xrightarrow{k_2} Na^+, B_2 18C6 + nDMF$$

Through the use of LiSCN to maintain constant ionic strength (LiSCN did not react with B_218C6), it was concluded that changes in solvent activity were responsible for the observed change in the rate.

The interaction of monovalent cations with B₂30C10 in methanol was studied by Chock¹³⁹ using a Joule heating temperature jump (T-jump) relaxation procedure at 280 and 258.7 nm. He postulated that $B_{2}30C10$ exists in solution in at least two, and more probably three, conformations and that a fast crown ether conformational transition occurs before complex formation. The three conformations postulated are (a) an unreactive species, (b) an open configuration, which is the predominant species in the absence of cations, and (c) a closed configuration, which is stabilized by a monovalent cation.²⁶⁵ This description has since been borne out by H¹ and C¹³ NMR studies of 18C6, B18C6, B_218C6 , and B_230C10 in their complexed and uncomplexed states in various solvents.^{265a} The scheme can be represented as shown below where CR₁ and CR₂ represent, respectively, two different conformations of the macrocycle polyether. This sequence of steps is just the opposite of those chosen for cation complexation by valinomycin.

$$CR_1 \xrightarrow{\text{fast}} CR_2$$
$$CR_2 + M^+ \xleftarrow{k_t}_{k_d} MCR^+$$

Shchori et al.¹²⁸ report extensive studies of the effect of solvents and ring substituents on the kinetics of complexation of Na⁺ by B₂18C6. Appreciable effects of both parameters are found. For example, compared to B_2 18C6, the presence of electron-withdrawing nitro groups on the benzene rings of cis-4,4'-dinitro-B₂18C6 causes a simultaneous increase in the decomplexation rate and decrease in the complexation rate in dimethylformamide solvent at 25 °C resulting in a fivefold decrease in the K value. On the other hand, substitution of amino groups in the same positions of these benzene rings does not alter the decomplexation rate, but increases the complexation rate resulting in little change in the K value. The activation energy for decomplexation of Na⁺ by B_218C6 and its derivatives is constant at 53 \pm 4 kJ in all solvents studied but is substantially less (34 kJ/mol) for decomplexation of the Na^+-Cy_218C6 complex in methanol. The flexibilities of the dicyclohexano derivative over the dibenzo one is considered responsible for the lower activation energy for complexation.¹²⁸

The rate constant for the decomplexation of sodium ion by valinomycin in methanol at 25 °C has been determined by a ²³Na NMR procedure.⁹⁷ A similar study of M⁺-B₂18C6 complexation in methanol at -34 °C

TABLE IV. Kinetic Parameters for the Formation of Cation-Macrocycle Complexes^a

				$\Delta H^{\ddagger,b}$	$\Delta S^{\ddagger,b}$				
ligand	ion	$k_{\rm f}, {\rm M}^{-1} {\rm s}^{-1}$	$k_{\rm d}, {\rm s}^{-1}$	kJ/mol	J/(K mol)	method	<i>T</i> , °C	medium ^c	ref
(CbMA)412C4	Mg ²⁺	1.3×10^{2}				Spec	15	H ₂ O (pH 8.5), 0.25 M NaCl	29
	Mg ²⁺	4.9×10^{2}				Spec	25	H ₂ O (pH 8.5), 0.1 M NaCl	29
	Mg ²⁺	9.6×10^{2}				Spec	25	H ₂ O (pH 9.4), 0.25 M NaCl	29
	Mg ²⁺	8.0×10^{2}				Spec	25	H ₂ O (pH 9.0), 0.25 M NaCl	29
	Mg ²⁺	6.8×10^{2}				Spec	25	H ₂ O (pH 8.8), 0.25 M NaCl	29
	Mg ²⁺	3.3×10^2				Spec	25	H_2O (pH 8.5), 0.25 M NaCl	29
	Mg ²⁺	42				Spec	25	H_2O (pH 7.6), 0.25 M NaCl	29
	Mg ²⁺	12				Spec	25	H_2O (pH 6.8), 0.25 M NaCl	29
	$M\sigma^{2+}$	2.0				Spec	20 25	H_2O (pH 5.0), 0.25 M NaCl	29
	Mg ²⁺	2.3×10^2				Spec	25	$H_{2}O$ (pH 8.5), 0.20 M NaCl	29
	Mg ²⁺	9.2×10^2				Spec	34.2	$H_{2}O$ (pH 8.5), 0.25 M NaCl	29
	Ca ²	6.7×10^{5}				Spec	25	H_2O (pH 9.4), 0.25 M NaCl	29
	Ca^{2+}	2.4×10^{5}				Spec	25	H ₂ O (pH 8.5), 0.25 M NaCl	29
	Ca ²⁺	1.1×10^{4}				Spec	25	H ₂ O (pH 7.6), 0.25 M NaCl	29
	Sr ²⁺	8.2×10^4				Spec	25	H ₂ O (pH 9.5), 0.25 M NaCl	29
	Sr^{2+}	1.1×10^{4}				Spec	25	H_2O (pH 8.5), 0.25 M NaCl	29
	Sr ²⁺ De ²⁺	9.5×10^2				Spec	25	H_2O (pH 7.6), 0.25 M NaCl	29
	Ba ²⁺	$1.0 \times 10^{\circ}$				Spec	20 95	H_2O (pH 9.5), 0.25 M NaCl	29
	Ba ²⁺	$1.2 \times 10^{-1.4} \times 10^{2}$				Spec	25	$H_{2}O$ (pH 7.6) 0.25 M NaCl	29
	Ni ²⁺	2.9×10^{2}				Spec	25	H_2O (pH 7.4), 0.25 M NaCl	29
	Ni ²⁺	1.4×10^{2}				Spec	25	H ₂ O (pH 7.0), 0.25 M NaCl	29
	Ni ²⁺	56				Spec	25	H ₂ O (pH 6.2), 0.25 M NaCl	29
	Ni ²⁺	25				Spec	25	H ₂ O (pH 5.5), 0.25 M NaCl	29
	Ni ²⁺	8.0				Spec	25	H ₂ O (pH 4.9), 0.25 M NaCl	29
	Ni ²⁺	7.5				Spec	25	H_2O (pH 4.8), 0.25 M NaCl	29
	N12+	2.6				Spec	25	H_2O (pH 4.3), 0.25 M NaCl	29
	C_{12}^{2+}	2.0 2.6 × 104				Spec	20	H_2O (pH 4.0), 0.25 M NaCl	29
	Cu ²⁺	1.9×10^4				Spec	25	$H_{2}O$ (pH 4.6), 0.25 M NaCl	29
	Cu ²⁺	6.0×10^3				Spec	25	H_{20} (pH 4.3), 0.25 M NaCl	29
	Cu ²⁺	2.3×10^{3}				Spec	25	H_2O (pH 4.0), 0.25 M NaCl	29
	Zn ²⁺	6.1×10^{3}				Spec	25	H ₂ O (pH 5.8), 0.25 M NaCl	29
	Zn ²⁺	5.5×10^{2}				Spec	25	H ₂ O (pH 5.0), 0.25 M NaCl	29
	Zn ²⁺	1.5×10^{2}				Spec	25	H ₂ O (pH 4.6), 0.25 M NaCl	29
T_412C4	Cu ²⁺	0.408×10^{4}	2.9			Spec	25	30% MeOH, 0.10 M ClO_4^- (HClO ₄)	38
	Cu^{2+}	$0.379 \times 10^{\circ}$	3.0			Spec	25 25	40% MeOH, 0.10 M ClO_4^- (HClO ₄)	38
	Cu^{2+}	0.375×10^{4} 0.268 × 10 ⁴	3.4 3.6			Spec	25 25	40% MeOH, 0.10 M CIO ₄ (HCIO ₄) 50% MeOH 0.10 M CIO ₄ (HCIO ₄)	30 38
	Cu ²⁺	0.183×10^4	4.5			Spec	25	60% MeOH, 0.10 M ClO ₄ (HClO ₄)	38
	Cu ²⁺	0.232×10^{4}	4.1			Spec	25	60% MeOH, 0.10 M ClO_4^- (HClO ₄)	38
	Cu^{2+}	0.154×10^4	4.3			Spec	25	70% MeOH, 0.10 M ClO ₄ - (HClO ₄)	38
	Cu ²⁺	0.196×10^{4}	4.4			Spec	25	70% MeOH, 0.10 M ClO ₄ ⁻ (HClO ₄)	38
	Cu ²⁺	0.122×10^4	4.4			Spec	25	80% MeOH, 0.10 M ClO_4^- (HClO ₄)	38
	Cu^{2+}	1.2×10^{3}	4.4			Cal	25	80% MeOH, 0.1 M HClO ₄	255
	Cu ²⁺	0.788×10^{4}	3.01			Spec	25	90% MeOH, 0.10 M ClO_4^- (HClO ₄)	38
T-19C4	Cu^{2+}	0.053 × 10 ²	1.0			Spec	20 95	25% MeOH, 0.10 M CIO ₄ (HCIO ₄)	38
141504	Cu ²⁺	4.3×10^4	22			Spec	25	35% MeOH, 0.10 M ClO ⁴ (HClO ₄)	38
	Cu ²⁺	3.1×10^4	35			Spec	25	50% MeOH, 0.10 M ClO_4^- (HClO ₄)	38
	Cu ²⁺	2.1×10^4	46			Spec	25	65% MeOH, 0.10 M ClO ₄ - (HClO ₄)	38
	Cu ²⁺	1.38×10^{4}	51			Spec	25	80% MeOH, 0.10 M ClO ₄ ⁻ (HClO ₄)	38
	Cu ²⁺	1.4×10^{4}	51			Cal	25	80% MeOH, 0.1 M HClO ₄	255
	Cu^{2+}	0.96×10^{4}	28			Spec	25	90% MeOH, 0.10 M ClO_4^- (HClO ₄)	38
A 14C4	Cu ²⁺	0.58×10^{4}	12.2 9 9 × 10-1	45	-05	Spec	25	95% MeOH, 0.10 M CIO_4 (HCIO ₄)	38
$R_{2}1404$ $R_{2}1404$	Ni ²⁺		8.8×10^{-1}	40 45 (d)	-95 (d)	Spec	25 25	H_{20} , 1 M HCl	250
D21121404	Ni ²⁺		8.7×10^{-1}	10 (u)	00 (u)	Spec	25	$H_2O, 0.2 \text{ M HCl}, \mu = 1 \text{ (KCl)}$	257
	Ni ²⁺		6.1×10^{-1}			Spec	25	90% D ₂ O, 1.0 M, HCl	257
	Ni ²⁺		6.9			Spec	25	95% MeOH, 0.1 M HCl	42
	Ni ²⁺		6.6			Spec	25	95% MeOH, 0.05 M HCl, $\mu = 0.1$, Me ₄ NCl	42
	Cu ²⁺		15			Spec	25	95% MeOH, 0.05 M HCl, 0.1 M Me ₄ NCl	44
M-P A 14C4	Cu ²⁺		16			Spec	25	95% MeOH, 0.1 M HCl H O 0.2 M HCl $=$ 1.0 KCl	44
wien ₂ A ₂ 14U4	1N1~ Ni ²⁺		1.2 × 10 * 1 <u>4</u> × 10-1			Spec	20 25	H_{20} , 0.2 M HOI, $\mu = 1.0$, KOI H_{20} , 1.0 M HOI	201 42.957
	Ni ²⁺		1.1×10^{-1}			Spec	25	90% D ₂ O, 1.0 M HCl	257
	Ni ²⁺		5.2×10^{-1}			Spec	25	95% MeOH, 0.1 M HCl	42
	Ni ²⁺		$4.8 imes10^{-1}$			Spec	25	95% MeOH, 0.05 M HCl, $\mu = 0.1$, Me ₄ NCl	42
(CbMA) ₄ 14C4	Ca ²⁺	5.1×10^{5}				Spec	25	H_2O (pH 10.4)	29
		4.2×10^{4}				Spec	25	$H_2O(pH 9.4)$	29
	Ca ²⁺	9.5 × 10 ²				Spec	25	$n_2 U$ (pn 8.0) $H_1 O$ (pH 7.5)	29 90
	Ni ²⁺	6.5×10^2				Spec	25	H_{2O} (pH 7.5)	29
	Ni ²⁺	3.8×10^2				Spec	25	H ₂ O (pH 7.3)	29
	Ni ²⁺	3.0×10^{2}				Spec	25	H ₂ O (pH 7.0)	29

ligand	ion	$k_{\rm f}, {\rm M}^{-1} {\rm s}^{-1}$	$k_{\rm d}, {\rm s}^{-1}$	$\Delta H^{1,b}$ k J/mol	$\Delta S^{\ddagger, o}$ J/(K mol)	method	<i>T</i> , ⁰C	medium ^c	ref
	Ni ²⁺	1.5×10^{2}				Spec	25	H ₂ O (pH 6.1)	29
	Ni ²⁺	1.4×10^{2}				Spec	25	H_2Q (pH 5.5)	29
	Zn^{2+}	1.3×10^{4}				Spec	25	H_2O (pH 5.9)	29
	$2n^{-1}$ Zn^{2+}	$3.5 \times 10^{\circ}$ 2.3 × 10 ³				Spec Spec	25 25	H_2O (pH 5.0) H_2O (pH 4.6)	29 29
T₄14C4	Cu ²⁺	9.3×10^4	7			Spec	25	25% MeOH, 0.1 M ClO ₄ ⁻ (HClO ₄)	38
	Cu ²⁺	7.6×10^{4}	7.9			Spec	25	35% MeOH, 0.1 M ClO ₄ - (HClO ₄)	38
	Cu ²⁺	5.5×10^{4}	10.2			Spec	25	50% MeOH, 0.1 M ClO ₄ ⁻ (HClO ₄)	38
	Cu ²⁺	3.8×10^{4}	12			Spec	25	65% MeOH, 0.1 M ClO_4^- (HClO ₄)	38
	Cu^{2+}	2.6×10^{4}	8.6			Spec	25	80% MeOH, 0.1 M ClO_4^- (HClO ₄	38
	Cu^{2+}	2.8×10^{4}	9			Spec	25	80% MeOH, 0.1 M HCIO ₄	38, 255
	Cu ²⁺	1.20×10^4	1.1			Spec	25	95% MeOH, 0.1 M ClO_4^- (HClO ₄)	38
B ₂ A ₂ 15C4	Ni ²⁺		2.7×10^{-3}			Spec	25	H ₂ O, pH 4.5	257
	Ni ²⁺		3.6×10^{-3}			Spec	25	$H_2O, 0.5 M HCl$	257
	Ni ²⁺		3.5×10^{-3}			Spec	25	H_2O , 1.0 M HCl	42, 257
	Ni ²⁺		3.5×10^{-3}	68	-63	Spec	25	H_2O , 1 M HCl	256
	Ni ²⁺		$3.1 \times 10^{\circ}$			Spec	25	$H_20, 0.05 \text{ M HCl}, \mu = 1.0, \text{ KCl}$	257
	Ni ²⁺		3.1×10^{-3}			Spec	25	$H_20, 0.1 \text{ M HCl}, \mu = 1.0, \text{ KCl}$	257
	Ni ²⁺		2.5×10^{-3}			Spec	25	90% D ₂ O, 1 M HCl	257
	Ni ²⁺		6.5×10^{-3}			Spec	25	90% MeOH, 1.0 M HCl	257
	Ni ²⁺		1.1×10^{-2}			Spec	25	95% MeOH, 0.1 M HCl	42
	Ni ²⁺		1.2×10^{-2}			Spec	25	95% MeOH, 0.05 M HCl, $\mu = 0.1$, Me ₄ NCl	42
	Ni ²⁺	0.42×10^{-3}				Spec	10.5	MeOH	258
	N12 '	$0.61 \times 10^{\circ}$				Spec	14.0	MeOH MaOH	258 258
	Ni ²⁺	1.31×10^{-3}				Spec	22.4	MeOH	258
	Ni ²⁺	1.77×10^{-3}				Spec	26.0	MeOH	258
	Ni ²⁺	2.36×10^{-3}				Spec	30.0	MeOH	258
	Cu ²⁺		>10 ²			Spec	25	95% MeOH, 0.1 M HCl	44
HOB_2A_215C4	Ni ²⁺		1.7×10^{-2}			Spec	25	H_2O , 1 M HCl	257
	N12+ N1:2+		1.7×10^{-2}			Spec	25	$H_2O, 0.1 \text{ M HCl}, \mu = 1.0, \text{ KCl}$	257
	Ni ²⁺		1.1×10^{-1}			Spec	25 25	95% D_2O , 1 M HCl 95% $M_{\bullet}OH$ 0.1 M HCl	207 49
	Ni ²⁺		2.2×10^{-1}			Spec	25	95% MeOH, 0.05 M HCl, $\mu = 0.1$ (N(CH ₃),Cl)	42
$Me_2B_2A_215C4$	Ni ²⁺		3.8×10^{-4}			Spec	25	H ₂ O, 1.0 M HCl	42, 257
	Ni ²⁺		3.6×10^{-4}			Spec	25	H_2O , 0.1 M HCl, $\mu = 1.0$, KCl	257
_	Ni ²⁺		3.2×10^{-4}			Spec	25	90% D ₂ O, 1.0 M HCl	257
T_415C4	Cu^{2+}	23.5×10^{4}	95			Spec	25	$H_2O, 0.1 \text{ M ClO}_4^-$ (HClO ₄)	38
	Cu^{2+}	4.3×10^{4}	10×10^{2}			Spec	25	80% MeOH, 0.1 M CIO_4 (HCIO ₄) 80% MoOH 0.1 M HCIO	38
A.16C4	Ni ²⁺	4.5 × 10	6.4×10^{-4}	97	52	Spec	25	$H_{0}O_{1}$ M HCl	256
B_2A_216C4	Ni ²⁺		5.4×10^{-3}			Spec	25	95% MeOH, 0.1 M HCl	42
	Ni ²⁺		5.7×10^{-3}			Spec	25	95% MeOH, 0.05 M HCl, $\mu = 0.1$, Me ₄ NCl	42
	Ni ²⁺	0.46×10^{-3}				Spec	14.3	MeOH	258
	Ni ²⁺	0.70×10^{-3}				Spec	18.3	MeOH	258
	N12" N1:2+	0.94×10^{-3}				Spec	22.1	MeOH	258
	Ni ²⁺	1.51×10^{-3}				Spec	20.0	MeOH	258
	Ni ²⁺	1.66×10^{-3}				Spec	32.6	MeOH	258
	Ni ²⁺		$6.4 imes 10^{-4}$			Spec	25	H_2O , 1.0 M HCl	257
	Ni ²⁺		4.7×10^{-4}			Spec	25	90% D ₂ O, 1.0 M HCl	257
	Ni ²⁺		6.5×10^{-4}			Spec	25	H_2O , 0.1 M HCl, $\mu = 1.0$, KCl	257
	$N1^{2+}$		$3.6 \times 10^{\circ}$			Spec	25	90% MeOH, I M HCl 95% MoOH 0.1 M HCl	257
T-16C4	Cu ²⁺	15.8×10^{4}	1.44×10^{3}			Spec	25	25% MeOH, 0.1 M ClO ₂ (HClO ₂)	38
141001	Cu ²⁺	10.1×10^4	1.72×10^{3}			Spec	25	35% MeOH, 0.1 M ClO_4^- (HClO ₄)	38
	Cu^{2+}	6.8×10^{4}	1.80×10^{3}			Spec	25	50% MeOH, 0.1 M ClO_4^- (HClO ₄)	38
	Cu ²⁺	2.1×10^{4}	3.52×10^{3}			Spec	25	65% MeOH, 0.1 M ClO_4^- (HClO ₄)	38
	Cu ²⁺	2.9×10^4	3.2×10^{3}			Cal	25	80% MeOH, 0.1 M HClO ₄	38, 255
A 17C4	Cu ²⁺	1.7×10^4	1.03×10^{3}			Spec	25	95% MeOH, 0.1 M CIO_4^- (HCIO ₄)	38
$R_{2}1704$ $R_{2}A_{2}1704$	Ni ²⁺		>0.5			Spec	20 25	$H_2(0, 1 \text{ M HC})$ 95% MeOH 0.1 M HC]	200 49
D2121104	Ni ²⁺		>0.5			Spec	25	90% MeOH, 1.0 M HCl	257
	Cu ²⁺		85			Spec	25	95% MeOH, 0.1 M HCl	44
cis-Me ₆ A ₄ -18C4-	Cu ²⁺		1.40×10^{-3}			Spec	25	H_2O , $\mu = 0.1$, NaClO ₄ (0.5 × 10 ⁻² M HOAc)	259
diene	C2+		9 50 × 10-3			Snoo	0E	$H = 0.1 N_{0} C (0.0 \times 10^{-2} M H C A_{-})$	950
	Cu^{2+}		2.09 × 10° 4.50 × 10 ⁻³			Spec	∠ə 25	$H_{20}, \mu = 0.1, \text{ NaClO}_{4} (1.0 \times 10^{-2} \text{ M HOAC})$ H(0, $\mu = 0.1, \text{ NaClO}_{4} (2.0 \times 10^{-2} \text{ M HOAC})$	209 259
	Cu ²⁺		6.51×10^{-3}			Spec	25	$H_2O, \mu = 0.1, NaClO_4, (2.0 \times 10^{-1} \text{ M HOAc})$	259
	Cu ²⁺		9.19×10^{-3}			Spec	25	H_2O , $\mu = 0.1$, N_aClO_4 (4.0 × 10 ⁻² M HOAc)	259
	Cu ²⁺		$0.54 imes 10^{-3}$			Spec	25	H_2O , $\mu = 0.1$, NaClO ₄ , (pOH 2.02)	259
	Cu^{2+}		14.48×10^{-3}			Spec	25 05	$H_2O, \mu = 0.1, NaClO_4, (pOH 1.84)$	259
	Cu^{2+}		2.13 × 10 ⁻⁹ 5 85 × 10 ⁻³			Spec	20 25	$n_2 O, \mu = 0.1, \text{ NaClO}_4, (\text{pOH } 1.71)$ H O, $\mu = 0.1, \text{ NaClO}_4, (\text{pOH } 1.54)$	209 950
	Cu		0.00 × 10			opec	20	$11_{20}, \mu = 0.1, 11a0104 (p011 1.04)$	200

				$\Delta H^{\ddagger,b}$	$\Delta S^{\ddagger,b}$				
ligand	ion	$k_{\rm c}$, M ⁻¹ s ⁻¹	$k_{\rm d}, {\rm s}^{-1}$	kJ/mol	J/(K mol)	method	T. °C	medium ^c	ref
	<u> </u>			/	- / < /	2			
	Cu₄+		7.60×10^{-3}			Spec	25	$H_2O, \mu = 0.1, NaClO_4, (pOH 1.41)$	259
trans-Me ₈ A ₄ -18C4-diene	Ni ²⁺		1.5 × 10 ⁻⁴			Spec	25	$H_2O, \mu = 1.0 (HNO_3, NaNO_3) (pH 1.4)$	259
	Ni ²⁺		1.6×10^{-4}			Spec	25	$H_2O_1 \mu = 1.0 (HNO_3, NaNO_3) (pH 1.2)$	259
	Ni ²⁺		1.8×10^{-4}			Spec	25	$H_{0}O_{1} \mu = 1.0 (HNO_{2}, NaNO_{2}) (pH 1.0)$	259
	N;2+		2.4×10^{-4}			Spec	25	$H_{0} = 10$ (HNO, NeNO) (pH 0.71)	250
	111 h1/2+		2.4×10^{-4}			Spec	20	$\Pi_{2}O, \mu = 1.0 (\Pi_{1}O_{3}, \Pi_{2}\Pi_{1}O_{3}) (\Pi_{1}O_{3})$	200
	IN1 ²		2.8 × 10			Spec	25	$H_2O, \mu = 1.0 (HNO_3, NaNO_3) (pH 0.54)$	259
	Ni ²⁺		3.3 × 10 ⁻ ⁴			Spec	25	$H_2O, \mu = 1.0 (HNO_3, NaNO_3) (pH 0.41)$	259
	Ni ²⁺		3.5×10^{-4}			Spec	25	$H_2O, \mu = 1.0 (HNO_3, NaNO_3) (pH 0.32)$	259
	Ni ²⁺		3.6×10^{-4}			Spec	25	$H_{0}O_{\mu} = 1.0 (HNO_{0} NaNO_{0}) (pH 0.24)$	259
	NI;2+		36 × 10-4			Spec	25	$H_0 = 10$ (HNO, NaNO) (pH 0.0)	250
	141 b1:2+		0.0×10^{-4}			Spec	20	$H_{20}, \mu = 1.0 (HNO_3, NaNO_3) (pH 0.0)$	200
	IN1"		3.6 × 10 ·			Spec	25	$H_2O, \mu = 0.97, pH 0.013 (HNO_3)$	259
	Ni ²⁺		5.8×10^{-4}			Spec	29	$H_2O, \mu = 0.97, pH 0.013 (HNO_3)$	259
	Ni ²⁺		8.2×10^{-4}			Spec	32	$H_2O, \mu = 0.97, pH 0.013 (HNO_3)$	259
	Ni ²⁺		1.10×10^{-3}			Spec	36	$H_{2}O_{2} \mu = 0.97$, pH 0.013 (HNO ₂)	259
	Ni ²⁺		2.00×10^{-3}			Spec	42	$H_{2}O_{\mu} = 0.97 \text{ pH} 0.013 (HNO_{2})$	259
	C12+		2.09 × 10-3			Spee	25	$U \cap U(1) (= U 1 71)$	050
	Cu.		2.50 × 10			Spec	20	n_20 , not (pr 1.71)	209
	Cu⁴⁺		3.73×10^{-5}			Spec	25	H_2O , HCI (pH 1.41)	259
	Cu ²⁺		4.42×10^{-3}			Spec	25	H_2O , HCl (pH 1.24)	259
	Cu ²⁺		2.28×10^{-3}			Spec	20	$H_2O, \mu = 0.97, pH 0.013 (HClO_4)$	259
	Cu^{2+}		3.20×10^{-3}			Spec	22.5	$H_{0}O_{1} \mu = 0.97$, pH 0.013 (HClO ₂)	259
	C112+		4 80 × 10 ⁻³			Spec	25	$H_{20}, \mu = 0.07, \mu = 0.013 (HClO_{1})$	250
	Cu ²⁺		4.00 × 10-3			Spec	20	$H_2(0, \mu = 0.97, \text{pH} 0.013 (\text{HC}))$	209
	Cu		5.96 × 10 °			Spec	28	$H_2O, \mu = 0.97, pH 0.013 (HCIO_4)$	259
	Cu ²⁺		10.56×10^{-3}			Spec	34	$H_iO, \mu = 0.97, pH 0.013 (HClO_4)$	259
	Cu ²⁺		1.20×10^{-3}			Spec	25	$H_2O_4 = 1.0 (HClO_4, NaClO_4) (pH 2.0)$	259
	Cu^{2+}		1.57×10^{-3}			Spec	25	$H_{0}O_{\mu} = 1.0 (HC)O_{\nu} N_{0}CO_{\nu} (pH 1.7)$	259
	C.,2+		1 84 × 10-8			Spee	25	$H_{20}, \mu = 1.0$ (HClO, NaClO) (pH 1.7)	050
	0u		1.04 ~ 10			Spec	20	$H_{2}O, \mu = 1.0$ (HClO ₄ , NaClO ₄) (pH 1.5)	209
	Cu ²⁺		2.25×10^{-5}			Spec	25	H_2O , $\mu = 1.0$ (HCIO ₄ , NaCIO ₄) (pH 1.4)	259
	Cu ²⁺		2.60×10^{-3}			Spec	25	$H_2O, \mu = 1.0 (HClO_4, NaClO_4) (pH 1.3)$	259
	Cu ²⁺		2.74×10^{-3}			Spec	25	$H_2O_4 = 1.0 (HClO_4, NaClO_4) (pH 1.2)$	259
	Cu^{2+}		3.10×10^{-3}			Spec	25	$H_{0}O_{1} \mu = 1.0 (HC)O_{1} NaClO_{2} (pH 1.0)$	259
	C1,2+		3 88 × 10-3			Spec	25	$H_{0} = 10$ (HCl0, NoCl0) (pH 0.71)	250
	C-2+		3.00×10^{-3}			Spec	20	$H_2O, \mu = 1.0 (HOO_4, NaClO_4) (pH 0.71)$	209
	Cu		4.38 × 10 °			Spec	20	$H_2O, \mu = 1.0$ (HCIO ₄ , NaCIO ₄) (pH 0.54)	259
	Cu ²⁺		4.41×10^{-3}			Spec	25	$H_2O, \mu = 1.0 (HClO_4, NaClO_4) (pH 0.41)$	259
	Cu ²⁺		4.58 × 10 ⁻³			Spec	25	$H_2O, \mu = 1.0 (HClO_4, NaClO_4) (pH 0.32)$	259
	Cu ²⁺		5.00×10^{-3}			Spec	25	$H_2O_4 = 1.0$ (HClO ₄ , NaClO ₄) (pH 0.01)	259
	C_{11}^{2+}		0.14×10^{-3}			Snec	25	$H_{0} = 0.1 (N_{0}C 0_{0}) (pOH 2.02)$	259
	C.,2+		0.79×10^{-3}			Spee	05	$H_2O, \mu = 0.1$ (NaClO (pOH 171)	050
	Cu-		0.73 × 10 °			Spec	25	$H_2O, \mu = 0.1, NaClO_4 (pOH 1.71)$	259
	Cu⁴⁺		1.75×10^{-3}			Spec	25	$H_2O, \mu = 0.1, NaClO_4 (pOH 1.54)$	259
	Cu^{2+}		2.63×10^{-3}			Spec	25	$H_iO, \mu = 0.1, NaClO_4 (pOH 1.41)$	259
	Cu ²⁺		4.27×10^{-3}			Spec	25	$H_2O_{\mu} = 0.1$, NaClO ₄ (pOH 1.84)	259
	C_{11}^{2+}		1 21			Snec	25	$H_{0}O_{\mu} = 0.5 N_{B}CO_{\mu}(N_{B}OH_{0.2}M)$	259
	C.,2+		2.05			Spee	20	$H_{20}, \mu = 0.5, Haclo_{4} (Hacl1 0.2 M)$	200
			2.05			Spec	20	$H_2O, \mu = 0.5, NaClO4 (NaOH 0.3 M)$	209
	Cu		2.91			Spec	25	$H_2O, \mu = 0.5 \text{ NaClO}_4 (\text{NaOH } 0.4)$	259
	Cu ²⁺		2.14×10^{-3}			Spec	25	$D_2O/DCl (pD 1.71)$	259
	Cu^{2+}		2.58×10^{-3}			Spec	25	D ₂ O/DCl (pD 1.41)	259
	Cu^{2+}		3.0×10^{-3}			Spec	25	$D_{0}O/DCl$ (pD 1.24)	259
1505	No+	2.6×10^{6}	5.1×10^{7}			US	25	HO	260
1900	174	10 × 10	7.9 × 107			110	05		200
	N.	4.3 × 10°	7.8 × 10'			05	25	H ₂ O	260
	Rb⁺	$4.4 \times 10^{\circ}$	$1.4 \times 10^{\circ}$			US	25	H_2O	260
	Sr^{2+}	6.5×10^{7}	7.3×10^{5}			\mathbf{US}	25	H_2O	261
	Ba ²⁺	1.2×10^{6}	2.3×10^{6}			US	25	H ₂ O	261
	Ag+	6.7×10^{8}	8.2×10^{7}			US	25	<u>ห.</u> ้ด	260
	H_{a2}^{2+}	1.6×10^{8}	3 3 X 10 ⁶			US	25	H 0	261
	T15	1.0×10^{8}	5.0 × 107				20 05		201
	11.	8.0 × 10°	5.0 × 10 [°]			05	25	H_2O	260
	Pb ²⁺	3.2×10^{8}	4.6×10^{6}			US	25	H ₂ O	261
	Gly+	5.6×10^{7}	$<2 \times 10^{7}$			\mathbf{US}	25	H ₂ O	262
T-15C5	Cu ²⁺	44×10^{4}	17			Spec	25	35% MeOH, 0.1 M ClO ₄ ⁻ (HClO ₄)	38
- 5-0	C112+	36 × 10 ⁴	30			Snec	25	50% MOOH 0.1 M CIO, $-(HCIO_{1})$	38
	C2+	01 5 1 104	50			Same	20	CET M = OII, 0.1 M OIO = (HOIO)	00
	Cu	21.5 × 10-	50			Spec	20	65% MeOH, 0.1 M ClO_4 (HClO ₄)	30
	Cu ²⁺	14.6×10^{4}	150			Spec	25	80% MeOH, 0.1 M ClO ₄ ⁻ (HClO ₄)	38
	Cu ²⁺	7.9×10^{4}	103			Spec	25	90% MeOH, 0.1 M ClO ₄ ⁻ (HClO ₄)	38
	Cu ²⁺	6.2×10^{4}	45			Spec	25	95% MeOH, 0.1 M ClO ₄ ⁻ (HClO ₄)	38
1806	Li+	$\sim 8 \times 10^7$	$\sim 6 \times 10^{7}$			US	25	H ₀	263
	Ne+	99 2 108	34 × 107			US	25	H.O	262
	174	2.2×10^{10}	0.4×10^{6}			05	20		200
	N'	1.U × 10 ¹⁰	3./ X 10°	10 -	oo -	03	20 05		204
	KΤ	4.3×10^{8}	3.7×10^{6}	16.7	-33.5	$\cup S$	25	H ₂ U	265
				42.7 (d)	13.0 (d)				
	K+	5.9×10^{8}	7.9×10^{6}			US	35.7	H ₂ O	265
	K+	5.8×10^{6}	9.1×10^{6}			US	40.3	H ₂ O	265
	K+	6.3×10^{8}	1.2 × 107			US	45.8	ห้อ	265
	K +	1 65 ¥ 104		67 7	63	NMP	25	1 9-diorolene	266
	к 17+	1.00 × 10*		01.1	00	NIME	20 05		400 000
	NT.	1.74×10^{4}		62.3	40	INMK	25	1,3-dloxolane	200
	K ⁺	4.1×10^{5}		36	-17	NMR	25	Me ₂ CO	266
	K+	5.7×10^{5}		55.2	50	NMR	25	$Me_2CO-1, 4$ -Diox (80:20 v/v)	266
	K^+	6.8×10^{5}		36	-13	NMR	25	MeOH	266

				$\Delta H^{\ddagger}, b$	$\Delta S^{\ddagger,b}$				
ligand	ion	$k M^{-1} s^{-1}$	k. s ⁻¹	k.I/mol	J/(K mol)	method	T. °C	medium ^c	ref
	Rb ⁺	4.4×10^{8}	1.2×10^{7}			US	25	H ₂ O	263
	Cs ⁺	7.8×10^{9}	4.4×10^{7}			US	25	H_2O	264
	Cs ⁺	9.5×10^{3}		33	-59	NMR	25	Pv	94
	Ca ⁺	$<1.0 \times 10^{6}$	$>3.2 \times 10^7$			US	25	- н _о	263
	S ₂ 2+	77×10^{7}	15 × 10 ⁵			US	25	H 0	261
	D-2+	1.0 × 106	1.0×10^{4}			10	20	1120	201
	Da	1.3 × 10°	1.7 × 10-			05	25		261
	Ag	$11.2 \times 10^{\circ}$	$3.5 \times 10^{\circ}$			\mathbf{US}	25	H_2O	263
	Hg ²⁺	4.0×10^{8}	1.5×10^{6}			\mathbf{US}	25	H_2O	261
	Tl+	9.0×10^{6}	4.8×10^{6}			US	25	H ₂ O	263
	Ph ²⁺	3.3×10^{6}	1.8×10^{4}			US	25	<u>ห.้</u> ด	261
	NH +	5.6 × 10 ⁶	1.0×10^{7}			US	25	H20	202
	DL NI +	0.0 × 10	4.4 ~ 10				20	$\frac{11}{20}$	200
	PnN ₂		24			NMR	-75	$CHCl_2F$ (anion = PF_6)	268
	4-FPhN ₂ ⁺		19			NMR	-80	$CHCl_2F$ (anion = BF_4^{-})	268
	4-CH ₃ PhN ₂ +		20			NMR	-79	$CHCl_2F$ (anion = BF_4^{-})	268
	4-CH ₃ PhN ₂		24			NMR	-75	$CHCl_{2}F$ (anion = BF_{4})	268
	3-NO°Ph ⁺ N°		18			NMR	-82	$CHCl_{\bullet}F$ (anion = BF_{\bullet})	268
	ANO Ph ⁺ N.		16			NMR	-80	$CHCl F (anion = BF^{4})$	268
		6 1 × 107	E A \$ 107			INNIE	05	$U_1 O_2 P$ (amon – DP)	200
	α-Ala	0.1 × 10 ⁻	5.4×10^{7}			05	20		262
	β-Ala ⁺	$6.6 \times 10^{\circ}$	7.2×10^{7}			US	25	H ₂ O	262
	γ -aminobutric	5.1×10^{7}	8.3×10^{7}			\mathbf{US}	25	H₂O	262
	acid (1+)								
	Glv ⁺	84×10^{7}	12.2×10^{7}			US	25	H-O	262
		2 9 107	6 0 × 107			US	25	H 0	262
the sum site Ore 1900	7t	11×103	0.0 × 10	00	50	NMD	20		202
cis-syn-cis-Cy ₂ 18C6				33	-00	NMR	20	FC	94
cis-anti-cis-Cy ₂ 18C6	Na⁺	$2.6 \times 10^{\circ}$	$5.2 \times 10^{\circ}$			NMR	25	MeOH	128
$B_{2}18C6$	Na ⁺		$4.8 imes 10^{-8}$			NMR	-13	DMF	269
	Na ⁺	$\sim 6 \times 10^7$	$\sim 10^{5}$			NMR	25	DMF	269
	Na ⁺	3.2×10^{6}	1.4×10^{4}			NMR	25	MeOH	128
	v+	0.2 / 10	610			NMP	-94	MOH	270
	N O2+	0.0. 1. 1.04	010			C	15	$\mathbf{M}_{\mathbf{O}}$	100
	Sr-	9.6 × 10*	2.7×10^{4}			Spec	-15	MeOH, $\mu = 0.05$ (LICIO ₄)	130
syn-Nit ₂ B ₂ -18C6	Na ⁺	2.3×10^{7}	$2.0 \times 10^{\circ}$			NMR	25	DMF	128
syn-Am ₂ B ₂ -18C6	Na ⁺	1.2×10^{6}	1.9×10^{5}			NMR	25	DMF	128
21C7	p-CH ₃ PhN ₂ ⁺		43			NMR	-52	$CHCl_{2}F$ (anion = BF_{4})	268
24C8	n-CH [°] PhN ⁺		19			NMR	-92	$CHCl_{\bullet}F$ (anion = BF_{\bullet})	268
P 20010	No ⁺	N16 × 107	1.2×10^{5}			Snoo	25	$M_0OH_{\mu\nu} = 0.15 (LiCl)$	130
B230C10	Ita IZt	P 1.0 × 10	1 0 × 104			Spec	20	$M_{\rm e}OH_{\rm e} = 0.15$ (LiCl)	100
	R'	6 × 10°	1.6 × 10-			Spec	25	MeOH, $\mu = 0.15$ (LICI)	139
	Rb⁺	$8 \times 10^{\circ}$	$1.8 \times 10^{\circ}$			Spec	25	MeOH, $\mu = 0.15$ (LiCl)	139
	Cs ⁺	8×10^{6}	4.7×10^{4}			Spec	25	MeOH, $\mu = 0.15$ (LiCl)	139
	Tl+	8×10^{6}	2.5×10^{4}			Spec	25	MeOH, $\mu = 0.15$ (LiCl)	139
	NH. ⁺	$>3 \times 10^7$	$>1.1 \times 10^{5}$			Spec	25	MeOH. $\mu = 0.15$ (LiCl)	139
111	H^+ (in tin) to (in		$<7 \times 10^{-10}$			NMR	25	D.0	283
1.1.1	··· ··· ··· ··· ··· ··· ···· ··· ······		N A 10			1414110	20	$D_2 O$	200
							~-	5.0	
	H^{+} (in out) to	2.3×10^{-1}				NMR	25	D_2O	283
	(i n+in)								
	$H^{+}(2)$ (out ⁺ out ⁺)	3.8×10^{-3}				NMR	25	D_2O	283
	to (in ⁺ in)							-	
	$H^{+}(2)$ (in ⁺ in) to	3.1×10^{-7}	1.4×10^{-6}			NMR	25	D.0	283
	$(i_{m}+i_{m}+1)$	5.1 ~ 10	1.4 ~ 10				20	$D_{2}O$	200
	(in 'in ')		0 -0 0 - 0 - 0 - 0 - 0 - 0 - 0						
2.1.1	H⁺	0.359	3.70×10^{2}			РJ	5.15	H_2O	142
	H+	0.512	4.74×10^{2}			PJ	10	H ₂ O	142
	H+	0.756	6.30×10^{2}			PJ	15	H_2O	142
	H+	1.11	8.34×10^{2}			РJ	20	H ₀ O	142
	н+	1 59	1.08×10^{3}	49.3	-76.1	P.I	25	H_{\bullet} (extrapolated)	142
			·· IV	35 1 (d)	-69 0 (4)		-0	co (contrapolatod)	- 14
	$U^{+}(0)$	- A V 105		50.1 (u)	05.0 (u)	Cal	0=	MOOH (outron alata 1)	070
	11 (2) 1 '+	$\sim 4 \times 10^{\circ}$	0.005				20	Meon (extrapolated)	276
	L1'	8×10^{3}	0.025			Cond	25	H ₂ O	272
	Li ⁺	0.98×10^{3}	4.9×10^{-3}	86.9 (d)	1.7 (d)	NMR	25	H_2O (anion = I ⁻)	273
	Li ⁺		1.3×10^{-2}	64 (d)	-65 (d)	NMR	25	DMF (anion = ClO_4^{-})	273
	Li ⁺	1.4×10^{5}	1.4×10^{-2}			Cond	25	DMF (anion = ClO_{1})	274
	Li+		2.32×10^{-2}	65 (d)	58 (d)	NMR	25	MesSO (anion = $C[0,-]$)	273
	1;+	1 5 1 104	2.02×10^{-2}	00 (u)	50 (u)	Cand	05	$M_{2}SO$ (amon CO_{4})	074
		1.0 × 10	2.12 × 10 -			Cond	20	Me_2SO (amon = CIO_4)	274
	L1'	$1.8 \times 10^{\circ}$	6.0×10^{-4}	/		Cond	25	EtOH (anion = CI^{-})	274
	Li ⁺		7.4×10^{-3}	56 (d)	–95 (d)	NMR	25	Form (anion = ClO_4^{-})	273
	Li+	4.8×10^{5}	4.4×10^{-3}			Cond	25	MeOH	146
	Li ⁺	1.3×10^{4}	4.81×10^{-3}			Cond	25	NMP (anion = ClO_{-})	274
	Li+	$<3 \times 10^{7}$	≤10 ⁻⁵			Cond	25	PC	147
	Li+		0.12×10^{-3}	79 (d)	-52 (d)	NMR	25	Pv (anion = ClO^{-1})	272
	No ⁺	Q ¥ 104	$1 4 \times 10^2$, D (u)	02 (u)	TI	20	$\mathbf{U} \cap \mathbf{U}$	075
	11a N-+	a v 10.	1.4 × 10-			10			410
	INA.	~2 × 10°	~5			Cond	25	Me_2SU (anion = CIU_4^-)	2/4
	Na	$8.8 \times 10^{\circ}$	7.1×10^{-1}			Cond	25	EtOH (anion = ClO_4^{-})	274
	Na ⁺	3.1×10^{6}	2.50			Cond	25	MeOH	146
	Na ⁺	5.4×10^{4}	4.7×10^{-1}			Cond	25	NMP (anion = CIO_4^{-})	274
	Na ⁺	2.1×10^{7}	3.6×10^{-2}			Cond	25	PC	147
	Ca ²⁺	2.6×10^{2}	0.82			Cond	25	H ₂ O	272
	Ca ²⁺	1.1×10^2	0.69	57 3 56 0 (d)	-13 -50 (4)	Spec	25	H_{0} nH 115 $\mu = 0.1$	150
	va	111 / 10-	0.00	0110, 0010 (U)	10, -09 (U)	opec	20	(piperidine HCl)	100

				$\Delta H^{\ddagger},^{p}$	$\Delta S^{\ddagger}, ^{b}$				
ligand	ion	$k_{\rm f}, {\rm M}^{-1} {\rm s}^{-1}$	$k_{\rm d}, {\rm s}^{-1}$	kJ/mol	J/(K mol)	method	<i>T</i> , °C	medium ^c	ref
ABAAL	Ca ²⁺	1.1×10^{2}	0.69	57	-13	Spec	25	H ₀ O	150
	~~~		0.01	56 (d)	-59 (d)	~		20	200
	$C a^{2+}$	$1.6 \times 10^{2}$	0.10	33	_02 (u)	Spee	25	$H \cap (anion = C)$	157
	Ca	1.0 × 10	0.10	11 (d)	-92 006 (J)	Spec	20	$\Pi_2 O$ (amon – $O_1$ )	107
	0.2+	0.04 > 103	0.0 × 10-2	11 ( <b>u</b> )	-220 (u)	<b>C</b> 1	05	MOU	150
	Ca	9.04 × 10°	3.6 × 10 -			Cond	25	MeOH	152
	Ca ²⁺	$\sim 2.4 \times 10^2$	$\sim 2 \times 10^{-1}$			Cond	25	DMF	274
	Tl+		31			Cond	25	90% MeOH	160
	Tl+		$4 \times 10^{4}$			Cond	25	90% MeOH (acid catalzyed)	160
2.2.1	$\mathbf{H}^{+}$	$4 \times 10^{5}(2)$	$5 \times 10^{-3}(2)$			Spec	25	MeOH	276
	$Li^+$	$\sim 3 \times 10^6$	~13			Cond	25	EtOH	274
	L3*		12.0			Cond	-20	MeOH	156
	1;+		15.9			Cond	-15	MoOH	156
	1.1 1.1+		10.2			Cond	10	MeOH	150
	L1 T '+		19.2			Cond	-10	MeOH	100
	Li		24.0			Cond	-5	MeOH	156
	Li	$1.88 \times 10^{\circ}$	78.4	13.3	-61	Cond	25	MeOH	156
	Li+			2 <b>3.8 (d)</b>	-129 (d)	Cond	25	MeOH	156
	Li+	$1.8 \times 10^{7}$	75			Cond	25	MeOH	146
	Li ⁺		1.23	54 (d)	-62 (d)	NMR	25	$Py (anion = ClO_4)$	273
	Na ⁺	$3.6 \times 10^{6}$	14.5			Cond	25	H ₂ O	272
	Na ⁺	$6 \times 10^{6}$	18			ТJ	?	$H_{0}O(pH 12.5)$	275
	Na ⁺	18 × 10	$25 \times 10^{-1}$			Cond	25	DMF (anion = $C[0, -)$ )	274
	No+	$7.9 \times 10^{6}$	$7.5 \times 10^{-1}$			Cond	25	$M_0 SO (anion = ClO_1)$	974
	Nat	$1.2 \times 10$	$1.0 \times 10^{-3}$			Cond	20	$E_{2} = C \left( a_{11} - C \right)$	074
	INA -	4.2 × 10	$2.02 \times 10^{-2}$			Cond	25	$E(OH (anion = OO_4))$	2/4
	Na	$1.7 \times 10^{\circ}$	$2.35 \times 10^{-2}$			Cond	25	MeOH	146
	NaT	$8.74 \times 10^{\circ}$	$1.96 \times 10^{-2}$	15.3	-42	Cond	25	MeOH	156
	Na+			64.6 (d)	-61 (d)	Cond	25	MeOH	156
	Na+		$3.07 \times 10^{-2}$			Cond	30	MeOH	156
	Na ⁺		$4.73 \times 10^{-2}$			Cond	35	MeOH	156
	Na⁺		$7.19 \times 10^{-2}$			Cond	40	MeOH	156
	Na ⁺		$10.7 \times 10^{-2}$			Cond	45	MeOH	156
	Na ⁺	$5.9 \times 10^{5}$	$1.67 \times 10^{-1}$			Cond	25	NMP (anion = $C[0, -]$ )	274
	No ⁺	<1010	<10-2			Cond	25	PC	147
	174	2 107	N 103				20		075
	л 12+	3 A 10 1 0 M 107	2 ~ 10-			1.0	: ٥٣	$\Pi_2 \cup$	275
	K'	$\sim 1.3 \times 10^{\circ}$	~2.6			Cond	25	$DMF(anion = CIO_4)$	274
	KT	$4.9 \times 10^{10}$	$1.35 \times 10^{-1}$			Cond	25	EtOH (anion = $\Gamma$ )	274
	K*	3.36 × 10°	0. <b>969</b>	10.0	-48	Cond	25	MeOH	156
	$K^+$			70.0 (d)	10 (d)	Cond	25	MeOH	156
	$K^+$		1.57			Cond	30	MeOH	156
	K+		2.51			Cond	35	MeOH	156
	K+		3 95			Cond	40	MeOH	156
	и+		6 10			Cond	45	MoOU	156
	1X 1Z+	2 Q V 108	1.00			Cond	40	MoOH	140
	л 17+	$3.0 \times 10^{6}$	1.05			Cond	20		140
	K'	1.7 × 10°	1.35			Cond	25	$NMP (anion = CIO_4)$	2/4
	K* .	$2.8 \times 10^{\circ}$	$3.7 \times 10^{-2}$			Pot	25	PC	147
	Rb+	$8.3 \times 10^{\circ}$	11			Cond	2 <b>5</b>	EtOH (anion = $Cl^{-}$ )	274
	Rb+	$4.1 \times 10^8$	75			Cond	25	MeOH	146
	$Rb^+$		2.57			Cond	-10	MeOH	156
	Rb+		4.25			Cond	-5	MeOH	156
	$\mathbf{R}\mathbf{b}^+$		6.86			Cond	0	MeOH	156
	Rh ⁺		10.9			Cond	5	MeOH	156
	Rb+		17.1			Cond	10	MaOH	156
	Dh+		26.5			Cond	15	MaOH	156
	<b>R</b> U' DL+	0.00 - 108	20.0	0.1	00	Cond	10	MAQU	150
	RD -	3.02 × 10°	60	-0.1	83	Cond	25	MeOH	100
	RD ⁻	0.0.1.1.07		əb.3 (a)	-22 (d)	Cond	25	Meuri	106
	Rb⁺	$8.0 \times 10^{\circ}$	7.5			Cond	25	PC	147
	$Cs^{+}$	$1 \times 10^{8}$	$\sim 2 \times 10^3$			Cond	25	EtOH (anion = $NO_3^{-}$ )	274
	$Cs^+$	$\sim 5 \times 10^{6}$	$\sim 2.3 \times 10^{4}$			Cond	25	MeOH	146
	Cs+	$\sim 3.3 \times 10^{7}$	$\sim 4 \times 10^2$			Cond	25	PC	147
	Ca ²⁺	$1.6 \times 10^{4}$	$2.2 \times 10^{-3}$	58, 63 (d)	29, -84 (d)	Spec	25	$H_2O$ , pH 11.5, $\mu = 0.1$ (piperidine HCl)	150
	Ca ²⁺	$5.9 \times 10^{3}$	$6.6 \times 10^{-4}$		-, , ,	Cond	25	HO	272
	C 2+	$1.2 \times 10^4$	19 × 10-3	144	-17 $-46$ (d)	Spec	25	$H_0$ nH 11.5 $\mu = 0.1$ (nineridine HCl) (enion = Cl ⁻ )	157
	Сa	1.2 A 10	1.0 / 10	74 4 (A)	17, 40 (u)	opec	20	$\mu_{20}$ , pri 11.0, $\mu = 0.1$ (piperiume 1101) (amon = 01)	107
	$C a^{2+}$	37 ~ 103	80 × 10-4	(1.7 (U)		Cond	0F	DME	971
	$Ca^{2+}$	$10 \times 10^{4}$	$0.0 \land 10^{-6}$			Cond	20		150
	Ca~.	T'A ¥ 10.	2.3 ~ 10 *	ED 0 70 (1)	01 00 (1)	Cona	20		102
	Sr-T	5.7 × 10*	2.6 × 10 ⁻⁰	əə.ə, 79 (d)	21, -33 (d)	spec	25	$n_{20}$ , pH 11.5, $\mu = 0.1$ (piperidine HCl)	190
	Sr ²⁺	3.3 × 10⁴	$1.47 \times 10^{-3}$			Cond	25	$H_2O$	272
	$Sr^{2+}$	$9.2 \times 10^{4}$	$8.2 \times 10^{-7}$			Cond	25	MeOH	152
	Ba ²⁺	$1.22 \times 10^{5}$	$6.1  imes 10^{-2}$			Cond	25	H ₂ O	272
	Ba ²⁺	$1.92 \times 10^{6}$	$4.6  imes 10^{-5}$			Cond	25	MeOH	152
	$\mathrm{Eu}^{2+}$		$2 \times 10^{-4}$	63.1 (d)	-105 (d)	Volt	25	$H_2O$ , 0.1 M Et ₄ NClO ₄ (pH 2.5)	158
	$Eu^{2+}$		1 × 10 ⁻⁴			Volt	25	$H_2O$ , 1 M LiClO ₄ /HClO ₄	158
	Eu ³⁺		$3.0  imes 10^{-7}$	79.1 (d)	-107 (d)	Volt	25	$H_{2}O_{1}$ , 0.5 M NaClO ₄ (pH 2.5)	158
	$Eu^{3+}$		$4.0 \times 10^{-7}$	80.3 (d)	-98 (d)	Volt	25	H ₂ O, 0.1 M Et. NClO. (pH 2.5)	158
	$Eu^{3+}$		$4.1 \times 10^{-7}$		/	Volt	25	$H_2O$ , 0.5 M NaClO ₄ (pH $\sim$ 7)	158
								· · · · · · · · · · · · · · · · · · ·	

ligand	ion	$k_{\rm f},  {\rm M}^{-1}  {\rm s}^{-1}$	$k_{\rm d},{ m s}^{-1}$	$\Delta H^{\ddagger,b}$ kJ/mol	$\Delta S^{\ddagger,b}$ J/(K mol)	method	<i>T</i> , ⁰C	medium ^c	ref
	Eu ³⁺		$3 \times 10^{-7}$			Volt	25	H ₂ O, 1 M LiClO ₄ /HClO ₄	158
	Yb ³⁺		1.3 × 10 ⁻⁶	93.3 (d)	-43.9 (d)	Volt	25	$H_2O$ , 0.5 M NaClO ₄	158
	Cu ²⁺	37.0	0.11	209 (d)	-414 (d)	Spec	25	Me ₂ SO	159
	Ag ⁺		$4.5 \times 10^{-4}$			Cond	25	H ₂ O	272
	Tl+	$6.7 \times 10^{7}$	10.5			Spec	25	H ₂ O	160
	Tl+		250			Spec	25	90% MeOH (acid catalyzed)	160
	T1+		0.1			Spec	25	90% MeOH	160
K D-0.01	T1 ⁺	0 > 106	60 1.5 × 104			Spec	25	90% MeOH (acid catalyzed)	160
$\mathbf{K}_2$ <b>F</b> y2.2.1	INA IV+	$3 \times 10^{\circ}$	$1.0 \times 10^{-3}$			1J TI	20		211
Pv991	к+ К	$3 \times 10^{6}$	$3 \times 10$ $7 \times 10^3$			TJ	25	H ₂ O	211
2.2.2	н+	$1.93 \times 10^{2}$	$3.15 \times 10^{6}$			TĴ	5.15	H ₂ O	142
	H+	$2.62 \times 10^{2}$	$4.10 \times 10^{6}$			TJ	10	H ₂ O	142
	$H^+$	$3.83 \times 10^{2}$	$5.72 \times 10^{6}$			ТJ	15	H ₂ O	142
	$H^+$	$5.15 \times 10^{2}$	$7.35 \times 10^{6}$			тJ	20	H ₂ O	142
	H ⁺	$7.31 \times 10^{2}$	$9.98 \times 10^{6}$	44.3, 38 (d)	–40.6, 17 (d)	ТJ	25	$H_2O$ (extrapolated)	142
	Li ⁺		$>3 \times 10^{2}$			Cond	25	MeOH	146
	Na ⁺	$2 \times 10^{\circ}$	27	a= ( ( ))	aa a ( 1)	NMR	3	$H_2O$ (anion = $CI^-$ )	278
	Na ⁺	1 1 1 108	147.4	-67.4 (d)	22.2 (d)	NMR	25	$H_2U$	279
	Na '	1.1 × 10°	3.0 × 10 *	51 E (J)	21 9 (4)	NMP	20	Eton (amon = $CIO_4$ )	274
	INa No ⁺		100	51.5 (u)	-31.8 (u)	NMR	20	EDA $EDA$ (anion = $Br^{-}$ )	219
	No+		$5 \times 10^{2}$			NMR	44	EDA (anion = $Br^{-}$ )	280
	Na ⁺		$8.5 \times 10^2$			NMR	51	EDA (anion = $Br^{-}$ )	280
	Na ⁺		$1.3 \times 10^{3}$			NMR	56	EDA (anion = $Br^{-}$ )	280
	Na ⁺		$2.5 \times 10^{3}$			NMR	65	EDA (anion = $Br^{-}$ )	280
	Na ⁺		$2.5 \times 10^{3}$			NMR	75	EDA (anion = $Br^{-}$ )	280
	Na ⁺	$2.7 \times 10^{6}$	2.87			Cond	25	MeOH	146
	Na ⁺	$3.8 \times 10^{6}$	5.68			Cond	25	NMP (anion = $ClO_4^{-}$ )	274
	Na ⁺		1.14	56.9 (d)	-52.7 (d)	NMR	25	Py	279
	Na ⁺	0.0 1 106	8.03	57.7 (d)	-34 (d)	NMR	25	THF	279
	K' 12+	$2.0 \times 10^{\circ}$	7.D			Cona	20		160
	K K+		590			Spec	25	H ₂ O (acid catalyzed)	160
	к+	$2 \times 10^{6}$	9			TJ	20	$H_2O$ (actu catalyzed) $H_2O$ , pH 12.5	275
	K+	$8 \times 10^{6}$	42			NMR	35	$H_2O$ (anion = $Br^{-}$ )	278
	K+	$7.5 \times 10^{6}$	38			NMR	36	$H_2O$ (anion = $F^-$ )	278
	K+	$7.5 \times 10^{6}$	38			NMR	36	$H_2O$ (anion = $Cl^{-}$ )	278
	K+	$3.8 \times 10^{7}$	$4.0 \times 10^{-1}$			Cond	25	DMF (anion = $ClO_4^{-}$ )	274
	K+	$3.5 \times 10^{7}$	2.68			Cond	25	$Me_2SO$ (anion = $NO_3^{-}$ )	274
	K+	$1.3 \times 10^{6}$	$4.08 \times 10^{-3}$			Cond	25	EtOH (anion = $I^-$ )	274
	K*	$4.7 \times 10^{\circ}$	$1.8 \times 10^{-2}$			Cond	25		146
	K' 17+	$\sim 1 \times 10^{\circ}$	$1.33 \times 10^{-3}$			Cond	25	NMP (anion = $CIO_4$ )	274
	Rh+	$4.5 \times 10^{\circ}$ 7.5 × 10 ⁵	38 10 -			NMR	20 Q	$H_{-}O(anion = O^{-})$	278
	Rh ⁺	$1.7 \times 10^{8}$	$9.17 \times 10^{-2}$			Cond	25	EtOH (anion = $Cl^{-}$ )	274
	Rb ⁺	$7.6 \times 10^{6}$	$8.0 \times 10^{-1}$			Cond	25	MeOH	146
	Rb ⁺	$9.5 \times 10^{6}$	$5.0 \times 10^{-1}$			Cond	25	NMP (anion = $NO_3^{-}$ )	274
	Rb+	$1.8 \times 10^{6}$	$1.7 \times 10^{-1}$			Cond	25	PC	147
	Cs ⁺		$9.0 \times 10^{6}$	54 (d)	69 (d)	NMR	25	DMF	94
	Cs ⁺		≥355			NMR	-79	MeOH	168
	Cs ⁺	$\sim 9 \times 10^{6}$	$\sim 4 \times 10^4$			Cond	25	MeOH	146
	Cs⁺ Ca²+	$\sim 5 \times 10^{\circ}$ 7.3 × 10 ³	$\sim 3 \times 10^{2}$ 0.26	33, 34 (d)	-59, -138 (d)	Spec	25 25	H ₂ O, pH 11.5, $\mu = 0.1$ (piperidine	147 150
	Ca ²⁺	>103	~0.1			Pot	25	$H_2O$ (anion = Cl ⁻ )	278
	Ca ²⁺	$6.6 \times 10^{3}$	0.26	31, 34 (d)	-63, -140 (d)	Spec	25	H ₂ O, pH 11.5, $\mu = 0.1$ (piperidine HCl) (anion = Cl ⁻ )	157
	Ca ²⁺	$1.4 \times 10^{3}$		70.7	54	Spec	25	H ₂ O, pH 9.2, $\mu = 0.1$ (piperidine HCl)	150
		$5.5 \times 10^3$	0.21			Cond	25	H ₂ U	272
	Ca ²⁺	$3.1 \times 10^{2}$	$4.4 \times 10^{-4}$			Cond	25	DMF McOH	274
	Sr ²⁺	$1.0 \times 10^{4}$	$1.0 \times 10^{-4}$	31, 74 (d)	63,71 (d)	Spec	25 25	H ₂ O, pH 11.5, $\mu = 0.1$ (piperidine HCl)	152 150
	$Sr^{2+}$	$6 \times 10^{3}$	10-4			$\mathbf{Pot}$	25	$H_2O$ (anion = $Br^{-}$ )	278
	$Sr^{2+}$	$7.5 \times 10^{3}$	$7.5 \times 10^{-5}$			Cond	25	H ₂ O	272
	Sr ²⁺	$2.2 \times 10^{3}$	0.0 × 10-9	68	46	Spec	25	H ₂ O, pH 9.2, $\mu = 0.1$ (piperidine HCl)	150
	Sr ²⁺	$5.4 \times 10^{\circ}$	5.5 × 10 ⁻⁷			Spec	-12	MeOH, $\mu = 0.05$ (LiClO ₄ )	130
	Br ²⁺	$7.0 \times 10^{\circ}$	2.2 × 10 ⁻⁵	28, 87 (d)	-54, -38 (d)	Spec	20 25	$H_0 \Omega_0$ pH 11.5 $\mu = 0.1$ (piperidine	150
	Ba ²⁺	$3 \times 10^{4}$	10 ⁻⁵	20, 07 (u)	54, 00 (u)	Pot	25	HCl) H ₂ O (anion = Cl ⁻ )	278
								- '	

ligand	ion	k ₆ , M ⁻¹ , s ⁻¹	$k_{\rm d},  {\rm s}^{-1}$	$\Delta H^{\dagger},^{h}$ k $J/mol$	$\Delta S^{i, k}$ J/(K mol)	method	<i>T</i> , ⁰C	medium	ref
	Ba ²⁺	$1.3 \times 10^4$		82	109	Spec	25	$H_2O$ , pH 9.2, $\mu = 0.1$ (piperidine	150
	_							HCI)	
		$5.5 \times 10^4$	$1.75 \times 10^{-5}$			Cond	25	H ₂ O	272
	Ba- Fu ²⁺	~5 X 10°	$\sim 6.3 \times 10^{-5}$	786 (d)	-66 9 (d)	Uond Volt	25 25	$\frac{MeUH}{HO} = 0.033 M + 0.033 M$	152
	Lau		0 ^ 10	10.0 (u)	00.9 (u)	vore	20	$Ba(NO_2)_{0}$	100
	$Eu^{2+}$		$\sim$ 5 $ imes$ 10 $^{\circ6}$			Volt	25	$H_2O_{\bullet}O_{\bullet}I$ M LiClO ₄ /HClO ₄	158
	Eu ³⁺		$1.1 \times 10^{-3}$	57.7 (d)	-109 (d)	Volt	25	$H_2O$ , 0.1 M $Et_4NCIO_4$ (pH ~ 7)	158
	Eu ³⁺	1 4 14 105	$1 \times 10^{-3}$			Volt	25	$H_2O_{\bullet}O_{\bullet}I$ M LiClO ₄ /HClO ₄	158
	11 [.] T1+	1.4 × 10*	ə.ə 29 <b>0</b> 0			Spec	25 25	$H_2O$ $H_2O$ (acid catalyzed)	160
	TI⁺		0.12			Spec	25	90% MeOH	160
	TI+		92			Spec	25	90% MeOH (acid catalyzed)	160
	$T1^+$	$2.5 \times 10^{8}$	60			NMR	<b>4</b> 0	$H_2O$ (anion = $Cl^{-}$ )	<b>2</b> 78
	T1+	$2 \times 10^{8}$	51			NMR	6	$H_2O$ (anion = $NO_3^{-1}$ )	278
	Н" U+	$0.59 \times 10^2$	$1.42 \times 10^{6}$			PJ DI	() 3	$H_2O$	142
	п н+	$1.18 \times 10^{-1}$	$2.06 \times 10^{6}$			r↓ PJ	10		142
	H+	$1.71 \times 10^{2}$	$3.75 \times 10^{6}$			PJ	15	H ₂ O	142
	H+	$2.39 \times 10^2$	$5.06 \times 10^{6}$			$\mathbf{PJ}$	20	H ₂ O	1 <b>4</b> 2
	H+	$3.29 \times 10^2$	$6.76 \times 10^{6}$	<b>4</b> 4.3, 40 (d)	-47, 20 (d)	РJ	25	$H_2O$ (extrapolated)	142
	Li ⁺	$3.3 \times 10^7$	$2.1 \times 10^{8}$	55 <b>.</b> ( <b>)</b>	50 (1)	Cond	2 <b>5</b>	MeOH (extrapolated)	173
	Na⊤ ⊮+	$8.78 \times 10^{\circ}$ $2.57 \times 10^{8}$	2.78	55.1 (d)	-b2(d)	Cond	25 25	MeOH MoOH	173
	K+	$5.8 \times 10^{\circ}$	$5.7 \times 10^{-8}$	10.6 (0)	o (u)	Cond	2.5 25	PC	281
	Rb ⁺	$3.15 \times 10^{8}$	20.4	70.1 (d)	7 (d)	Cond	25	MeOH	173
	$\mathbf{Rb}^{*}$	$1.3 \times 10^{8}$	3.3 <b>2</b>			Cond	25	PC	2 <b>81</b>
	Cs ⁺	$4.17 \times 10^{8}$	$4.3 \times 10^{5}$			Cond	25	MeOH	173
	Ca²*	$7.4 \times 10^{3}$	0.38			Spec	25	H ₂ O	282
	Sr~ Ba ²⁺	$7.0 \times 10^{\circ}$	3.3 × 10 * 7.5 × 10*4			Spec Spec	25 25	H ₂ O H-O	282
	Ba ²⁺	$4.1 \times 10^{5}$	$3.5 \times 10^{-6}$			Cond	25	MeOH	152
	Ba ²⁺	$4 \times 10^{5}$				Spec	25	MeOH	152
	Ca ²⁺	$6.4 \times 10^{3}$	$5 \times 10^{-4}$			Cond	2 <b>5</b>	MeOH	152
	Ca ²⁺	$5 \times 10^{3}$	$3.2 \times 10^{-4}$			Spec	25	MeOH	152
<b>D</b> 9 9 9	Sr ² '	$4.6 \times 10^{\circ}$	1.4 × 10 "			Fot Cond	25 25	MeOH	152
<b>D</b> ₂ <b>Z</b> .Z.Z	Na ⁺	2.0 × 10 ≥109	<0.2			Cond	25	PC	281
	$K^+$	$1.5 \times 10^{8}$	$2.7 \times 10^{-1}$			Cond	25	MeOH	174
	K⁺	$2.9 \times 10^{-7}$	$2.03 \times 10^{-2}$			Cond	<b>2</b> 5	PC	2 <b>81</b>
	Rb ⁺	$1.1 \times 10^{8}$	$1.3 \times 10^2$			Cond	25	MeOH	174
	Rb⁺ Co+	$8.0 \times 10^{\circ}$	18.8	60 (d)	62 (d)	Cond	25	PC	281
	Cs ²⁺	$5 \times 10^{2}$	$3.44 \times 10^{-4}$	60 (u)	66 (Q)	Cond	20 25	PO MeOH	94 152
	Ca ²⁺	$3 \times 10^{2}$	$3.4 \times 10^{-4}$			Spec	25	MeOH	152
	$Ca^{2+}$	$1.1 \times 10^2$	0.24			Spec	25	H ₂ O	2 <b>82</b>
	Sr	$4.8 \times 10^{3}$	$4.3 \times 10^{-6}$			Cond	25	MeOH	152
	Sr ²⁺	$5 \times 10^{\circ}$	C 2 ¥ 10 4			Spec	25	MeOH	152
	Ba ²⁺	$2.9 \times 10^{4}$ 5.6 × 10 ⁴	$1.7 \times 10^{-4}$ (pot)			Cond	25	MeOH	152
	$Ba^{2+}$	$8 \times 10^{4}$	$2.9 \times 10^{-4}$			Spec	25	MeOH	152
	$Ba^{2+}$	$4.6 \times 10^{3}$	$1.73  imes 10^{-2}$			Spec	25	$H_2O$	28 <b>2</b>
Dec2.2.2	Na ⁺	$4.2 \times 10^{7}$	3.7			Cond	25	MeOH	174
	K [*]	$1.2 \times 10^{8}$	$4.7 \times 10^{-2}$			Cond	25	MeOH	174
nv•9 9 1	KD K+	$3 \times 10^8$	$7 \times 10^3$			Cona TJ	25 25	H.O	174 977
$K_{2}pv2.2.1$	Na⁺	$3 \times 10^{8}$	$1.5 \times 10^{4}$			ТJ	25	H ₂ O	277
	$K^+$	$5  imes 10^8$	$3 \times 10^{3}$			ТJ	25	$H_2O$	277
3.2.2	Cs ⁺		1090			NMR	25	MeOH	168
v <b>ali</b> nomycin	Na ⁺	$1.2 \times 10^{7}$	$2 \times 10^{6}$			US	25	MeOH	12
	n Rh ⁺	4 × 10.	$7.5 \times 10^{\circ}$			05, 1J TJ	20 25	MeOH	12
	Cs ⁺		$2.2 \times 10^{3}$			ΤJ	25	MeOH	12
	${\rm NH_4^+}$	$1.3 \times 10^{7}$	$2.5 \times 10^{5}$			$\mathbf{US}$	25	MeOH	12
monactin	Na ⁺	$3 \times 10^{8}$	$6 \times 10^{5}$			Spec	20	MeOH	271
antamanide	Na [⊤] Na⁺	$1.7 \times 10^{\circ}$	$2.6 \times 10^{4}$			Spec	20 20	MeON MeOH	271
Pro, Phe, Val, Ala)	114	117 10	2.1 ~ 10-			whee	20	MCOTT	<u>ا ا ک</u>
, , <b>.</b>	Ca ²⁺	$4.9 \times 10^{3}$	$1.9 \times 10^{2}$			Spec	20	MeOH	271
perhydroantamanide	Na 1	4.1 × 10°	3.1 × 10 ²			Spec	20	MeOH	271

^a Methods: Cal = calorimetry, Cond = conductivity, NMR = nuclear magnetic spectroscopy, PJ = pressure jump, Spec = spectrophotometer, TJ = temperature jump, US = ultrasound, Volt = voltammetry. ^bGenerally, the  $\Delta H^*$  and  $\Delta S^*$  values are calculated from  $k_f$  data. In those cases where these values are based on  $k_d$  values, a d is placed in parentheses following the value. ^cSolvents: Diox = 1.4-dioxane, DMF = dimethylformamide, Me₂SO = dimethyl sulfoxide, EDA = ethylenediamine, EtOH = ethanol. Form = formamide, MeCN = acetonitrile, Me₂CO = acetone, MeOH = methanol, NMP = N-methylpropionamide, PC = propylene carbonate, Py = pyridine. THF = tetrahydrofuran,  $\mu$  = ionic strength.

using ³⁹K and ⁸⁷Rb NMR spectroscopy has been reported.²⁷⁰ However, extrapolation by Liesegang et al.²⁶⁴ of these data to 25 °C gave a dissociation rate for K⁺-B₂18C6 which was larger by a power of 10 than the value determined previously at this temperature. The  $k_{\rm f}$  value computed by using this  $k_{\rm d}$  value is the same as the theoretical value for a diffusion-controlled reaction.²⁶⁴ The discrepancy may be due to extrapolation of data over such a wide temperature range (-34 °C to 25 °C).

The kinetics of cation complexation by 15C5 and 18C6 in water have been studied extensively by Eyring and his co-workers.²⁶³ Concentration-independent relaxation data in aqueous solution of 18C6 without any alkali or alkaline earth metal salt have been determined, also.²⁶⁴ Relaxation times for 15C5 are found to be slower than those for 18C6. The smaller macrocycle is less flexible and hence a longer relaxation time is envisaged for 15C5.²⁶⁰ However, preliminary data with aqueous solutions of 15C5 and potassium chloride indicate that the concentration-dependent complexation reaction is as fast as that between K⁺ and 18C6. The probable explanation of this apparent contradiction may be that the conformations involved in complexation are not the ones in the equilibrium process.¹²

The rate constants for complex formation are similar for the reaction of either alkali or alkaline earth metal cations with 18C6 and 15C5 suggesting that loss of cation solvation is the dominant factor in complex formation, cavity size being unimportant. For Tl⁺, Ag⁺, and Hg²⁺, a small decrease in  $k_{23}$  was observed for the ligand 15C5 compared to 18C6.²⁶¹ Eyring et al.,²⁶⁵ after considering the above results and taking into consideration the hypothesis that activation enthalpies for decomplexation are due mainly to a conformational rearrangement of the ligand, suggested that the selectivity of a crown ether is due to variations in  $\Delta S_d^*$ .

Conformational transitions of the cyclodecapeptide antamanide were measured ultrasonically. The complexation rate constants for Na⁺ and Ca²⁺ complexes in methanol are both substantially smaller than those for B₂30C10, monactin, and valinomycin. This has been attributed to the fact that the antamanide ring is less flexible resulting in substantial desolvation of the cation which becomes in turn the rate-determining step.²⁷¹

Petrucci and his co-workers³²⁹⁻³³¹ reported ultrasonic kinetic studies of 15C5 and 18C6 complexation of Na⁺ and K⁺ in nonaqueous solvents such as dimethylformamide, ethanol, and 1,2-dimethoxyethane. They prefer to describe their kinetic data in terms of a sequence of successive steps involving both ion desolvation and ligand rearrangement analogous to the mechanism noted above for valinomycin rather than the less general Chock mechanism. This is true because, in solvents that do not bind as tightly to the cation as does water, a rearrangement of the macrocyclic ligand rather than cation desolvation can become the slowest reaction step in the overall complexation mechanism.

## **B.** Cryptands

Macrobicyclic ligands of the cryptand type have at least two basic bridgehead nitrogen atoms. The pK values of these NH groups are about 7 and 9. Protontransfer reactions of cryptands occur in two distinct steps, corresponding to formation of mono- and diprotonated species. Rates for these reactions depend on the particular cryptand investigated. For example, rates for 2.1.1 are much faster than those for 1.1.1, but are still several orders of magnitude lower than those expected for a diffusion-controlled reaction in the direction which is favored from a thermodynamic standpoint.^{276,283} Interconversions among various in and out conformations have been suggested as reasons for the slow rates observed.²⁷⁶

Lehn et al.²⁸⁴ observed temperature-dependent changes in the H¹ NMR spectra of cryptand 2.2.2 on addition of either potassium, sodium, rubidium, or thallium salts. These changes were attributed to variations in the exchange rates of the metal cryptates with temperature. The following complexation-decomplexation process was indicated by the experimental data:

$$\mathrm{M}^{n+}, m\mathrm{H}_{2}\mathrm{O}$$
 + 2.2.2_{aq}  $\xleftarrow{k_{1}}{k_{-1}}$   $\mathrm{M}^{n+}, 2.2.2_{\mathrm{aq}}$  +  $m\mathrm{H}_{2}\mathrm{O}$ 

The decomplexation of K-2.2.2⁺ was unaffected by changing anions (Cl⁻, Br⁻) which indicates that ion pairing does not affect the rate of decomplexation of the cryptate.²⁸⁴ In the cryptates, complexation rates are approximately 10⁶ M⁻¹ s⁻¹ for the alkali metal cations. Differences in the equilibrium constants for formation of these complexes are reflected in variations both in the decomplexation rate and in the complexation rate. For example, the dissociation rate in CH₃OH of Sr-2.2.2²⁺ is approximately 10⁹ times slower than that of Sr-B₂18C6²⁺.¹³⁰

Ceraso and Dye²⁸⁰ noted that the exchange rates of sodium cryptate in ethylenediamine and water are the same. They concluded that the rate-limiting step is the dissociation of the complex. The free energy of activation for the complexation of Tl⁺ with 2.2.2 is 4.5 kcal/mol while the corresponding value for the alkali metal cation is 8.6 kcal/mol. The specific rate of association for Tl⁺ with 2.2.2 is 100 times larger than for the corresponding alkali metal cation.¹² This difference was explained by assuming that the orbitals of the metal ion may play a decisive role in complexation. Conformational change in the ligand may occur after association of the ligand to Tl⁺ without any loss of the solvent molecule.¹²

Cahen et al.²⁷³ deduced a similar decomplexation process from the exchange rates and thermodynamic parameters for the interaction of Li⁺ with 2.1.1 using a ⁷Li NMR spectral method. Their study in pyridine solution indicated that the decomplexation rate for Li⁺-2.2.1 is 10⁴ times as rapid as that for Li⁺-2.1.1. The greater decomplexation rate in the former case was attributed to the greater flexibility of 2.2.1. Also, farinfrared and Raman spectroscopic studies of Li⁺ and Na⁺ cryptates show that the alkali metal cations are completely enclosed in the cryptand cavity and that the cation-cryptand interaction is electrostatic in nature.²⁸⁵

Loyola et al.¹⁵⁷ studied the kinetics of  $Ca^{2+}$  interaction with 2.2.2, 2.2.1, and 2.1.1 by using a stopped-flow apparatus. These investigators propose a mechanism in which the cryptand undergoes a conformational rearrangement prior to complexation. Activation energy values for these systems suggest that the formation of the transition state involves little loss of water molecules attached to the metal ion.

Cox et al.¹⁴⁶ studied the dissociation rates for a variety of alkali metal cryptates in methanol. The pronounced selectivity of the cryptands for alkali metal cations is reflected entirely in the dissociation rates, with the formation rates increasing monotonically with increasing cation size. For larger cryptands, interactions between the cryptand and the incoming cation compensate effectively for the loss of cation solvation. Cox and his co-workers²⁷⁴ extended this study to the solvents ethanol, N-methylpropionamide, dimethyl sulfoxide, and dimethylformamide. Again, a good correspondence was found in the cases of 2.1.1, 2.2.1, and 2.2.2 between dissociation rates and K, formation rates being nearly the same. Alkali metal ion complexes with B2.2.2 in methanol have been studied by potentiometric, calorimetric, and stopped-flow experiments.¹⁷³ The entropies of complexation and activation, and the increase of the decomplexation rate through acid catalysis indicate that much of the conformational flexibility of the ligand is retained in its Na⁺ complex. Absence of an acid catalytic effect for  $K^+$  and  $Rb^+$  cryptates is attributed to the reduction in the mobility of the cryptands by steric strain.

The higher stability constants observed for cryptate formation in propylene carbonate relative to water are a result of both smaller dissociation rates and, to a lesser extent, larger formation rates.¹⁴⁷ Similar results were found for alkali metal-cryptand interaction in methanol.¹⁷⁴ From a study of the dissociation rates of complexes between alkali metal ions and 2.2.1 in methanol by a stopped flow technique, it was learned that the dependence of decomplexation rate and stability on ionic raius was found, also, for the corresponding enthalpies of activation and complexation, respectively, but the preference of Na⁺ over K⁺ is reversed. This fact and the observation that Na-2.2.1⁺ dissociation is enhanced by proton catalysis, led to the suggestion that the cavity radius of 2.2.1 lies between the ionic radii of Na⁺ and K⁺.¹⁵⁶

A kinetic study of  $Li^+$  and  $Ca^{2+}$  complexation by cryptand 2.1.1 using stopped-flow calorimetry indicated that the complexation occurs first to one face of the bicyclic ligand with the ion partially complexed by the ligand and the solvent followed by a rearrangement of the complex to a more stable conformation (total ion encapsulation). The slowness of the complexation rate suggests the presence of some ligand rate-limiting step rather than the usual rapid stepwise water loss or diffusion-controlled encounter.¹⁵⁵

### C. Macrocycles Containing Nitrogen Donor Atoms

Compounds of this type have been used as models to explain metal ion-macrocycle reactions in biological systems. Margerum and his co-workers^{48,51,254,286} have reported extensive investigations on the interaction of  $Cu^{2+}$  and Ni²⁺ with macrocycles containing nitrogen donor atoms. Lin et al.²⁸⁷ made kinetic measurements on the complexation of cyclic and noncyclic polyamines with Cu(II) in basic aqueous media to ensure the absence of ligand protonation. These workers conclude²⁸⁷ that for the complexation of  $Cu(OH)_3^-$  and  $Cu(OH)_4^{2-}$ with open-chain tetraamine ligands first-bond formation was the rate-determining step, while for the cyclic ligands the rate-determining step changes from first- to second-bond formation as the reactant changes from  $Cu(OH)_3^-$  to  $Cu(OH)_4^{2-}$ . From a study of  $Co^{3+}$  complexes with a series of saturated tetraaza macrocyclic ligands of varying ring sizes, Hung and Busch²⁸⁸ concluded that for the trans isomers the sequence of rates for replacement of chloride ion by water correlates well with the strain energies calculated from the macrocycles in the starting complexes. The strain energy is presumed to be largely relieved in the transition state. The corresponding cis isomers show a modest range of rates and a clear isokinetic effect.

Hertli and Kaden²⁸⁹ and Hay and Norman²⁹⁰ found no difference in reactivity toward Ni²⁺ between the cyclic and the open-chain tetraaza ligands in either CH₃CN, dimethyl sulfoxide, or dimethylformamide. On the other hand, in water the monoprotonated species are the reactive forms and the cyclic and open-chain ligands differ significantly in their complexation rates.²⁹¹

# D. Macrocycles Containing Oxygen and Nitrogen Donor Atoms

The kinetics of dissociation in acid medium of a range of Ni(III) complexes with coronands containing oxygen and nitrogen donor atoms have been measured. A decrease in the dissociation rate as the macrocycle ring size increases from 14 to 16 members is followed by a sharp increase in the rate for the complex with the 17-membered ring ligand. The occurrence of a minimum rate at 16-membered ring size is a clear indication of macrocyclic ring size control of kinetic stability.²⁵⁶ A similar study with copper(II) complexes with O-N donor macrocycles in 95% methanol did not show any break in either the kinetic or thermodynamic stabilities for the 16-membered ring ligand, contrary to the findings with the Ni²⁺ complexes, indicating no ring-size discrimination effects for copper complexes. Cu(II) forms a five-coordinated complex with an anion and four donor groups from the macrocycle.44

# E. Kinetic Data for Reactions Involving Metal-Macrocycle Complexes

The kinetic data compiled in Table IV are for the reaction of cations with macrocycles to form cation-macrocycle complexes. Kinetic data are also available for the subsequent reaction of these complexes with various species. These data include the following reaction types: substitution reactions involving coordinated anions and NH₃ for a large number of cobalt- and copper-tetraaza macrocycle complexes,^{288,292-324} ligand exchange in Cu²⁺-macrocycle³²⁵ and in Tl⁺-, Ca²⁺-, and Pb²⁺-cryptand³²⁶ complexes, and reduction potentials for M³⁺-cryptands (M = Eu, Yb)^{158,327} and Co³⁺-tetraaza³²⁸ macrocycle systems. The reader is referred to the indicated references for further information on these systems.

Acknowledgments. Appreciation is expressed to the National Science Foundation for partial support of this work through Grants CHE-8000059 and CPE-8119634. The authors are grateful to Dr. E. M. Eyring for several helpful suggestions and comments and to Dr. Richard B. Davidson for his aid in the preparation of the manuscript.

#### Nomenclature

Α	aza (nitrogen heteroatom)
Adr	adrenalin
Acet	acetamido
Aceto	methylcarbonyl
Al	allyl
Ald	aldehvdo
Am	amino
Arg	arginine
B	benzo
Br	bromo
Bu	n-butyl
B ₂	henzyl
$D_{L}$	carboyulate
Cha	carboxymide
Cla	chloro
002	$9 \operatorname{aroum}^{2}$
903	
1204	12-crown-4
Cy	
Cyl	cyclonexyl
Dec	
DMD	2,2-dimethyl-1,3-dioxolan-4-yl
Dodec	n-dodecyl
E	ethylene
en	ethylenediamine
Et	ethyl
Glu	glutamyl
Hex	<i>n</i> -hexyl
K	keto
Μ	methylene
Me	methyl
Nap	naphthalene
nic	nicotinamide
Nit	nitro
Non	nonyl
Oct	<i>n</i> -octyl
Octadec	octadecyl
Pent	pentamethylene
Ph	phenyl
Phe	phenylalanyl
Phos	P=0
Pr	propyl
Pro	proline
Py	pyridine
Quin	quinoline
Sul	sulfonate
Т	thia (sulfur heteroatom)
t-Bu	tertiary butyl
Tetradec	tetradecyl
THF	tetrahydrofuran
Trit	triphenylmethyl
Try	tryptophanyl

### IV. References

- Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495-2496.
   Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017-7036.
   Pedersen, C. J. In "Synthetic Multidentate Macrocyclic Compounds", Izatt, R. M., Christensen, J. J., Eds.; Academic Press: New York, 1978.
   Lamb, J. D.; Izatt, R. M.; Christensen, J. J.; Eatough, D. J. In "Coordination Chemistry of Macrocyclic Compounds"; Melson, G. A., Ed.; Plenum Press: New York, 1979; pp 145-218. 145 - 218
- Ovchinnikov, Y. A.; Ivanov, V. T.; Shkrob, A. M. "Membrane-Active Complexes"; Elsevier: Amsterdam, 1974.
   Bradshaw, J. S. In "Synthetic Multidentate Macrocyclic Compounds"; Izatt, R. M., Christensen, J. J., Eds.; Academic Press: New York, 1978.

- (7) Bradshaw, J. S.; Jones, B. A.; Davidson, R. B.; Christensen, J. J.; Lamb, J. D.; Izatt, R. M.; Morin, F. G.; Grant, D. M. J. Org. Chem. 1982, 47, 3362–3364.
   (8) Kellogg, R. M. In "Topics in Current Chemistry"; Vögtle, F.,
- Ed.; Springer-Verlag: New York, 1982.
- Davidson, R. B.; Bradshaw, J. S.; Jones, B. A.; Dalley, N. K.; Christensen, J. J.; Izatt, R. M.; Morin, F. G.; Grant, D. M. J. Org. Chem. 1984, 49, 353-357
- "Topics in Current Chemistry"; Vögtle, F., Ed.; Springer-(10)Verlag: New York, 1982.
- (11) Christensen, J. J.; Eatough, D. J.; Izatt, R. M. Chem. Rev. 1974, 74, 351-384.
- Liesegang, G. W.; Eyring, E. M. In "Synthetic Multidentate Compounds"; Izatt, R. M., Christensen, J. J., Eds.; Academic Press: New York, 1978; pp 289-308.
   Poonia, N. S.; Bajaj, A. V. Chem. Rev. 1979, 79, 389-445.
   deJong, F.; Reinhoudt, D. N. Adv. Phys. Org. Chem. 1980, 17, 0420-422.
- 279 433
- (15) Weber, E.; Vögtle, F. In "Topics in Current Chemistry"; Vögtle, F., Ed.; Springer-Verlag, New York, 1981.
- (16) Izatt, R. M.; Terry, R. E.; Hansen, L. D.; Avondet, A. G.; Bradshaw, J. S.; Dalley, N. K.; Jensen, T. E.; Christensen, J. J.; Haymore, B. L. Inorg. Chim. Acta 1978, 30, 1-8.
- (17) Smetana, A. J.; Popov, A. I. J. Solution Chem. 1980, 9, 183-196.
- (18) Hopkins, H. P., Jr.; Norman, A. B. J. Phys. Chem. 1980, 84, 309-314.
- (19) Massaux, J.; Desreux, J. F.; Duyckaerts, G. J. Chem. Soc., Dalton Trans. 1980, 865-868. (20) Michaux, G.; Reisse, J. J. Am. Chem. Soc. 1982, 104,
- 6895-6899. (a) Hoiland, H.; Ringseth, J. A.; Brun, T. S. J. Solution Chem. 1979, 8, 779-791.
  (21) Miyazaki, T.; Yanagida, S.; Itoh, A.; Okahara, M. Bull. Chem.
- Soc. Jpn. 1982, 55, 2005–2009. (22) Gokel, G. W.; Goli, D. M.; Minganti, C.; Echegoyen, L. J. Am.
- Chem. Soc. 1983, 105, 6786-6788.
- (23)Massaux, J.; Roland, G.; Desreux, J. F. Inorg. Chim. Acta 1982, 60, 129-133.
- (24) Massaux, J.; Desreux, J. F. J. Am. Chem. Soc. 1982, 104, 2967 - 2972
- Frensdorf, H. K. J. Am. Chem. Soc. 1971, 93, 600-606.
- (26) Luboch, E.; Cygan, A.; Biernat, J. F. Inorg. Chim. Acta 1983, 68, 201-204.
- Desreux, J. F.; Merciny, E.; Loncin, M. F. Inorg. Chem. 1981, (27)20, 987-991
- (28) Kodama, M.; Kimura, E. J. Chem. Soc., Dalton Trans. 1976, 116 - 120
- Kasprzyk, S. P.; Wilkins, R. G. Inorg. Chem. 1982, 21, (29)3349 - 3352
- Anichini, A.; Fabbrizzi, L.; Paoletti, P.; Clay, R. M. Inorg. (30)Chem. 1977, 22, L25-L27.
- Kodama, M.; Kimura, E. J. Chem. Soc., Chem. Commun. (31) 1**975**, 326–32'
- (32) Kodama, M.; Kimura, E. J. Chem. Soc., Dalton Trans. 1977, 2269 - 2276
- Kodama, M.; Kimura, E. J. Chem. Soc., Chem. Commun. (33) 1975, 891-892
- (34) Kodama, M.; Kimura, E. J. Chem. Soc., Dalton Trans. 1976, 1720 - 1724
- (35) Clay, R. M.; McCormac, H.; Micheloni, M.; Paoletti, P. Inorg. Chem. 1982, 21, 2494-2496.
   (36) Kodama, M.; Kimura, E. J. Chem. Soc., Dalton Trans. 1976,
- 2335-2338.
- 2330-2338.
  (37) Sokol, L. S. W.; Ochrymowycz, L. A.; Rorabacher, D. B. Inorg. Chem. 1981, 20, 3189-3195.
  (38) Diaddario, L. L.; Zimmer, L. L.; Jones, T. E.; Sokol, L. S. W. L.; Cruz, R. B.; Yee, E. L.; Ochrymowycz, L. A.; Rorabacher, D. B. J. Am. Chem. Soc. 1979, 101, 3511-3520.
  (20) Ling, T. F.; Pershacher, D. B.; Ochrymowycz, L. A. J. Am.
- Jones, T. E.; Rorabacher, D. B.; Ochrymowycz, L. A. J. Am. Chem. Soc. 1975, 97, 7485-7486. (39)
- (40)Reference deleted in revision.
- (41) Olsher, U.; Jagur-Grodzinski, J. J. Chem. Soc., Dalton Trans. 1981, 501-505
- 1981, 501-505.
  (42) Anderegg, G.; Ekstrom, A.; Lindoy, L. F.; Smith, R. J. J. Am. Chem. Soc. 1980, 102, 2670-2674.
  (43) Adam, K. R.; Lindoy, L. F.; Smith, R. J.; Anderegg, G.; Henrick, K.; McPartlin, M.; Tasker, P. A. J. Chem. Soc., Chem. Commun. 1979, 812-813.
  (44) Adam, K. R.; Anderegg, G.; Lindoy, L. F.; Lip, H. C.; McPartlin, M.; Rea, J. H.; Smith, R. J.; Tasker, P. A. Inorg. Chem. 1980, 19, 2956-2964.
- (45) Micheloni, M.; Sabtini, A.; Paolett, P. J. Chem. Soc., Perkin Trans. 2 1978, 828-830.
  (46) Micheloni, M.; Paoletti, P.; Poggi, A.; Fabbrizzi, L. J. Chem. Soc., Dalton Trans. 1982, 61-65.
- (47) Fabbrizzi, L.; Paoletti, P.; Clay, R. M. Inorg. Chem. 1978, 17,
- 1042-1046
- Hinz, F. P.; Margerum, D. W. Inorg. Chem. 1974, 13, 2941-2949
- (49) Yatsimirskii, K. B.; Pavlishchuk, V. V. Russ. J. Inorg. Chem.

#### 336 Chemical Reviews, 1985, Vol. 85, No. 4

1980, 25, 990-992

- (50) Fabbrizzi, L.; Micheloni, M.; Paoletti, P. J. Chem. Soc., Dalton Trans. 1980, 134-136.
- Cabbiness, D. K.; Margerum, D. W. J. Am. Chem. Soc. 1969, (51)91, 6540.
- (52) Bartolini, M.; Bianchi, A.; Micheloni, M.; Paoletti, P. J. Chem. Soc., Perkin Trans. 2 1982, 1345-1348. (a) Takeda, Y.; Yano, H.; Ishibashi, M.; Isozumi, H. Bull. Chem. Soc. Jpn. 1980, 53, 72-76. Izatt, R. M.; Terry, R. E.; Haymore, B. L.; Hansen, L. D.;
- (53)Dalley, N. K.; Avondet, A. G.; Christensen, J. J. J. Am. Chem. Soc. 1976, 98, 7620-7626. Cygan, A.; Biernat, J. F.; Chadzynski, H. Pol. J. Chem. 1979,
- (54)*53*, 929–933.
- (55) Dishong, D. M.; Gokel, G. W. J. Org. Chem. 1982, 47, 147-148
- (56) Reference deleted in revision.
- (57) Lin, J. D.; Popov, A. I. J. Am. Chem. Soc. 1981, 103, 3773-3777.

- (58) Nakamura, T.; Yumoto, Y.; Izutsu, K. Bull. Chem. Soc. Jpn. 1982, 55, 1850-1853.
  (59) Schultz, R. A.; Dishong, D. M.; Gokel, G. W. Tetrahedron Lett. 1981, 22, 2623-2626.
  (60) Kaifer, A.; Durst, H. D.; Echegoyen, L.; Dishong, D. M.; Schultz, R. A.; Gokel, G. W. J. Org. Chem. 1982, 47, 2005 2107. 3195-3197
- (61) Lamb, J. D.; Izatt, R. M.; Swain, S. W.; Christensen, J. J. J.
- (61) Lamo, S. D., Izati, R. M.; Swain, S. W.; Christensen, J. J. J. Am. Chem. Soc. 1980, 102, 475-479.
   (62) Nakatsuji, Y.; Nakamura, T.; Okahara, M. Chem. Lett. 1982, 1207-1210. (a) Nakatsuji, Y.; Nakamura, T.; Okahara, M.; Dishong, D. M.; Gokel, G. W. Tetrahedron Lett. 1982, 23, 1221-125. 1351--1352
- (63) Ikeda, I.; Emura, H.; Yamamura, S.; Okahara, M. J. Org. Chem. 1982, 47, 5150-5153.
  (64) Parsons, D. G.; Truter, M. R.; Wingfield, J. N. Inorg. Chim.
- (64) Parsons, D. G.; Fruter, M. R.; Wingheid, S. N. Inorg. Chim. Acta 1980, 47, 81-86.
  (65) Almasio, M.-C.; Arnaud-Neu, F.; Schwing-Weill, M.-J. Helv. Chim. Acta 1983, 66, 1296-1305.
  (66) Dishong, D. M.; Diamond, C. J.; Gokel, G. W. Tetrahedron Lett. 1981, 22, 1663-1666.
  (67) Davidson, R. B.; Izatt, R. M.; Christensen, J. J.; Schultz, R. A. Dishour, D. M.; Cokel, G. W. L. Org. Chem. 1984, 49.
- A.; Dishong, D. M.; Gokel, G. W. J. Org. Chem. 1984, 49, 5080-5084.
- (68)
- Takeda, Y. Bull. Chem. Soc. Jpn. 1982, 55, 2040–2041. Ungaro, R.; El Haj, B.; Smid, J. J. Am. Chem. Soc. 1976, 98, (69)5198-5202.
- (70)Hofmanova, A.; Koryta, J.; Brezina, M.; Mittal, M. L. Inorg. Chim. Acta 1978, 28, 73-76. Jayathirtha, Y.; Krishnan, V. Indian J. Chem., Sect. A 1979,
- (71)18A, 311-314.
- (72) Mandolini, L.; Masci, B. J. Am. Chem. Soc. 1984, 106, 168 - 17
- Izatt, R. M.; Terry, R. E.; Nelson, D. P.; Chan, Y.; Eatough, D. J.: Bradshaw, J. S.; Hansen, L. D.; Christensen, J. J. J. Am. Chem. Soc. 1976, 98, 7626-7630. Luo, G.-H.; Shen, M.-C.; Zhuge, X.-M.; Dai, A.-B.; Lu, G.-Y.; Hu, H.-W. Acta Chim. Sinica 1983, 41, 877-883.
- (74)
- Schultz, R. A.; Schlegel, E.; Dishong, D. M.; Gokel, G. W. J. Chem. Soc., Chem. Commun. 1982, 242-243. (75)
- (76) Masuyama, A.; Nakatsuji, Y.; Ikeda, I.; Okahara, M. Tetra-hedron Lett. 1981, 22, 4665-4668.
- (77)
- Arnaud-Neu, F.; Spiess, B.; Schwing-Weill, M. J. Helv. Chim. Acta 1977, 60, 2633-2643. Arnaud-Neu, F.; Spiess, B.; Schwing-Weill, M. J. J. Am. Chem. Soc. 1982, 104, 5641-5645. Spiess, B.; Arnaud-Neu, F.; Schwing-Weill, M. J. Inorg. Nucl. Chem. Lett. 1981, 17, 252, 252 (78)
- (79) Chem. Lett. 1981, 17, 253-256
- Spiess, B.; Arnaud-Neu, F.; Schwing-Weill, M. J. Helv. Chim. Acta 1980, 63, 2287-2294. (80)
- Spiess, B.; Martin-Faber, D.; Arnaud-Neu, F.; Schwing-Weill, M. J. Inorg. Chim. Acta 1981, 54, L91-L93. (81)
- An o. morg. Chim. Acta 1901, 54, L91-L93. Arnaud-Neu, F.; Schwing-Weill, M.-J.; Louis, R.; Weiss, R. Inorg. Chem. 1979, 18, 2956-2961. Louis, R.; Arnaud-Neu, F.; Weiss, R.; Schwing-Weill, M. S. Inorg. Nucl. Chem. Lett. 1977, 13, 31-35. Arnaud-Neu, F.; Schwing-Weill, M. J. Inorg. Nucl. Chem. Lett. 1975, 11, 131-138. (82)
- (83)
- (84)
- (85)
- Lett. 1975, 11, 131-138. Arnaud-Neu, F.; Schwing-Weill, M. J.; Juillard, J.; Louis, R.; Weiss, R. Inorg. Nucl. Chem. Lett. 1978, 14, 367-373. Yatsimirskii, K. B.; Kabachnik, M. I.; Sinyavskaya, E. I.; Konstantinovskaya, M. A.; Medved, T. Ya.; Polikarpov, Yu. M.; Bodrin, G. V. Russ. J. Inorg. Chem. 1980, 25, 992-995. Anderegg, G. Helv. Chim. Acta 1981, 64, 1790-1795. Kulstad, S.; Malmsten, L. A. J. Inorg. Nucl. Chem. 1981, 4, 1299-1304 (86)
- (88)1299-1304
- Yamabe, T.; Hori, K.; Akagi, K.; Fukui, K. Tetrahedron 1979, (89) 35, 1065-107
- Kulstad, S.; Malmsten, L. A. J. Inorg. Nucle. Chem. 1980, 42 (90)573-578. (a) Kolthoff, I. M.; Chantooni, M. K., Jr. Anal. Chem. 1980, 52, 1039-1044.

- (91) Lamb, J. D. Ph.D. Dissertation, Brigham Young University, Provo, UT, 1978.
- (92) Haymore, B. L.; Lamb, J. D.; Izatt, R. M.; Christensen, J. J. Inorg. Chem. 1982, 21, 1598-1602.
- (93) Takeda, Y. Bull. Chem. Soc. Jpn. 1983, 56, 866-868.
  (94) Mei, E.; Popov, A. I.; Dye, J. L. J. Phys. Chem. 1977, 81, 1677–1681
- (95) Khazaell, S.; Popov, A. I.; Dye, J. L. J. Phys. Chem. 1982, 86, 5018-5023
- (96) Khazaell, S.; Dye, J. L.; Popov, A. I. J. Phys. Chem. 1983, 87, 1830–1833
- (97) Shporer, M.; Zemel, H.; Luz, Z. FEBS Lett. 1974, 40, 357.
  (98) Mei, E.; Dye, J. L.; Popov, A. I. J. Am. Chem. Soc. 1977, 99, 5308-5311.
- (99) Anderegg, G. Helv. Chim. Acta 1975, 58, 1218-1225.
   (100) Ammann, B.; Bünzli, J.-C. G. Experientia, Suppl. 1979, 37, 49-53.
- (101) Izatt, R. M.; Lamb, J. D.; Christensen, J. J.; Haymore, B. L. J. Am. Chem. Soc. 1977, 99, 8344-8346.
  (102) Izatt, R. M.; Lamb, J. D.; Asay, R. E.; Mass, G. E.; Bradshaw, J. S.; Christensen, J. J.; Moore, S. S. J. Am. Chem. Soc. 1977, 2010 (1999) *99*, 6134–6136
- (103) Kodama, M.; Kimura, E. Bull. Chem. Soc. Jpn. 1976, 49, 2465 - 2469.
- (104) Izatt, R. M.; Izatt, N. E.; Rossiter, B. E.; Christensen, J. J.; Haymore, B. L. Science (Washington, D.C.) 1978, 199, 994-996.
- (105) Izatt, R. M.; Lamb, J. D.; Izatt, N. E.; Rossiter, B. E.; Christensen, J. J.; Haymore, B. L. J. Am. Chem. Soc. 1979, 101, 6273-6276.
- (106) Wada, F.; Wada, Y.; Kikukawa, K.; Matsuda, T. Bull. Chem. Soc. Jpn. 1981, 54, 458–461. (107) Izatt, R. M.; Lamb, J. D.; Swain, C. S.; Christensen, J. J.;

- (107) Leath, R. H., Lamu, J. D.; Swain, C. S.; Christensen, J. J.; Haymore, B. J. Am. Chem. Soc. 1980, 102, 3032-3034.
   (108) Izatt, R. M.; Lamb, J. D.; Rossiter, B. E.; Izatt, N.; Christensen, J. J. J. Chem. Soc., Chem. Commun. 1978, 386.
   (109) Kuokkanen, T.; Virtanen, P. O. I. Acta Chem. Scand., Ser. B 1979, B33, 725-730.
   (110) Nakayumi, H. Sacla, L. Vachila, K. atta Chem. Scand., Ser.
- (110) Nakazumi, H.; Szele, I.; Yoshida, K.; Zollinger, H. Helv. Chim. Acta 1983, 66, 1721-1736.
- (111) Nakazumi, H.; Szele, I.; Zollinger, H. Tetrahedron Lett. 1981, 22, 3053–3056.
- (112) Hashida, Y.; Matsui, K. Bull. Chem. Soc. Jpn. 1980, 53, 551 - 552
- (113) Nae, N.; Jagur-Grodzinski, J. J. Am. Chem. Soc. 1977, 99, 489-494
- (114) Burden, I. J.; Coxon, A. C.; Stoddart, J. F.; Wheatley, C. M. J. Chem. Soc., Perkin Trans. 1 1977, 220–226. (115) Izatt, R. M.; Nelson, D. P.; Rytting, J. H.; Haymore, B. L.;
- Christensen, J. J. J. Am. Chem. Soc. 1971, 93, 1619–1623. Izatt, R. M.; Rytting, J. H.; Nelson, D. P.; Haymore, B. L.; Christensen, J. J. Science (Washington, D.C.) 1969, 164, (116)143–444
- (117) Shchori, E.; Jagur-Grodzinski, J. J. Am. Chem. Soc. 1972, 94, 7957-7962
- (118) Izatt, R. M.; Lamb, J. D.; Mass, G. E.; Asay, R. E.; Bradshaw, J. S.; Christensen, J. J. J. Am. Chem. Soc. 1977, 99, 2365–2366.
- (119) Lamb, J. D.; Izatt, R. M.; Swain, C. S.; Bradshaw, J. S.; Christensen, J. J. J. Am. Chem. Soc. 1980, 102, 479-482.
- (120) Curtis, W. D.; Laidler, D. A.; Stoddart, J. F.; Jones, G. H. J.
- Chem. Soc., Chem. Commun. 1975, 833-835. (121) Behr, J.-P.; Lehn, J.-M.; Vierling, P. Helv. Chim. Acta 1982, 65, 1853-1867
- (122) Ercolani, G.; Mandolini, L.; Masci, B. J. Am. Chem. Soc. 1981, 103, 7484-7489
- (123) Nae, N.; Jagur-Grodzinski, J. J. Chem. Soc., Faraday Trans. J 1977, 73, 1951–1957.
  (124) Shchori, E.; Nae, N.; Jagur-Grodzinski, J. J. Chem. Soc., Dalton Trans. 1975, 2381–2386.
  (125) Matsuura, N.; Umemoto, K.; Takeda, Y.; Sasaki, A. Bull. Chem. Soc. Jpn. 1976, 49, 1246–1249.
  (126) Shchori, E.; Jagur-Grodzinski, J. Israel J. Chem. 1973, 11, 243–253.

- 243 253
- (127) Früh, P. U.; Simon, W. "Protides of the Biological Fluids-20th Colloquium"; Peeters, H., Ed.; Pergamon Press: New York, 1973.
- (128) Shchori, E.; Jagur-Grodzinski, J.; Shporer, M. J. Am. Chem.
- Soc. 1973, 95, 3842-3846.
   (129) Hofmanova, A.; Hung, L. Q.; Khalil, W. J. Electroanal. Chem. 1982, 135, 257-264.
- (130) Cox, B. G.; Firman, P.; Schneider, H. Inorg. Chim. Acta 1982, 64, L263-L265.
- (131) Srivanavit, C.; Zink, J. I.; Dechter, J. J. J. Am. Chem. Soc. 1977, 99, 5876-5881.
- (132) Massaux, J.; Desreux, J. F.; Delchambre, C.; Duyckaerts, G. Inorg. Chem. 1980, 19, 1893-1896. (133) Chantooni, M. K., Jr.; Kolthoff, I. M.; Roland, G. Aust. J.
- Chem. **1983**, 36, 17**5**3–1765.
- (134) Lehn, J.-M.; Sauvage, J. P. J. Am. Chem. Soc. 1975, 97,

6700-6707

- (135) Kodama, M.; Kimura, E.; Yamaguchi, S. J. Chem. Soc., Dalton Trans. 1980, 2536-2538. (a) Campbell, M. L.; Dalley, N. K.; Izatt, R. M.; Lamb, J. D. Acta Crystallogr., Sect. B 1981, B37, 1664-1669.
- (136)Shamispur, M.; Rounaghi, G.; Popov, A. I. J. Solution Chem. 1980, 9, 701-714.
- Samec, Z.; Homolka, D.; Marecek, V. J. Electroanal. Chem. (137)1**982**, 135, 265-283.
- (138) Wingfield, J. N. Inorg. Chim. Acta 1980, 45, L157-L159. (139) Chock, P. B. Proc. Natl. Acad. Sci. U.S.A. 1972, 69,
- 193**9–1**942
- (140) Popov, A. I. Pure Appl. Chem. 1979, 51, 101-110. (141) Shamsipur, M.; Popov, A. I. J. Am. Chem. Soc. 1979, 101,
- 4051-4055. (142) Cox, B. G.; Knop, D.; Schenider, H. J. Am. Chem. Soc. 1978,
- 100, 6002-6007 (143) Arnaud-Neu, F.; Spiess, B.; Schwing-Weill, M. J. J. Chem. Res., Synop. 1982, 10-11
- (144) Kauffmann, E.; Lehn, J.-M.; Sauvage, J.-P. Helv. Chim. Acta 1976, 59, 1099-1111.
- (145) Cox, B. G.; Garcia-Rosas, J.; Schneider, H. J. Am. Chem. Soc.
- 1981, 103, 1384–1389. (146) Cox, B. G.; Schneider, H.; Stroka, J. J. Am. Chem. Soc. 1978, 100, 4746-4749.
- (147) Cox, B. G.; Garcia-Rosas, J.; Schneider, H. J. Phys. Chem. 1980, 84, 3178-3183.
- (148) Lejaille, M.-F.; Livertoux, M.-H.; Guidon, C.; Bessière, J. Bull. Soc. Chim. Fr. 1978, 1373-1377.
- (149) Shih, J. S.; Popov, A. I. Inorg. Chem. 1980, 19, 1689–1692.
   (150) Loyola, V. M.; Pizer, R.; Wilkins, R. G. J. Am. Chem. Soc. 1977, 99, 7185–7188.
- (151) Gutknecht, J.; Schneider, H.; Stroka, J. Inorg. Chem. 1978,
- (10) 17, 3326-3329.
   (152) Cox, B. G.; Van Truong, Ng.; Garcia-Rosas, J.; Schneider, H. J. Phys. Chem. 1984, 88, 996-1001.
   (153) Lehn, J.-M.; Montavon, F. Helv. Chim. Acta 1978, 61, 67-82.

- (154) Burns, J. H.; Baes, C. F., Jr. Inorg. Chem. 1981, 20, 616-619.
   (155) Liesegang, G. W. J. Am. Chem. Soc. 1981, 103, 953-955.
   (156) Cox, B. G.; Schneider, I.; Schneider, H. Ber Bunsenges. Phys.
- Chem. 1980, 84, 470-474. (157) Loyola, V. M.; Wilkins, R. G.; Pizer, R. J. Am. Chem. Soc. 1975, 97, 7382-7383.
- (158) Yee, E. L.; Gansow, O. A.; Weaver, M. J. J. Am. Chem. Soc. 1980, 102, 2278-2285
- (159) Cox, B. G.; Firman, P.; Schneider, H. Inorg. Chem. 1982, 21, 2320-2323.
- (160) Gresser, P.; Boyd, D. W.; Albrecht-Gary, A. M.; Schwing, J. P. J. Am. Chem. Soc. 1980, 102, 651-653.
- (161) Abraham, M. H.; de Namor, A. F. D.; Schulz, R. A. J. Chem. Soc., Faraday Trans. 1 1980, 869-884. (162) Yee, E. L.; Tabib, J.; Weaver, M. J. J. Electroanal. Chem.
- 1979, 96, 241-244.
  (163) Kolthoff, I. M.; Chantooni, M. K., Jr. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 5040-5042.
- (164) Abraham, M. H.; de Namor, A. F. D.; Lee, W. H.; Wheaton, R. J. Acta Chem. Scand., Ser. A. 1980, A34, 621–623. (165) Lacoste, J.; Schue, F. Bull. Chem. Soc. Jpn. 1983, 56,
- 3491-3494.
- (166) Cox, B. G.; Firman, P.; Gudlin, D.; Schneider, H. J. Phys. Chem. 1982, 86, 4988-4992.
   (167) Mei, E.; Liu, L.; Dye, J.; Popov, A. J. Solution Chem. 1977,
- 771-778.
- (168) Kauffmann, E.; Dye, J. L.; Lehn, J.-M.; Popov, A. I. J. Am.
- Chem. Soc. 1980, 102, 2274–2279. (169) Chantooni, M. K., Jr.; Kolthoff, I. M. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 7245–7247.
- (170) Gillain, G.; Barthelemy, P.; Massaux, J.; Desreux, J. F.; J. Chem. Soc., Dalton Trans., in press.
- (171) Cox, B. G.; Guminski, C.; Schneider, H. J. Am. Chem. Soc. 1982, 104, 3789-3792
- (172) Dietrich, B.; Lehn, J.-M.; Sauvage, J. P. J. Chem. Soc., Chem. Commun. 1973, 15-16.
- (173) Cox, B. G.; Knop, D.; Schneider, H. J. Phys. Chem. 1980, 84, 320-323
- (174) Cox, B. G.; Firman, P.; Schneider, I.; Schneider, H. Inorg. *Chim. Acta* 1981, 49, 153-158. (175) Shinkai, S.; Kouno, T.; Kusano, Y.; Manabe, O. J. Chem.
- oc., Perkin Trans. 1 1982, 2741-2747.
- (176) Lehn, J.-M.; Simon, J. Helv. Chim. Acta 1977, 60, 141-151 (a) Cheney, J.; Lehn, J.-M.; Sauvage, J. P.; Stubbs, M. E. J. Chem. Soc., Chem. Commun. 1972, 1100-1101.
   (177) Lehn, J.-M.; Stubbs, M. E. J. Am. Chem. Soc. 1974, 96,

- 54, 1445-1450.
- (180) Cornelius, G.; Gärtner, W.; Haynes, D. H. Biochemistry 1979, 13, 3052-3057.

- (181) Madison, V.; Ateryi, M.; Deber, C. M.; Blout, E. R. J. Am. Chem. Soc. 1974, 96, 6725-6734.
- (182) Ryan, T. H.; Koryta, J.; Hofmanova-Matejkova, A.; Brezina, M. Anal. Lett. 1974, 7, 335–341.
- (183) Züst, Ch. U.; Früh, P. U.; Simon, W. Helv. Chim. Acta 1973, 56, 495–499.
- (184) Mager, C.; Oberbäumer, I.; Ruf, H.; Grell, E. Stud. Phys.
- Theor. Chem. 1983, 24, 281-287.
   (185) Oberbäumer, I.; Feigl, P.; Ruf, H.; Grell, E. Struct. Act. Nat. Pept.: Proc. Fall Meet. Ges. Biol. Chem. 1981, 523-538.
- (186) Czech, B.; Ratajczak, A. Pol. J. Chem. 1980, 54, 767-775.
  (187) Dalley, N. K. In "Synthetic Multidentate Macrocyclic Compounds"; Izatt, R. M., Christensen, J. J., Eds., Academic Press: New York, 1978.
- (188) Shannon, R. D. Acta Crystallogr., Sect. A: Found. Crystallogr. 1976, 32, 751-767. (189) Henderson, P. "Inorganic Geochemistry"; Pergamon: New
- York, 1982.
- (190) Marcus, R. A. J. Solution Chem. 1983, 12, 271-275.
  (191) Bright, D.; Truter, M. R. J. Chem. Soc. B, 1970, 1544-1550.
  (192) Mallinson, P. R.; Truter, M. R. J. Chem. Soc., Perkin Trans. 2 1972, 1818–1823. (193) Pedersen, C. J. J. Am. Chem. Soc. 1970, 92, 386–390.
- (194) Ishizu, K.; Kohama, H.; Mukai, K. Chem. Lett. 1978, 227-230.
- (195) Su, A. C. L.; Weiher, J. F. Inorg. Chem. 1968, 7, 176.
  (196) Bush, M. A.; Truter, M. R. J. Chem. Soc., Chem. Commun. 1970, 1439-1440.
- (197) Reinhoudt, D. R.; Gray, R. T.; DeJong, F.; Smit, C. J. Tetrahedron 1977, 33, 563-571. (198) Izatt, R. M.; Eatough, D. J.; Christensen, J. J. Struct. Bond-
- ing (Berlin) 1973, 16, 161-189.
- (199) Dunitz, J. D.; Seiler, P. Acta Crystallogr., Sect. B: Struct.
- (199) Dunitz, J. D.; Seiler, P. Acta Crystallogr., Sect. B: Struct. Sci. 1974, B30, 2739-2741.
   (200) Seiler, P.; Dobler, M.; Dunitz, J. D. Acta Crystallogr., Sect. B: Struct. Sci. 1974, B30, 2744-2745.
   (201) Dobler, M.; Dunitz, J. D.; Seiler, P. Acta Crystallogr., Sect. B: Struct. Sci. 1974, B30, 2741-2743.
   (202) Coxon, A. C.; Laidler, D. A.; Pettman, R. B.; Stoddart, J. F. Jam Cham Soc. 1978, 100, 2969-2963.
- (202) Cooni, A. C., Daidler, D. A., Fettinai, N. B., Stoudart, J. F. J. Am. Chem. Soc. 1978, 100, 8260–8263.
   (203) Moore, S. S.; Tarnovski, T. L.; Newcomb, M.; Cram, D. J. J.
- Am. Chem. Soc. 1977, 99, 6398-6405. Frensch, K.; Vögtle, F. Tetrahedron Lett. 1977, 2573-2574. Schultz, R. A.; Dishong, D. M.; Gokel, G. W. J. Am. Chem. (204)(205)
- Soc. 1982, 104, 625–626. (206) Helgeson, R. C.; Timko, J. M.; Cram, D. J. J. Am. Chem. Soc. 1973, 95, 3023–3025.
- (207) Kimura, K.; Maeda, T.; Shono, T. Anal. Lett. 1978, A11, 821-827
- (208) Kopolow, S.; Machacek, Z.; Takaki, U.; Smid, J. J. Macromol. Sci. Chem. 1973, A7, 1015-1033.
  (209) Helgeson, R. C.; Tarnowski, T. L.; Timko, J. H.; Cram, D. J. J. Am. Chem. Soc. 1977, 99, 6411-6418.
- (210) Wong, K. H.; Bourgoin, M.; Smid, J. J. Chem. Soc., Chem.
- Commun. 1974, 715-716. (211) Bourgoin, M.; Wong, K. H.; Hui, J. Y.; Smid, J. J. Am. Chem. Soc. 1975, 97, 3462-3467.
- (212) Jones, B. A.; Bradshaw, J. S.; Izatt, R. M. J. Heterocycl. Chem. 1982, 19, 545-550.
- (213) Cram, D. J.; Helgeson, R. C.; Sousa, L. R.; Timko, J. M.; Newcomb, M.; Moreau, P.; Dejong, F.; Gokel, G. H.; Hoff-man, D. H.; Domeier, L. A.; Peacock, S. C.; Madan, K.; Kaplan, L. Pure Appl. Chem. 1975, 43, 327-349. (214) Abraham, M. H.; Ling, H. C. Tetrahedron Lett. 1982, 23,
- 469-472.
- (215) Agostiano, A.; Caselli, M.; Della Monica, M. J. Electroanal. Chem. 1976, 74, 95-105.
   (216) Dechter, J. J.; Zink, J. I. J. Am. Chem. Soc. 1976, 98, 845-846.
- (217) Haynes, D. H.; Prenman, B. C. J. Membrane Biol. 1974, 18,
- -21.
- (218) Jaber, A. M. Y.; Moody, G. J.; Thomas, J. D. R. J. Inorg. Nucl. Chem. 1977, 39, 1689-1696. Jawaid, M.; Ingman, F. Talanta 1978, 25, 91-95.
- (219)
- (220) Frensdorf, H. K. J. Am. Chem. Soc. 1971, 93, 4684-4688.
   (221) Iwachido, T.; Sadakane, A.; Toei, K. Bull. Chem. Soc. Jpn. 1978, 51, 629-630.
- (222) Sekine, T.; Wakabayashi, H.; Hasegawa, Y. Bull. Chem. Soc. Jpn. 1978, 51, 645–646.
- (223) Sadakane, A.; Iwachido, T.; Toei, K. Bull. Chem. Soc. Jpn. 1975, 48, 60-63.
- (224) Wong, K. H.; Konizer, G.; Smid, J. J. Am. Chem. Soc. 1970, 92, 666
- (225) Arnett, E. M.; Moriarity, T. C. J. Am. Chem. Soc. 1971, 93, 4908-4911
- (226) Graddon, D. P.; Micheloni, M.; Paoletti, P. J. Chem. Soc., Dalton Trans. 1981, 336-341. Travis, K.; Busch, D. H. J. Chem. Soc., Chem. Commun. 1970, 1041-1042.
- (227)
- (228) Rosen, N.; Busch, D. H. Inorg. Chem. 1970, 9, 262-264.
   (229) Black, D. St. C.; Mclean, I. A. Tetrahedron Lett. 1969,

3961 - 3964.

- (230) Schrauzer, G. N.; Ho, R. K. Y.; Murillo, R. P. J. Am. Chem. Soc. 1970, 92, 3508
- (231) Johnston, D. L.; Horrocks, W. D. Inorg. Chem. 1971, 10, 687-691.
- (232)Kluiber, R. W.; Sasso, G. Inorg. Chim. Acta 1970, 4, 226-230.
- (233) Herceg, M.; Weiss, R. Inorg. Nucl. Chem. Lett. 1970, 6, 435-437.

- (234) Gramain, P.; Frere, Y. Nouveau J. Chim. 1979, 3, 53-58.
  (235) Wester, N.; Vögtle, F. J. Chem. Res., Miniprint 1978, 4856.
  (236) Dalley, N. K.; Larson, S. B.; Smith, J. S.; Matheson, K. L.; Izatt, R. M.; Christensen, J. J. J. Heterocycl. Chem. 1981, 18, 463-467
- (237) Park, C. H.; Simmons, H. E. J. Am. Chem. Soc. 1968, 90, 2431-2432.
- (238) Morel-Desrosiers, N.; Morel, J. P. J. Am. Chem. Soc. 1981, 103, 4743-4746.
- (239) Abraham, M. H.; de Namor, A. F. D.; Lee, W. H. J. Chem. Soc., Chem. Commun. 1977, 893-894.
- (240) Abraham, M. H.; Viguria, E. C.; de Namor, A. F. D. J. Chem. Soc., Chem. Commun. 1979, 374–375.
- (241) Lein, G. M.; Cram, D. J. J. Chem. Soc., Chem. Commun. 1982, 301-304.
- (242) Cram, D. J.; Kandea, T.; Helgeson, R. C.; Lein, G. M. J. Am. *Chem. Soc.* 1979, 101, 6752-6754. (243) Cram, D. J.; Kaneda, T.; Lein, G. M.; Helgeson, R. C. J.
- Chem. Soc., Chem. Commun. 1979, 949–950. (244) Cram, D. J.; Lein, G. M.; Kaneda, T.; Helgeson, R. C.; Kno-
- bler, C. B.; Maverick, E.; Trueblood, K. N. J. Am. Chem. Soc. **1981**, *103*, 6228–6232.
- Cram, D. J. Science (Washington, D.C.) 1983, 219, (245)177-1183.
- (246) Knöchel, A.; Oehler, J.; Rudolph, G.; Simmwell, V. Tetrahedron 1977, 33, 119-126. (247) Smith, G. F.; Margerum, D. W. J. Chem. Soc., Chem. Com-
- mun. 1975, 807-808.
- (248)Dei, A.; Gori, R. Inorg. Chim. Acta 1975, 14, 157-160
- (249) Paoletti, P.; Fabbrizzi, L.; Barbucci, R. Inorg. Chem. 1973, 12, 1961 - 1962
- (250) Fabbrizzi, L.; Paoletti, P.; Lever, A. B. P. Inorg. Chem. 1976, 15, 1502-1506
- (251) Anichini, A.; Fabbrizzi, L.; Paoletti, P.; Clay, R. M. J. Chem. Soc., Dalton Trans. 1978, 577-583.
- (252) Lucia, S.; Sokol, W. L.; Ochrymowycz, L. A.; Rorabacher, D. B. Inorg. Chem. 1981, 20, 3189-3195. (253) Busch, D. H.; Farmery, K.; Goedken, V.; Katovic, V.; Melnyk,
- A. C.; Sperati, C. R.; Tokel, N. Ad. Chem. Ser. 1971, 100, 44 - 78
- Cabbiness, D. K.; Margerum, D. W. J. Am. Chem. Soc. 1970, 92, 2151-2153. (254)
- Jones, T. E.; Zimmer, L. L.; Diaddario, L. L.; Rorabacher, D (255)B.; Ochrymowycz, L. A. J. Am. Chem. Soc. 1975, 97, 7163-7165
- (256)Ekstrom, A.; Lindoy, L. F.; Smith, R. J. J. Am. Chem. Soc. 1979, 101, 4014-4017.
- (257) Ekstrom, A.; Lindoy, L. F.; Smith, R. J. Inorg. Chem. 1980, 19, 724–727
- (258) Ekstrom, A.; Lindoy, L. F.; Lip, H. C.; Smith, R. J.; Goodwin, H. F.; McPartlin, M.; Tasker, P. A. J. Chem. Soc., Dalton Trans. 1979, 1027-1031.
- Hay, R. W.; Bembi, R. Inorg. Chim. Acta 1982, 62, 89-97. Rodriguez, L. J.; Liesegang, G. W.; White, R. D.; Farrow, M. M.; Purdie, N.; Eyring, E. M. J. Phys. Chem. 1977, 81, (260)2118-2122
- (261) Rodriguez, L. J.; Liesegang, G. W.; Farrow, M. M.; Purdie, N.; Eyring, E. M. J. Phys. Chem. 1978, 82, 647-650.
  (262) Eyring, E. M.; Farrow, M. M.; Rodriquez, L. J.; Lloyd, L. B.; Rohrbach, R. P.; Allred, E. L. In "Techniques and Applica-tions of Fast Reactions in Solution"; Gettins, W. J., Wyn-Lower, E. Edge, D. Reidel, Derdrecht Hellend, 1970.

- tions or r'ast reactions in Solution"; Gettins, W. J., Wyn-Jones, E., Eds.; D. Reidel: Dordrecht, Holland, 1979.
  (263) Liesegang, G. W.; Farrow, M. M.; Vazquez, F. A.; Purdie, N.; Eyring, E. M. J. Am. Chem. Soc. 1977, 99, 3240-3243.
  (264) Liesegang, G. W.; Farrow, M. M.; Purdie, N.; Eyring, E. M. J. Am. Chem. Soc. 1976, 98, 6905-6909.
  (265) Liesegang, G. W.; Farrow, M. M.; Rodriguez, L. J.; Burnham, R. K.; Eyring, E. M.; Purdie, N. Int. J. Chem. Kin. 1978, 10, 471-487, (a) Live. D: Chan. S. I. J. Am. Chem. Soc. 1976, 98 471-487. (a) Live, D.; Chan, S. I. J. Am. Chem. Soc. 1976, 98, 3769-3778.
- (266) Schmidt, E.; Popov, A. I. J. Am. Chem. Soc. 1983, 105, 1873-1878.
- (267) Blackmer, G. L.; Nordyke, M. D.; Vickery, T. M.; Bartsch, R. A.; Holwerda, R. A. Inorg. Chem. 1978, 17, 3310-3313. Krane, J.; Skjetne, T. Tetrahedron Lett. 1980, 21, 1775-1778.
- (268)
- (269) Shchori, E.; Jagur-Grodzinski, J.; Luz, Z.; Shporer, M. J. Am. Chem. Soc. 1971, 93, 7133-7138.
   (270) Shporer, M.; Luz, Z. J. Am. Chem. Soc. 1975, 97, 665-666.
   (271) Burgermeister, W.; Wieland, T.; Winkler, R. Eur. J. Biochem.
- 1974, 44, 305-310. (272) Cox, B. G.; Schneider, H. J. Am. Chem. Soc. 1977, 99,
- 2809-2811.

- (273) Cahen, Y. M.; Dye, J. L.; Popov, A. I. J. Phys. Chem. 1975, 79, 1292-1295.
- (274) Cox, B. G.; Garcia-Rosas, J.; Schneider, H. J. Am. Chem. Soc.
- (275) Henco, K.; Tümmler, B.; Maass, G. Angew. Chem. Int. Ed. Engl. 1977, 16, 538.
   (276) Cox, B. G.; Murray-Rust, J.; Murray-Rust, P.; van Truong,
- N.; Schneider, H. J. Chem. Soc., Chem. Commun. 1982, 377 - 379
- (277) Tümmler, B.; Maass, G.; Weber, E.; Wehner, W.; Vögtle, F. J. Am. Chem. Soc. 1977, 99, 4683-4690.
- Lehn, J.-M. Struct. Bonding 1973, 16, 1-71 (278)
- (279) Ceraso, J. M.; Smith, P. B.; Landers, J. S.; Dye, J. L. J. Phys. Chem. 1977, 81, 760-766. (280) Ceraso, J. M.; Dye, J. L. J. Am. Chem. Soc. 1973, 95,
- 4432-4435. (281) Cox, B. G.; Garcia-Rosas, J.; Schneider, H. Ber. Bunsenges.
- Phys. Chem. 1982, 86, 293-297
- (282) Bemtgen, J. M.; Springer, M. E.; Loyola, V. M.; Wilkins, R. G.; Taylor, R. W. Inorg. Chem. 1984, 23, 3348-3353.
   (283) Smith, P. B.; Dye, J. L.; Cheney, J.; Lehn, J.-M. J. Am. Chem. Soc. 1981, 103, 6044-6048.
- (284) Lehn, J.-M.; Sauvage, J. P.; Dietrich, B. J. Am. Chem. Soc. (205) Cahen, Y. M.; Popov, A. I. J. Solution Chem. 1975, 4,
- 599-608.
- (286) Hinz, F. P.; Margerum, D. W. J. Am. Chem. Soc. 1974, 96, 4993-4994.
- (287) Lin, C. T.; Rorabacher, D. B.; Cayley, G. R.; Margerum, D. W. Inorg. Chem. 1975, 919-925.
  (288) Hung, Y.; Busch, D. H. J. Am. Chem. Soc. 1977, 99, 4977-4984.
- (289) Hertli, L.; Kaden, T. A. Helv. Chim. Acta 1981, 64, 33-37. (290) Hay, R. W.; Norman, P. R. Inorg. Chim. Acta 1980, 45, L139.
- (291) Leugger, A. P.; Hertli, L.; Kaden, Th. A. Helv. Chim. Acta 1978, 61, 2296-2300.
- Lawrence, G. A.; Suvachittanont, S. Aust. J. Chem. 1980, 33, (292)273 - 278.
- Mok, K. S.; Poon, C. K. Inorg. Chem. 1971, 10, 225-229.
   Lui, C. K.; Poon, C. K. J. Chem. Soc., Dalton Trans. 1972,
- (294)216 - 218
- Chau, W. K.; Lee, W. K.; Poon, C. K. J. Chem. Soc., Dalton (295) Trans. 1974, 2419–2423.
   (296) Poon, C. K.; Tong, H. W. J. Chem. Soc., Dalton Trans. 1974,
- -5.
- (297) Poon, C. K.; Tobe, M. L. J. Chem. Soc. A 1967, 2069-2075.
  (298) Chau, W. K.; Poon, C. K. J. Chem. Soc. A 1971, 3087-3091.
  (299) Hay, R. W.; Lawrance, G. W. J. Chem. Soc., Dalton Trans.
- 1975, 1556-1559. Lee, W. K.; Poon, C. K. J. Chem. Soc., Dalton Trans. 1974, (300) 2423 - 2427
- (301) Kernohan, J. A.; Endicott, J. F. Inorg. Chem. 1970, 9, 1504-1512
- (302) Poon, C. K.; Wong, C. L. J. Chem. Soc., Dalton Trans. 1976, 966-969.
- (303) Rillema, D. P.; Endicott, J. F.; Barber, J. R. J. Am. Chem. Soc. 1973, 95, 6987-6992.
   (304) Poon, C. K.; Wong, C. L. Inorg. Chem. 1976, 15, 1573-1576.
- (305) Chung, H. L.; Bounsall, E. J. Can. J. Chem. 1978, 56,
- 709-713.
- Thusius, D. J. Am. Chem. Soc. 1971, 93, 2629-2635. (306)
- (307) Mak, P. W.; Poon, C. K. Inorg. Chem. 1976, 15, 1949–1953.
   (308) Mok, K. S.; Poon, C. K.; Tong, H. W. J. Chem. Soc., Dalton rans. 1972, 1701-1704
- (309) Poon, C. K.; Tong, H. W. J. Chem. Soc., Dalton Trans. 1973, 1301-1303.
- (310) Nithyananthan, P.; Tobe, M. L. Inorg. Chem. 1969, 8, 1589 - 1595.
- (311) Alexander, M. D.; Hamilton, H. G. Inorg. Chem. 1969, 8, 2131-2134
- (312) Poon, C. K.; Tobe, M. L. J. Chem. Soc. A 1968, 1549–1555.
   (313) Kodama, M.; Kimura, E. J. Chem. Soc., Dalton Trans. 1980.
- 2447-245
- (314) Hay, R. W.; Norman, P. R. J. Chem. Soc., Dalton Trans.
- (314) Hay, R. W., Norman, P. R. J. Chem. Soc., Datton Trans. 1979, 1441–1445.
  (315) Poon, C. K.; Wan, W. K.; Liao, S. S. T. J. Chem. Soc., Datton Trans. 1977, 1247–1251.
  (316) Poon, C. K.; Wong, C. L. Mak, P. W. J. Chem. Soc., Datton Trans. 1977, 1931–1935.
  (317) Poon, C. K.; Liao, S. S. T. J. Chem. Soc., Datton Trans. 1978, 190–1185.
- 180-1185 (318) Poon, C. K.; Isabirye, D. A. J. Chem. Soc., Dalton Trans.
- (319)
- 1978, 740-743.
   Poon, C. K.; To, A. W. M. Inorg. Chem. 1979, 18, 1277-1283.
   Kendall, P. L.; Lawrence, G. A. Aust. J. Chem. 1977, 30, (320)1841–1**8**45.
- (321) Lawrence, G. A.; Hay, R. W. Aust. J. Chem. 1976, 29, 2319 - 2324.
- (322) Lawrence, G. A. Inorg. Nucl. Chem. Lett. 1976, 12, 85–88.
   (323) Poon, C. K.; Wang, C. L. J. Chem. Soc., Dalton Trans. 1977,

523-527.

- (324) Tsukahara, K.; Oshita, H.; Emoto, Y.; Yamamoto, Y. Bull. Chem. Soc. Jpn. 1982, 55, 2107-2112.
   (325) Tabushi, I.; Fujiyoshi, M. Tetrahedron Lett. 1978, 2157-2160.
- (326) Cox, B. G.; Garcia-Rosas, J.; Schneider, H. J. Am. Chem. Soc.
- (320) Cox, B. G., Galchartosas, S., Schneider, H. S. Am. Onem. Soc. 1982, 104, 2434-2437.
   (327) Koizumi, N.; Aoyagui, S. J. Electroanal. Chem. 1981, 124,
- 345 347.

- 345-347.
  (328) Durham, B.; Endicott, J. F.; Wong, C.; Rillema, D. P. J. Am. Chem. Soc. 1979, 101, 847-857.
  (329) Maynard, K. J.; Irish, D. E.; Eyring, E. M.; Petrucci, S. J. Phys. Chem. 1984, 88, 729-736.
  (330) Chen, C.; Wallace, W.; Eyring, E. M.; Petrucci, S. J. Phys. Chem. 1984, 88, 2541-2547.
  (331) Chen, C.; Wallace, W.; Eyring, E. M.; Petrucci, S. J. Phys. Chem. 1984, 88, 5445-5450.
  (332) Handyside, T. M.; Lockhart, J. C.; McDonnell, M. B.; Subba

- Chemical Reviews, 1985, Vol. 85, No. 4 339
- Rao, P. V. J. Chem. Soc., Dalton Trans. 1982, 2331-2336. Takeda, Y.; Yano, H. Bull. Chem. Soc. Jpn. 1980, 53, (333) 1720-1722.
- (334) Frederick, L. A.; Fyles, T. M.; Gurprasad, N. P.; Whitfield, D. M. Can. J. Chem. 1981, 59, 1724-1733.
  (335) Kolthoff, I. M.; Wang, W.-J.; Chantooni, M. K., Jr. Anal. Chem. 1983, 55, 1202-1204.
- (336) Sinta, R.; Rose, P. S.; Smid, J. J. Am. Chem. Soc. 1983, 105, 4337–4343.
- 4337-4343.
  (337) Stetter, H.; Frank, W. Angew. Chem. 1976, 88, 722.
  (338) Takeda, Y.; Ohyagi, Y.; Akabori, S. Bull. Chem. Soc. Jpn. 1984, 57, 3381-3385.
  (339) Danil de Namor, A.; Ghousseini, L. J. Chem. Soc., Faraday Trans. 1 1984, 80, 2349-2360.
  (340) Fenton, D. E.; Parkin, D.; Newton, R. F. J. Chem. Soc., Perkin Trans. 1 1981, 449-454.